
CHAPTER 1: THE BASICS

 Internet Protocol
 Transmission Control Protocol (TCP)

 TCP Ports
 The TCP Handshake

 User Datagram Protocol (UDP)
 UDP Ports
 The Non-existent UDP Handshake

 Internet Control Message Protocol (ICMP)
 The Basics of nmap

 The Nmap Scanning Process
 Using nmap from the Command Line
 Nmap Target Specifications
 Privileged Access
 Nmap Support Files

 Locating the Support Files
 Using the Support Files

 nmap-mac-prefixes
 nmap-os-fingerprints
 nmap-protocols
 nmap-rpc
 nmap-service-probes
 nmap-services

CHAPTER 2: NMAP SCANNING TECHNIQUES

 Nmap Scan Summary
 TCP SYN Scan (-sS)
 TCP connect() Scan (-sT)
 Stealth Scanning – The FIN Scan (-sF), Xmas Tree Scan (-sX), and Null Scan (-sN)

 The FIN Scan (-sF)
 The Xmas Tree Scan (-sX)
 The Null Scan (-sN)
 Stealth Scanning Summary

 Ping Scan (-sP)
 Version Detection (-sV)
 UDP Scan (-sU)
 IP Protocol Scan (-sO)
 ACK Scan (-sA)
 Window Scan (-sW)
 RPC Scan (-sR)
 List Scan (-sL)
 Idlescan (-sI <zombie host:[probeport]>)

 How Idlescan REALLY Works
 Idlescan Preparation
 Deconstructing the Idlescan Process

 Idlescan Summary
 FTP Bounce Attack (-b)

 FTP Bounce Attack Operation
 FTP Bounce Attack Summary

http://www.networkuptime.com/nmap/page3-21.shtml
http://www.networkuptime.com/nmap/page3-20.shtml#3.14.1.1
http://www.networkuptime.com/nmap/page3-20.shtml
http://www.networkuptime.com/nmap/page3-19.shtml
http://www.networkuptime.com/nmap/page3-18.shtml
http://www.networkuptime.com/nmap/page3-17.shtml#3.13.2.1
http://www.networkuptime.com/nmap/page3-17.shtml
http://www.networkuptime.com/nmap/page3-16.shtml
http://www.networkuptime.com/nmap/page3-15.shtml
http://www.networkuptime.com/nmap/page3-14.shtml
http://www.networkuptime.com/nmap/page3-13.shtml
http://www.networkuptime.com/nmap/page3-12.shtml
http://www.networkuptime.com/nmap/page3-11.shtml
http://www.networkuptime.com/nmap/page3-10.shtml
http://www.networkuptime.com/nmap/page3-9.shtml
http://www.networkuptime.com/nmap/page3-8.shtml
http://www.networkuptime.com/nmap/page3-7.shtml
http://www.networkuptime.com/nmap/page3-6.shtml
http://www.networkuptime.com/nmap/page3-5.shtml
http://www.networkuptime.com/nmap/page3-4.shtml#3.3.1
http://www.networkuptime.com/nmap/page3-4.shtml
http://www.networkuptime.com/nmap/page3-3.shtml
http://www.networkuptime.com/nmap/page3-2.shtml
http://www.networkuptime.com/nmap/page3-1.shtml#3.1
http://www.networkuptime.com/nmap/page3-1.shtml
http://www.networkuptime.com/nmap/page2-6.shtml#2.5.4.2.6
http://www.networkuptime.com/nmap/page2-6.shtml#2.5.4.2.5
http://www.networkuptime.com/nmap/page2-6.shtml#2.5.4.2.4
http://www.networkuptime.com/nmap/page2-6.shtml#2.5.4.2.3
http://www.networkuptime.com/nmap/page2-6.shtml
http://www.networkuptime.com/nmap/page2-5.shtml#2.5.4.2.1
http://www.networkuptime.com/nmap/page2-5.shtml#2.5.4.2
http://www.networkuptime.com/nmap/page2-5.shtml#2.5.4.1
http://www.networkuptime.com/nmap/page2-5.shtml
http://www.networkuptime.com/nmap/page2-4b.shtml
http://www.networkuptime.com/nmap/page2-4b.shtml
http://www.networkuptime.com/nmap/page2-4b.shtml
http://www.networkuptime.com/nmap/page2-4a.shtml
http://www.networkuptime.com/nmap/page2-4.shtml
http://www.networkuptime.com/nmap/page2-3.shtml#2.4
http://www.networkuptime.com/nmap/page2-3.shtml#2.3.2
http://www.networkuptime.com/nmap/page2-3.shtml#2.3.1
http://www.networkuptime.com/nmap/page2-3.shtml#2.3
http://www.networkuptime.com/nmap/page2-2a.shtml
http://www.networkuptime.com/nmap/page2-2.shtml
http://www.networkuptime.com/nmap/page2-2.shtml#2.2
http://www.networkuptime.com/nmap/page2-1.shtml#2.1
http://www.networkuptime.com/nmap/page2-1.shtml

CHAPTER 3: NMAP'S PING OPTIONS

 Ping Options
 ICMP Echo Request and TCP ACK Ping (-PB)
 ICMP Echo Request Ping (-PE)
 TCP ACK Ping (-PA [portlist])
 TCP SYN Ping (-PS [portlist])
 UDP Ping (-PU [portlist])
 ICMP Timestamp Ping (-PP)
 ICMP Address Mask Ping (-PM)
 Don't Ping Before Scanning (-P0)
 Require Reverse DNS (-R)
 Disable Reverse DNS (-n)

CHAPTER 4: OPERATING SYSTEM FINGERPRINTING

 Operating System Fingerprinting (-O) Operation
 The nmap-os-fingerprints Support File

 nmap-os-fingerprints : Fingerprint
 nmap-os-fingerprints : Class
 nmap-os-fingerprints : TSeq

 TSeq: The Class Attribute
 TSeq: The IPID Attribute
 TSeq: Timestamp Option Sequencing

 nmap-os-fingerprints : Test 1 (T1) through Test 7 (T7)
 The T1 to T7 Attributes

 nmap-os-fingerprints : The Port Unreachable Test (PU)
 The Operating System Fingerprinting Process
 Advantages of Operating System Fingerprinting
 Disadvantages of Operating System Fingerprinting
 When to use Operating System Fingerprinting

 Limit Operating System Scanning (--osscan_limit)
 More Guessing Flexibility (--osscan_guess , --fuzzy)
 Additional, Advanced, and Aggressive (-A)

CHAPTER 5: HOST AND PORT OPTIONS

 Exclude Targets (--exclude <host1 [,host2] [,host3]...>)
 Exclude Targets in File (--excludefile <exclude_file>)
 Read Targets from File (-iL <inputfilename>)
 Pick Random Numbers for Targets (-iR <numhosts>)
 Randomize Hosts (--randomize_hosts, -rH)
 No Random Ports (-r)
 Source Port (--source_port or -g)
 Specify Protocol or Port Numbers (-p <port range>)
 Fast Scan Mode (-F)
 Create Decoys (-D <decoy1 [,decoy2][,ME],...>)

 The Danger of Decoy-Initiated SYN Floods
 Source Address (-S<IP_address>)
 Interface (-e <interface>)

http://www.networkuptime.com/nmap/page06-05.shtml
http://www.networkuptime.com/nmap/page06-05.shtml
http://www.networkuptime.com/nmap/page06-04.shtml
http://www.networkuptime.com/nmap/page06-03.shtml
http://www.networkuptime.com/nmap/page06-02.shtml#6.9
http://www.networkuptime.com/nmap/page06-02.shtml#6.8
http://www.networkuptime.com/nmap/page06-02.shtml#6.7
http://www.networkuptime.com/nmap/page06-02.shtml
http://www.networkuptime.com/nmap/page06-01.shtml#6.5
http://www.networkuptime.com/nmap/page06-01.shtml#6.4
http://www.networkuptime.com/nmap/page06-01.shtml#6.3
http://www.networkuptime.com/nmap/page06-01.shtml#6.2
http://www.networkuptime.com/nmap/page06-01.shtml#6.1
http://www.networkuptime.com/nmap/page06-01.shtml
http://www.networkuptime.com/nmap/page05-06.shtml#5.3
http://www.networkuptime.com/nmap/page05-06.shtml#5.21
http://www.networkuptime.com/nmap/page05-06.shtml#5.2
http://www.networkuptime.com/nmap/page05-06.shtml#5.1.5
http://www.networkuptime.com/nmap/page05-06.shtml#5.1.4
http://www.networkuptime.com/nmap/page05-06.shtml
http://www.networkuptime.com/nmap/page05-05.shtml
http://www.networkuptime.com/nmap/page05-04.shtml#5.1.6
http://www.networkuptime.com/nmap/page05-04.shtml#5.1.5.1
http://www.networkuptime.com/nmap/page05-04.shtml
http://www.networkuptime.com/nmap/page05-03.shtml#5.1.4.3
http://www.networkuptime.com/nmap/page05-03.shtml#5.1.4.2
http://www.networkuptime.com/nmap/page05-03.shtml
http://www.networkuptime.com/nmap/page05-02.shtml
http://www.networkuptime.com/nmap/page05-02.shtml
http://www.networkuptime.com/nmap/page05-02.shtml
http://www.networkuptime.com/nmap/page05-02.shtml
http://www.networkuptime.com/nmap/page05-01.shtml
http://www.networkuptime.com/nmap/page05-01.shtml
http://www.networkuptime.com/nmap/page4-9.shtml#4.10
http://www.networkuptime.com/nmap/page4-9.shtml#4.9
http://www.networkuptime.com/nmap/page4-9.shtml
http://www.networkuptime.com/nmap/page4-8.shtml
http://www.networkuptime.com/nmap/page4-7.shtml
http://www.networkuptime.com/nmap/page4-6.shtml
http://www.networkuptime.com/nmap/page4-5.shtml
http://www.networkuptime.com/nmap/page4-4.shtml
http://www.networkuptime.com/nmap/page4-3.shtml
http://www.networkuptime.com/nmap/page4-2.shtml
http://www.networkuptime.com/nmap/page4-1.shtml
http://www.networkuptime.com/nmap/page4-1.shtml

 CHAPTER 6: LOGGING OPTIONS

 Normal Format (-oN <logfilename>)
 XML Format (-oX <logfilename>)

 Stylesheet (--stylesheet <filename>)
 No Stylesheet (--no-stylesheet)

 Grepable Format (-oG <logfilename>)
 All Formats (-oA <basefilename>)
 Script Kiddie Format (-oS <logfilename>)
 HTML Format (-oH)
 Resume Scan (--resume <logfilename>)
 Append Output (--append_output)

 CHAPTER 7: REAL-TIME INFORMATION OPTIONS

 Verbose Mode (--verbose, -v)
 Version Trace (--version_trace)
 Packet Trace (--packet_trace)
 Debug Mode (--debug, -d)
 Interactive Mode (--interactive)
 Noninteractive Mode (--noninteractive)

 CHAPTER 8: TUNING AND TIMING OPTIONS

 Nmap Packet Tuning
 Time to Live (--ttl <value>)
 Use Fragmented IP Packets (-f, -ff)
 Maximum Transmission Unit (--mtu <databytes>)
 Data Length (--data_length <databytes>)

 Nmap Timing Options
 Host Timeout (--host_timeout <milliseconds>)
 Round Trip Time

 Initial Round Trip Time Timeout (--initial_rtt_timeout)
 Minimum Round Trip Time Timeout (--min_rtt_timeout)
 Maximum Round Trip Time Timeout (--max_rtt_timeout)

 Parallel Host Scanning
 Maximum Parallel Hosts per Scan (--max_hostgroup)
 Minimum Parallel Hosts per Scan (--min_hostgroup)

 Parallel Port Scanning
 Maximum Number of Parallel Scans (--max_parallelism)
 Minimum Number of Parallel Scans (--min_parallelism)

 Delay
 Minimum Delay Between Probes (--scan_delay)
 Maximum Delay Between Probes (--max_scan_delay)

 Timing Policies (-T)

 CHAPTER 9: WINDOWS-ONLY OPTIONS

 Help for Windows (--win_help)
 List All Network Interfaces (--win_list_interfaces)
 Disable Raw Socket Support (--win_norawsock)

http://www.networkuptime.com/nmap/page10-02.shtml
http://www.networkuptime.com/nmap/page10-02.shtml
http://www.networkuptime.com/nmap/page10-02.shtml
http://www.networkuptime.com/nmap/page10-01.shtml
http://www.networkuptime.com/nmap/page09-09.shtml
http://www.networkuptime.com/nmap/page09-08.shtml
http://www.networkuptime.com/nmap/page09-08.shtml
http://www.networkuptime.com/nmap/page09-08.shtml
http://www.networkuptime.com/nmap/page09-07.shtml
http://www.networkuptime.com/nmap/page09-07.shtml
http://www.networkuptime.com/nmap/page09-07.shtml
http://www.networkuptime.com/nmap/page09-06.shtml
http://www.networkuptime.com/nmap/page09-06.shtml
http://www.networkuptime.com/nmap/page09-06.shtml
http://www.networkuptime.com/nmap/page09-05.shtml
http://www.networkuptime.com/nmap/page09-05.shtml
http://www.networkuptime.com/nmap/page09-05.shtml
http://www.networkuptime.com/nmap/page09-05.shtml
http://www.networkuptime.com/nmap/page09-04.shtml
http://www.networkuptime.com/nmap/page09-04.shtml
http://www.networkuptime.com/nmap/page09-03.shtml
http://www.networkuptime.com/nmap/page09-03.shtml
http://www.networkuptime.com/nmap/page09-02.shtml
http://www.networkuptime.com/nmap/page09-01.shtml
http://www.networkuptime.com/nmap/page09-01.shtml
http://www.networkuptime.com/nmap/page09-01.shtml
http://www.networkuptime.com/nmap/page08-04.shtml
http://www.networkuptime.com/nmap/page08-04.shtml
http://www.networkuptime.com/nmap/page08-03.shtml
http://www.networkuptime.com/nmap/page08-02.shtml
http://www.networkuptime.com/nmap/page08-01.shtml
http://www.networkuptime.com/nmap/page08-01.shtml
http://www.networkuptime.com/nmap/page08-01.shtml
http://www.networkuptime.com/nmap/page07-04.shtml
http://www.networkuptime.com/nmap/page07-04.shtml
http://www.networkuptime.com/nmap/page07-04.shtml
http://www.networkuptime.com/nmap/page07-04.shtml
http://www.networkuptime.com/nmap/page07-03.shtml
http://www.networkuptime.com/nmap/page07-03.shtml
http://www.networkuptime.com/nmap/page07-02.shtml#7.2.3
http://www.networkuptime.com/nmap/page07-02.shtml#7.2.2
http://www.networkuptime.com/nmap/page07-02.shtml
http://www.networkuptime.com/nmap/page07-01.shtml
http://www.networkuptime.com/nmap/page07-01.shtml

 Try Raw Sockets Even on non-W2K Systems (--win_forcerawsock)
 Disable WinPcap Support (--win_nopcap)
 Test NT 4.0 Route Code (--win_nt4route)
 Test Response to Lack of iphlpapi.dll (--win_noiphlpapi)
 Trace Through Raw IP Initialization (--win_trace)
 Skip Windows IP Initialization (--win_skip_winip_init)

 CHAPTER 10: MISCELLANEOUS OPTIONS

 Quick Reference Screen (--help, -h)
 Nmap Version (--version, -V)
 Data Directory (--datadir)
 Quash Argument Vector (-q)
 Define Custom Scan Flags (--scanflags[flagval])
 (Uriel) Maimon Scan (-sM)
 IPv6 Support (-6)

 CHAPTER 11: USING NMAP IN THE "REAL WORLD"

 Identifying the Remnants of a Virus Outbreak or Spyware Infestation
 Vulnerability Assessments
 Security Policy Compliance Testing
 Asset Management
 Firewall Auditing
 Perpetual Network Auditing

Chapter 1: The Basics

To understand how nmap works, one must also understand the fundamentals of TCP/IP. Nmap uses
TCP/IP protocols to query workstations and the responses are interpreted into useful security
information. All of the wonderful information that nmap discovers is related to these intricate
conversations between nmap and the remote devices.

All computers using the TCP/IP family of protocols follow standard processes when initiating
network conversations. Ideally, these processes would be identical regardless of operating system,
software version, or hardware manufacturer. In the networking world, however, not every system
works exactly the same way. Although these minor differences would usually be considered
problematic, nmap takes advantage of these anomalies to provide additional information about the
remote system.

The TCP/IP protocols aren't difficult to understand, but each protocol is unique and has its own set of
rules and procedures. Once the basics of these protocols are understood, the fundamental operation of
nmap becomes much easier to follow. If you're new to networking, don't skip this section!

Internet Protocol

For data to move across the Internet, each device must have an Internet Protocol (IP) address. At its

http://www.networkuptime.com/nmap/page12-07.shtml
http://www.networkuptime.com/nmap/page12-06.shtml
http://www.networkuptime.com/nmap/page12-05.shtml
http://www.networkuptime.com/nmap/page12-04.shtml
http://www.networkuptime.com/nmap/page12-03.shtml
http://www.networkuptime.com/nmap/page12-02.shtml
http://www.networkuptime.com/nmap/page12-01.shtml
http://www.networkuptime.com/nmap/page11-02.shtml
http://www.networkuptime.com/nmap/page11-02.shtml
http://www.networkuptime.com/nmap/page11-02.shtml
http://www.networkuptime.com/nmap/page11-01.shtml
http://www.networkuptime.com/nmap/page11-01.shtml
http://www.networkuptime.com/nmap/page11-01.shtml
http://www.networkuptime.com/nmap/page11-01.shtml
http://www.networkuptime.com/nmap/page11-01.shtml
http://www.networkuptime.com/nmap/page10-03.shtml
http://www.networkuptime.com/nmap/page10-03.shtml
http://www.networkuptime.com/nmap/page10-03.shtml
http://www.networkuptime.com/nmap/page10-03.shtml
http://www.networkuptime.com/nmap/page10-03.shtml
http://www.networkuptime.com/nmap/page10-02.shtml

most basic level, IP is a truck-for-hire that carries data shipments across the roads of the network. IP
doesn't care what's in the back of the truck; its only goal is to make sure that the truck and its cargo of
data get safely from one side of the network to the other.

Just like a real truck, every IP truck needs a starting address to pick up the shipment and a final
destination address where the data will be unloaded. In the real world, we think of these as street
addresses. In the TCP/IP world, these addresses are usually represented as four decimal numbers
between 0 and 255, such as 192.168.0.1 or 10.155.232.17. Before a station can communicate across
the network, the IP address of the destination station must be identified so the IP truck will know
where to drive. You wouldn't take a trip without knowing where you were going!

The Internet connects many different networks together with devices called routers. As the IP truck
drives through the network, it stops at each router to ask for directions. The IP truck also traverses
other devices called firewalls or packet filters. As the IP truck travels along its way, a router or
firewall may decide that the IP truck's packet isn't permitted to drive along this particular part of the
network. If this happens, the firewall or packet filter will obliterate the IP truck from the network,
usually without any message back to the originating station. The truck and all of its data are usually
never heard from again. Firewalls consistently drop packets from the network, and this often assists
nmap in determining if a port is open, closed, or filtered.

Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) is the most used IP-based protocol on the Internet. An
understanding of TCP will provide insight into the most popular protocol in networking and into the
inner workings of nmap's powerful scanning engine.

TCP Ports

To move data across the network, simply knowing the IP address of the end station isn't enough to
complete the transfer. The cargo in the IP truck must be loaded on one end, and unloaded on the
other. The originating station must also identify who will be unloading the truck on the other end, and
add that information to the shipment manifest. Instead of names, networks use numbers called ports to
represent the entity that will be loading or unloading the data cargo from the IP packet.

A port is a number between 1 and 65,535, and port number references are usually specific to an
application. In many cases, an application's port number is a commonly known port number. For
example, nearly every web server on the Internet uses port 80 to receive web traffic. Nmap knows that
port 80 is rarely filtered, so it uses port 80 as test port to determine device availability.

A list of well known, registered, and dynamic port numbers is maintained by the Internet Assigned
Numbers Authority (IANA) at this location:

http://www.iana.org/assignments/port-numbers

TCP is a very needy protocol. When a frame with TCP data is sent across the network to another
station, the sending station must receive an acknowledgement that the data was received properly. If
the sending station doesn't receive an acknowledgement after a certain time period, the data is resent
in the hopes that it will make it through the second time. This process continues until either the data
makes it through, or the transmission process times out.

TCP doesn't need to know how to traverse the network because it relies on IP to get the data to the
other side. Once the data makes the trip across the network, TCP takes over and uses its port numbers

, 20/12/06
google_ad_section_start

http://www.iana.org/assignments/port-numbers

to determine where to drop the package. It's possible that IP could properly route the data across the
network and TCP would try to drop the data at the specified port, but the receiving station may not be
listening on that port. The TCP data would have nowhere to go and the entire packet would be
discarded.

The TCP Handshake

TCP is not only needy, but it's also a very formal protocol. Before TCP can begin the process of
sending data across the network, TCP relies on a "handshake" to set up the conversation between
point A and point B. This handshake makes TCP "connection oriented," which means that a
connection must be created between the end-stations before TCP communication can proceed.

This handshake is often referred to as the "three way handshake" because of the three frames that pass
back and forth:

The First Frame – The initial synchronize (SYN) frame is sent from the station initiating the
conversation to the destination station. The SYN frame includes initial sequence numbers and the port
that will be used for the conversation, as well as other initialization parameters.

The Second Frame – The destination station receives the SYN frame. If everything is in agreement, it
sends an acknowledgement to the SYN (called an ACK) and its own SYN parameters.

The Third Frame – The original station receives the ACK to its original SYN, as well as the SYN
from the destination device. Assuming everything is in order, the source station sends an ACK to the
destination station's SYN.

This handshake occurs every time a TCP session is established. It's this three-way handshake that
allows nmap to gather so much information about the ports on a device.

User Datagram Protocol (UDP)

TCP could be described as a very "needy" protocol. It requires a formal handshaking process, and it
demands an acknowledgement for every byte of data that traverses the network.

UDP, however, is the polar opposite. Data that flows across the network with UDP at the helm might
get to the other side, or it might not. We don't care! If we really cared enough about the data, we'd
send it via TCP so that we'd know it successfully arrived on the other side of the network. It's not that
the odds of UDP data getting to the other side are any different than TCP, but UDP doesn't expect a
reply. Human beings sometimes interpret that kind of nonchalance as a lack of concern.

In reality, UDP is an extremely valuable protocol! For example, Voice over IP technology uses UDP
extensively to send voice information across the network. Since voice information can't be
retransmitted, the voice over IP designers realized that UDP is the perfect protocol. If one UDP voice
packet is lost that contains a tenth of a second of information, the voice conversation can continue

, 20/12/06
google_ad_section_start

, 20/12/06
google_ad_section_start

without missing too much of the conversation. Occasionally, the data won't even be missed!

UDP Ports

Just like TCP, UDP uses ports to determine where the data is going once it arrives at the destination.
And, just like TCP, UDP ports are numbered between 1 and 65,535. However, TCP and UDP port
numbers are unique to their individual protocols. A server that listens for TCP data on port 80 isn't
going to accept UDP data on port 80. Most applications use one transport type or the other, but rarely
both. If a server shows that port 143 is open, it's important to specify if it's TCP port 143 or UDP port
143. It might be both or it might be none, but it still must be specified.

The Non-existent UDP Handshake
UDP is a connectionless protocol, which means that it doesn't require a formal handshake to get the
data flowing. A frame that contains UDP data simply communicates to another station without any
prior warning or fanfare. Of course, the receiving station must be configured to receive data on the
appropriate UDP port, but no formal handshaking process is required. To send UDP data, it's
packaged up in an IP frame and sent on its way – no questions asked!

Internet Control Message Protocol (ICMP)

ICMP is the tattletale of the network. If there's something going on, you can bet that ICMP is going to
be there to talk about it. ICMP is a multifaceted protocol that can identify an unreachable destination,
redirect traffic to another network, identify routing loops, synchronize clocks, or identify when a
router is overloaded.

ICMP is extremely helpful when nmap is scanning for available ports. If some UDP data is sent to
another station using a port that's not available, an ICMP "port unreachable" message is usually sent
back to the originating station as a notification that data using that particular port number isn't
welcome here.

Nmap loves ICMP, because it's so obvious when a port isn't available. It's more difficult when ICMP
is filtered or turned off, but nmap can still interpret network responses to determine which ports are
open or closed. Since many smart organizations do not allow ICMP to flow through their firewall, it's
not always available for nmap to use.

One of ICMP's many functions is to send 'echoes' from one station to another, usually with a program
called ping. This functionality is useful when troubleshooting a device's availability. A station
sending an ICMP echo request should receive an ICMP echo reply from the other station. By default,
nmap sends an ICMP before scanning, although there are scanning options within nmap that can
customize this functionality.

The Basics of nmap

Nmap is a powerful utility, but it's somewhat difficult for the novice to understand. There are
approximately fifteen different scanning methods within nmap, twenty different options to use when
scanning, and the output of nmap can be presented in at least four different ways. Within all of these
choices, there are timing variable and packet delay settings that can be tweaked and altered. Although
these seem almost overwhelming to the uninitiated, these options have been designed to provide
complete customization of the scanning process.

t's easy to understand how to use nmap, but it's more difficult to understand which options to use

under which circumstances. After the scan type has been determined, it's equally complex to interpret
the results. Each scan type has advantages and disadvantages, and this tutorial will show how every
possible scan type can be used for maximum effectiveness.

Most of this tutorial will focus on using nmap in its native form at the command line. The command
line requires a bit more typing than a graphical interface, but knowledge of the command line assures
that nmap could be used across any platform, operating system, or console. Although a graphical
front-end isn't always available, this tutorial will also provide an overview of nmap's front-end
capabilities and how they relate to the nmap command-line utility.

The Nmap Scanning Process

Nmap performs four steps during a normal device scan. Some of these steps can be modified or
disabled using options on the nmap command line.

1. If a hostname is used as a remote device specification, nmap will perform a DNS lookup prior
to the scan. This isn't really an nmap function, but it's useful to mention since this DNS traffic
will appear as network traffic and the query will eventually be noted in the DNS logs. If an IP
address is used to specify the remote device, this step never occurs. There's no way to disable
a DNS lookup when a hostname is specified, unless the hostname and IP address is found in a
locally maintained name resolution file such as hosts or lmhosts.

2. Nmap pings the remote device. This refers to the nmap "ping" process, not (necessarily) a
traditional ICMP echo request. Chapter 3 contains more information on nmap's plethora of
ping options. This ping process can be disabled with the –P0 option.

3. If an IP address is specified as the remote device, nmap will perform a reverse DNS lookup in
an effort to identify a name that might be associated with the IP address. This is the opposite
process of what happens in step 1, where an IP address is found from a hostname
specification.

This process may seem redundant if a DNS lookup is done on step one, but often the results of
a name-to-IP-address are different that the results of an IP-address-to-name. Often, the name
we use to identify hosts is an alias of the actual host name. For example, if
www.microsoft.com is used as a hostname on the nmap command line, the DNS lookup in
step one may resolve the IP address as 207.46.19.30. However, a reverse DNS of that IP
address in step three might show that address belongs to www.microsoft.com.nsatc.net, a
third-party hosting provider for Microsoft.

If this reverse lookup process isn't required or desired, it can be disabled with the –n option.

4. Nmap executes the scan. Once the scan is over, this four-step process is completed.
Except for the actual scan process in step four, each of these steps can be disabled or
prevented using different IP addressing or nmap options. The nmap process can be as "quiet"
or as "loud" as necessary!

If the scan is interrupted (with CTRL-C), an "interrupt" process performs a cleanup to close
any log files and halt nmap. If the scan is resumed (with the --resume option), nmap uses
the log file information to begin scanning from the previous location. A normal (-oN) or
grepable log file (-oG) option must be specified to resume the scanning process.

Using nmap from the Command Line

The command line syntax for nmap is similar to any other command line-based utility. Each option is
specified one after another on the same line, separated by a space and in no particular order. Nmap
uses Unix-style command line syntax by preceding option abbreviations with a single hyphen (-) and
non-abbreviated options with two hyphens (--).

The nmap command

nmap -v –p 80 ––randomize_hosts 192.168.0.*

will run nmap with the verbose option (-v), scan only port 80 (-p80), and randomize the selected
hosts (--randomize_hosts) across the range of 192.168.0.0 through 192.168.0.255. Notice that
the abbreviated –v and –p commands use only one hyphen and the non-abbreviated ––
randomize_hosts option uses two hyphens.

Nmap Target Specifications

Nmap provides many methods of specifying a scan target. The target specification can be placed
anywhere on the command line.

A single IP address or hostname can be specified on the command line without any wildcards or lists.
For example, the command (nmap 192.168.1.5 will perform an nmap scan to the 192.168.1.5
address.

A group of hosts can be specified in "slash notation," sometimes referred to as a Classless Inter-
Domain Routing (CIDR, pronounced "cider") block notation. The term slash notation refers to the
forward-slash that is placed between the IP network address and the number of subnet mask bits. A
host specification of 192.168.1.5/24 references a subnet mask of 24 bits, which would scan everything
between 192.168.1.0 and 192.168.1.255.

Hyphens, commas, and asterisks can also be used to create a list of hosts. The nmap host specification
of 192.168.1-2.* would scan everything between 192.168.1.0 and 192.168.2.255. This could also be
specified as 192.168.1,2.0-255, or as 192.168.1-2.1,2-5,6-255. Watch those commas and periods!

The nmap man page throws another twist to the target specification by specifying the networks as the
variable values. For example, *.*.1.5 would scan all devices between 1.0.1.5 and 255.255.1.5 (that's a
total of 65,535 possible devices!).

Privileged Access

To have access to all possible options, nmap should always be run by a privileged user. A system's
privileged users can create custom Ethernet packets that bypass the checks that are normally done by
the operating system. With these custom "raw" packets, nmap can manufacture packet header
combinations that induce unique responses from the remote stations. These responses then provide
nmap with much more information than would normally be available to a non-privileged user.

On a Unix-based system, privileged access means that nmap should run as root, and on Windows-
based systems nmap should have Administrator rights. Lack of privileged access doesn't mean that
nmap won't work, but certain scanning methods and program options will not be available. In the

cases where an option isn't available because of the current permissions, nmap will provide this
message:
You requested a scan type which requires r00t privileges, and you do not have
them.

QUITTING!

Where applicable, the operational details between a privileged and non-privileged user have been
detailed in the scan type descriptions of this document.

Nmap Support Files

In addition to the nmap executable, there are six support files that provide nmap with additional
information during a scan. These files are nmap-mac-prefixes, nmap-os-fingerprints,
nmap-protocols, nmap-rpc, nmap-service-probes, and nmap-services.

Most nmap scans will work properly without these files, but the information provided during the scan
will be limited if the files aren't available. Other scans options, such as the operating system
fingerprinting option (-O), requires the nmap-os-fingerprints file or the scan will halt with
this error:

OS scan requested but I cannot find nmap-os-fingerprints file. It
should be in /usr/local/share/nmap, ~/.nmap, or .
QUITTING!

Locating the Support Files
To locate the support files, nmap searches through the file system in this order:

1. A data directory can be specified on the nmap command line with the --datadir option.
All of the support files should be located in this single directory.

2. An environment variable called NMAPDIR can reference the directory containing the support
files. This environment variable can be configured in a login profile or using the operating
system's set command.

3. The real and effective user ID (on POSIX systems) home directory or the location of the nmap
executable (on Windows-based systems) is another optional location for the support files. On
POSIX systems, the home directory is referenced with a tilde (~), and the files are expected to
be in the ~/nmap directory.

4. The support files can also be stored in the directory where nmap was installed or compiled.
This directory is usually /usr/local/share/nmap or /user/share/nmap.

5. Finally, the current directory is checked for the support files.

Using the Support Files

The information contained in the nmap support files is used differently depending on the selected scan
type or option. Not all nmap support files will necessarily be referenced at the same time, but it is
possible to create a complex scanning session that would utilize information in all of these support
files.

nmap-mac-prefixes The nmap-mac-prefixes file contains a list of the Organizationally
Unique Identifiers (OUIs) assigned to 802-based LAN hardware adapters. Every Ethernet card has a
media access control (MAC) address that is burned into the Read Only Memory (ROM) of the
network adapter. Many adapter card drivers allow the MAC address to be changed, so this address
shouldn't be considered a permanently fixed value. Many network administrators will change their
MAC address to something more colorful, such as 11:22:33:44:55:66 or
00:00:BA:5E:BA:11. This allows the network administrator to easily find their MAC address in
a report or log file.

MAC addresses are six bytes long, and are usually referenced in hexadecimal form. They are often
written without the traditional "0x" reference that usually precedes hex values, and each byte is
usually separated with a delimiter such as a hyphen (-) or a colon (:).

An example of a MAC address assigned to an Ethernet card is 00:11:43:43:A8:34. The first
three bytes, 00:11:43, are assigned by the Institute of Electrical and Electronics Engineers (IEEE)
to the manufacturer of the adapter card. A quick search of the nmap-mac-prefixes file shows
that the OUI is assigned to Dell.

The last three bytes of this particular MAC address, 43:A8:34, are considered unique to the adapter
card and shouldn't match any other adapter. Although these three bytes provide at least 16,777,215
combinations of unique MAC addresses, adapter card manufacturers have occasionally duplicated
MAC addresses due to oversights in the manufacturing process.

The registered list of OUIs is administered and maintained by the IEEE. The OUIs are constantly
updated, and a list is available from the IEEE web page.

http://standards.ieee.org/regauth/oui/index.shtml

Additional information on OUIs is available in the IEEE Frequently Asked Questions (FAQs).

http://standards.ieee.org/faqs/OUI.html

The nmap-mac-prefixes file is used to correlate and display manufacturer names in the nmap
output instead of the raw hexadecimal bytes. This is an excerpt from the nmap-mac-prefixes
file:

0000A3 Network Application Technology
0000A4 Acorn Computers Limited
0000A5 Compatible Systems
0000A6 Network General
0000A7 Network Computing Devices
0000A8 Stratus Computer

nmap-os-fingerprints
Although all systems use standards to communicate, every operating system communicates in subtle
and unique ways. These differences allow nmap to determine what kind of equipment or what type of
operating system is running on a remote device.

The nmap-os-fingerprints file is a collection of these unique responses. This collection is
referenced during an nmap scan when the operating system fingerprinting (-O) option is selected. If
nmap scans a device and the responses match a known fingerprint, the name of the device and
operating system version will be displayed.

http://standards.ieee.org/faqs/OUI.html
http://standards.ieee.org/regauth/oui/index.shtml

This is the fingerprint of Cisco voice over IP telephone:

Fingerprint Cisco 7960 SIP Phone running OS 4.2
Class Cisco | embedded || VoIP phone
TSeq(Class=TD%gcd=<2A004%SI=<28%IPID=I%TS=U)
T1(DF=N%W=3E8%ACK=S++%Flags=AS%Ops=M)
T2(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T3(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T4(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T7(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
PU(Resp=N)

Fyodor has written a comprehensive paper discussing the details of the OS fingerprinting process and
the nmap fingerprints. The paper can be viewed here:

http://www.insecure.org/nmap/nmap-fingerprinting-article.html

If a device does not appear in the nmap-os-fingerprint file and nmap is able to decisively
"read" the fingerprint, a URL will be provided to contribute this new fingerprint to nmap's collection.

nmap-protocols
In the TCP/IP protocol architecture, TCP, UDP, and ICMP are usually described as riding "on top of"
IP. IP is the foundation of the communication, and TCP, UDP, and ICMP are three of the protocols
that work at a higher layer to accomplish their jobs. In fact, there are over one hundred and thirty
different IP-based protocols. Each protocol is assigned a number, and this number is listed in the IP
header. TCP is 6, UDP is 17, and ICMP is 1.

The nmap-protocols file is used during the IP protocol scan (-sO) to assign a known name to
any protocols that might be found during the scan. If IP protocol number 8 responds to a scan, the
nmap-protocols file is referenced:

tcp 6 TCP # Transmission Control
cbt 7 CBT # CBT
egp 8 EGP # Exterior Gateway Protocol
igp 9 IGP # any private interior gateway (used by Cisco
 for their IGRP)
bbn-rcc-mon 10 BBN-RCC-MON # BBN RCC Monitoring
nvp-ii 11 NVP-II # Network Voice Protocol

IP number 8 refers to Exterior Gateway Protocol (EGP), and nmap will show that EGP was active on
this device.

nmap-rpc
Sun's Remote Procedure Call (RPC)
architecture was created to provide a client

computer with a way to execute procedures on a server. The RPC architecture is available on many
different operating systems and platforms.

http://www.insecure.org/nmap/nmap-fingerprinting-article.html

Using the RPC architecture, each program is assigned a unique hexadecimal number. When a client
computer sends data to an RPC server, a program number is used to direct the RPC data to the correct
application.

Nmap's RPC scan (-sR) will actively search known RPC applications based on the nmap-rpc file.
Once nmap locates an RPC program, it correlates and displays the program name based on the
nmap-rpc data. The grinding of this RPC information will automatically run when a version scan
(-sV) is requested.

This is a sample from the nmap-rpc file. The columns correspond to the RPC program name, the
hexadecimal RPC program number, and an alias or comment related to the program.

rpcbind 100000 portmap sunrpc rpcbind
rstatd 100001 rstat rup perfmeter rstat_svc
rusersd 100002 rusers
nfs 100003 nfsprog nfsd
ypserv 100004 ypprog
mountd 100005 mount showmount

nmap-service-probes
The nmap-service-probes file is used by the version scan (-sV) to determine the application
type running on a system (http, ftp, telnet, etc.), the specific application name (Apache httpd,
Microsoft IIS, etc.), the version number, and occasionally some additional application information.

This is a sample of an application fingerprint from the nmap-service-probes support file:

UW POP2 server on Linux 2.4.18
match pop2 m|^\+ POP2 [-\[\].\w]+ v(20[-.\w]+) server ready\r\n$| v/UW POP2
server/$1//

The nmap-service-probes file is nmap-specific, and all of these service
signatures have been built over time by a dedicated group of nmap users. The nmap
team is always looking for new signatures! Additional information related to version
scanning can be found on the nmap website at:

http://www.insecure.org/nmap/versionscan.html

nmap-services
Nmap uses the nmap-services file to provide additional port detail for almost every scanning
method. Every time a port is referenced, it's compared to an available description in this support file.
If the nmap-services file isn't available, nmap reverts to the /etc/services file applicable

http://www.insecure.org/nmap/versionscan.html

for the current operating system.

Because the nmap-services list is derived from a compilation from many sources, it contains
many more records than the Internet Assigned Numbers Authority (IANA) registered port list. Not all
of these sources are documented, and many of these port numbers are unique to a single application
from a single manufacturer. This list contains information that can apply to almost any network
management application! For the latest version of this valuable non-official, non-registered port
number list, visit

http://www.graffiti.com/services

This is an excerpt from the nmap-services support file:

cisco-sccp 2000/tcp callbook sieve # cisco sccp, rfc3028
cisco-sccp 2000/udp callbook # cisco sccp
dc 2001/tcp # or nfr20 web queries
wizard 2001/udp # curry
globe 2002/tcp
globe 2002/udp
cfingerd 2003/tcp lmtp # local mail transfer protocol, gnu
finger

Chapter 2: Nmap Scanning Techniques

Nmap includes fifteen separate scanning methods, and each scanning technique has its own
characteristics, advantages, and disadvantages. Some of these scanning methods are simple to
understand and execute, while others are more complex and require additional information before the
scan can begin.

Nearly all of the scans described in this tutorial are demonstrated on an open network without
firewalls or packet filters (the ACK scan [-sA] is the only scan run through a firewall in the
following examples). These scans are described this way for educational purposes, although it could
be argued that a more real-world perspective would include descriptions of how these scans operate in
all circumstances. Indeed, few modern networks allow all traffic to flow everywhere.

Each scan description includes excerpts from packet captures taken during the scan. In a normal scan,
there are hundreds of packets that are transferred between stations. In the operational descriptions
shown in this tutorial, most of the packet decode has been removed to focus on the communications
that occur between devices for a single port number. The raw packet trace files are available for
download if further investigation is required.

Nmap Scan Summary

This chart summarizes the nmap scans and compares the usability for privileged users. The chart also
includes a summary of which scans identify TCP ports, and which identify UDP ports.

http://www.graffiti.com/services

TCP SYN Scan (-sS)

Requires Privileged Access: YES

Identifies TCP Ports: YES

Identifies UDP Ports: NO

The TCP SYN scan uses common methods of port-identification that allow nmap to gather
information about open ports without completing the TCP handshake process. When an open port is
identified, the TCP handshake is reset before it can be completed. This technique is often referred to
as "half open" scanning.

If a scan type is not specified on the nmap command line and nmap currently has privileged access to
the host (root or administrator), the TCP SYN scan is used by default.

TCP SYN Scan Operation

Most of the ports queried during the TCP SYN scan will probably be closed. These closed port
responses to the TCP SYN frame will be met with a RST frame from the destination station.

Source Destination Summary
--

[192.168.0.8] [192.168.0.10] TCP: D=113 S=57283 SYN SEQ=2360927338 LEN=0
WIN=3072
[192.168.0.10] [192.168.0.8} TCP: D=57283 S=113 RST ACK=2360927339 WIN=0

If nmap receives an acknowledgment to a SYN request, then the port is open. Nmap then sends an
RST to reset the session, and the handshake is never completed.

Source Destination Summary
--

[192.168.0.8] [192.168.0.10] TCP: D=80 S=57283 SYN SEQ=2360927338 LEN=0
WIN=3072
[192.168.0.10] [192.168.0.8] TCP: D=57283 S=80 SYN ACK=2360927339
SEQ=1622899389 LEN=0 WIN=65535
[192.168.0.8] [192.168.0.10] TCP: D=80 S=57283 RST WIN=0

The nmap output shows the results of this TCP SYN scan. As expected, most of the packets sent
during this scan were built using the operating system's raw sockets:

nmap -sS -v 192.168.0.10

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-11 12:25 EDT
Initiating SYN Stealth Scan against 192.168.0.10 [1663 ports] at 12:25
Discovered open port 80/tcp on 192.168.0.10
Discovered open port 3389/tcp on 192.168.0.10
Discovered open port 3306/tcp on 192.168.0.10
Discovered open port 139/tcp on 192.168.0.10
Discovered open port 135/tcp on 192.168.0.10
Discovered open port 520/tcp on 192.168.0.10
Discovered open port 445/tcp on 192.168.0.10
The SYN Stealth Scan took 1.35s to scan 1663 total ports.
Host 192.168.0.10 appears to be up ... good.
Interesting ports on 192.168.0.10:
(The 1656 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
80/tcp open http
135/tcp open msrpc
139/tcp open netbios-ssn

445/tcp open microsoft-ds
520/tcp open efs
3306/tcp open mysql
3389/tcp open ms-term-serv
MAC Address: 00:30:48:11:AB:5A (Supermicro Computer)

Nmap finished: 1 IP address (1 host up) scanned in 2.117 seconds
 Raw packets sent: 1705 (68.2KB) | Rcvd: 1664 (76.5KB)

Advantages of the TCP SYN Scan

The TCP SYN scan never actually creates a TCP session, so isn't logged by the destination host's
applications. This is a much "quieter" scan than the TCP connect() scan, and there's less visibility in
the destination system's application logs since no sessions are ever initiated. Since an application
session is never opened, the SYN scan is also less stressful to the application service.

Disadvantages of the TCP SYN Scan

The TCP SYN scan requires that nmap have privileged access to the system. Without privileged
access, nmap can't create the raw packets necessary for this half-open connection process.

When to use the TCP SYN Scan

The SYN scan is a common scan when looking for open ports on a remote device, and its simple SYN
methodology works on all operating systems. Because it only half-opens the TCP connections, it's
considered a very 'clean' scan type.

The TCP SYN scan only provides open, closed, or filtered port information. To determine operating
system or process version information, more intrusive scanning is required, such as the version scan
(-sV) or the operating system fingerprinting (-O) option.

The TCP SYN scan is the most common scan to use because it works on all networks, across all
operating systems, and it's invisible to applications. If the SYN scan didn't work, then TCP wouldn't
work!

TCP connect() Scan (-sT)

Requires Privileged Access: NO

Identifies TCP Ports: YES

Identifies UDP Ports: NO

The TCP connect() scan is named after the connect() call that's used by the operating system to
initiate a TCP connection to a remote device. Unlike the TCP SYN scan (-sS), the TCP connect()
scan uses a normal TCP connection to determine if a port is available. This scan method uses the
same TCP handshake connection that every other TCP-based application uses on the network.

TCP connect() Scan Operation

The TCP connect() scan to a closed port looks exactly like the TCP SYN scan:

Source Destination Summary
--

[192.168.0.8] [192.168.0.10] TCP: D=21 S=41441 SYN SEQ=3365539736 LEN=0
WIN=5840
[192.168.0.10] [192.168.0.8] TCP: D=41441 S=21 RST ACK=3365539737 WIN=0

A scan to an open port results in a different traffic pattern than the TCP SYN scan:

Source Destination Summary
--

[192.168.0.8] [192.168.0.10] TCP: D=80 S=49389 SYN SEQ=3362197786 LEN=0
WIN=5840
[192.168.0.10] [192.168.0.8] TCP: D=49389 S=80 SYN ACK=3362197787 SEQ=58695210
LEN=0 WIN=65535
[192.168.0.8] [192.168.0.10] TCP: D=80 S=49389 ACK=58695211 WIN<<2=5840
[192.168.0.8] [192.168.0.10] TCP: D=80 S=49389 RST ACK=58695211 WIN<<2=5840

As the trace file excerpt shows, the TCP connect() scan completed the TCP three-way handshake and
then immediately sent a reset (RST) packet to close the connection.

Unlike the TCP SYN scan, the nmap output shows that very few raw packets were required for the
TCP connect() process to complete:

nmap -sT -v 192.168.0.10

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-11 12:30 EDT
Initiating Connect() Scan against 192.168.0.10 [1663 ports] at 12:30
Discovered open port 3389/tcp on 192.168.0.10
Discovered open port 80/tcp on 192.168.0.10
Discovered open port 3306/tcp on 192.168.0.10
Discovered open port 445/tcp on 192.168.0.10
Discovered open port 139/tcp on 192.168.0.10
Discovered open port 520/tcp on 192.168.0.10
Discovered open port 135/tcp on 192.168.0.10
The Connect() Scan took 1.45s to scan 1663 total ports.
Host 192.168.0.10 appears to be up ... good.

Interesting ports on 192.168.0.10:
(The 1656 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
80/tcp open http
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
520/tcp open efs
3306/tcp open mysql
3389/tcp open ms-term-serv
MAC Address: 00:30:48:11:AB:5A (Supermicro Computer)

Nmap finished: 1 IP address (1 host up) scanned in 2.242 seconds
 Raw packets sent: 2 (68B) | Rcvd: 1 (46B)

Advantages of the TCP connect() Scan

No special privileges are required to run the TCP connect() scan. Nmap uses the operating system's
normal method of connecting to remote devices via TCP before it tears down the connection with the
RST packet. Because these are TCP-based methods that any user can employ, no additional rights or
privileges are required.

Disadvantages of the TCP connect() Scan

The disadvantage of this scan is apparent when application connection logs are examined. Since the
TCP connect() scan is completing a TCP connection, normal application processes immediately
follow. These applications are immediately met with a RST packet, but the application has already
provided the appropriate login screen or introductory page. By the time the RST is received, the
application initiation process is already well underway and additional system resources are used.

When to use the TCP connect() Scan

Because this scan is so obvious when browsing through the application event logs, it might be
considered the TCP scan of last resort. If privileged access isn't available and determination of open
TCP ports is absolutely necessary, however, this scan may be the only method available.

The only option to the TCP connect() scan that does not require privileged access but still scans TCP
ports is the FTP bounce attack (-b). Given the small number of susceptible FTP servers that will
participate in a bounce attack, this option is becoming less viable.

I try not to use the connect() scan unless it's absolutely necessary. It's very obvious (in both network
traces and in application log files), and it uses many more system and application resources than the
SYN scan!

Steath Scanning - The FIN Scan (-sF), Xmas Tree Scan (-sX), and Null Scan (-sN)

Requires Privileged Access: YES

Identifies TCP Ports: YES

Identifies UDP Ports: NO

These three scans are grouped together because their individual functionality is very similar. These

are called "stealth" scans because they send a single frame to a TCP port without any TCP
handshaking or additional packet transfers. This is a scan type that sends a single frame with the
expectation of a single response.

These scans operate by manipulating the bits of the TCP header to induce a response from the remote
station. Except for the FIN scan, nmap creates TCP headers that combine bit options that should never
occur in the real world. Instead of an obscure bit pattern, the FIN scan creates a scenario that should
never occur in the real world. These purposely-mangled TCP header packets are thrown at a remote
device, and nmap watches for the responses.

One of the references in RFC 793, Transmission Control Protocol, states that stations receiving
information on a closed TCP port should send a RST frame and an available TCP port should not
respond at all. During any of these stealth scans, nmap categorizes the responses as either closed, or
open|filtered (In computer-speak, a vertical bar between values generally signifies an "or" condition).
The open|filtered result is combined because firewalls often drop these frames without a response.
Because it's impossible to determine if a missing response was due to an open port or a filtered
network connection, there's no way to differentiate between an open port and an administratively
dropped frame.

Different TCP/IP stacks may handle these scans in different ways, so it may be necessary to run
additional non-stealth scans to get the best overview of responses. For example, Windows-based
systems will reply with a RST frame for all queries, regardless of the status of the specific port that
was queried. If open|filtered ports appear during an nmap stealth scan, the remote device is definitely
not a Windows-based system! Windows-based systems aren't the only TCP/IP stacks that work this
way, so special attention should be taken when the results show that all ports are closed; this may not
really be the case!

Because these scans create unusual bit combinations in TCP headers, these packets must be built by
nmap using the raw sockets functionality of the operating system. Because of these "customized"
packets, nmap requires privileged access to perform stealth scans.

FIN, Xmas Tree, and Null Scan Operation

In the following examples, the graphical descriptions and trace files for the open and closed ports will
look functionally identical, except that the bits in the TCP flags will be different in each scan type.

FIN Scan

The FIN scan's "stealth" frames are unusual because they are sent to a device without first going
through the normal TCP handshaking. If a TCP session isn't active, the session certainly can't be
formally closed!

In this FIN scan, TCP port 443 is closed so the remote station sends a RST frame response to the FIN
packet:

Source Destination Summary
--

[192.168.0.8] [192.168.0.7] TCP: D=443 S=62178 FIN SEQ=3532094343 LEN=0 WIN=2048
[192.168.0.7] [192.168.0.8] TCP: D=62178 S=443 RST ACK=3532094343 WIN=0

If a port is open on a remote device, no response is received to the FIN scan:

Source Destination Summary
--

[192.168.0.8] [192.168.0.7] TCP: D=23 S=62178 FIN SEQ=3532094343 LEN=0 WIN=2048

The nmap output shows the open ports located with the FIN scan:

nmap -sF -v 192.168.0.7

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-23 21:17 EDT
Initiating FIN Scan against 192.168.0.7 [1663 ports] at 21:17
The FIN Scan took 1.51s to scan 1663 total ports.
Host 192.168.0.7 appears to be up ... good.
Interesting ports on 192.168.0.7:
(The 1654 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
21/tcp open|filtered ftp
22/tcp open|filtered ssh
23/tcp open|filtered telnet
79/tcp open|filtered finger
110/tcp open|filtered pop3
111/tcp open|filtered rpcbind
514/tcp open|filtered shell
886/tcp open|filtered unknown
2049/tcp open|filtered nfs
MAC Address: 00:03:47:6D:28:D7 (Intel)

Nmap finished: 1 IP address (1 host up) scanned in 2.276 seconds
 Raw packets sent: 1674 (66.9KB) | Rcvd: 1655 (76.1KB)
#

The Xmas Tree Scan (-sX)

The Xmas tree scan sends a TCP frame to a remote device with the URG, PUSH, and FIN flags set.
This is called a Xmas tree scan because of the alternating bits turned on and off in the flags byte
(00101001), much like the lights of a Christmas tree.

A closed port responds to a Xmas tree scan with a RST:

Source Destination Summary

--

[192.168.0.8] [192.168.0.7] TCP: D=618 S=36793 FIN URG PUSH SEQ=3378228596
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.8] TCP: D=36793 S=618 RST ACK=3378228596 WIN=0

Similar to the FIN scan, an open port on a remote station is conspicuous by its silence:

Source Destination Summary
--

[192.168.0.8] [192.168.0.7] TCP: D=79 S=36793 FIN URG PUSH SEQ=3378228596 LEN=0
WIN=2048

The Xmas tree scan output shows similar results to the FIN scan:

nmap -sX -v 192.168.0.7

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-23 21:18 EDT
Initiating XMAS Scan against 192.168.0.7 [1663 ports] at 21:18
The XMAS Scan took 1.55s to scan 1663 total ports.
Host 192.168.0.7 appears to be up ... good.
Interesting ports on 192.168.0.7:
(The 1654 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
21/tcp open|filtered ftp
22/tcp open|filtered ssh
23/tcp open|filtered telnet
79/tcp open|filtered finger
110/tcp open|filtered pop3
111/tcp open|filtered rpcbind
514/tcp open|filtered shell
886/tcp open|filtered unknown
2049/tcp open|filtered nfs
MAC Address: 00:03:47:6D:28:D7 (Intel)

Nmap finished: 1 IP address (1 host up) scanned in 2.432 seconds

 Raw packets sent: 1674 (66.9KB) | Rcvd: 1655 (76.1KB)
#

The Null Scan (-sN)
The null scan turns off all flags, creating a lack of TCP flags that should never occur in the real world.

If the port is closed, a RST frame should be returned:

Source Destination Summary

--

[192.168.0.8] [192.168.0.7] TCP: D=438 S=36860 WIN=4096
[192.168.0.7] [192.168.0.8] TCP: D=36860 S=438 RST ACK=2135565682 WIN=0

As expected, the response of a null scan to an open port results in no response:

Source Destination Summary
--

[192.168.0.8] [192.168.0.7] TCP: D=110 S=36860 WIN=1024

The null scan showed the same results as the FIN scan and the Xmas tree scan:

nmap -sN -v 192.168.0.7

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-23 21:19 EDT
Initiating NULL Scan against 192.168.0.7 [1663 ports] at 21:19
The NULL Scan took 1.42s to scan 1663 total ports.
Host 192.168.0.7 appears to be up ... good.
Interesting ports on 192.168.0.7:
(The 1654 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
21/tcp open|filtered ftp
22/tcp open|filtered ssh
23/tcp open|filtered telnet
79/tcp open|filtered finger
110/tcp open|filtered pop3
111/tcp open|filtered rpcbind
514/tcp open|filtered shell
886/tcp open|filtered unknown
2049/tcp open|filtered nfs

MAC Address: 00:03:47:6D:28:D7 (Intel)

Nmap finished: 1 IP address (1 host up) scanned in 2.251 seconds
 Raw packets sent: 1674 (66.9KB) | Rcvd: 1655 (76.1KB)
#

Advantages of the FIN, Xmas Tree, and Null Scan

Since no TCP sessions are created for any of these scans, they are remarkably quiet from the
perspective of the remote device's applications. Therefore, none of these scans should appear in any of
the application logs.

These scans are also some of the most minimal port-level scans that nmap can execute. For a closed
port, only two packets are transferred. A single frame is all that's necessary to find an open port!

Disadvantages of the FIN, Xmas Tree, and Null Scan

Unfortunately, Microsoft's implementation of the TCP/IP stack renders these particular scans less that
useful. On a Windows-based computer, all ports will appear to be closed regardless of their actual
state. This provides a backhanded advantage, since any device showing open ports must not be a
Windows-based device!

These scan types are using packets that do not follow the rules of TCP. To create these specialized
packets, the raw sockets capability of the operating system builds the packets from scratch. This
avoids the operating system requirements that are usually forced on IP communication, but it also
requires that the user running these nmap scans have privileged access to the system.

Some operating systems limit the number of RST packets sent to a single station, and these limits can
cause nmap to incorrectly assume that the port is open. I had to disable the ICMP rate limiting on my
FreeBSD system to create the examples shown in this document. Disabling rate limiting shouldn't be
done in normal use! More information about rate limiting can be found in the FreeBSD FAQ:

http://www.freebsd.org/doc/en_US.ISO8859-1/books/faq/networking.html#ICMP-RESPONSE-BW-
LIMIT

When to use the FIN, Xmas Tree, and Null Scan

Although TCP SYN scans are relatively subtle, the FIN, Xmas tree, and null scans are even more
invisible on the network. They don't show up in application log files, they take little network
bandwidth, and they provide extensive port information on non-Windows based systems. If the
scanned device is susceptible to these odd TCP packets, information can be gathered with only a
whisper of network communication!

Ping Scan (-sP)

Requires Privileged Access: NO

Identifies TCP Ports: NO

Identifies UDP Ports: NO

The ping scan is one of the quickest scans that nmap performs, since no actual ports are queried.
Unlike a port scan where thousands of packets are transferred between two stations, a ping scan
requires only two frames. This scan is useful for locating active devices or determining if ICMP is

http://www.freebsd.org/doc/en_US.ISO8859-1/books/faq/networking.html#ICMP-RESPONSE-BW-LIMIT
http://www.freebsd.org/doc/en_US.ISO8859-1/books/faq/networking.html#ICMP-RESPONSE-BW-LIMIT

passing through a firewall.

Ping Scan Operation

The ping scan sends a single ICMP echo request from the nmap station to the destination device. A
response from an active device will return an ICMP echo reply, unless the IP address is not available
on the network or the ICMP protocol is filtered.

If the station isn't available on the network or a packet filter is preventing ICMP packets from passing,
there will be no response to the echo frame:

Source Destination Summary
--

[192.168.0.8] [192.168.0.10] ICMP: Echo

A response from an active host will return an ICMP echo reply, unless the IP address is not available
on the network or ICMP is filtered.

Source Destination Summary
--

[192.168.0.8] [192.168.0.10] ICMP: Echo
[192.168.0.10] [192.168.0.8] ICMP: Echo reply

The ping scan output is simple and straightforward:

nmap -sP -v 192.168.0.10

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-11 12:40 EDT
Host 192.168.0.10 appears to be up.
MAC Address: 00:30:48:11:AB:5A (Supermicro Computer)
Nmap finished: 1 IP address (1 host up) scanned in 0.778 seconds
 Raw packets sent: 2 (68B) | Rcvd: 1 (46B)
#

Advantages of the Ping Scan

The ping scan is one of the most common scanning techniques, and it's used every day by network
and server administrators to check for device availability. The ICMP echo request is very innocuous,
and these frames are very common on most networks. Unless many IP addresses are chosen for a
simultaneous scan, the ICMP echo request will probably not be noticeable.

A ping scan is also very fast, since there are only two frames required to complete the scan to an
active workstation. The longest wait time during a ping scan will be the delay that occurs when an
unavailable address is scanned.

If the ping scan is successful, then the ICMP protocol is not filtered between the source and
destination. Because ICMP can be dangerous in the wrong hands, most security administrators will
filter all ICMP packets on their network ingress and egress points.

Disadvantages of the Ping Scan

The ping scan will not interoperate with any other type of scan. If another scan type is specified on
the command line with a ping scan, an error message will occur:

Sorry, the IPProtoscan, Listscan, and Pingscan (-sO, -sL, -sP) must currently be
used alone rather than combined with other scan types.
QUITTING!

The ping scan doesn't provide a lot of information, other than availability and the filtered or unfiltered
state of the communication path. Unfortunately, the ping scan can't determine if the lack of an ICMP
reply is indicative of an ICMP-filtered connection or an inactive station at that IP address.

When to use the Ping Scan

Ping scans are extremely useful when building an inventory of available stations on a network. This
inventory list can then be used to create more complex nmap scans, and some security managers will
use these lists to determine if any unknown workstations are active on the network.

Because ping scans only provide uptime information, they are usually performed when more detailed
port information is unnecessary. If more detailed information is needed, a different scan type may be
a better choice.

ICMP can be used for very evil purposes! If it's not filtered on your firewall, the potential exists for

some very malicious activity.

Don't expect the ping scan to work through a firewall. If it does work, the network may be more open
than usual on the inside!

Version Detection (-sV)

Requires Privileged Access: NO

Identifies TCP Ports: NO

Identifies UDP Ports: NO

Most of nmap's scanning methods are based around the identification of port numbers. However, the
version detection scan is most interested in the software applications running on a remote device.

For version detection to work properly, nmap relies on the nmap-service-probes file to
provide a series of probes and the expected responses. If the nmap-service-probes support file
is not available, the version detection scan will not run.

Although other 3rd-party applications have implemented methods of version detection, the process
used by the version detection scan is unique to nmap.

USAGE NOTE: On nmap 3.81 using both Linux and Windows, I was able to specify the version
detection (–sV) option on the command line with the list scan (-sL), the ping scan (-sP), and the IP
protocol scan (-sO). Technically speaking, the list scan, ping scan, and IP protocol scan will not run
with other scan types on the command line. The version scan parameter was accepted on the
command line with these individual scan types, but the version scan did not run and no error message
was displayed. To see if the version scan was even active, I removed the nmap-service-probes
file and received an error message.

Version Detection Operation

The version detection scan runs in conjunction with another scan type that will identify open ports. If
another scan type is not specified on the command line, nmap will run a TCP SYN scan (for a
privileged user) or a TCP connect() scan (for non-privileged users) prior to running the version
detection scan.

If open ports are found, the version detection scan will begin the probing process with the remote
device. The version detection scan communicates directly with the remote application to uncover as
much information as possible.

In this example, the default TCP SYN scan runs prior to the version detection scan to identify the
open port:

Source Destination Summary

--

[192.168.0.8] [192.168.0.10] TCP: D=80 S=54490 SYN SEQ=3420003014 LEN=0 WIN=1024
[192.168.0.10] [192.168.0.8] TCP: D=54490 S=80 SYN ACK=3420003015 SEQ=1473373778
LEN=0 WIN=65535
[192.168.0.8] [192.168.0.10] TCP: D=80 S=54490 RST WIN=0

After the TCP SYN scan identifies port 80 as open, the version detection process begins. The process
shown in this example is for this specific example. Other ports and application will operate
differently.

Source Destination Summary
--

[192.168.0.8] [192.168.0.10] TCP: D=80 S=39330 SYN SEQ=4090323855 LEN=0 WIN=5840
[192.168.0.10] [192.168.0.8] TCP: D=39330 S=80 SYN ACK=4090323856 SEQ=166204426
LEN=0 WIN=65535
[192.168.0.8] [192.168.0.10] TCP: D=80 S=39330 ACK=166204427 WIN<<2=5840
[192.168.0.8] [192.168.0.10] HTTP: C Port=39330 GET / HTTP/1.0
[192.168.0.10] [192.168.0.8] HTTP: R Port=39330 HTTP/1.1 Status=OK-1494 bytes of
content \
[192.168.0.8] [192.168.0.10] TCP: D=80 S=39330 ACK=166205875 WIN<<2=8736
[192.168.0.10] [192.168.0.8] HTTP: Continuation of frame 2398;468 Bytes of data
[192.168.0.8] [192.168.0.10] TCP: D=80 S=39330 FIN ACK=166206344 SEQ=4090323874
LEN=0 WIN<<2=11632
[192.168.0.10] [192.168.0.8] TCP: D=39330 S=80 ACK=4090323875 WIN<<0=65517

The scan output displays the application information for each open port, although not all version
numbers in this example were identified. The open ports were located by a TCP SYN scan that ran
prior to the version scan.

In this example, an open TCP port 520 was located by the SYN scan but the version scan did not
recognize the service. A fingerprint was created and nmap provided an URL to use for submission of
the unknown service (the URL has been intentionally obfuscated in this document for security
reasons).

nmap -sV -v 192.168.0.10

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-11 12:41 EDT
Initiating SYN Stealth Scan against 192.168.0.10 [1663 ports] at 12:41
Discovered open port 80/tcp on 192.168.0.10
Discovered open port 3389/tcp on 192.168.0.10
Discovered open port 3306/tcp on 192.168.0.10
Discovered open port 445/tcp on 192.168.0.10
Discovered open port 135/tcp on 192.168.0.10
Discovered open port 139/tcp on 192.168.0.10
Discovered open port 520/tcp on 192.168.0.10
The SYN Stealth Scan took 1.54s to scan 1663 total ports.
Initiating service scan against 7 services on 192.168.0.10 at 12:41
The service scan took 100.01s to scan 7 services on 1 host.

Host 192.168.0.10 appears to be up ... good.
Interesting ports on 192.168.0.10:
(The 1656 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.0.53 ((Win32))
135/tcp open msrpc Microsoft Windows msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
520/tcp open efs?
3306/tcp open mysql?
3389/tcp open microsoft-rdp Microsoft Terminal Service
1 service unrecognized despite returning data. If you know the service/version,
please submit the following fingerprint at http://www.insecure.org/cgi-
bin/xxxxxxxx:
SF-Port520-TCP:V=3.81%D=4/11%Time=425AA8E8%P=i686-pc-linux-gnu%r(RPCCheck,
SF:24,"\x80\0\0\(r\xfe\x1d\x13\0\0\0\0\0\0\0\x02\0\x01\x86\xa0\x01\x01\x97
SF:\|\0\0\0\0\0\0\0\0\0\0\0\0");
MAC Address: 00:30:48:11:AB:5A (Supermicro Computer)

Nmap finished: 1 IP address (1 host up) scanned in 102.375 seconds
 Raw packets sent: 1757 (70.3KB) | Rcvd: 1664 (76.5KB)

The version detection scan can include the --version_trace option, which provides a packet-
by-packet display of the probing and fingerprinting process. This option is similar to the --
packet_trace option, except the --version_trace option displays only a subset of the
frames seen with the ––packet_trace option.

The version detection scan is one of the scans that runs automatically when the Additional, Advanced,
and Aggressive scan (-A) is selected. The –A option provides an easy way to launch the version
detection process in conjunction with other "discovery" scans.

Advantages of Using Version Detection

Version information is valuable information! Version scanning for service information provides easier
management of patches and updates. A network security manager can scan every host in an
organization to verify that software is at the correct versions. Stations showing older software
revisions are identified and further action can be taken.

The version information scan can also assist in locating software that is not complaint with
organizational standards. This is also an easy method of verifying the licenses of application services.
Nmap can find all of the devices running a specific version of server software to determine if the
quantity meets the organization's licensing agreements.

Disadvantages of Using Version Detection

The version scan is very invasive because of the probing that must occur to prompt the service for
information. The fingerprint comparison must have information from the application to compare to
the fingerprint in the nmap-service-probes file, and this process transmits a number of packets
between the source and destination.

The version scan also opens sessions with the remote applications, which will often display in an
application's log file. These sessions are almost always necessary, and can't be avoided if the version
scan is going to decisively determine the application type and version.

Version detection will only work with TCP or UDP port scans. The ping scan (-sP), the list scan

(-sL) and the IP protocol scan (-sO) will not run on the same command line with version detection.

The version scan isn't foolproof. The version detection is only as good as the nmap-service-
probe file, but this support file is constantly under revision. If nmap is unable to match an
appropriate fingerprint, check to see if an URL and fingerprint is provided for uploading into the
nmap database. Your services can assist in making the next version of nmap even better!

When to use Version Detection

The name and version of a service can provide the security team with information that it can use to
keep the network applications patched and up-to-date. The server team can use version scans to
confirm that a series of upgrades have been completed successfully. If unknown stations are found
during a ping scan, the version scan can help determine what applications these 'rogue' stations are
providing!

The version detection also shows what other scans might provide when polling network devices for
version information. If the security team understands what other people can see, they can revise their
security strategies to create a safer computing environment.

UDP Scan (-sU)

Requires Privileged Access: YES

Identifies TCP Ports: NO

Identifies UDP Ports: YES

UDP has no need for SYNs, FINs, or any other fancy handshaking. With the UDP protocol, packets
are sent and received without warning and prior notice is not usually expected. This lack of a formal
communications process greatly simplifies UDP scanning!

UDP Scan Operation

A station that responds with an ICMP port unreachable is clearly advertising a closed port:

Source Destination Summary

--

[192.168.0.8] [192.168.0.10] UDP: D=971 S=43347 LEN=8
[192.168.0.10] [192.168.0.8] ICMP: Destination unreachable (Port unreachable)

A station that doesn't respond to the UDP scan is considered to be open|filtered:

Source Destination Summary
--

[192.168.0.8] [192.168.0.10] UDP: D=80 S=43347 LEN=8

A station that responds with UDP data is indicative of an open port.

Source Destination Summary
--

[192.168.0.8] [192.168.0.10] UDP: D=2001 S=43347 LEN=8
[192.168.0.10] [192.168.0.8] UDP: D=43347 S=2001 LEN=40

The nmap output shows the results of the UDP scan:

nmap -sU -v 192.168.0.10

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-11 12:44 EDT
Initiating UDP Scan against 192.168.0.10 [1478 ports] at 12:44
Discovered open port 2001/udp on 192.168.0.10
The UDP Scan took 1.47s to scan 1478 total ports.
Host 192.168.0.10 appears to be up ... good.
Interesting ports on 192.168.0.10:
(The 1468 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
123/udp open|filtered ntp
137/udp open|filtered netbios-ns
138/udp open|filtered netbios-dgm
445/udp open|filtered microsoft-ds
500/udp open|filtered isakmp
1031/udp open|filtered iad2
1032/udp open|filtered iad3
1900/udp open|filtered UPnP
2001/udp open wizard
4500/udp open|filtered sae-urn
MAC Address: 00:30:48:11:AB:5A (Supermicro Computer)

Nmap finished: 1 IP address (1 host up) scanned in 2.241 seconds
 Raw packets sent: 1489 (41.7KB) | Rcvd: 1470 (82.3KB)
#

Advantages of the UDP Scan

Since there's no overhead of a TCP handshake, the UDP scan is inherently less "chatty" once it finds
an open port. However, if ICMP is responding to each unavailable port, the number of total frames
can exceed a TCP scan by about 30%!

Microsoft-based operating systems do not usually implement any type of ICMP rate limiting, so this
scan operates very efficiently on Windows-based devices.

Disadvantages of the UDP Scan

The UDP scan only provides port information only. If additional version information is needed, the
scan must be supplemented with a version detection scan (-sV) or the operating system
fingerprinting option (-O).

The UDP scan requires privileged access, so this scan option is only available on systems with the
appropriate user permissions.

RFC 1812 provides recommendations for limiting the rate of ICMP messages from a single device.
The implementation of the rate limiting is not specifically defined, but the RFC suggests methods that
would send ICMP messages relative to the number of received frames, ICMP messages every T
milliseconds, or ICMP messages relative to the available bandwidth. If a device has implemented
ICMP rate limits, nmap will automatically slow the scan rate to match the ICMP rates.

When to use the UDP Scan Because of the huge amount of TCP traffic on most networks, the
usefulness of the UDP scan is often incorrectly discounted. There are numerous examples of open
UDP ports caused by spyware applications, Trojan horses, and other malicious software. The UDP
scan will locate these open ports and provide the security manager with valuable information that can
be used to identify and contain these infestations.

IP Protocol Scan (-sO)

Requires Privileged Access: YES

Identifies TCP Ports: NO

Identifies UDP Ports: NO

The IP protocol scan is a bit different than the other nmap scans. The IP protocol scan is searching for
additional IP protocols in use by the remote station, such as ICMP, TCP, and UDP. If a router is
scanned, additional IP protocols such as EGP or IGP may be identified.

The list of IP protocols is found in the nmap-protocols file. If the nmap-protocols file isn't
found, nmap reverts to the /etc/protocols file.

IP Protocol Scan Operation

An unavailable IP protocol does not respond to the scan. The MAC addresses are displayed to
emphasize the IP layer conversation that occurs between the stations:

Source Destination Summary

--

Intel 756B89 SprMcr11AB5A IP: D=[192.168.0.10] S=[192.168.0.8] [0x22: xns-idp]

An available IP Protocol provides a response specific to the protocol type:

Source Destination Summary
--

[192.168.0.8] [192.168.0.10] TCP: D=44860 S=44860 ACK=637252255 WIN=1024
[192.168.0.10] [192.168.0.8] TCP: D=44860 S=44860 RST WIN=0

The nmap output shows the IP protocol types available on a Windows-based workstation:

nmap -sO -v 192.168.0.10

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-11 12:46 EDT
Initiating IPProto Scan against 192.168.0.10 [256 ports] at 12:46
Discovered open port 6/ip on 192.168.0.10
Discovered open port 1/ip on 192.168.0.10
The IPProto Scan took 5.70s to scan 256 total ports.
Host 192.168.0.10 appears to be up ... good.
Interesting protocols on 192.168.0.10:
(The 253 protocols scanned but not shown below are in state: open|filtered)
PROTOCOL STATE SERVICE
1 open icmp
6 open tcp
17 filtered udp
MAC Address: 00:30:48:11:AB:5A (Supermicro Computer)

Nmap finished: 1 IP address (1 host up) scanned in 6.620 seconds
 Raw packets sent: 511 (10.3KB) | Rcvd: 4 (194B)
#

Advantages of the IP Protocol Scan
The IP protocol scan locates uncommon IP protocols that may be in use on a system. These are often
found on routers and switches that are configured with additional IP protocol support, such as EGP or
IGP. Locating these additional protocols can help determine if the destination device is a workstation,

a printer, or a router.

Disadvantages of the IP Protocol Scan
When looking at a packet trace, an IP protocol scan looks fairly obvious. Since most networking
protocols are based on TCP or UDP, any deviation from those two protocol types is conspicuous. This
scan will certainly appear on any network monitoring application that identifies the IP protocol types
in use.

This is a sample trace file output from the IP protocol scan. Although the decode summary doesn't
show a specific IP protocol value, the source and destination MAC addresses show that this is no
ordinary IP conversation.

Source Destination Summary
--

Intel 756B89 SprMcr11AB5A IP: D=[192.168.0.10] S=[192.168.0.8] LEN=0 ID=9584
Intel 756B89 SprMcr11AB5A IP: D=[192.168.0.10] S=[192.168.0.8] LEN=0 ID=27294
Intel 756B89 SprMcr11AB5A IP: D=[192.168.0.10] S=[192.168.0.8] LEN=0 ID=13528
Intel 756B89 SprMcr11AB5A IP: D=[192.168.0.10] S=[192.168.0.8] LEN=0 ID=36967
Intel 756B89 SprMcr11AB5A IP: D=[192.168.0.10] S=[192.168.0.8] LEN=0 ID=33258
Intel 756B89 SprMcr11AB5A IP: D=[192.168.0.10] S=[192.168.0.8] LEN=0 ID=10186
Intel 756B89 SprMcr11AB5A IP: D=[192.168.0.10] S=[192.168.0.8] LEN=0 ID=43896

Since this scan locates IP protocols and doesn't identify open TCP or UDP ports, other scan types will
not run in conjunction with the IP protocol scan. If other scan types are specified on the command line
with the IP protocol scan, the scan does not run and the following error message is displayed:

Sorry, the IPProtoscan, Listscan, and Pingscan (-sO, -sL, -sP) must currently be
used alone rather than combined with other scan types.
QUITTING!

When to use the IP Protocol Scan

The IP protocol scan is useful when looking for "other" protocols that might be in use. If a device is
suspected to be a router, the IP protocol scan can locate router protocols that would assist with the
identification process.

ACK Scan (-sA)

Requires Privileged Access: YES

Identifies TCP Ports: YES

Identifies UDP Ports: NO

Nmap's unique ACK scan will never locate an open port. The ACK scan only provides a "filtered" or
"unfiltered" disposition because it never connects to an application to confirm an "open" state. At face
value this appears to be rather limiting, but in reality the ACK scan can characterize the ability of a
packet to traverse firewalls or packet filtered links.

ACK Scan Operation

An ACK scan operates by sending a TCP ACK frame to a remote port. If there are no responses or an
ICMP destination unreachable message is returned, then the port is considered to be "filtered:"

Source Destination Summary
--

[69.240.103.51] [68.46.234.161] TCP: D=389 S=38667 ACK=0 WIN=3072

If the remote port returns an RST packet, the connection between nmap and the remote device is
categorized as unfiltered:

Source Destination Summary
--

[69.240.103.51] [68.46.234.161] TCP: D=6969 S=38667 ACK=0 WIN=1024
[68.46.234.161] [69.240.103.51] TCP: D=38667 S=6969 RST WIN=0

The nmap output shows the scan output through a router, and only a single TCP port was defined as
"UNfiltered" (nmap adds the emphasis on the "UN").

nmap -v -sA 68.46.234.161 -P0

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-24 10:40 EDT
Initiating ACK Scan against pcp05116560pcs.tallah01.fl.comcast.net
(68.46.234.161) [1663 ports] at 10:40
ACK Scan Timing: About 9.02% done; ETC: 10:46 (0:05:03 remaining)
ACK Scan Timing: About 75.68% done; ETC: 10:42 (0:00:36 remaining)
The ACK Scan took 119.13s to scan 1663 total ports.
Host pcp05116560pcs.tallah01.fl.comcast.net (68.46.234.161) appears to be up ...
good.
Interesting ports on pcp05116560pcs.tallah01.fl.comcast.net (68.46.234.161):
(The 1662 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
6969/tcp UNfiltered acmsoda

Nmap finished: 1 IP address (1 host up) scanned in 119.271 seconds
 Raw packets sent: 3328 (133KB) | Rcvd: 8 (368B)
#

Advantages of the ACK Scan

Since the ACK scan doesn't open any application sessions, the conversation between nmap and the
remote device is relatively simple. This scan of a single port is unobtrusive and almost invisible when
combined with the other network traffic.

Disadvantages of the ACK Scan

The ACK scan's simplicity is also its largest disadvantage. Because it never tries to connect to a
remote device, it can never definitively identify an open port.

When to use the ACK Scan

Although the ACK scan doesn't identify open ports, it does a masterful job of identifying ports that
are filtered through a firewall. This list of filtered and unfiltered port numbers is useful as
reconnaissance for a more detailed scan that focuses on specific port numbers.

Window Scan (-sW)

Requires Privileged Access: YES

Identifies TCP Ports: YES

Identifies UDP Ports: NO

The window scan is similar to an ACK scan, but the window scan has the advantage of identifying
open ports. The origins of the window scan can be found in this archive from the nmap-hackers
mailing list:

http://seclists.org/lists/nmap-hackers/1999/Jul-Sep/0021.html

Window Scan Operation

The window scan is named after the TCP sliding window, not the operating system of a similar name.
It's called the window scan because some TCP stacks have been found to provide specific window
sizes when responding to an RST frame.

A RST frame response from a closed port responds with a window size of zero:

Source Destination Summary
--

[192.168.0.8] [192.168.0.67] TCP: D=25 S=62405 ACK=0 WIN=2048
[192.168.0.67] [192.168.0.8] TCP: D=62405 S=25 RST WIN=0

http://seclists.org/lists/nmap-hackers/1999/Jul-Sep/0021.html

When an open port is sent an ACK frame, the destination station still responds with a RST frame, but
the window size is a non-zero value:

Source Destination Summary
--

[192.168.0.8] [192.168.0.67] TCP: D=23 S=62405 ACK=0 WIN=3072
[192.168.0.67] [192.168.0.8] TCP: D=62405 S=23 RST WIN=4096

The nmap output shows the results of the window scan:

nmap -v -sW 192.168.0.67

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-24 11:37 EDT
Initiating Window Scan against 192.168.0.67 [1663 ports] at 11:37
Discovered open port 23/tcp on 192.168.0.67
Discovered open port 21/tcp on 192.168.0.67
Discovered open port 111/tcp on 192.168.0.67
The Window Scan took 1.91s to scan 1663 total ports.
Host 192.168.0.67 appears to be up ... good.
Interesting ports on 192.168.0.67:
(The 1660 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
21/tcp open ftp
23/tcp open telnet
111/tcp open rpcbind
MAC Address: 00:10:A4:07:61:30 (Xircom)

Nmap finished: 1 IP address (1 host up) scanned in 2.749 seconds
 Raw packets sent: 1710 (68.4KB) | Rcvd: 1664 (76.5KB)

Advantages of the Window Scan

The window scan operates very simply. Nmap sends a single ACK packet request, and a single RST
packet is returned for every scanned port. The network traffic is kept to a minimum, and the scan
itself looks relatively innocuous when viewed in a protocol decode.

The window scan doesn't open a session, so there's no application log associated with the window
scan's method of operation. Unless there are additional firewalls or network limits at the operating
system level, the scan should go unnoticed.

Unlike the ACK scan, the window scan is able to identify open ports. If the destination station's
operating system is susceptible to this kind of scan, the window scan becomes a very useful method
of port identification.

Disadvantages of the Window Scan

The window scan doesn't work on all devices, and the number of operating systems vulnerable to this
unintended window size consistency is dwindling as operating systems are upgraded and patched.

The window scan builds custom ACK packets, so privileged access is required to run this scan.

When to use the Window Scan

The window scan is a useful when looking for open ports while simultaneously maintaining a low
level of network traffic. When vulnerable operating systems are identified, the window scan provides
a low-impact method of locating open ports.

The window scan also works in "reverse." If the window scan is able to identify open ports, then the
number of possible operating systems on the remote device can be decreased. To get a list of the
operating systems vulnerable to the window scan, refer to the nmap-hackers mailing list archive:

http://seclists.org/lists/nmap-hackers/1999/Jul-Sep/0024.html

This archive message shows that referencing the nmap-os-fingerprints file can provide a
comprehensive list of known vulnerable operating systems. The command is summarized here:

cat nmap-os-fingerprints | perl -ne 'while(<>) { chomp;if
(/^fingerprint\s+([^\#]+)/i) { if (defined($owin) and defined($cwin) and $owin ne $cwin)
{ print "$oname ($owin vs. $cwin)\n";} $oname=$1;undef($cwin);undef($owin);} elsif
(/^T(4|6)\(.*W=([^%]+)/) { if ($1 eq 4){$owin=$2;} else { $cwin = $2; }}}' | sort –f

RPC Scan (-sR)
Requires Privileged Access: NO
Identifies TCP Ports: NO
Identifies UDP Ports: NO

A remote program call (RPC) scan is used to locate and identify RPC applications. After open ports
are identified with another scan type, the RPC scan sends each open port an RPC null to provoke a
response from any RPC application that might be running. The RPC scan runs automatically during a
version scan (-sV).

The RPC scan is referenced as an RPCGrind scan in the nmap output.

PC Scan Operation
An RPC scan needs a list of open ports before it can begin querying for RPC applications. If a TCP or
UDP scan type is not included on the command line, nmap will use the default scan type for the
current permissions. For privileged users, nmap performs a TCP SYN scan (-sS), and for non-
privileged users nmap performs a TCP connect() scan (-sT). The examples below display only the
RPC scan information, and not the initial port scan.

This trace file shows the RPC query process that occurs for NFS on port 2049. The RPC NULL
requests can be clearly seen as PROC=0:

Source Destination Summary
--

[192.168.0.8] [192.168.0.7] TCP: D=2049 S=51008 SYN SEQ=2397105131 LEN=0
WIN=5840
[192.168.0.7] [192.168.0.8] TCP: D=51008 S=2049 SYN ACK=2397105132
SEQ=2432014017 LEN=0 WIN=65535
[192.168.0.8] [192.168.0.7] TCP: D=2049 S=51008 ACK=2432014018 WIN<<2=5840
[192.168.0.8] [192.168.0.7] RPC: C XID=59188766 PROG=Port mapper VERS=434311

http://seclists.org/lists/nmap-hackers/1999/Jul-Sep/0024.html

PROC=0(Do nothing)
[192.168.0.7] [192.168.0.8] RPC: R XID=59188766 - Program unavailable
[192.168.0.8] [192.168.0.7] TCP: D=2049 S=51008 ACK=2432014046 WIN<<2=5840
[192.168.0.8] [192.168.0.7] RPC: C XID=59188767 PROG=Remote Statistics
VERS=434311 PROC=0(?)
[192.168.0.7] [192.168.0.8] RPC: R XID=59188767 - Program unavailable
[192.168.0.8] [192.168.0.7] TCP: D=2049 S=51008 ACK=2432014074 WIN<<2=5840
[192.168.0.8] [192.168.0.7] RPC: C XID=59188768 PROG=Remote Users VERS=434311
PROC=0(?)
[192.168.0.7] [192.168.0.8] RPC: R XID=59188768 - Program unavailable
[192.168.0.8] [192.168.0.7] TCP: D=2049 S=51008 ACK=2432014102 WIN<<2=5840
[192.168.0.8] [192.168.0.7] RPC: C XID=59188769 PROG=NFS VERS=434311 PROC=0(Do
nothing)
[192.168.0.7] [192.168.0.8] RPC: R XID=59188769 - Program version mismatch
[192.168.0.8] [192.168.0.7] TCP: D=2049 S=51008 ACK=2432014138 WIN<<2=5840
[192.168.0.8] [192.168.0.7] TCP: D=2049 S=51008 FIN ACK=2432014138
SEQ=2397105308 LEN=0 WIN<<2=5840
[192.168.0.7] [192.168.0.8] TCP: D=51008 S=2049 ACK=2397105309 WIN<<1=65358
[192.168.0.7] [192.168.0.8] TCP: D=51008 S=2049 FIN ACK=2397105309
SEQ=2432014138 LEN=0 WIN<<1=65358
[192.168.0.8] [192.168.0.7] TCP: D=2049 S=51008 ACK=2432014139 WIN<<2=5840

The RPC scan output shown the initial SYN scan (no specific scan type was specified on the
command line), and then shows the results of the RPC scan (called RPCGrind Scan in the output):

 nmap -v -sR 192.168.0.7

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-22 23:12 EDT
Initiating SYN Stealth Scan against 192.168.0.7 [1663 ports] at 23:12
Discovered open port 22/tcp on 192.168.0.7
Increasing send delay for 192.168.0.7 from 0 to 5 due to max_successful_tryno
increase to 4
Discovered open port 2049/tcp on 192.168.0.7
Discovered open port 111/tcp on 192.168.0.7
Discovered open port 886/tcp on 192.168.0.7
The SYN Stealth Scan took 10.26s to scan 1663 total ports.
Initiating RPCGrind Scan against 192.168.0.7 at 23:12
The RPCGrind Scan took 1.11s to scan 4 ports on 192.168.0.7.
Host 192.168.0.7 appears to be up ... good.
Interesting ports on 192.168.0.7:
(The 1659 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
22/tcp open ssh
111/tcp open rpcbind (rpcbind V2-4) 2-4 (rpc #100000)
886/tcp open unknown
2049/tcp open nfs (nfs V2-3) 2-3 (rpc #100003)
MAC Address: 00:03:47:6D:28:D7 (Intel)

Nmap finished: 1 IP address (1 host up) scanned in 12.228 seconds
 Raw packets sent: 1900 (76KB) | Rcvd: 1664 (76.5KB)
#

Advantages of the RPC Scan

The RPC scan provides detailed RPC application and version information. If the remote device is
running an RPC-based application, nmap will reveal everything!

Even if an RPC application is running on an unexpected port, the RPC scan will find it. The RPC scan
sends an RPC null to all open ports, so it's impossible for an RPC application to hide in a little-used
port!

Disadvantages of the RPC Scan

The RPC scan opens application sessions, so there will be transaction events in the application logs.
Once the application is opened, the size of the conversation will vary. Some open ports will transfer
data, but no RPC information. Other RPC applications will send a number of frames as nmap queries
for the application name and version number.

Decoys don't currently work in conjunction with an RPC scan, although it may be a future nmap
enhancement.

When to use the RPC Scan

If RPC applications are of interest, the RPC scan will efficiently and effectively locate all RPC
applications and identify the RPC application name and version. The RPC scan automatically runs
during a version scan, combining valuable version information with detailed RPC data.

A UDP scan (-sU) may identify many ports as open|filtered, so the RPC scanning process may take
significantly longer if each of these open|filtered ports are checked for RPC applications. Currently,
there's no way to tell the RPC scan to ignore open|filtered ports and focus only clearly identified open
ports.

List Scan (-sL)
Requires Privileged Access: NO
Identifies TCP Ports: NO
Identifies UDP Ports: NO

The list scan isn't really a scan, but it does provide nmap with some troubleshooting and testing
capabilities. The list scan simply lists the IP addresses that would normally be actively scanned.

List Scan Operation

The list scan doesn't ping the host names, and it doesn't send a TCP ACK to the default port number.
If reverse DNS resolution is disabled with –n, the list scan is completely silent on the network, with
no frames transmitted or received.

By default, nmap will perform a reverse DNS lookup on every IP address in the scan. If the –n option
isn't specified, this list scan will send traffic over the network and query the DNS server each time an
IP address is listed!

The list scan output shows this lack of activity by identifying the IP address as "not scanned:"
nmap -sL -v 192.168.0.10

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-11 13:12 EDT
Host 192.168.0.10 not scanned
Nmap finished: 1 IP address (0 hosts up) scanned in 0.255 seconds
#

Advantages of the List Scan

The list scan is a good method to sanity-check a complex nmap scan prior to starting a large batch
process or a large group of IP addresses. If any of the IP addresses are defined incorrectly on the
command line or the option file, the list scan will identify the errors. These problems can be identified
and repaired prior to running any "live" scans.

Disadvantages of the List Scan

The list scan isn't really an active scan. It doesn't show availability, it doesn't find any ports, and it
doesn't directly connect with an end device.

The list scan doesn't run at the command line with any other scan type. If another scan type is
included on with the list scan, an error message will be displayed:
Sorry, the IPProtoscan, Listscan, and Pingscan (-sO, -sL, -sP) must currently be
used alone rather than combined with other scan types.
QUITTING!

When to use the List Scan

At first glance, the list scan doesn't appear to be very helpful. What good is a scanning tool that
doesn't actually scan anything?

The list scan is often used as a sanity check when a complex scan is defined. If a separate application
provides nmap with a list of IP addresses, it may be helpful to have nmap step through a dry-run prior
to starting the "production" scan process. For large network audits, this process could be the
difference in a successful scan and hours of wasted time!

The list scan is also a useful tool to run "what if" scans. Nmap allows many different IP address
options that include randomization, abbreviated subnet mask notation, wildcards, and address ranges.
The list scan will confirm the scan process prior to an actual scan.

The list scan implements a reverse DNS lookup for every host specified in the list scan. This means
that nmap can be fed a list of IP addresses, and nmap will automatically use the default DNS server to
convert the IP addresses to names. This makes it easy to find interesting device names!

If the list scan is being used as a "dry run" prior to a large scan, be sure to use the universal output
format (-oA) to keep a record of the scan. If something about the scan didn't operate properly, this
output can be checked for syntax and errors.

IdleScan (-sI <zombie host:[probeport]>)
Requires Privileged Access: YES
Identifies TCP Ports: YES
Identifies UDP Ports: NO

Nmap's idlescan is an ingenious way of scanning a remote device. Nmap uses idlescan to gather port
information using another station on the network, and it will appear that the scanning process is
initiated from this third-party IP address instead of the nmap station. Although this seems complex,
it's a simple process of examining IP fragmentation identification sequences and implementing IP
address spoofing.

Idlescan Operation
Before launching an idlescan, a "zombie" station must be identified. This third station will be the
pivot point of the idlescan. There are two important requirements associated with this station:

 The unsuspecting zombie station must be idle (thus the name "idlescan"). The idlescan needs
an idle zombie workstation to ensure that the IP identification frames will remain consistent
throughout the duration of the scan.

 The zombie station must provide consistent and predictable IP identification (IPID) values. If
the operating system of the zombie does not provide predictable IPIDs, nmap will provide an
warning before the scan begins:

 WARNING: Idlescan has erroneously detected phantom ports -- is the
proxy
 192.168.0.7 (192.168.0.7) really idle?

If the scan cannot complete because of too many inconsistencies, nmap provides a final error
message:

 Idlescan is unable to obtain meaningful results from proxy
192.168.0.7
 (192.168.0.7). I'm sorry it didn't work out.
 QUITTING!

The target of the scan can be any system. These two requires requirements are only associated with
zombie station.

To begin the idlescan process, nmap first sends a SYN/ACK to the zombie workstation to induce a
RST in return. This RST frame contains the initial IPID that nmap will remember for later.

Source Destination Summary
--

[192.168.0.8] [192.168.0.7] IP: D=[192.168.0.7] S=[192.168.0.8] LEN=20
ID=26267
[192.168.0.7] [192.168.0.8] IP: D=[192.168.0.8] S=[192.168.0.7] LEN=20
ID=1033 <--

Nmap now sends a SYN frame to the destination address, but nmap spoofs the IP address to make it
seem as if the SYN frame was sent from the zombie workstation. If this SYN frame is sent to one of
the destination's open ports, the destination address will respond with a SYN/ACK to the previously-
spoofed zombie workstation. The zombie workstation won't be expecting the SYN/ACK (after all, it
never really sent the SYN), so the zombie will respond to the destination station with a RST. The RST
response will, as expected, increment the zombie's IPID.

Source Destination Summary

--

[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 SYN SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.5] [192.168.0.7] TCP: D=80 S=135 SYN ACK=3699814102 SEQ=2088485221
LEN=0 WIN=65535
[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 RST WIN=0 / IP: ID=1034 <--

The final step in the idlescan is for nmap to repeat the original SYN/ACK probe of the zombie station.
If the IPID has incremented, then the port that was spoofed in the original SYN frame is open on the
destination device. If the IPID has not incremented, then the port is not open.

Source Destination Summary

--

[192.168.0.8] [192.168.0.7] IP: D=[192.168.0.7] S=[192.168.0.8] LEN=20 ID=11144
[192.168.0.7] [192.168.0.8] IP: D=[192.168.0.8] S=[192.168.0.7] LEN=20 ID=1035
<--

This nmap output shows the results of the idlescan. One of the first messages from nmap is a warning
that the nmap station will perform a ping to the destination device unless the –P0 parameter is
specified. If it's important to minimize network visibility, the –P0 suggestion is a good idea!

nmap -v -sI 192.168.0.7 192.168.0.5
WARNING: Many people use -P0 w/Idlescan to prevent pings from their true IP. On
the
other hand, timing info Nmap gains from pings can allow for faster, more
reliable scans.

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-24 15:25 EDT
Idlescan using zombie 192.168.0.7 (192.168.0.7:80); Class: Incremental
Initiating Idlescan against 192.168.0.5
Discovered open port 135/tcp on 192.168.0.5

Discovered open port 6969/tcp on 192.168.0.5
Discovered open port 445/tcp on 192.168.0.5
Discovered open port 139/tcp on 192.168.0.5
The Idlescan took 9 seconds to scan 1663 ports.
Host 192.168.0.5 appears to be up ... good.
Interesting ports on 192.168.0.5:
(The 1659 ports scanned but not shown below are in state: closed|filtered)
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
6969/tcp open acmsoda
MAC Address: 00:11:43:43:A8:34 (Dell (WW Pcba Test))

Nmap finished: 1 IP address (1 host up) scanned in 12.629 seconds
 Raw packets sent: 3743 (150KB) | Rcvd: 191 (8786B)

How Idlescan REALLY Works

Although the basic idlescan process is outlined above, nmap's procedure is technically similar but
dramatically modified to make the overall idlescan method more efficient. To increase efficiency,
nmap handles the spoofing of the SYN frames and the checking of the zombie station's IPID using
blocks of port numbers instead of one port at a time.

The explanation that follows is a packet-by-packet description of an idlescan session captured from
the network. This process is lengthy, but there are some interesting insights hidden deep within this
packet decode. There are a few surprises found in the network trace that aren't visible in the final
nmap output!

Idlescan Preparation

To check a prospective zombie workstation, nmap first sends a series of SYN/ACK frames and
watches the RST responses to see if the IPIDs are incrementing consistently. At this point, the
idlescan process hasn't yet communicated to the destination station.

The trace file shows the IPID incrementing after a series of six SYN/ACK frames.
Source Destination Summary
--

[192.168.0.8] [192.168.0.7] IP: D=[192.168.0.7] S=[192.168.0.8] LEN=20
ID=51592
[192.168.0.7] [192.168.0.8] IP: D=[192.168.0.8] S=[192.168.0.7] LEN=20
ID=1023 <--
[192.168.0.8] [192.168.0.7] IP: D=[192.168.0.7] S=[192.168.0.8] LEN=20
ID=12012

[192.168.0.7] [192.168.0.8] IP: D=[192.168.0.8] S=[192.168.0.7] LEN=20
ID=1024 <--
[192.168.0.8] [192.168.0.7] IP: D=[192.168.0.7] S=[192.168.0.8] LEN=20
ID=29228
[192.168.0.7] [192.168.0.8] IP: D=[192.168.0.8] S=[192.168.0.7] LEN=20
ID=1025 <--
[192.168.0.8] [192.168.0.7] IP: D=[192.168.0.7] S=[192.168.0.8] LEN=20
ID=50056
[192.168.0.7] [192.168.0.8] IP: D=[192.168.0.8] S=[192.168.0.7] LEN=20
ID=1026 <--
[192.168.0.8] [192.168.0.7] IP: D=[192.168.0.7] S=[192.168.0.8] LEN=20
ID=36306
[192.168.0.7] [192.168.0.8] IP: D=[192.168.0.8] S=[192.168.0.7] LEN=20
ID=1027 <--
[192.168.0.8] [192.168.0.7] IP: D=[192.168.0.7] S=[192.168.0.8] LEN=20
ID=61468
[192.168.0.7] [192.168.0.8] IP: D=[192.168.0.8] S=[192.168.0.7] LEN=20
ID=1028 <--

Having successfully tested source-to-zombie communication, nmap then spoofs the IP address of the
destination station and repeats the process four times. The trace file shows the "fake" 192.168.0.5
address communicating to the zombie and the zombie's response to the packet. Notice that the
zombie's response goes to the REAL 192.168.0.5 workstation, not the spoofed address. The station
that originally spoofed the IP address never sees the resulting frame:

Source Destination Summary
--

[192.168.0.5] [192.168.0.7] IP: D=[192.168.0.7] S=[192.168.0.5] LEN=20
ID=3940
[192.168.0.7] [192.168.0.5] IP: D=[192.168.0.5] S=[192.168.0.7] LEN=20
ID=1029 <--
[192.168.0.5] [192.168.0.7] IP: D=[192.168.0.7] S=[192.168.0.5] LEN=20
ID=38034
[192.168.0.7] [192.168.0.5] IP: D=[192.168.0.5] S=[192.168.0.7] LEN=20
ID=1030 <--
[192.168.0.5] [192.168.0.7] IP: D=[192.168.0.7] S=[192.168.0.5] LEN=20
ID=9069
[192.168.0.7] [192.168.0.5] IP: D=[192.168.0.5] S=[192.168.0.7] LEN=20
ID=1031 <--
[192.168.0.5] [192.168.0.7] IP: D=[192.168.0.7] S=[192.168.0.5] LEN=20
ID=30373
[192.168.0.7] [192.168.0.5] IP: D=[192.168.0.5] S=[192.168.0.7] LEN=20
ID=1032 <--

Nmap doesn't know if the responses to these spoofs worked properly because it can't see the response
to the spoofed packets. Nmap queries the zombie again for an update on the IPID:

Source Destination Summary
--

[192.168.0.8] [192.168.0.7] IP: D=[192.168.0.7] S=[192.168.0.8] LEN=20
ID=26267
[192.168.0.7] [192.168.0.8] IP: D=[192.168.0.8] S=[192.168.0.7] LEN=20
ID=1033 <--

The IPID of 1033 matches the expected number! Now that this IPID analysis process is complete,
nmap can begin scanning the destination station.

Deconstructing the Idlescan Process

The basic idlescan operation shown earlier described the scan occurring one port at a time, but nmap
knows that most ports will be closed. To improve efficiency, nmap begins scanning multiple ports
simultaneously.

Scanning the First Thirty Ports

Nmap spoofs the zombie IP address and sends a block of 30 random port numbers to the destination
station. To help visualize the idlescan process, this graphic will represent these thirty initially scanned
ports:

Source Destination Summary
--

[192.168.0.7] [192.168.0.5] TCP: D=443 S=80 SYN SEQ=3699814101 LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=256 S=80 SYN SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=554 S=80 SYN SEQ=3699814101 LEN=0 WIN=1024
[192.168.0.5] [192.168.0.7] TCP: D=80 S=443 RST ACK=3699814102 WIN=0
[192.168.0.5] 192.168.0.7] TCP: D=80 S=256 RST ACK=3699814102 WIN=0
[192.168.0.5] 192.168.0.7] TCP: D=80 S=554 RST ACK=3699814102 WIN=0
[192.168.0.7] [192.168.0.5] TCP: D=389 S=80 SYN SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=3389 S=80 SYN SEQ=3699814101 LEN=0 WIN=3072
[192.168.0.7] [192.168.0.5] TCP: D=80 S=80 SYN SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=53 S=80 SYN SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=25 S=80 SYN SEQ=3699814101 LEN=0 WIN=3072
[192.168.0.7] [192.168.0.5] TCP: D=21 S=80 SYN SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=113 S=80 SYN SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=23 S=80 SYN SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=636 S=80 SYN SEQ=3699814101 LEN=0 WIN=3072
[192.168.0.7] [192.168.0.5] TCP: D=22 S=80 SYN SEQ=3699814101 LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=1723 S=80 SYN SEQ=3699814101 LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=921 S=80 SYN SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=546 S=80 SYN SEQ=3699814101 LEN=0 WIN=3072
[192.168.0.7] [192.168.0.5] TCP: D=624 S=80 SYN SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=188 S=80 SYN SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=6146 S=80 SYN SEQ=3699814101 LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=7007 S=80 SYN SEQ=3699814101 LEN=0 WIN=3072
[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 SYN SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=1436 S=80 SYN SEQ=3699814101 LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=1234 S=80 SYN SEQ=3699814101 LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=808 S=80 SYN SEQ=3699814101 LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=665 S=80 SYN SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=790 S=80 SYN SEQ=3699814101 LEN=0 WIN=3072
[192.168.0.7] [192.168.0.5] TCP: D=873 S=80 SYN SEQ=3699814101 LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=717 S=80 SYN SEQ=3699814101 LEN=0 WIN=3072
[192.168.0.7] [192.168.0.5] TCP: D=185 S=80 SYN SEQ=3699814101 LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=569 S=80 SYN SEQ=3699814101 LEN=0 WIN=3072
[192.168.0.5] [192.168.0.7] TCP: D=80 S=389 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=3389 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=80 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=53 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=25 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=21 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=113 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=23 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=636 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=22 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=1723 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=921 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=546 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=624 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=188 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=6146 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=7007 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=135 SYN ACK=3699814102 SEQ=2088485221
LEN=0 WIN=65535
[192.168.0.5] [192.168.0.7] TCP: D=80 S=1436 RST ACK=3699814102 WIN=0
[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 RST WIN=0 / IP: ID=1034 <--
[192.168.0.5] [192.168.0.7] TCP: D=80 S=1234 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=808 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=665 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=790 RST ACK=3699814102 WIN=0

[192.168.0.5] [192.168.0.7] TCP: D=80 S=873 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=717 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=185 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=569 RST ACK=3699814102 WIN=0

Nmap then sends two SYN/ACK frames to the zombie and checks the resulting IPIDs.

Source Destination Summary

--

[192.168.0.8] [192.168.0.7] TCP: D=80 S=62727 SYN ACK=3093618703 SEQ=717491703
LEN=0 WIN=3072
[192.168.0.7] [192.168.0.8] TCP: D=62727 S=80 RST WIN=0 / IP: ID=1035 <--
[192.168.0.8] [192.168.0.7] TCP: D=80 S=62767 SYN ACK=3093618703 SEQ=717492203
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.8] TCP: D=62767 S=80 RST WIN=0 / IP: ID=1036 <--

Nmap can tell from the IPID change that one of the ports sent in that first group of thirty was open!

Now that the IPID has changed, nmap rewinds its scan process and begins scanning the same port
numbers again, but in smaller groups. Since nmap started with a group of 30, it separates that list in
half and begins the scanning process again:

Source Destination Summary
--

[192.168.0.7] [192.168.0.5] TCP: D=443 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=256 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=554 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=389 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=3072
[192.168.0.5] [192.168.0.7] TCP: D=80 S=443 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=256 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=554 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=389 RST ACK=3699814102 WIN=0
[192.168.0.7] [192.168.0.5] TCP: D=3389 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=80 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=53 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=3072
[192.168.0.7] [192.168.0.5] TCP: D=25 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=3072
[192.168.0.7] [192.168.0.5] TCP: D=21 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=113 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=23 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=636 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=22 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=1723 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=921 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096

[192.168.0.5] [192.168.0.7] TCP: D=80 S=3389 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=80 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=53 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=25 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=21 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=113 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=23 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=636 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=22 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=1723 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=921 RST ACK=3699814102 WIN=0

After these 15 ports are scanned, nmap checks the IPID again:

Source Destination Summary
--

[192.168.0.8] [192.168.0.7] TCP: D=80 S=62748 SYN ACK=3093618703 SEQ=717492703
LEN=0 WIN=3072
[192.168.0.7] [192.168.0.8] TCP: D=62748 S=80 RST WIN=0 / IP: IPID=1037 <--
[192.168.0.8] [192.168.0.7] TCP: D=80 S=62849 SYN ACK=3093618703 SEQ=717493203
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.8] TCP: D=62849 S=80 RST WIN=0 / IP: IPID=1038 <--

The IPID didn't change, so nmap knows that the open port must be one of the remaining 15 ports.
However, nmap isn't as efficient as it could be. Instead of splitting apart these remaining 15 ports, it
checks all of them!

Source Destination Summary

--

[192.168.0.7] [192.168.0.5] TCP: D=546 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=624 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=3072
[192.168.0.7] [192.168.0.5] TCP: D=188 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=6146 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=1024
[192.168.0.5] [192.168.0.7] TCP: D=80 S=546 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=624 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=188 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=6146 RST ACK=3699814102 WIN=0
[192.168.0.7] [192.168.0.5] TCP: D=7007 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=1436 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=1234 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=808 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.5] [192.168.0.7] TCP: D=80 S=7007 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=135 SYN ACK=3699814102 SEQ=2088563926
LEN=0 WIN=65535
[192.168.0.5] [192.168.0.7] TCP: D=80 S=1436 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=1234 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=808 RST ACK=3699814102 WIN=0
[192.168.0.7] [192.168.0.5] TCP: D=665 S=80 SYN (Retransmission of Frame 60)
SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=790 S=80 SYN (Retransmission of Frame 61)
SEQ=3699814101 LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=873 S=80 SYN (Retransmission of Frame 62)
SEQ=3699814101 LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=717 S=80 SYN (Retransmission of Frame 63)
SEQ=3699814101 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=185 S=80 SYN (Retransmission of Frame 64)
SEQ=3699814101 LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=569 S=80 SYN (Retransmission of Frame 65)
SEQ=3699814101 LEN=0 WIN=1024
[192.168.0.5] [192.168.0.7] TCP: D=80 S=665 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=790 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=873 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=717 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=185 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=569 RST ACK=3699814102 WIN=0
[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 RST WIN=0 / IP: IPID=1039 <--

Nmap checks the IPIDs to determine if the open port was in that last batch. Of course, we've already
determined it's there:

Source Destination Summary
--

[192.168.0.8] [192.168.0.7] TCP: D=80 S=62803 SYN ACK=3093618703 SEQ=717493703
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.8] TCP: D=62803 S=80 RST WIN=0 / IP: IPID=1040 <--
[192.168.0.8] [192.168.0.7] TCP: D=80 S=62962 SYN ACK=3093618703 SEQ=717494203
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.8] TCP: D=62962 S=80 RST WIN=0 / IP: IPID=1041 <--

Having clearly identified the group containing the mystery port, nmap begins the divide and conquer
process again. This time, the list is split into a group of eight ports and another group containing
seven ports. The group of eight ports is the first group to check:

Source Destination Summary

--

[192.168.0.7] [192.168.0.5] TCP: D=546 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=624 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=3072
[192.168.0.7] [192.168.0.5] TCP: D=188 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=6146 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=7007 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=1436 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=1234 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.5] [192.168.0.7] TCP: D=80 S=546 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=624 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=188 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=6146 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=7007 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=135 SYN ACK=3699814102 SEQ=2088591538
LEN=0 WIN=65535
[192.168.0.5] [192.168.0.7] TCP: D=80 S=1436 RST ACK=3699814102 WIN=0
[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 RST WIN=0 / IP: IPID=1042 <--
[192.168.0.5] [192.168.0.7] TCP: D=80 S=1234 RST ACK=3699814102 WIN=0

Nmap performs the normal IPID check for any changes:

Source Destination Summary

--

[192.168.0.8] [192.168.0.7] TCP: D=80 S=62867 SYN ACK=3093618703 SEQ=717494703
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.8] TCP: D=62867 S=80 RST WIN=0 / IP: IPID=1043 <--
[192.168.0.8] [192.168.0.7] TCP: D=80 S=62735 SYN ACK=3093618703 SEQ=717495203
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.8] TCP: D=62735 S=80 RST WIN=0 / IP: IPID=1044 <--

The IPID incremented, so nmap knows the port is in the block of eight ports. Nmap now breaks this
into two groups of four ports, and scans the first four:

Source Destination Summary

--

[192.168.0.7] [192.168.0.5] TCP: D=546 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=624 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=188 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=6146 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.5] [192.168.0.7] TCP: D=80 S=546 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=624 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=188 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=6146 RST ACK=3699814102 WIN=0

The IPID is checked for any changes, but it hasn't incremented since the last check:

Source Destination Summary

--

[192.168.0.8] [192.168.0.7] TCP: D=80 S=62884 SYN ACK=3093618703 SEQ=717495703
LEN=0 WIN=3072
[192.168.0.7] [192.168.0.8] TCP: D=62884 S=80 RST WIN=0 / IP: IPID=1045 <--
[192.168.0.8] [192.168.0.7] TCP: D=80 S=62919 SYN ACK=3093618703 SEQ=717496203
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.8] TCP: D=62919 S=80 RST WIN=0 / IP: IPID=1046 <--

After hundreds of frames, nmap has now narrowed down the open port to these last four possibilities.
Instead of separating this group of four ports into a smaller query, nmap not-so-efficiently queries all
four of the remaining ports:

Source Destination Summary
--

[192.168.0.7] [192.168.0.5] TCP: D=7007 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=1436 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=1234 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096
[192.168.0.5] [192.168.0.7] TCP: D=80 S=7007 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=135 SYN ACK=3699814102 SEQ=2088668207
LEN=0 WIN=65535
[192.168.0.5] [192.168.0.7] TCP: D=80 S=1436 RST ACK=3699814102 WIN=0
[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 RST WIN=0 / IP: IPID=1047 <--
[192.168.0.5] [192.168.0.7] TCP: D=80 S=1234 RST ACK=3699814102 WIN=0

As expected, the IPID increments to confirm that the mystery port is contained in that last group of
four ports:

Source Destination Summary
--

[192.168.0.8] [192.168.0.7] TCP: D=80 S=62938 SYN ACK=3093618703 SEQ=717496703
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.8] TCP: D=62938 S=80 RST WIN=0 / IP: IPID=1048 <--
[192.168.0.8] [192.168.0.7] TCP: D=80 S=62834 SYN ACK=3093618703 SEQ=717497203
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.8] TCP: D=62834 S=80 RST WIN=0 / IP: IPID=1049 <--

Nmap finally separates the four ports into two groups of two ports each and begins scanning the first
two ports:

Source Destination Summary

--

[192.168.0.7] [192.168.0.5] TCP: D=7007 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.5] [192.168.0.7] TCP: D=80 S=7007 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=135 SYN ACK=3699814102 SEQ=2088695447
LEN=0 WIN=65535

[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 RST WIN=0 / IP: IPID=1050 <--

The IPID check occurs again, and nmap discovers that the mystery open port is one of those two
ports:

Source Destination Summary

--

[192.168.0.8] [192.168.0.7] TCP: D=80 S=62729 SYN ACK=3093618703 SEQ=717497703
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.8] TCP: D=62729 S=80 RST WIN=0 / IP: IPID=1051 <--
[192.168.0.8] [192.168.0.7] TCP: D=80 S=62937 SYN ACK=3093618703 SEQ=717498203
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.8] TCP: D=62937 S=80 RST WIN=0 / IP: IPID=1052 <--

We're down to two possible options, so nmap checks the first port:

Source Destination Summary
--

[192.168.0.7] [192.168.0.5] TCP: D=7007 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.5] [192.168.0.7] TCP: D=80 S=7007 RST ACK=3699814102 WIN=0

The resulting IPID check shows that the mystery port was not port 7007:

Source Destination Summary
--

[192.168.0.8] [192.168.0.7] TCP: D=80 S=62873 SYN ACK=3093618703 SEQ=717498703
LEN=0 WIN=3072
[192.168.0.7] [192.168.0.8] TCP: D=62873 S=80 RST WIN=0 / IP: IPID=1053 <--
[192.168.0.8] [192.168.0.7] TCP: D=80 S=62737 SYN ACK=3093618703 SEQ=717499203
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.8] TCP: D=62737 S=80 RST WIN=0 / IP: IPID=1054 <--

At this point, there's one port remaining from the original thirty. Unfortunately, nmap's logic for
idlescan doesn't recognize that there's only one choice remaining. So, nmap goes through the
unnecessary motions of checking the final port:

Source Destination Summary
--

[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 SYN (Retransmission of Frame 56)
SEQ=3699814101 LEN=0 WIN=1024
[192.168.0.5] [192.168.0.7] TCP: D=80 S=135 SYN ACK=3699814102 SEQ=2088767793
LEN=0 WIN=65535
[192.168.0.7] [192.168.0.5] TCP: D=135 S=80 RST WIN=0 / IP: IPID=1055 <--

Unlike previous IPID checks, nmap only sends a single SYN/ACK for this IPID check. This is
another inconsistency in the IPID process:

Source Destination Summary

--

[192.168.0.8] [192.168.0.7] TCP: D=80 S=62782 SYN ACK=3093618703 SEQ=717499703
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.8] TCP: D=62782 S=80 RST WIN=0 / IP: IPID=1056 <--

Finally, nmap has identified the single open port from the original group of thirty ports. Logically,
nmap should continue to the next group of thirty ports and work through this same process. However,
that's not what happens.

Remember when the group of four ports was split into two groups of two ports? Those other two ports
were never scanned. Although it's now obvious that nmap has already found the open port, nmap still
feels compelled to check those other two ports:

ource Destination Summary

--

[192.168.0.7] [192.168.0.5] TCP: D=1436 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=3072
[192.168.0.7] [192.168.0.5] TCP: D=1234 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.5] [192.168.0.7] TCP: D=80 S=1436 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=1234 RST ACK=3699814102 WIN=0

The IPID check shows that the open port wasn't in the last group, but we knew that already. Notice
that nmap has returned to using two SYN/ACK packets to check the IPID:

Source Destination Summary

--

[192.168.0.8] [192.168.0.7] TCP: D=80 S=62875 SYN ACK=3093618703 SEQ=717500203
LEN=0 WIN=3072
[192.168.0.7] [192.168.0.8] TCP: D=62875 S=80 RST WIN=0 / IP: IPID=1057 <--
[192.168.0.8] [192.168.0.7] TCP: D=80 S=62729 SYN ACK=3093618703 SEQ=717500703
LEN=0 WIN=3072
[192.168.0.7] [192.168.0.8] TCP: D=62729 S=80 RST WIN=0 / IP: IPID=1058 <--

Although the open port was identified a few IPID checks ago, nmap remembers that there are still
seven ports that haven't been scanned. Although it's not necessary at this point, nmap insists on

scanning these ports:

Source Destination Summary

--

[192.168.0.7] [192.168.0.5] TCP: D=808 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=665 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=790 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=2048
[192.168.0.7] [192.168.0.5] TCP: D=873 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=3072
[192.168.0.7] [192.168.0.5] TCP: D=717 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.5] TCP: D=185 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=1024
[192.168.0.7] [192.168.0.5] TCP: D=569 S=80 SYN (Retransmission) SEQ=3699814101
LEN=0 WIN=3072
[192.168.0.5] [192.168.0.7] TCP: D=80 S=808 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=665 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=790 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=873 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=717 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=185 RST ACK=3699814102 WIN=0
[192.168.0.5] [192.168.0.7] TCP: D=80 S=569 RST ACK=3699814102 WIN=0

Obviously, this IPID check shows that these last seven ports weren't open:

Source Destination Summary
--

[192.168.0.8] [192.168.0.7] TCP: D=80 S=62726 SYN ACK=3093618703 SEQ=717501203
LEN=0 WIN=4096
[192.168.0.7] [192.168.0.8] TCP: D=62726 S=80 RST WIN=0 / IP: IPID=1059 <--
[192.168.0.8] [192.168.0.7] TCP: D=80 S=62763 SYN ACK=3093618703 SEQ=717501703
LEN=0 WIN=3072
[192.168.0.7] [192.168.0.8] TCP: D=62763 S=80 RST WIN=0 / IP: IPID=1060 <--

Finally, it's over. The first thirty ports have been scanned, and now nmap groups together another
thirty random ports and repeats the process again until all of the ports have been checked.

Advantages of Idlescan

Idlescan's method of spoofing IP addresses and checking IPIDs allows nmap to find open ports from a
distance, even if packet filters are in place! Nmap simply requires any open port to a zombie
workstation to complete the communication process.

One of the largest advantages of idlescan is the stealth factor. A destination station will never see the
IP address of the nmap station!

Disadvantages of Idlescan

Idlescan only locates ports. Idlescan can't provide any application version information or operating
system fingerprinting.

The zombie must be an idle station, and that's difficult to know for sure. Often, many different
devices will be tested with idlescan before an appropriate idle station is identified.

The divide-and-conquer method of idlescan's bulk processing means that there will be more network
traffic than a normal port scan. In most cases, many ports will be scanned more than once. The
idlescan logic also scans more ports than necessary, inefficiently using network bandwidth and
extending the scanning time.

Although Idlescan spoofs the IP address of the zombie, this method of invisibility isn't helpful if all of
the devices are on the same IP subnet. Since the MAC address of the nmap station isn't modified, a
sharp eye can pick the spoofed address out of a network trace. To maintain the stealth-factor, the
nmap station and the destination should be on separate IP subnets.

Idlescan requires privileged access to create the spoofed IP frames. Without privileged access, this

scan will not run.

When to use Idlescan Idlescan allows the nmap station to remain hidden from the remote station. If
invisibility is important, idlescan can provide a bit of cover while poking around the network.

Since idlescan only needs a single port to a zombie workstation, it's relatively simple to scan inside of
a protected network using the zombie as a scanning proxy. This also allows nmap to check trust
relationships inside an internal network without requiring direct communication between the devices.

Fyodor has written a fantastic idlescan and IPID white paper, located at:

http://www.insecure.org/nmap/idlescan.html

Idlescan has the potential to extract a lot of information about your network, in spite of your packet-
filters! If you are concerned about idlescan extracting information through your firewall, use the
operating system fingerprinting option (-O) to test the IPID predictability of your systems.

FTP Bounce Attack(-b <ftp_relay_host>)

Requires Privileged Access: NO

Identifies TCP Ports: YES

Identifies UDP Ports: NO

The FTP bounce attack is infamous in the network security world. The modern threat associated with
this attack methodology has been nullified by the retooling of most FTP services, rendering this
particular attack more interesting for its technical process than for its potential maliciousness. Like
idlescan, the FTP bounce attack uses a third workstation to act as a proxy between the nmap host and
the destination station.

A popular detailed discussion of the ftp bounce attack was written by "Hobbit" on the Bugtraq
mailing list. A copy of the message can be found at this location:

http://www.insecure.org/nmap/hobbit.ftpbounce.txt

The FTP bounce attack uses an FTP server in passive mode to transmit information to any device on
the network. For a detailed explanation of active mode FTP vs. passive mode FTP, refer to this site:

http://slacksite.com/other/ftp.html

FTP Bounce Attack Operation

The FTP bounce attack wouldn't be possible if it weren't for passive mode FTP. With passive mode
FTP, the command connections are completely separate from the data connections. This allows the
FTP server to work well with firewalls because the FTP server is responsible for building the
outbound data connection with the remote host. However, it also means that a user could send a
PORT command to an FTP server that would direct the data towards a completely different host!

From a security perspective, a "bounceable" FTP server is a serious concern. For the purposes of port

http://slacksite.com/other/ftp.html
http://www.insecure.org/nmap/hobbit.ftpbounce.txt
http://www.insecure.org/nmap/idlescan.html

scanning, however, this situation couldn't be more convenient! The FTP bounce attack takes
advantage of these poorly-configured FTP servers to provide nmap with a unique method of locating
open ports.

To begin the bounce attack process, nmap must login to the FTP server that will be used as the
"middleman." Once connected to the FTP server, nmap sends the PORT command to direct all data
connections to the destination IP address and TCP port.

The PORT command has a unique syntax. The PORT command is followed by six numbers that are
separated by commas. The first four numbers refer to the four octets of the destination IP address, and
the last two numbers refer to the port number on the remote device. To calculate the port number into
decimal, multiply the second-to-last number by 256 and add it to the last number. For example, the
command PORT 192,168,0,5,2,44 refers to IP address 192.168.0.5 and port (2*256)+44, or
port 556.

Once the nmap source specifies the port command, it sends a LIST command to launch the data
connection over the specified IP address and TCP port. The FTP server then attempts a connection
with the device specified in the PORT command.

A closed port will result with the FTP server informing the source station that the FTP server can't
build the connection:

Source Destination Summary

--

[192.168.0.8] [192.168.0.7] FTP: C PORT=37205 PORT 192,168,0,5,0,93
[192.168.0.7] [192.168.0.8] FTP: R PORT=37205 200 PORT command successful.
[192.168.0.8] [192.168.0.7] FTP: C PORT=37205 LIST
[192.168.0.7] [192.168.0.5] TCP: D=93 S=20 SYN SEQ=474501024 LEN=0 WIN=65535
[192.168.0.5] [192.168.0.7] TCP: D=20 S=93 RST ACK=474501025 WIN=0
[192.168.0.7] [192.168.0.8] FTP: R PORT=37205 425 Can't build data connection:
Connection refused.

An open port completes the transfer over the specified connection:

Source Destination Summary

--

[192.168.0.8] [192.168.0.7] FTP: C PORT=37205 PORT 192,168,0,5,0,135
[192.168.0.7] [192.168.0.8] FTP: R PORT=37205 200 PORT command successful.
[192.168.0.8] [192.168.0.7] FTP: C PORT=37205 LIST
[192.168.0.7] [192.168.0.5] TCP: D=135 S=20 SYN SEQ=4240951199 LEN=0 WIN=65535
[192.168.0.5] [192.168.0.7] TCP: D=20 S=135 SYN ACK=4240951200 SEQ=2193395373
LEN=0 WIN=65535
[192.168.0.7] [192.168.0.5] TCP: D=135 S=20 ACK=2193395374 WIN<<1=65700
[192.168.0.7] [192.168.0.8] FTP: R PORT=37205 150 Opening ASCII mode data
connection for '/bin/ls'.
[192.168.0.7] [192.168.0.8] FTP: R PORT=37205 226 Transfer complete.
[192.168.0.7] [192.168.0.5] FTP: R PORT=135 Text Data

The nmap output shows the results of the FTP bounce scan. Since the bounce scan is often performed
through firewalls, nmap adds a reminder to include the "don't ping" option (-P0) on the command
line.

nmap -v -b anonymous:anon@192.168.0.7 192.168.0.5
Hint: if your bounce scan target hosts aren't reachable from here, remember to
use -P0 so we don't try and ping them prior to the scan

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-04-23 20:37 EDT
Resolved ftp bounce attack proxy to 192.168.0.7 (192.168.0.7).
Attempting connection to ftp://anonymous:anon@192.168.0.7:21
Connected:Login credentials accepted by ftp server!
Initiating TCP ftp bounce scan against 192.168.0.5 at 20:37
Discovered open port 6969/tcp on 192.168.0.5
Discovered open port 135/tcp on 192.168.0.5
Discovered open port 139/tcp on 192.168.0.5
Discovered open port 445/tcp on 192.168.0.5
Scanned 1663 ports in 9 seconds via the Bounce scan.
Host 192.168.0.5 appears to be up ... good.
Interesting ports on 192.168.0.5:
(The 1659 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
6969/tcp open acmsoda
MAC Address: 00:11:43:43:A8:34 (Dell (WW Pcba Test))

Nmap finished: 1 IP address (1 host up) scanned in 20.602 seconds
 Raw packets sent: 2 (68B) | Rcvd: 1 (46B)
#

Advantages of the FTP Bounce Attack

Like idlescan, the FTP bounce attack can scan "through" a firewall. The nmap station needs only an
FTP login to scan any device that can be accessed from the FTP server. This is a significant feature,
since reconnaissance of the protected network would not be possible otherwise.

The FTP bounce attack uses standard FTP functionality. Nmap does not require specialized packet
configurations or changes to the FTP protocol. Therefore, the FTP bounce attack does not require any
privileged access.

Disadvantages of the FTP Bounce Attack

The largest disadvantage of the FTP bounce attack relates to the availability of an FTP server that
allows a PORT command to redirect the data connection to a third device. Most FTP servers have

their default configuration to protect against this use of the PORT command, although it technically
that modification does not follow the FTP standard.

My FreeBSD server had to be reconfigured through inetd.conf to start ftpd with the –R
parameter to disable the protection and strictly comply with the FTP RFC. This is obviously not the
normal configuration for a production FTP server!

The FTP bounce attack can only scan TCP ports. Since FTP doesn't connect to remote devices with
UDP, it's not possible to get feedback on the availability of UDP ports.

The process of bouncing through an FTP server is slow when compared to other scanning methods.
The port scanning requests can only check a single port at a time, and the current nmap bounce attack
options only provide for a single FTP connection.

The FTP bounce attack starts an application session with the FTP server, and most FTP servers will
log the connection and all of the commands used during the session.

When to use the FTP Bounce Attack

The FTP bounce attack is a well positioned TCP port scan through a firewall. FTP is a commonly
available application through a packet-filtering device, and a connection to an FTP server provides the
perfect jumping-off-point to gather more information about the rest of the protected network. If the
FTP server is this poorly maintained, there are probably more devices that need to be identified and
corrected!

The FTP bounce attack does not provide version information, but there is potential to create
additional functionality. Adding this functionality in nmap is questionable, however, because there are
few FTP devices available where a bounce attack would be applicable (and the numbers are
dwindling). There are many more potential enhancements to nmap that would provide much more
capability than updating the FTP bounce attack.

The FTP bounce attack is interesting, but it's probably not going to work with contemporary FTP
servers. If you need to scan through a firewall, you may have better luck with idlescan.

Chapter 3: Nmap's Ping Options

Understanding nmap's myriad scan types is only the beginning of harnessing its power. Nmap's
additional options provide over fifty different choices of packet timings, ping options, output formats,
and other customizable features! Although this considerable quantity of options seems overwhelming,
it's this abundance of choices that provides nmap with incredible flexibility in nearly any networking
environment.

Ping Options
Nmap always "pings" a remote station before initiating the scanning process. The default nmap ping
consists of an ICMP echo request followed by a TCP ACK on port 80. If a station does not respond to
either ping method, nmap will continue to the next target. If the scan does not have any additional
targets, the scan will end.

Networking purists consider the term "ping" as a reference to an ICMP echo request and the
corresponding ICMP echo reply. However, nmap's use of the word "ping" is more generic. In the
nmap world, a ping is any request that would prompt a remote station's response. Throughout this
text, a ping will refer to nmap's more relaxed definition.

The purpose of an nmap ping is to provoke any kind of response from a remote station. Once a
response is received from a remote device, nmap identifies that device as active on the network and
begins scanning it for detailed port information. Most of these ping options can be combined together
to maximize the possibility of locating a device through firewalls or packet filters.

Nmap's pings can also be customized for the situation. For example, a firewall that blocks ICMP and
ACK on port 80 might allow nmap to ping through the firewall with a TCP SYN to port 135 or a UDP
query to port 22. This customization could also be used as a filter that would only identify devices
that fit certain profiles, such as routers or mail servers.

Subnet Broadcasts

If an IP subnet is selected as a destination, nmap will also send ping requests to the subnet's broadcast
addresses. For example, an nmap destination of 192.168.0.2/24 will prompt an nmap ping of all hosts
between 192.168.0.1 and 192.168.0.254. Additionally, nmap will include 192.168.0.0 and
192.168.0.255 as destination addresses.

Many systems will respond to an "all-zeros" or "all-ones" broadcast, even though an individual IP
address has not been specified. Some operating systems have been configured to ignore these types of
broadcasts, but many stations will unknowingly respond to at least one of these broadcast types.

ICMP Echo Request and TCP ACK Ping (-PB)

THIS OPTION HAS BEEN DEPRECATED

If a specific ping type is not specified on the command line, the default nmap ping is used. This
default ping consists of an ICMP echo request followed by a TCP ACK.

The TCP ACK is always sent, even if an ICMP echo response is received from the remote device
before the TCP ACK is sent.

The –PB option refers to the default combination of an ICMP echo request and a TCP ACK. This
option is being phased out in favor of a separate ICMP echo request ping option (-PE) and a separate
TCP ACK ping option (-PA). Now that these ping methods have separate options, they can be used
independently of each other or in combination with other ping options. With this added flexibility,
this –PB option that combines the ping methods is redundant and unnecessary for future use.

ICMP Echo Request and TCP ACK Ping Operation

The ICMP echo request and TCP ACK requests are both sent together and nmap waits to receive a
reply from one or both of the requests:

Source Destination Summary

--

[192.168.0.5] [192.168.0.3] ICMP: Echo
[192.168.0.5] [192.168.0.3] TCP: D=80 S=43162 ACK=1866185566 WIN=1024
[192.168.0.3] [192.168.0.5] ICMP: Echo reply
[192.168.0.3] [192.168.0.5] TCP: D=43162 S=80 RST WIN=0

Advantages of the ICMP Echo Request and TCP ACK Ping

The ICMP echo request and TCP ACK ping is a good all-purpose ping. This ping will obtain a
response from all devices if the path is clear for ICMP, and it will get a response from a remote device
if port 80 is not filtered. Since most packet filters allow port 80, there's a good possibility that this
packet will get through.

It doesn't matter that a remote station isn't running a web server on port 80, since all stations receiving
a 'surprise' ACK packet will reply with a RST frame!

Disadvantages of the ICMP Echo Request and TCP ACK Ping

ICMP is often filtered through firewalls or packet filters. This random ACK ping through a stateful
firewall won't usually garner a response. In some cases, a scan against a series of hosts may not return
any available systems because the default ping couldn't traverse the firewall.

When to use the ICMP Echo Request and TCP ACK Ping

DON'T USE THIS OPTION. The –PB option has been deprecated, which means that this option will
be eventually phased out in a future release of nmap. It still works in nmap 3.81, but its future
availability isn't guaranteed. As a replacement, use both the ICMP echo request ping (-PE) and TCP
ACK ping (-PA) options together on the nmap command line.

ICMP Echo Request Ping (-PE)

The ICMP echo request ping sends an ICMP echo request to nmap's destination IP address. This is the
same type of ICMP echo request that is sent in the default ICMP echo request and TCP ACK ping
combination. With the –PE option, the ICMP echo request can be specified as the nmap ping method
without pairing it with the TCP ACK ping.

The -PI option is an undocumented alias for the ICMP echo request ping.

ICMP Echo Request Ping Operation

This ping method consists of a single ICMP echo request frame. If an ICMP echo reply frame is
received in return, the station is active:

Source Destination Summary
--

[192.168.0.5] [192.168.0.3] ICMP: Echo
[192.168.0.3] [192.168.0.5] ICMP: Echo reply

If a response is not received to the ICMP echo request, the IP address is not active or the connection
to the remote device is filtered.

Advantages of the ICMP Echo Request Ping

An ICMP echo request is a simple and very common method of determining a station's availability.
Many network administrators use this method to determine station availability through the aptly
named "ping" command.

If ICMP traffic isn't filtered between the nmap station and the destination device, the entire network
connection between the two stations may have very little filtering. It's very common for ICMP to be
filtered through firewalls or packet filters, so a response to an ICMP echo request would be indicative
of a link that has very little (if any) filtering.

The ICMP echo doesn't rely on any particular application or open port to work. If a remote device
communicates via TCP/IP, then it's most often a candidate for the ICMP echo request ping.

Disadvantages of the ICMP Echo Request Ping

As mentioned above, ICMP is one of the most filtered protocols in enterprise networks. The ICMP
protocol has the ability to redirect traffic, identify available workstations, and identify closed ports on
a device. When a firewall or packet filter is installed, one of the first rules is the restriction of ICMP.

When to use the ICMP Echo Request Ping

If an nmap scan runs within a local network, then ICMP will probably be a successful ping method.
As long as the network link is unfiltered, an ICMP echo request is a very reliable determination of
station availability. If there's any doubt regarding the free flow of packets between the nmap scanning
station and the remote device, a different or additional nmap ping type should be specified.

TCP ACK Ping (-PA [portlist], -PT [portlist])

Instead of using the default option of both an ICMP echo request and a TCP ACK, the –PA option
sends a TCP ACK and forgoes any ICMP echo requests. This is a good alternative when the use of
ICMP is not applicable because of packet filtering or firewalls.

TCP ACK Ping Operation

The TCP ACK ping consists of a random TCP ACK sent to a remote device. If the device is active, a
RST will be received in return. If the device is not active or the port is filtered, there will be no
response to the ACK. It's interesting to note that these results are identical to the results found with
the TCP ACK scan (-sA).

The [portlist] option allows the user to specify a series of ports for the ACK ping to use. The
specification of this port list isn't as flexible as specifying IP addresses, but this is a pre-scan ping
process and not an actual scan. For the ACK ping, the ports are listed individually with each port
separated with a comma. For example, the command
nmap –v –sS 10.0.0.4 –PA23,110

will attempt a TCP ACK ping to host 10.0.0.4 over ports 23 and 110. If neither of these ports replies
to the ACK ping, the SYN scan will not run and the scan attempt will stop with this message:

Note: Host seems down. If it is really up, but blocking our ping
probes, try -P0

If a port is not specified, port 80 is used by default.

This is an example of a TCP ACK scan as a privileged user. In every case where a system is
identified, a RST is returned. If no response is received, the destination IP address either isn't on the
network or the station is behind a firewall:

Source Destination Summary

--

[192.168.0.5] [192.168.0.3] TCP: D=135 S=62984 ACK=3382473630 WIN=3072
[192.168.0.3] [192.168.0.5] TCP: D=62984 S=135 RST WIN=0

If the nmap user is not a privileged user, a TCP connect()-style ping is used instead of a TCP ACK.
This adjustment occurs without an error message or other notification! This means that instead
of a TCP ACK, the nmap station will send a TCP SYN. If the TCP SYN is sent to a closed port, a
TCP RST is received in return:

Source Destination Summary
--

[192.168.0.5] [192.168.0.3] TCP: D=80 S=60554 SYN SEQ=2685844190 LEN=0 WIN=5840
[192.168.0.3] [192.168.0.5] TCP: D=60554 S=80 RST ACK=2685844191 WIN=0

If the TCP connect()-style ping is "lucky" enough to ping an open port, an application session is
completely opened:

Source Destination Summary

--

[192.168.0.5] [192.168.0.3] TCP: D=135 S=36960 SYN SEQ=219557237 LEN=0 WIN=5840
[192.168.0.3] [192.168.0.5] TCP: D=36960 S=135 SYN ACK=219557238 SEQ=4137096645
LEN=0 WIN=65535
[192.168.0.5] [192.168.0.3] TCP: D=135 S=36960 ACK=4137096646 WIN<<2=5840
[192.168.0.5] [192.168.0.3] TCP: D=135 S=36960 RST ACK=4137096646 WIN<<2=5840

To ensure that no application sessions could ever open, the TCP ACK ping must run as a privileged
user!

Advantages of the TCP ACK Ping

The TCP ACK ping uses little network traffic. In most cases, the common ACK query to a device is
relatively undetectable. The TCP ACK ping also allows different port numbers to be probed,
providing nmap with additional options when negotiating a scan through a firewall.

The TCP ACK ping identifies a filtered connection or a non-filtered connection. This is a perfect use
of a ping probe, since the goal of the ping is to get any type of response from a remote device. An
nmap ping doesn't focus on identifying ports. Instead, its goal is to locate other active devices.

Disadvantages of the TCP ACK Ping

The TCP ACK ping is only available to privileged users. If a non-privileged user requests a TCP
ACK ping, nmap 3.81 changes the request to a TCP connect() ping but doesn't provide any feedback
or warning! These circumstances would be unfortunate for an nmap user that was interested in
keeping a low profile by remaining out of a server's application logs. If the only option is to run as a
non-privileged user, the nmap option should include a port number that would get through a firewall
but would not be an active application port on a device.

When to use the TCP ACK Ping

Because of its low profile and flexible configuration options, the TCP ACK ping can be used in
almost any circumstance. The ACK ping's port values can be modified, and multiple ports can be
included on the command line.

It's important to note that the TCP ACK ping will only run "silently" if the nmap user is privileged. A
non-privileged user's ping will perform a TCP connect() and initiate an application session if the
requested port number matches an open port on the remote device.

TCP SYN Ping (-PS [portlist])

A TCP SYN ping uses the same process as nmap's TCP SYN scan to identify a remote device. With
the TCP SYN ping, the nmap scanner is looking for an RST from a closed port or an ACK from an
open port. Either result will provide nmap with proof that an active system resides at that destination
IP address.

TCP SYN Ping Operation

The response to a TCP SYN packet on a closed port is usually a RST, and if nmap is lucky enough to
ping an open port it will receive a SYN/ACK (to which nmap immediately sends a RST). Of course,
either response is all that nmap needs to recognize a system is alive on the other end!

The TCP SYN ping from a privileged user will receive a RST if the port is closed:

Source Destination Summary

--

[192.168.0.5] [192.168.0.3] TCP: D=80 S=44545 SYN SEQ=3017830046 LEN=0 WIN=4096
[192.168.0.3] [192.168.0.5] TCP: D=44545 S=80 RST ACK=3017830047 WIN=0

A TCP SYN ping from a privileged user will receive an ACK if the port is open, to which nmap will
respond with a RST:

Source Destination Summary

--

[192.168.0.5] [192.168.0.3] TCP: D=135 S=40804 SYN SEQ=3181151454 LEN=0 WIN=2048

[192.168.0.3] [192.168.0.5] TCP: D=40804 S=135 SYN ACK=3181151455 SEQ=3723360488
LEN=0 WIN=65535
[192.168.0.5] [192.168.0.3] TCP: D=135 S=40804 RST WIN=0

If the TCP SYN ping type is requested by a non-privileged user, nmap will default to a TCP
connect()-style ping. This adjustment occurs without an error message or other notification! This
shows the results of a TCP connect()-style ping to an open port:

Source Destination Summary
--

[192.168.0.5] [192.168.0.3] TCP: D=135 S=46558 SYN SEQ=735305937 LEN=0 WIN=5840
[192.168.0.3] [192.168.0.5] TCP: D=46558 S=135 SYN ACK=735305938 SEQ=1935433798
LEN=0 WIN=65535
[192.168.0.5] [192.168.0.3] TCP: D=135 S=46558 ACK=1935433799 WIN<<2=5840
[192.168.0.5] [192.168.0.3] TCP: D=135 S=46558 RST ACK=1935433799 WIN<<2=5840

To prevent any possible initialization an application session, the TCP SYN ping option should always
run as a privileged user.

Like the TCP ACK ping, the SYN ping can specify individual port numbers delimited with commas.
If a port is not specified, port 80 is used by default.

Advantages of the TCP SYN Ping

The TCP SYN ping accomplishes its goal in just a few packets. This minimal amount of network
traffic appears to be normal TCP handshake frames. This makes the TCP SYN ping appear almost
invisible when compared to normal network traffic.

Disadvantages of the TCP SYN Ping

The TCP SYN ping should run as a privileged user to ensure that no application sessions are started.
Unfortunately, the default nmap function for a non-privileged user is to use a TCP connect()-style
ping. If the destination station has an open port that matches the TCP SYN ping port, an application
session will be initialized and the session will be identified in the application logs.

When to use the TCP SYN Ping

Although the TCP SYN ping can discern between an open port and a non-open port, the disposition
doesn't matter as long as the device provides some kind of response. The TCP SYN ping is such a
normal frame that it can hide quite well beneath the normal overhead of network traffic.

Have we made our point yet? Running nmap as a non-privileged user can unknowingly initiate
application sessions, unnecessarily using server resources. If nmap will be used on a production
network, always run it as a privileged user!

UDP Ping (-PU [portlist])

A UDP ping is a departure from the other ping types because it uses UDP frames to communicate
between devices. Since most of the other ping types focus on TCP frames, the UDP ping can assist in
locating active devices through firewalls that the other ping types might not discover.

UDP Ping Operation

The UDP ping attempts to locate a remote device by sending a single UDP frame to the remote
device. If an ICMP port unreachable message is returned, a system is alive on the other end:

Source Destination Summary
--

[192.168.0.5] [192.168.0.3] UDP: D=31338 S=42560 LEN=8
[192.168.0.3] [192.168.0.5] ICMP: Destination unreachable (Port unreachable)

If no response is received, it's assumed that the remote system is unavailable. This could be an
incorrect assumption if an open UDP port is probed, because many UDP applications don't send a
response to any random incoming frame. If possible, the UDP ping should be sent to a port number
that is presumed to be closed.

This ping will only run as a privileged user. If this ping is run as a non-privileged user, this amusing
message is displayed:

Sorry, UDP Ping (-PU) only works if you are root (because we need
to read raw responses off the wire) and only for IPv4 (cause
fyodor is too lazy right now to add IPv6 support and nobody has
sent a patch)

The UDP ping can specify individual port numbers delimited with commas. If a port is not specified,
UDP port 31338 is used by default.

Advantages of the UDP Ping

The UDP ping is simple and innocuous. The single UDP ping frame blends well with other network
traffic, and the UDP ping process requires very little network interaction.

Disadvantages of the UDP Ping

The UDP ping relies heavily on ICMP. If ICMP is filtered, there will be no response to the UDP ping.

Not all applications will reply to a random UDP frame that appears on its open port. It's recommended
that the UDP ping intentionally use an unavailable port as a destination to ensure a response from the
remote station.

The UDP ping only runs as a privileged user, and there are no UDP-based ping alternatives for non-
privileged nmap users.

When to use the UDP Ping

The UDP ping is useful when the link between the nmap station and the remote device is not filtered,
since packet filters will often drop the ICMP replies. If ICMP can't traverse the network link, this ping
type will have limited effectiveness.

It's also important to use UDP ports that are not in use, which can be a challenge when traversing
firewalls. If UDP is going to be open through a firewall, it will be to an open service port. However,
we don't usually want this ping to use an open UDP port. This limits the effectiveness of this ping
through a packet filter or firewall.

ICMP Timestamp Ping(-PP)

The ICMP timestamp ping is a departure from the usual nmap ping types because it takes advantage
of a little-used ICMP message type to determine if a remote station is active. The ICMP timestamp is
rarely seen in normal network traffic, but it can be quite useful for determining availability.

An ICMP timestamp ping is designed to allow two separate systems to coordinate their time-of-day
clocks. It's not often used, but it's supported across many different TCP/IP stacks and operating
systems.

ICMP Timestamp Ping Operation

An ICMP timestamp ping operates similarly to other ICMP-based pings. The source workstation
sends an ICMP Get Timestamp message and waits for an ICMP Send Timestamp response.

Source Destination Summary

--

[192.168.0.5] [192.168.0.3] ICMP: C Get timestamp
[192.168.0.3] [192.168.0.5] ICMP: R Timestamp

If the remote device doesn't respond, the ping fails and the scan does not proceed.

If the nmap is not running as a privileged user, the –PP option provides the following warning:

Warning: You are not root -- using TCP pingscan rather than ICMP

The ping process then continues with a TCP connect()-style ping.

Advantages of the ICMP Timestamp Ping

The ICMP timestamp ping doesn't rely on any particular application on the remote device. The ICMP
functionality is built into the TCP/IP stack, and many stacks have continued to support this timestamp
function.

ICMP is often filtered through firewalls and packet filters. If this ping works, then the network link
between the nmap station and the remote device is mostly likely wide open!

Disadvantages of the ICMP Timestamp Ping

Although the ICMP timestamp ping uses little network traffic, the timestamp message is not usually
found in normal network conversations. The function itself is esoteric, and although it can provide a
time synchronization function for a workstation, most environments rely on Network Time Protocol
(NTP) to provide clock synchronization.

The ICMP timestamp ping relies on ICMP, which is often prevented from traversing firewalls or
packet filters. This ping is probably not the best choice for scanning through firewalls.

The ICMP timestamp ping will only work for privileged users. Nmap will modify the ping for non-
privileged users to use a TCP connect()-like ping. Since a TCP connect() initializes application
sessions when accessing an open port, it's important to understand the implications of using this ping
type with a non-privileged user!

The –PP option ignores any port parameters, so this TCP connect() will always default to port 80. If
there's a web server on the other end of the nmap scan, a session will be initialized!

When to use the ICMP Timestamp Ping

The ICMP timestamp ping is useful for non-filtered network connections. If a firewall is in use, this
ping option may not provide any successful responses.

This ping type can only be used by privileged users. If nmap is running as a non-privileged user, this
ping type will default to a TCP connect()-like ping.

Non-privileged users have little flexibility when using the –PP option. Since this ping type will
default to a TCP connect()-like ping method, it's a better option for non-privileged users to use the
TCP ACK ping (-PA) or TCP SYN ping (-PS) so that a port number can be specified.

ICMP Address Mask Ping (-PM)

An ICMP address mask request is an antiquated ICMP method that queries an IP gateway for an
appropriate subnet mask on the current IP subnet. This ICMP type is extremely rare, and the traffic
pattern is very obvious when observing network traces.

ICMP Address Mask Ping Operation

The ICMP address mask ping operates by sending an ICMP address mask request to a remote device.
If this device is configured to reply to the ICMP address mask, it will send an ICMP address mask
reply:

Source Destination Summary
--

[192.168.0.5] [192.168.0.67] ICMP: C Get address mask
[192.168.0.67] [192.168.0.5] ICMP: R Address mask = [255.255.255.0]

If the remote device isn't active or the remote device does not respond to ICMP address mask
requests, no response will be seen and the ping will fail.

If the nmap is not running as a privileged user, the –PM option provides the following warning:

Warning: You are not root -- using TCP pingscan rather than ICMP

The ping process then continues with a TCP connect()-style ping.

Again, with the connect()-style ping! Watch out for this if you're scanning web servers!

Advantages of the ICMP Address Mask Ping A successful ICMP address mask ping can be
indicative of an older or unprotected TCP/IP stack or gateway. Most modern operating systems and
routers will not respond to this request, or (at the very least) they will not respond to this request from
systems that are not on the same subnet. This ping could be useful as a filtering mechanism, since it
would identify all systems on the network that have older or unusually open TCP/IP protocol stacks.

ICMP doesn't rely on any particular networking service or application. It's common for ICMP to
respond to a request without any particular open or available ports on a system.

Disadvantages of the ICMP Address Mask Ping

An ICMP address mask request is an unusual frame, and it's rarely seen in normal network traffic.
When looking at network trace files, the ICMP frames requesting address masks are very obvious.

This ICMP ping type doesn't work on most modern systems, which means that this ping will often
fail. If it's important to find active systems, this method won't provide a high percentage of successful
pings.

This ping type won't work at all unless the nmap user is privileged. If the nmap user isn't privileged,
the ping type will change to a TCP connect()-style ping. Although there is a warning when this
occurs, there's no option to stop the scan. Since this ping type doesn't accept a port number variable,
this change to a TCP connect()-style ping will only run on the default port of 80. If there's an active
web server on the destination station, this uncontrolled ping change will result in the initialization of
an application session on the remote device.

ICMP is a difficult protocol to transmit through firewalls and packet filters. Since ICMP is often
filtered, this ping has a low percentage of operation through firewalls.

When to use the ICMP Address Mask Ping The ICMP address mask ping is useful on networks
that contain older operating systems or gateways.

The successful ping trace shown above was performed against a system using an older version of the
VxWorks operating system.

This address mask ping is only useful on networks that allow for the free flow of ICMP frames. If the
link contains firewalls or packet filters, a better choice would be a non-ICMP-based ping type.

If the nmap user is non-privileged, this ping type will revert to a TCP connect()-style ping. Since this
ping type doesn't allow port specifications, a better ping choice for non-privileged users would be the
TCP ACK ping (-PA) or the TCP SYN ping (-PS).

Don't Ping Before Scanning (-P0)

The –P0 option completely removes the nmap ping requirement from the pre-scanning process.
Nmap will still attempt a reverse DNS on the remote station unless the disable reverse DNS (-n)
option is used.

The –PN and –PD options are undocumented aliases for the better known –P0 option.

Advantages of the Don't Ping Before Scanning Option Removing the ping process provides an
additional level of stealth. The ping is often the first frame sent from the nmap station to the remote
device, and removing this conversation minimizes the network traffic between the stations.

The ping process is unnecessary if the end station is known to be active on the network. When the end
station's status is already known, using the –P0 option can remove unnecessary network traffic from
the scanning process.

Disadvantages of the Don't Ping Before Scanning Option

If the existence of the remote device isn't known, using the –P0 option could result in a scan to an IP
address that isn't active on the network. If multiple stations are part of the nmap scan, this would
create delays while the scan process attempts to contact remote systems that don't actually exist!

When to use the Don't Ping Before Scanning Option

If the end device IP address is already known, then a ping isn't entirely necessary. However, nmap
does gather some important timing information from the ping process, so disabling the ping process
will put nmap at a disadvantage when the scan begins.

If the nmap ping process fails but the station is known to be on the network, this option can be used to
circumvent the nmap ping requirement. This can occur if there is a firewall or packet filter between
the nmap station and the remote device that is blocking the nmap pings.

Require Reverse DNS (-R)

The require reverse DNS option (-R) is nmap's default operation just after the ping and just prior to
the scanning process. If correlating a name with an IP address is important, using the –R option will
ensure a DNS lookup regardless of the scanning type.

Advantages of the Require Reverse DNS Option

When scanning many devices, requiring a reverse DNS will ensure that the scan will attempt to
correlate an IP address to a name. Even when the name of a server is known, its IP address may
resolve to a completely different name. This resolution process is essential when the "real" name of
the device needs to be referenced after a scan is complete.

Disadvantages of the Require Reverse DNS Option

The –R option maps a name to an IP address, but this capability isn't always guaranteed. Not all
stations can be resolved through the name resolution process, and not all environments have
integrated every workstation into a name resolution system.

The DNS resolution process is relatively slow when compared to most network-related processes.
Some DNS clients can add one-half to two seconds of delay to a scan per IP address! When many
different systems are scanned simultaneously, this can add a significant amount of delay to the total
scan time.

When logging is enabled on the DNS server, every query made to the DNS server will be recorded. If
the –R option is selected every scanned IP address will appear as a query in the DNS log.

When to use the Require Reverse DNS Option

The reverse DNS option is helpful when station names are an important part of an nmap log. Many
organizations use dynamic IP addressing, so an IP address in use during an nmap scan might be used
by a completely different station at a later date. By integrating the nmap scan into the name resolution
system, a complete and correct name can be associated with an IP address.

If the reverse DNS option is used, there will be delays during the name resolution process. If there are
many name resolutions that must occur, it's not unusual to have delays each time a name is resolved.

The name resolution process is often logged on the DNS server, and it's very apparent when
examining a network trace file. This type of request includes the device names that are queried, and
this makes it stand out when examining a trace file.

Disable Reverse DNS (-n)

The disable reverse DNS option (-n) is the opposite of the require reverse DNS option (-R). If the
disable reverse DNS option is selected, nmap will not perform a reverse DNS lookup on the
destination IP address. Disabling the DNS process eliminates the name resolution process, which is
one of the more time-consuming aspects of a workstation scan.

Advantages of the Disable Reverse DNS Option

DNS lookups are relatively slow when compared with the scanning process. Name resolution can be
very inefficient, so removing this requirement can provide some significant time savings.

A name resolution process doesn't guarantee that a name will actually be resolved. Individual
workstations often aren't included on the DNS server, so the resulting name lookup will not return any
name that can be correlated with an IP address. There's no reason to have a name resolution process if
no name will be obtained!

If the name lookup doesn't occur, there's no corresponding entry in the DNS logs. If it's important to
conserve resources on the DNS server, this scan option will avoid sending queries to the DNS server.

Disadvantages of the Disable Reverse DNS Option

The reverse DNS process can associate a system name with an IP address. In environments where the
IP addresses are assigned dynamically, a station's IP address can change from one day to the next. If
the reverse DNS option is disabled, the station name is not queried and the name will not appear in
the nmap scan. In dynamic environments, querying the name during the scan may be the only
opportunity to accurately correlate an IP address with a name!

When to use the Disable Reverse DNS Option

If the nmap scan needs to keep a low profile on the network, it may be prudent to disable any name
queries. Many DNS servers log name resolutions, so running an nmap scan without disabling name
resolution may cause the nmap station to appear in the DNS log as it attempts to resolve the name of
every workstation it scans!

Scanning many different devices will result in a large number of queries to a DNS server. The scan
described above queried the DNS server over 250 times in two minutes! If the name of a device isn't
important, using the –n option will save CPU cycles on both the nmap client and the DNS server.

DNS queries are notoriously slow. Using the disable reverse DNS option can increase scan time
significantly if multiple stations are scanned.

Chapter 4: Operating System Fingerprinting

The operating system fingerprinting process is one of nmap's most powerful features. The
fingerprinting process is impressive in its scope, and its capabilities are some of the most unique in
the industry.

The OS fingerprinting process is not a port scan, although it works in conjunction with nmap's
scanning processes. Nmap's operating system fingerprinting is based on a remote device's responses
when it's sent a group of very specific packets. There will be subtle differences in the responses

received from different operating systems under certain circumstances. If a particular operating
system receives a TCP ACK frame to a closed port, it may react differently than other operating
systems receiving the same frame. It's these minor response variations that allow nmap to build
detailed "fingerprints" for different operating systems and devices.

Fyodor discusses the history and details of these packet types in his extensive paper describing the OS
fingerprinting process. His research and experiences with these fingerprinting methods can be found
at http://www.insecure.org/nmap/nmap-fingerprinting-article.html. Fyodor discusses many different
techniques for harvesting information from a remote device in this article, including methods that
weren't included with nmap.

The OS fingerprinting process is not a version detection scan (-sV), although many methodologies
between the two processes are similar. For example, both the version scan and the OS fingerprinting
scan rely on the nmap scanning process to identify active devices and their available ports. However,
The OS fingerprinting process uses techniques not found in version detection, such as a standard
method of operating system probing and a modular operating system definition file.

Operating System Fingerprinting (-O) Operation Before the operating system fingerprinting
process begins, nmap performs a normal ping and scan. During the nmap scan, nmap determines
device availability and categorizes the ports on the remote device as open, closed, or filtered.

This list of port dispositions is important because the operating system fingerprinting process needs to
query both open ports and closed ports to obtain accurate operating system fingerprints.

Once the open and closed ports are identified, nmap begins the OS fingerprinting procedure. The OS
fingerprinting process consists of an operating system probe, followed by series of TCP handshakes
that are used for testing responses to the TCP uptime measurement options, TCP sequence
predictabilities, and IP identification sequence generation.

These simple tests are designed to gather extensive information about an operating system while
using a minimum of network traffic.

It's extraordinary how much operating system information can be gathered from a device without
authenticating or starting an application session. If a device is on the network with an IP address,
some extremely simple and noninvasive tests will uncover amazing amounts of information!

A normal OS fingerprinting process will uncover the following information:
Device type: general purpose
Running: Microsoft Windows NT/2K/XP
OS details: Microsoft Windows XP SP2
TCP Sequence Prediction: Class=truly random
 Difficulty=9999999 (Good luck!)
IPID Sequence Generation: Incremental

The nmap-os-fingerprints Support File

The nmap-os-fingerprints support file contains a definition of every operating system
fingerprint that nmap recognizes. As new operating system fingerprints are created and released, this
text file is simply updated with the new fingerprint definitions.

This is the definition for a Microsoft Windows XP SP2 operating system from the nmap-os-
fingerprints file:
Fingerprint Microsoft Windows XP SP2
Class Microsoft | Windows | NT/2K/XP | general purpose
TSeq(Class=TR%gcd=<6%IPID=I)

http://www.insecure.org/nmap/nmap-fingerprinting-article.html

T1(DF=Y%W=6360|805C|FFAF%ACK=S++%Flags=AS%Ops=MNWNNT)
T2(Resp=Y%DF=N%W=0%ACK=S%Flags=AR%Ops=)
T3(Resp=Y%DF=Y%W=6360|805C|FFAF%ACK=S++%Flags=AS%Ops=MNWNNT)
T4(DF=N%W=0%ACK=O%Flags=R%Ops=)
T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(DF=N%W=0%ACK=O%Flags=R%Ops=)
T7(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
PU(DF=N%TOS=0%IPLEN=B0%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%DAT=E)

Each operating system definition contains similarly formatted information. Each line contains
information that contributes to the overall operating system fingerprint.

All of these attributes are documented below. This is the most comprehensive documentation of the
operating system fingerprinting process available anywhere!

nmap-os-fingerprints: Fingerprint

Fingerprint Microsoft Windows XP SP2

The first line in a fingerprint definition is labeled Fingerprint. This line references the name of
the operating system fingerprint, and this information is displayed on the "OS Details:" entry on the
nmap output:
OS details: Microsoft Windows XP SP2

nmap-os-fingerprints: Class
Class Microsoft | Windows | NT/2K/XP | general purpose

The Class line is a combination of four different variables. The structure of this line corresponds to:

Manufacturer | OS Name | Version | Device Type

If one of these variables is unknown or does not apply, the variable is left blank. The first three
variables are combined on the "Running:" line of the nmap output, and the last variable is used on the
"Device type:" output line:

Device type: general purpose
Running: Microsoft Windows NT/2K/XP

nmap-os-fingerprints: Tseq

TSeq(Class=TR%gcd=<6%IPID=I)

The TSeq line contains the fingerprint information for TCP Sequence Prediction. This is the
fingerprint that nmap uses to determine if initial sequence numbers (ISNs) can be predicted based on
past results:

TCP Sequence Prediction: Class=64K rule
 Difficulty=1 (Trivial joke)

or

TCP Sequence Prediction: Class=truly random
 Difficulty=9999999 (Good luck!)

Nmap clearly identifies when a TCP initial sequence number would be impossible to predict!

The Importance of TCP Sequence Prediction Analysis

If the TCP sequences of a remote device are understood, then that remote device is more susceptible
to malicious activity such as TCP hijacking. TCP hijacking is a technique that allows a third-party to
"interrupt" an existing TCP connection between two devices. The malicious third party can then
masquerade as one of the original stations, allowing them to send unwanted information to the other
device. A major technical aspect of the hijacking process is the ability of the attacking station to
predict the TCP sequence numbers.

TSeq: The Class Attribute

The TSeq Class attribute refers to the predictability of a remote device's TCP initial sequence
number (ISN). Many of these class attributes also include more detailed attributes to assist nmap in
matching a fingerprint.

• Class=C
Amazingly, this fingerprint attribute describes an ISN that is the same value with every
SYN/ACK. This class refers to a constant (C) number, and it will often include a Val attribute
that represents the constant ISN value that is always seen from the remote device.

• Class=64K
A fingerprint with Class=64K describes devices that have an initial sequence number that
increases by 64,000 with each SYN/ACK.

• Class=i800
These i800 devices have ISNs that increase by a fixed increment of 800 with each
SYN/ACK.

• Class=TD
Some systems, including Windows-based devices, increase the initial sequence number by a
fixed amount during a specific time period. This time dependent (TD) model often includes
fingerprint attributes based on the greatest common divisor (gcd) and a sequence index (SI)
of the initial sequence number.

• Class=RI
The random increments (RI) class describes a series of ISNs that increment, but there is no
method of predicting the sequence number. This class often includes fingerprint attributes
based on the greatest common divisor (gcd) and a sequence index (SI) of the initial sequence
number.

• Class=TR
If the initial sequence numbers are shown to be completely random, they are fingerprinted
with the truly random (TR) class.

These Class attributes can also be combined together to show that a remote device might have
initial sequence numbers that are truly random, random increments, or fixed increments of 800. This
would be shown in the nmap-os-fingerprints file as Class=TR|RI|i800.

TSeq: The IPID Attribute
The IPID attribute refers to the IP identification bytes in the IP header. These values provide
important information, since the IPID can be used for non-standard purposes. Nmap's idlescan is an
example of how a predictable IPID can have unintended uses.

• IPID=C
In rare instances, some systems provide IPIDs that are always a constant (C) number.

• IPID=I
A system matching the Incremental (I) fingerprint increases the IPID by a standard increment
with each sent packet.

• IPID=BI
The broken incremental (BI) fingerprint refers to a system (usually Windows-based) that
increases by 256 each time a packet is sent. This is probably caused by an unintentional error
in Microsoft's IP stack, but it's still a predictable error.

• IPID=RPI
The random positive integral (RPI) fingerprint is based on an IPID that increases each time a
packet is sent, but the increase is by an apparently random amount.

• IPID=RD
Random distributions (RD) are fingerprint references that identify IPIDs that increase or
decrease randomly each time a packet is sent.

• IPID=Z
In some cases, the IPID will always be a zero (Z) value.

TSeq: Timestamp Option Sequencing
The TCP timestamp option is a standard method of calculating round-trip time between stations,
documented in RFC 1323. However, this exact change in timestamp values will vary between
operating systems. These variances can be identified and fingerprinted with the timestamp attributes.

Nmap looks for the change in timestamp each second and attempts to categorize it into five separate
groups:

• TS=0
If the returned timestamp is zero, nmap categorizes it as a zero () TCP timestamp sequence.

• TS=2HZ
A timestamp sequence that increases twice in one second is defined as 2HZ. Nmap uses the
abbreviation for hertz, HZ, to reference the number of frequencies per cycle. In this case, HZ
refers to the number of timestamps incremented per second.

• TS=100HZ
If a timestamp increases by 100 every second, it's assigned a TS reference of 100HZ.

• TS=1000HZ
An increase of one thousand timestamps per second is categorized as 1000HZ.

• TS=U
If any remote device does not return a timestamp, it's fingerprinted as an unsupported system
(U).

nmap-os-fingerprints: Test 1 (T1) through Test 7 (T7)
T1(DF=Y%W=6360|805C|FFAF%ACK=S++%Flags=AS%Ops=MNWNNT)
T2(Resp=Y%DF=N%W=0%ACK=S%Flags=AR%Ops=)
T3(Resp=Y%DF=Y%W=6360|805C|FFAF%ACK=S++%Flags=AS%Ops=MNWNNT)
T4(DF=N%W=0%ACK=O%Flags=R%Ops=)
T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(DF=N%W=0%ACK=O%Flags=R%Ops=)
T7(DF=N%W=0%ACK=S++%Flags=AR%Ops=)

Test 1 (abbreviated in the fingerprint as T1) through Test 7 (T7) refer to the fingerprints that result
from seven frames sent to the remote device. Each test has a specific function, and the results of each
test are correlated with the nmap-os-fingerprints file to match with the target station's
operating system. The tests are very specific, and the packets received in reply are scrutinized for
their identifiable response patterns.

Prior to running test 1 through test 7, nmap chooses an open port and a closed port to use for the
appropriate tests. If only one of these two options is available, nmap provides a message regarding its
ability to accurately fingerprint:
Warning: OS detection will be MUCH less reliable because
we did not find at least 1 open and 1 closed TCP port

This is a description of the tests and a summary of the frame that is sent to the target:

T1: Test 1 sends a SYN frame with a mix of TCP options to an open port. These options consist of a
window scale option of 10, a maximum segment size of 265, and a timestamp value of 1061109567.

T2: Test 2 sends a NULL TCP frame (no flags set) to an open port. This frame includes the same
TCP options as those in Test 1.

T3: Test 3 sends a TCP frame with the SYN, FIN, PSH, and URG flags to an open port. This frame
also includes the same TCP options as those found in test 1 and test 2.

T4: Test 4 sends a TCP ACK to the open port.

T5: Test 5 begins the fingerprint tests to the previously found closed port. This test sends a TCP SYN
to the closed port.

T6: Test 6 sends a TCP ACK to the closed port.

T7: Test 7 sends a TCP frame with the FIN, PSH, and URG flags to the closed port.

The T1 to T7 Attributes

The seven test fingerprints all follow the same syntax, although it's not a requirement for every test
line to include every possible attribute. Each test fingerprint follows the same attribute order:

Resp: The fingerprint shows a Y if a response is received, and it displays an N if a response is not
received.

DF: This fingerprint attribute specifies whether the "Don't Fragment" bit is set in the response frame.

W: The fingerprint displays the window size or sizes (separated by "|") expected in the response
frame.

ACK: This attribute refers to the expected ACK value. This can display an S to mean the same
sequence number that was sent in the test frame, or S++ if the reply includes the initial sequence's
ACK number plus one. If an O is displayed, some other value was returned from the test frame.

Flags: The flags attribute displays the TCP flags that are enabled in the reply, in this order:

B = Bogus (the flag in the reply frame isn't a real TCP flag)

U = Urgent

A = Acknowledgement

P = Push

R = Reset

S = Synchronize

F = Final

Ops: The Ops attribute displays the TCP options that are enabled in the reply:
L = End of List

N = No Op

M = Maximum Segment Size

E = Echoed

W = Window Scale

T = Timestamp

nmap-os-fingerprints: The Port Unreachable Test (PU)

PU(DF=N%TOS=0%IPLEN=B0%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%DAT=
E)

For the port unreachable test, nmap selects a closed port and sends a UDP frame. The ensuing ICMP
port unreachable reply includes an "echo" of data from the originating packet. The ICMP port
unreachable fingerprint compares these attributes:

DF = If the don't fragment bit is set, the fingerprint shows a Y. If the don't fragment bit is not set, the
fingerprint shows an N.

TOS = The IP header's type of service (TOS) byte is compared to this TOS fingerprint. The type of

service fingerprint is shown as a hexadecimal value.

IPLEN = The fingerprint displays the IP datagram total length (IPLEN) in bytes from the response
packet's IP header, referenced as a hexadecimal value.

RIPTL = The IP datagram total length (in hex) repeated back (RIPTL) to the nmap station is listed
as this attribute. This is the IP datagram total length from the echoed IP header, not the bytes in the
"real" IP header of the frame. The value of the "real" IP header is referenced in the IPLEN attribute.

RID = If the IP identification bytes in the reply (RID) are identical to the original frame, the
fingerprint contains an E. If the echoed IPID doesn't match the original, the RID fingerprint attribute
contains an F.

RIPCK = This fingerprint attribute is the comparison of the returned IP checksum (RIPCK) in the
echoed packet with the checksum in the original packet. An E signifies a match, while an F signifies
that the two checksums are different.

UCK = The UDP checksum (UCK) fingerprint attribute compares the UDP checksum in the original
frame with the echoed data in the response frame. An E signifies a match, while an F signifies that the
two checksums are different.

ULEN = The UDP length (ULEN) in the response frame echo should match the value from the original
frame. Nmap sends 0x134 bytes in the original frame, and the fingerprint displays the value in hex
that should appear in the response frame echo.

DAT = If the data (DAT) in the returned packet matches that of the original frame, this fingerprint
assigns an E to this attribute. If the data is not identical, an F is assigned.

The Operating System Fingerprinting Process

The operating system fingerprinting process takes place in a different order than what's shown in the
structure of the fingerprint!

The operating system fingerprinting probes begin with Test 1 through Test 7, followed immediately
by the UDP-based ICMP port unreachable test. The responses to these probes are compared to the T1-
T7 fingerprints in the hopes of locating some likely matches.

Source Destination Summary
--

[192.168.0.7] [192.168.0.3] TCP: D=135 S=56414 SYN SEQ=3375903318 LEN=0 WIN=2048
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56415 WIN=2048
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56416 SYN FIN URG SEQ=3375903318 LEN=0
WIN=2048
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56417 ACK=0 WIN=4096
[192.168.0.7] [192.168.0.3] TCP: D=1 S=56418 SYN SEQ=3375903318 LEN=0 WIN=2048
[192.168.0.7] [192.168.0.3] TCP: D=1 S=56419 ACK=0 WIN=4096
[192.168.0.7] [192.168.0.3] TCP: D=1 S=56420 FIN URG SEQ=3375903318 LEN=0
WIN=4096
[192.168.0.3] [192.168.0.7] TCP: D=56414 S=135 SYN ACK=3375903319 SEQ=1982576985
LEN=0 WIN=65535
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56414 RST WIN<<10=0
[192.168.0.3] [192.168.0.7] TCP: D=56415 S=135 RST ACK=3375903318 WIN=0
[192.168.0.7] [192.168.0.3] UDP: D=1 S=56407 LEN=308
[192.168.0.3] [192.168.0.7] TCP: D=56416 S=135 SYN ACK=3375903319 SEQ=3856135382
LEN=0 WIN=65535
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56416 RST WIN<<10=0
[192.168.0.3] [192.168.0.7] TCP: D=56417 S=135 RST WIN=0
[192.168.0.3] [192.168.0.7] TCP: D=56418 S=1 RST ACK=3375903319 WIN=0
[192.168.0.3] [192.168.0.7] TCP: D=56419 S=1 RST WIN=0
[192.168.0.3] [192.168.0.7] TCP: D=56420 S=1 RST ACK=3375903319 WIN=0
[192.168.0.3] [192.168.0.7] ICMP: Destination unreachable (Port unreachable)

Nmap then performs six TCP SYN scans to the open port. The resulting SYN/ACK responses are
used to compare TCP initial sequence numbers, IP identification values, and TCP timestamp option
sequences.

Source Destination Summary
--

[192.168.0.7] [192.168.0.3] TCP: D=135 S=56408 SYN SEQ=3375903319 LEN=0 WIN=3072
[192.168.0.3] [192.168.0.7] TCP: D=56408 S=135 SYN ACK=3375903320 SEQ=1634073962
LEN=0 WIN=65535
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56408 RST WIN<<10=0
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56409 SYN SEQ=3375903320 LEN=0 WIN=1024
[192.168.0.3] [192.168.0.7] TCP: D=56409 S=135 SYN ACK=3375903321 SEQ=1378387651
LEN=0 WIN=65535
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56409 RST WIN<<10=0
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56410 SYN SEQ=3375903321 LEN=0 WIN=2048
[192.168.0.3] [192.168.0.7] TCP: D=56410 S=135 SYN ACK=3375903322 SEQ=2771984018
LEN=0 WIN=65535
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56410 RST WIN<<10=0
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56411 SYN SEQ=3375903322 LEN=0 WIN=2048
[192.168.0.3] [192.168.0.7] TCP: D=56411 S=135 SYN ACK=3375903323 SEQ=1187915667
LEN=0 WIN=65535
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56411 RST WIN<<10=0
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56412 SYN SEQ=3375903323 LEN=0 WIN=3072
[192.168.0.3] [192.168.0.7] TCP: D=56412 S=135 SYN ACK=3375903324 SEQ=2260369583
LEN=0 WIN=65535
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56412 RST WIN<<10=0
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56413 SYN SEQ=3375903324 LEN=0 WIN=3072
[192.168.0.3] [192.168.0.7] TCP: D=56413 S=135 SYN ACK=3375903325 SEQ=212338365
LEN=0 WIN=65535
[192.168.0.7] [192.168.0.3] TCP: D=135 S=56413 RST WIN<<10=0

Once these probes are complete, nmap has the information it needs to compare to the nmap-os-
fingerprints file. If there's a match, nmap will display the operating system in the nmap
output. If there are multiple matches, nmap provides a message informing of the multiple matches:

Too many fingerprints match this host to give specific OS details

If the operating system fingerprinting didn't find any matches, this message is displayed:

No OS matches for host (If you know what OS is running on it, see
http://www.insecure.org/cgi-bin/nmap-submit.cgi).

This web page contains an nmap fingerprint submission form for contributions to the nmap-os-
fingerprints file. This page requests OS and classification information about the device,
including an IP address so Fyodor can scan the device for additional fingerprint testing.

The operating system fingerprinting option needs to run as a privileged user. Otherwise this totally
bogus message will appear, dude:

TCP/IP fingerprinting (for OS scan) requires root privileges which
you do not appear to possess. Sorry, dude.

Advantages of Operating System Fingerprinting

The operating system fingerprinting process provides detailed information about the operating system
running on a device. In some cases, the exact version number of the operating system and detailed
hardware information can be determined with the OS fingerprinting option.

Some organizations have policies forbidding certain operating systems from attaching to the network.
The OS fingerprinting option can assist with locating systems that are out of compliance, and can also
provide information about the operating system running on the "rogue" station. When this option is
combined with the version scan (-sV), specific services can also be checked for compliancy.

The OS fingerprinting process is a simple set of queries, and most of the frames are relatively
harmless. It's amazing the level of the detail that can be determined based on the nuances of simple
packet responses from another device. This process never opens an application session, which makes
the results even more amazing!

Disadvantages of Operating System Fingerprinting

The OS fingerprinting process requires privileged user access. This scan will not run if a non-
privileged user attempts to use the –O option.

Although there are only about thirty frames that traverse the network during an OS fingerprinting
process, some of the frames used to query the remote device are frame types that would never occur
on a normal network. For example, it's unusual to see a frame with the SYN, FIN, PSH, and URG
flags that would also include numerous TCP options. A trained eye will quickly identify these unusual
frames, assuming that someone is watching the network during that timeframe.

When to use Operating System Fingerprinting

The operating system fingerprinting option is often integrated into many organization's compliance

checks. If an outdated or unexpected operating system is seen on the network, the security group can
follow their policies to identify and remove the noncompliant station from the network.

In some cases, a particular operating system may have known vulnerabilities that need to be patched.
The OS fingerprinting process can assist with locating all of the specific operating system versions on
the network, ensuring that organization's vulnerable holes will be patched.

If nmap can identify this level of operating system detail without ever launching an application
session or authenticating, then anyone else on the network can obtain the same information! The OS
fingerprinting process can help the security team understand what everyone else can see, which will
assist in making the network and firewall infrastructure even more secure.

Limit Operating System Scanning (--osscan_limit)

The operating system fingerprinting process is most accurate when both open ports and closed ports
are available for testing. If only one type of port is available, the fingerprinting process will not be as
precise. In this situation, nmap provides a warning message:
Warning: OS detection will be MUCH less reliable because
we did not find at least 1 open and 1 closed TCP port

The fingerprinting process will still function, but the results will not be optimal.

If the fingerprinting process needs to be as accurate as possible, the –-osscan_limit option will
abort OS fingerprinting if both open and closed ports aren't available. This will ensure that OS
fingerprinting will run only if the conditions are perfect. This also saves time if a remote device is
identified but the port disposition is in question because of firewalls or packet throttling on the remote
device.

If many devices will be scanned, this option can save a lot of time!

More Guessing Flexibility (--osscan_guess, --fuzzy)

The –-osscan_guess option is relatively unknown, but that's probably because it's not well
documented. A section in the CHANGELOG refers to the option as "secret." The --fuzzy option is
an alias for –osscan_guess.

The --osscan_guess option forces nmap to "guess" when operating system fingerprinting can't
find a perfect match. Occasionally, nmap will decide to invoke this option automatically if certain
parameters are met.

Additional, Advanced, and Aggressive (-A)

The aptly named Additional, Advanced, and Aggressive option (-A) is a shortcut for running both the
operating system fingerprinting process (-O) and the version scanning process (-sV) during the same
nmap scan. This shortcut still requires a port scan to locate open and closed ports, but there's only one
abbreviation to remember if both options are required.

The –A option only adds the operating system fingerprinting and version detection options. It doesn't
change or add any scan types or option settings.

According to the nmap man page, Fyodor reserves the right to expand on this option in the future.
Currently, this option is intended to be time saver, and nothing more.

CHAPTER 5: HOST AND PORT OPTIONS

Nmap includes many options related to the IP addresses and port numbers that will be used during the
scan. These option parameters range from excluding particular IP addresses from the scan to creating
fake decoys that traverse the network! With these many host and port options, nmap can be
customized to create the perfect scanning environment.

Exclude Targets (--exclude <host1 [,host2] [,host3]...>)
The –-exclude option provides nmap with a list of IP addresses that will be avoided when
performing a scan.

This is useful for performing a scan on a subnet of devices while avoiding the scanning of routers or
production servers. For example, the command:
nmap –sS 192.168.0.1/24 –-exclude 192.168.0.2-4, 192.168.0.77

will run nmap's TCP SYN scan (-sS) to the range of IP addresses at 192.168.0.0 through
192.168.0.255 (192.168.0.1/24), while excluding the devices at 192.168.0.2, 192.168.0.3,
192.168.0.4, and 192.168.0.77.

The list of IP addresses associated with the –-exclude option should be separated by commas. The
excluded hosts can be identified with wildcards, subnet values, or any other standard nmap reference.
Refer to the "Nmap Target Specifications" section for more information on IP address specifications.

The –-exclude option cannot be used in conjunction with the --excludefile option. It's one
or the other, but not both.

The nmap 3.81 man page shows a quotation symbol (") at the end of the hostname elements
description. Quotation marks are usually used in pairs on the command line to prevent special
character interpretation, but this isn't the case with the –-exclude option. These quotation marks
are probably an unintended typographical error.

Exclude Targets in File (--excludefile <exclude_file>)

The --excludefile option is similar to the –-exclude option, except the addresses to be
excluded are listed in a file. The target address exclusions should be listed with one address per line,
and the exclusion lines cannot be separated with spaces or tabs. Unlike the "read targets from file"
option (-iL), the --excludefile option will only accept one exclusion parameter per line.

Multiple IP addresses can be defined on each line using nmap's host specification parameters. For
example, the following IP address specification will exclude all hosts between 192.168.0.1 and
192.168.0.7, 192.168.0.10, and all hosts between 192.168.1.0 and 192.168.1.255.
192.168.0.1-7
192.168.0.10
192.168.1.*

http://www.networkuptime.com/nmap/page2-4.shtml#2.5.2

The exclusion file can include IP addresses that aren't necessarily part of the current scan. Therefore,
a single exclude file could be used for all nmap scans regardless of the IP addresses on the nmap
command line. If there are certain systems that should never be scanned (DNS servers, file servers,
telephone switches, etc.), they can be added to a 'permanent' exclude file that can be used for all nmap
scans.

The –-excludefile option cannot be used on the same nmap command line as the --exclude
option. Only one of these options can provide the primary exclusion list for the nmap scan.

Read Targets from File (-iL <inputfilename>)

The –iL option reads target IP address from a specified filename. If the target addresses are piped
into nmap from another process, the single hypen (-) can be used to specify the standard input
(stdin) instead of a filename.

Because of the flexibility required to receive input from another process, the –iL option is more
adaptable than nmap's exclusion options. Included addresses can be separated by tabs, spaces, or by
separate lines.

When this option is used, the filename is the only valid input. If any additional host addresses are
included on the command line, they will be ignored without any warning message.

If the host exclusion options (--exclude or --excludefile) are used in conjunction with the –
iL option, the excluded addresses will override any inclusions on the command line or file.

Pick Random Numbers for Targets (-iR <num hosts>)

This option chooses completely random destination addresses as the nmap scan input. These random
values do not consider any of the filename options for including or excluding host addresses (-iL
and –-excludefile, respectively), and the –-exclude option is also ignored. If a series of
target addresses needs to be randomly scanned, the --randomize_hosts option should be used
in conjunction with a series of include and exclude options instead of using the –iR option.

The –iR option requires a quantity of random IP addresses that will be used for this nmap scan. If a
quantity of hosts is not specified, the nmap scan aborts with this message:
ERROR: -iR argument must be the maximum number of random IPs you wish
to scan (use 0 for unlimited)
QUITTING!

As this message shows, specifying zero (0) hosts will run an unlimited number of random addresses
through the nmap scan. The nmap man page has a good example of using this feature to find a
random web server:

nmap –sS –PS80 –iR 0 –p 80

This example runs a TCP SYN scan (-sS) using a SYN ping on port 80 (-PS80) to an unlimited
number of random IP addresses (-iR 0). The SYN scan only scans port 80 (-p 80).

This scan won't begin to report any results until 500 hosts are identified. The –-debug or --
packet_trace options can be used to watch nmap working, but take care not to miss the IP address
listing when nmap hits the 500 mark! It may be helpful to run this type of scan in conjunction with
one of nmap's logging options.

Randomize Hosts (--randomize_hosts, -rH)

The –-randomize_hosts option rearranges the group of hosts in an nmap scan. Groups of 2,048
hosts at a time are randomly chosen, making the entire scan less conspicuous when examining traffic
patterns.

The –rH abbreviation is an undocumented alias for the –-randomize_hosts option.

No Random Ports

When nmap performs a port scan, it automatically randomizes the destination port numbers to make
the scans blend easier with the normal network traffic patterns. For example, this excerpt of a default
TCP SYN scan shows a random destination TCP port distribution:

Source Destination Summary
--

[192.168.0.7] [192.168.0.1] TCP: D=13713 S=40950 SYN SEQ=1553882748 LEN=0
WIN=4096
[192.168.0.7] [192.168.0.1] TCP: D=1456 S=40950 SYN SEQ=1553882748 LEN=0
WIN=1024
[192.168.0.7] [192.168.0.1] TCP: D=2564 S=40950 SYN SEQ=1553882748 LEN=0
WIN=4096
[192.168.0.7] [192.168.0.1] TCP: D=83 S=40950 SYN SEQ=1553882748 LEN=0 WIN=3072
[192.168.0.7] [192.168.0.1] TCP: D=721 S=40950 SYN SEQ=1553882748 LEN=0 WIN=1024
[192.168.0.7] [192.168.0.1] TCP: D=811 S=40950 SYN SEQ=1553882748 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.1] TCP: D=364 S=40950 SYN SEQ=1553882748 LEN=0 WIN=3072
[192.168.0.7] [192.168.0.1] TCP: D=51 S=40950 SYN SEQ=1553882748 LEN=0 WIN=3072
[192.168.0.7] [192.168.0.1] TCP: D=722 S=40950 SYN SEQ=1553882748 LEN=0 WIN=4096

When using the –r option, however, the port numbers are scanned sequentially:

Source Destination Summary
--

[192.168.0.7] [192.168.0.1] TCP: D=1 S=54036 SYN SEQ=2232636309 LEN=0 WIN=2048
[192.168.0.7] [192.168.0.1] TCP: D=2 S=54036 SYN SEQ=2232636309 LEN=0 WIN=3072
[192.168.0.7] [192.168.0.1] TCP: D=3 S=54036 SYN SEQ=2232636309 LEN=0 WIN=2048
[192.168.0.7] [192.168.0.1] TCP: D=4 S=54036 SYN SEQ=2232636309 LEN=0 WIN=1024
[192.168.0.7] [192.168.0.1] TCP: D=5 S=54036 SYN SEQ=2232636309 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.1] TCP: D=6 S=54036 SYN SEQ=2232636309 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.1] TCP: D=7 S=54036 SYN SEQ=2232636309 LEN=0 WIN=4096
[192.168.0.7] [192.168.0.1] TCP: D=8 S=54036 SYN SEQ=2232636309 LEN=0 WIN=4096

The –r option also "unrandomizes" the IP protocol scan (-sO).

Source Port (--source_port <portnumber>, -g <portnumber>)

During an nmap scan, the source port is often used to store counters and other information during the
course of a scan. The source port doesn't often need to be defined, but the --source_port option
provides a method of forcing the source port to a specified value if the need arises.

Since nmap uses this source port as an information source during a scan, forcing the value to a
specific number will have a detrimental performance impact on nmap's scanning efficiency.

The –g abbreviation is an alias for the more descriptive –-source_port option name.

Specify Protocol or Port Numbers (-p <port_range>)

During a scan, nmap defaults to scanning ports 1 through 1,024, as well as any other ports listed in the
nmap-services support file. This can amount to thousands of ports for a default scan to a single
host!

The –p option provides a method of specifying the port numbers to be probed during an nmap scan. If
the scan is TCP or UDP based, the port numbers can be any range of numbers between 0 and 65,535.
For IP protocol scans (-sO), the –p option refers to IP protocol numbers between 0 and 255.

Since nmap can scan for different protocol types on a single command line, there are additional
arguments that can be included to specify TCP or UDP port ranges. TCP port ranges can be specified
with the T: argument, and UDP ports with the U: argument. These additional specifications are only
required when a UDP scan is requested (-sU) on the same scan as a TCP-based scan type. The UDP
scan is the only nmap scan type that can identify UDP ports. If neither protocol type is specified, the
port range will apply to both types.

Port ranges can be specified as individual numbers, or ranges of numbers, with each group of
numbers separated by commas. For example,

nmap –sS 192.168.0.1 –p 23,80,111-124,155-

will perform a TCP SYN scan of IP address 192.168.0.1 on TCP ports 23, 80, 111 through 124, and
all TCP ports between 155 and 65,535.

The nmap man page is slightly incorrect when it states that a specification of 60000- would scan all
ports greater than 60,000, since port 60,000 would also be included as part of the scan.

If duplicate port numbers are listed on the command line, nmap will question the user's caffeine
intake:
WARNING: Duplicate port number(s) specified. Are you alert enough to
be using Nmap? Have some coffee or Jolt(tm).

Fast Scan Mode (-F)

The "fast scan" nmap option doesn't have the most accurate name, since this scan mode doesn't
actually change any of the nmap packet timing policies. Instead, this fast scan mode (-F) limits nmap
scans to the ports found in the nmap-services file. If the nmap is performing an IP protocol scan
(-sO), the fast scan mode scans only the IP protocol types listed in the nmap-protocols support
file.

When used with a customized nmap-services or nmap-protocols support file, this fast scan
mode can be an easy method of scanning specific port numbers without using the port specification
option (-p).

Create Decoys (-D <decoy1 [,decoy2][,ME],...>)

http://www.joltcola.com/

The –D option allows nmap to create packets that appear to originate from other IP addresses. This IP
address spoofing allows nmap to simulate many different devices when performing certain scans.

Decoys are useful for testing intrusion detection systems (IDS) or intrusion prevention systems (IPS)
and their reaction to multiple simultaneous scans. Some IDS/IPS systems capabilities may be limited,
and the decoy scan can assist in determining the maximum amount of visibility expected from these
systems under different attack configurations.

The maximum number of decoys (as defined in nmap.h) is 128. This is a very high maximum that
probably won't be exceeded in normal use. If too many decoys are used during a scan, the
performance will decrease as the remote host throttles network traffic or if it is overwhelmed.

Decoys won't work with the RPC scan (-sR), Idlescan (-sI), TCP connect() scan (-sT), or the FTP
bounce scan (-b). The decoys will appear during the nmap ping process, many of the other nmap
scans, and during an operating system scan (-O).

One of the –D options is to use ME as a decoy name. This identifies the nmap station as one of the
devices to use during the scan, and the frames will be sent in the order in which the decoys are added
to the nmap command line. If ME is placed near the end of the list, there's a better chance of the nmap
station circumventing IDS or IPS alarms.

This feature is best used when the destination device is not on the same IP subnet as the nmap station.
Although the IP addresses are spoofed, the MAC address of the nmap station will not be spoofed.
Close examination of a network trace file on the nmap subnet will clearly show the real hardware
address of the spoofed IP addresses.

The decoy option is a good example of how "active filtering" can become a detriment on a production
network. If decoy stations are used to scan a device, an active firewall reconfiguration or active IPS
blocking may prevent legitimate traffic from traversing the network. An overly aggressive active
filtering profile can inadvertently create self-inflicted denial of service attacks! This nmap scan can
assist network teams with testing and tuning of existing systems to help prevent these situations from
occurring.

The Danger of Decoy-Initiated SYN Floods

The decoy option (-D) should be used with caution! As mentioned on the nmap man page, it's
possible to inadvertently SYN flood a destination station if a decoy IP address isn't actually on the
network. This could disable a remote device and may require a restart of the remote device before it
would be accessible again. The results of a SYN flood are usually unpredictable because of the
differences in operating systems and TCP/IP stacks.

A SYN flood is created when a device has received an excessive number of SYN requests. This
overwhelming number of SYN packets prevents the station from creating new TCP-based application
connections.

During a normal TCP handshake, this transfer of packets occurs:

A TCP handshake using a spoofed address doesn't operate this way. A connection using a spoofed IP
address never completes the TCP handshake. Although the first two frames of the "spoofed"
handshake are identical, the second frame is correctly sent to the IP address of the "real" non-spoofed
station. Because the real IP address receives an acknowledgement to a SYN that it never sent, it
replies with a TCP reset frame. The destination station receives the RST, and releases the resources
associated with this halfway-built TCP connection.

If the nmap source spoofs an IP address that isn't on the network, this half-built TCP connection never
resets! The SYN/ACK replies are sent to an IP address that isn't on the network, so a RST is never
sent back to the destination station. Nmap will continue to spoof packets to the destination station,
and the resources available on the destination station will continue to decrease as it waits to complete
the TCP handshake. If the destination station's resources are depleted, it will not create new TCP
sessions for any nmap-related or legitimate network traffic.

This is one of the few instances where an untrained nmap user can really cause some havok on the
network! Be careful when using decoys!

Source Address (-S <IP_address>)

There may be instances where nmap cannot determine the local IP address of the station where it's
running. When this happens, nmap will stop the scan and provide this message:

Unable to find appropriate source address and device interface to use when sending packets to
XXX.XXX.XXX.XXX

If the local IP address is added to the nmap command line with the –S option, this message will not
be displayed and the nmap scan will run normally.

As with the decoy option (-D), the source address option (-S) can be used to spoof the IP address of
the nmap station. This can cause SYN flood problems for the remote device, so this spoofing process
must be managed very carefully. If the local IP address will be spoofed, the interface option (-e) may
be required, especially if the spoofed address belongs to a network to which the nmap station is not
attached.

Interface (-e <interface>)

The interface option is used to force the nmap scan to use a specific hardware interface on the nmap
station. If nmap is having problems determining which interface to use, it will provide this error
message before quitting:
Unable to determine what interface to route packets through
to XXX.XXX.XXX.XXX
QUITTING!

In POSIX-based systems, the interface name is the device name that can be seen using the
ifconfig command. In Windows-based systems, the interface names aren't as standardized.
Fortunately, nmap includes a method for Windows-based systems to retrieve the winpcap device
name. The following command will list the available Windows interfaces:

> nmap --win_list_interfaces
Available interfaces:

Name Raw mode IP
loopback0 SOCK_RAW 127.0.0.1
eth0 winpcap 192.168.0.5

>

CHAPTER 6: LOGGING OPTIONS

Nmap provides numerous methods of logging the scan output. Nmap's output logs not only save
important scan information, they also provide a method of restarting a previously cancelled scan.

In all of the output formats, the filename can be replaced with a hypen (-) to redirect the output to
stdout. This can be useful if the output information will be used by another piped process on the
same command line.

Normal Format (-oN <logfilename>)

Nmap's normal output format (-oN) saves a similar view of the output that's displayed on the screen
during an nmap scan. This readable text is useful when the output is used in a document or printed for
later reference.

This saved information is very similar to the run-time output, except for some additional initialization
information at the top of the scan:
nmap 3.81 scan initiated Fri May 20 21:00:50 2005 as: ./nmap -v -sS -oA oA9
192.168.0.9
Interesting ports on 192.168.0.9:
(The 1654 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
79/tcp open finger
110/tcp open pop3
111/tcp open rpcbind

514/tcp open shell
886/tcp open unknown
2049/tcp open nfs
MAC Address: 00:03:47:6D:28:D7 (Intel)

Nmap run completed at Fri May 20 21:01:01 2005 -- 1 IP address (1 host up)
 scanned in 10.950 seconds

This output type doesn't follow any particular format. All of the nmap information is jumbled together
onto separate lines of output, with a text layout that differs slightly for every scan. This variability
makes it difficult for other tools to process the information contained in the output file.

Most of the examples in this book are taken from a normal format output file!

XML Format (-oX <logfilename>)

Extensible Markup Language (XML) is a standard method of describing information, and should not
be confused with HyperText Markup Language (HTML). HTML focuses on how data is to be
displayed, while XML focuses on describing the data. XML is not a language, XML is a way to
structure, store, and send information.

XML is a great format to use when additional processing of nmap data is required. The XML format
clearly identifies all of the nmap data, creating an output format that can be parsed and understood
without any misinterpretations or inconsistencies. The nmap XML Document Type Definition (DTD)
information is contained in a separate file available on the nmap web site at
http://www.insecure.org/nmap/data/nmap.dtd.

The XML format contains a standard structure of information, but this standard structure is best read
by machines. Nmap's man page refers to the XML output format as the "recommended" format when
other programs need to interact with nmap's output. Most humans won't be able to easily obtain
information from this XML file:
<?xml version="1.0" ?>
<?xml-stylesheet href="http://www.insecure.org/nmap/data/nmap.xsl"
type="text/xsl"?>
<!-- nmap 3.81 scan initiated Fri May 20 21:00:50 2005 as: ./nmap -v -sS -oA
 oA9 192.168.0.9 -->
<nmaprun scanner="nmap" args="./nmap -v -sS -oA oA9 192.168.0.9"
start="1116637250"
 startstr="Fri May 20 21:00:50 2005" version="3.81" xmloutputversion="1.01">
<scaninfo type="syn" protocol="tcp" numservices="1663" services="1-1027,1029-
1033,
 1040,1050,1058-1059,1067-1068,1076,1080,1083-1084,1103,1109-
1110,1112,1127,1139,
 1155,1178,1212,1214,1220,1222,1234,1241,1248,1337,1346-1381,1383-
1552,1600,1650-1652,
 1661-1672,1680,1720,1723,1755,1761-1764,1827,1900,1935,1984,1986-
2028,2030,2032-2035,
 2038,2040-2049,2053,2064-2065,2067-2068,2105-2106,2108,2111-2112,2120-
2121,2201,2232,
 2241,2301,2307,2401,2430-2433,2500-2501,2564,2600-2605,2627-
2628,2638,2766,2784,2809,
 2903,2998,3000-3001,3005-3006,3049,3052,3064,3086,3128,3141,3264,3268-
3269,3292,3306,
 3333,3372,3389,3421,3455-3457,3462,3531,3632,3689,3900,3984-3986,3999-
4000,4008,4045,
 4132-
4133,4144,4224,4321,4333,4343,4444,4480,4500,4557,4559,4660,4672,4899,4987,4998,
 5000-5003,5010-5011,5050,5100-5102,5145,5190-5193,5232,5236,5300-
5305,5308,5400,5405,

http://www.insecure.org/nmap/data/nmap.dtd

 5432,5490,5510,5520,5530,5540,5550,5555,5631-5632,5680,5713-5717,5800-
5803,5900-5903,
 5977-5979,5997-6009,6017,6050,6101,6103,6105-6106,6110-6112,6141-
6148,6346,6400-6401,
 6502,6543-6544,6547-6548,6558,6588,6666-6668,6699,6969,7000-
7010,7070,7100,7200-7201,
 7273,7326,7464,7597,8000,8007,8009,8080-
8082,8443,8888,8892,9090,9100,9111,9152,9535,
 9876,9991-9992,9999-10000,10005,10082-10083,11371,12000,12345-12346,13701-
13702,
 13705-13706,13708-13718,13720-13722,13782-
13783,15126,16959,17007,17300,18000,
 18181-18185,18187,19150,20005,22273,22289,22305,22321,22370,26208,27000-
27010,27374,
 27665,31337,32770-32780,32786-32787,38037,38292,43188,44334,44442-
44443,47557,49400,
 54320,61439-61441,65301" />
<verbose level="1" />
<debugging level="0" />
<host><status state="up" />
<address addr="192.168.0.9" addrtype="ipv4" />
<address addr="00:03:47:6D:28:D7" addrtype="mac" vendor="Intel" />
<hostnames />
<ports><extraports state="closed" count="1654" />
<port protocol="tcp" portid="21"><state state="open" /><service name="ftp"
 method="table" conf="3" /></port>
<port protocol="tcp" portid="22"><state state="open" /><service name="ssh"
 method="table" conf="3" /></port>
<port protocol="tcp" portid="23"><state state="open" /><service name="telnet"
 method="table" conf="3" /></port>
<port protocol="tcp" portid="79"><state state="open" /><service name="finger"
 method="table" conf="3" ></port>
<port protocol="tcp" portid="110"><state state="open" /><service name="pop3"
 method="table" conf="3" /></port>
<port protocol="tcp" portid="111"><state state="open" /><service name="rpcbind"
 method="table" conf="3" /></port>
<port protocol="tcp" portid="514"><state state="open" /><service name="shell"
 method="table" conf="3" /></port>
<port protocol="tcp" portid="886"><state state="open" /></port>
<port protocol="tcp" portid="2049"><state state="open" /><service name="nfs"
 method="table" conf="3" /></port>
</ports>
</host>
<runstats><finished time="1116637261" timestr="Fri May 20 21:01:01 2005"/><hosts
 up="1" down="0" total="1" />
<!-- Nmap run completed at Fri May 20 21:01:01 2005; 1 IP address (1 host up)
scanned in
 10.950 seconds -->
</runstats></nmaprun>

Fortunately for humans, nmap includes an Extensible Stylesheet Language (XSL) file that assists in
translating the XML information into a viewable HTML format. In most cases, the XML file can be
opened in any browser to display the translated format:

After viewing the XML/XSL file output, it should be clear that this format has some obvious
advantages. Security managers who have had to previously sift through pages of plain text can
appreciate the more practical formatting and clearer output functionality available with the XML
output.

Does your nmap output look this good?

Stylesheet (--stylesheet <filename>)

When using the XML output format (-oX), nmap automatically includes a reference to the
nmap.xsl file that was included with nmap. Viewing the XML output file in most browsers will
automatically load the stylesheet and translate the XML information into HTML format.

There may be cases where another stylesheet would be used to translate the XML information. For
example, a security manager may want to change the header of the page to include company
information, add logos, or change the colors of the HTML output. If the XML information will be
viewed in a report format, this capability can be very beneficial.

The nmap web site always maintains the latest version of the default stylesheet. The --
stylesheet option can reference the XSL file at http://www.insecure.org/nmap/data/nmap.xsl, or
the option can point to an XSL file on a local device or web server.

No Stylesheet (--no-stylesheet)

There may be occasions where the XML file will be used by another application and not require a
conversion to HTML. In these cases, it's more efficient to create the XML file without any references
to a stylesheet. This option is only applicable when the XML output format (-oX) is chosen, although
nmap will still run without an error if the --no-stylesheet option is used without any reference
to XML output.

Unlike other multi-word nmap options, the --no-stylesheet option separates the words with a
hypen (-) instead of an underscore (_). Nmap will not recognize this option if an underscore is used.

Grepable Format (-oG <logfilename>)

The unix command "grep" is well known for its ability to quickly locate text within a file. The "grep"
moniker is an abbreviation for the name "Global Regular Expression Print."

The "grepable" nmap format places the scan summary information and the host scan results onto
single lines. This makes it very easy to search for specific information, since the results of a text
search would identify a single applicable line of text. This also makes it relatively easy for other
programs to query and interact with nmap's output.

An excerpt of a scan's grepable output is listed here, although some of the lines are truncated to fit
onto the screen. The nmap operational output lines begin with pound signs (#), and the host scan
information line begins with the word "Host:"
nmap 3.81 scan initiated Sat May 21 09:42:40 2005 as: ./nmap -v -oA subnet0
192.168.0.1/24
Ports scanned: TCP(1663;1-1027,1029-1033,1040,1050,1058-1059,1067-
1068,1076,1080,1083-1084...
Host: 192.168.0.0 () Ports: 80/open/tcp//http/// Ignored State: closed (1662)
Host: 192.168.0.1 () Ports: 80/open/tcp//http/// Ignored State: closed (1662)
Host: 192.168.0.3 () Ports: 80/open/tcp//http///, 443/open/tcp//https/// Ignored
State: filtered (1661)
Host: 192.168.0.6 () Ports: 80/open/tcp//http///, 443/open/tcp//https/// Ignored
State: filtered (1661)
Host: 192.168.0.7 () Ports: 68/open/tcp//dhcpclient///, 6000/open/tcp//X11///
Ignored State: closed (1661)
Host: 192.168.0.99 () Ports: 21/open/tcp//ftp///, 23/open/tcp//telnet///,
25/filtered/tcp//smtp///...
Host: 192.168.0.255 () Ports: 80/open/tcp//http/// Ignored State: closed
(1662)
Nmap run completed at Sat May 21 09:43:40 2005--256 IP addresses (7 hosts up)
scanned in 59.915 seconds

Some scan information will not be available in the grepable output file, and the nmap man page

http://www.insecure.org/nmap/data/nmap.xsl

makes it clear that the recommended output format for after-scan interaction is the XML output
format (-oX).

Although the XML format is the recommended output format, features such as the --resume option
will only operate correctly with the grepable format (-oG) or the normal format (-oN).

The grepable output type was previously called the "machine readable" format (-oM). The -oM
option will still work, but the alias has been deprecated and shouldn't be used.

The grepable format is always variable, and there's no guaranteed method of automatically retrieving
information from a grepable text file. Simple changes to the scan, such as adding the verbose option
(-v), will add variability to the output. If the output will undergo extensive post-scan analysis, a
better option is to use the XML output (-oX) option.

All Formats (-oA <basefilename>)

If all of the formats are required, the "all formats" option (-oA) will create three separate output files.
The basefilename will be added to files that have an extension of .nmap (normal output), .gnmap
(grepable output), and .xml (XML output).

This format is helpful when both the XML output is needed and the --resume option is required.
Since --resume only works with normal or grepable output, this "all formats" option covers all
circumstances.

Get used to using the "all formats" output option for all of your scans!

Script Kiddie Format (-oS <logfilename>)

The "script kiddie" format (-oS) has very little practical functionality. Fyodor added this output
format to nmap as a joke, since most users of "leet speak" (or l33t 5p34k) are considered to be
technically immature. Fyodor considers the use of nmap to be for serious security purposes, and his
sarcastic dig at the less technical script kiddies is intended to be as pointed as it is accurate.

There actually is some practical use to this format, since it takes advantage of a flexible output system
that could be used in the future for other purposes. Fyodor's opinion of this format can be found at this
nmap-hackers mailing list archive page:

http://seclists.org/lists/nmap-hackers/2000/Jan-Mar/0005.html

HTML Format (-oH)

The HTML format command line is included in the nmap source, but it does not include any
supporting code. This format isn't currently supported, and if the option is used in the command line
this message will display:
HTML output is not yet supported
QUITTING!

Considering that XML format has now been integrated into nmap with cooresponding XSL
stylesheets, a separate HTML format will probably be unnecessary.

http://seclists.org/lists/nmap-hackers/2000/Jan-Mar/0005.html

Resume Scan (--resume <logfilename>)

A scan can be interrupted during processing with the control-C key combination. The --resume
option allows the nmap scan to restart without reprocessing previously scanned devices.

The resume scan option works by parsing a normal (-oN) or grepable (-oG) output file to determine
the last successful scanned device. Since the original nmap options are also included in the log file, no
additional nmap parameters are required or allowed on the command line when resuming a scan.

Once the previously saved output file has been parsed, the --resume option can determine the last
successfully scanned device and continue the scanning process from that point. If a device was
partially scanned prior to the interruption, it will be scanned again from the very beginning of the
process.

Ironically, the recommended output format for post-processing of nmap scans is the XML output
(-oX), but the --resume option will not work with an XML file. If both XML output and the
ability to resume a scan is required, consider using the all formats (-oA) output option.

If a scan is interrupted that used the --randomize_hosts option, nmap has no method to recreate
the same randomness that was used in the initial scan. If this type of scan is resumed, nmap will
provide this message:

WARNING: You are attempting to resume a scan which used
--randomize_hosts. Some hosts in the last randomized batch
make (sic) be missed and others may be repeated once

Append Output (--append_output)

If a single log file is required from multiple nmap scans, the --append_output option will
append the output the to the log filename used on the nmap command line. If this option isn't
specified, nmap will overwrite an existing logfile without any warning or message.

CHAPTER 7: REAL-TIME INFORMATION OPTIONS

During an nmap scan, there's a lot of activity happening under the hood. These real-time information
options provide the nmap user with customizable output relating to the scan and its processing. Some
of these options should be used with every scan, and some of these options will never be utilized by
most nmap users.

Verbose Mode (--verbose, -v)

Nmap's verbose mode provides the option of obtaining additional detail in the scan output. The
verbose mode doesn't change what occurs during the scan, it only changes the amount of information
that nmap displays on its output.

There are three level of verbosity; none, level 1, and level 2. Level 1 verbosity displays nearly all
verbose text, and level 2 includes TCP IPID sequencing information, version scanning service
matching limits, and additional OS fingerprinting details. In most cases, level two verbosity can be
selected for every nmap scan without creating an overwhelming amount of output.

The verbosity levels are based on how many times the --verbose option is invoked on the nmap
command line. Although it's possible to request a verbosity level higher than 2, there doesn't appear to
be anything in the source code that would support any additional verbosity.

The following nmap command lines all specify level 2 verbosity:

nmap 192.168.0.1 --verbose --verbose
nmap 192.168.0.1 -v -v
nmap 192.168.0.1 -v -verbose
nmap 192.168.0.1 -vv

When the XML output option is selected (-oX), the verbosity level is written to the XML file. The
value is referenced in the "verbose level" tag:

<verbose level="1" />

A single use of the --debug option will increase the verbosity level by one. Conversely, increasing
the verbosity level does not affect the debug level.

The --verbose option doesn't add a lot of text to nmap's stdout output, and it's sometimes
useful to have the additional information after the nmap scan is complete. Since the verbose
information isn't added to the nmap output files (i.e, -oA), the nmap stdout output should be piped
to a file from the nmap command line. In most cases, the -vv option should be used unless detailed
nmap statistics aren't required.

Version Trace (--version_trace)

Using the --version_trace option during a version detection scan (-sV) creates an extensive
trace that details the versioning processes through every step. As nmap queries the application on the
remote device, the application requests and responses are written to stdout.

This information is never included in an nmap output file (i.e., -oA). If the version trace information
needs to be referenced later, the nmap stdout output should be piped to a file from the nmap command
line. One simple method to do this is to use a greater-than sign to redirect the output:
nmap –vv –sV 192.168.0.1 –oA output --version_trace > nmap_output.txt

An excerpt of the --version_trace output is shown below:
Initiating service scan against 1 service on 192.168.0.1 at 17:10
NSOCK (1.5520s) TCP connection requested to 192.168.0.1:80 (IOD #1) EID 8
NSOCK (1.5520s) nsock_loop() started (no timeout). 1 events pending
NSOCK (1.5550s) Callback: CONNECT SUCCESS for EID 8 [192.168.0.1:80]
NSOCK (1.5550s) Read request from IOD #1 [192.168.0.1:80] (timeout: 5000ms) EID
18
NSOCK (6.5540s) Callback: READ TIMEOUT for EID 18 [192.168.0.1:80]
NSOCK (6.5540s) Write request for 18 bytes to IOD #1 EID 27 [192.168.0.1:80]:
GET / HTTP/1.0....
NSOCK (6.5540s) Read request from IOD #1 [192.168.0.1:80] (timeout: 5000ms) EID
34
NSOCK (6.5550s) Callback: WRITE SUCCESS for EID 27 [192.168.0.1:80]
NSOCK (6.6430s) Callback: READ SUCCESS for EID 34 [192.168.0.1:80] (123 bytes)
NSOCK (6.6430s) Read request from IOD #1 [192.168.0.1:80] (timeout: 4910ms) EID
42
NSOCK (6.6670s) Callback: READ SUCCESS for EID 42 [192.168.0.1:80] (16 bytes):
401 Unauthorized
NSOCK (6.6670s) Read request from IOD #1 [192.168.0.1:80] (timeout: 4886ms) EID
50
NSOCK (6.6690s) Callback: READ EOF for EID 50 [192.168.0.1:80]
NSOCK (6.6690s) TCP connection requested to 192.168.0.1:80 (IOD #2) EID 56
NSOCK (6.6700s) Callback: CONNECT SUCCESS for EID 56 [192.168.0.1:80]

NSOCK (6.6700s) Write request for 22 bytes to IOD #2 EID 67 [192.168.0.1:80]:
OPTIONS / HTTP/1.0....
NSOCK (6.6700s) Read request from IOD #2 [192.168.0.1:80] (timeout: 5000ms) EID
74
NSOCK (6.6710s) Callback: WRITE SUCCESS for EID 67 [192.168.0.1:80]
NSOCK (6.7400s) Callback: READ EOF for EID 74 [192.168.0.1:80]
NSOCK (6.7400s) TCP connection requested to 192.168.0.1:80 (IOD #3) EID 80
NSOCK (6.7420s) Callback: CONNECT SUCCESS for EID 80 [192.168.0.1:80]

Although the version trace information shows similar information to the --packet_trace
function, this version trace output does not display a packet-level view of the application
conversation. Even with --packet_trace enabled, the version detection output will never
include packet-level detail in neither nmap output files nor stdout output.

Packet Trace (--packet_trace)

The --packet_trace option provides a network-level packet display of nmap's conversations
during the scan process. This includes a timestamp, IP addresses, port numbers, and protocol header
information. This option is extremely useful for learning more about how nmap interacts with remote
devices. This can be used as a powerful educational tool for any network professional!

The packet trace option shows network interactions only, not nmap's internal debugging information.
However, if the debug option level is greater than 2, the --packet_trace option will be enabled
automatically.

The --packet_trace output is displayed to stdout and can also be saved to nmap's normal
(-oN) output file. This packet trace information will not be saved into greppable (-oG) or XML
(-oX) output files.

An excerpt from the standard output shows the extensive network information contained in the packet
trace:
SENT (0.0340s) ICMP 192.168.0.7 > 192.168.0.1 Echo request (type=8/code=0)
ttl=57 id=55712 iplen=28
SENT (0.0350s) TCP 192.168.0.7:57019 > 192.168.0.1:80 A ttl=53 id=54387 iplen=40
seq=3243190494 win=2048 ack=2504992990
RCVD (0.0350s) ICMP 192.168.0.1 > 192.168.0.7 Echo reply (type=0/code=0) ttl=64
id=16746 iplen=28
SENT (0.5710s) TCP 192.168.0.7:56996 > 192.168.0.1:3389 S ttl=44 id=14391
iplen=40 seq=860312039 win=1024
SENT (0.5710s) TCP 192.168.0.7:56996 > 192.168.0.1:80 S ttl=55 id=29561 iplen=40
seq=860312039 win=4096
SENT (0.5710s) TCP 192.168.0.7:56996 > 192.168.0.1:636 S ttl=51 id=60961
iplen=40 seq=860312039 win=4096
SENT (0.5710s) TCP 192.168.0.7:56996 > 192.168.0.1:23 S ttl=44 id=26608 iplen=40
seq=860312039 win=1024
SENT (0.5710s) TCP 192.168.0.7:56996 > 192.168.0.1:21 S ttl=46 id=52419 iplen=40
seq=860312039 win=3072
SENT (0.5710s) TCP 192.168.0.7:56996 > 192.168.0.1:113 S ttl=48 id=42709
iplen=40 seq=860312039 win=1024
SENT (0.5710s) TCP 192.168.0.7:56996 > 192.168.0.1:389 S ttl=54 id=37581
iplen=40 seq=860312039 win=3072
SENT (0.5710s) TCP 192.168.0.7:56996 > 192.168.0.1:256 S ttl=58 id=56038
iplen=40 seq=860312039 win=3072
SENT (0.5710s) TCP 192.168.0.7:56996 > 192.168.0.1:53 S ttl=40 id=9325 iplen=40
seq=860312039 win=1024
SENT (0.5720s) TCP 192.168.0.7:56996 > 192.168.0.1:1723 S ttl=42 id=64956
iplen=40 seq=860312039 win=3072
RCVD (0.5720s) TCP 192.168.0.1:3389 > 192.168.0.7:56996 RA ttl=64 id=16750
iplen=40 seq=0 win=0 ack=860312039

RCVD (0.5720s) TCP 192.168.0.1:80 > 192.168.0.7:56996 SA ttl=64 id=16751
iplen=44 seq=28372096 win=3072 ack=860312040
RCVD (0.5730s) TCP 192.168.0.1:636 > 192.168.0.7:56996 RA ttl=64 id=16752
iplen=40 seq=0 win=0 ack=860312039
RCVD (0.5730s) TCP 192.168.0.1:23 > 192.168.0.7:56996 RA ttl=64 id=16753
iplen=40 seq=0 win=0 ack=860312039
RCVD (0.5740s) TCP 192.168.0.1:21 > 192.168.0.7:56996 RA ttl=64 id=16754
iplen=40 seq=0 win=0 ack=860312039
RCVD (0.5750s) TCP 192.168.0.1:113 > 192.168.0.7:56996 RA ttl=64 id=16755
iplen=40 seq=0 win=0 ack=860312039
RCVD (0.5750s) TCP 192.168.0.1:389 > 192.168.0.7:56996 RA ttl=64 id=16756
iplen=40 seq=0 win=0 ack=860312039
RCVD (0.5750s) TCP 192.168.0.1:256 > 192.168.0.7:56996 RA ttl=64 id=16757
iplen=40 seq=0 win=0 ack=860312039
RCVD (0.5760s) TCP 192.168.0.1:53 > 192.168.0.7:56996 RA ttl=64 id=16758
iplen=40 seq=0 win=0 ack=860312039
RCVD (0.5770s) TCP 192.168.0.1:1723 > 192.168.0.7:56996 RA ttl=64 id=16759
iplen=40 seq=0 win=0 ack=860312039
SENT (0.5770s) TCP 192.168.0.7:56996 > 192.168.0.1:22 S ttl=48 id=11606 iplen=40
seq=860312039 win=1024
SENT (0.5770s) TCP 192.168.0.7:56996 > 192.168.0.1:554 S ttl=46 id=53764
iplen=40 seq=860312039 win=3072
SENT (0.5770s) TCP 192.168.0.7:56996 > 192.168.0.1:443 S ttl=59 id=34121
iplen=40 seq=860312039 win=4096
SENT (0.5770s) TCP 192.168.0.7:56996 > 192.168.0.1:25 S ttl=49 id=45437 iplen=40
seq=860312039 win=2048
SENT (0.5770s) TCP 192.168.0.7:56996 > 192.168.0.1:428 S ttl=52 id=19724
iplen=40 seq=860312039 win=1024
SENT (0.5770s) TCP 192.168.0.7:56996 > 192.168.0.1:2 S ttl=38 id=27980 iplen=40
seq=860312039 win=3072
SENT (0.5770s) TCP 192.168.0.7:56996 > 192.168.0.1:818 S ttl=50 id=57246
iplen=40 seq=860312039 win=3072
SENT (0.5770s) TCP 192.168.0.7:56996 > 192.168.0.1:1492 S ttl=45 id=19237
iplen=40 seq=860312039 win=2048
SENT (0.5780s) TCP 192.168.0.7:56996 > 192.168.0.1:958 S ttl=54 id=60894
iplen=40 seq=860312039 win=3072
SENT (0.5780s) TCP 192.168.0.7:56996 > 192.168.0.1:754 S ttl=49 id=46608
iplen=40 seq=860312039 win=2048
SENT (0.5780s) TCP 192.168.0.7:56996 > 192.168.0.1:3531 S ttl=45 id=8839
iplen=40 seq=860312039 win=2048
SENT (0.5780s) TCP 192.168.0.7:56996 > 192.168.0.1:720 S ttl=38 id=31256
iplen=40 seq=860312039 win=3072

If a version scan (-sV) is combined with the --packet_trace option, the --version_trace
option is automatically enabled.

Debug Mode (--debug, -d)

Nmap's debug mode displays extensive internal nmap information, and the amount of detail depends
on the debug level selected on the nmap command line. There are five debug levels ranging from zero
through four. Although it's possible to request a debug level higher than 4, there doesn't appear to be
anything in the source code to support additional debugging output.

The --debug output is displayed on stdout, but will not be saved into any of nmap's output files
(i.e., -oA). If the debug information is important, the nmap stdout output should be piped to a file
from the nmap command line.

Increasing the debug levels will increase the amount of information in the nmap output. For example,
if the debug option level is greater than two, the --packet_trace option will be enabled
automatically.

The --debug syntax is different than what's used for the verbose (--verbose) option. The
following nmap command lines all specify a debug level of two:
nmap 192.168.0.1 --debug --debug
nmap 192.168.0.1 -d -d
nmap 192.168.0.1 -d --debug

Unlike the --verbose option, the syntax of -dd is not valid and will not register any debug levels
during the nmap scan. This will not give an error, however, and the nmap scan will continue to run
normally without providing any debug output.

Increasing the debug level by one will also increase the verbosity level by one. If a verbosity level has
already been set, it will be incremented again if the --debug option is also included on the nmap
command line. For example, the following nmap command line runs with a verbosity level of three
and a debugging level of two:
nmap 192.168.0.1 –d –debug –v

This output shows an nmap SYN scan without any debug level:

./nmap -sS -oA debug_sS_off 192.168.0.1

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-05-25 23:26 EDT
Interesting ports on 192.168.0.1:
(The 1662 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
80/tcp open http
MAC Address: 00:09:5B:D4:BB:FE (Netgear)

Nmap finished: 1 IP address (1 host up) scanned in 1.988 seconds
#

If the debug command is enabled, additional information is displayed. This output shows a debug
level one output from the same SYN scan command:

./nmap -sS --debug -oA debug_sS 192.168.0.1

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-05-25 23:25 EDT
Packet capture filter (device eth0): (icmp and dst host 192.168.0.7) or ((tcp or
udp) and dst host 192.168.0.7 and (dst port 45024 or dst port 45025 or dst port
45026 or dst port 45027 or dst port 45028))
We got a ping packet back from 192.168.0.1: id = 45708 seq = 33180 checksum =
52182
Hostupdate called for machine 192.168.0.1 state UNKNOWN/COMBO -> HOST_UP (trynum
0, dotimeadj: yes time: 821)
Finished block: srtt: 778 rttvar: 5000 timeout: 100000 block_tries: 1
up_this_block: 1 down_this_block: 0 group_sz: 1
massping done: num_hosts: 1 num_responses: 1
Initiating SYN Stealth Scan against 192.168.0.1 [1663 ports] at 23:25
Packet capture filter (device eth0): dst host 192.168.0.7 and (icmp or (tcp and
(src host 192.168.0.1)))
Discovered open port 80/tcp on 192.168.0.1
The SYN Stealth Scan took 1.07s to scan 1663 total ports.
Host 192.168.0.1 appears to be up ... good.
Interesting ports on 192.168.0.1:
(The 1662 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
80/tcp open http
MAC Address: 00:09:5B:D4:BB:FE (Netgear)
Final times for host: srtt: 21760 rttvar: 4482 to: 100000

Nmap finished: 1 IP address (1 host up) scanned in 1.867 seconds
 Raw packets sent: 1665 (66.6KB) | Rcvd: 1664 (76.5KB)
#

As this output shows, extensive internal nmap operations are detailed during the scan. These internal
processes are useful for development purposes, but the output is rarely useful for normal host and
network scanning operations.

Interactive Mode (--interactive)

Nmap's interactive mode isn't mentioned in the nmap man page, but it is identified on the online quick
reference screen (-h). The interactive mode is included with nmap to assist with managing an nmap
session and to provide an easier method of spoofing the nmap session to be more invisible on a
system.

The commands available in --interactive mode are similar, but not identical, to the commands
available from the nmap command line. For example, the --spoof command in interactive mode is
comparable to the quash argument vector (-q) command on the nmap command line.

This interactive mode can also be called automatically if the nmap binary is renamed to one of many
different options. These name options are BitchX, Calendar, X, awk, bash, bash2, calendar, cat, csh,
elm, emacs, ftp, fvwm, g++, gcc, gimp, httpd, irc, man, mutt, nc, ncftp, netscape, perl, pine, ping,
sleep, slirp, ssh, sshd, startx, tcsh, telnet, telnetd, tia, top, vi, vim, xdvi, xemacs, xterm, and xv. As this
list implies, renaming nmap to a less conspicuous name can increase security while simultaneously
providing a simple method of starting nmap in interactive mode.

The online interactive help screen is shown below. As the examples at the bottom of the help screen
show, the commands and functionality in interactive mode are similar to those on a normal nmap
scan:
./nmap --interactive

Starting nmap V. 3.81 (http://www.insecure.org/nmap/)
Welcome to Interactive Mode -- press h <enter> for help
nmap> h
Nmap Interactive Commands:
n <nmap args> -- executes an nmap scan using the arguments given and
waits for nmap to finish. Results are printed to the
screen (of course you can still use file output commands).
! <command> -- runs shell command given in the foreground
x -- Exit Nmap
f [--spoof <fakeargs>] [--nmap_path <path>] <nmap args>
-- Executes nmap in the background (results are NOT
printed to the screen). You should generally specify a
file for results (with -oX, -oG, or -oN). If you specify
fakeargs with --spoof, Nmap will try to make those
appear in ps listings. If you wish to execute a special
version of Nmap, specify --nmap_path.
n -h -- Obtain help with Nmap syntax
h -- Prints this help screen.
Examples:
n -sS -O -v example.com/24
f --spoof "/usr/local/bin/pico -z hello.c" -sS -oN e.log example.com/24

nmap>

Noninteractive Mode (--noninteractive)

Nmap's non-interactive mode doesn't currently provide any additional functionality, since the --
noninteractive option is already the default operation. If future nmap functionality requires
user input, this option could be used to force nmap into a non-interactive option that would be useful
for unattended nmap scripting.

Chapter 8: Tuning and Timing Options

Eventually, a network propeller-head will need to modify the bits and bytes of frames used during an
nmap session. Fortunately, nmap provides extensive tweaking and tuning capabilities to perfectly
match the desires of the enterprising security manager.

This tutorial has separated these tweaks into two categories; packet tuning, and timing options. Nmap
packet tuning relates to the information contained in the network packets, and nmap's timing options
relate to the intricate tweaks that affect the speed and delay associated with the scanning process.

Nmap Packet Tuning
Nmap's packet tuning options can customize individual header values, the total number of packet
fragments, or the size of the frames used in an nmap scan. If the packets need to be altered, these
tweaks will provide many options!

Time to Live (--ttl <value>)

The time to live (TTL) value is a one-byte field in the IP header that is used to limit the time and
distance a packet can travel through the network. As an IP frame traverses a gateway, the time to live
value is decreased by one. Once the TTL reaches zero, it is dropped by the gateway and an ICMP
Time Exceeded message is sent to the originating station.

The TTL field provides a valuable service by dropping frames that may be circling the network due to
a routing loop or a routing table misconfiguration. Without the TTL process, these packets would
circle the network indefinitely!

The TTL value can be any number between 0 and 255. Most stations set their TTL to a relatively
large number, such as 32 or 64. There's no standard value, and rarely do workstations need to modify
TTL settings.

In nmap, the TTL option (--ttl) can be used to administratively limit the distance that a packet can
travel. If nmap's scanning process should stay on the local network instead of traversing a wide area
network link, the TTL can be changed to a value low enough to remain off of the WAN. This low
TTL value would cause the IP gateway to drop the packet before it's sent across the slower WAN
link.

Using a TTL of zero will ensure that no packets leave the immediate IP subnet!

Use Fragmented IP Packets (-f, -ff)

A fragment is an IP frame that has been split into smaller pieces. This process is normally used to
traverse links that can't handle large frame sizes, such as WAN links. During normal operation, this
process is invisible to the end user.

When a station fragments data, each fragmented piece of information has its own IP header. All of the
fragmented packets are sent across the network and are not (usually) reconstructed until they all arrive
at the remote device. Under most circumstances, the remote device rebuilds the original frame from

the fragments, but some networks have firewalls, intrusion detection systems, or proxy servers that
will rebuild the frame for security testing before sending the fragments (or the rebuilt packet
information) to the remote device.

The IP Fragmentation Process

The fragmentation process occurs at the IP layer, so everything underneath the IP header will be
fragmented. In this example, the IP header is transporting 24 bytes of TCP data. Since both the 20
byte TCP header and the 24 bytes of TCP data will be fragmented, the total amount of fragmented
data will total 44 bytes:

Due to the number of fragmentation offset bits available in the IP header, the size of the fragments
must be a multiple of eight. This example will use a fragment size of 16 bytes.

Once the packet is fragmented, it retains a DLC header and an IP header but the data underneath is
now split into smaller pieces. Since the fragment size is 16 bytes and the total amount of data to
fragment totals 44 bytes, the fragmentation process will create three frames:

Notice that the TCP header (colored yellow) spans two fragments, but the TCP header isn't rebuilt in
each frame. Instead, the TCP header and the TCP data are contiguously added to the subsequent
fragments. The last fragment of data consists of only 12 bytes, but the final packet doesn't need to
completely fill the 16 byte fragment size. The last 12 bytes are simply attached to the last frame of the
fragmentation.

How to Fragment IP Data with nmap

Unless one of nmap's fragmentation options is specified, nmap sends non-fragmented frames to
remote devices. Nmap's fragmentation option (-f) is a simple method of sending nmap data with the
smallest possible fragmentation value of eight bytes.

The –ff fragmentation option will double the fragmentation value to the second-smallest value, or 16
bytes. Nmap doesn't have an –fff option, so 16 bytes is the maximum fragmentation size available
from these options.

If additional fragmentation options are required, the --mtu option can be used to create any
fragmentation value.

nmap –sS 192.168.0.1 –f
is the same as
nmap –sS 192.168.0.1 --mtu 8

and

#nmap –sS 192.168.0.1 –ff
is the same as
nmap –sS 192.168.0.1 --mtu 16

Using IP Fragmentation

The usefulness of this option is a bit of a toss-up. In nmap, a major goal of fragmenting data is to
obfuscate the IP data so that it can traverse the network without any filtering or alteration. However,
many firewalls and security devices reconstruct fragmented packets so that security decisions can be
associated with the data.

This option must run as a privileged user, and it isn't available on all operating systems or in all
circumstances. If an operating system other than Linux or one of the BSD flavors is used (such as
Windows XP), this message is displayed:

Warning: Packet fragmentation selected on a host other than Linux, OpenBSD, Free
BSD, or NetBSD. This may or may not work.

I tested this option on Windows XP Service Pack 2, and the –f and -ff options successfully
fragmented the packets.

Maximum Transmission Unit (--mtu <databytes>)

The maximum transmission unit (MTU) option (--mtu) is an extension of nmap's fragmentation
options (-f, -ff). The --mtu option allows any valid data size value, not just 8 or 16 bytes. A
fragmentation option of –f is the same as specifying an --mtu of 8, and a fragmentation option of
-ff is the same as an --mtu of 16.

The --mtu option must be greater than zero and be specified in multiples of 8. If the MTU
specification is larger than the IP data size, then the frame will not be fragmented.

Data Length (--data_length <databytes>)

In most cases, nmap only sends frames with the smallest possible size. The IP data length option (--
data_length) can expand the frames to any user-defined size.

The data length option appends a defined number of random bytes after the TCP or UDP header of
the frame. This <databyte> variable does not include the IP or TCP/UDP header.

Nmap Timing Options

It may not be the contents of the nmap scan that need to be modified, but the speed at which the scan
operates. Sometimes a scan should run slowly and quietly, and other times the scan should run as
quickly and loudly as possible. For all of these situations, nmap provides a plethora of timing options
that can affect almost every aspect of the scan.

Unlike other nmap commands, the location of these timing options on the command line is very
important. If two conflicting timing options are specified on the command line, the last option has the
priority. Although this sounds restrictive, it actually provides more functional timing options. For
example, a timing policy (-T) could be specified first, and a --scan_delay option might be
included at the end of the same nmap command line. This unique combination would combine the
predefined timing option functions with the "tweak" of an alternative minimum scanning delay.

Most of nmap's timing options are separated into four categories; round trip time, parallel host
scanning, parallel port scanning, and delay. Each of these categories can be configured separately, or
a predefined nmap timing policy can be used to specify multiple categories simultaneously.

Host Timeout (--host_timeout <milliseconds>)

The host timeout option (--host_timeout) doesn't fall into one of the four timing categories. The
host timeout is the amount of time an nmap scan will wait before "giving up" on an IP address. When
nmap begins the scan of a host, it starts a timer. If the timer reaches the --host_timeout value,
the scan to that host will immediately halt. If additional hosts are included in the nmap scan options,
the scan will continue with those devices.

This timeout value could be related to the speed of the link or the willingness of the remote station to
respond in a timely manner. Regardless of the reason, the --host_timeout option provides the
nmap user with a way to "hurry along" the entire scan process when it hits a single slow device.

The default value for --host_timeout is zero. This means that nmap will never abort a scan due
to time, no matter how long it may be take to complete. The minimum host timeout amount can be
200 milliseconds, and the maximum can be around 4 billion milliseconds – about a month! Hopefully,
most nmap scans won't need this long to complete a scan against a single host.

Setting this value to a relatively low number (30,000 milliseconds) could speed up the completion of a
scan where many of the remote devices communicate across slow links or perform aggressive
throttling of ICMP or network responses. If these slower devices need to be scanned, --
host_timeout can be tweaked to a larger number until the devices are scanned successfully at the
highest possible timeout value. If only the most responsive devices are to be scanned, this timeout
value can be decreased in an effort to speed up the overall nmap scanning process.

Round Trip Time

Simply put, round trip time is calculated as the number of milliseconds required to receive a response
to an nmap request. Nmap refers to these as "probe responses," and it keeps a running total of their
round trip time and variability. As the scan progresses, nmap will dynamically adjust the round trip
time to use for comparison with the minimum and maximum values.

Initial Round Trip Time Timeout (--initial_rtt_timeout <milliseconds>)

The --initial_rtt_timeout is the starting point for an nmap scan. Nmap can usually
determine an accurate round trip time during the nmap ping. If nmap doesn't ping the remote device
(option –P0), the --initial_rtt_timeout option can provide nmap with a timing foundation
on which the rest of the scan will build.

The default value for the --initial_rtt_timeout is 1,000ms (one second). If this value will
be configured manually, it must be greater than zero.

Since this value changes throughout the scan, nmap only uses this option as a starting point. A starting
value that is relatively close to the actual response time will increase the efficiency of the nmap scan.

Minimum Round Trip Time Timeout (--min_rtt_timeout <milliseconds>)

As the nmap scan progresses, the minimum round trip time is automatically adjusted based on the
actual response times. If the response times at the beginning of the scan are very small, the response
time timeout will decrease to match this efficient response time.

If a network is experiencing throughput issues such as dropped packets, it may be necessary to force
nmap to maintain a larger timeout value. Setting the --min_rtt_timeout value manually will
keep the timeout value at a more reasonable setting for these circumstances. This could result in a
longer total scan time, so this option should be configured carefully.

The default minimum round trip timeout value is 100 milliseconds. If the minimum is configured to
be more than 50,000 milliseconds (50 seconds!), nmap will provide this warning:
Warning: min_rtt_timeout is given in milliseconds, your value seems pretty
large.

Maximum Round Trip Time Timeout (--max_rtt_timeout <milliseconds>)

The --max_rtt_timeout is used to determine when a response is taking too long. If a response
takes longer than the configured value, nmap will categorize the request as lost and retransmit or time
out the request.

The default maximum round trip time timeout is 10,000 milliseconds (10 seconds). If the nmap scan
is operating across slow networks or networks with communication problems, this value may need to
be increased to ensure an accurate scan.

The minimum possible --max_rtt_timeout value is 5 milliseconds. Although it's possible to set
the value this low, it's impractical to run an nmap scan with such a low setting. If a --
max_rtt_timeout value of less than 20 milliseconds is specified, nmap will provide a warning:
WARNING: You specified a round-trip time timeout (10 ms) that
is EXTRAORDINARILY SMALL. Accuracy may suffer.

Parallel Host Scanning

Multiple hosts can be specified on the nmap command line, and nmap's efficient scanning processes
will often probe these hosts simultaneously to provide the most efficient scan possible. However,
there may be instances when the minimum or maximum number of parallel host scans should be
modified.

Maximum Parallel Hosts per Scan (--max_hostgroup <number>)

Nmap is extremely efficient when scanning groups of hosts simultaneously. Unfortunately, this
efficiency also requires that nmap complete the scanning of a host block before the results can be
displayed. At other times, it may be more appropriate to scale the number of simultaneous hosts to a
large number to improve the efficiency during a batch scanning process. By adjusting the --
max_hostgroup option, the number of parallel host scans can be modified to suit any situation.

Many port scans support scanning hosts in parallel, but not all scan types will make use of this option.
For example, the ping scan (-sP) uses its own grouping algorithm and completely ignores the --
max_hostgroup option.

The default maximum host group size is 100,000 hosts. This is set intentionally high so that the scan
will not be restrictive unless the user manually sets a maximum value.

Minimum Parallel Hosts per Scan (--min_hostgroup <number>)

The minimum number of parallel hosts to scan option (--min_hostgroup) allows the nmap scan
to maintain a high level of efficiency and throughput when scanning a large group of IP addresses in
unattended batch processes. This option forces nmap to scan at least this number of hosts in parallel,
although these simultaneous scans will require more memory than smaller host groups.

This minimum value must not be larger than the maximum (--max_hostgroup), or nmap will
provide an error message and cancel the scan. The default number of minimum hosts is one.

If --min_hostgroup is configured with more than 100 simultaneous host scans, nmap will
provide this warning message:
Warning: You specified a highly aggressive --min_hostgroup.

This large group may be required, but nmap provides this sanity check to make sure you know what
you're getting into.

Parallel Port Scanning

Just as multiple hosts can be scanned in parallel, multiple ports on a single host can also be scanned in
parallel. This combination of host and port number is called a socket, and nmap provides complete
control over how many sockets can be simultaneously scanned.

Maximum Number of Parallel Port Scans (--max_parallelism <number>, -M)

The --max_parallelism option specifies the maximum number of ports that can be scanned
simultaneously.

The nmap man page describes --max_parallelism and –M as separate options, but the nmap
source code shows that –M is simply an alias for –max_parallelism.

By default, nmap will simultaneously scan 36 sockets. The --max_parallelism option can be
set to 1 to scan a single port at a time. The minimum possible value for --max_parallelism is 1,
and nmap will warn if the requested value is above 900:
Warning: Your max_parallelism (-M) option is absurdly high!
Don't complain to Fyodor if all hell breaks loose!

You have been warned. :P

Minimum Number of Parallel Port Scans (--min_parallelism <number>)
The minimum number of parallel port scans option (--min_parallelism) configures nmap to
scan at least this number of ports simultaneously. Although this isn't a low-profile option, it does
increase the efficiency when scanning firewalled hosts.

This option can overwhelm end stations, and if this option is set greater than 100 then nmap will
display this warning:

Warning: Your --min_parallelism option is absurdly high!
Don't complain to Fyodor if all hell breaks loose!

Delay
Along with the timeout variables, parallel host scanning options, and simultaneous port probes, nmap
can also modify the delay between each probe frame to scan as quickly or as slowly as desired. This
delay can be modified to come in "under the radar" of an intrusion prevention device, or to slow the
scan down for use over non-terrestrial links.

Minimum Delay Between Probes (--scan_delay <milliseconds>)

The minimum delay between probes option (--scan_delay) takes a departure from the normal
nmap nomenclature, since the preface of 'min' isn't included as part of the option name.

The --scan_delay option specifies the minimum amount of time that nmap will wait between
each port request.

The --scan_delay starting value is zero. Nmap dynamically changes this delay during a scan,
especially when a remote station (such as FreeBSD or Solaris) begins throttling the responses. When
this occurs, nmap displays a message like this:
Increasing send delay for 192.168.0.99 from 0 to 5 due to

13 out of 43 dropped probes since last increase.

If the --scan_delay is specified on the command line, the variable must be greater than zero. If
it's set too low, nmap aborts the scan with this nondescript failure message:

scan_delay must be greater than 0

Maximum Delay Between Probes (--max_scan_delay <milliseconds>

The maximum delay between probes option (--max_scan_delay) sets an upper ceiling for the
time that nmap will delay between each request.

Nmap's maximum probe delay can dynamically grow to as much as one per second. Using the --
max_scan_delay option allows for a different maximum delay, perhaps even exceeding the one
second maximum default. Increasing this option will significantly slow the total scan time. However,
slowing this value may be necessary to obtain accurate scans on non-terrestrial network links or
congested WAN connections.

The default maximum delay is 1,000 milliseconds (1 second). If the --max_scan_delay is set too
low, nmap will halt the scan with this message:

max_scan_delay must be greater than 0

Timing Policies (--timing, -T<0|1|2|3|4|5>)

If nmap's ten different timing options are too much to handle, then the built-in timing policies (--
timing) may be a good alternative. Timing policies are pre-built groups of timing options that range
from the nearly invisible "paranoid" option to the overly-aggressive "insane" category.

Timing policies are specified as Paranoid, Sneaky, Polite, Normal, Aggressive, and Insane. These
categories can also be referenced as numbers, where Paranoid has a value of zero and Insane has a
value of five. Therefore, the nmap command
nmap 192.168.0.1 –T0

is the same as

nmap 192.168.0.1 --timing paranoid

The details of the timing options are shown in this chart. The policies only depart slightly from the
defaults, but the departures at the upper and lower ends of the spectrum are significant:

As this chart shows, the Paranoid option's minimum --scan_delay is set to an amazingly slow 5
minutes, and the Insane option's --max_scan_delay is set to 5 milliseconds! Clearly, there are
massive differences between the top end of the scale and the bottom end.

If an unknown timing policy is specified, nmap provides this error before halting:

Unknown timing mode (-T argment). Use either "Paranoid",
"Sneaky", "Polite", "Normal", "Aggressive", "Insane" or
a number from 0 (Paranoid) to 5 (Insane)

Although the Paranoid category scan provides very accurate information, it takes a very long time to
process a single -T0 scan. Conversely, an Insane scan provides lightning fast results, but the results
can be inaccurate if the end station does not respond within the tight timeframes required by the –T5
category.

These timing categories provide a method of customizing scans based on a standard starting point.
Since nmap's timing options are based on their position on the command line, a timing policy can be
selected at the beginning of the nmap command line and other individual timing options can be
specified afterwards. This would create a customized combination of nmap timings without requiring
the specification of every possible timing option on the command line.

These timing policies are useful for testing intrusion detection systems (IDS) and intrusion prevention
systems (IPS). Each timing policy can be run against an IDS or IPS to see if an alarm event or packet
filtering function occurs. Additional IDS and IPS thresholds can then be configured based on these
triggered values.

Chapter 9: Windows-only Nmap Options

Many Microsoft Windows systems (especially Windows XP Service Pack 2) are hindered with
networking restrictions that limit nmap's effectiveness. Even with these technical challenges, nmap
still performs admirably in most Windows environments. Because of the large number of Windows-
based installations, nmap will undoubtedly be operated from a Windows desktop for the foreseeable
future. As these Windows-only options show, there are a number of workarounds and tests that can be
used in a Windows environment to optimize nmap's efficiency.

WinPcap and Raw Socket Options

For nmap to work in Windows, it requires the installation of WinPcap 3.14 beta 4 or later. The
WinPcap packet capture library is well supported in the open source community, and it has become

one of the most popular libraries for Windows-based operating systems.

Nmap's reliance on WinPcap is partly based on the changes that Microsoft has made to the raw
sockets functionality on Windows XP Service Pack 2. Microsoft has effectively removed any
embedded raw sockets capability in Windows XP SP2, and nmap's architecture changed so that these
limitations could be circumvented.

In the past, nmap used Windows built-in raw sockets functions to communicate at the packet level.
With the removal of raw sockets, nmap had to find other methods of communicating to the network
through Windows. Fortunately, the WinPcap library provides packet-level communication without
requiring the Windows XP raw socket functionality.

Other Windows Challenges

Networking in Windows-based operating systems has been a moving target through the years. Early
versions of Windows didn't provide any built-in TCP/IP networking, and users that needed a TCP/IP
stack were required to use add-on protocol stacks from 3rd party companies. As successive Windows
versions integrated additional networking functionality, the internal workings of the Windows
operating system changed. Internal networking functions in early versions of Windows were
completely rewritten or removed in later versions. This has created challenges for developers, since
they must support many different networking techniques to accomplish the same functionality across
different Windows versions.

For example, simply gathering a list of the network interfaces on a Windows-based system varies
dramatically between different OS versions. Nmap queries the specific Windows version and can
react accordingly based on the operating system version in use.

In some cases, nmap even has different methods of obtaining information within the same operating
system version.

Help for Windows (--win_help)

The --win_help option provides an on-screen display of the following Windows-related nmap
commands:
Windows-specific options:

 --win_list_interfaces : list all network interfaces
 --win_norawsock : disable raw socket support
 --win_forcerawsock : try raw sockets even on non-W2K systems
 --win_nopcap : disable winpcap support
 --win_nt4route : test nt4 route code
 --win_noiphlpapi : test response to lack of iphlpapi.dll
 --win_trace : trace through raw IP initialization

The --win_help option isn't mentioned in the nmap man page, but it does appear on Windows
operating systems in the online help screen (-h).

List All Network Interfaces (--win_list_interfaces)

Windows doesn't have an easy naming convention for its interfaces, so this options lists the network
interfaces with names that nmap recognizes:
Available interfaces:

Name Raw mode IP
loopback0 SOCK_RAW 127.0.0.1
eth0 winpcap 192.168.0.5

This option is useful when the nmap interface option (-e) needs to reference the Windows interface
name, or information from nmap's --debug output needs to be correlated back to a physical
network interface.

Disable Raw Socket Support (--win_norawsock)

Some Windows configurations can experience problems running certain nmap scans when raw
sockets are used. For example, Windows 2000 with no service pack could blue-screen-of-death
(BSoD) if an IP protocol scan (-sO) was requested. Fortunately, nmap already identifies a Windows
2000 system with this exposure and disables raw sockets automatically if an IP protocol scan is
selected.

The disable raw socket support option (--win_norawsock) will administratively disable all raw
socket support for the duration of the nmap scan. This option is probably not necessary in Windows
NT and Windows 98, since those operating systems never supported raw sockets.

This option can help to get around raw sockets problems in any Windows version. If this option is
used, nmap will default to using WinPcap as the communications mechanism.

Try Raw Sockets Even on non-W2K Systems (--win_forcerawsock)

Nmap will automatically identify the Windows operating system on which it runs, and it will make
changes to its communications methods based on these differences in Windows versions. In the cases
where nmap has automatically disabled raw sockets, it may be helpful to force the use of raw sockets
for troubleshooting purposes.

Forcing nmap to use raw sockets doesn't necessarily mean that Windows will use raw sockets
exclusively. For example, there are some Windows XP-related nmap functions that will only work
properly with WinPcap. In these situations, both raw sockets and WinPcap are available and nmap
can choose which function to use. If WinPcap should be disabled, the --win_nopcap option
should be used.

Disable Winpcap Support (--win_nopcap)

The --win_nopcap option disables nmap support for the WinPcap library. Instead of using the
normal WinPcap library calls, nmap attempts to use raw sockets.
If this option is enabled, the following line appears in the --win_trace output:
WinIP winpcap support disabled

If both --win_nopcap and --win_norawsock is used, nmap is left with no communication
mechanism and the following "strange" error message is displayed:

EXC selected for machine 192.168.0.99
Strange read error from 192.168.0.99: Unknown error

Enabling this option on my Windows XP SP2 system prevented the nmap pings from working,
although the actual scan process appeared to work correctly.

Test NT 4.0 Route Code (--win_nt4route)

For nmap to send packets, it must identify the physical network interfaces and decide which
connection to the remote device is the best. However, the changes to Windows versions through the

years have created many different methods of obtaining this information.

The --win_nt4route option uses an alternative method of finding the best route for nmap to use.
If nmap is having difficulty locating a route to a remote device, this option may provide a
workaround.

When using this option, the following text can be seen in a level-two debug output (-d -d):
get_best_route: using NT4-compatible method

Test Response to Lack of iphlpapi.dll (--win_noiphlpapi)

The --win_noiphlpapi refers to the use of the iphlpapi.dll library. This library is used by
nmap functions to identify network interfaces and send ARP requests.

If this option is selected, nmap will use alternative options for obtaining this IP-specific information.
These non-iphlpapi functions are also used if a Windows version doesn't support the IP helper library,
such as Windows 95. The IP helper library is already included with the most recent Windows
operating systems.

If nmap cannot find the IP helper library, this following message will be displayed:
Your system doesn't have iphlpapi.dll

If you have Win95, maybe you could grab it from a Win98 system
If you have NT4, you need service pack 4 or higher
If you have NT3.51, try grabbing it from an NT4 system
Otherwise, your system has problems ;-)

Trace Through Raw IP Initialization (--win_trace)

The --win_trace option is extremely useful for Windows users who are having problems running
nmap. The Windows IP initialization process includes the identification of the interfaces, the
identification of communication libraries (WinPcap and raw sockets), and the recognition of a
privileged Window user.

The Windows IP trace option displays this information with the normal nmap output:
WinIP initializing if tables
WinIP if tables complete :)
WinIP trying to initialize winpcap 2.1
WinIP winpcap present, dynamic linked to: WinPcap version 3.1 beta4 (pack
et.dll version 3, 1, 0, 24), based on libpcap version 0.8.3
WinIP testing for raw sockets
WinIP rawsock is available
WinIP reading winpcap interface list
WinIP init \Device\NPF_GenericNdisWanAdapter (ASCII)
pcap device: \Device\NPF_GenericNdisWanAdapter
WinIP init \Device\NPF_{D37FB73B-773F-4941-B09E-51D487A0B724} (ASCII)
pcap device: \Device\NPF_{D37FB73B-773F-4941-B09E-51D487A0B724}
 result: physaddr (0x00114343a834) matches eth0
WinIP o.isr00t = 1

Skip IP Initialization (--win_skip_winip_init)

The --win_skip_winip_init option completely bypasses the Windows-related IP
initialization process. This option is useful during a troubleshooting session where the Windows IP
initialization process is in question.

If nmap starts normally and begins the scan without initializing the Windows IP system, the following
message is displayed:
winip not initialized yet

QUITTING!

Chapter 10: Miscellaneous Options

There are a number of nmap options that don't fall into any of the previous categories. These options
provide functions such as version information, custom TCP flag creation, and argument vector
quashing.

Quick Reference Screen (--help, -h)

The --help option provides a summary of commands, including at least one option, --
interactive, that is not mentioned in the nmap man page:

Nmap 3.81 Usage: nmap [Scan Type(s)] [Options] <host or net list>
Some Common Scan Types ('*' options require root privileges)
* -sS TCP SYN stealth port scan (default if privileged (root))
 -sT TCP connect() port scan (default for unprivileged users)
* -sU UDP port scan
 -sP ping scan (Find any reachable machines)
* -sF,-sX,-sN Stealth FIN, Xmas, or Null scan (experts only)
 -sV Version scan probes open ports determining service & app names/versions
 -sR RPC scan (use with other scan types)
Some Common Options (none are required, most can be combined):
* -O Use TCP/IP fingerprinting to guess remote operating system
 -p <range> ports to scan. Example range: 1-1024,1080,6666,31337
 -F Only scans ports listed in nmap-services
 -v Verbose. Its use is recommended. Use twice for greater effect.
 -P0 Don't ping hosts (needed to scan www.microsoft.com and others)
* -Ddecoy_host1,decoy2[,...] Hide scan using many decoys
 -6 scans via IPv6 rather than IPv4
 -T <Paranoid|Sneaky|Polite|Normal|Aggressive|Insane> General timing policy
 -n/-R Never do DNS resolution/Always resolve [default: sometimes resolve]
 -oN/-oX/-oG <logfile> Output normal/XML/grepable scan logs to <logfile>
 -iL <inputfile> Get targets from file; Use '-' for stdin
* -S <your_IP>/-e <devicename> Specify source address or network interface
 --interactive Go into interactive mode (then press h for help)
 --win_help Windows-specific features
Example: nmap -v -sS -O www.my.com 192.168.0.0/16 '192.88-90.*.*'
SEE THE MAN PAGE FOR MANY MORE OPTIONS, DESCRIPTIONS, AND EXAMPLES

On Windows-based systems, the --win_help option is also displayed in this list.

Nmap Version (--version, -V)

The nmap version option (--version) simply outputs the nmap version number and URL:
nmap version 3.81 (http://www.insecure.org/nmap)

This can be useful if multiple or unknown nmap versions are installed on a system and the exact
version needs to be identified.

Data Directory (--datadir <directory_name>)

The data directory option (--datadir) administratively configures the directory location
containing the nmap support files. For more information on the --datadir option and the nmap
support files, refer to Nmap Support Files in Section I.

Quash Argument Vector (-q)

With the quash argument vector option (-q), nmap can modify its argument vector to appear as if it's
another process. By default, the –q option causes nmap to appear as the Program for Internet News &
Email, or "pine." Since pine is a common email package, this option allows nmap to blend with other
system processes:
nmap 192.168.0.1 –q &
ps r

 PID TTY STAT TIME COMMAND
 3772 /UNIONFS/dev/pts/1 R+ 4:03 pine & the "quashed" nmap session
 4056 /UNIONFS/dev/pts/2 R+ 0:00 ps r

Define Custom Scan Flags (--scanflags <flagval>)

The --scanflags option provides the nmap user with a one-size-fits-all method of scanning the
network. Using --scanflags provides the user with a method of controlling the TCP flags used
during the nmap scan. With this option, 256 different TCP flag settings can be used to create a unique
scanning experience!

The flag values can be specified with a decimal representation of the TCP flag byte, a hexadecimal
value (preceded by 0x), or the name of the flag. Valid flag names are URG, ACK, PSH or PUSH,
RST or RESET, SYN, and FIN. An nmap command line of:

nmap 192.168.0.99 --scanflags URGACKPUSHRESETSYNFIN

is the same as

nmap 192.168.0.99 --scanflags 63

and is the same as

nmap 192.168.0.99 --scanflags 0x3F

The output from this nmap command line shows this information in the TCP header:

TCP: ----- TCP header -----
 TCP:
 TCP: Source port = 36797
 TCP: Destination port = 443 (Https)
 TCP: Initial sequence number = 3256272004
 TCP: Next expected Seq number= 3256272005
 TCP: Acknowledgment number = 0
 TCP: Data offset = 20 bytes
 TCP: Reserved Bits: Reserved for Future Use (Not shown in the Hex Dump)
 TCP: Flags = 3F
 TCP: ..1. = Urgent pointer
 TCP: ...1 = Acknowledgment
 TCP: 1... = Push
 TCP: 1.. = Reset
 TCP: 1. = SYN
 TCP: 1 = FIN

 TCP: Window = 2048
 TCP: Checksum = 0DD7 (correct)
 TCP: Urgent pointer = 0
 TCP: No TCP options
 TCP:

Although this option functions properly, it has limited use unless there are specific circumstances that
might require an additional scan method.

(Uriel) Maimon Scan (-sM)

The Maimon scan (-sM) is similar to the FIN scan (-sF), but the Maimon scan enables both the
ACK flag and the FIN flag in the frame sent to the remote device. This stealth scan is designed to
operate much like the FIN scan. If a RST is received, the port is closed. If no response is received, the
port is open. The Maimon scan is named after Uriel Maimon, who profiled stealth scanning
techniques in Phrack 49, Article 15.

Like the FIN scan, the Maimon (FIN/ACK) scan is designed to identify RST responses from the
remote device as closed ports, and no response as an open port. However, this isn't how this FIN/ACK
combination tends to work in the real world. Most of the devices tested in the NetworkUptime.com
lab interpreted the probes as ACK packets, as if the FIN didn't exist. Receiving a TCP reset was
actually identification of an open port, not a closed port. The final scan report will still show the ports
that have been found, but it will identify them as 'closed.'

The Maimon scan is also very dependent on the operating systems in use. Windows XP SP2 wasn't
susceptible to the Maimon scan, but Windows XP without a service pack readily identified open ports
(although nmap improperly labeled them as closed).

This limited functionality positions the Maimon scan as the only nmap scan that is not mentioned in
the man page or in the online help (-h). The Maimon scan is referenced in the changelog and the
nmap source code, and it runs as expected from the nmap command line.

IPv6 Support (-6)

Nmap includes support of IP version 6 (IPv6) devices with the -6 option. The end stations must be
addressable via IPv6, even if the nmap station is not. IPv6 addresses are expressed as eight groups
containing two hexadecimal numbers in each group, and the groups are usually separated by colons.
An IPv6 address would look something like this:
50AF:1011:10EF:5504:38D0:1211:0000:747C

The IPv6 support in nmap is currently limited to the connect() scan (-sT), the ping scan (-sP), and
the list scan (-sL).

CHAPTER 11: USING NMAP IN THE "REAL WORLD"

Now that all of these nmap scan types, option settings, and information screens have been
documented, how can this conglomeration of data help an organization with real-world security
requirements?

The following scenarios are common examples that are found in many organizations. These are
written from the perspective of a network or security manager who provides uptime and availability
of an organization's systems. It's also assumed that the security team will have nmap scanning systems
that run with privileged access.

http://www.phrack.org/

With every nmap scan, there are some options that are always recommended. The verbose option
should always be specified at its highest level (-vv), and the universal output format (-oA) should
also be used. Since the differently formatted nmap output files occasionally contain different pieces of
information, saving the nmap information into all formats can provide important information after the
scan. It's also assumed that the security team will have nmap scanning system that run with privileged
access.

The --excludefile option should also be used with every nmap scan. The exclude file should be
updated with the most important IP addresses in the organization, or the IP addresses that should
never be scanned under any circumstances. Nmap scans that operate without incident on some
systems may have far-reaching effects on others! For example, an older telephone system or a legacy
router may not be able to provide the resources required by nmap, and these systems may crash or
become unavailable if the nmap scan is too aggressive. Exclude options always take priority over any
includes, so identifying these IP addresses in an exclude file will ensure that they are never scanned
by nmap.

Identifying the Remnants of a Virus Outbreak or Spyware Infestation[

Viruses and spyware have different underlying technologies, but they have a common bond once they
infest a system. Variants of MyDoom, Sasser, Beagle, NetBus, SubSeven, and other Trojan horses
create open ports, providing backdoor communication conduits into infected systems.

This scan will show how the entire network can be easily scanned to locate a single spyware or virus
remnant. This search will make use of unique ping methods, port searches, and reverse DNS lookup
settings.

Identifying Virus, Spyware, and Trojan Horse Remnants

Nmap Ping type: If ICMP is unfiltered in an organization's network, an ICMP ping (-PE) would be
an efficient way of identifying an active system. If ICMP is actively filtered, a more applicable ping
type should be considered. Since this scan will be working through a large number of IP addresses, an
nmap ping will be an important method of determining a remote device's availability. Disabling
nmap's ping option (-P0) should be used only as a last resort in a scan with a large number of IP
addresses.

Nmap Scan Type: Since this is a simple port availability test, a TCP SYN scan (-sS) or a UDP scan
(-sU) would be an effective scan type. Different spyware remnants can open TCP ports or UDP
ports, and occasionally both types will need to be specified. This example will assume that both types
will be scanned.

• IP Addresses: The IP addresses for these types of scans will usually be a range of addresses,
using nmap's wildcards and naming conventions. For ease of use, these IP addresses should be
listed in a file that can be included with the –iLoption.

• Port Ranges: This particular scan will only need to scan a few ports from each device that are
associated with a specific spyware infestation. If both TCP and UDP scan types are specified,
then the –p option should include U:<udpports>,T:<tcpports>.

• Reverse DNS: If a large number of hosts will be scanned over a long timeframe, it may be
helpful to require a reverse DNS on each scanned device (-R). However, this can create
delays during the scan process, and it may not be required if the IP addresses on the network

rarely change. In these cases, a more efficient scan would disable the reverse DNS resolution
process (-n).

• Version Detection: If a Trojan horse is using a port number that is commonly open on the
network, it may be helpful to include a version detection option (-sV) to help identify the
application type running on the remote device. This will slow down the scan significantly
(especially if UDP scanning is active), so use this option only if necessary.

• Time to Live: If this scan shouldn't traverse a WAN or slow network link, the --ttl option
may be useful. This would prevent the scan from using slower WAN links, although it may be
more reliable to add the remote IP addresses to the exclude list if the exact network
configuration isn't known.

The nmap command line would be similar to this (disregard the line break):

nmap –vv –PE –sS –sU –iL input.lst --excludefile banned.lst
 –p U:31337,T:6713 –n -oA trojans

After the scan is complete, the grepable output file (trojans.gnmap) can be searched for the word
"open" to determine if any open ports were identified.

Vulnerability Assessments

Vulnerability announcements are a daily occurrence in the security world. Servers, applications,
routers, switches, desktop computers, any other network connected device has the potential to be
exploited. When problems are identified with a device or application, announcements are usually
made through security mailing lists and manufacturer web pages.

When the public vulnerability announcement is made, the problem has been identified, testing has
been completed, and the manufacturer has created a patch for the problematic operating system,
application, or driver. If the vulnerability affects many systems or the problem has dramatic security
repercussions, it's important to patch the affected systems as quickly as possible.

When an application must be upgraded, the scope of the upgrade may not be readily apparent. The
security team may know of most systems using the vulnerable software, but there may be other
systems on the network of which the security team is unaware. This was a common problem in
January of 2003 when the SQL Slammer worm attacked Microsoft SQL Server systems. Although
many network teams had patched all known SQL Server systems, many organizations had non-
production SQL Server systems that were not known. These unknown and unpatched systems were
quickly infected and the vast flood of network traffic created by the SQL Slammer worm creative
massive network disruptions.

The nmap scan can locate application services that are using known port numbers, and nmap's version
scan can provide more information about the application service. Nmap's customized application
fingerprints can even provide the application version number, in some cases.

Vulnerability Assessment Details

Nmap ping type: If ICMP is not filtered, an effective nmap ping is the ICMP echo request ping
(-PE). The nmap ping requirements are important, since the entire network will be scanned.

Nmap scan type: In many cases, a limited number of ports would be scanned. If Microsoft SQL
Server was the concern, then UDP port 1434 would be scanned. Since nmap only has a single UDP
scan (-sU), the scanning option in this example is limited to this single scan type. If the destination
port was TCP-based, many different scan types could be selected based on speed and accuracy.

Nmap ping type: If ICMP is not filtered, an effective nmap ping is the ICMP echo request ping
(-PE). The nmap ping requirements are important, since the entire network will be scanned.

• Nmap scan type: In many cases, a limited number of ports would be scanned. If Microsoft
SQL Server was the concern, then UDP port 1434 would be scanned. Since nmap only has a
single UDP scan (-sU), the scanning option in this example is limited to this single scan type.
If the destination port was TCP-based, many different scan types could be selected based on
speed and accuracy.

• IP Addresses: The IP addresses will usually be a range of addresses that covers the entire
network. Nmap's wildcards and naming conventions can be used to specify subnets and
address ranges. In most cases, these IP addresses will be saved in a file that can be included
with the –iL option.

• Port Ranges: Microsoft SQL Server's monitor access is through UDP port 1434. In this
example, this UDP port is the only port that needs to be scanned. Specifying the ports with a
U: or T: specification is unnecessary, but it can often be helpful for clarification.

• Reverse DNS: In an organization with many hosts, a reverse DNS may assist by identifying a
remote device by name. This name resolution process will add delays to the scan, but the
identification of the host name may outweigh the time delay associated with the DNS lookups.

• Version Detection: The version detection option (-sV) is the key to this scan. In many cases
(such as this one), nmap can provide version information based on the included version
signatures.

This SQL Server scan would be based on this nmap command line (disregard the line break):

nmap -vv -PE -sU –iL input.lst –-excludefile banned.lst
 -p U:1434 -n -oA sql_svr -sV

The nmap output shows the identification of the Microsoft SQL Server monitor port and detailed
version information:

Interesting ports on 192.168.0.3:
PORT STATE SERVICE VERSION
1434/udp open ms-sql-m Microsoft SQL Server 8.00.194 (ServerName: DT; TCPPort:
1433)
MAC Address: 00:30:48:27:2C:2A (Supermicro Computer)

The version scan provides the SQL Server version number, the server name, and the TCP port used by
inbound remote connections to the SQL Server application. Notice that this is a different port than the
one used in the nmap scan.

With this information, the network administrators can clearly identify all Microsoft SQL Server
processes, the IP addresses for all SQL Server devices, and the version number information.

Security Policy Compliance Testing

An important aspect of network security is the control and administration of applications and devices
into the organization's infrastructure. The security administrator may decide that certain applications
pose a risk to the organization's data, and those particular services would be forbidden from attaching
to the network.

For example, an organization may decide that the Apache HTTP Server is appropriate for use on the
network, but the Microsoft Internet Information Server is not. Since both of these services use TCP
port 80, a simple port scan would not provide enough information to determine if the remote device
was compliant with the security policies.

Fortunately, nmap can determine much more information than which ports are open or closed. Nmap's
version scan can be invaluable for providing detailed information about the active services on a
remote device. Since compliance testing also includes operating system information, this example
will include nmap's operating system fingerprinting option.

Nmap Ping Type: The nmap ping type will be especially important with this scan type, since an
intentionally noncompliant device may have enabled firewall or privacy functions that would hide it
from the rest of the network. Nmap's ping options can be combined together to maximize the
possibility of finding a device on the network. In this example, the default ACK ping on port 80
(-PA80) and ICMP ping (–PE) will be used, as well as a SYN ping on port 23 (–PS23) for good
measure.

Nmap Scan Type: For compliance testing that focuses on web services, a TCP SYN scan (-sS)
should be sufficient to determine the available ports on a remote device. If the compliance testing is
concerned with specific operating systems, the stealth scans (-sF, -sX, -sN, -sM) or the
window scan (-sW) may be an applicable alternative.

• Operating System Fingerprinting: If the security policy includes operating system
standardization, the OS fingerprinting option (-O) should be included. If the operating system
type isn't important, this option can be ignored. If the network is large and many systems will
be scanned, the --osscan_limit option can provide faster and more accurate operating
system fingerprints.

• Version Detection: Once nmap identifies open ports, it can also query each open port to
identify the application and version information associated with the port. If both the version
detection option and the OS fingerprinting option are required, the nmap additional, advanced,
and aggressive option (-A) can be used as a shortcut.

• Port Ranges: Since many ports will be scanned across many different devices, it may be more
applicable to use nmap's fast scan option (-F). If there are certain ports that are important in
the compliance check, they should be added to the nmap-services support file (if they
aren't in there already). This should also increase the overall speed of the scan, since the
number of scanned ports will be limited to those in the nmap-services file.

• Reverse DNS: If an out-of-compliance device is identified, the name of the device may be
important. If the organization's DNS is integrated into the remote station IP addressing
conventions, then nmap should always perform a reverse DNS (-R). If the IP addresses and
names are not linked, then nmap will be the most efficient if it never performs a reverse DNS
lookup (-n).

The nmap security policy compliance scan should look something like this (disregard the line break):

nmap -vv –PA80 –PE –PS23 –sS –iL input.lst --excludefile banned.lst
 -A --osscan_limit –F –R -oA policy_check

This sample of the output shows ports, operating systems, and version information:

Interesting ports on 192.168.0.5:
(The 1217 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
135/tcp open msrpc Microsoft Windows msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
5101/tcp open admdog?
MAC Address: 00:0F:B5:0A:6E:DA (Netgear)
Device type: general purpose
Running: Microsoft Windows 2003/.NET|NT/2K/XP
OS details: Microsoft Windows 2003 Server or XP SP2

The grepable output file can be searched for details, or the entire scan can be viewed in a web browser
with the XML file.

Asset Management

As networks become more distributed, managing remote assets becomes a challenge. A remote
location may not be large enough to have its own security staff on site, but the systems and processes
at the remote location are still an important part of the organization's overall mission.

If there are many remote sites or the remote locations are growing, it will become increasingly
difficult to know exactly what devices and systems are installed in the organization. This also
becomes important if software licensing is handled by number of "nodes" (common for anti-virus
software licensing), or if server-based software is licensed on a per-server basis.

If a simple "show of hands" is required for a node-based licensing agreement, nmap can locate,
identify, and categorize the remote devices on the network. These scans can be as detailed or as
simple as necessary. This example will show how nmap can identify remote devices across a slow
WAN link without affecting normal production traffic.

Nmap Ping Type: For this simple node count, the default nmap ping will be sufficient. If ICMP
filtering or packet filtering is enabled between the nmap station and the remote devices, a different
ping type may be required to circumvent the filtering.

Nmap Scan Type: To determine how many nodes exist at a remote location, nmap only needs to ping
the devices on the input list (-sP). If operating system fingerprinting is required, a ping scan cannot
be used. If an operating system fingerprint is required, a SYN scan (-sS) would most likely provide
the best overall TCP information.

• Operating System Fingerprinting: OS fingerprinting (-O) uses very few packets to

determine what kind of system exists on the other end of the network. Since the nmap timing
policy (see below) will throttle the communications flow, the fingerprinting process will not
overwhelm the slow WAN link or affect the normal flow of network traffic. The OS
fingerprinting process is also helpful if the asset inventory requires that routers, switches, and
printers are categorized separately from the client and server systems. In this example, OS
fingerprinting will not be required.

• Reverse DNS: The reverse DNS lookup is optional. This asset management task won't require
the association of IP addresses to individual names (-n).

• Timing Policy: The nmap timing policy is one of the most important options of this scan.
Since the remote devices are located across a slow WAN link, the nmap processes will need to
run slower than normal to avoid any conflicts with production network traffic. The nmap
timing policies can adjust nmap's communication processes to be as passive or as aggressive
as necessary. In this example, the more passive "polite" policy will be used (-T Polite).

The nmap asset management scan will look something like this:

nmap -vv –sS –iL input.lst --excludefile banned.lst -O –n –T Polite -oA remote

The input.lst file should include the IP address range of the networks at the remote location. If
another remote location needs to be scanned, these additional IP addresses can be included in the
input file or a separate file can be created for use in a different nmap scan session.

The "polite" timing policy will run relatively slowly compared to normal nmap scans. This timing can
be tweaked further with detailed timing options, but the trade-off to a faster scan will be higher
utilization of the WAN link.

Firewall Auditing

Complex firewall rules and configurations create additional challenges for the security team. Does the
firewall allow traffic to flow normally to the expected IP addresses? Which ports are open, and which
are filtered? To answer these questions, this example will perform a firewall port analysis to show
which ports appear open to the outside world.

At its most basic level, a firewall needs to filter or pass network traffic. Firewalls can range from
simple packet filters to complex proxy servers. Some firewalls pass IP traffic without modification,
and others provide a translation between internal IP addresses and a single external address.

The nmap ACK scan can determine if a packet is being filtered by the firewall or if the packet is
passing through unfiltered. The ACK scan doesn't identify open ports, but it can help determine if
frames are being filtered.

Firewall Auditing Details

Nmap Ping Type: Most firewalls should have ICMP filtering enabled, so only half of the normal
nmap ping will be successful. Nmap's ICMP ping should fail, but the default ACK ping (-PA80) will
often be successful. Since this scan is usually directed towards a known IP address, it's not necessary
to ping the remote device at all (-P0)!

Nmap Scan Type: The TCP ACK scan (-sA) can describe a filtered or unfiltered port to a remote
device without connecting to an application session. This scan type is useful for a firewall audit,

although a TCP connect scan (-sT) may be required if the firewall is stateful and relies on an active
session to pass network traffic.

• Don't Randomize Ports: During this audit, it's recommended that a protocol analyzer capture
the nmap traffic. If a port is found to be unfiltered, the trace file can confirm the traffic flow
and provide a comparison if changes are made to the firewall rules. To make it easier to
follow the traffic flow in the protocol decode, the nmap scan should be configured to scan the
remote device ports in numerical order (-r), and not the default random order.

• Reverse DNS: Since the nmap scan will be run on a well-known host, it will not be necessary
to do a reverse DNS resolution (-n) on the remote device.

• Fragmented Frames: Some additional firewall testing might include the fragmentation of
frames (-f, -ff) to test the ability of the packet filter to allow or filter fragmented traffic.

The firewall audit nmap command line would look like this:

nmap -vv –P0 –sA –iL input.lst --excludefile banned.lst –r -n -oA firewall

Once nmap identifies the unfiltered ports, the firewall may be modified to "tighten" or "loosen" the
available servers or services. After each modification, the nmap audit can be used to determine if the
expected changes were successful. This audit can also be run periodically to determine if the firewall
configuration has been modified since the last audit.

Perpetual Network Auditing

An organization's network is constantly changing. New application servers are added, switch
configurations are updated, and traffic flows change as the organization changes. The security team is
constantly challenged to understand the interactions of the network at every level.

One of the best ways to understand this "living" network is constant examination. One common
strategy is to blanket the network with a perpetual scan in an effort of constant vigilance. Although
this strategy isn't all-encompassing, it certainly fits into the concept of defense in depth or layered
security. The security team never knows when the information gathered in the past will be valuable in
the present.

Perpetual Network Auditing Details

Nmap Ping Type: The default nmap ping of an ICMP ping combined with a TCP ACK on port 80 is
usually sufficient when the scan occurs on the local network. If the scan must traverse a firewall or
packet filter, the ping should be modified accordingly.

Nmap Scan Type: For passive scanning, the TCP SYN scan (-sS) is appropriate. The SYN scan
never initiates an application session, and the interaction between the nmap station and the remote
device is only at the TCP transport layer. This scan type has a very low possibility of disrupting
remote devices, especially when the network interactivity is administratively reduced through nmap's
built-in timing policies.

• IP Addresses: Since the range of IP addresses will be randomized (see below), it may be most
effective to enter a large portion of the network's IP address ranges into the input file. If the
scan is focused on a particular location or IP subnet, the IP address input file can be
customized to fit this smaller group of stations.

• Operating System Fingerprinting: The goal of this perpetual scan is to obtain as much
information as possible with relatively little network interaction. The operating system
fingerprinting option (-O) only sends fourteen additional frames, but the information received
from the scan is extremely valuable. Although some additional accuracy could be garnered by
including the --osscan_limit option, the goal of this perpetual information gathering
process is to obtain the largest quantity of information possible. If this information is required
at a later date, the accuracy of the information can be determined at that time.

• Timing Policy: This perpetual scan doesn't need to complete in any particular timeframe. This
scan should remain as invisible as possible and the availability of the devices on the network
should be the primary concern. Setting a timing policy to "polite" (-T2) should allow the scan
to run at a reasonable pace while maintaining a low amount of interactivity.

• Reverse DNS: The assigned IP addresses in dynamic environments may change every day. If
the DNS is integrated into the dynamic IP addressing environment, nmap should always
perform a reverse name resolution (-R).

• Randomize Hosts: Since this scan is constantly watching the network, it may be more
interesting to have the scan randomly roam from one device to another. The --
randomize_hosts option will shuffle the list of hosts so that the network interaction is
never focused on one particular subnet.

One option that isn't included in the perpetual scan strategy is the version detection option. Unlike the
operating system fingerprinting function, version detection is a more invasive method of querying a
remote device. Version detection opens application sessions on the remote device, and the version
detection information gathering process can consist of many frames for each open port. In an effort to
keep this scan passive, simple, and relatively fast, the version scan option has not been included.

The nmap command line for the perpetual scan would look something like this (disregard the line
break):

nmap -vv –sS –iL input.lst --excludefile banned.lst
 -O –T2 –R --randomize_hosts -oA perpetual

The output files will provide an easy-to-search grepable format, and a corresponding XML format for
formal reporting purposes.

	Chapter 1: The Basics
	Internet Protocol
	Transmission Control Protocol (TCP)
	User Datagram Protocol (UDP)
	Internet Control Message Protocol (ICMP)
	The Basics of nmap
	The Nmap Scanning Process
	Using nmap from the Command Line
	Chapter 2: Nmap Scanning Techniques
	Chapter 3: Nmap's Ping Options
	ICMP Echo Request and TCP ACK Ping (-PB)
	ICMP Echo Request Ping (-PE)
	TCP ACK Ping (-PA [portlist], -PT [portlist])
	TCP SYN Ping (-PS [portlist])
	UDP Ping (-PU [portlist])
	ICMP Timestamp Ping(-PP)
	ICMP Address Mask Ping (-PM)
	Don't Ping Before Scanning (-P0)
	Require Reverse DNS (-R)
	Disable Reverse DNS (-n)
	Chapter 4: Operating System Fingerprinting

