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PREFACE

WHAT IS DATA MINING?

Data mining is predicted to be “one of the most revolutionary developments of the
next decade,” according to the online technology magazine ZDNET News (February 8,
2001). In fact, the MIT Technology Review chose data mining as one of ten emerging
technologies that will change the world. According to the Gartner Group, “Data min-
ing is the process of discovering meaningful new correlations, patterns and trends by
sifting through large amounts of data stored in repositories, using pattern recognition
technologies as well as statistical and mathematical techniques.”

Because data mining represents such an important field, Wiley-Interscience and
Dr. Daniel T. Larose have teamed up to publish a series of volumes on data mining,
consisting initially of three volumes. The first volume in the series, Discovering
Knowledge in Data: An Introduction to Data Mining, introduces the reader to this
rapidly growing field of data mining.

WHY IS THIS BOOK NEEDED?

Human beings are inundated with data in most fields. Unfortunately, these valuable
data, which cost firms millions to collect and collate, are languishing in warehouses
and repositories. The problem is that not enough trained human analysts are available
who are skilled at translating all of the data into knowledge, and thence up the
taxonomy tree into wisdom. This is why this book is needed; it provides readers with:

� Models and techniques to uncover hidden nuggets of information
� Insight into how data mining algorithms work
� The experience of actually performing data mining on large data sets

Data mining is becoming more widespread every day, because it empowers
companies to uncover profitable patterns and trends from their existing databases.
Companies and institutions have spent millions of dollars to collect megabytes and
terabytes of data but are not taking advantage of the valuable and actionable infor-
mation hidden deep within their data repositories. However, as the practice of data
mining becomes more widespread, companies that do not apply these techniques
are in danger of falling behind and losing market share, because their competitors
are using data mining and are thereby gaining the competitive edge. In Discovering
Knowledge in Data, the step-by-step hands-on solutions of real-world business prob-
lems using widely available data mining techniques applied to real-world data sets

xi
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will appeal to managers, CIOs, CEOs, CFOs, and others who need to keep abreast of
the latest methods for enhancing return on investment.

DANGER! DATA MINING IS EASY TO DO BADLY

The plethora of new off-the-shelf software platforms for performing data mining has
kindled a new kind of danger. The ease with which these GUI-based applications
can manipulate data, combined with the power of the formidable data mining algo-
rithms embedded in the black-box software currently available, make their misuse
proportionally more hazardous.

Just as with any new information technology, data mining is easy to do badly. A
little knowledge is especially dangerous when it comes to applying powerful models
based on large data sets. For example, analyses carried out on unpreprocessed data
can lead to erroneous conclusions, or inappropriate analysis may be applied to data
sets that call for a completely different approach, or models may be derived that are
built upon wholly specious assumptions. If deployed, these errors in analysis can lead
to very expensive failures.

‘‘WHITE BOX’’ APPROACH: UNDERSTANDING THE
UNDERLYING ALGORITHMIC AND MODEL STRUCTURES

The best way to avoid these costly errors, which stem from a blind black-box approach
to data mining, is to apply instead a “white-box” methodology, which emphasizes
an understanding of the algorithmic and statistical model structures underlying the
software. Discovering Knowledge in Data applies this white-box approach by:

� Walking the reader through the various algorithms
� Providing examples of the operation of the algorithm on actual large data sets
� Testing the reader’s level of understanding of the concepts and algorithms
� Providing an opportunity for the reader to do some real data mining on large

data sets

Algorithm Walk-Throughs

Discovering Knowledge in Data walks the reader through the operations and nuances
of the various algorithms, using small-sample data sets, so that the reader gets a
true appreciation of what is really going on inside the algorithm. For example, in
Chapter 8, we see the updated cluster centers being updated, moving toward the
center of their respective clusters. Also, in Chapter 9 we see just which type of network
weights will result in a particular network node “winning” a particular record.

Applications of the Algorithms to Large Data Sets

Discovering Knowledge in Data provides examples of the application of various
algorithms on actual large data sets. For example, in Chapter 7 a classification problem
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is attacked using a neural network model on a real-world data set. The resulting
neural network topology is examined along with the network connection weights, as
reported by the software. These data sets are included at the book series Web site, so
that readers may follow the analytical steps on their own, using data mining software
of their choice.

Chapter Exercises: Checking to Make Sure That You Understand It

Discovering Knowledge in Data includes over 90 chapter exercises, which allow
readers to assess their depth of understanding of the material, as well as to have a
little fun playing with numbers and data. These include conceptual exercises, which
help to clarify some of the more challenging concepts in data mining, and “tiny
data set” exercises, which challenge the reader to apply the particular data mining
algorithm to a small data set and, step by step, to arrive at a computationally sound
solution. For example, in Chapter 6 readers are provided with a small data set and
asked to construct by hand, using the methods shown in the chapter, a C4.5 decision
tree model, as well as a classification and regression tree model, and to compare the
benefits and drawbacks of each.

Hands-on Analysis: Learn Data Mining by Doing Data Mining

Chapters 2 to 4 and 6 to 11 provide the reader with hands-on analysis problems,
representing an opportunity for the reader to apply his or her newly acquired data
mining expertise to solving real problems using large data sets. Many people learn
by doing. Discovering Knowledge in Data provides a framework by which the reader
can learn data mining by doing data mining. The intention is to mirror the real-world
data mining scenario. In the real world, dirty data sets need cleaning; raw data needs
to be normalized; outliers need to be checked. So it is with Discovering Knowledge in
Data, where over 70 hands-on analysis problems are provided. In this way, the reader
can “ramp up” quickly and be “up and running” his or her own data mining analyses
relatively shortly.

For example, in Chapter 10 readers are challenged to uncover high-confidence,
high-support rules for predicting which customer will be leaving a company’s service.
In Chapter 11 readers are asked to produce lift charts and gains charts for a set of
classification models using a large data set, so that the best model may be identified.

DATA MINING AS A PROCESS

One of the fallacies associated with data mining implementation is that data mining
somehow represents an isolated set of tools, to be applied by some aloof analysis
department, and is related only inconsequentially to the mainstream business or re-
search endeavor. Organizations that attempt to implement data mining in this way
will see their chances of success greatly reduced. This is because data mining should
be view as a process.

Discovering Knowledge in Data presents data mining as a well-structured
standard process, intimately connected with managers, decision makers, and those
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involved in deploying the results. Thus, this book is not only for analysts but also for
managers, who need to be able to communicate in the language of data mining. The
particular standard process used is the CRISP–DM framework: the Cross-Industry
Standard Process for Data Mining. CRISP–DM demands that data mining be seen
as an entire process, from communication of the business problem through data col-
lection and management, data preprocessing, model building, model evaluation, and
finally, model deployment. Therefore, this book is not only for analysts and man-
agers but also for data management professionals, database analysts, and decision
makers.

GRAPHICAL APPROACH, EMPHASIZING EXPLORATORY
DATA ANALYSIS

Discovering Knowledge in Data emphasizes a graphical approach to data analysis.
There are more than 80 screen shots of actual computer output throughout the book,
and over 30 other figures. Exploratory data analysis (EDA) represents an interesting
and exciting way to “feel your way” through large data sets. Using graphical and
numerical summaries, the analyst gradually sheds light on the complex relationships
hidden within the data. Discovering Knowledge in Data emphasizes an EDA approach
to data mining, which goes hand in hand with the overall graphical approach.

HOW THE BOOK IS STRUCTURED

Discovering Knowledge in Data provides a comprehensive introduction to the field.
Case studies are provided showing how data mining has been utilized successfully
(and not so successfully). Common myths about data mining are debunked, and
common pitfalls are flagged, so that new data miners do not have to learn these
lessons themselves.

The first three chapters introduce and follow the CRISP–DM standard process,
especially the data preparation phase and data understanding phase. The next seven
chapters represent the heart of the book and are associated with the CRISP–DM
modeling phase. Each chapter presents data mining methods and techniques for a
specific data mining task.

� Chapters 5, 6, and 7 relate to the classification task, examining the k-nearest
neighbor (Chapter 5), decision tree (Chapter 6), and neural network (Chapter
7) algorithms.

� Chapters 8 and 9 investigate the clustering task, with hierarchical and k-means
clustering (Chapter 8) and Kohonen network (Chapter 9) algorithms.

� Chapter 10 handles the association task, examining association rules through
the a priori and GRI algorithms.

� Finally, Chapter 11 covers model evaluation techniques, which belong to the
CRISP–DM evaluation phase.
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CROSS-INDUSTRY STANDARD PROCESS: CRISP–DM

CASE STUDY 1: ANALYZING AUTOMOBILE WARRANTY CLAIMS: EXAMPLE
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About 13 million customers per month contact the West Coast customer service
call center of the Bank of America, as reported by CIO Magazine’s cover story
on data mining in May 1998 [1]. In the past, each caller would have listened to
the same marketing advertisement, whether or not it was relevant to the caller’s
interests. However, “rather than pitch the product of the week, we want to be as
relevant as possible to each customer,” states Chris Kelly, vice president and director
of database marketing at Bank of America in San Francisco. Thus, Bank of America’s
customer service representatives have access to individual customer profiles, so that
the customer can be informed of new products or services that may be of greatest

Discovering Knowledge in Data: An Introduction to Data Mining, By Daniel T. Larose
ISBN 0-471-66657-2 Copyright C© 2005 John Wiley & Sons, Inc.
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interest to him or her. Data mining helps to identify the type of marketing approach
for a particular customer, based on the customer’s individual profile.

Former President Bill Clinton, in his November 6, 2002 address to the Demo-
cratic Leadership Council [2], mentioned that not long after the events of September
11, 2001, FBI agents examined great amounts of consumer data and found that five
of the terrorist perpetrators were in the database. One of the terrorists possessed
30 credit cards with a combined balance totaling $250,000 and had been in the country
for less than two years. The terrorist ringleader, Mohammed Atta, had 12 different
addresses, two real homes, and 10 safe houses. Clinton concluded that we should
proactively search through this type of data and that “if somebody has been here a
couple years or less and they have 12 homes, they’re either really rich or up to no
good. It shouldn’t be that hard to figure out which.”

Brain tumors represent the most deadly cancer among children, with nearly
3000 cases diagnosed per year in the United States, nearly half of which are fatal.
Eric Bremer [3], director of brain tumor research at Children’s Memorial Hospital
in Chicago, has set the goal of building a gene expression database for pediatric
brain tumors, in an effort to develop more effective treatment. As one of the first
steps in tumor identification, Bremer uses the Clementine data mining software suite,
published by SPSS, Inc., to classify the tumor into one of 12 or so salient types. As
we shall learn in Chapter 5 classification, is one of the most important data mining
tasks.

These stories are examples of data mining.

WHAT IS DATA MINING?

According to the Gartner Group [4], “Data mining is the process of discovering
meaningful new correlations, patterns and trends by sifting through large amounts of
data stored in repositories, using pattern recognition technologies as well as statistical
and mathematical techniques.” There are other definitions:

� “Data mining is the analysis of (often large) observational data sets to find
unsuspected relationships and to summarize the data in novel ways that are
both understandable and useful to the data owner” (Hand et al. [5]).

� “Data mining is an interdisciplinary field bringing togther techniques from
machine learning, pattern recognition, statistics, databases, and visualization to
address the issue of information extraction from large data bases” (Evangelos
Simoudis in Cabena et al. [6]).

Data mining is predicted to be “one of the most revolutionary developments
of the next decade,” according to the online technology magazine ZDNET News [7].
In fact, the MIT Technology Review [8] chose data mining as one of 10 emerging
technologies that will change the world. “Data mining expertise is the most sought
after . . .” among information technology professionals, according to the 1999 Infor-
mation Week National Salary Survey [9]. The survey reports: “Data mining skills
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are in high demand this year, as organizations increasingly put data repositories
online. Effectively analyzing information from customers, partners, and suppliers
has become important to more companies. ‘Many companies have implemented a
data warehouse strategy and are now starting to look at what they can do with all that
data,’ says Dudley Brown, managing partner of BridgeGate LLC, a recruiting firm in
Irvine, Calif.”

How widespread is data mining? Which industries are moving into this area?
Actually, the use of data mining is pervasive, extending into some surprising areas.
Consider the following employment advertisement [10]:

STATISTICS INTERN: SEPTEMBER–DECEMBER 2003

Work with Basketball Operations

Resposibilities include:

� Compiling and converting data into format for use in statistical models
� Developing statistical forecasting models using regression, logistic regression, data

mining, etc.
� Using statistical packages such as Minitab, SPSS, XLMiner

Experience in developing statistical models a differentiator, but not required.

Candidates who have completed advanced statistics coursework with a strong knowledge
of basketball and the love of the game should forward your résumé and cover letter to:

Boston Celtics
Director of Human Resources
151 Merrimac Street
Boston, MA 02114

Yes, the Boston Celtics are looking for a data miner. Perhaps the Celtics’ data
miner is needed to keep up with the New York Knicks, who are using IBM’s Advanced
Scout data mining software [11]. Advanced Scout, developed by a team led by Inder-
pal Bhandari, is designed to detect patterns in data. A big basketball fan, Bhandari
approached the New York Knicks, who agreed to try it out. The software depends on
the data kept by the National Basketball Association, in the form of “events” in every
game, such as baskets, shots, passes, rebounds, double-teaming, and so on. As it turns
out, the data mining uncovered a pattern that the coaching staff had evidently missed.
When the Chicago Bulls double-teamed Knicks’ center Patrick Ewing, the Knicks’
shooting percentage was extremely low, even though double-teaming should open up
an opportunity for a teammate to shoot. Based on this information, the coaching staff
was able to develop strategies for dealing with the double-teaming situation. Later,
16 of the 29 NBA teams also turned to Advanced Scout to mine the play-by-play
data.
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WHY DATA MINING?

While waiting in line at a large supermarket, have you ever just closed your eyes and
listened? What do you hear, apart from the kids pleading for candy bars? You might
hear the beep, beep, beep of the supermarket scanners, reading the bar codes on the
grocery items, ringing up on the register, and storing the data on servers located at
the supermarket headquarters. Each beep indicates a new row in the database, a new
“observation” in the information being collected about the shopping habits of your
family and the other families who are checking out.

Clearly, a lot of data is being collected. However, what is being learned from
all this data? What knowledge are we gaining from all this information? Probably,
depending on the supermarket, not much. As early as 1984, in his book Megatrends
[12], John Naisbitt observed that “we are drowning in information but starved for
knowledge.” The problem today is not that there is not enough data and information
streaming in. We are, in fact, inundated with data in most fields. Rather, the problem
is that there are not enough trained human analysts available who are skilled at
translating all of this data into knowledge, and thence up the taxonomy tree into
wisdom.

The ongoing remarkable growth in the field of data mining and knowledge
discovery has been fueled by a fortunate confluence of a variety of factors:

� The explosive growth in data collection, as exemplified by the supermarket
scanners above

� The storing of the data in data warehouses, so that the entire enterprise has
access to a reliable current database

� The availability of increased access to data from Web navigation and intranets
� The competitive pressure to increase market share in a globalized economy
� The development of off-the-shelf commercial data mining software suites
� The tremendous growth in computing power and storage capacity

NEED FOR HUMAN DIRECTION OF DATA MINING

Many software vendors market their analytical software as being plug-and-play out-
of-the-box applications that will provide solutions to otherwise intractable problems
without the need for human supervision or interaction. Some early definitions of data
mining followed this focus on automation. For example, Berry and Linoff, in their
book Data Mining Techniques for Marketing, Sales and Customer Support [13], gave
the following definition for data mining: “Data mining is the process of exploration
and analysis, by automatic or semi-automatic means, of large quantities of data in
order to discover meaningful patterns and rules” (emphasis added). Three years later,
in their sequel, Mastering Data Mining [14], the authors revisit their definition of
data mining and state: “If there is anything we regret, it is the phrase ‘by automatic
or semi-automatic means’ . . . because we feel there has come to be too much focus
on the automatic techniques and not enough on the exploration and analysis. This has
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misled many people into believing that data mining is a product that can be bought
rather than a discipline that must be mastered.”

Very well stated! Automation is no substitute for human input. As we shall
learn shortly, humans need to be actively involved at every phase of the data mining
process. Georges Grinstein of the University of Massachusetts at Lowell and AnVil,
Inc., stated it like this [15]:

Imagine a black box capable of answering any question it is asked. Any question. Will
this eliminate our need for human participation as many suggest? Quite the opposite.
The fundamental problem still comes down to a human interface issue. How do I phrase
the question correctly? How do I set up the parameters to get a solution that is applicable
in the particular case I am interested in? How do I get the results in reasonable time
and in a form that I can understand? Note that all the questions connect the discovery
process to me, for my human consumption.

Rather than asking where humans fit into data mining, we should instead inquire about
how we may design data mining into the very human process of problem solving.

Further, the very power of the formidable data mining algorithms embedded in
the black-box software currently available makes their misuse proportionally more
dangerous. Just as with any new information technology, data mining is easy to
do badly. Researchers may apply inappropriate analysis to data sets that call for a
completely different approach, for example, or models may be derived that are built
upon wholly specious assumptions. Therefore, an understanding of the statistical and
mathematical model structures underlying the software is required.

CROSS-INDUSTRY STANDARD PROCESS: CRISP–DM

There is a temptation in some companies, due to departmental inertia and com-
partmentalization, to approach data mining haphazardly, to reinvent the wheel and
duplicate effort. A cross-industry standard was clearly required that is industry-
neutral, tool-neutral, and application-neutral. The Cross-Industry Standard Process
for Data Mining (CRISP–DM) [16] was developed in 1996 by analysts representing
DaimlerChrysler, SPSS, and NCR. CRISP provides a nonproprietary and freely avail-
able standard process for fitting data mining into the general problem-solving strategy
of a business or research unit.

According to CRISP–DM, a given data mining project has a life cycle consisting
of six phases, as illustrated in Figure 1.1. Note that the phase sequence is adaptive.
That is, the next phase in the sequence often depends on the outcomes associated
with the preceding phase. The most significant dependencies between phases are
indicated by the arrows. For example, suppose that we are in the modeling phase.
Depending on the behavior and characteristics of the model, we may have to return to
the data preparation phase for further refinement before moving forward to the model
evaluation phase.

The iterative nature of CRISP is symbolized by the outer circle in Figure 1.1.
Often, the solution to a particular business or research problem leads to further ques-
tions of interest, which may then be attacked using the same general process as before.
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Business / Research
Understanding Phase

Data Understanding
Phase

Data Preparation
Phase

Deployment Phase

Evaluation Phase Modeling Phase

Figure 1.1 CRISP–DM is an iterative, adaptive process.

Lessons learned from past projects should always be brought to bear as input into
new projects. Following is an outline of each phase. Although conceivably, issues
encountered during the evaluation phase can send the analyst back to any of the pre-
vious phases for amelioration, for simplicity we show only the most common loop,
back to the modeling phase.

CRISP–DM: The Six Phases

1. Business understanding phase. The first phase in the CRISP–DM standard
process may also be termed the research understanding phase.

a. Enunciate the project objectives and requirements clearly in terms of the
business or research unit as a whole.

b. Translate these goals and restrictions into the formulation of a data mining
problem definition.

c. Prepare a preliminary strategy for achieving these objectives.

2. Data understanding phase

a. Collect the data.
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b. Use exploratory data analysis to familiarize yourself with the data and dis-
cover initial insights.

c. Evaluate the quality of the data.

d. If desired, select interesting subsets that may contain actionable patterns.

3. Data preparation phase

a. Prepare from the initial raw data the final data set that is to be used for all
subsequent phases. This phase is very labor intensive.

b. Select the cases and variables you want to analyze and that are appropriate
for your analysis.

c. Perform transformations on certain variables, if needed.

d. Clean the raw data so that it is ready for the modeling tools.

4. Modeling phase

a. Select and apply appropriate modeling techniques.

b. Calibrate model settings to optimize results.

c. Remember that often, several different techniques may be used for the same
data mining problem.

d. If necessary, loop back to the data preparation phase to bring the form of
the data into line with the specific requirements of a particular data mining
technique.

5. Evaluation phase

a. Evaluate the one or more models delivered in the modeling phase for quality
and effectiveness before deploying them for use in the field.

b. Determine whether the model in fact achieves the objectives set for it in the
first phase.

c. Establish whether some important facet of the business or research problem
has not been accounted for sufficiently.

d. Come to a decision regarding use of the data mining results.

6. Deployment phase

a. Make use of the models created: Model creation does not signify the com-
pletion of a project.

b. Example of a simple deployment: Generate a report.

c. Example of a more complex deployment: Implement a parallel data mining
process in another department.

d. For businesses, the customer often carries out the deployment based on your
model.

You can find out much more information about the CRISP–DM standard process
at www.crisp-dm.org. Next, we turn to an example of a company applying CRISP–
DM to a business problem.
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CASE STUDY 1
ANALYZING AUTOMOBILE WARRANTY CLAIMS: EXAMPLE OF THE
CRISP–DM INDUSTRY STANDARD PROCESS IN ACTION [17]

Quality assurance continues to be a priority for automobile manufacturers, including Daimler
Chrysler. Jochen Hipp of the University of Tubingen, Germany, and Guido Lindner of Daim-
lerChrysler AG, Germany, investigated patterns in the warranty claims for DaimlerChrysler
automobiles.

1. Business Understanding Phase

DaimlerChrysler’s objectives are to reduce costs associated with warranty claims and im-
prove customer satisfaction. Through conversations with plant engineers, who are the technical
experts in vehicle manufacturing, the researchers are able to formulate specific business prob-
lems, such as the following:

� Are there interdependencies among warranty claims?
� Are past warranty claims associated with similar claims in the future?
� Is there an association between a certain type of claim and a particular garage?

The plan is to apply appropriate data mining techniques to try to uncover these and other
possible associations.

2. Data Understanding Phase

The researchers make use of DaimlerChrysler’s Quality Information System (QUIS), which
contains information on over 7 million vehicles and is about 40 gigabytes in size. QUIS
contains production details about how and where a particular vehicle was constructed, including
an average of 30 or more sales codes for each vehicle. QUIS also includes warranty claim
information, which the garage supplies, in the form of one of more than 5000 possible potential
causes.

The researchers stressed the fact that the database was entirely unintelligible to domain
nonexperts: “So experts from different departments had to be located and consulted; in brief a
task that turned out to be rather costly.” They emphasize that analysts should not underestimate
the importance, difficulty, and potential cost of this early phase of the data mining process, and
that shortcuts here may lead to expensive reiterations of the process downstream.

3. Data Preparation Phase

The researchers found that although relational, the QUIS database had limited SQL access.
They needed to select the cases and variables of interest manually, and then manually derive
new variables that could be used for the modeling phase. For example, the variable number of
days from selling date until first claim had to be derived from the appropriate date attributes.

They then turned to proprietary data mining software, which had been used at
DaimlerChrysler on earlier projects. Here they ran into a common roadblock—that the data
format requirements varied from algorithm to algorithm. The result was further exhaustive pre-
processing of the data, to transform the attributes into a form usable for model algorithms. The
researchers mention that the data preparation phase took much longer than they had planned.
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4. Modeling Phase

Since the overall business problem from phase 1 was to investigate dependence among the war-
ranty claims, the researchers chose to apply the following techniques: (1) Bayesian networks
and (2) association rules. Bayesian networks model uncertainty by explicitly representing the
conditional dependencies among various components, thus providing a graphical visualization
of the dependency relationships among the components. As such, Bayesian networks represent
a natural choice for modeling dependence among warranty claims. The mining of association
rules is covered in Chapter 10. Association rules are also a natural way to investigate depen-
dence among warranty claims since the confidence measure represents a type of conditional
probability, similar to Bayesian networks.

The details of the results are confidential, but we can get a general idea of the type of
dependencies uncovered by the models. One insight the researchers uncovered was that a
particular combination of construction specifications doubles the probability of encountering
an automobile electrical cable problem. DaimlerChrysler engineers have begun to investigate
how this combination of factors can result in an increase in cable problems.

The researchers investigated whether certain garages had more warranty claims of a certain
type than did other garages. Their association rule results showed that, indeed, the confidence
levels for the rule “If garage X, then cable problem,” varied considerably from garage to garage.
They state that further investigation is warranted to reveal the reasons for the disparity.

5. Evaluation Phase

The researchers were disappointed that the support for sequential-type association rules was
relatively small, thus precluding generalization of the results, in their opinion. Overall, in fact,
the researchers state: “In fact, we did not find any rule that our domain experts would judge
as interesting, at least at first sight.” According to this criterion, then, the models were found
to be lacking in effectiveness and to fall short of the objectives set for them in the business
understanding phase. To account for this, the researchers point to the “legacy” structure of the
database, for which automobile parts were categorized by garages and factories for historic or
technical reasons and not designed for data mining. They suggest adapting and redesigning the
database to make it more amenable to knowledge discovery.

6. Deployment Phase

The researchers have identified the foregoing project as a pilot project, and as such, do not intend
to deploy any large-scale models from this first iteration. After the pilot project, however, they
have applied the lessons learned from this project, with the goal of integrating their methods
with the existing information technology environment at DaimlerChrysler. To further support
the original goal of lowering claims costs, they intend to develop an intranet offering mining
capability of QUIS for all corporate employees.

What lessons can we draw from this case study? First, the general impression
one draws is that uncovering hidden nuggets of knowledge in databases is a rocky road.
In nearly every phase, the researchers ran into unexpected roadblocks and difficulties.
This tells us that actually applying data mining for the first time in a company requires
asking people to do something new and different, which is not always welcome.
Therefore, if they expect results, corporate management must be 100% supportive of
new data mining initiatives.
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Another lesson to draw is that intense human participation and supervision is
required at every stage of the data mining process. For example, the algorithms require
specific data formats, which may require substantial preprocessing (see Chapter 2).
Regardless of what some software vendor advertisements may claim, you can’t just
purchase some data mining software, install it, sit back, and watch it solve all your
problems. Data mining is not magic. Without skilled human supervision, blind use
of data mining software will only provide you with the wrong answer to the wrong
question applied to the wrong type of data. The wrong analysis is worse than no
analysis, since it leads to policy recommendations that will probably turn out to be
expensive failures.

Finally, from this case study we can draw the lesson that there is no guarantee of
positive results when mining data for actionable knowledge, any more than when one
is mining for gold. Data mining is not a panacea for solving business problems. But
used properly, by people who understand the models involved, the data requirements,
and the overall project objectives, data mining can indeed provide actionable and
highly profitable results.

FALLACIES OF DATA MINING

Speaking before the U.S. House of Representatives Subcommittee on Technology,
Information Policy, Intergovernmental Relations, and Census, Jen Que Louie, presi-
dent of Nautilus Systems, Inc., described four fallacies of data mining [18]. Two of
these fallacies parallel the warnings we described above.

� Fallacy 1. There are data mining tools that we can turn loose on our data
repositories and use to find answers to our problems.

◦ Reality. There are no automatic data mining tools that will solve your problems
mechanically “while you wait.” Rather, data mining is a process, as we have
seen above. CRISP–DM is one method for fitting the data mining process
into the overall business or research plan of action.

� Fallacy 2. The data mining process is autonomous, requiring little or no human
oversight.

◦ Reality. As we saw above, the data mining process requires significant human
interactivity at each stage. Even after the model is deployed, the introduction
of new data often requires an updating of the model. Continuous quality mon-
itoring and other evaluative measures must be assessed by human analysts.

� Fallacy 3. Data mining pays for itself quite quickly.

◦ Reality. The return rates vary, depending on the startup costs, analysis per-
sonnel costs, data warehousing preparation costs, and so on.

� Fallacy 4. Data mining software packages are intuitive and easy to use.

◦ Reality. Again, ease of use varies. However, data analysts must combine
subject matter knowledge with an analytical mind and a familiarity with the
overall business or research model.
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To the list above, we add two additional common fallacies:
� Fallacy 5. Data mining will identify the causes of our business or research

problems.

◦ Reality. The knowledge discovery process will help you to uncover patterns
of behavior. Again, it is up to humans to identify the causes.

� Fallacy 6. Data mining will clean up a messy database automatically.

◦ Reality. Well, not automatically. As a preliminary phase in the data mining
process, data preparation often deals with data that has not been examined or
used in years. Therefore, organizations beginning a new data mining operation
will often be confronted with the problem of data that has been lying around
for years, is stale, and needs considerable updating.

The discussion above may have been termed what data mining cannot or should
not do. Next we turn to a discussion of what data mining can do.

WHAT TASKS CAN DATA MINING ACCOMPLISH?

Next, we investigate the main tasks that data mining is usually called upon to accom-
plish. The following list shows the most common data mining tasks.

� Description
� Estimation
� Prediction
� Classification
� Clustering
� Association

Description

Sometimes, researchers and analysts are simply trying to find ways to describe patterns
and trends lying within data. For example, a pollster may uncover evidence that
those who have been laid off are less likely to support the present incumbent in
the presidential election. Descriptions of patterns and trends often suggest possible
explanations for such patterns and trends. For example, those who are laid off are now
less well off financially than before the incumbent was elected, and so would tend to
prefer an alternative.

Data mining models should be as transparent as possible. That is, the results of
the data mining model should describe clear patterns that are amenable to intuitive in-
terpretation and explanation. Some data mining methods are more suited than others to
transparent interpretation. For example, decision trees provide an intuitive and human-
friendly explanation of their results. On the other hand, neural networks are compara-
tively opaque to nonspecialists, due to the nonlinearity and complexity of the model.

High-quality description can often be accomplished by exploratory data anal-
ysis, a graphical method of exploring data in search of patterns and trends. We look
at exploratory data analysis in Chapter 3.
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Estimation

Estimation is similar to classification except that the target variable is numerical rather
than categorical. Models are built using “complete” records, which provide the value
of the target variable as well as the predictors. Then, for new observations, estimates
of the value of the target variable are made, based on the values of the predictors.
For example, we might be interested in estimating the systolic blood pressure reading
of a hospital patient, based on the patient’s age, gender, body-mass index, and blood
sodium levels. The relationship between systolic blood pressure and the predictor
variables in the training set would provide us with an estimation model. We can then
apply that model to new cases.

Examples of estimation tasks in business and research include:

� Estimating the amount of money a randomly chosen family of four will spend
for back-to-school shopping this fall.

� Estimating the percentage decrease in rotary-movement sustained by a National
Football League running back with a knee injury.

� Estimating the number of points per game that Patrick Ewing will score when
double-teamed in the playoffs.

� Estimating the grade-point average (GPA) of a graduate student, based on that
student’s undergraduate GPA.

Consider Figure 1.2, where we have a scatter plot of the graduate grade-point
averages (GPAs) against the undergraduate GPAs for 1000 students. Simple linear
regression allows us to find the line that best approximates the relationship between
these two variables, according to the least-squares criterion. The regression line,
indicated in blue in Figure 1.2, may then be used to estimate the graduate GPA of a
student given that student’s undergraduate GPA. Here, the equation of the regression
line (as produced by the statistical package Minitab, which also produced the graph)
is ŷ = 1.24 + 0.67x . This tells us that the estimated graduate GPA ŷ equals 1.24 plus
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Figure 1.2 Regression estimates lie on the regression line.
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0.67 times the student’s undergraduate GPA. For example, if your undergrad GPA is
3.0, your estimated graduate GPA is ŷ = 1.24 + 0.67(3) = 3.25. Note that this point
(x = 3.0, ŷ = 3.25) lies precisely on the regression line, as do all linear regression
predictions.

The field of statistical analysis supplies several venerable and widely used
estimation methods. These include point estimation and confidence interval estima-
tions, simple linear regression and correlation, and multiple regression. We examine
these methods in Chapter 4. Neural networks (Chapter 7) may also be used for esti-
mation.

Prediction

Prediction is similar to classification and estimation, except that for prediction, the
results lie in the future. Examples of prediction tasks in business and research include:

� Predicting the price of a stock three months into the future (Figure 1.3)
� Predicting the percentage increase in traffic deaths next year if the speed limit

is increased
� Predicting the winner of this fall’s baseball World Series, based on a comparison

of team statistics
� Predicting whether a particular molecule in drug discovery will lead to a prof-

itable new drug for a pharmaceutical company

Any of the methods and techniques used for classification and estimation may
also be used, under appropriate circumstances, for prediction. These include the
traditional statistical methods of point estimation and confidence interval estimations,
simple linear regression and correlation, and multiple regression, investigated in
Chapter 4, as well as data mining and knowledge discovery methods such as neural
network (Chapter 7), decision tree (Chapter 6), and k-nearest neighbor (Chapter 5)
methods. An application of prediction using neural networks is examined later in the
chapter in Case Study 2.
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Figure 1.3 Predicting the price of a stock three months in the future.
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Classification

In classification, there is a target categorical variable, such as income bracket, which,
for example, could be partitioned into three classes or categories: high income, middle
income, and low income. The data mining model examines a large set of records, each
record containing information on the target variable as well as a set of input or predictor
variables. For example, consider the excerpt from a data set shown in Table 1.1.
Suppose that the researcher would like to be able to classify the income brackets of
persons not currently in the database, based on other characteristics associated with
that person, such as age, gender, and occupation. This task is a classification task, very
nicely suited to data mining methods and techniques. The algorithm would proceed
roughly as follows. First, examine the data set containing both the predictor variables
and the (already classified) target variable, income bracket. In this way, the algorithm
(software) “learns about” which combinations of variables are associated with which
income brackets. For example, older females may be associated with the high-income
bracket. This data set is called the training set. Then the algorithm would look at
new records, for which no information about income bracket is available. Based on
the classifications in the training set, the algorithm would assign classifications to the
new records. For example, a 63-year-old female professor might be classified in the
high-income bracket.

Examples of classification tasks in business and research include:

� Determining whether a particular credit card transaction is fraudulent
� Placing a new student into a particular track with regard to special needs
� Assessing whether a mortgage application is a good or bad credit risk
� Diagnosing whether a particular disease is present
� Determining whether a will was written by the actual deceased, or fraudulently

by someone else
� Identifying whether or not certain financial or personal behavior indicates a

possible terrorist threat

For example, in the medical field, suppose that we are interested in classifying
the type of drug a patient should be prescribed, based on certain patient characteristics,
such as the age of the patient and the patient’s sodium/potassium ratio. Figure 1.4 is
a scatter plot of patients’ sodium/potassium ratio against patients’ ages for a sample
of 200 patients. The particular drug prescribed is symbolized by the shade of the
points. Light gray points indicate drug Y; medium gray points indicate drug A or X;

TABLE 1.1 Excerpt from Data Set for Classifying Income

Subject Age Gender Occupation Income Bracket

001 47 F Software engineer High

002 28 M Marketing consultant Middle

003 35 M Unemployed Low
...
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Figure 1.4 Which drug should be prescribed for which type of patient?

dark gray points indicate drug B or C. This plot was generated using the Clementine
data mining software suite, published by SPSS.

In this scatter plot, Na/K (sodium/potassium ratio) is plotted on the Y (vertical)
axis and age is plotted on the X (horizontal) axis. Suppose that we base our prescription
recommendation on this data set.

1. Which drug should be prescribed for a young patient with a high sodium/
potassium ratio?

◦ Young patients are on the left in the graph, and high sodium/potassium ra-
tios are in the upper half, which indicates that previous young patients with
high sodium/potassium ratios were prescribed drug Y (light gray points). The
recommended prediction classification for such patients is drug Y.

2. Which drug should be prescribed for older patients with low sodium/potassium
ratios?

◦ Patients in the lower right of the graph have been taking different prescriptions,
indicated by either dark gray (drugs B and C) or medium gray (drugs A
and X). Without more specific information, a definitive classification cannot
be made here. For example, perhaps these drugs have varying interactions
with beta-blockers, estrogens, or other medications, or are contraindicated
for conditions such as asthma or heart disease.

Graphs and plots are helpful for understanding two- and three-dimensional re-
lationships in data. But sometimes classifications need to be based on many different
predictors, requiring a many-dimensional plot. Therefore, we need to turn to more so-
phisticated models to perform our classification tasks. Common data mining methods
used for classification are k-nearest neighbor (Chapter 5), decision tree (Chapter 6),
and neural network (Chapter 7). An application of classification using decision trees
is examined in Case Study 4.
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Clustering

Clustering refers to the grouping of records, observations, or cases into classes of
similar objects. A cluster is a collection of records that are similar to one another, and
dissimilar to records in other clusters. Clustering differs from classification in that
there is no target variable for clustering. The clustering task does not try to classify,
estimate, or predict the value of a target variable. Instead, clustering algorithms seek
to segment the entire data set into relatively homogeneous subgroups or clusters,
where the similarity of the records within the cluster is maximized and the similarity
to records outside the cluster is minimized.

Claritas, Inc. [19] is in the clustering business. Among the services they provide
is a demographic profile of each of the geographic areas in the country, as defined
by zip code. One of the clustering mechanisms they use is the PRIZM segmentation
system, which describes every U.S. zip code area in terms of distinct lifestyle types
(Table 1.2). Just go to the company’s Web site [19], enter a particular zip code, and
you are shown the most common PRIZM clusters for that zip code.

What do these clusters mean? For illustration, let’s look up the clusters for
zip code 90210, Beverly Hills, California. The resulting clusters for zip code 90210
are:

� Cluster 01: Blue Blood Estates
� Cluster 10: Bohemian Mix
� Cluster 02: Winner’s Circle
� Cluster 07: Money and Brains
� Cluster 08: Young Literati

TABLE 1.2 The 62 Clusters Used by the PRIZM Segmentation System

01 Blue Blood Estates 02 Winner’s Circle 03 Executive Suites 04 Pools & Patios

05 Kids & Cul-de-Sacs 06 Urban Gold Coast 07 Money & Brains 08 Young Literati

09 American Dreams 10 Bohemian Mix 11 Second City Elite 12 Upward Bound

13 Gray Power 14 Country Squires 15 God’s Country 16 Big Fish, Small Pond

17 Greenbelt Families 18 Young Influentials 19 New Empty Nests 20 Boomers & Babies

21 Suburban Sprawl 22 Blue-Chip Blues 23 Upstarts & Seniors 24 New Beginnings

25 Mobility Blues 26 Gray Collars 27 Urban Achievers 28 Big City Blend

29 Old Yankee Rows 30 Mid-City Mix 31 Latino America 32 Middleburg Managers

33 Boomtown Singles 34 Starter Families 35 Sunset City Blues 36 Towns & Gowns

37 New Homesteaders 38 Middle America 39 Red, White & Blues 40 Military Quarters

41 Big Sky Families 42 New Eco-topia 43 River City, USA 44 Shotguns & Pickups

45 Single City Blues 46 Hispanic Mix 47 Inner Cities 48 Smalltown Downtown

49 Hometown Retired 50 Family Scramble 51 Southside City 52 Golden Ponds

53 Rural Industria 54 Norma Rae-Ville 55 Mines & Mills 56 Agri-Business

57 Grain Belt 58 Blue Highways 59 Rustic Elders 60 Back Country Folks

61 Scrub Pine Flats 62 Hard Scrabble

Source: Claritas, Inc.
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The description for cluster 01, Blue Blood Estates, is: “Established executives,
professionals, and ‘old money’ heirs that live in America’s wealthiest suburbs. They
are accustomed to privilege and live luxuriously—one-tenth of this group’s members
are multimillionaires. The next affluence level is a sharp drop from this pinnacle.”

Examples of clustering tasks in business and research include:
� Target marketing of a niche product for a small-capitalization business that does

not have a large marketing budget
� For accounting auditing purposes, to segmentize financial behavior into benign

and suspicious categories
� As a dimension-reduction tool when the data set has hundreds of attributes
� For gene expression clustering, where very large quantities of genes may exhibit

similar behavior

Clustering is often performed as a preliminary step in a data mining process,
with the resulting clusters being used as further inputs into a different technique
downstream, such as neural networks. We discuss hierarchical and k-means clustering
in Chapter 8 and Kohonen networks in Chapter 9. An application of clustering is
examined in Case Study 5.

Association

The association task for data mining is the job of finding which attributes “go to-
gether.” Most prevalent in the business world, where it is known as affinity analysis or
market basket analysis, the task of association seeks to uncover rules for quantifying
the relationship between two or more attributes. Association rules are of the form “If
antecedent, then consequent,” together with a measure of the support and confidence
associated with the rule. For example, a particular supermarket may find that of the
1000 customers shopping on a Thursday night, 200 bought diapers, and of those 200
who bought diapers, 50 bought beer. Thus, the association rule would be “If buy dia-
pers, then buy beer” with a support of 200/1000 = 20% and a confidence of 50/200 =
25%.

Examples of association tasks in business and research include:
� Investigating the proportion of subscribers to a company’s cell phone plan that

respond positively to an offer of a service upgrade
� Examining the proportion of children whose parents read to them who are

themselves good readers
� Predicting degradation in telecommunications networks
� Finding out which items in a supermarket are purchased together and which

items are never purchased together
� Determining the proportion of cases in which a new drug will exhibit dangerous

side effects

We discuss two algorithms for generating association rules, the a priori algo-
rithm and the GRI algorithm, in Chapter 10. Association rules were utilized in Case
Study 1. We examine another application of association rules in Case Study 3.
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Next we examine four case studies, each of which demonstrates a particular
data mining task in the context of the CRISP–DM data mining standard process.

CASE STUDY 2
PREDICTING ABNORMAL STOCK MARKET RETURNS
USING NEURAL NETWORKS [20]

1. Business/Research Understanding Phase

Alan M. Safer, of California State University–Long Beach, reports that stock market trades
made by insiders usually have abnormal returns. Increased profits can be made by outsiders
using legal insider trading information, especially by focusing on attributes such as company
size and the time frame for prediction. Safer is interested in using data mining methodol-
ogy to increase the ability to predict abnormal stock price returns arising from legal insider
trading.

2. Data Understanding Phase

Safer collected data from 343 companies, extending from January 1993 to June 1997 (the
source of the data being the Securities and Exchange Commission). The stocks used in the
study were all of the stocks that had insider records for the entire period and were in the S&P
600, S&P 400, or S&P 500 (small, medium, and large capitalization, respectively) as of June
1997. Of the 946 resulting stocks that met this description, Safer chose only those stocks that
underwent at least two purchase orders per year, to assure a sufficient amount of transaction
data for the data mining analyses. This resulted in 343 stocks being used for the study. The
variables in the original data set include the company, name and rank of the insider, transaction
date, stock price, number of shares traded, type of transaction (buy or sell), and number of
shares held after the trade. To assess an insider’s prior trading patterns, the study examined the
previous 9 and 18 weeks of trading history. The prediction time frames for predicting abnormal
returns were established as 3, 6, 9, and 12 months.

3. Data Preparation Phase

Safer decided that the company rank of the insider would not be used as a study attribute, since
other research had shown it to be of mixed predictive value for predicting abnormal stock price
returns. Similarly, he omitted insiders who were uninvolved with company decisions. (Note
that the present author does not necessarily agree with omitting variables prior to the modeling
phase, because of earlier findings of mixed predictive value. If they are indeed of no predictive
value, the models will so indicate, presumably. But if there is a chance of something interesting
going on, the model should perhaps be given an opportunity to look at it. However, Safer is the
domain expert in this area.)

4. Modeling Phase

The data were split into a training set (80% of the data) and a validation set (20%). A neural
network model was applied, which uncovered the following results:
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a. Certain industries had the most predictable abnormal stock returns, including:
� Industry group 36: electronic equipment, excluding computer equipment
� Industry Group 28: chemical products
� Industry Group 37: transportation equipment
� Industry Group 73: business services

b. Predictions that looked further into the future (9 to 12 months) had increased ability to
identify unusual insider trading variations than did predictions that had a shorter time
frame (3 to 6 months).

c. It was easier to predict abnormal stock returns from insider trading for small companies
than for large companies.

5. Evaluation Phase

Safer concurrently applied a multivariate adaptive regression spline (MARS, not covered here)
model to the same data set. The MARS model uncovered many of the same findings as the
neural network model, including results (a) and (b) from the modeling phase. Such a conflu-
ence of results is a powerful and elegant method for evaluating the quality and effectiveness
of the model, analogous to getting two independent judges to concur on a decision. Data
miners should strive to produce such a confluence of results whenever the opportunity arises.
This is possible because often more than one data mining method may be applied appropri-
ately to the problem at hand. If both models concur as to the results, this strengthens our
confidence in the findings. If the models disagree, we should probably investigate further.
Sometimes, one type of model is simply better suited to uncovering a certain type of re-
sult, but sometimes, disagreement indicates deeper problems, requiring cycling back to earlier
phases.

6. Deployment Phase

The publication of Safer’s findings in Intelligent Data Analysis [20] constitutes one method of
model deployment. Now, analysts from around the world can take advantage of his methods to
track the abnormal stock price returns of insider trading and thereby help to protect the small
investor.

CASE STUDY 3
MINING ASSOCIATION RULES FROM LEGAL DATABASES [21]

1. Business/Research Understanding Phase

The researchers, Sasha Ivkovic and John Yearwood of the University of Ballarat, and Andrew
Stranieri of La Trobe University, Australia, are interested in whether interesting and actionable
association rules can be uncovered in a large data set containing information on applicants for
government-funded legal aid in Australia. Because most legal data is not structured in a manner
easily suited to most data mining techniques, application of knowledge discovery methods to
legal data has not developed as quickly as in other areas. The researchers’ goal is to improve
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the delivery of legal services and just outcomes in law, through improved use of available legal
data.

2. Data Understanding Phase

The data are provided by Victoria Legal Aid (VLA), a semigovernmental organization that
aims to provide more effective legal aid for underprivileged people in Australia. Over 380,000
applications for legal aid were collected from the 11 regional offices of VLA, spanning 1997–
1999, including information on more than 300 variables. In an effort to reduce the number of
variables, the researchers turned to domain experts for assistance. These experts selected seven
of the most important variables for inclusion in the data set: gender, age, occupation, reason for
refusal of aid, law type (e.g., civil law), decision (i.e., aid granted or not granted), and dealing
type (e.g., court appearance).

3. Data Preparation Phase

The VLA data set turned out to be relatively clean, containing very few records with missing or
incorrectly coded attribute values. This is in part due to the database management system used
by the VLA, which performs quality checks on input data. The age variable was partitioned
into discrete intervals such as “under 18,” “over 50,” and so on.

4. Modeling Phase

Rules were restricted to having only a single antecedent and a single consequent. Many in-
teresting association rules were uncovered, along with many uninteresting rules, which is the
typical scenario for association rule mining. One such interesting rule was: If place of birth =
Vietnam, then law type = criminal law, with 90% confidence.

The researchers proceeded on the accurate premise that association rules are interesting
if they spawn interesting hypotheses. A discussion among the researchers and experts for the
reasons underlying the association rule above considered the following hypotheses:

� Hypothesis A: Vietnamese applicants applied for support only for criminal law and not
for other types, such as family and civil law.

� Hypothesis B: Vietnamese applicants committed more crime than other groups.
� Hypothesis C: There is a lurking variable. Perhaps Vietnamese males are more likely

than females to apply for aid, and males are more associated with criminal law.
� Hypothesis D: The Vietnamese did not have ready access to VLA promotional material.

The panel of researchers and experts concluded informally that hypothesis A was most
likely, although further investigation is perhaps warranted, and no causal link can be assumed.
Note, however, the intense human interactivity throughout the data mining process. Without
the domain experts’ knowledge and experience, the data mining results in this case would not
have been fruitful.

5. Evaluation Phase

The researchers adopted a unique evaluative methodology for their project. They brought in
three domain experts and elicited from them their estimates of the confidence levels for each of
144 association rules. These estimated confidence levels were then compared with the actual
confidence levels of the association rules uncovered in the data set.
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6. Deployment Phase

A useful Web-based application, WebAssociator, was developed, so that nonspecialists could
take advantage of the rule-building engine. Users select the single antecedent and single conse-
quent using a Web-based form. The researchers suggest that WebAssociator could be deployed
as part of a judicial support system, especially for identifying unjust processes.

CASE STUDY 4
PREDICTING CORPORATE BANKRUPTCIES USING
DECISION TREES [22]

1. Business/Research Understanding Phase

The recent economic crisis in East Asia has spawned an unprecedented level of corporate
bankruptcies in that region and around the world. The goal of the researchers, Tae Kyung
Sung from Kyonggi University, Namsik Chang from the University of Seoul, and Gunhee
Lee of Sogang University, Korea, is to develop models for predicting corporate bankruptcies
that maximize the interpretability of the results. They felt that interpretability was important
because a negative bankruptcy prediction can itself have a devastating impact on a financial
institution, so that firms that are predicted to go bankrupt demand strong and logical reaso-
ning.

If one’s company is in danger of going under, and a prediction of bankruptcy could itself
contribute to the final failure, that prediction better be supported by solid “trace-able” evidence,
not by a simple up/down decision delivered by a black box. Therefore, the researchers chose
decision trees as their analysis method, because of the transparency of the algorithm and the
interpretability of results.

2. Data Understanding Phase

The data included two groups, Korean firms that went bankrupt in the relatively stable growth
period of 1991–1995, and Korean firms that went bankrupt in the economic crisis conditions of
1997–1998. After various screening procedures, 29 firms were identified, mostly in the man-
ufacturing sector. The financial data was collected directly from the Korean Stock Exchange,
and verified by the Bank of Korea and the Korea Industrial Bank.

3. Data Preparation Phase

Fifty-six financial ratios were identified by the researchers through a search of the literature
on bankruptcy prediction, 16 of which were then dropped due to duplication. There remained
40 financial ratios in the data set, including measures of growth, profitability, safety/leverage,
activity/efficiency, and productivity.

4. Modeling Phase

Separate decision tree models were applied to the “normal-conditions” data and the “crisis-
conditions” data. As we shall learn in Chapter 6, decision tree models can easily generate rule
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sets. Some of the rules uncovered for the normal-conditions data were as follows:

� If the productivity of capital is greater than 19.65, predict nonbankrupt with 86%
confidence.

� If the ratio of cash flow to total assets is greater than −5.65, predict nonbankrupt with
95% confidence.

� If the productivity of capital is at or below 19.65 and the ratio of cash flow to total assets
is at or below −5.65, predict bankrupt with 84% confidence.

Some of the rules uncovered for the crisis-conditions data were as follows:

� If the productivity of capital is greater than 20.61, predict nonbankrupt with 91%
confidence.

� If the ratio of cash flow to liabilities is greater than 2.64, predict nonbankrupt with 85%
confidence.

� If the ratio of fixed assets to stockholders’ equity and long-term liabilities is greater than
87.23, predict nonbankrupt with 86% confidence.

� If the productivity of capital is at or below 20.61, and the ratio of cash flow to liabilities
is at or below 2.64, and the ratio of fixed assets to stockholders’ equity and long-term
liabilities is at or below 87.23, predict bankrupt with 84% confidence.

Cash flow and productivity of capital were found to be important regardless of the eco-
nomic conditions. While cash flow is well known in the bankruptcy prediction literature, the
identification of productivity of capital was relatively rare, which therefore demanded further
verification.

5. Evaluation Phase

The researchers convened an expert panel of financial specialists, which unanimously selected
productivity of capital as the most important attribute for differentiating firms in danger of
bankruptcy from other firms. Thus, the unexpected results discovered by the decision tree
model were verified by the experts.

To ensure that the model was generalizable to the population of all Korean manufacturing
firms, a control sample of nonbankrupt firms was selected, and the attributes of the control
sample were compared to those of the companies in the data set. It was found that the con-
trol sample’s average assets and average number of employees were within 20% of the data
sample.

Finally, the researchers applied multiple discriminant analysis as a performance benchmark.
Many of the 40 financial ratios were found to be significant predictors of bankruptcy, and the
final discriminant function included variables identified by the decision tree model.

6. Deployment Phase

There was no deployment identified per se. As mentioned earlier, deployment is often at
the discretion of users. However, because of this research, financial institutions in Korea are
now better aware of the predictors for bankruptcy for crisis conditions, as opposed to normal
conditions.
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CASE STUDY 5
PROFILING THE TOURISM MARKET USING k-MEANS
CLUSTERING ANALYSIS [23]

1. Business/Research Understanding Phase

The researchers, Simon Hudson and Brent Ritchie, of the University of Calgary, Alberta,
Canada, are interested in studying intraprovince tourist behavior in Alberta. They would like
to create profiles of domestic Albertan tourists based on the decision behavior of the tourists.
The overall goal of the study was to form a quantitative basis for the development of an
intraprovince marketing campaign, sponsored by Travel Alberta. Toward this goal, the main
objectives were to determine which factors were important in choosing destinations in Alberta,
to evaluate the domestic perceptions of the “Alberta vacation product,” and to attempt to
comprehend the travel decision-making process.

2. Data Understanding Phase

The data were collected in late 1999 using a phone survey of 13,445 Albertans. The respondents
were screened according to those who were over 18 and had traveled for leisure at least
80 kilometers for at least one night within Alberta in the past year. Only 3071 of these 13,445
completed the survey and were eligible for inclusion in the study.

3. Data Preparation Phase

One of the survey questions asked the respondents to indicate to what extent each of the factors
from a list of 13 factors most influence their travel decisions. These were then considered to
be variables upon which the cluster analysis was performed, and included such factors as the
quality of accommodations, school holidays, and weather conditions.

4. Modeling Phase

Clustering is a natural method for generating segment profiles. The researchers chose k-means
clustering, since that algorithm is quick and efficient as long as you know the number of
clusters you expect to find. They explored between two and six cluster models before settling
on a five-cluster solution as best reflecting reality. Brief profiles of the clusters are as follows:

� Cluster 1: the young urban outdoor market. Youngest of all clusters, equally balanced
genderwise, with school schedules and budgets looming large in their travel decisions.

� Cluster 2: the indoor leisure traveler market. Next youngest and very female, mostly
married with children, with visiting family and friends a major factor in travel plans.

� Cluster 3: the children-first market. More married and more children than any other
cluster, with children’s sports and competition schedules having great weight in deciding
where to travel in Alberta.

� Cluster 4: the fair-weather-friends market. Second-oldest, slightly more male group,
with weather conditions influencing travel decisions.

� Cluster 5: the older, cost-conscious traveler market. The oldest of the clusters, most
influenced by cost/value considerations and a secure environment when making Alberta
travel decisions.
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5. Evaluation Phase

Discriminant analysis was used to verify the “reality” of the cluster categorizations, correctly
classifying about 93% of subjects into the right clusters. The discriminant analysis also showed
that the differences between clusters were statistically significant.

6. Deployment Phase

These study findings resulted in the launching of a new marketing campaign, “Alberta, Made to
Order,” based on customizing the marketing to the cluster types uncovered in the data mining.
More than 80 projects were launched, through a cooperative arrangement between government
and business. “Alberta, Made to Order,” television commercials have now been viewed about
20 times by over 90% of adults under 55. Travel Alberta later found an increase of over 20%
in the number of Albertans who indicated Alberta as a “top-of-the-mind” travel destination.
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EXERCISES
1. Refer to the Bank of America example early in the chapter. Which data mining task or

tasks are implied in identifying “the type of marketing approach for a particular customer,
based on the customer’s individual profile”? Which tasks are not explicitly relevant?

2. For each of the following, identify the relevant data mining task(s):

a. The Boston Celtics would like to approximate how many points their next opponent
will score against them.

b. A military intelligence officer is interested in learning about the respective proportions
of Sunnis and Shias in a particular strategic region.

c. A NORAD defense computer must decide immediately whether a blip on the radar is
a flock of geese or an incoming nuclear missile.

d. A political strategist is seeking the best groups to canvass for donations in a particular
county.

e. A homeland security official would like to determine whether a certain sequence of
financial and residence moves implies a tendency to terrorist acts.

f. A Wall Street analyst has been asked to find out the expected change in stock price for
a set of companies with similar price/earnings ratios.

3. For each of the following meetings, explain which phase in the CRISP–DM process is
represented:

a. Managers want to know by next week whether deployment will take place. Therefore,
analysts meet to discuss how useful and accurate their model is.

b. The data mining project manager meets with the data warehousing manager to discuss
how the data will be collected.

c. The data mining consultant meets with the vice president for marketing, who says that
he would like to move forward with customer relationship management.
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d. The data mining project manager meets with the production line supervisor to discuss
implementation of changes and improvements.

e. The analysts meet to discuss whether the neural network or decision tree models should
be applied.

4. Discuss the need for human direction of data mining. Describe the possible consequences
of relying on completely automatic data analysis tools.

5. CRISP–DM is not the only standard process for data mining. Research an alternative
methodology. (Hint: SEMMA, from the SAS Institute.) Discuss the similarities and dif-
ferences with CRISP–DM.

6. Discuss the lessons drawn from Case Study 1. Why do you think the author chose a case
study where the road was rocky and the results less than overwhelming?

7. Consider the business understanding phase of Case Study 2.

a. Restate the research question in your own words.

b. Describe the possible consequences for any given data mining scenario of the data
analyst not completely understanding the business or research problem.

8. Discuss the evaluation method used for Case Study 3 in light of Exercise 4.

9. Examine the association rules uncovered in Case Study 4.

a. Which association rule do you think is most useful under normal conditions? Under
crisis conditions?

b. Describe how these association rules could be used to help decrease the rate of company
failures in Korea.

10. Examine the clusters found in Case Study 5.

a. Which cluster do you find yourself or your relatives in?

b. Describe how you would use the information from the clusters to increase tourism in
Alberta.
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CHAPTER 2
DATA PREPROCESSING

WHY DO WE NEED TO PREPROCESS THE DATA?

DATA CLEANING

HANDLING MISSING DATA

IDENTIFYING MISCLASSIFICATIONS

GRAPHICAL METHODS FOR IDENTIFYING OUTLIERS

DATA TRANSFORMATION

NUMERICAL METHODS FOR IDENTIFYING OUTLIERS

Chapter 1 introduced us to data mining and the CRISP—DM standard process for data
mining model development. The case studies we looked at in Chapter 1 gave us an idea
of how businesses and researchers apply phase 1 in the data mining process, business
understanding or research understanding. We saw examples of how businesses and
researchers first enunciate project objectives, then translate these objectives into the
formulation of a data mining problem definition, and finally, prepare a preliminary
strategy for achieving these objectives.

Here in Chapter 2 we examine the next two phases of the CRISP—DM standard
process, data understanding and data preparation. We show how to evaluate the qual-
ity of the data, clean the raw data, deal with missing data, and perform transformations
on certain variables.

All of Chapter 3 is devoted to this very important aspect of the data under-
standing. The heart of any data mining project is the modeling phase, which we begin
examining in Chapter 4.

WHY DO WE NEED TO PREPROCESS THE DATA?

Much of the raw data contained in databases is unpreprocessed, incomplete, and noisy.
For example, the databases may contain:

� Fields that are obsolete or redundant
� Missing values

Discovering Knowledge in Data: An Introduction to Data Mining, By Daniel T. Larose
ISBN 0-471-66657-2 Copyright C© 2005 John Wiley & Sons, Inc.
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� Outliers
� Data in a form not suitable for data mining models
� Values not consistent with policy or common sense.

To be useful for data mining purposes, the databases need to undergo prepro-
cessing, in the form of data cleaning and data transformation. Data mining often
deals with data that hasn’t been looked at for years, so that much of the data con-
tains field values that have expired, are no longer relevant, or are simply missing.
The overriding objective is to minimize GIGO: to minimize the “garbage” that gets
into our model so that we can minimize the amount of garbage that our models give
out.

Dorian Pyle, in his book Data Preparation for Data Mining [1], estimates that
data preparation alone accounts for 60% of all the time and effort expanded in the
entire data mining process. In this chapter we examine two principal methods for
preparing the data to be mined, data cleaning, and data transformation.

DATA CLEANING

To illustrate the need to clean up data, let’s take a look at some of the types of errors
that could creep into even a tiny data set, such as that in Table 2.1. Let’s discuss,
attribute by attribute, some of the problems that have found their way into the data
set in Table 2.1. The customer ID variable seems to be fine. What about zip?

Let’s assume that we are expecting all of the customers in the database to have the
usual five-numeral U.S. zip code. Now, customer 1002 has this strange (to American
eyes) zip code of J2S7K7. If we were not careful, we might be tempted to classify this
unusual value as an error and toss it out, until we stop to think that not all countries
use the same zip code format. Actually, this is the zip code of St. Hyancinthe, Quebec,
Canada, so probably represents real data from a real customer. What has evidently
occurred is that a French-Canadian customer has made a purchase and put their home
zip code down in the field required. Especially in this era of the North American Free
Trade Agreement, we must be ready to expect unusual values in fields such as zip
codes, which vary from country to country.

What about the zip code for customer 1004? We are unaware of any countries
that have four-digit zip codes, such as the 6269 indicated here, so this must be an error,

TABLE 2.1 Can You Find Any Problems in This Tiny Data Set?

Customer ID Zip Gender Income Age Marital Status Transaction Amount

1001 10048 M 75000 C M 5000

1002 J2S7K7 F −40000 40 W 4000

1003 90210 10000000 45 S 7000

1004 6269 M 50000 0 S 1000

1005 55101 F 99999 30 D 3000
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right? Probably not. Zip codes for the New England states begin with the numeral 0.
Unless the zip code field is defined to be character (text) and not numeric, the software
will probably chop off the leading zero, which is apparently what happened here. The
zip code is probably 06269, which refers to Storrs, Connecticut, home of the University
of Connecticut.

The next field, gender, contains a missing value for customer 1003. We detail
methods for dealing with missing values later in the chapter.

The income field, which we assume is measuring annual gross income, has three
potentially anomalous values. First, customer 1003 is shown as having an income of
$10,000,000 per year. Although entirely possible, especially when considering the
customer’s zip code (90210, Beverly Hills), this value of income is nevertheless an
outlier, an extreme data value. Certain statistical and data mining modeling techniques
do not function smoothly in the presence of outliers; we examine methods of handling
outliers later in the chapter.

Poverty is one thing, but it is rare to find an income that is negative, as our
poor customer 1004 has. Unlike customer 1003’s income, customer 1004’s reported
income of −$40,000 lies beyond the field bounds for income and therefore must be
an error. It is unclear how this error crept in, with perhaps the most likely explanation
being that the negative sign is a stray data entry error. However, we cannot be sure and
should approach this value cautiously, attempting to communicate with the database
manager most familiar with the database history.

So what is wrong with customer 1005’s income of $99,999? Perhaps nothing;
it may in fact be valid. But if all the other incomes are rounded to the nearest $5000,
why the precision with customer 1005? Often, in legacy databases, certain specified
values are meant to be codes for anomalous entries, such as missing values. Perhaps
99999 was coded in an old database to mean missing. Again, we cannot be sure and
should again refer to the “wetware.”

Finally, are we clear as to which unit of measure the income variable is measured
in? Databases often get merged, sometimes without bothering to check whether such
merges are entirely appropriate for all fields. For example, it is quite possible that
customer 1002, with the Canadian zip code, has an income measured in Canadian
dollars, not U.S. dollars.

The age field has a couple of problems. Although all the other customers have
numerical values for age, customer 1001’s “age” of C probably reflects an earlier cat-
egorization of this man’s age into a bin labeled C . The data mining software will defi-
nitely not like this categorical value in an otherwise numerical field, and we will have
to resolve this problem somehow. How about customer 1004’s age of 0? Perhaps there
is a newborn male living in Storrs, Connecticut, who has made a transaction of $1000.
More likely, the age of this person is probably missing and was coded as 0 to indicate
this or some other anomalous condition (e.g., refused to provide the age information).

Of course, keeping an age field in a database is a minefield in itself, since the
passage of time will quickly make the field values obsolete and misleading. It is better
to keep date-type fields (such as birthdate) in a database, since these are constant and
may be transformed into ages when needed.

The marital status field seems fine, right? Maybe not. The problem lies in the
meaning behind these symbols. We all think we know what these symbols mean, but
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are sometimes surprised. For example, if you are in search of cold water in a rest room
in Montreal and turn on the faucet marked C , you may be in for a surprise, since the
C stands for chaud, which is French for hot. There is also the problem of ambiguity.
In Table 2.1, for example, does the S for customers 1003 and 1004 stand for single
or separated?

The transaction amount field seems satisfactory as long as we are confident
that we know what unit of measure is being used and that all records are transacted
in this unit.

HANDLING MISSING DATA

Missing data is a problem that continues to plague data analysis methods. Even as
our analysis methods gain sophistication, we continue to encounter missing values
in fields, especially in databases with a large number of fields. The absence of infor-
mation is rarely beneficial. All things being equal, more data is almost always better.
Therefore, we should think carefully about how we handle the thorny issue of missing
data.

To help us tackle this problem, we will introduce ourselves to a new data
set, the cars data set, originally compiled by Barry Becker and Ronny Kohavi
of Silicon Graphics, and available at the SGI online data repository at www.sgi
.com/tech/mlc/db. The data set, also available on the book series Web site ac-
companying the text, consists of information about 261 automobiles manufactured
in the 1970s and 1980s, including gas mileage, number of cylinders, cubic inches,
horsepower, and so on.

Suppose, however, that some of the field values were missing for certain records.
Figure 2.1 provides a peek at the first 10 records in the data set, with some of

Figure 2.1 Some of our field values are missing!
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the field values missing (indicated in blue). The software we will be using in this
section for missing value analysis is Insightful Miner, by Insightful Corporation
(www.insightful.com).

A common method of handling missing values is simply to omit from the
analysis the records or fields with missing values. However, this may be dangerous,
since the pattern of missing values may in fact be systematic, and simply deleting
records with missing values would lead to a biased subset of the data. Further, it seems
like a waste to omit the information in all the other fields, just because one field value
is missing. Therefore, data analysts have turned to methods that would replace the
missing value with a value substituted according to various criteria.

Insightful Miner offers a choice of replacement values for missing data:

1. Replace the missing value with some constant, specified by the analyst.

2. Replace the missing value with the field mean (for numerical variables) or the
mode (for categorical variables).

3. Replace the missing values with a value generated at random from the variable
distribution observed.

Let’s take a look at the results for each of the three methods. Figure 2.2 shows
the result of replacing the missing values with the constant 0.00 for the numerical
variables and the label missing for the categorical variables. Figure 2.3 illustrates
how the missing values may be replaced with the respective field means and modes.
The variable cylinders is categorical, with mode 4, so the software replaces the miss-
ing cylinder values with cylinder = 4. Cubicinches, on the other hand, is continu-
ous (numerical), so that the software replaces the missing cubicinches values with
cubicinches = 200.65, which is the mean of all 258 nonmissing values of that variable.

Isn’t it nice to have the software take care of your missing data problems like
this? In a way, certainly. However, don’t lose sight of the fact that the software is

Figure 2.2 Replacing missing field values with user-defined constants.
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Figure 2.3 Replacing missing field values with means or modes.

creating information on the spot, actually fabricating data to fill in the holes in the
data set. Choosing the field mean as a substitute for whatever value would have been
there may sometimes work out well. However, the end users and publication readers
need to know that this process has taken place.

Further, the mean may not always be the best choice for what constitutes a
“typical” value. For example, if many missing values are replaced with the mean,
the resulting confidence levels for statistical inference will be overoptimistic, since
measures of spread will be reduced artificially. It must be stressed that replacing
missing values is a gamble, and the benefits must be weighed against the possible
invalidity of the results.

Finally, Figure 2.4 demonstrates how Insightful Miner can replace missing
values with values generated at random from the variable distribution observed. Note
in Figure 2.3 how, all four of the missing cylinder values were replaced with the same
value, cylinder = 4, whereas in Figure 2.4, the missing cylinder values were replaced
with various values drawn proportionately from the distribution of cylinder values.
In the long run, this method is probably superior to the mean substitution, since,
among other reasons, the measures of center and spread should remain closer to the
original.

This capacity to replace missing values with random draws from the distribution
is one of the benefits of Insightful Miner. However, there is no guarantee that the result-
ing records would make sense. For example, the random values drawn in Figure 2.4
make sense record-wise, but it was certainly possible that record 5 could have drawn
cylinders = 8 with something like cubicinches = 82, which would be a strange engine
indeed! Therefore, other, more elaborate methods exist that strive to replace missing
values more precisely and accurately.

For example, there are methods that ask: What would be the most likely value for
this missing value given all the other attributes for a particular record? For instance, an
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Figure 2.4 Replacing missing field values with random draws from the distribution of the
variable.

American car with 300 cubic inches and 150 horsepower would probably be expected
to have more cylinders than a Japanese car with 100 cubic inches and 90 horsepower.
For a discussion of these and other methods, including Bayesian estimation, refer to
Statistical Analysis with Missing Data [2].

IDENTIFYING MISCLASSIFICATIONS

Let us look at an example of checking the classification labels on the categorical
variables, to make sure that they are all valid and consistent. One of the functions
of Insightful Miner’s missing values node is to display a frequency distribution of
the categorical variables available. For example, the frequency distribution of the
categorical variable origin, where Insightful Miner’s missing values node is applied
to the cars data set, is given in Table 2.2. The frequency distribution shows five

TABLE 2.2 Notice Anything Strange
about This Frequency Distribution?

Level Name Count

USA 1

France 1

US 156

Europe 46

Japan 51
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classes: USA, France, US, Europe, and Japan. However, two of the classes, USA and
France, have a count of only one automobile each. What is clearly happening here is
that two of the records have been classified inconsistently with respect to the origin of
manufacture. To maintain consistency with the remainder of the data set, the record
with origin USA should have been labeled US, and the record with origin France
should have been labeled Europe.

GRAPHICAL METHODS FOR IDENTIFYING OUTLIERS

Outliers are extreme values that lie near the limits of the data range or go against
the trend of the remaining data. Identifying outliers is important because they may
represent errors in data entry. Also, even if an outlier is a valid data point and not
in error, certain statistical methods are sensitive to the presence of outliers and may
deliver unstable results. Neural networks benefit from normalization, as do algorithms
that make use of distance measures, such as the k-nearest neighbor algorithm.

One graphical method for identifying outliers for numeric variables is to exam-
ine a histogram of the variable. Figure 2.5 shows a histogram generated of the vehicle
weights from the cars data set. There appears to be one lonely vehicle in the extreme
left tail of the distribution, with a vehicle weight in the hundreds of pounds rather than
in the thousands. Examining the statistics provided by Insightful Miner, we find the
minimum weight to be for a vehicle of 192.5 pounds, which is undoubtedly our little
outlier in the lower tail. As 192.5 pounds is a little light for an automobile, we would
tend to doubt the validity of this information. Perusal of the weightlbs field shows that
unlike our outlier, all the other vehicles have their weight recorded in whole numbers

Figure 2.5 Histogram of vehicle weights: can you find the outlier?
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Figure 2.6 Scatter plot of mpg against weightlbs shows two outliers.

with no decimals. We can therefore surmise that perhaps the weight was originally
1925 pounds, with the decimal inserted somewhere along the line. We cannot be
certain, however, and further investigation into the data sources is called for.

Sometimes two-dimensional scatter plots can help to reveal outliers in more
than one variable. The scatter plot of mpg against weightlbs shown in Figure 2.6
seems to have netted two outliers. Most of the data points cluster together along the
horizontal axis, except for two outliers. The one on the left is the same vehicle as that
identified in Figure 2.5, weighing only 192.5 pounds. The outlier in the upper right
corner is something new: a car that gets over 500 miles per gallon! Now that would
have been big news at any time, especially in the energy crisis days of the 1970s when
this data was abstracted. Clearly, unless this vehicle runs on dilithium crystals, we
are looking at a data entry error.

We shall examine numerical methods for identifying outliers, but we need to
pick up a few tools first.

DATA TRANSFORMATION

Variables tend to have ranges that vary greatly from each other. For example, if we are
interested in major league baseball, players’ batting averages will range from zero to
less than 0.400, while the number of home runs hit in a season will range from zero
to around 70. For some data mining algorithms, such differences in the ranges will
lead to a tendency for the variable with greater range to have undue influence on the
results.

Therefore, data miners should normalize their numerical variables, to standard-
ize the scale of effect each variable has on the results. There are several techniques
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for normalization, and we shall examine two of the more prevalent methods. Let X
refer to our original field value and X∗ refer to the normalized field value.

Min–Max Normalization

Min–max normalization works by seeing how much greater the field value is than
the minimum value min(X) and scaling this difference by the range. That is,

X∗ = X − min(X )

range(X )
= X − min(X )

max(X ) − min(X )

For example, consider the time-to-60 variable from the cars data set, which
measures how long (in seconds) each automobile takes to reach 60 miles per hour.
Let’s find the min–max normalization for three automobiles having times-to-60 of 8,
15.548, seconds, and 25 seconds, respectively. Refer to Figure 2.7, a histogram of the
variable time-to-60, along with some summary statistics.

� For a “drag-racing-ready” vehicle, which takes only 8 seconds (the field mini-
mum) to reach 60 mph, the min–max normalization is

X∗ = X − min(X )

max(X ) − min(X )
= 8 − 8

25 − 8
= 0

From this we can learn that data values which represent the minimum for the
variable will have a min–max normalization value of zero.

Figure 2.7 Histogram of time-to-60, with summary statistics.
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� For an “average” vehicle (if any), which takes exactly 15.548 seconds (the
variable average) to reach 60 mph, the min–max normalization is

X∗ = X − min(X )

max(X ) − min(X )
= 15.548 − 8

25 − 8
= 0.444

This tells us that we may expect variables values near the center of the distri-
bution to have a min–max normalization value near 0.5.

� For an “I’ll get there when I’m ready” vehicle, which takes 25 seconds (the
variable maximum) to reach 60 mph, the min–max normalization is

X∗ = X − min(X )

max(X ) − min(X )
= 25 − 8

25 − 8
= 1.0

That is, data values representing the field maximum will have a min–max nor-
malization value of 1.

To summarize, min–max normalization values will range from zero to one,
unless new data values are encountered that lie outside the original range.

Z-Score Standardization

Z-score standardization, which is very widespread in the world of statistical analysis,
works by taking the difference between the field value and the field mean value and
scaling this difference by the standard deviation of the field values. That is,

X∗ = X − mean(X )

SD(X )
� For the vehicle that takes only 8 seconds to reach 60 mph, the Z-score standard-

ization is:

X∗ = X − mean(X )

SD(X )
= 8 − 15.548

2.911
= −2.593

Thus, data values that lie below the mean will have a negative Z-score standard-
ization.

� For an “average” vehicle (if any), which takes exactly 15.548 seconds (the
variable average) to reach 60 mph, the Z-score standardization is

X∗ = X − mean(X )

SD(X )
= 15.548 − 15.548

2.911
= 0

This tells us that variable values falling exactly on the mean will have a Z-score
standardization of zero.

� For the car that takes 25 seconds to reach 60 mph, the Z-score standardization is

X∗ = X − mean(X )

SD(X )
= 25 − 15.548

2.911
= 3.247

That is, data values that lie above the mean will have a positive Z-score
standardization.
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Figure 2.8 Histogram of time-to-60 after Z-score standardization.

To summarize, Z-score standardization values will usually range between
–4 and 4, with the mean value having a Z-score standardization of zero. Figure 2.8
is a histogram of the time-to-60 variable after Insightful Miner found the Z-score
standardization of each field value. Note that the distribution is centered about zero
and that the minimum and maximum agree with what we found above.

NUMERICAL METHODS FOR IDENTIFYING OUTLIERS

One method of using statistics to identify outliers is to use Z-score standardization.
Often, an outlier can be identified because it is much farther than 3 standard deviations
from the mean and therefore has a Z-score standardization that is either less than −3
or greater than 3. Field values with Z-scores much beyond this range probably bear
further investigation to verify that they do not represent data entry errors or other
issues. For example, the vehicle that takes its time (25 seconds) getting to 60 mph had
a Z-score of 3.247. This value is greater than 3 (although not by much), and therefore
this vehicle is identified by this method as an outlier. The data analyst may wish to in-
vestigate the validity of this data value or at least suggest that the vehicle get a tune-up!

Unfortunately, the mean and standard deviation, both part of the formula for
the Z -score standardization, are rather sensitive to the presence of outliers. That is, if
an outlier is added to a data set, the values of mean and standard deviation will both
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be unduly affected by this new data value. Therefore, when choosing a method for
evaluating outliers, it may not seem appropriate to use measures which are themselves
sensitive to their presence.

Therefore, data analysts have developed more robust statistical methods for
outlier detection, which are less sensitive to the presence of the outliers themselves.
One elementary robust method is to use the interquartile range. The quartiles of a
data set divide the data set into four parts, each containing 25% of the data.

� The first quartile (Q1) is the 25th percentile.
� The second quartile (Q2) is the 50th percentile, that is, the median.
� The third quartile (Q3) is the 75th percentile.

The interquartile range (IQR) is a measure of variability that is much more robust
than the standard deviation. The IQR is calculated as IQR = Q3 − Q1 and may be
interpreted to represent the spread of the middle 50% of the data.

A robust measure of outlier detection is therefore defined as follows. A data
value is an outlier if:

a. It is located 1.5(IQR) or more below Q1, or

b. It is located 1.5(IQR) or more above Q3.

For example, suppose that for a set of test scores, the 25th percentile was Q1 = 70
and the 75th percentile was Q3 = 80, so that half of all the test scores fell between
70 and 80. Then the interquartile range, the difference between these quartiles, was
IQR = 80 − 70 = 10.

A test score would be robustly identified as an outlier if:

a. It is lower than Q1 − 1.5(IQR) = 70 − 1.5(10) = 55, or

b. It is higher than Q3 + 1.5(IQR) = 80 + 1.5(10) = 95.

In Chapter 3 we apply some basic graphical and statistical tools to help us begin to
uncover simple patterns and trends in the data structure.
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EXERCISES
1. Describe the possible negative effects of proceeding directly to mine data that has not been

preprocessed.

2. Find the mean value for the income attribute of the five customers in Table 2.1 before
preprocessing. What does this number actually mean? Calculate the mean income for the
three values left after preprocessing. Does this value have a meaning?
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3. Which of the three methods from Figures 2.2 to 2.4 do you prefer for handling missing
values?

a. Which method is the most conservative and probably the safest, meaning that it fabri-
cates the least amount of data? What are some drawbacks to this method?

b. Which method would tend to lead to an underestimate of the spread (e.g., standard
deviation) of the variable? What are some benefits to this method?

c. What are some benefits and drawbacks of the method that chooses values at random
from the variable distribution?

4. Make up a classification scheme that is inherently flawed and would lead to misclassifi-
cation, as we find in Table 2.2: for example, classes of items bought in a grocery store.

5. Make up a data set consisting of eight scores on an exam in which one of the scores is an
outlier.

a. Find the mean score and the median score, with and without the outlier.

b. State which measure, the mean or the median, the presence of the outlier affects more,
and why. (Mean, median, and other statistics are explained in Chapter 4.)

c. Verify that the outlier is indeed an outlier, using the IQR method.

6. Make up a data set, consisting of the heights and weights of six children, in which one of
the children, but not the other, is an outlier with respect to one of the variables. Then alter
this data set so that the child is an outlier with respect to both variables.

7. Using your data set from Exercise 5, find the min–max normalization of the scores. Verify
that each value lies between zero and 1.

Hands-on Analysis
Use the churn data set at the book series Web site for the following exercises.

8. Explore whether there are missing values for any of the variables.

9. Compare the area code and state fields. Discuss any apparent abnormalities.

10. Use a graph to determine visually whether there are any outliers among the number of
calls to customer service.

11. Transform the day minutes attribute using min–max normalization. Verify using a graph
that all values lie between zero and 1.

12. Transform the night minutes attribute using Z-score standardization. Using a graph, de-
scribe the range of the standardized values.
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SUMMARY

HYPOTHESIS TESTING VERSUS EXPLORATORY
DATA ANALYSIS

When approaching a data mining problem, a data mining analyst may already have
some a priori hypotheses that he or she would like to test regarding the relationships
between the variables. For example, suppose that cell-phone executives are interested
in whether a recent increase in the fee structure has led to a decrease in market share.
In this case, the analyst would test the hypothesis that market share has decreased and
would therefore use hypothesis-testing procedures.

A myriad of statistical hypothesis testing procedures are available through the
traditional statistical analysis literature, including methods for testing the following
hypotheses:

� The Z-test for the population mean
� The t-test for the population mean
� The Z-test for the population proportion
� The Z-test for the difference in means for two populations

Discovering Knowledge in Data: An Introduction to Data Mining, By Daniel T. Larose
ISBN 0-471-66657-2 Copyright C© 2005 John Wiley & Sons, Inc.
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� The t-test for the difference in means for two populations
� The t-test for paired samples
� The Z-test for the difference in population proportions
� The � 2 goodness-of-fit test for multinomial populations
� The � 2-test for independence among categorical variables
� The analysis of variance F-test
� The t-test for the slope of the regression line

There are many other hypothesis tests throughout the statistical literature, for
most conceivable situations, including time-series analysis, quality control tests, and
nonparametric tests.

However, analysts do not always have a priori notions of the expected relation-
ships among the variables. Especially when confronted with large unknown databases,
analysts often prefer to use exploratory data analysis (EDA) or graphical data anal-
ysis. EDA allows the analyst to:

� Delve into the data set
� Examine the interrelationships among the attributes
� Identify interesting subsets of the observations
� Develop an initial idea of possible associations between the attributes and the

target variable, if any

GETTING TO KNOW THE DATA SET

Simple (or not-so-simple) graphs, plots, and tables often uncover important relation-
ships that could indicate fecund areas for further investigation. In Chapter 3 we use
exploratory methods to delve into the churn data set[1] from the UCI Repository
of Machine Learning Databases at the University of California, Irvine. The data set
is also available at the book series Web site. In this chapter we begin by using the
Clementine data mining software package from SPSS, Inc.

To begin, it is often best simply to take a look at the field values for some of the
records. Figure 3.1 gives the results of using Clementine’s table node for the churn data
set, showing the attribute values for the first 10 records. Churn, also called attrition,
is a term used to indicate a customer leaving the service of one company in favor
of another company. The data set contains 20 variables worth of information about
3333 customers, along with an indication of whether or not that customer churned
(left the company). The variables are as follows:

� State: categorical, for the 50 states and the District of Columbia
� Account length: integer-valued, how long account has been active
� Area code: categorical
� Phone number: essentially a surrogate for customer ID
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� International Plan: dichotomous categorical, yes or no
� VoiceMail Plan: dichotomous categorical, yes or no
� Number of voice mail messages: integer-valued
� Total day minutes: continuous, minutes customer used service during the day
� Total day calls: integer-valued

Figure 3.1 Field values of the first 10 records in the churn data set.
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� Total day charge: continuous, perhaps based on foregoing two variables
� Total evening minutes: continuous, minutes customer used service during the

evening
� Total evening calls: integer-valued
� Total evening charge: continuous, perhaps based on foregoing two variables
� Total night minutes: continuous, minutes customer used service during the night
� Total night calls: integer-valued
� Total night charge: continuous, perhaps based on foregoing two variables
� Total international minutes: continuous, minutes customer used service to make

international calls
� Total international calls: integer-valued
� Total international charge: continuous, perhaps based on foregoing two vari-

ables
� Number of calls to customer service: integer-valued

DEALING WITH CORRELATED VARIABLES

One should take care to avoid feeding correlated variables to one’s data mining and
statistical models. At best, using correlated variables will overemphasize one data
component; at worst, using correlated variables will cause the model to become
unstable and deliver unreliable results.

The data set contains three variables: minutes, calls, and charge. The data
description indicates that the charge variable may be a function of minutes and
calls, with the result that the variables would be correlated. We investigate using
the matrix plot shown in Figure 3.2, which is a matrix of scatter plots for a set of
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Figure 3.2 Matrix plot of day minutes, day calls, and day charge.
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The regression equation is

Regression Analysis: Day charge versus Day Mins

Day Charge = 0.000613 + 0.170 Day Mins

Predictor        Coef     SE Coef          T        P
Constant    0.0006134   0.0001711       3.59    0.000
Day Mins     0.170000    0.000001  186644.31    0.000

S = 0.002864    R-Sq = 100.0%    R-Sq(adj) = 100.0%

Figure 3.3 Minitab regression output for day charge versus day minutes.

numeric variables. The matrix plot comes courtesy of Minitab, a widely used statistical
package.

There does not seem to be any relationship between day minutes and day calls
or between day calls and day charge. This we find to be rather odd, as one may have
expected that as the number of calls increased, the number of minutes would tend to
increase (and similarly for charge), resulting in a positive correlation between these
fields. However, the graphical evidence does not support this, nor do the correlations,
which are r = 0.07 for both relationships (from Minitab, not shown).

On the other hand, there is a perfect linear relationship between day minutes and
day charge, indicating that day charge is a simple linear function of day minutes only.
Using Minitab’s regression tool (Figure 3.3), we find that we may express this function
as the estimated regression equation: “Day charge equals 0.000613 plus 0.17 times
day minutes.” This is essentially a flat-rate model, billing 17 cents per minute for
day use. Note from Figure 3.3 that the R-squared statistic is precisely 1, indicating a
perfect linear relationship.

Since day charge is correlated perfectly with day minutes, we should eliminate
one of the two variables. We do so, choosing arbitrarily to eliminate day charge and
retain day minutes. Investigation of the evening, night, and international components
reflected similar findings, and we thus also eliminate evening charge, night charge,
and international charge. Note that had we proceeded to the modeling phase without
first uncovering these correlations, our data mining and statistical models may have
returned incoherent results, due in the multiple regression domain, for example, to
multicollinearity. We have therefore reduced the number of predictors from 20 to 16 by
eliminating redundant variables. A further benefit of doing so is that the dimensionality
of the solution space is reduced, so that certain data mining algorithms may more
efficiently find the globally optimal solution.

EXPLORING CATEGORICAL VARIABLES

One of the primary reasons for performing exploratory data analysis is to investigate
the variables, look at histograms of the numeric variables, examine the distributions
of the categorical variables, and explore the relationships among sets of variables.
On the other hand, our overall objective for the data mining project as a whole (not
just the EDA phase) is to develop a model of the type of customer likely to churn



WY045-03 September 23, 2004 11:21

46 CHAPTER 3 EXPLORATORY DATA ANALYSIS

Figure 3.4 Comparison bar chart of churn proportions by International Plan participation.

(jump from your company’s service to another company’s service). Today’s software
packages allow us to become familiar with the variables while beginning to see which
variables are associated with churn. In this way we can explore the data while keeping
an eye on our overall goal. We begin by considering the categorical variables.

For example, Figure 3.4 shows a comparison of the proportion of churners (red)
and nonchurners (blue) among customers who either had selected the International
Plan (yes, 9.69% of customers) or had not selected it (no, 90.31% of customers). The
graphic appears to indicate that a greater proportion of International Plan holders are
churning, but it is difficult to be sure.

To increase the contrast and better discern whether the proportions differ, we can
ask the software (in this case, Clementine) to provide same-size bars for each category.
In Figure 3.5 we see a graph of the very same information as in Figure 3.4, except that
the bar for the yes category has been stretched out to be the same length as the bar for
the no category. This allows us to better discern whether the churn proportions differ

Figure 3.5 Comparison bar chart of churn proportions by International Plan participation,
with equal bar length.
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Figure 3.6 Cross-tabulation of International Plan with churn.

among the categories. Clearly, those who have selected the International Plan have a
greater chance of leaving the company’s service than do those who do not have the
International Plan.

The graphics tell us that International Plan holders tend to churn more fre-
quently, but they do not quantify the relationship. To quantify the relationship be-
tween International Plan holding and churning, we may use cross-tabulations, since
both variables are categorical. Figure 3.6 shows Clementine’s cross-tabulation. Note
that the counts in the first column add up to the total number of nonselectors of the
International Plan from Figure 3.4, 2664 + 346 = 3010; similarly for the second
column. The first row in Figure 3.6 shows the counts of those who did not churn,
while the second row shows the counts of those who did churn. So the data set con-
tains 346 + 137 = 483 churners compared to 2664 + 186 = 2850 nonchurners; that
is, 483/(483 + 2850) = 14.5% of the customers in this data set are churners.

Note that 137/(137 + 186) = 42.4% of the International Plan holders churned,
compared with only 346/(346 + 2664) = 11.5% of those without the International
Plan. Customers selecting the International Plan are more than three times as likely
to leave the company’s service than those without the plan.

This EDA on the International Plan has indicated that:

1. Perhaps we should investigate what it is about the International Plan that is
inducing customers to leave!

2. We should expect that whatever data mining algorithms we use to predict churn,
the model will probably include whether or not the customer selected the In-
ternational Plan.

Let us now turn to the VoiceMail Plan. Figure 3.7 shows in a bar graph with
equalized lengths that those who do not have the VoiceMail Plan are more likely to
churn than those who do have the plan. (The numbers in the graph indicate proportions
and counts of those who do and do not have the VoiceMail Plan, without reference to
churning.)

Again, we may quantify this finding by using cross-tabulations, as in Figure 3.8.
First of all, 842 + 80 = 922 customers have the VoiceMail Plan, while 2008 + 403 =
2411 do not. We then find that 403/2411 = 16.7% of those without the VoiceMail Plan
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Figure 3.7 Those without the VoiceMail Plan are more likely to churn.

are churners, compared to 80/922 = 8.7% of customers who do have the VoiceMail
Plan. Thus, customers without the VoiceMail Plan are nearly twice as likely to churn
as customers with the plan.

This EDA on the VoiceMail Plan has indicated that:

1. Perhaps we should enhance the VoiceMail Plan further or make it easier for
customers to join it, as an instrument for increasing customer loyalty.

2. We should expect that whatever data mining algorithms we use to predict
churn, the model will probably include whether or not the customer selected
the VoiceMail Plan. Our confidence in this expectation is perhaps not quite as
the high as that for the International Plan.

We may also explore the two-way interactions among categorical variables with
respect to churn. For example, Figure 3.9 shows a pair of horizontal bar charts for

Figure 3.8 Cross-tabulation of VoiceMail Plan with churn.
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Figure 3.9 Bar charts of customers who churned, without VoiceMail Plan, subsetted by
International Plan selection.

customers who did not select the VoiceMail Plan (Vmail Plan = no). The bar chart
on the right contains customers who did not select the International Plan either, while
the bar chart on the left contains customers who did select the International Plan.

Note that there are many more customers who have neither plan (1878 + 302 =
2180) than have the International Plan only (130 + 101 = 231). More important,
among customers without the VoiceMail Plan, the proportion of churners is greater
for those who do have the International Plan (101/231 = 44%) than for those who
don’t (302/2180 = 14%).

Next, Figure 3.10 shows a pair of horizontal bar charts for customers who did
select the VoiceMail Plan (Vmail Plan = yes). There are many more customers who

Figure 3.10 Bar charts of customers who churned, with VoiceMail Plan, subsetted by Inter-
national Plan selection.
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Figure 3.11 Directed web graph supports earlier findings.

have the VoiceMail Plan only (786 + 44 = 830) than those who have both plans
(56 + 36 = 92). Again, however, among customers with the VoiceMail Plan, the
proportion of churners is much greater for those who also select the International
Plan (36/92 = 39%) than for those who don’t (44/830 = 5%). Note that there is no
interaction among the categorical variables. That is, International Plan holders have
greater churn regardless of whether or not they are VoiceMail Plan adopters.

Finally, Figure 3.11 shows a Clementine directed web graph of the relationships
between International Plan holders, VoiceMail Plan holders, and churners. Compare
the edges (lines) connecting the VoiceMail Plan = Yes nodes to the Churn = True
and Churn = False nodes. The edge connecting to the Churn = False node is heavier,
indicating that a greater proportion of VoiceMail Plan holders will choose not to
churn. This supports our earlier findings.

USING EDA TO UNCOVER ANOMALOUS FIELDS

Exploratory data analysis will sometimes uncover strange or anomalous records or
fields which the earlier data cleaning phase may have missed. Consider, for example,
the area code field in the present data set. Although the area codes contain numerals,
they can also be used as categorical variables, since they can classify customers
according to geographical location. We are intrigued by the fact that the area code
field contains only three different values for all the records—408, 415, and 510—all
three of which are in California, as shown by Figure 3.12.
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Figure 3.12 Only three area codes for all records.

Now, this would not be anomalous if the records indicated that the customers
all lived in California. However, as shown in the cross-tabulation in Figure 3.13 (only
up to Florida, to save space), the three area codes seem to be distributed more or less
evenly across all the states and the District of Columbia. It is possible that domain
experts might be able to explain this type of behavior, but it is also possible that the
field just contains bad data.

We should therefore be wary of this area code field, perhaps going so far as
not to include it as input to the data mining models in the next phase. On the other
hand, it may be the state field that is in error. Either way, further communication

Figure 3.13 Anomaly: three area codes distributed across all 50 states.
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with someone familiar with the data history, or a domain expert, is called for before
inclusion of these variables in the data mining models.

EXPLORING NUMERICAL VARIABLES

Next, we turn to an exploration of the numerical predictive variables. We begin with
numerical summary measures, including minimum and maximum; measures of cen-
ter, such as mean, median, and mode; and measures of variability, such as standard
deviation. Figure 3.14 shows these summary measures for some of our numerical
variables. We see, for example, that the minimum account length is one month, the
maximum is 243 months, and the mean and median are about the same, at around
101 months, which is an indication of symmetry. Notice that several variables show
this evidence of symmetry, including all the minutes, charge, and call fields.

Figure 3.14 Summary statistics for several numerical variables.
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Fields not showing evidence of symmetry include voice mail messages and
customer service calls. The median for voice mail messages is zero, indicating that at
least half of all customers had no voice mail messages. This results, of course, from
fewer than half of the customers selecting the VoiceMail Plan, as we saw above. The
mean of customer service calls (1.563) is greater than the median (1.0), indicating
some right-skewness, as also indicated by the maximum number of customer service
calls being nine.

As mentioned earlier, retaining correlated variables will, at best, overemphasize
a certain predictive component at the expense of others, and at worst, cause instability
in the model, leading to potentially nonsensical results. Therefore, we need to check
for the correlation among our numerical variables. Figure 3.15 shows the correlations
for two of the variables, customer service calls and day charge, with all of the other
numerical variables. Note that all the correlations are shown as weak (this categoriza-
tion is user-definable), except for the correlation between day charge and day minutes,

Figure 3.15 Correlations for customer service calls and day charge.
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Figure 3.16 Histogram of customer service calls.

which is r = 1.0, the perfect linear relationship we discussed above. We checked for
all pairwise correlations, and found all weak correlations once the charge fields were
removed (not shown).

We turn next to graphical analysis of our numerical variables. We show three
examples of histograms, which are useful for getting an overall look at the distribu-
tion of numerical variables, for the variable customer service calls. Figure 3.16 is a
histogram of customer service calls, with no overlay, indicating that the distribution
is right-skewed, with a mode at one call.

However, this gives us no indication of any relationship with churn, for which we
must turn to Figure 3.17, the same histogram of customer service calls, this time with

Figure 3.17 Histogram of customer service calls, with churn overlay.
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Figure 3.18 Normalized histogram of customer service calls, with churn overlay.

churn overlay. Figure 3.17 hints that the proportion of churn may be greater for higher
numbers of customer service calls, but it is difficult to discern this result unequivocally.
We therefore turn to a normalized histogram, where every rectangle has the same
height and width, as shown in Figure 3.18. Note that the proportions of churners
versus nonchurners in Figure 3.18 is exactly the same as in Figure 3.17; it is just
that “stretching out” the rectangles that have low counts enables better definition and
contrast. The pattern now becomes crystal clear. Customers who have called customer
service three or fewer times have a markedly lower churn rate (dark part of the
rectangle) than that of customers who have called customer service four or more times.

This EDA on the customer service calls has indicated that:

1. We should track carefully the number of customer service calls made by each
customer. By the third call, specialized incentives should be offered to retain
customer loyalty.

2. We should expect that whatever data mining algorithms we use to predict churn,
the model will probably include the number of customer service calls made by
the customer.

Examining Figure 3.19, we see that the normalized histogram of day minutes
indicates that very high day users tend to churn at a higher rate. Therefore:

1. We should carefully track the number of day minutes used by each customer. As
the number of day minutes passes 200, we should consider special incentives.

2. We should investigate why heavy day users are tempted to leave.

3. We should expect that our eventual data mining model will include day minutes
as a predictor of churn.

Figure 3.20 shows a slight tendency for customers with higher evening min-
utes to churn. Based solely on the graphical evidence, however, we cannot conclude
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Figure 3.19 Customers with high day minutes tend to churn at a higher rate.

Figure 3.20 Slight tendency for customers with higher evening minutes to churn at a higher
rate.
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Figure 3.21 No association of churn with day calls, evening calls, night calls, or international
calls.

beyond a reasonable doubt that such an effect exists. Therefore, we shall hold off on
formulating policy recommendations on evening cell-phone use until our data mining
models offer firmer evidence that the putative effect is in fact present.

Finally, Figures 3.21 and 3.22 indicate that there is no obvious association be-
tween churn and any of the remaining numerical variables in the data set. Figure 3.21
shows histograms of the four calls variables, day, evening, night, and international
calls, with a churn overlay. Figure 3.22 shows histograms of night minutes, inter-
national minutes, account length, and voice mail messages, with a churn overlay.
The high variability in churn proportions in the right tails of some of the histograms
reflects the small sample counts in those regions.

Based on the lack of evident association between churn and the variables in
Figures 3.21 and 3.22, we will not necessarily expect the data mining models to
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Figure 3.22 No association of churn with night minutes, international minutes, account
length, or voice mail messages.

uncover valuable predictive information using these variables. We should, never-
theless, retain them as input variables for the data mining models. The reason for
retaining these variables is that actionable associations may still exist for identifiable
subsets of the records, and they may be involved in higher-dimension associations and
interactions. In any case, unless there is a good reason (such as strong correlation) for
eliminating the variable prior to modeling, we should probably allow the modeling
process to identify which variables are predictive and which are not.

An exception to this situation is if there are so many fields that algorithm perfor-
mance is degraded. In this case, one may consider setting aside temporarily variables
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TABLE 3.1 Summary of Exploratory Findings Thus Far

Variable Disposition

State Anomalous. Omitted from model.

Account length No obvious relation with churn, but retained.

Area code Anomalous. Omitted from model.

Phone number Surrogate for ID. Omitted from model.

International Plan Predictive of churn. Retained.

VoiceMail Plan Predictive of churn. Retained.

Number of voice mail messages No obvious relation with churn, but retained.

Total day minutes Predictive of churn. Retained.

Total day calls No obvious relation with churn, but retained.

Total day charge Function of minutes. Omitted from model.

Total evening minutes May be predictive of churn. Retained.

Total evening calls No obvious relation with churn, but retained.

Total evening charge Function of minutes. Omitted from model.

Total night minutes No obvious relation with churn, but retained.

Total night calls No obvious relation with churn, but retained.

Total night charge Function of minutes. Omitted from model.

Total international minutes No obvious relation with churn, but retained.

Total international calls No obvious relation with churn, but retained.

Total international charge Function of minutes. Omitted from model.

Customer service calls Predictive of churn. Retained.

with no obvious association with the target, until analysis with more promising vari-
ables is undertaken. Also in this case, dimension-reduction techniques should be
applied, such as principal components analysis [2].

Table 3.1 summarizes our exploratory findings so far. We have examined each
of the variables and have taken a preliminary look at their relationship with churn.

EXPLORING MULTIVARIATE RELATIONSHIPS

We turn next to an examination of possible multivariate associations of numerical
variables with churn, using two- and three-dimensional scatter plots. Figure 3.23 is a
scatter plot of customer service calls versus day minutes (note Clementine’s incorrect
reversing of this order in the plot title; the y-variable should always be the first named).
Consider the partition shown in the scatter plot, which indicates a high-churn area
in the upper left section of the graph and another high-churn area in the right of the
graph. The high-churn area in the upper left section of the graph consists of customers
who have a combination of a high number of customer service calls and a low number
of day minutes used. Note that this group of customers could not have been identified
had we restricted ourselves to univariate exploration (exploring variable by single
variable). This is because of the interaction between the variables.
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Figure 3.23 Scatter plot of customer service calls versus day minutes.

In general, customers with higher numbers of customer service calls tend to
churn at a higher rate, as we learned earlier in the univariate analysis. However,
Figure 3.23 shows that of these customers with high numbers of customer service
calls, those who also have high day minutes are somewhat “protected” from this high
churn rate. The customers in the upper right of the scatter plot exhibit a lower churn
rate than that of those in the upper left.

Contrast this situation with the other high-churn area on the right (to the right of
the straight line). Here, a higher churn rate is shown for those with high day minutes,
regardless of the number of customer service calls, as indicated by the near-verticality
of the partition line. In other words, these high-churn customers are the same ones as
those identified in the univariate histogram in Figure 3.19.

Sometimes, three-dimensional scatter plots can be helpful as well. Figure 3.24
is an example of a plot of day minutes versus evening minutes versus customer service
calls, with a churn overlay. The scroll buttons on the sides rotate the display so that
the points may be examined in a three-dimensional environment.
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Figure 3.24 Three-dimensional scatter plot of day minutes versus evening minutes versus
customer service calls, with a churn overlay.

SELECTING INTERESTING SUBSETS OF THE DATA
FOR FURTHER INVESTIGATION

We may use scatter plots (or histograms) to identify interesting subsets of the data, in
order to study these subsets more closely. In Figure 3.25 we see that customers with
high day minutes and high evening minutes are more likely to churn. But how can
we quantify this? Clementine allows the user to click and drag a select box around
data points of interest, and select them for further investigation. Here we selected the
records within the rectangular box in the upper right. (A better method would be to
allow the user to select polygons besides rectangles.)

The churn distribution for this subset of records is shown in Figure 3.26. It turns
out that over 43% of the customers who have both high day minutes and high evening
minutes are churners. This is approximately three times the churn rate of the overall
customer base in the data set. Therefore, it is recommended that we consider how
we can develop strategies for keeping our heavy-use customers happy so that they
do not leave the company’s service, perhaps through discounting the higher levels of
minutes used.
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Figure 3.25 Selecting an interesting subset of records for further investigation.

BINNING

Binning (also called banding) refers to the categorization of numerical or categor-
ical variables into a manageable set of classes which are convenient for analysis.
For example, the number of day minutes could be categorized (binned) into three
classes: low, medium, and high. The categorical variable state could be binned into

Figure 3.26 Over 43% of customers with high day and evening minutes churn.
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Figure 3.27 Churn rate for customers with low (top) and high (bottom) customer service
calls.

a new variable, region, where California, Oregon, Washington, Alaska, and Hawaii
would be put in the Pacific category, and so on. Properly speaking, binning is a data
preparation activity as well as an exploratory activity.

There are various strategies for binning numerical variables. One approach is
to make the classes of equal width, analogous to equal-width histograms. Another
approach is to try to equalize the number of records in each class. You may consider
yet another approach, which attempts to partition the data set into identifiable groups
of records, which, with respect to the target variable, have behavior similar to that for
other records in the same class.

For example, recall Figure 3.18, where we saw that customers with fewer than
four calls to customer service had a lower churn rate than that of customers who had
four or more calls to customer service. We may therefore decide to bin the customer
service calls variable into two classes, low and high. Figure 3.27 shows that the churn
rate for customers with a low number of calls to customer service is 11.25%, whereas
the churn rate for customers with a high number of calls to customer service is 51.69%,
more than four times higher.

SUMMARY

Let us consider some of the insights we have gained into the churn data set through
the use of exploratory data analysis.

� The four charge fields are linear functions of the minute fields, and should be
omitted.

� The area code field and/or the state field are anomalous, and should be omitted
until further clarification is obtained.



WY045-03 September 23, 2004 11:21

64 CHAPTER 3 EXPLORATORY DATA ANALYSIS

� The correlations among the remaining predictor variables are weak, allowing
us to retain them all for any data mining model.

Insights with respect to churn:
� Customers with the International Plan tend to churn more frequently.
� Customers with the VoiceMail Plan tend to churn less frequently.
� Customers with four or more customer service calls churn more than four times

as often as do the other customers.
� Customers with high day minutes and evening minutes tend to churn at a higher

rate than do the other customers.
� Customers with both high day minutes and high evening minutes churn about

three times more than do the other customers.
� Customers with low day minutes and high customer service calls churn at a

higher rate than that of the other customers.
� There is no obvious association of churn with the variables day calls, evening

calls, night calls, international calls, night minutes, international minutes, ac-
count length, or voice mail messages.

Note that we have not applied any data mining algorithms yet on this data set,
such as decision tree or neural network algorithms. Yet we have gained considerable
insight into the attributes that are associated with customers leaving the company,
simply by careful application of exploratory data analysis. These insights can easily
be formulated into actionable recommendations, so that the company can take action
to lower the churn rate among its customer base.
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EXERCISES
1. Describe the possible consequences of allowing correlated variables to remain in the

model.

a. How can we determine whether correlation exists among our variables?

b. What steps can we take to remedy the situation? Apart from the methods described in
the text, think of some creative ways of dealing with correlated variables.

c. How might we investigate correlation among categorical variables?

2. For each of the following descriptive methods, state whether it may be applied to categorical
data, continuous numerical data, or both.

a. Bar charts

b. Histograms

c. Summary statistics
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d. Cross-tabulations

e. Correlation analysis

f. Scatter plots (two- or three-dimensional)

g. Web graphs

h. Binning

3. Why do we need to perform exploratory data analysis? Why shouldn’t we simply pro-
ceed directly to the modeling phase and start applying our high-powered data mining
software?

4. Make up a fictional data set (attributes with no records is fine) with a pair of anomalous
attributes. Describe how EDA would help to uncover the anomaly.

5. Describe the benefits and drawbacks of using normalized histograms. Should we ever use
a normalized histogram without reporting it as such? Why not?

6. Describe how scatter plots can uncover patterns in two dimensions that would be invisible
from one-dimensional EDA.

7. Describe the benefits and drawbacks of the three methods of binning described in the
text. Which methods require little human interaction? Which method does warrant human
supervision? Which method might conceivably be used to mislead the public?

Hands-on Analysis
Use the adult data set at the book series Web site for the following exercises. The target
variable is income, and the goal is to classify income based on the other variables.

8. Which variables are categorical and which are continuous?

9. Using software, construct a table of the first 10 records of the data set, to get a feel for the data.

10. Investigate whether there are any correlated variables.

11. For each of the categorical variables, construct a bar chart of the variable, with an overlay
of the target variable. Normalize if necessary.

a. Discuss the relationship, if any, each of these variables has with the target variables.

b. Which variables would you expect to make a significant appearance in any data mining
classification model that we work with?

12. For each pair of categorical variables, construct a cross-tabulation. Discuss your salient
results.

13. (If your software supports this.) Construct a web graph of the categorical variables. Fine
tune the graph so that interesting results emerge. Discuss your findings.

14. Report on whether anomalous fields exist in this data set, based on your EDA, which fields
these are, and what we should do about it.

15. Report the mean, median, minimum, maximum, and standard deviation for each of the
numerical variables.

16. Construct a histogram of each numerical variable, with an overlay of the target variable
income. Normalize if necessary.

a. Discuss the relationship, if any, each of these variables has with the target variables.

b. Which variables would you expect to make a significant appearance in any data mining
classification model we work with?
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17. For each pair of numerical variables, construct a scatter plot of the variables. Discuss your
salient results.

18. Based on your EDA so far, identify interesting subgroups of records within the data set
that would be worth further investigation.

19. Apply binning to one of the numerical variables. Do it such as to maximize the effect
of the classes thus created (following the suggestions in the text). Now do it such as to
minimize the effect of the classes, so that the difference between the classes is diminished.
Comment.

20. Refer to Exercise 19. Apply the other two binning methods (equal width and equal number
of records) to the variable. Compare the results and discuss the differences. Which method
do you prefer?

21. Summarize your salient EDA findings from Exercises 19 and 20 just as if you were writing
a report.
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STATISTICAL APPROACHES TO ESTIMATION AND PREDICTION
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HOW CONFIDENT ARE WE IN OUR ESTIMATES?

CONFIDENCE INTERVAL ESTIMATION

BIVARIATE METHODS: SIMPLE LINEAR REGRESSION

DANGERS OF EXTRAPOLATION

CONFIDENCE INTERVALS FOR THE MEAN VALUE OF y GIVEN x

PREDICTION INTERVALS FOR A RANDOMLY CHOSEN VALUE OF y GIVEN x

MULTIPLE REGRESSION

VERIFYING MODEL ASSUMPTIONS

DATA MINING TASKS IN DISCOVERING
KNOWLEDGE IN DATA

In Chapter 1 we were introduced to the six data mining tasks:

� Description
� Estimation
� Prediction
� Classification
� Clustering
� Association

Discovering Knowledge in Data: An Introduction to Data Mining, By Daniel T. Larose
ISBN 0-471-66657-2 Copyright C© 2005 John Wiley & Sons, Inc.
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TABLE 4.1 Data Mining Tasks in Discovering Knowledge in Data

Task We Learn about This Task in

Description Chapter 3: Exploratory Data Analysis

Estimation Chapter 4: Statistical Approaches to Estimation and Prediction

Prediction Chapter 4: Statistical Approaches to Estimation and Prediction

Classification Chapter 5: k-Nearest Neighbor Algorithm

Chapter 6: Decision Trees

Chapter 7: Neural Networks

Clustering Chapter 8: Hierarchical and k-Means Clustering

Chapter 9: Kohonen Networks

Association Chapter 10: Association Rules

In the description task, analysts try to find ways to describe patterns and trends lying
within the data. Descriptions of patterns and trends often suggest possible explanations
for such patterns and trends, as well as possible recommendations for policy changes.
This description task can be accomplished capably with exploratory data analysis, as
we saw in Chapter 3. Data mining methods that perform the description task well are
association rules and decision tree models. Table 4.1 provides an outline of where in
this book we learn about each of the data mining tasks.

Of course, the data mining methods are not restricted to one task only, which
results in a fair amount of overlap among data mining methods and tasks. For example,
decision trees may be used for classification, estimation, or prediction. Therefore,
Table 4.1 should not be considered as a definitive partition of the tasks, but rather
as a general outline of how we are introduced to the tasks and the methods used to
accomplish them.

STATISTICAL APPROACHES TO ESTIMATION
AND PREDICTION

If estimation and prediction are considered to be data mining tasks, statistical analysts
have been performing data mining for over a century. In this chapter we examine
some of the more widespread and traditional methods of estimation and prediction,
drawn from the world of statistical analysis. Our outline for the chapter is as follows.
We begin by examining univariate methods, statistical estimation, and prediction
methods that analyze one variable at a time. These methods include point estimation
and confidence interval estimation. Next we consider simple linear regression, where
the relationship between two numerical variables is investigated. Finally, we examine
multiple regression, where the relationship between a response variable and a set of
predictor variables is modeled linearly.
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UNIVARIATE METHODS: MEASURES OF CENTER
AND SPREAD

Consider our roles as data miners. We have been presented with a data set with which
we are presumably unfamiliar. We have completed the data understanding and data
preparation phases and have gathered some descriptive information using exploratory
data analysis. Next, we would like to perform univariate estimation and prediction,
using numerical field summaries.

Suppose that we are interested in estimating where the center of a particular
variable lies, as measured by one of the numerical measures of center, the most
common of which are the mean, median, and mode. Measures of center are a special
case of measures of location, numerical summaries that indicate where on a number
line a certain characteristic of the variable lies. Examples of measures of location are
percentiles and quantiles.

The mean of a variable is simply the average of the valid values taken by the
variable. To find the mean, simply add up all the field values and divide by the sample
size. Here we introduce a bit of notation. The sample mean is denoted as x (“x-bar”)
and is computed as x = ∑

x/n, where
∑

(capital sigma, the Greek letter “S,” for
“summation”) represents “sum all the values,” and n represents the sample size. For
example, suppose that we are interested in estimating where the center of the customer
service calls variable lies from the churn data set explored in Chapter 3. Clementine
supplies us with the statistical summaries shown in Figure 4.1. The mean number of
customer service calls for this sample of n = 3333 customers is given as x = 1.563.

Figure 4.1 Statistical summaries of customer service calls.
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Using the sum and the count statistics, we can verify that

x =
∑

x

n
= 5209

3333
= 1.563

For variables that are not extremely skewed, the mean is usually not too far from
the variable center. However, for extremely skewed data sets, the mean becomes less
representative of the variable center. Also, the mean is sensitive to the presence of
outliers. For this reason, analysts sometimes prefer to work with alternative measures
of center, such as the median, defined as the field value in the middle when the field
values are sorted into ascending order. The median is resistant to the presence of
outliers. Other analysts may prefer to use the mode, which represents the field value
occurring with the greatest frequency. The mode may be used with either numerical
or categorical data, but is not always associated with the variable center.

Note that measures of center do not always concur as to where the center of the
data set lies. In Figure 4.1, the median is 1.0, which means that half of the customers
made at least one customer service call; the mode is also 1.0, which means that the
most frequent number of customer service calls was 1. The median and mode agree.
However, the mean is 1.563, which is 56.3% higher than the other measures. This is
due to the mean’s sensitivity to the right-skewness of the data.

Measures of location are not sufficient to summarize a variable effectively. In
fact, two variables may have the very same values for the mean, median, and mode,
and yet have different natures. For example, suppose that stock portfolio A and stock
portfolio B contained five stocks each, with the price/earnings (P/E) ratios as shown
in Table 4.2. The portfolios are distinctly different in terms of P/E ratios. Portfolio A
includes one stock that has a very small P/E ratio and another with a rather large P/E
ratio. On the other hand, portfolio B’s P/E ratios are more tightly clustered around the
mean. But despite these differences, the mean, median, and mode of the portfolio’s,
P/E ratios are precisely the same: The mean P/E ratio is 10, the median is 11, and the
mode is 11 for each portfolio.

Clearly, these measures of center do not provide us with a complete picture.
What is missing are measures of spread or measures of variability, which will describe
how spread out the data values are. Portfolio A’s P/E ratios are more spread out than
those of portfolio B, so the measures of variability for portfolio A should be larger
than those of B.

TABLE 4.2 Price/Earnings Ratios for Five Stocks in Each of
Two Portfolios

Stock Portfolio A Stock Portfolio B

1 7

11 8

11 11

11 11

16 13
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Typical measures of variability include the range (maximum – minimum), the
standard deviation, the mean absolute deviation, and the interquartile range. The
sample standard deviation is perhaps the most widespread measure of variability and
is defined by

s =
√∑

(x − x)2

n − 1

Because of the squaring involved, the standard deviation is sensitive to the presence
of outliers, leading analysts to prefer other measures of spread, such as the mean
absolute deviation, in situations involving extreme values.

The standard deviation can be interpreted as the “typical” distance between a
field value and the mean, and most field values lie within two standard deviations of
the mean. From Figure 4.1 we can state that the number of customer service calls
made by most customers lies within 2(1.315) = 2.63 of the mean of 1.563 calls.
In other words, most of the number of customer service calls lie within the interval
(−1.067, 4.193), that is, (0, 4). This can be verified by examining the histogram of
customer service calls in Figure 3.16.

A more complete discussion of measures of location and variability can be
found in any introductory statistics textbook, such as Johnson and Kuby [1].

STATISTICAL INFERENCE

In statistical analysis, estimation and prediction are elements of the field of statis-
tical inference. Statistical inference consists of methods for estimating and testing
hypotheses about population characteristics based on the information contained in
the sample. A population is the collection of all elements (persons, items, or data) of
interest in a particular study.

For example, presumably, the cell phone company does not want to restrict its
actionable results to the sample of 3333 customers from which it gathered the data.
Rather, it would prefer to deploy its churn model to all of its present and future cell
phone customers, which would therefore represent the population. A parameter is a
characteristic of a population, such as the mean number of customer service calls of
all cell phone customers.

A sample is simply a subset of the population, preferably a representative subset.
If the sample is not representative of the population, that is, if the sample characteristics
deviate systematically from the population characteristics, statistical inference should
not be applied. A statistic is a characteristic of a sample, such as the mean number of
customer service calls of the 3333 customers in the sample (1.563).

Note that the values of population parameters are unknown for most interesting
problems. Specifically, the value of the population mean is usually unknown. For
example, we do not know the true mean number of customer service calls to be
made by all of the company’s cell phone customers. To represent their unknown
nature, population parameters are often denoted with Greek letters. For example, the
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population mean is symbolized using the Greek lowercase letter � (mu), which is the
Greek letter for “m” (“mean”).

The value of the population mean number of customer service calls � is un-
known for a variety of reasons, including the fact that the data may not yet have been
collected or warehoused. Instead, data analysts would use estimation. For example,
they would estimate the unknown value of the population mean � by obtaining a
sample and computing the sample mean x , which would be used to estimate �. Thus,
we would estimate the mean number of customer service calls for all customers to be
1.563, since this is the value of our observed sample mean.

An important caveat is that estimation is valid only as long as the sample is
truly representative of the population. For example, in the churn data set, the company
would presumably implement policies to improve customer service and decrease the
churn rate. These policies would, hopefully, result in the true mean number of customer
service calls falling to a level lower than 1.563.

Analysts may also be interested in proportions, such as the proportion of cus-
tomers who churn. The sample proportion p is the statistic used to measure the
unknown value of the population proportion �. For example, in Chapter 3 we found
that the proportion of churners in the data set was p = 0.145, which could be used to
estimate the true proportion of churners for the population of all customers, keeping
in mind the caveats above.

Point estimation refers to the use of a single known value of a statistic to
estimate the associated population parameter. The observed value of the statistic is
called the point estimate. We may summarize estimation of the population mean,
standard deviation, and proportion using Table 4.3.

Estimation need not be restricted to the parameters in Table 4.3. Any statistic
observed from sample data may be used to estimate the analogous parameter in the
population. For example, we may use the sample maximum to estimate the population
maximum, or we could use the sample 27th percentile to estimate the population
27th percentile. Any sample characteristic is a statistic, which, under the appropriate
circumstances, can be used to estimate its appropriate parameter.

More specifically, for example, we could use the sample churn proportion
of customers who did select the VoiceMail Plan, but did not select the Interna-
tional Plan, and who made three customer service calls to estimate the population
churn proportion of all such customers. Or, we could use the sample 99th per-
centile of day minutes used for customers without the VoiceMail Plan to estimate the
population 99th percentile of day minutes used for all customers without the Voice-
Mail Plan.

TABLE 4.3 Use Observed Sample Statistics to Estimate Unknown Population Parameters

Sample Statistic . . . Estimates . . . Population Parameter

Mean x −−−−−−−→ �

Standard deviation s −−−−−−−→ �

Proportion p −−−−−−−→ �
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HOW CONFIDENT ARE WE IN OUR ESTIMATES?

Let’s face it: Anyone can make estimates. Crystal ball gazers will be happy (for a
price) to provide you with an estimate of the parameter in which you are interested.
The question is: How confident can we be in the accuracy of the estimate?

Do you think that the population mean number of customer service calls made
by all of the company’s customers is exactly the same as the sample mean x =
1.563? Probably not. In general, since the sample is a subset of the population,
inevitably the population contains more information than the sample about any given
characteristic. Hence, unfortunately, our point estimates will nearly always “miss”
the target parameter by a certain amount, and thus be in error by this amount, which
is probably, though not necessarily, small.

This distance between the observed value of the point estimate and the
unknown value of its target parameter is called sampling error, defined as
|statistic − parameter|. For example, the sampling error for the mean is |x − �|, the
distance (always positive) between the observed sample mean and the unknown pop-
ulation mean. Since the true values of the parameter are usually unknown, the value of
the sampling error is usually unknown in real-world problems. In fact, for continuous
variables, the probability that the observed value of a point estimate exactly equals its
target parameter is precisely zero. This is because probability represents area above
an interval for continuous variables, and there is no area above a point.

Point estimates have no measure of confidence in their accuracy; there is no
probability statement associated with the estimate. All we know is that the estimate
is probably close to the value of the target parameter (small sampling error) but that
possibly it may be far away (large sampling error). In fact, point estimation has been
likened to a dart thrower, throwing darts with infinitesimally small tips (the point
estimates) toward a vanishingly small bull’s-eye (the target parameter). Worse, the
bull’s-eye is hidden, and the thrower will never know for sure how close the darts are
coming to the target.

The dart thrower could perhaps be forgiven for tossing a beer mug in frustration
rather than a dart. But wait! Since the beer mug has width, there does indeed exist
a positive probability that some portion of the mug has hit the hidden bull’s-eye.
We still don’t know for sure, but we can have a certain degree of confidence that the
target has been hit. Very roughly, the beer mug represents our next estimation method,
confidence intervals.

CONFIDENCE INTERVAL ESTIMATION

A confidence interval estimate of a population parameter consists of an interval of
numbers produced by a point estimate, together with an associated confidence level
specifying the probability that the interval contains the parameter. Most confidence
intervals take the general form

point estimate ± margin of error
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where the margin of error is a measure of the precision of the interval estimate.
Smaller margins of error indicate greater precision. For example, the t-interval for
the population mean is given by

x ± t�/2(s/
√

n)

where the sample mean x is the point estimate and the quantity t�/2(s/
√

n) represents
the margin of error. The t-interval for the mean may be used when either the population
is normal or the sample size is large.

Under what conditions will this confidence interval provide precise estima-
tion? That is, when will the margin of error t�/2(s/

√
n) be small? The quantity s/

√
n

represents the standard error of the sample mean (the standard deviation of the sam-
pling distribution of x) and is small whenever the sample size is large or the sam-
ple variability is small. The multiplier t�/2 is associated with the sample size and
the confidence level (usually 90 to 99%) specified by the analyst, and is smaller
for lower confidence levels. Since we cannot influence the sample variability di-
rectly and we hesitate to lower our confidence level, we must turn to increas-
ing the sample size should we seek to provide more precise confidence interval
estimation.

Usually, finding a large sample size is not a problem for many data mining
scenarios. For example, using the statistics in Figure 4.1, we can find the 95%
t-interval for the mean number of customer service calls for all customers as fol-
lows:

x ± t�/2(s/
√

n)

1.563 ± 1.96(1.315/
√

3333)
1.563 ± 0.045

(1.518, 1.608)

We are 95% confident that the population mean number of customer service calls for
all customers falls between 1.518 and 1.608 calls. Here, the margin of error is 0.045
customer service calls, which is fairly precise for most applications.

However, data miners are often called upon to estimate the behavior of specific
subsets of customers instead of the entire customer base, as in the example above. For
example, suppose that we are interested in estimating the mean number of customer
service calls for customers who have both the International Plan and the VoiceMail
Plan and who have more than 220 day minutes. This considerably restricts the sample
size, as shown in Figure 4.2.

There are only 28 customers in the sample who have both plans and who logged
more than 220 minutes of day use. The point estimate for the population mean number
of customer service calls for all such customers is the sample mean 1.607. We may
find the 95% t-confidence interval estimate as follows:

x ± t�/2(s/
√

n)
1.607 ± 2.048(1.892/

√
28)

1.607 ± 0.732

(0.875, 2.339)
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Figure 4.2 Summary statistics of customers with both the International Plan and VoiceMail
Plan and with more than 200 day minutes.

We are 95% confident that the population mean number of customer service calls for
all customers who have both plans and who have more than 220 minutes of day use
falls between 0.875 and 2.339 calls. The margin of error for this specific subset of
customers is 0.732, which indicates that our estimate of the mean number of customer
service calls for this subset of customers is much less precise than for the customer
base as a whole.

Confidence interval estimation can be applied to any desired target parameter.
The most widespread interval estimates are for the population mean, the population
standard deviation, and the population proportion of successes.

BIVARIATE METHODS: SIMPLE LINEAR REGRESSION

So far we have discussed estimation measures for one variable at a time. Analysts,
however, are often interested in bivariate methods of estimation, for example, using
the value of one variable to estimate the value of a different variable.

To help us learn about regression methods for estimation and prediction, let
us get acquainted with a new data set, cereals. The cereals data set, included at the
book series Web site courtesy of the Data and Story Library [2], contains nutrition
information for 77 breakfast cereals and includes the following variables:

� Cereal name
� Cereal manufacturer
� Type (hot or cold)
� Calories per serving
� Grams of protein
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� Grams of fat
� Milligrams of sodium
� Grams of fiber
� Grams of carbohydrates
� Grams of sugars
� Milligrams of potassium
� Percentage of recommended daily allowance of vitamins (0% 25%, or 100%)
� Weight of one serving
� Number of cups per serving
� Shelf location (1 = bottom, 2 = middle, 3 = top)
� Nutritional rating, calculated by Consumer Reports

Table 4.4 provides a peek at the eight of these fields for the first 16 cereals. We
are interested in estimating the nutritional rating of a cereal given its sugar content.
Figure 4.3 shows a scatter plot of the nutritional rating versus the sugar content for
the 77 cereals, along with the least-squares regression line.

The regression line is written in the form ŷ = b0 + b1x , called the regression
equation or the estimated regression equation (ERE), where:

� ŷ is the estimated value of the response variable
� b0 is the y-intercept of the regression line
� b1 is the slope of the regression line
� b0 and b1, together, are called the regression coefficients

TABLE 4.4 Excerpt from Cereals Data Set: Eight Fields, First 16 Cereals

Cereal Name Manuf. Sugars Calories Protein Fat Sodium Rating

100% Bran N 6 70 4 1 130 68.4030

100% Natural Bran Q 8 120 3 5 15 33.9837

All-Bran K 5 70 4 1 260 59.4255

All-Bran Extra Fiber K 0 50 4 0 140 93.7049

Almond Delight R 8 110 2 2 200 34.3848

Apple Cinnamon Cheerios G 10 110 2 2 180 29.5095

Apple Jacks K 14 110 2 0 125 33.1741

Basic 4 G 8 130 3 2 210 37.0386

Bran Chex R 6 90 2 1 200 49.1203

Bran Flakes P 5 90 3 0 210 53.3138

Cap’n’Crunch Q 12 120 1 2 220 18.0429

Cheerios G 1 110 6 2 290 50.7650

Cinnamon Toast Crunch G 9 120 1 3 210 19.8236

Clusters G 7 110 3 2 140 40.4002

Cocoa Puffs G 13 110 1 1 180 22.7364
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Figure 4.3 Scatter plot of nutritional rating versus sugar content for 77 cereals.

In this case the ERE is given as ŷ = 59.4 − 2.42(sugars), so that b0 = 59.4
and b1 = −2.42. This estimated regression equation can then be interpreted as: “The
estimated cereal rating equals 59.4 minus 2.42 times the sugar content in grams.” The
regression line and the ERE are used as a linear approximation of the relationship
between the x (predictor) and y (response) variables, that is, between sugar content
and nutritional rating. We can use the regression line or the ERE to make estimates
or predictions.

For example, suppose that we are interested in estimating the nutritional rating
for a new cereal (not in the original data) that contains x = 1 gram of sugar. Using the
ERE, we find the estimated nutritional rating for a cereal with 1 gram of sugar to be
ŷ = 59.4 − 2.42(1) = 56.98. Note that this estimated value for the nutritional rating
lies directly on the regression line, at the location (x = 1, ŷ = 56.98), as shown in
Figure 4.3. In fact, for any given value of x (sugar content), the estimated value for y
(nutritional rating) lies precisely on the regression line.

Now, there is one cereal in our data set that does have a sugar content of 1 gram,
Cheerios. Its nutrition rating, however, is 50.765, not 56.98 as we estimated above for
the new cereal with 1 gram of sugar. Cheerios’ point in the scatter plot is located at
(x = 1, y = 50.765), within the oval in Figure 4.3. Now, the upper arrow in Figure 4.3
is pointing to a location on the regression line directly above the Cheerios point. This
is where the regression equation predicted the nutrition rating to be for a cereal with
a sugar content of 1 gram. The prediction was too high by 56.98 − 50.765 = 6.215
rating points, which represents the vertical distance from the Cheerios data point to
the regression line. This vertical distance of 6.215 rating points, in general (y − ŷ),
is known variously as the prediction error, estimation error, or residual.
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We of course seek to minimize the overall size of our prediction errors. Least-
squares regression works by choosing the unique regression line that minimizes the
sum of squared residuals over all the data points. There are alternative methods of
choosing the line that best approximates the linear relationship between the vari-
ables, such as median regression, although least squares remains the most common
method.

The y-intercept b0 is the location on the y-axis where the regression line in-
tercepts the y-axis, that is, the estimated value for the response variable when the
predictor variable equals zero. Now, in many regression situations, a value of zero
for the predictor variable would not make sense. For example, suppose that we were
trying to predict elementary school student weight (y) based on student height (x).
The meaning of height = 0 is unclear, so that the denotative meaning of the y-intercept
would not make interpretive sense in this case.

However, for our data set, a value of zero for the sugar content does make
sense, as several cereals contain zero grams of sugar. Therefore, for our data set, the
y-intercept b0 = 59.4 simply represents the estimated nutritional rating for cereals
with zero sugar content. Note that none of the cereals containing zero grams of
sugar have this estimated nutritional rating of exactly 59.4. The actual ratings, along
with the prediction errors, are shown in Table 4.5. Note that all the predicted ratings
are the same, since all these cereals had identical values for the predictor variable
(x = 0).

The slope of the regression line indicates the estimated change in y per unit
increase in x . We interpret b1 = −2.42 to mean the following: “For each increase
of 1 gram in sugar content, the estimated nutritional rating decreases by 2.42 rat-
ing points.” For example, cereal A with 5 more grams of sugar than cereal B
would have an estimated nutritional rating 5(2.42) = 12.1 ratings points lower than
cereal B.

The correlation coefficient r for rating and sugars is −0.76, indicating that the
nutritional rating and the sugar content are negatively correlated. It is not a coincidence
that both r and b1 are both negative. In fact, the correlation coefficient r and the
regression slope b1 always have the same sign.

TABLE 4.5 Actual Ratings, Predicted Ratings, and Prediction Errors for Cereals with
Zero Grams of Sugar

Cereal Actual Rating Predicted Rating Prediction Error

Quaker Oatmeal 50.8284 59.4 −8.5716

All-Bran with Extra Fiber 93.7049 59.4 34.3049

Cream of Wheat (Quick) 64.5338 59.4 5.1338

Puffed Rice 60.7561 59.4 1.3561

Puffed Wheat 63.0056 59.4 3.6056

Shredded Wheat 68.2359 59.4 8.8359

Shredded Wheat ’n’Bran 74.4729 59.4 15.0729

Shredded Wheat Spoon Size 72.8018 59.4 13.4018
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DANGERS OF EXTRAPOLATION

Suppose that a new cereal (say, the Chocolate Frosted Sugar Bombs loved by Calvin,
the comic strip character written by Bill Watterson) arrives on the market with a
very high sugar content of 30 grams per serving. Let us use our estimated regression
equation to estimate the nutritional rating for Chocolate Frosted Sugar Bombs: ŷ =
59.4 − 2.42(sugars) = 59.4 − 2.42(30) = −13.2. In other words, Calvin’s cereal has
so much sugar that its nutritional rating is actually a negative number, unlike any of
the other cereals in the data set (minimum = 18) and analogous to a student receiving
a negative grade on an exam. What is going on here?

The negative estimated nutritional rating for Chocolate Frosted Sugar Bombs
is an example of the dangers of extrapolation. Analysts should confine the estimates
and predictions made using the ERE to values of the predictor variable contained
within the range of the values of x in the data set. For example, in the cereals data
set, the lowest sugar content is zero grams and the highest is 15 grams, so that
predictions of nutritional rating for any value of x (sugar content) between zero and
15 grams would be appropriate. However, extrapolation, making predictions for x-
values lying outside this range, can be dangerous, since we do not know the nature of
the relationship between the response and predictor variables outside this range.

Extrapolation should be avoided if possible. If predictions outside the given
range of x must be performed, the end user of the prediction needs to be informed that
no x-data is available to support such a prediction. The danger lies in the possibility
that the relationship between x and y, which may be linear within the range of x in
the data set, may no longer be linear outside these bounds.

Consider Figure 4.4. Suppose that our data set consisted only of the data points
in black but that the true relationship between x and y consisted of both the black

Predicted value
of y based on
available data.

Large prediction
error.

Actual value of y.

Figure 4.4 Dangers of extrapolation.
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(observed) and the gray (unobserved) points. Then, a regression line based solely
on the available (black dot) data would look approximately similar to the regression
line indicated. Suppose that we were interested in predicting the value of y for an
x-value located at the triangle. The prediction based on the available data would then
be represented by the dot on the regression line indicated by the upper arrow. Clearly,
this prediction has failed spectacularly, as shown by the vertical line indicating the
huge prediction error. Of course, since the analyst would be completely unaware of
the hidden data, he or she would hence be oblivious to the massive scope of the error
in prediction. Policy recommendations based on such erroneous predictions could
certainly have costly results.

CONFIDENCE INTERVALS FOR THE MEAN VALUE
OF y GIVEN x

Thus far, we have discussed point estimates for values of the response variable for a
given value of the predictor variable. Of course, point estimates in this context suffer
the same drawbacks as point estimates in the univariate case, notably the lack of a
probability statement associated with their accuracy. We may therefore have recourse
to confidence intervals for the mean value of y for a given value of x .

The confidence interval for the mean value of y for a given value of x is as
follows:

point estimate ± margin of error = ŷp ± t�/2(s)

√√√√1

n
+

(
x p − x

)2∑
(xi − x)2

where

x p = the particular value of x for which the prediction is being made

ŷp = the point estimate of y for a particular value of x

t�/2 = a multiplier associated with the sample size and confidence level

s =
√

MSE =
√

SSE
/

n − 1 = the standard error of the estimate

SSE = the sum of squared residuals

We look at an example of this type of confidence interval below, but first we
are introduced to a new type of interval, the prediction interval.

PREDICTION INTERVALS FOR A RANDOMLY CHOSEN
VALUE OF y GIVEN x

Have you ever considered that it is “easier” to predict the mean value of a variable
than it is to predict a randomly chosen value of that variable? For example, baseball
buffs perusing the weekly batting average statistics will find that the team batting
averages (which are the means of all the team’s players) are more closely bunched
together than are the batting averages of the individual players. An estimate of the
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team batting average will therefore be more precise than an estimate of a randomly
chosen member of that team for the same level of confidence.

Exam scores provide another example. It is not unusual for a randomly selected
student’s score to exceed 95, say, but it is quite unusual for the class average to be
that high. This anecdotal evidence reflects the smaller variability associated with the
mean (class average) of a variable rather than a randomly selected value (individual
score) of that variable. Therefore, it is “easier” to predict the class average on an exam
than it is to predict a randomly chosen student’s score.

In many situations, data miners are more interested in predicting an individual
value rather than the mean of all the values, given x . For example, an analyst may be
more interested in predicting the credit score for a particular credit applicant rather
than predicting the mean credit score of all similar applicants. Or, a geneticist may
be interested in the expression of a particular gene rather than the mean expression
of all similar genes.

Prediction intervals are used to estimate the value of a randomly chosen value
of y, given x . Clearly, this is a more difficult task than estimating the mean, resulting
in intervals of greater width (lower precision) than confidence intervals for the mean
with the same confidence level. The prediction interval for a randomly chosen value
of y for a given value of x is as follows:

point estimate ± margin of error = ŷp ± t�/2 (s)

√
1 + 1

n
+ (x p − x)2∑

(xi − x)2

Note that this formula is precisely the same as the formula for the confidence interval
for the mean value of y, given x , except for the presence of the “1+” inside the square
root. This ensures that the prediction interval is always wider than the analogous
confidence interval.

Minitab supplies us with the regression output shown in Figure 4.5 for predict-
ing nutrition rating based on sugar content. We also asked Minitab to calculate the
confidence interval for the mean of all nutrition ratings when the sugar content equals
1 gram. Let’s examine this output for a moment.

� The estimated regression equation is given first: ŷ = 59.4 − 2.42(sugars).
� Then the regression coefficients are displayed, under coef: b0 = 59.4 and b1 =
−2.42.

� Under SE coef are found the standard errors of the coefficients, which are a
measure of the variability of the coefficients.

� Under T are found the t-test statistics for the hypothesis test.
� Under P are found the p-values of these hypothesis tests for the coefficients.

A small p-value (usually <0.05) indicates that the particular coefficient differs
significantly from zero.

� S, the standard error of the estimate, indicates a measure of the size of the
“typical” error in prediction.

� R-squared is a measure of how closely the linear regression model fits the data,
with values closer to 90 to 100% indicating a very nice fit.
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The regression equation is 

Regression Analysis: Rating versus Sugars 

Rating = 59.4 - 2.42 Sugars

Predictor    Coef   SE Coef     T      P 
Constant   59.444     1.951   30.47   0.000 
Sugars     -2.4193    0.2376  -10.18  0.000 

S = 9.162    R-Sq = 58.0%   R-Sq(adj) = 57.5% 

Analysis of Variance 

Source          DF        SS       MS       F       P 
Regression       1    8701.7   8701.7  103.67   0.000 
Residual Error  75    6295.1     83.9 
Total           76   14996.8 

Unusual Observations 
Obs   Sugars   Rating      Fit    SE Fit   Residual   St Resid 
  2      0.0    93.70    59.44      1.95     34.26      3.83R
 32      6.0    68.40    44.93      1.07     23.48      2.58R

R denotes an observation with a large standardized residual 

Predicted Values for New Observations 

New Obs     Fit    SE Fit        95.0% CI          95.0% PI 
1         57.02      1.75  (   53.53,   60.52) (   38.44,   75.61)

Values of Predictors for New Observations 

New Obs    Sugars 
1            1.00

Figure 4.5 Minitab regression output.

Minitab identifies two unusual observations, cereal 2 (All-Bran with Extra
Fiber) and cereal 32 (100% Bran), which have large positive residuals, indicating that
the nutrition rating was unexpectedly high, given their sugar level.

Finally, near the bottom, we find the information regarding the confidence and
prediction intervals for a new cereal containing 1 gram of sugar.

� Fit is nothing but the point estimate of the nutritional rating for a cereal with
1 gram of sugar: ŷ = 59.444 − 2.4193(1) = 57.02. (The difference from the
56.98 in the Cheerios example is due simply to our earlier rounding of the
coefficient values.)

� SE fit is a measure of the variability of the point estimate.
� The 95% confidence interval for the mean nutritional rating of all cereals con-

taining 1 gram of sugar is (53.53, 60.52).
� The 95% prediction interval for the nutritional rating of a randomly chosen

cereal containing 1 gram of sugar is (38.44, 75.61).

Note that as expected, the prediction interval is wider than the confidence in-
terval, reflecting the greater challenge of estimating a particular y value rather than
the mean y value for a given value of x .



WY045-04 September 8, 2004 14:59

MULTIPLE REGRESSION 83

MULTIPLE REGRESSION

Suppose that a linear relationship exists between a predictor variable and a response
variable but that we ignored the relationship and used only the univariate measures
associated with the response variable (e.g., mean, median) to predict new cases. This
would be a waste of information, and such univariate measures would on average be
far less precise estimators of new values of the predictor variable than the regression
model would have provided.

Now, most data mining applications enjoy a wealth (indeed, a superfluity) of
data, with some data sets including hundreds of variables, many of which may have a
linear relationship with the target (response) variable. Multiple regression modeling
provides an elegant method of describing such relationships. Multiple regression
models provide improved precision for estimation and prediction, analogous to the
improved precision of regression estimates over univariate estimates.

To illustrate the use of multiple regression modeling using the cereals data
set, we shall attempt to reconstruct the formula used by Consumer Reports for the
nutritional rating of the cereals. We begin exploring the relationships between the
response rating and the predictors calories, protein, fat, sodium, fiber, carbohydrates,
sugars, potassium, and vitamins, by using Minitab draftman’s plots, which plot a
response variable against several predictor variables, shown here with an estimated
regression line superimposed.

From Figures 4.6 and 4.7, we would expect that protein, fiber, and potassium
would be positively correlated with a higher nutritional rating, while fat, sodium, sug-
ars, and surprisingly, vitamins are negatively correlated with a higher nutritional rat-
ing. Carbohydrates seem to be uncorrelated with nutritional rating. We can verify these
graphical findings with the correlation coefficients for all the variables, shown in the
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Figure 4.6 Draftman’s plot of rating versus calories, protein, fat, and sodium.
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Figure 4.7 Draftman’s plot of rating versus fiber, carbohydrates, sugars, potassium, and
vitamins.

Table 4.6. The first column (in bold) shows the correlation coefficients of the predictor
variables with rating. As expected, protein, fiber, and potassium are positively correl-
ated with rating, whereas calories, fat, sodium, and vitamins are negatively correlated.

Data analysts need to guard against multicollinearity, a condition where some
of the predictor variables are correlated with each other. Multicollinearity leads to
instability in the solution space, leading to possible incoherent results. Even if such
instability is avoided, inclusion of variables that are highly correlated tends to overem-
phasize a particular component of the model, since the component is essentially being
double counted. Here, potassium is very highly correlated with fiber (r = 0.905). Al-
though more sophisticated methods exist for handling correlated variables, such as
principal components analysis, in this introductory example we simply omit potas-
sium as a predictor.

TABLE 4.6 Correlation Coefficients for All Variables

Rating Calories Protein Fat Sodium Fiber Carbohydrates Sugars Potassium

Calories −0.689

Protein 0.471 0.019

Fat −0.409 0.499 0.208

Sodium −0.401 0.301 −0.055 −0.005

Fibre 0.577 −0.291 0.506 0.026 −0.071

Carbos 0.050 0.255 −0.125 −0.315 0.357 −0.357

Sugars −0.762 0.564 −0.324 0.257 0.096 −0.137 −0.351

Potass 0.380 −0.067 0.549 0.193 −0.033 0.905 −0.354 0.22

Vitamins −0.241 0.265 0.007 −0.031 0.361 −0.036 0.257 0.122 0.021
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VERIFYING MODEL ASSUMPTIONS

Before a model can be implemented, the requisite model assumptions must be ver-
ified. Using a model whose assumptions are not verified is like building a house
whose foundation may be cracked. Making predictions using a model where the as-
sumptions are violated may lead to erroneous and overoptimistic results, with costly
consequences when deployed.

These assumptions—linearity, independence, normality, and constant variance
—may be checked using a normality plot of the residuals (Figure 4.8), and a plot
of the standardized residuals against the fitted (predicted) values (Figure 4.9). One
evaluates a normality plot by judging whether systematic deviations from linearity
exist in the plot, in which case one concludes that the data values plotted (the residuals
in this case) are not drawn from the particular distribution (the normal distribution in
this case). We do not detect systematic deviations from linearity in the normal plot
of the standardized residuals, and thereby conclude that our normality assumption is
intact.

The plot of the residuals versus the fits (Figure 4.9) is examined for discernible
patterns. If obvious curvature exists in the scatter plot, the linearity assumption is
violated. If the vertical spread of the points in the plot is systematically nonuniform,
the constant variance assumption is violated. We detect no such patterns in Figure 4.9
and therefore conclude that the linearity and constant variance assumptions are intact
for this example.

The independence assumption makes sense for this data set, since we would
not expect that the rating for one particular cereal would depend on the rating for
another cereal. Time-dependent data can be examined for order independence using
a runs test or a plot of the residuals versus ordering.

After thus checking that the assumptions are not violated, we may therefore
proceed with the multiple regression analysis. Minitab provides us with the multiple
regression output shown in Figure 4.10.
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Figure 4.8 Normal plot of the residuals.
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Figure 4.9 Plot of standardized residuals versus fitted (predicted values).

Let us examine these very interesting results carefully. The estimated regression
equation is as follows:

The estimated nutritional rating equals 55.9

minus 0.225 times the number of calories

plus 2.88 times the grams of protein

minus 2.00 times the grams of fat

minus 0.0546 times the milligrams of sodium

plus 2.57 times the grams of fiber

Rating = 55.9 − 0.225 Calories + 2.88 Protein − 2.00 Fat − 0.0546 Sodium
+ 2.57 Fiber + 1.08 Carbos − 0.823 Sugars − 0.0514 Vitamins

Predictor        Coef     SE Coef          T        P
Constant      55.9047      0.8421      66.39    0.000
Calories −0.22456     0.01551 −14.48    0.000
Protein        2.8824      0.1626      17.73    0.000
Fat −2.0048      0.1857 −10.80    0.000
Sodium −0.054647    0.001609 −33.96    0.000
Fiber         2.57151     0.06505      39.53    0.000
Carbos        1.07504     0.06093      17.64    0.000
Sugars −0.82343     0.06189 −13.31    0.000
Vitamins −0.051422    0.005802 −8.86    0.000

S = 1.015       R-Sq = 99.5%     R-Sq(adj) = 99.5%

Analysis of Variance

Source            DF          SS          MS         F        P
Regression         8     14926.8      1865.8   1811.92    0.000
Residual Error    68        70.0         1.0 
Total             76     14996.8

The regression equation is

Figure 4.10 Minitab multiple regression output.
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plus 1.08 times the grams of carbohydrates

minus 0.823 times the grams of sugar

minus 0.0514 times the percent RDA of vitamins

This is the equation we may use to perform point estimation and prediction
for the nutritional rating of new cereals. For example, suppose that there is a new
cereal with 80 calories, 2 grams of protein, no fat, no sodium, 3 grams of fiber,
16 grams of carbohydrates, no sugars, and 0% RDA of vitamins (similar to Shredded
Wheat). Then the predicted nutritional rating is 55.9 − 0.225(80) + 2.88(2) − 2.00(0)
− 0.0546(0) + 2.57(3) + 1.08(16) − 0.823(0) − 0.0514(0) = 68.62 using the un-
rounded coefficients provided by minitab. This prediction is remarkably close to the
actual nutritional rating for Shredded Wheat of 68.2359, so that the prediction error
is y − ŷ = 68.2359 − 68.62 = −0.3841.

Of course, point estimates have drawbacks, so analogous to the simple linear
regression case, we can find confidence intervals and prediction intervals in multiple
regression as well. We can find a 95% confidence interval for the mean nutritional
rating of all such cereals (with characteristics similar to those of Shredded Wheat:
80 calories, 2 grams of protein, etc.), to be (67.914, 69.326). Also, a 95% prediction
interval for the nutritional rating of a randomly chosen cereal with characteristics
similar to those of Shredded Wheat is (66.475, 70.764). As before, the prediction
interval is wider than the confidence interval.

Here follow further comments on the multiple regression results given in
Figure 4.10. The R2 value of 99.5% is extremely high, nearly equal to the maximum
possible R2 of 100%. This indicates that our multiple regression models accounts
for nearly all of the variability in the nutritional ratings. The standard error of the
estimate, s, has a value of about 1, meaning that our typical prediction error is about
one point on the nutrition rating scale, and that about 95% (based on the normal
distribution of the errors) of our predictions will be within two points of the actual
value. Compare this with an s value of about 9 for the simple linear regression model
in Figure 4.5. Using more data in our regression model has allowed us to reduce our
prediction error by a factor of 9.

Note also that the p-values (under P) for all the predictor variables equal zero
(actually, they are rounded to zero), indicating that each of the variables, including
carbohydrates, belongs in the model. Recall that earlier it appeared that carbohydrates
did not have a very high correlation with rating, so some modelers may have been
tempted to eliminate carbohydrates from the model based on this exploratory finding.
However, as we mentioned in Chapter 3, it is often best to allow variables to remain
in the model even if the EDA does not show obvious association with the target. Here,
carbohydrates was found to be a significant predictor of rating, in the presence of the
other predictors. Eliminating carbohydrates as a predictor in the regression resulted
in a point estimate for a Shredded Wheat–like cereal to have a nutritional rating of
68.805, more distant from the actual rating of 68.2359 than was the prediction that
included carbohydrates in the model. Further, the model without carbohydrates had
a decreased R2 value and an s value that more than doubled, to 2.39 (not shown).
Eliminating this variable due to seeming lack of association in the EDA phase would
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have been a mistake, reducing the functionality of model and impairing its estimation
and prediction precision.
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EXERCISES
1. Explain why measures of spread are required when summarizing a data set.

2. Explain the meaning of the term standard deviation to a layman who has never read a
statistics or data mining book.

3. Give an example from your own experience, or from newspapers, of the use of statistical
inference.

4. Give an example from your own experience, or from newspapers, of the idea of sampling
error.

5. What is the meaning of the term margin of error?

6. Discuss the relationship between the width of a confidence interval and the confidence
level associated with it.

7. Discuss the relationship between the sample size and the width of a confidence interval.
Which is better, a wide interval or a tight interval? Why?

8. Explain clearly why we use regression analysis and for which type of variables it is
appropriate.

9. Suppose that we are interested in predicting weight of students based on height. We have
run a regression analysis with the resulting estimated regression equation as follows: “The
estimated weight equals (−180 pounds) plus (5 pounds times the height in inches).”

a. Suppose that one student is 3 inches taller than another student. What is the estimated
difference in weight?

b. Suppose that a given student is 65 inches tall. What is the estimated weight?

c. Suppose that the regression equation above was based on a sample of students ranging
in height from 60 to 75 inches. Now estimate the height of a 48-inch-tall student.
Comment.

d. Explain clearly the meaning of the 5 in the equation above.

e. Explain clearly the meaning of the −180 in the equation above.

Hands-On Analysis
Use the cereals data set included, at the book series Web site, for the following
exercises. Use regression to estimate rating based on fiber alone.
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10. What is the estimated regression equation?

11. Explain clearly the value of the slope coefficient you obtained in the regression.

12. What does the value of the y-intercept mean for the regression equation you obtained?
Does it make sense in this example?

13. What would be a typical prediction error obtained from using this model to predict rating?
Which statistic are you using to measure this? What could we do to lower this estimated
prediction error?

14. How closely does our model fit the data? Which statistic are you using to measure this?

15. Find a point estimate for the rating for a cereal with a fiber content of 3 grams.

16. Find a 95% confidence interval for the true mean rating for all cereals with a fiber content
of 3 grams.

17. Find a 95% prediction interval for a randomly chosen cereal with a fiber content of
3 grams.

18. Based on the regression results, what would we expect a scatter plot of rating versus fiber
to look like? Why?

For the following exercises, use multiple regression to estimate rating based on fiber and sugars.

19. What is the estimated regression equation?

20. Explain clearly and completely the value of the coefficient for fiber you obtained in the
regression.

21. Compare the R2 values from the multiple regression and the regression done earlier in the
exercises. What is going on? Will this always happen?

22. Compare the s values from the multiple regression and the regression done earlier in the
exercises. Which value is preferable, and why?
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SUPERVISED VERSUS UNSUPERVISED METHODS

Data mining methods may be categorized as either supervised or unsupervised. In
unsupervised methods, no target variable is identified as such. Instead, the data mining
algorithm searches for patterns and structure among all the variables. The most com-
mon unsupervised data mining method is clustering, our topic in Chapters 8 and 9. For
example, political consultants may analyze congressional districts using clustering
methods, to uncover the locations of voter clusters that may be responsive to a par-
ticular candidate’s message. In this case, all appropriate variables (e.g., income, race,
gender) would be input to the clustering algorithm, with no target variable specified,
in order to develop accurate voter profiles for fund-raising and advertising purposes.

Another data mining method, which may be supervised or unsupervised, is
association rule mining. In market basket analysis, for example, one may simply be

Discovering Knowledge in Data: An Introduction to Data Mining, By Daniel T. Larose
ISBN 0-471-66657-2 Copyright C© 2005 John Wiley & Sons, Inc.
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interested in “which items are purchased together,” in which case no target variable
would be identified. The problem here, of course, is that there are so many items
for sale, that searching for all possible associations may present a daunting task, due
to the resulting combinatorial explosion. Nevertheless, certain algorithms, such as
the a priori algorithm, attack this problem cleverly, as we shall see when we cover
association rule mining in Chapter 10.

Most data mining methods are supervised methods, however, meaning that (1)
there is a particular prespecified target variable, and (2) the algorithm is given many
examples where the value of the target variable is provided, so that the algorithm
may learn which values of the target variable are associated with which values of the
predictor variables. For example, the regression methods of Chapter 4 are supervised
methods, since the observed values of the response variable y are provided to the
least-squares algorithm, which seeks to minimize the squared distance between these
y values and the y values predicted given the x-vector. All of the classification methods
we examine in Chapters 5 to 7 are supervised methods, including decision trees, neural
networks, and k-nearest neighbors.

METHODOLOGY FOR SUPERVISED MODELING

Most supervised data mining methods apply the following methodology for building
and evaluating a model. First, the algorithm is provided with a training set of data,
which includes the preclassified values of the target variable in addition to the predictor
variables. For example, if we are interested in classifying income bracket, based on
age, gender, and occupation, our classification algorithm would need a large pool of
records, containing complete (as complete as possible) information about every field,
including the target field, income bracket. In other words, the records in the training
set need to be preclassified. A provisional data mining model is then constructed using
the training samples provided in the training data set.

However, the training set is necessarily incomplete; that is, it does not include
the “new” or future data that the data modelers are really interested in classifying.
Therefore, the algorithm needs to guard against “memorizing” the training set and
blindly applying all patterns found in the training set to the future data. For example,
it may happen that all customers named “David” in a training set may be in the high-
income bracket. We would presumably not want our final model, to be applied to new
data, to include the pattern “If the customer’s first name is David, the customer has a
high income.” Such a pattern is a spurious artifact of the training set and needs to be
verified before deployment.

Therefore, the next step in supervised data mining methodology is to examine
how the provisional data mining model performs on a test set of data. In the test
set, a holdout data set, the values of the target variable are hidden temporarily from
the provisional model, which then performs classification according to the patterns
and structure it learned from the training set. The efficacy of the classifications are
then evaluated by comparing them against the true values of the target variable. The
provisional data mining model is then adjusted to minimize the error rate on the test
set.
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Figure 5.1 Methodology for supervised modeling.

The adjusted data mining model is then applied to a validation data set, another
holdout data set, where the values of the target variable are again hidden temporarily
from the model. The adjusted model is itself then adjusted, to minimize the error rate
on the validation set. Estimates of model performance for future, unseen data can
then be computed by observing various evaluative measures applied to the validation
set. Such model evaluation techniques are covered in Chapter 11. An overview of this
modeling process for supervised data mining is provided in Figure 5.1.

Usually, the accuracy of the provisional model is not as high on the test or vali-
dation sets as it is on the training set, often because the provisional model is overfitting
on the training set. Overfitting results when the provisional model tries to account for
every possible trend or structure in the training set, even idiosyncratic ones such as the
“David” example above. There is an eternal tension in model building between model
complexity (resulting in high accuracy on the training set) and generalizability to the
test and validation sets. Increasing the complexity of the model in order to increase
the accuracy on the training set eventually and inevitably leads to a degradation in
the generalizability of the provisional model to the test and validation sets, as shown
in Figure 5.2.

Figure 5.2 shows that as the provisional model begins to grow in complexity
from the null model (with little or no complexity), the error rates on both the training
set and the validation set fall. As the model complexity increases, the error rate on the



WY045-05 September 28, 2004 18:50

BIAS–VARIANCE TRADE-OFF 93

E
rr

or
 R

at
e

Complexity of Model

Error Rate on
Training Set

Error Rate on
Validation Set

Underfitting

Optimal Level of
Model Complexity

Overfitting

Figure 5.2 The optimal level of model complexity is at the minimum error rate on the
validation set.

training set continues to fall in a monotone fashion. However, as the model complexity
increases, the validation set error rate soon begins to flatten out and increase because
the provisional model has memorized the training set rather than leaving room for
generalizing to unseen data. The point where the minimal error rate on the validation
set is encountered is the optimal level of model complexity, as indicated in Figure 5.2.
Complexity greater than this is considered to be overfitting; complexity less than this
is considered to be underfitting.

BIAS–VARIANCE TRADE-OFF

Suppose that we have the scatter plot in Figure 5.3 and are interested in constructing
the optimal curve (or straight line) that will separate the dark gray points from the
light gray points. The straight line in has the benefit of low complexity but suffers
from some classification errors (points ending up on the wrong side of the line).

In Figure 5.4 we have reduced the classification error to zero but at the cost of
a much more complex separation function (the curvy line). One might be tempted to
adopt the greater complexity in order to reduce the error rate. However, one should
be careful not to depend on the idiosyncrasies of the training set. For example, sup-
pose that we now add more data points to the scatter plot, giving us the graph in
Figure 5.5.

Note that the low-complexity separator (the straight line) need not change very
much to accommodate the new data points. This means that this low-complexity
separator has low variance. However, the high-complexity separator, the curvy line,
must alter considerably if it is to maintain its pristine error rate. This high degree of
change indicates that the high-complexity separator has a high variance.
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Figure 5.3 Low-complexity separator with high error rate.

Figure 5.4 High-complexity separator with low error rate.

Figure 5.5 With more data: low-complexity separator need not change much; high-
complexity separator needs much revision.
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Even though the high-complexity model has a low bias (in terms of the error
rate on the training set), it has a high variance; And even though the low-complexity
model has a high bias, it has a low variance. This is what is known as the bias–
variance trade-off. The bias–variance trade-off is another way of describing the over-
fitting/underfitting dilemma shown in Figure 5.2. As model complexity increases, the
bias on the training set decreases but the variance increases. The goal is to construct a
model in which neither the bias nor the variance is too high, but usually, minimizing
one tends to increase the other.

For example, the most common method of evaluating how accurate model esti-
mation is proceeding is to use the mean-squared error (MSE). Between two competing
models, one may select the better model as that model with the lower MSE. Why is
MSE such a good evaluative measure? Because it combines both bias and variance.
The mean-squared error is a function of the estimation error (SSE) and the model
complexity (e.g., degrees of freedom). It can be shown (e.g., Hand et al. [1]) that the
mean-squared error can be partitioned using the following equation, which clearly
indicates the complementary relationship between bias and variance:

MSE = variance + bias2

CLASSIFICATION TASK

Perhaps the most common data mining task is that of classification. Examples of
classification tasks may be found in nearly every field of endeavor:

� Banking: determining whether a mortgage application is a good or bad credit
risk, or whether a particular credit card transaction is fraudulent

� Education: placing a new student into a particular track with regard to special
needs

� Medicine: diagnosing whether a particular disease is present
� Law: determining whether a will was written by the actual person deceased or

fraudulently by someone else
� Homeland security: identifying whether or not certain financial or personal

behavior indicates a possible terrorist threat

In classification, there is a target categorical variable, (e.g., income bracket),
which is partitioned into predetermined classes or categories, such as high income,
middle income, and low income. The data mining model examines a large set of
records, each record containing information on the target variable as well as a set
of input or predictor variables. For example, consider the excerpt from a data set
shown in Table 5.1. Suppose that the researcher would like to be able to classify
the income bracket of persons not currently in the database, based on the other
characteristics associated with that person, such as age, gender, and occupation.
This task is a classification task, very nicely suited to data mining methods and
techniques.
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TABLE 5.1 Excerpt from Data Set for Classifying Income

Subject Age Gender Occupation Income Bracket

001 47 F Software engineer High

002 28 M Marketing consultant Middle

003 35 M Unemployed Low
...

The algorithm would proceed roughly as follows. First, examine the data set
containing both the predictor variables and the (already classified) target variable,
income bracket. In this way, the algorithm (software) “learns about” which com-
binations of variables are associated with which income brackets. For example,
older females may be associated with the high-income bracket. This data set is
called the training set. Then the algorithm would look at new records for which
no information about income bracket is available. Based on the classifications in
the training set, the algorithm would assign classifications to the new records. For
example, a 63-year-old female professor might be classified in the high-income
bracket.

k-NEAREST NEIGHBOR ALGORITHM

The first algorithm we shall investigate is the k-nearest neighbor algorithm, which
is most often used for classification, although it can also be used for estimation and
prediction. k-Nearest neighbor is an example of instance-based learning, in which
the training data set is stored, so that a classification for a new unclassified record
may be found simply by comparing it to the most similar records in the training set.
Let’s consider an example.

Recall the example from Chapter 1 where we were interested in classifying the
type of drug a patient should be prescribed, based on certain patient characteristics,
such as the age of the patient and the patient’s sodium/potassium ratio. For a sample
of 200 patients, Figure 5.6 presents a scatter plot of the patients’ sodium/potassium
(Na/K) ratio against the patients’ age. The particular drug prescribed is symbolized
by the shade of the points. Light gray points indicate drug Y; medium gray points
indicate drug A or X; dark gray points indicate drug B or C.

Now suppose that we have a new patient record, without a drug classification,
and would like to classify which drug should be prescribed for the patient based on
which drug was prescribed for other patients with similar attributes. Identified as “new
patient 1,” this patient is 40 years old and has a Na/K ratio of 29, placing her at the
center of the circle indicated for new patient 1 in Figure 5.6. Which drug classification
should be made for new patient 1? Since her patient profile places her deep into a
section of the scatter plot where all patients are prescribed drug Y, we would thereby
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Figure 5.6 Scatter plot of sodium/potassium ratio against age, with drug overlay.

classify new patient 1 as drug Y. All of the points nearest to this point, that is, all
of the patients with a similar profile (with respect to age and Na/K ratio) have been
prescribed the same drug, making this an easy classification.

Next, we move to new patient 2, who is 17 years old with a Na/K ratio of
12.5. Figure 5.7 provides a close-up view of the training data points in the local
neighborhood of and centered at new patient 2. Suppose we let k = 1 for our k-nearest
neighbor algorithm, so that new patient 2 would be classified according to whichever
single (one) observation it was closest to. In this case, new patient 2 would be classified

A

New

C

B

Figure 5.7 Close-up of three nearest neighbors to new patient 2.
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Figure 5.8 Close-up of three nearest neighbors to new patient 2.

for drugs B and C (dark gray), since that is the classification of the point closest to
the point on the scatter plot for new patient 2.

However, suppose that we now let k = 2 for our k-nearest neighbor algorithm,
so that new patient 2 would be classified according to the classification of the k = 2
points closest to it. One of these points is dark gray, and one is medium gray, so that
our classifier would be faced with a decision between classifying new patient 2 for
drugs B and C (dark gray) or drugs A and X (medium gray). How would the classifier
decide between these two classifications? Voting would not help, since there is one
vote for each of two classifications.

Voting would help, however, if we let k = 3 for the algorithm, so that new patient
2 would be classified based on the three points closest to it. Since two of the three clos-
est points are medium gray, a classification based on voting would therefore choose
drugs A and X (medium gray) as the classification for new patient 2. Note that the
classification assigned for new patient 2 differed based on which value we chose for k.

Finally, consider new patient 3, who is 47 years old and has a Na/K ratio of
13.5. Figure 5.8 presents a close-up of the three nearest neighbors to new patient 3.
For k = 1, the k-nearest neighbor algorithm would choose the dark gray (drugs B and
C) classification for new patient 3, based on a distance measure. For k = 2, however,
voting would not help. But voting would not help for k = 3 in this case either, since
the three nearest neighbors to new patient 3 are of three different classifications.

This example has shown us some of the issues involved in building a classifier
using the k-nearest neighbor algorithm. These issues include:

� How many neighbors should we consider? That is, what is k?
� How do we measure distance?
� How do we combine the information from more than one observation?

Later we consider other questions, such as:

� Should all points be weighted equally, or should some points have more influ-
ence than others?
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DISTANCE FUNCTION

We have seen above how, for a new record, the k-nearest neighbor algorithm assigns
the classification of the most similar record or records. But just how do we define
similar? For example, suppose that we have a new patient who is a 50-year-old male.
Which patient is more similar, a 20-year-old male or a 50-year-old female?

Data analysts define distance metrics to measure similarity. A distance metric
or distance function is a real-valued function d , such that for any coordinates x , y,
and z:

1. d(x,y) ≥ 0, and d(x,y) = 0 if and only if x = y

2. d(x,y) = d(y,x)

3. d(x,z) ≤ d(x,y) + d(y,z)

Property 1 assures us that distance is always nonnegative, and the only way for
distance to be zero is for the coordinates (e.g., in the scatter plot) to be the same.
Property 2 indicates commutativity, so that, for example, the distance from New York
to Los Angeles is the same as the distance from Los Angeles to New York. Finally,
property 3 is the triangle inequality, which states that introducing a third point can
never shorten the distance between two other points.

The most common distance function is Euclidean distance, which represents
the usual manner in which humans think of distance in the real world:

dEuclidean(x,y) =
√∑

i

(xi − yi )2

where x = x1, x2, . . . , xm , and y = y1, y2, . . . , ym represent the m attribute values of
two records. For example, suppose that patient A is x1 = 20 years old and has a Na/K
ratio of x2 = 12, while patient B is y1 = 30 years old and has a Na/K ratio of y2 = 8.
Then the Euclidean distance between these points, as shown in Figure 5.9, is

dEuclidean(x,y) =
√∑

i

(xi − yi )2 =
√

(20 − 30)2 + (12 − 8)2

= √
100 + 16 = 10.77

N
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Figure 5.9 Euclidean distance.
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When measuring distance, however, certain attributes that have large values,
such as income, can overwhelm the influence of other attributes which are measured
on a smaller scale, such as years of service. To avoid this, the data analyst should
make sure to normalize the attribute values.

For continuous variables, the min–max normalization or Z-score standardiza-
tion, discussed in Chapter 2, may be used:

Min–max normalization:

X∗ = X − min(X )

range(X)
= X − min(X )

max(X) − min(X)

Z-score standardization:

X∗ = X − mean(X )

SD(X )

For categorical variables, the Euclidean distance metric is not appropriate. Instead,
we may define a function, “different from,” used to compare the i th attribute values
of a pair of records, as follows:

different(xi ,yi ) =
{

0 if xi = yi

1 otherwise

where xi and yi are categorical values. We may then substitute different (x ,
i yi ) for the

ith term in the Euclidean distance metric above.
For example, let’s find an answer to our earlier question: Which patient is more

similar to a 50-year-old male: a 20-year-old male or a 50-year-old female? Suppose
that for the age variable, the range is 50, the minimum is 10, the mean is 45, and the
standard deviation is 15. Let patient A be our 50-year-old male, patient B the 20-year-
old male, and patient C the 50-year-old female. The original variable values, along
with the min–max normalization (ageMMN ) and Z -score standardization (ageZscore),
are listed in Table 5.2.

We have one continuous variable (age, x1) and one categorical variable (gender,
x2). When comparing patients A and B, we have different (x2,y2) = 0, with
different (x2,y2) = 1 for the other combinations of patients. First, let’s see what hap-
pens when we forget to normalize the age variable. Then the distance between patients
A and B is d(A,B) =

√
(50 − 20)2 + 02 = 30, and the distance between patients A

and C is d(A,C) =
√

(20 − 20)2 + 12 = 1. We would thus conclude that the 20-year-
old male is 30 times more “distant” from the 50-year-old male than the 50-year-old

TABLE 5.2 Variable Values for Age and Gender

Patient Age AgeMMN AgeZscore Gender

A 50
50 − 10

50
= 0.8

50 − 45

15
= 0.33 Male

B 20
20 − 10

50
= 0.2

20 − 45

15
= −1.67 Male

C 50
50 − 10

50
= 0.8

50 − 45

15
= 0.33 Female
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female is. In other words, the 50-year-old female is 30 times more “similar” to the
50-year-old male than the 20-year-old male is. Does this seem justified to you? Well,
in certain circumstances, it may be justified, as in certain age-related illnesses. But,
in general, one may judge that the two men are just as similar as are the two 50-
year-olds. The problem is that the age variable is measured on a larger scale than the
Different(x2,y2) variable. Therefore, we proceed to account for this discrepancy by
normalizing and standardizing the age values, as shown in Table 5.2.

Next, we use the min–max normalization values to find which patient is
more similar to patient A. We have dMMN(A,B) =

√
(0.8 − 0.2)2 + 02 = 0.6 and

dMMN(A,C) =
√

(0.8 − 0.8)2 + 12 = 1.0, which means that patient B is now consid-
ered to be more similar to patient A.

Finally, we use the Z -score standardization values to determine which patient is
more similar to patient A. We have dZscore(A,B) =

√
[0.33 − (−1.67)]2 + 02 = 2.0

and dZscore(A,C) =
√

(0.33 − 0.33)2 + 12 = 1.0, which means that patient C is again
closer. Using the Z -score standardization rather than the min–max standardization
has reversed our conclusion about which patient is considered to be more similar to
patient A. This underscores the importance of understanding which type of normal-
ization one is using. The min–max normalization will almost always lie between zero
and 1 just like the “identical” function. The Z -score standardization, however, usually
takes values −3 < z < 3, representing a wider scale than that of the min–max nor-
malization. Therefore, perhaps, when mixing categorical and continuous variables,
the min–max normalization may be preferred.

COMBINATION FUNCTION

Now that we have a method of determining which records are most similar to the new,
unclassified record, we need to establish how these similar records will combine to
provide a classification decision for the new record. That is, we need a combination
function. The most basic combination function is simple unweighted voting.

Simple Unweighted Voting
1. Before running the algorithm, decide on the value of k, that is, how many records

will have a voice in classifying the new record.

2. Then, compare the new record to the k nearest neighbors, that is, to the k records
that are of minimum distance from the new record in terms of the Euclidean
distance or whichever metric the user prefers.

3. Once the k records have been chosen, then for simple unweighted voting, their
distance from the new record no longer matters. It is simple one record, one
vote.

We observed simple unweighted voting in the examples for Figures 5.4 and 5.5.
In Figure 5.4, for k = 3, a classification based on simple voting would choose drugs
A and X (medium gray) as the classification for new patient 2, since two of the three
closest points are medium gray. The classification would then be made for drugs A
and X, with confidence 66.67%, where the confidence level represents the count of
records, with the winning classification divided by k.
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On the other hand, in Figure 5.5, for k = 3, simple voting would fail to choose
a clear winner since each of the three categories receives one vote. There would be a
tie among the three classifications represented by the records in Figure 5.5, and a tie
may not be a preferred result.

Weighted Voting

One may feel that neighbors that are closer or more similar to the new record should
be weighted more heavily than more distant neighbors. For example, in Figure 5.5,
does it seem fair that the light gray record farther away gets the same vote as the
dark gray vote that is closer to the new record? Perhaps not. Instead, the analyst may
choose to apply weighted voting, where closer neighbors have a larger voice in the
classification decision than do more distant neighbors. Weighted voting also makes
it much less likely for ties to arise.

In weighted voting, the influence of a particular record is inversely proportional
to the distance of the record from the new record to be classified. Let’s look at an
example. Consider Figure 5.6, where we are interested in finding the drug classifica-
tion for a new record, using the k = 3 nearest neighbors. Earlier, when using simple
unweighted voting, we saw that there were two votes for the medium gray classifica-
tion, and one vote for the dark gray. However, the dark gray record is closer than the
other two records. Will this greater proximity be enough for the influence of the dark
gray record to overcome that of the more numerous medium gray records?

Assume that the records in question have the values for age and Na/K ratio
given in Table 5.3, which also shows the min–max normalizations for these values.
Then the distances of records A, B, and C from the new record are as follows:

d(new,A) =
√

(0.05 − 0.0467)2 + (0.25 − 0.2471)2 = 0.004393

d(new,B) =
√

(0.05 − 0.0533)2 + (0.25 − 0.1912)2 = 0.58893

d(new,C) =
√

(0.05 − 0.0917)2 + (0.25 − 0.2794)2 = 0.051022

The votes of these records are then weighted according to the inverse square of their
distances.

One record (A) votes to classify the new record as dark gray (drugs B and C),
so the weighted vote for this classification is

TABLE 5.3 Age and Na/K Ratios for Records from Figure 5.4

Record Age Na/K AgeMMN Na/KMMN

New 17 12.5 0.05 0.25

A (dark gray) 16.8 12.4 0.0467 0.2471

B (medium gray) 17.2 10.5 0.0533 0.1912

C (medium gray) 19.5 13.5 0.0917 0.2794
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votes (dark gray) = 1

d(new,A)2 = 1

0.0043932
� 51,818

Two records (B and C) vote to classify the new record as medium gray (drugs A and
X), so the weighted vote for this classification is

votes (medium gray) = 1

d(new,B)2 + 1

d(new,C)2 = 1

0.0588932
+ 1

0.0510222

� 672

Therefore, by the convincing total of 51,818 to 672, the weighted voting procedure
would choose dark gray (drugs B and C) as the classification for a new 17-year-old
patient with a sodium/potassium ratio of 12.5. Note that this conclusion reverses the
earlier classification for the unweighted k = 3 case, which chose the medium gray
classification.

When the distance is zero, the inverse would be undefined. In this case the
algorithm should choose the majority classification of all records whose distance is
zero from the new record.

Consider for a moment that once we begin weighting the records, there is no
theoretical reason why we couldn’t increase k arbitrarily so that all existing records are
included in the weighting. However, this runs up against the practical consideration
of very slow computation times for calculating the weights of all of the records every
time a new record needs to be classified.

QUANTIFYING ATTRIBUTE RELEVANCE:
STRETCHING THE AXES

Consider that not all attributes may be relevant to the classification. In decision trees
(Chapter 6), for example, only those attributes that are helpful to the classification are
considered. In the k-nearest neighbor algorithm, the distances are by default calculated
on all the attributes. It is possible, therefore, for relevant records that are proximate
to the new record in all the important variables, but are distant from the new record
in unimportant ways, to have a moderately large distance from the new record, and
therefore not be considered for the classification decision. Analysts may therefore
consider restricting the algorithm to fields known to be important for classifying new
records, or at least to blind the algorithm to known irrelevant fields.

Alternatively, rather than restricting fields a priori, the data analyst may prefer to
indicate which fields are of more or less importance for classifying the target variable.
This can be accomplished using a cross-validation approach or one based on domain
expert knowledge. First, note that the problem of determining which fields are more
or less important is equivalent to finding a coefficient z j by which to multiply the
jth axis, with larger values of z j associated with more important variable axes. This
process is therefore termed stretching the axes.

The cross-validation approach then selects a random subset of the data to be
used as a training set and finds the set of values z1, z2, . . . zm that minimize the
classification error on the test data set. Repeating the process will lead to a more
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accurate set of values z1, z2, . . . zm . Otherwise, domain experts may be called upon
to recommend a set of values for z1, z2, . . . zm . In this way, the k-nearest neighbor
algorithm may be made more precise.

For example, suppose that either through cross-validation or expert knowl-
edge, the Na/K ratio was determined to be three times as important as age for
drug classification. Then we would have zNa/K = 3 and zage = 1. For the example
above, the new distances of records A, B, and C from the new record would be as
follows:

d(new,A) =
√

(0.05 − 0.0467)2 + [3(0.25 − 0.2471)]2 = 0.009305

d(new,B) =
√

(0.05 − 0.0533)2 + [3(0.25 − 0.1912)]2 = 0.17643

d(new,C) =
√

(0.05 − 0.0917)2 + [3(0.25 − 0.2794)]2 = 0.09756

In this case, the classification would not change with the stretched axis for Na/K,
remaining dark gray. In real-world problems, however, axis stretching can lead to more
accurate classifications, since it represents a method for quantifying the relevance of
each variable in the classification decision.

DATABASE CONSIDERATIONS

For instance-based learning methods such as the k-nearest neighbor algorithm, it is
vitally important to have access to a rich database full of as many different combina-
tions of attribute values as possible. It is especially important that rare classifications
be represented sufficiently, so that the algorithm does not only predict common clas-
sifications. Therefore, the data set would need to be balanced, with a sufficiently large
percentage of the less common classifications. One method to perform balancing is
to reduce the proportion of records with more common classifications.

Maintaining this rich database for easy access may become problematic if
there are restrictions on main memory space. Main memory may fill up, and access
to auxiliary storage is slow. Therefore, if the database is to be used for k-nearest
neighbor methods only, it may be helpful to retain only those data points that are
near a classification “boundary.” For example, in Figure 5.6, all records with Na/K
ratio value greater than, say, 19 could be omitted from the database without loss of
classification accuracy, since all records in this region are classified as light gray. New
records with Na/K ratio > 19 would therefore be classified similarly.

k-NEAREST NEIGHBOR ALGORITHM FOR
ESTIMATION AND PREDICTION

So far we have considered how to use the k-nearest neighbor algorithm for classifica-
tion. However, it may be used for estimation and prediction as well as for continuous-
valued target variables. One method for accomplishing this is called locally weighted
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TABLE 5.4 k = 3 Nearest Neighbors of the New Record

Record Age Na/K BP AgeMMN Na/KMMN Distance

New 17 12.5 ? 0.05 0.25 —

A 16.8 12.4 120 0.0467 0.2471 0.009305

B 17.2 10.5 122 0.0533 0.1912 0.16783

C 19.5 13.5 130 0.0917 0.2794 0.26737

averaging. Assume that we have the same data set as the example above, but this time
rather than attempting to classify the drug prescription, we are trying to estimate the
systolic blood pressure reading (BP, the target variable) of the patient, based on that
patient’s age and Na/K ratio (the predictor variables). Assume that BP has a range of
80 with a minimum of 90 in the patient records.

In this example we are interested in estimating the systolic blood pressure
reading for a 17-year-old patient with a Na/K ratio of 12.5, the same new patient
record for which we earlier performed drug classification. If we let k = 3, we have
the same three nearest neighbors as earlier, shown here in Table 5.4. Assume that we
are using the zNa/K = three-axis-stretching to reflect the greater importance of the
Na/K ratio.

Locally weighted averaging would then estimate BP as the weighted average
of BP for the k = 3 nearest neighbors, using the same inverse square of the distances
for the weights that we used earlier. That is, the estimated target value ŷ is calculated
as

ŷnew =
∑

i
wi yi∑

i
wi

where wi = 1/d(new, xi )2 for existing records x1, x2, . . . , xk . Thus, in this example,
the estimated systolic blood pressure reading for the new record would be

ŷnew =
∑

i
wi yi∑

i
wi

=
120

0.0093052 + 122
0.176432 + 130

0.097562

1
0.0093052 + 1

0.176432 + 1
0.097562

= 120.0954.

As expected, the estimated BP value is quite close to the BP value in the present data
set that is much closer (in the stretched attribute space) to the new record. In other
words, since record A is closer to the new record, its BP value of 120 contributes
greatly to the estimation of the BP reading for the new record.

CHOOSING k

How should one go about choosing the value of k? In fact, there may not be an
obvious best solution. Consider choosing a small value for k. Then it is possible
that the classification or estimation may be unduly affected by outliers or unusual
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observations (“noise”). With small k (e.g., k = 1), the algorithm will simply return
the target value of the nearest observation, a process that may lead the algorithm toward
overfitting, tending to memorize the training data set at the expense of generalizability.

On the other hand, choosing a value of k that is not too small will tend to smooth
out any idiosyncratic behavior learned from the training set. However, if we take this
too far and choose a value of k that is too large, locally interesting behavior will be
overlooked. The data analyst needs to balance these considerations when choosing
the value of k.

It is possible to allow the data itself to help resolve this problem, by following
a cross-validation procedure similar to the earlier method for finding the optimal
values z1, z2, . . . zm for axis stretching. Here we would try various values of k with
different randomly selected training sets and choose the value of k that minimizes the
classification or estimation error.
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EXERCISES
1. Explain the difference between supervised and unsupervised methods. Which data mining

tasks are associated with unsupervised methods? Supervised? Both?

2. Describe the differences between the training set, test set, and validation set.

3. Should we strive for the highest possible accuracy with the training set? Why or why not?
How about the validation set?

4. How is the bias–variance trade-off related to the issue of overfitting and underfitting? Is
high bias associated with overfitting and underfitting, and why? High variance?

5. What is meant by the term instance-based learning?

6. Make up a set of three records, each with two numeric predictor variables and one cate-
gorical target variable, so that the classification would not change regardless of the value
of k.

7. Refer to Exercise 6. Alter your data set so that the classification changes for different
values of k.

8. Refer to Exercise 7. Find the Euclidean distance between each pair of points. Using these
points, verify that Euclidean distance is a true distance metric.

9. Compare the advantages and drawbacks of unweighted versus weighted voting.

10. Why does the database need to be balanced?

11. The example in the text regarding using the k-nearest neighbor algorithm for estimation has
the closest record, overwhelming the other records in influencing the estimation. Suggest
two creative ways that we could dilute this strong influence of the closest record.

12. Discuss the advantages and drawbacks of using a small value versus a large value for k.
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CHAPTER 6
DECISION TREES

CLASSIFICATION AND REGRESSION TREES

C4.5 ALGORITHM

DECISION RULES

COMPARISON OF THE C5.0 AND CART ALGORITHMS APPLIED TO REAL DATA

In this chapter we continue our examination of classification methods for data mining.
One attractive classification method involves the construction of a decision tree, a
collection of decision nodes, connected by branches, extending downward from the
root node until terminating in leaf nodes. Beginning at the root node, which by
convention is placed at the top of the decision tree diagram, attributes are tested at
the decision nodes, with each possible outcome resulting in a branch. Each branch
then leads either to another decision node or to a terminating leaf node. Figure 6.1
provides an example of a simple decision tree.

The target variable for the decision tree in Figure 6.1 is credit risk, with potential
customers being classified as either good or bad credit risks. The predictor variables
are savings (low, medium, and high), assets (low or not low), and income (≤$50,000
or >$50,000). Here, the root node represents a decision node, testing whether each
record has a low, medium, or high savings level (as defined by the analyst or domain
expert). The data set is partitioned, or split, according to the values of this attribute.
Those records with low savings are sent via the leftmost branch (savings = low) to
another decision node. The records with high savings are sent via the rightmost branch
to a different decision node.

The records with medium savings are sent via the middle branch directly to a
leaf node, indicating the termination of this branch. Why a leaf node and not another
decision node? Because, in the data set (not shown), all of the records with medium
savings levels have been classified as good credit risks. There is no need for another
decision node, because our knowledge that the customer has medium savings predicts
good credit with 100% accuracy in the data set.

For customers with low savings, the next decision node tests whether the cus-
tomer has low assets. Those with low assets are then classified as bad credit risks;
the others are classified as good credit risks. For customers with high savings, the

Discovering Knowledge in Data: An Introduction to Data Mining, By Daniel T. Larose
ISBN 0-471-66657-2 Copyright C© 2005 John Wiley & Sons, Inc.
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Assets = Low? Income <= $30K?
Good Credit Risk

No Yes

Savings = High
Savings = Low

Savings = Med

Yes

Root Node
Savings = Low, Med, High? 

No

Bad Risk Good Risk Bad Risk Good Risk

Figure 6.1 Simple decision tree.

next decision node tests whether the customer has an income of at most $30,000.
Customers with incomes of $30,000 or less are then classified as bad credit risks,
with the others classified as good credit risks.

When no further splits can be made, the decision tree algorithm stops growing
new nodes. For example, suppose that all of the branches terminate in “pure” leaf
nodes, where the target variable is unary for the records in that node (e.g., each record
in the leaf node is a good credit risk). Then no further splits are necessary, so no
further nodes are grown.

However, there are instances when a particular node contains “diverse” at-
tributes (with nonunary values for the target attribute), and yet the decision tree
cannot make a split. For example, suppose that we consider the records from
Figure 6.1 with high savings and low income (≤$30,000). Suppose that there are
five records with these values, all of which also have low assets. Finally, suppose that
three of these five customers have been classified as bad credit risks and two as good
credit risks, as shown in Table 6.1. In the real world, one often encounters situations
such as this, with varied values for the response variable, even for exactly the same
values for the predictor variables.

Here, since all customers have the same predictor values, there is no possible
way to split the records according to the predictor variables that will lead to a pure
leaf node. Therefore, such nodes become diverse leaf nodes, with mixed values for
the target attribute. In this case, the decision tree may report that the classification for
such customers is “bad,” with 60% confidence, as determined by the three-fifths of
customers in this node who are bad credit risks. Note that not all attributes are tested
for all records. Customers with low savings and low assets, for example, are not tested
with regard to income in this example.
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TABLE 6.1 Sample of Records That Cannot Lead to Pure Leaf Node

Customer Savings Assets Income Credit Risk

004 High Low ≤$30,000 Good

009 High Low ≤$30,000 Good

027 High Low ≤$30,000 Bad

031 High Low ≤$30,000 Bad

104 High Low ≤$30,000 Bad

Certain requirements must be met before decision tree algorithms may be
applied:

1. Decision tree algorithms represent supervised learning, and as such require pre-
classified target variables. A training data set must be supplied which provides
the algorithm with the values of the target variable.

2. This training data set should be rich and varied, providing the algorithm with
a healthy cross section of the types of records for which classification may
be needed in the future. Decision trees learn by example, and if examples
are systematically lacking for a definable subset of records, classification and
prediction for this subset will be problematic or impossible.

3. The target attribute classes must be discrete. That is, one cannot apply decision
tree analysis to a continuous target variable. Rather, the target variable must
take on values that are clearly demarcated as either belonging to a particular
class or not belonging.

Why in the example above, did the decision tree choose the savings attribute
for the root node split? Why did it not choose assets or income instead? Decision
trees seek to create a set of leaf nodes that are as “pure” as possible, that is, where
each of the records in a particular leaf node has the same classification. In this way,
the decision tree may provide classification assignments with the highest measure of
confidence available.

However, how does one measure uniformity, or conversely, how does one mea-
sure heterogeneity? We shall examine two of the many methods for measuring leaf
node purity, which lead to the two leading algorithms for constructing decision trees:

� Classification and regression trees (CART) algorithm
� C4.5 algorithm

CLASSIFICATION AND REGRESSION TREES

The classification and regression trees (CART) method was suggested by Breiman
et al. [1] in 1984. The decision trees produced by CART are strictly binary, containing
exactly two branches for each decision node. CART recursively partitions the records
in the training data set into subsets of records with similar values for the target
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attribute. The CART algorithm grows the tree by conducting for each decision node, an
exhaustive search of all available variables and all possible splitting values, selecting
the optimal split according to the following criteria (from Kennedy et al. [2]).

Let �(s|t) be a measure of the “goodness” of a candidate split s at node t , where

�(s|t) = 2PL PR

# classes∑
j=1

|P( j |tL ) − P( j |tR)| (6.1)

and where

tL = left child node of node t

tR = right child node of node t

PL = number of records at tL

number of records in training set

PR = number of records at tR

number of records in training set

P( j |tL ) = number of class j records at tL

number of records at t

P( j |tR) = number of class j records at tR

number of records at t

Then the optimal split is whichever split maximizes this measure�(s|t) over all pos-
sible splits at node t .

Let’s look at an example. Suppose that we have the training data set shown
in Table 6.2 and are interested in using CART to build a decision tree for predicting
whether a particular customer should be classified as being a good or a bad credit risk.
In this small example, all eight training records enter into the root node. Since CART
is restricted to binary splits, the candidate splits that the CART algorithm would
evaluate for the initial partition at the root node are shown in Table 6.3. Although
income is a continuous variable, CART may still identify a finite list of possible splits
based on the number of different values that the variable actually takes in the data

TABLE 6.2 Training Set of Records for Classifying Credit Risk

Income
Customer Savings Assets ($1000s) Credit Risk

1 Medium High 75 Good

2 Low Low 50 Bad

3 High Medium 25 Bad

4 Medium Medium 50 Good

5 Low Medium 100 Good

6 High High 25 Good

7 Low Low 25 Bad

8 Medium Medium 75 Good
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TABLE 6.3 Candidate Splits for t = Root Node

Candidate Split Left Child Node, tL Right Child Node, tR

1 Savings = low Savings ∈ {medium, high}
2 Savings = medium Savings ∈ {low, high}
3 Savings = high Savings ∈ {low, medium}
4 Assets = low Assets ∈ {medium, high}
5 Assets = medium Assets ∈ {low, high}
6 Assets = high Assets ∈ {low, medium}
7 Income ≤ $25,000 Income > $25,000

8 Income ≤ $50,000 Income > $50,000

9 Income ≤ $75,000 Income > $75,000

set. Alternatively, the analyst may choose to categorize the continuous variable into
a smaller number of classes.

For each candidate split, let us examine the values of the various components of
the optimality measure �(s|t) in Table 6.4. Using these observed values, we may
investigate the behavior of the optimality measure under various conditions. For ex-
ample, when is �(s|t) large? We see that �(s|t) is large when both of its main compo-
nents are large: 2PL PR and

∑# classes
j=1 |P( j |tL ) − P( j |tR)|.

TABLE 6.4 Values of the Components of the Optimality Measure Φ(s |t ) for
Each Candidate Split, for the Root Node

Split PL PR P( j |tL ) P( j |tR) 2PL PR Q(s|t) �(s|t)

1 0.375 0.625 G: .333 G: .8 0.46875 0.934 0.4378
B: .667 B: .2

2 0.375 0.625 G: 1 G: 0.4 0.46875 1.2 0.5625
B: 0 B: 0.6

3 0.25 0.75 G: 0.5 G: 0.667 0.375 0.334 0.1253
B: 0.5 B: 0.333

4 0.25 0.75 G: 0 G: 0.833 0.375 1.667 0.6248
B: 1 B: 0.167

5 0.5 0.5 G: 0.75 G: 0.5 0.5 0.5 0.25
B: 0.25 B: 0.5

6 0.25 0.75 G: 1 G: 0.5 0.375 1 0.375
B: 0 B: 0.5

7 0.375 0.625 G: 0.333 G: 0.8 0.46875 0.934 0.4378
B: 0.667 B: 0.2

8 0.625 0.375 G: 0.4 G: 1 0.46875 1.2 0.5625
B: 0.6 B: 0

9 0.875 0.125 G: 0.571 G: 1 0.21875 0.858 0.1877
B: 0.429 B: 0
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Let Q(s|t) = ∑# classes
j=1 |P( j |tL ) − P( j |tR)|. When is the component Q(s|t)

large? Q(s|t) is large when the distance between P( j |tL ) and P( j |tR) is maximized
across each class (value of the target variable). In other words, this component is
maximized when the proportions of records in the child nodes for each particular
value of the target variable are as different as possible. The maximum value would
therefore occur when for each class the child nodes are completely uniform (pure).
The theoretical maximum value for Q(s|t) is k, where k is the number of classes for
the target variable. Since our output variable credit risk takes two values, good and
bad, k = 2 is the maximum for this component.

The component 2PLPR is maximized when PL and PR are large, which oc-
curs when the proportions of records in the left and right child nodes are equal.
Therefore, �(s|t) will tend to favor balanced splits that partition the data into child
nodes containing roughly equal numbers of records. Hence, the optimality measure
�(s|t) prefers splits that will provide child nodes that are homogeneous for all classes
and have roughly equal numbers of records. The theoretical maximum for 2PLPR is
2(0.5)(0.5) = 0.5.

In this example, only candidate split 5 has an observed value for 2PLPR that
reaches the theoretical maximum for this statistic, 0.5, since the records are partitioned
equally into two groups of four. The theoretical maximum for Q(s|t) is obtained only
when each resulting child node is pure, and thus is not achieved for this data set.

The maximum observed value for �(s|t) among the candidate splits is therefore
attained by split 4, with �(s|t) = 0.6248. CART therefore chooses to make the initial
partition of the data set using candidate split 4, assets = low versus assets ∈{medium,
high}, as shown in Figure 6.2.

The left child node turns out to be a terminal leaf node, since both of the records
that were passed to this node had bad credit risk. The right child node, however, is
diverse and calls for further partitioning. We again compile a table of the candidate

Root Node (All Records)
Assets = Low vs.

Assets ∈{Medium, High}

Assets = Low Assets ∈{Medium, High}

Bad Risk
(Records 2, 7) Decision Node A

(Records 1, 3, 4, 5, 6, 8)

Figure 6.2 CART decision tree after initial split.



WY045-06 September 23, 2004 11:32

CLASSIFICATION AND REGRESSION TREES 113

TABLE 6.5 Values of the Components of the Optimality Measure Φ(s |t ) for
Each Candidate Split, for Decision Node A

Split PL PR P( j |tL ) P( j |tR) 2PL PR Q(s|t) �(s|t)

1 0.167 0.833 G: 1 G: .8 0.2782 0.4 0.1112
B: 0 B: .2

2 0.5 0.5 G: 1 G: 0.667 0.5 0.6666 0.3333
B: 0 B: 0.333

3 0.333 0.667 G: 0.5 G: 1 0.4444 1 0.4444
B: 0.5 B: 0

5 0.667 0.333 G: 0.75 G: 1 0.4444 0.5 0.2222
B: 0.25 B: 0

6 0.333 0.667 G: 1 G: 0.75 0.4444 0.5 0.2222
B: 0 B: 0.25

7 0.333 0.667 G: 0.5 G: 1 0.4444 1 0.4444
B: 0.5 B: 0

8 0.5 0.5 G: 0.667 G: 1 0.5 0.6666 0.3333
B: 0.333 B: 0

9 0.167 0.833 G: 0.8 G: 1 0.2782 0.4 0.1112
B: 0.2 B: 0

splits (all are available except split 4), along with the values for the optimality measure
(Table 6.5). Here two candidate splits (3 and 7) share the highest value for �(s|t),
0.4444. We arbitrarily select the first split encountered, split 3, savings = high ver-
sus savings ∈{low, medium}, for decision node A, with the resulting tree shown in
Figure 6.3.

Figure 6.3 CART decision tree after decision node A split.
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Figure 6.4 CART decision tree, fully grown form.

Since decision node B is diverse, we again need to seek the optimal split. Only
two records remain in this decision node, each with the same value for savings (high)
and income (25). Therefore, the only possible split is assets = high versus assets =
medium, providing us with the final form of the CART decision tree for this example,
in Figure 6.4. Compare Figure 6.4 with Figure 6.5, the decision tree generated by
Clementine’s CART algorithm.

Let us leave aside this example now, and consider how CART would operate
on an arbitrary data set. In general, CART would recursively proceed to visit each
remaining decision node and apply the procedure above to find the optimal split at
each node. Eventually, no decision nodes remain, and the “full tree” has been grown.
However, as we have seen in Table 6.1, not all leaf nodes are necessarily homogeneous,
which leads to a certain level of classification error.

For example, suppose that since we cannot further partition the records in Table
6.1, we classify the records contained in this leaf node as bad credit risk. Then the
probability that a randomly chosen record from this leaf node would be classified
correctly is 0.6, since three of the five records (60%) are actually classified as bad
credit risks. Hence, our classification error rate for this particular leaf would be 0.4 or
40%, since two of the five records are actually classified as good credit risks. CART
would then calculate the error rate for the entire decision tree to be the weighted
average of the individual leaf error rates, with the weights equal to the proportion of
records in each leaf.

To avoid memorizing the training set, the CART algorithm needs to begin
pruning nodes and branches that would otherwise reduce the generalizability of the
classification results. Even though the fully grown tree has the lowest error rate on the
training set, the resulting model may be too complex, resulting in overfitting. As each
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Figure 6.5 Clementine’s CART decision tree.

decision node is grown, the subset of records available for analysis becomes smaller
and less representative of the overall population. Pruning the tree will increase the
generalizability of the results. How the CART algorithm performs tree pruning is
explained in Breiman et al. [1, p. 66]. Essentially, an adjusted overall error rate is
found that penalizes the decision tree for having too many leaf nodes and thus too
much complexity.
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C4.5 ALGORITHM

The C4.5 algorithm is Quinlan’s extension of his own ID3 algorithm for generating
decision trees [3]. Just as with CART, the C4.5 algorithm recursively visits each
decision node, selecting the optimal split, until no further splits are possible. However,
there are interesting differences between CART and C4.5:

� Unlike CART, the C4.5 algorithm is not restricted to binary splits. Whereas
CART always produces a binary tree, C4.5 produces a tree of more variable
shape.

� For categorical attributes, C4.5 by default produces a separate branch for each
value of the categorical attribute. This may result in more “bushiness” than de-
sired, since some values may have low frequency or may naturally be associated
with other values.

� The C4.5 method for measuring node homogeneity is quite different from the
CART method and is examined in detail below.

The C4.5 algorithm uses the concept of information gain or entropy reduction
to select the optimal split. Suppose that we have a variable X whose k possible values
have probabilities p1, p2, . . . , pk . What is the smallest number of bits, on average
per symbol, needed to transmit a stream of symbols representing the values of X
observed? The answer is called the entropy of X and is defined as

H (X ) = −
∑

j

p j log2(p j )

Where does this formula for entropy come from? For an event with proba-
bility p, the average amount of information in bits required to transmit the result is
− log2(p). For example, the result of a fair coin toss, with probability 0.5, can be
transmitted using − log2(0.5) = 1 bit, which is a zero or 1, depending on the result of
the toss. For variables with several outcomes, we simply use a weighted sum of the
log2(p j )’s, with weights equal to the outcome probabilities, resulting in the formula

H (X ) = −
∑

j

p j log2(p j )

C4.5 uses this concept of entropy as follows. Suppose that we have a candidate
split S, which partitions the training data set T into several subsets, T1, T2, . . . , Tk .
The mean information requirement can then be calculated as the weighted sum of the
entropies for the individual subsets, as follows:

HS(T ) =
k∑

i=1

Pi HS(Ti ) (6.2)

where Pi represents the proportion of records in subset i . We may then define our
information gain to be gain(S) = H (T ) − HS(T ), that is, the increase in information
produced by partitioning the training data T according to this candidate split S. At
each decision node, C4.5 chooses the optimal split to be the split that has the greatest
information gain, gain(S).
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TABLE 6.6 Candidate Splits at Root Node for C4.5 Algorithm

Candidate Split Child Nodes

1 Savings = low Savings = medium Savings = high

2 Assets = low Assets = medium Assets = high

3 Income ≤ $25,000 Income > $25,000

4 Income ≤ $50,000 Income > $50,000

5 Income ≤ $75,000 Income > $75,000

To illustrate the C4.5 algorithm at work, let us return to the data set in Table 6.2
and apply the C4.5 algorithm to build a decision tree for classifying credit risk, just as
we did earlier using CART. Once again, we are at the root node and are considering
all possible splits using all the data (Table 6.6).

Now, because five of the eight records are classified as good credit risk, with
the remaining three records classified as bad credit risk, the entropy before splitting
is

H (T ) = −
∑

j

p j log2(p j ) = − 5
8 log2

(
5
8

) − 3
8 log2

(
3
8

) = 0.9544

We shall compare the entropy of each candidate split against this H (T ) = 0.9544, to
see which split results in the greatest reduction in entropy (or gain in information).

For candidate split 1 (savings), two of the records have high savings, three of the
records have medium savings, and three of the records have low savings, so we have:
Phigh = 2

8 , Pmedium = 3
8 , Plow = 3

8 . Of the records with high savings, one is a good
credit risk and one is bad, giving a probability of 0.5 of choosing the record with a
good credit risk. Thus, the entropy for high savings is − 1

2 log2

(
1
2

) − 1
2 log2

(
1
2

) = 1,
which is similar to the flip of a fair coin. All three of the records with medium savings
are good credit risks, so that the entropy for medium is − 3

3 log2

(
3
3

) − 0
3 log2

(
0
3

) = 0,
where by convention we define log2(0) = 0.

In engineering applications, information is analogous to signal, and entropy is
analogous to noise, so it makes sense that the entropy for medium savings is zero, since
the signal is crystal clear and there is no noise: If the customer has medium savings,
he or she is a good credit risk, with 100% confidence. The amount of information
required to transmit the credit rating of these customers is zero, as long as we know
that they have medium savings.

One of the records with low savings is a good credit risk, and two records
with low savings are bad credit risks, giving us our entropy for low credit risk as
− 1

3 log2

(
1
3

) − 2
3 log2

(
2
3

) = 0.9183. We combine the entropies of these three subsets,
using equation (6.2) and the proportions of the subsets Pi , so that Hsavings(T ) = 2

8 (1) +
3
8 (0) + 3

8 (0.9183) = 0.5944. Then the information gain represented by the split on the
savings attribute is calculated as H (T ) − Hsavings(T ) = 0.9544 − 0.5944 = 0.36 bits.

How are we to interpret these measures? First, H (T ) = 0.9544 means that, on
average, one would need 0.9544 bit (0’s or 1’s) to transmit the credit risk of the eight
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customers in the data set. Now, Hsavings(T ) = 0.5944 means that the partitioning of the
customers into three subsets has lowered the average bit requirement for transmitting
the credit risk status of the customers to 0.5944 bits. Lower entropy is good. This
entropy reduction can be viewed as information gain, so that we have gained on
average H (T ) − Hsavings(T ) = 0.9544 − 0.5944 = 0.36 bits of information by using
the savings partition. We will compare this to the information gained by the other
candidate splits, and choose the split with the largest information gain as the optimal
split for the root node.

For candidate split 2 (assets), two of the records have high assets, four of the
records have medium assets, and two of the records have low assets, so we have
Phigh = 2

8 , Pmedium = 4
8 , Plow = 2

8 . Both of the records with high assets are classified
as good credit risks, which means that the entropy for high assets will be zero, just as
it was for medium savings above.

Three of the records with medium assets are good credit risks and one is a bad
credit risk, giving us entropy − 3

4 log2

(
3
4

) − 1
4 log2

(
1
4

) = 0.8113. And both of the
records with low assets are bad credit risks, which results in the entropy for low assets
equaling zero. Combining the entropies of these three subsets, using equation (6.2) and
the proportions of the subsets Pi , we have Hassets(T ) = 2

8 (0) + 4
8 (0.8113) + 2

8 (0) =
0.4057. The entropy for the assets split is lower than the entropy (0.5944) for the
savings split, which indicates that the assets split contains less noise and is to be
preferred over the savings split. This is measured directly using the information gain,
as follows: H (T ) − Hassets(T ) = 0.9544 − 0.4057 = 0.5487 bits. This information
gain of 0.5487 bits is larger than that for the savings split of 0.36 bits, verifying that
the assets split is preferable.

While C4.5 partitions the categorical variables differently from CART, the
partitions for the numerical variables are similar. Here we have four observed
values for income: 25,000, 50,000, 75,000, and 100,000, which provide us with
three thresholds for partitions, as shown in Table 6.6. For candidate split 3 from
Table 6.6, income ≤ $25,000 versus income > $25,000, three of the records have
income ≤ $25,000, with the other five records having income > $25,000, giv-
ing us Pincome ≤ $25,000 = 3

8 , Pincome > $25,000 = 5
8 . Of the records with income ≤

$25,000, one is a good credit risk and two are bad, giving us the entropy for
income ≤ $25,000 as − 1

3 log2

(
1
3

) − 2
3 log2

(
2
3

) = 0.9183. Four of the five records
with income > $25,000 are good credit risks, so that the entropy for income >

$25,000 is − 4
5 log2

(
4
5

) − 1
5 log2

(
1
5

) = 0.7219. Combining, we find the entropy
for candidate split 3 to be Hincome ≤ $25,000(T ) = 3

8 (0.9183) + 5
8 (0.7219) = 0.7946.

Then the information gain for this split is H (T ) − Hincome ≤ $25,000(T ) = 0.9544 −
0.7946 = 0.1588 bits, which is our poorest choice yet.

For candidate split 4, income ≤ $50,000 versus income > $50,000, two of the
five records with income ≤ $50,000 are good credit risks, and three are bad, while
all three of the records with income > $50,000 are good credit risks. This gives us
the entropy for candidate split 4 as

Hincome ≤ $50,000(T ) = 5
8

(− 2
5 log2

2
5 − 3

5 log2
3
5

)
+ 3

8

(− 3
3 log2

3
3 − 0

3 log2
0
3

) = 0.6069
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The information gain for this split is thus H (T ) − Hincome ≤ $50,000(T ) = 0.9544 −
0.6069 = 0.3475, which is not as good as for assets. Finally, for candidate
split 5, income ≤ $75,000 versus income > $75,000, four of the seven records with
income ≤ $75,000 are good credit risks, and three are bad, while the single record
with income > $75,000 is a good credit risk. Thus, the entropy for candidate split
4 is

Hincome ≤ $75,000(T ) = 7
8

(− 4
7 log2

4
7 − 3

7 log2
3
7

) + 1
8

(− 1
1 log2

1
1 − 0

1 log2
0
1

)
= 0.8621

The information gain for this split is H (T ) − Hincome ≤ $75,000(T ) = 0.9544 −
0.8621 = 0.0923, making this split the poorest of the five candidate splits.

Table 6.7 summarizes the information gain for each candidate split at the root
node. Candidate split 2, assets, has the largest information gain, and so is chosen
for the initial split by the C4.5 algorithm. Note that this choice for an optimal split
concurs with the partition preferred by CART, which split on assets = low versus
assets = {medium, high}. The partial decision tree resulting from C4.5’s initial split
is shown in Figure 6.6.

The initial split has resulted in the creation of two terminal leaf nodes and
one new decision node. Since both records with low assets have bad credit risk, this
classification has 100% confidence, and no further splits are required. Similarly for the
two records with high assets. However, the four records at decision node A (assets =
medium) contain both good and bad credit risks, so that further splitting is called for.

We proceed to determine the optimal split for decision node A, containing
records 3, 4, 5, and 8, as indicated in Table 6.8. Because three of the four records are
classified as good credit risks, with the remaining record classified as a bad credit

TABLE 6.7 Information Gain for Each Candidate Split at the Root Node

Information Gain
Candidate Split Child Nodes (Entropy Reduction)

1 Savings = low 0.36 bits

Savings = medium

Savings = high

2 Assets = low 0.5487 bits

Assets = medium

Assets = high

3 Income ≤ $25,000 0.1588 bits

Income > $25,000

4 Income ≤ $50,000 0.3475 bits

Income > $50,000

5 Income ≤ $75,000 0.0923 bits

Income > $75,000
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Bad Credit Risk
(Records 2, 7)

Root Node (All Records)
Assets = Low vs.

Assets = Medium vs.
Assets = High

Good Credit Risk
(Records 1, 6)

Decision Node A
(Records 3, 4, 5, 8)

Assets = Low
Assets = High

Assets = Med

Figure 6.6 C4.5 concurs with CART in choosing assets for the initial partition.

risk, the entropy before splitting is

H (A) = −
∑

j

p j log2(p j ) = − 3
4 log2

(
3
4

) − 1
4 log2

(
1
4

) = 0.8113

The candidate splits for decision node A are shown in Table 6.9.
For candidate split 1, savings, the single record with low savings is a good

credit risk, along with the two records with medium savings. Perhaps counterintu-
itively, the single record with high savings is a bad credit risk. So the entropy for each
of these three classes equals zero, since the level of savings determines the credit
risk completely. This also results in a combined entropy of zero for the assets split,
Hassets(A) = 0, which is optimal for decision node A. The information gain for this
split is thus H (A) − Hassets(A) = 0.8113 − 0.0 = 0.8113. This is, of course, the max-
imum information gain possible for decision node A. We therefore need not continue
our calculations, since no other split can result in a greater information gain. As it
happens, candidate split 3, income ≤ $25,000 versus income > $25,000, also results
in the maximal information gain, but again we arbitrarily select the first such split
encountered, the savings split.

Figure 6.7 shows the form of the decision tree after the savings split. Note
that this is the fully grown form, since all nodes are now leaf nodes, and C4.5 will
grow no further nodes. Comparing the C4.5 tree in Figure 6.7 with the CART tree in
Figure 6.4, we see that the C4.5 tree is “bushier,” providing a greater breadth, while
the CART tree is one level deeper. Both algorithms concur that assets is the most

TABLE 6.8 Records Available at Decision Node A for Classifying Credit Risk

Income
Customer Savings Assets ($1000s) Credit Risk

3 High Medium 25 Bad

4 Medium Medium 50 Good

5 Low Medium 100 Good

8 Medium Medium 75 Good
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TABLE 6.9 Candidate Splits at Decision Node A

Candidate Split Child Nodes

1 Savings = low Savings = medium Savings = high

3 Income ≤ $25,000 Income > $25,000

4 Income ≤ $50,000 Income > $50,000

5 Income ≤ $75,000 Income > $75,000

important variable (the root split) and that savings is also important. Finally, once
the decision tree is fully grown, C4.5 engages in pessimistic postpruning. Interested
readers may consult Kantardzic [4, p. 153].

DECISION RULES

One of the most attractive aspects of decision trees lies in their interpretability, es-
pecially with respect to the construction of decision rules. Decision rules can be
constructed from a decision tree simply by traversing any given path from the root
node to any leaf. The complete set of decision rules generated by a decision tree is
equivalent (for classification purposes) to the decision tree itself. For example, from
the decision tree in Figure 6.7, we may construct the decision rules given in Table 6.10.

Decision rules come in the form if antecedent, then consequent, as shown in
Table 6.10. For decision rules, the antecedent consists of the attribute values from the
branches taken by the particular path through the tree, while the consequent consists
of the classification value for the target variable given by the particular leaf node.

Figure 6.7 C4.5 Decision tree: fully grown form.
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TABLE 6.10 Decision Rules Generated from Decision Tree in Figure 6.7

Antecedent Consequent Support Confidence

If assets = low then bad credit risk. 2
8 1.00

If assets = high then good credit risk. 2
8 1.00

If assets = medium and savings = low then good credit risk. 1
8 1.00

If assets = medium and savings = medium then good credit risk. 2
8 1.00

If assets = medium and savings = high then bad credit risk. 1
8 1.00

The support of the decision rule refers to the proportion of records in the data
set that rest in that particular terminal leaf node. The confidence of the rule refers to
the proportion of records in the leaf node for which the decision rule is true. In this
small example, all of our leaf nodes are pure, resulting in perfect confidence levels of
100% = 1.00. In real-world examples, such as in the next section, one cannot expect
such high confidence levels.

COMPARISON OF THE C5.0 AND CART ALGORITHMS
APPLIED TO REAL DATA

Next, we apply decision tree analysis using Clementine on a real-world data set.
The data set adult was abstracted from U.S. census data by Kohavi [5] and is available
online from the University of California at Irvine Machine Learning Repository [6].
Here we are interested in classifying whether or not a person’s income is less than
$50,000, based on the following set of predictor fields.

� Numerical variables

Age

Years of education

Capital gains

Capital losses

Hours worked per week
� Categorical variables

Race

Gender

Work class

Marital status

The numerical variables were normalized so that all values ranged between zero
and 1. Some collapsing of low-frequency classes was carried out on the work class
and marital status categories. Clementine was used to compare the C5.0 algorithm
(an update of the C4.5 algorithm) with CART, examining a training set of 24,986
records. The decision tree produced by the CART algorithm is shown in Figure 6.8.
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Figure 6.8 CART decision tree for the adult data set.

Here, the tree structure is displayed horizontally, with the root node at the
left and the leaf nodes on the right. For the CART algorithm, the root node split
is on marital status, with a binary split separating married persons from all others
(Marital Status in [“Divorced” “Never married” “Separated” “Widowed”]). That
is, this particular split on marital status maximized the CART split selection criterion
[equation (6.1)]:

�(s|t) = 2PL PR

# classes∑
j=1

∣∣P( j |tL ) − P( j |tR)
∣∣

Note that the mode classification for each branch is≤50,000. The married branch leads
to a decision node, with several further splits downstream. However, the nonmarried
branch is a leaf node, with a classification of ≤50,000 for the 13,205 such records,
with 93.6% confidence. In other words, of the 13,205 persons in the data set who are
not presently married, 93.6% of them have incomes below $50,000.

The root node split is considered to indicate the most important single variable
for classifying income. Note that the split on the Marital Status attribute is binary,
as are all CART splits on categorical variables. All the other splits in the full CART
decision tree shown in Figure 6.8 are on numerical variables. The next decision node is
education-num, representing the normalized number of years of education. The split
occurs at education-num <0.8333 (mode ≤50,000) versus education-num >0.8333
(mode >50,000). However, what is the actual number of years of education that the
normalized value of 0.8333 represents? The normalization, carried out automatically
using Insightful Miner, was of the form

X∗ = X

range(X )
= X

max(X ) − min(X )

a variant of min–max normalization. Therefore, denormalization is required to iden-
tify the original field values. Years of education ranged from 16 (maximum) to 1 (min-
imum), for a range of 15. Therefore, denormalizing, we have X = range(X ) · X∗ =
15(0.8333) = 12.5. Thus, the split occurs right at 12.5 years of education. Those with
at least some college education tend to have higher incomes than those who do not.
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Interestingly, for both education groups, capital gains and capital loss represent
the next two most important decision nodes. Finally, for the lower-education group,
the last split is again on education-num, whereas for the higher-education group, the
last split is on hours-per-week.

Now, will the information-gain splitting criterion and the other characteristics
of the C5.0 algorithm lead to a decision tree that is substantially different from or
largely similar to the tree derived using CART’s splitting criteria? Compare the CART
decision tree above with Clementine’s C5.0 decision tree of the same data displayed
in Figure 6.9.

Differences emerge immediately at the root node. Here, the root split is on
the capital-gain attribute, with the split occurring at the relatively low normal-
ized level of 0.0685. Since the range of capital gains in this data set is $99,999
(maximum = 99,999, minimum = 0), this is denormalized asX = range(X ) · X∗ =
99,999(0.0685) = $6850. More than half of those with capital gains greater than
$6850 have incomes above $50,000, whereas more than half of those with capital
gains of less than $6850 have incomes below $50,000. This is the split that was chosen

Figure 6.9 C5.0 decision tree for the adult data set.
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by the information-gain criterion as the optimal split among all possible splits over
all fields. Note, however, that there are 23 times more records in the low-capital-gains
category than in the high-capital-gains category (23,921 versus 1065 records).

For records with lower capital gains, the second split occurs on capital loss,
with a pattern similar to the earlier split on capital gains. Most people (23,165 records)
had low capital loss, and most of these have incomes below $50,000. Most of the few
(756 records) who had higher capital loss had incomes above $50,000.

For records with low capital gains and low capital loss, consider the next split,
which is made on marital status. Note that C5.0 provides a separate branch for each
field value, whereas CART was restricted to binary splits. A possible drawback of
C5.0’s strategy for splitting categorical variables is that it may lead to an overly bushy
tree, with many leaf nodes containing few records. In fact, the decision tree displayed
in Figure 6.9 is only an excerpt from the much larger tree provided by the soft-
ware.

To avoid this problem, analysts may alter the algorithm’s settings to require a
certain minimum number of records to be passed to child decision nodes. Figure 6.10
shows a C5.0 decision tree from Clementine on the same data, this time requiring
each decision node to have at least 300 records. In general, a business or research
decision may be rendered regarding the minimum number of records considered to
be actionable. Figure 6.10 represents the entire tree.

Again, capital gains represents the root node split, with the split occurring at the
same value. This time, however, the high-capital-gains branch leads directly to a leaf
node, containing 1065 records, and predicting with 98.3 confidence that the proper
classification for these persons is income greater than $50,000. For the other records,

Figure 6.10 C5.0 decision tree with a required minimum number of records at each decision
node.
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the second split is again on the same value of the same attribute as earlier, capital
loss. For high capital loss, this leads directly to a leaf node containing 756 records
predicting high income with only 70.8% confidence.

For those with low capital gains and low capital loss, the third split is again
marital status, with a separate branch for each field value. Note that for all values of
the marital status field except “married,” these branches lead directly to child nodes
predicting income of at most $50,000 with various high values of confidence. For
married persons, further splits are considered.

Although the CART and C5.0 decision trees do not agree in the details, we may
nevertheless glean useful information from the broad areas of agreement between
them. For example, the most important variables are clearly marital status, education,
capital gains, capital loss, and perhaps hours per week. Both models agree that these
fields are important, but disagree as to the ordering of their importance. Much more
modeling analysis may be called for.

For a soup-to-nuts application of decision trees to a real-world data set, from data
preparation through model building and decision rule generation, see Reference 7.
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EXERCISES
1. Describe the possible situations when no further splits can be made at a decision node.

2. Suppose that our target variable is continuous numeric. Can we apply decision trees directly
to classify it? How can we work around this?

3. True or false: Decision trees seek to form leaf nodes to maximize heterogeneity in each
node.

4. Discuss the benefits and drawbacks of a binary tree versus a bushier tree.
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TABLE E6.4 Decision Tree Data

Occupation Gender Age Salary

Service Female 45 $48,000

Male 25 $25,000

Male 33 $35,000

Management Male 25 $45,000

Female 35 $65,000

Male 26 $45,000

Female 45 $70,000

Sales Female 40 $50,000

Male 30 $40,000

Staff Female 50 $40,000

Male 25 $25,000

Consider the data in Table E6.4. The target variable is salary. Start by discretizing salary
as follows:

� Less than $35,000 Level 1
� $35,000 to less than $45,000 Level 2
� $45,000 to less than $55,000 Level 3
� Above $55,000 Level 4

5. Construct a classification and regression tree to classify salary based on the other variables.
Do as much as you can by hand, before turning to the software.

6. Construct a C4.5 decision tree to classify salary based on the other variables. Do as much
as you can by hand, before turning to the software.

7. Compare the two decision trees and discuss the benefits and drawbacks of each.

8. Generate the full set of decision rules for the CART decision tree.

9. Generate the full set of decision rules for the C4.5 decision tree.

10. Compare the two sets of decision rules and discuss the benefits and drawbacks of each.

Hands-on Analysis
For the following exercises, use the churn data set available at the book series Web
site. Normalize the numerical data and deal with the correlated variables.

11. Generate a CART decision tree.

12. Generate a C4.5-type decision tree.

13. Compare the two decision trees and discuss the benefits and drawbacks of each.

14. Generate the full set of decision rules for the CART decision tree.

15. Generate the full set of decision rules for the C4.5 decision tree.

16. Compare the two sets of decision rules and discuss the benefits and drawbacks of each.
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APPLICATION OF NEURAL NETWORK MODELING

The inspiration for neural networks was the recognition that complex learning systems
in animal brains consisted of closely interconnected sets of neurons. Although a par-
ticular neuron may be relatively simple in structure, dense networks of interconnected
neurons could perform complex learning tasks such as classification and pattern recog-
nition. The human brain, for example, contains approximately 1011 neurons, each con-
nected on average to 10, 000 other neurons, making a total of 1,000,000,000,000,000=
1015 synaptic connections. Artificial neural networks (hereafter, neural networks) rep-
resent an attempt at a very basic level to imitate the type of nonlinear learning that
occurs in the networks of neurons found in nature.

As shown in Figure 7.1, a real neuron uses dendrites to gather inputs from
other neurons and combines the input information, generating a nonlinear response
(“firing”) when some threshold is reached, which it sends to other neurons using the
axon. Figure 7.1 also shows an artificial neuron model used in most neural networks.

Discovering Knowledge in Data: An Introduction to Data Mining, By Daniel T. Larose
ISBN 0-471-66657-2 Copyright C© 2005 John Wiley & Sons, Inc.
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Figure 7.1 Real neuron and artificial neuron model. (Sketch of neuron courtesy of Chantal
Larose.)

The inputs (xi ) are collected from upstream neurons (or the data set) and combined
through a combination function such as summation (�), which is then input into a
(usually nonlinear) activation function to produce an output response (y), which is
then channeled downstream to other neurons.

What types of problems are appropriate for neural networks? One of the advan-
tages of using neural networks is that they are quite robust with respect to noisy data.
Because the network contains many nodes (artificial neurons), with weights assigned
to each connection, the network can learn to work around these uninformative (or even
erroneous) examples in the data set. However, unlike decision trees, which produce
intuitive rules that are understandable to nonspecialists, neural networks are relatively
opaque to human interpretation, as we shall see. Also, neural networks usually require
longer training times than decision trees, often extending into several hours.

INPUT AND OUTPUT ENCODING

One possible drawback of neural networks is that all attribute values must be encoded
in a standardized manner, taking values between zero and 1, even for categorical
variables. Later, when we examine the details of the back-propagation algorithm, we
shall understand why this is necessary. For now, however, how does one go about
standardizing all the attribute values?

For continuous variables, this is not a problem, as we discussed in Chapter 2.
We may simply apply the min–max normalization:

X∗ = X − min(X )

range(X )
= X − min(X )

max(X ) − min(X )

This works well as long as the minimum and maximum values are known and all
potential new data are bounded between them. Neural networks are somewhat robust
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to minor violations of these boundaries. If more serious violations are expected,
certain ad hoc solutions may be adopted, such as rejecting values that are outside the
boundaries, or assigning such values to either the minimum or maximum value.

Categorical variables are more problematical, as might be expected. If the num-
ber of possible categories is not too large, one may use indicator (flag) variables. For
example, many data sets contain a gender attribute, containing values female, male,
and unknown. Since the neural network could not handle these attribute values in their
present form, we could, instead, create indicator variables for female and male. Each
record would contain values for each of these two indicator variables. Records for
females would have a value of 1 for female and 0 for male, while records for males
would have a value of 0 for female and 1 for male. Records for persons of unknown
gender would have values of 0 for female and 0 for male. In general, categorical
variables with k classes may be translated into k − 1 indicator variables, as long as
the definition of the indicators is clearly defined.

Be wary of recoding unordered categorical variables into a single variable with a
range between zero and 1. For example, suppose that the data set contains information
on a marital status attribute. Suppose that we code the attribute values divorced,
married, separated, single, widowed, and unknown, as 0.0, 0.2, 0.4, 0.6, 0.8, and
1.0, respectively. Then this coding implies, for example, that divorced is “closer” to
married than it is to separated, and so on. The neural network would be aware only
of the numerical values in the marital status field, not of their preencoded meanings,
and would thus be naive of their true meaning. Spurious and meaningless findings
may result.

With respect to output, we shall see that neural network output nodes always
return a continuous value between zero and 1 as output. How can we use such con-
tinuous output for classification?

Many classification problems have a dichotomous result, an up-or-down deci-
sion, with only two possible outcomes. For example, “Is this customer about to leave
our company’s service?” For dichotomous classification problems, one option is to
use a single output node (such as in Figure 7.2), with a threshold value set a priori
which would separate the classes, such as “leave” or “stay.” For example, with the
threshold of “leave if output ≥ 0.67,” an output of 0.72 from the output node would
classify that record as likely to leave the company’s service.

Single output nodes may also be used when the classes are clearly ordered. For
example, suppose that we would like to classify elementary school reading prowess
based on a certain set of student attributes. Then we may be able to define the thresholds
as follows:

� If 0 ≤ output < 0.25, classify first-grade reading level.
� If 0.25 ≤ output < 0.50, classify second-grade reading level.
� If 0.50 ≤ output < 0.75, classify third-grade reading level.
� If output > 0.75, classify fourth-grade reading level.

Fine-tuning of the thresholds may be required, tempered by experience and the judg-
ment of domain experts.
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Not all classification problems, however, are soluble using a single output node
only. For instance, suppose that we have several unordered categories in our target
variable, as, for example, with the marital status variable above. In this case we
would choose to adopt 1-of-n output encoding, where one output node is used for
each possible category of the target variable. For example, if marital status was our
target variable, the network would have six output nodes in the output layer, one for
each of the six classes divorced, married, separated, single, widowed, and unknown.
The output node with the highest value is then chosen as the classification for that
particular record.

One benefit of using 1-of-n output encoding is that it provides a measure of
confidence in the classification, in the form of the difference between the highest-
value output node and the second-highest-value output node. Classifications with
low confidence (small difference in node output values) can be flagged for further
clarification.

NEURAL NETWORKS FOR ESTIMATION AND PREDICTION

Clearly, since neural networks produce continuous output, they may quite naturally
be used for estimation and prediction. Suppose, for example, that we are interested
in predicting the price of a particular stock three months in the future. Presumably,
we would have encoded price information using the min–max normalization above.
However, the neural network would output a value between zero and 1, which (one
would hope) does not represent the predicted price of the stock.

Rather, the min–max normalization needs to be inverted, so that the neural
network output can be understood on the scale of the stock prices. In general, this
denormalization is as follows:

prediction = output(data range) + minimum

where output represents the neural network output in the (0,1) range, data range
represents the range of the original attribute values on the nonnormalized scale, and
minimum represents the smallest attribute value on the nonnormalized scale. For
example, suppose that the stock prices ranged from $20 to $30 and that the network
output was 0.69. Then the predicted stock price in three months is

prediction = output(data range) + minimum = 0.69($10) + $20 = $26.90

SIMPLE EXAMPLE OF A NEURAL NETWORK

Let us examine the simple neural network shown in Figure 7.2. A neural network con-
sists of a layered, feedforward, completely connected network of artificial neurons, or
nodes. The feedforward nature of the network restricts the network to a single direc-
tion of flow and does not allow looping or cycling. The neural network is composed
of two or more layers, although most networks consist of three layers: an input layer,
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Input Layer Hidden Layer Output Layer
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Figure 7.2 Simple neural network.

a hidden layer, and an output layer. There may be more than one hidden layer, al-
though most networks contain only one, which is sufficient for most purposes. The
neural network is completely connected, meaning that every node in a given layer is
connected to every node in the next layer, although not to other nodes in the same
layer. Each connection between nodes has a weight (e.g., W1A) associated with it. At
initialization, these weights are randomly assigned to values between zero and 1.

The number of input nodes usually depends on the number and type of attributes
in the data set. The number of hidden layers, and the number of nodes in each hidden
layer, are both configurable by the user. One may have more than one node in the
output layer, depending on the particular classification task at hand.

How many nodes should one have in the hidden layer? Since more nodes in the
hidden layer increases the power and flexibility of the network for identifying complex
patterns, one might be tempted to have a large number of nodes in the hidden layer.
On the other hand, an overly large hidden layer leads to overfitting, memorizing
the training set at the expense of generalizability to the validation set. If overfitting
is occurring, one may consider reducing the number of nodes in the hidden layer;
conversely, if the training accuracy is unacceptably low, one may consider increasing
the number of nodes in the hidden layer.

The input layer accepts inputs from the data set, such as attribute values, and
simply passes these values along to the hidden layer without further processing. Thus,
the nodes in the input layer do not share the detailed node structure that the hidden
layer nodes and the output layer nodes share.

We will investigate the structure of hidden layer nodes and output layer nodes
using the sample data provided in Table 7.1. First, a combination function (usually

TABLE 7.1 Data Inputs and Initial Values for Neural Network Weights

x0 = 1.0 W0A = 0.5 W0B = 0.7 W0Z = 0.5

x1 = 0.4 W1A = 0.6 W1B = 0.9 WAZ = 0.9

x2 = 0.2 W2A = 0.8 W2B = 0.8 WB Z = 0.9

x3 = 0.7 W3A = 0.6 W3B = 0.4
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summation, �) produces a linear combination of the node inputs and the connection
weights into a single scalar value, which we will term net. Thus, for a given node j ,

net j =
∑

i

Wi j xi j = W0 j x0 j + W1 j x1 j + · · · + WI j xI j

where xij represents the i th input to node j , Wij represents the weight associated
with the i th input to node j , and there are I + 1 inputs to node j . Note that
x1, x2, . . . , xI represent inputs from upstream nodes, while x0 represents a constant
input, analogous to the constant factor in regression models, which by convention
uniquely takes the value x0 j = 1. Thus, each hidden layer or output layer node j
contains an “extra” input equal to a particular weight W0 j x0 j = W0 j , such as W0B for
node B.

For example, for node A in the hidden layer, we have

netA =
∑

i

Wi Axi A = W0A(1) + W1Ax1A + W2Ax2A + W3Ax3A

= 0.5 + 0.6(0.4) + 0.8(0.2) + 0.6(0.7) = 1.32

Within node A, this combination function netA = 1.32 is then used as an input to an
activation function. In biological neurons, signals are sent between neurons when the
combination of inputs to a particular neuron cross a certain threshold, and the neuron
“fires.” This is nonlinear behavior, since the firing response is not necessarily linearly
related to the increment in input stimulation. Artificial neural networks model this
behavior through a nonlinear activation function.

The most common activation function is the sigmoid function:

y = 1

1 + e−x

where e is base of natural logarithms, equal to about 2.718281828. Thus, within
node A, the activation would take netA = 1.32 as input to the sigmoid activation
function, and produce an output value of y = 1/(1 + e−1.32) = 0.7892. Node A’s
work is done (for the moment), and this output value would then be passed along the
connection to the output node Z, where it would form (via another linear combination)
a component of netZ .

But before we can compute netZ , we need to find the contribution of node B.
From the values in Table 7.1, we have

netB =
∑

i

Wi B xi B = W0B(1) + W1B x1B + W2B x2B + W3B x3B

= 0.7 + 0.9(0.4) + 0.8(0.2) + 0.4(0.7) = 1.5

Then

f (netB) = 1

1 + e−1.5
= 0.8176

Node Z then combines these outputs from nodes A and B, through netZ , a weighted
sum, using the weights associated with the connections between these nodes. Note
that the inputs xi to node Z are not data attribute values but the outputs from the
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sigmoid functions from upstream nodes:

netZ =
∑

i

Wi Z xi Z = W0Z (1) + WAZ xAZ + WB Z xB Z

= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461

Finally, netZ is input into the sigmoid activation function in node Z , resulting in

f (netZ ) = 1

1 + e−1.9461
= 0.8750

This value of 0.8750 is the output from the neural network for this first pass through
the network, and represents the value predicted for the target variable for the first
observation.

SIGMOID ACTIVATION FUNCTION

Why use the sigmoid function? Because it combines nearly linear behavior, curvilinear
behavior, and nearly constant behavior, depending on the value of the input. Figure 7.3
shows the graph of the sigmoid function y = f (x) = 1/(1 + e−x ), for −5 < x < 5
[although f (x) may theoretically take any real-valued input]. Through much of the
center of the domain of the input x (e.g., −1 < x < 1), the behavior of f (x) is nearly
linear. As the input moves away from the center, f (x) becomes curvilinear. By the
time the input reaches extreme values, f (x) becomes nearly constant.

Moderate increments in the value of x produce varying increments in the value
of f (x), depending on the location of x . Near the center, moderate increments in
the value of x produce moderate increments in the value of f (x); however, near the
extremes, moderate increments in the value of x produce tiny increments in the value
of f (x). The sigmoid function is sometimes called a squashing function, since it takes
any real-valued input and returns an output bounded between zero and 1.

Figure 7.3 Graph of the sigmoid function y = f (x) = 1/(1 + e−x ).
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BACK-PROPAGATION

How does the neural network learn? Neural networks represent a supervised learn-
ing method, requiring a large training set of complete records, including the target
variable. As each observation from the training set is processed through the network,
an output value is produced from the output node (assuming that we have only one
output node, as in Figure 7.2). This output value is then compared to the actual value
of the target variable for this training set observation, and the error (actual − output)
is calculated. This prediction error is analogous to the residuals in regression models.
To measure how well the output predictions fit the actual target values, most neural
network models use the sum of squared errors:

SSE =
∑

records

∑
output nodes

(actual − output)2

where the squared prediction errors are summed over all the output nodes and over
all the records in the training set.

The problem is therefore to construct a set of model weights that will minimize
the SSE. In this way, the weights are analogous to the parameters of a regression
model. The “true” values for the weights that will minimize SSE are unknown, and
our task is to estimate them, given the data. However, due to the nonlinear nature of
the sigmoid functions permeating the network, there exists no closed-form solution
for minimizing SSE as exists for least-squares regression.

GRADIENT DESCENT METHOD

We must therefore turn to optimization methods, specifically gradient-descent meth-
ods, to help us find the set of weights that will minimize SSE. Suppose that we have a
set (vector) of m weights w = w0, w1, w2, . . . , wm in our neural network model and
we wish to find the values for each of these weights that, together, minimize SSE.
We can use the gradient descent method, which gives us the direction that we should
adjust the weights in order to decrease SSE. The gradient of SSE with respect to the
vector of weights w is the vector derivative:

∇SSE(w) =
[
∂SSE

∂w0
,
∂SSE

∂w1
, . . . ,

∂SSE

∂wm

]

that is, the vector of partial derivatives of SSE with respect to each of the weights.
To illustrate how gradient descent works, let us consider the case where there

is only a single weight w1. Consider Figure 7.4, which plots the error SSE against the
range of values for w1. We would prefer values of w1 that would minimize the SSE.
The optimal value for the weight w1 is indicated as w∗

1 . We would like to develop a
rule that would help us move our current value of w1 closer to the optimal value w∗

1
as follows: wnew = wcurrent + �wcurrent, where �wcurrent is the “change in the current
location of w.”
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Figure 7.4 Using the slope of SSE with respect to w1 to find weight adjustment direction.

Now, suppose that our current weight value wcurrent is near w1L . Then we would
like to increase our current weight value to bring it closer to the optimal value w∗

1 .
On the other hand, if our current weight value wcurrent were near w1R , we would
instead prefer to decrease its value, to bring it closer to the optimal value w∗

1 . Now
the derivative ∂SSE/∂w1 is simply the slope of the SSE curve at w1. For values of
w1 close to w1L , this slope is negative, and for values of w1 close to w1R , this slope
is positive. Hence, the direction for adjusting wcurrent is the negative of the sign of the
derivative of SSE at wcurrent, that is, −sign(∂SSE/∂wcurrent).

Now, how far should wcurrent be adjusted in the direction of −sign (∂SSE/

∂wcurrent)? Suppose that we use the magnitude of the derivative of SSE at wcurrent.
When the curve is steep, the adjustment will be large, since the slope is greater in
magnitude at those points. When the curve nearly flat, the adjustment will be smaller,
due to less slope. Finally, the derivative is multiplied by a positive constant � (Greek
lowercase eta), called the learning rate, with values ranging between zero and 1.
(We discuss the role of � in more detail below.) The resulting form of �wcurrent is
as follows: �wcurrent = −�(∂SSE/∂wcurrent), meaning that the change in the current
weight value equals negative a small constant times the slope of the error function at
wcurrent.

BACK-PROPAGATION RULES

The back-propagation algorithm takes the prediction error (actual − output) for a
particular record and percolates the error back through the network, assigning parti-
tioned responsibility for the error to the various connections. The weights on these
connections are then adjusted to decrease the error, using gradient descent.

Using the sigmoid activation function and gradient descent, Mitchell [1] derives
the back-propagation rules as follows:

wi j,new = wi j,current + �wi j where �wi j = ��j xi j
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Now we know that � represents the learning rate and xij signifies the i th input to node
j , but what does �j represent? The component �j represents the responsibility for a
particular error belonging to node j . The error responsibility is computed using the
partial derivative of the sigmoid function with respect to net j and takes the following
forms, depending on whether the node in question lies in the output layer or the hidden
layer:

�j =
{

output j (1 − output j )(actual j − output j ) for output layernodes
output j (1 − output j )

∑
downstream

W jk�j for hidden layer nodes

where
∑

downstream W jk�j refers to the weighted sum of the error responsibilities for
the nodes downstream from the particular hidden layer node. (For the full derivation,
see Mitchell [1].)

Also, note that the back-propagation rules illustrate why the attribute values
need to be normalized to between zero and 1. For example, if income data, with values
ranging into six figures, were not normalized, the weight adjustment �wij = ��j xij

would be dominated by the data value xij. Hence the error propagation (in the form
of �j ) through the network would be overwhelmed, and learning (weight adjustment)
would be stifled.

EXAMPLE OF BACK-PROPAGATION

Recall from our introductory example that the output from the first pass through the
network was output = 0.8750. Assume that the actual value of the target attribute is
actual = 0.8 and that we will use a learning rate of � = 0.01. Then the prediction error
equals 0.8 − 0.8750 = −0.075, and we may apply the foregoing rules to illustrate
how the back-propagation algorithm works to adjust the weights by portioning out
responsibility for this error to the various nodes. Although it is possible to update
the weights only after all records have been read, neural networks use stochastic (or
online) back-propagation, which updates the weights after each record.

First, the error responsibility �Z for node Z is found. Since node Z is an output
node, we have

�Z = outputZ (1 − outputZ )(actualZ − outputZ )

= 0.875(1 − 0.875)(0.8 − 0.875) = −0.0082

We may now adjust the “constant” weight W0Z (which transmits an “input” of 1)
using the back-propagation rules as follows:

�W0Z = ��Z (1) = 0.1(−0.0082)(1) = −0.00082

w0Z ,new = w0Z ,current + �w0Z = 0.5 − 0.00082 = 0.49918

Next, we move upstream to node A. Since node A is a hidden layer node, its error
responsibility is

�A = outputA(1 − outputA)
∑

downstream

W jk�j
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The only node downstream from node A is node Z . The weight associated with this
connection is WAZ = 0.9, and the error responsibility at node Z is −0.0082, so that
�A = 0.7892(1 − 0.7892)(0.9)(−0.0082) = −0.00123.

We may now update weight WAZ using the back-propagation rules as follows:

�WAZ = ��Z ·outputA = 0.1(−0.0082)(0.7892) = −0.000647

wAZ ,new = wAZ ,current + �wAZ = 0.9 − 0.000647 = 0.899353

The weight for the connection between hidden layer node A and output layer node Z
has been adjusted from its initial value of 0.9 to its new value of 0.899353.

Next, we turn to node B, a hidden layer node, with error responsibility

�B = outputB(1 − outputB)
∑

downstream

W jk�j

Again, the only node downstream from node B is node Z , giving us �B = 0.8176(1 −
0.8176)(0.9)(−0.0082) = −0.0011.

Weight WB Z may then be adjusted using the backpropagation rules as follows:

�WB Z = ��Z ·outputB = 0.1(−0.0082)(0.8176) = −0.00067

wB Z ,new = wB Z ,current + �wB Z = 0.9 − 0.00067 = 0.89933

We move upstream to the connections being used as inputs to node A. For weight
W1A we have

�W1A = ��Ax1 = 0.1(−0.00123)(0.4) = −0.0000492

w1A,new = w1A,current + �w1A = 0.6 − 0.0000492 = 0.5999508.

For weight W2A we have

�W2A = ��Ax2 = 0.1(−0.00123)(0.2) = −0.0000246

w2A,new = w2A,current + �w2A = 0.8 − 0.0000246 = 0.7999754.

For weight W3A we have

�W3A = ��Ax3 = 0.1(−0.00123)(0.7) = −0.0000861

w3A,new = w3A,current + �w3A = 0.6 − 0.0000861 = 0.5999139.

Finally, for weight W0A we have

�W0A = ��A(1) = 0.1(−0.00123) = −0.000123

w0A,new = w0A,current + �w0A = 0.5 − 0.000123 = 0.499877.

Adjusting weights W0B, W1B, W2B , and W3B is left as an exercise.
Note that the weight adjustments have been made based on only a single perusal

of a single record. The network calculated a predicted value for the target variable,
compared this output value to the actual target value, and then percolated the error
in prediction throughout the network, adjusting the weights to provide a smaller
prediction error. Showing that the adjusted weights result in a smaller prediction
error is left as an exercise.



WY045-07 September 23, 2004 11:39

LEARNING RATE 139

TERMINATION CRITERIA

The neural network algorithm would then proceed to work through the training data
set, record by record, adjusting the weights constantly to reduce the prediction error.
It may take many passes through the data set before the algorithm’s termination
criterion is met. What, then, serves as the termination criterion, or stopping criterion?
If training time is an issue, one may simply set the number of passes through the
data, or the amount of realtime the algorithm may consume, as termination criteria.
However, what one gains in short training time is probably bought with degradation
in model efficacy.

Alternatively, one may be tempted to use a termination criterion that assesses
when the SSE on the training data has been reduced to some low threshold level.
Unfortunately, because of their flexibility, neural networks are prone to overfitting,
memorizing the idiosyncratic patterns in the training set instead of retaining general-
izability to unseen data.

Therefore, most neural network implementations adopt the following cross-
validation termination procedure:

1. Retain part of the original data set as a holdout validation set.

2. Proceed to train the neural network as above on the remaining training data.

3. Apply the weights learned from the training data on the validation data.

4. Monitor two sets of weights, one “current” set of weights produced by the
training data, and one “best” set of weights, as measured by the lowest SSE so
far on the validation data.

5. When the current set of weights has significantly greater SSE than the best set
of weights, then terminate the algorithm.

Regardless of the stopping criterion used, the neural network is not guaranteed
to arrive at the optimal solution, known as the global minimum for the SSE. Rather,
the algorithm may become stuck in a local minimum, which represents a good, if not
optimal solution. In practice, this has not presented an insuperable problem.

� For example, multiple networks may be trained using different initialized
weights, with the best-performing model being chosen as the “final” model.

� Second, the online or stochastic back-propagation method itself acts as a guard
against getting stuck in a local minimum, since it introduces a random element
to the gradient descent (see Reed and Marks [2]).

� Alternatively, a momentum term may be added to the back-propagation algo-
rithm, with effects discussed below.

LEARNING RATE

Recall that the learning rate �, 0 < � < 1, is a constant chosen to help us move the
network weights toward a global minimum for SSE. However, what value should �
take? How large should the weight adjustments be?
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Figure 7.5 Large � may cause algorithm to overshoot global minimum.

When the learning rate is very small, the weight adjustments tend to be very
small. Thus, if � is small when the algorithm is initialized, the network will probably
take an unacceptably long time to converge. Is the solution therefore to use large
values for �? Not necessarily. Suppose that the algorithm is close to the optimal
solution and we have a large value for �. This large � will tend to make the algorithm
overshoot the optimal solution.

Consider Figure 7.5, where W ∗ is the optimum value for weight W , which
has current value Wcurrent. According to the gradient descent rule, �wcurrent =
−�(∂SSE/∂wcurrent), Wcurrent will be adjusted in the direction of W ∗. But if the learn-
ing rate �, which acts as a multiplier in the formula for �wcurrent, is too large, the new
weight value Wnew will jump right past the optimal value W ∗, and may in fact end up
farther away from W ∗ than Wcurrent.

In fact, since the new weight value will then be on the opposite side of W ∗,
the next adjustment will again overshoot W ∗, leading to an unfortunate oscillation
between the two “slopes” of the valley and never settling down in the ravine (the
minimum). One solution is to allow the learning rate � to change values as the training
moves forward. At the start of training, �should be initialized to a relatively large value
to allow the network to quickly approach the general neighborhood of the optimal
solution. Then, when the network is beginning to approach convergence, the learning
rate should gradually be reduced, thereby avoiding overshooting the minimum.

MOMENTUM TERM

The back-propagation algorithm is made more powerful through the addition of a
momentum term �, as follows:

�wcurrent = −�
∂SSE

∂wcurrent
+ ��wprevious

where �wprevious represents the previous weight adjustment, and 0 ≤ � < 1. Thus, the
new component ��wprevious represents a fraction of the previous weight adjustment
for a given weight.
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Essentially, the momentum term represents inertia. Large values of � will in-
fluence the adjustment in the current weight, �wcurrent, to move in the same direction
as previous adjustments. It has been shown (e.g., Reed and Marks [2]) that including
momentum in the back-propagation algorithm results in the adjustment becoming an
exponential average of all previous adjustments:

�wcurrent = −�
∞∑

k=0

�k ∂SSE

∂wcurrent−k

The �k term indicates that the more recent adjustments exert a larger influence. Large
values of � allow the algorithm to “remember” more terms in the adjustment history.
Small values of � reduce the inertial effects as well as the influence of previous
adjustments, until, with � = 0, the component disappears entirely.

Clearly, a momentum component will help to dampen the oscillations around
optimality mentioned earlier, by encouraging the adjustments to stay in the same
direction. But momentum also helps the algorithm in the early stages of the algorithm,
by increasing the rate at which the weights approach the neighborhood of optimality.
This is because these early adjustments will probably all be in the same direction,
so that the exponential average of the adjustments will also be in that direction.
Momentum is also helpful when the gradient of SSE with respect to w is flat. If the
momentum term � is too large, however, the weight adjustments may again overshoot
the minimum, due to the cumulative influences of many previous adjustments.

For an informal appreciation of momentum, consider Figures 7.6 and 7.7. In
both figures, the weight is initialized at location I, local minima exist at locations A
and C, with the optimal global minimum at B. In Figure 7.6, suppose that we have
a small value for the momentum term �, symbolized by the small mass of the “ball”
on the curve. If we roll this small ball down the curve, it may never make it over the
first hill, and remain stuck in the first valley. That is, the small value for � enables the
algorithm to easily find the first trough at location A, representing a local minimum,
but does not allow it to find the global minimum at B.

Next, in Figure 7.7, suppose that we have a large value for the momentum term
�, symbolized by the large mass of the “ball” on the curve. If we roll this large ball
down the curve, it may well make it over the first hill but may then have so much

SS
E

I A B C w

Figure 7.6 Small momentum � may cause algorithm to undershoot global minimum.
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Figure 7.7 Large momentum � may cause algorithm to overshoot global minimum.

momentum that it overshoots the global minimum at location B and settles for the
local minimum at location C.

Thus, one needs to consider carefully what values to set for both the learning
rate � and the momentum term �. Experimentation with various values of � and �
may be necessary before the best results are obtained.

SENSITIVITY ANALYSIS

One of the drawbacks of neural networks is their opacity. The same wonderful flex-
ibility that allows neural networks to model a wide range of nonlinear behavior also
limits our ability to interpret the results using easily formulated rules. Unlike deci-
sion trees, no straightforward procedure exists for translating the weights of a neural
network into a compact set of decision rules.

However, a procedure is available, called sensitivity analysis, which does allow
us to measure the relative influence each attribute has on the output result. Using the
test data set mentioned above, the sensitivity analysis proceeds as follows:

1. Generate a new observation xmean, with each attribute value in xmean equal to
the mean of the various attribute values for all records in the test set.

2. Find the network output for input xmean. Call it outputmean.

3. Attribute by attribute, vary xmean to reflect the attribute minimum and maximum.
Find the network output for each variation and compare it to outputmean.

The sensitivity analysis will find that varying certain attributes from their mini-
mum to their maximum will have a greater effect on the resulting network output than
it has for other attributes. For example, suppose that we are interested in predicting
stock price based on price–earnings ratio, dividend yield, and other attributes. Also,
suppose that varying price–earnings ratio from its minimum to its maximum results
in an increase of 0.20 in the network output, while varying dividend yield from its
minimum to its maximum results in an increase of 0.30 in the network output when the
other attributes are held constant at their mean value. We conclude that the network
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is more sensitive to variations in dividend yield and that therefore dividend yield is a
more important factor for predicting stock prices than is price–earnings ratio.

APPLICATION OF NEURAL NETWORK MODELING

Next, we apply a neural network model using Insightful Miner on the same adult
data set [3] from the UCal Irvine Machine Learning Repository that we analyzed in
Chapter 6. The Insightful Miner neural network software was applied to a training set
of 24,986 cases, using a single hidden layer with eight hidden nodes. The algorithm
iterated 47 epochs (runs through the data set) before termination. The resulting neural
network is shown in Figure 7.8. The squares on the left represent the input nodes.
For the categorical variables, there is one input node per class. The eight dark circles
represent the hidden layer. The light gray circles represent the constant inputs. There
is only a single output node, indicating whether or not the record is classified as having
income less than $50,000.

In this algorithm, the weights are centered at zero. An excerpt of the computer
output showing the weight values is provided in Figure 7.9. The columns in the first

Figure 7.8 Neural network for the adult data set generated by Insightful Miner.
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Figure 7.9 Some of the neural network weights for the income example.

table represent the input nodes: 1 = age, 2 = education-num, and so on, while the
rows represent the hidden layer nodes: 22 = first (top) hidden node, 23 = second
hidden node, and so on. For example, the weight on the connection from age to
the topmost hidden node is −0.97, while the weight on the connection from Race:
American Indian/Eskimo (the sixth input node) to the last (bottom) hidden node is
−0.75. The lower section of Figure7.9 displays the weights from the hidden nodes to
the output node.

The estimated prediction accuracy using this very basic model is 82%, which
is in the ballpark of the accuracies reported by Kohavi [4]. Since over 75% of the
subjects have incomes below $50,000, simply predicted “less than $50,000” for every
person would provide a baseline accuracy of about 75%.

However, we would like to know which variables are most important for predict-
ing (classifying) income. We therefore perform a sensitivity analysis using Clemen-
tine, with results shown in Figure 7.10. Clearly, the amount of capital gains is the best
predictor of whether a person has income less than $50,000, followed by the number
of years of education. Other important variables include the number of hours worked
per week and marital status. A person’s gender does not seem to be highly predictive
of income.

Of course, there is much more involved with developing a neural network
classification model. For example, further data preprocessing may be called for; the
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Figure 7.10 Most important variables: results
from sensitivity analysis.

model would need to be validated using a holdout validation data set, and so on. For
a start-to-finish application of neural networks to a real-world data set, from data
preparation through model building and sensitivity analysis, see Reference 5.
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EXERCISES
1. Suppose that you need to prepare the data in Table 6.10 for a neural network algorithm.

Define the indicator variables for the occupation attribute.

2. Clearly describe each of these characteristics of a neural network:

a. Layered

b. Feedforward

c. Completely connected

3. What is the sole function of the nodes in the input layer?

4. Should we prefer a large hidden layer or a small one? Describe the benefits and drawbacks
of each.

5. Describe how neural networks function nonlinearly.
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6. Explain why the updating term for the current weight includes the negative of the sign of
the derivative (slope).

7. Adjust the weights W0B, W1B, W2B,and W3B from the example on back-propagation in the
text.

8. Refer to Exercise 7. Show that the adjusted weights result in a smaller prediction error.

9. True or false: Neural networks are valuable because of their capacity for always finding
the global minimum of the SSE.

10. Describe the benefits and drawbacks of using large or small values for the learning rate.

11. Describe the benefits and drawbacks of using large or small values for the momentum
term.

Hands-on Analysis
For the following exercises, use the data set churn located at the book series Web
site. Normalize the numerical data, recode the categorical variables, and deal with the
correlated variables.

12. Generate a neural network model for classifying churn based on the other variables.
Describe the topology of the model.

13. Which variables, in order of importance, are identified as most important for classifying
churn?

14. Compare the neural network model with the CART and C4.5 models for this task in
Chapter 6. Describe the benefits and drawbacks of the neural network model compared to
the others. Is there convergence or divergence of results among the models?
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USING CLUSTER MEMBERSHIP TO PREDICT CHURN

CLUSTERING TASK

Clustering refers to the grouping of records, observations, or cases into classes of
similar objects. A cluster is a collection of records that are similar to one another and
dissimilar to records in other clusters. Clustering differs from classification in that
there is no target variable for clustering. The clustering task does not try to classify,
estimate, or predict the value of a target variable. Instead, clustering algorithms seek
to segment the entire data set into relatively homogeneous subgroups or clusters,
where the similarity of the records within the cluster is maximized, and the similarity
to records outside this cluster is minimized.

For example, Claritas, Inc. is a clustering business that provides demographic
profiles of each geographic area in the United States, as defined by zip code. One of the
clustering mechanisms they use is the PRIZM segmentation system, which describes
every U.S. zip code area in terms of distinct lifestyle types. Recall, for example, that
the clusters identified for zip code 90210, Beverly Hills, California, were:

� Cluster 01: Blue Blood Estates
� Cluster 10: Bohemian Mix
� Cluster 02: Winner’s Circle
� Cluster 07: Money and Brains
� Cluster 08: Young Literati

Discovering Knowledge in Data: An Introduction to Data Mining, By Daniel T. Larose
ISBN 0-471-66657-2 Copyright C© 2005 John Wiley & Sons, Inc.
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The description for cluster 01: Blue Blood Estates is “Established executives,
professionals, and ‘old money’ heirs that live in America’s wealthiest suburbs. They
are accustomed to privilege and live luxuriously—one-tenth of this group’s members
are multimillionaires. The next affluence level is a sharp drop from this pinnacle.”

Examples of clustering tasks in business and research include:

� Target marketing of a niche product for a small-capitalization business that does
not have a large marketing budget

� For accounting auditing purposes, to segment financial behavior into benign
and suspicious categories

� As a dimension-reduction tool when a data set has hundreds of attributes
� For gene expression clustering, where very large quantities of genes may exhibit

similar behavior

Clustering is often performed as a preliminary step in a data mining process,
with the resulting clusters being used as further inputs into a different technique
downstream, such as neural networks. Due to the enormous size of many present-day
databases, it is often helpful to apply clustering analysis first, to reduce the search
space for the downstream algorithms. In this chapter, after a brief look at hierarchical
clustering methods, we discuss in detail k-means clustering; in Chapter 9 we examine
clustering using Kohonen networks, a structure related to neural networks.

Cluster analysis encounters many of the same issues that we dealt with in the
chapters on classification. For example, we shall need to determine:

� How to measure similarity
� How to recode categorical variables
� How to standardize or normalize numerical variables
� How many clusters we expect to uncover

For simplicity, in this book we concentrate on Euclidean distance between
records:

dEuclidean(x, y) =
√∑

i

(xi − yi )2

where x = x1, x2, . . . , xm , and y = y1, y2, . . . , ym represent the m attribute values of
two records. Of course, many other metrics exist, such as city-block distance:

dcityblock(x, y) =
∑

i

∣∣xi − yi

∣∣
or Minkowski distance, which represents the general case of the foregoing two metrics
for a general exponent q:

dMinkowski(x, y) =
∑

i

∣∣xi − yi

∣∣q

For categorical variables, we may again define the “different from” function for
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Between-cluster variation:

Within-cluster variation:

Figure 8.1 Clusters should have small within-cluster variation compared to the between-
cluster variation.

comparing the ith attribute values of a pair of records:

different(xi , yi ) =
{

0 if xi = yi

1 otherwise

where xi and yi are categorical values. We may then substitute different(xi , yi ) for
the ith term in the Euclidean distance metric above.

For optimal performance, clustering algorithms, just like algorithms for classi-
fication, require the data to be normalized so that no particular variable or subset of
variables dominates the analysis. Analysts may use either the min–max normalization
or Z-score standardization, discussed in earlier chapters:

Min–max normalization: X∗ = X − min(X )

Range(X )

Z-score standardization: X∗ = X − mean(X )

SD(X )

All clustering methods have as their goal the identification of groups of records
such that similarity within a group is very high while the similarity to records in other
groups is very low. In other words, as shown in Figure 8.1, clustering algorithms seek
to construct clusters of records such that the between-cluster variation (BCV) is large
compared to the within-cluster variation (WCV) This is somewhat analogous to the
concept behind analysis of variance.

HIERARCHICAL CLUSTERING METHODS

Clustering algorithms are either hierarchical or nonhierarchical. In hierarchical clus-
tering, a treelike cluster structure (dendrogram) is created through recursive parti-
tioning (divisive methods) or combining (agglomerative) of existing clusters. Ag-
glomerative clustering methods initialize each observation to be a tiny cluster of its



WY045-08 September 23, 2004 11:41

150 CHAPTER 8 HIERARCHICAL AND k-MEANS CLUSTERING

own. Then, in succeeding steps, the two closest clusters are aggregated into a new
combined cluster. In this way, the number of clusters in the data set is reduced by
one at each step. Eventually, all records are combined into a single huge cluster. Di-
visive clustering methods begin with all the records in one big cluster, with the most
dissimilar records being split off recursively, into a separate cluster, until each record
represents its own cluster. Because most computer programs that apply hierarchical
clustering use agglomerative methods, we focus on those.

Distance between records is rather straightforward once appropriate recoding
and normalization has taken place. But how do we determine distance between clusters
of records? Should we consider two clusters to be close if their nearest neighbors are
close or if their farthest neighbors are close? How about criteria that average out these
extremes?

We examine several criteria for determining distance between arbitrary clusters
A and B:

� Single linkage, sometimes termed the nearest-neighbor approach, is based on
the minimum distance between any record in cluster A and any record in cluster
B. In other words, cluster similarity is based on the similarity of the most
similar members from each cluster. Single linkage tends to form long, slender
clusters, which may sometimes lead to heterogeneous records being clustered
together.

� Complete linkage, sometimes termed the farthest-neighbor approach, is based
on the maximum distance between any record in cluster A and any record in
cluster B. In other words, cluster similarity is based on the similarity of the
most dissimilar members from each cluster. Complete-linkage tends to form
more compact, spherelike clusters, with all records in a cluster within a given
diameter of all other records.

� Average linkage is designed to reduce the dependence of the cluster-linkage
criterion on extreme values, such as the most similar or dissimilar records.
In average linkage, the criterion is the average distance of all the records in
cluster A from all the records in cluster B. The resulting clusters tend to have
approximately equal within-cluster variability.

Let’s examine how these linkage methods work, using the following small,
one-dimensional data set:

2 5 9 15 16 18 25 33 33 45

Single-Linkage Clustering

Suppose that we are interested in using single-linkage agglomerative clustering on
this data set. Agglomerative methods start by assigning each record to its own cluster.
Then, single linkage seeks the minimum distance between any records in two clusters.
Figure 8.2 illustrates how this is accomplished for this data set. The minimum cluster
distance is clearly between the single-record clusters which each contain the value 33,
for which the distance must be zero for any valid metric. Thus, these two clusters are
combined into a new cluster of two records, both of value 33, as shown in Figure 8.2.
Note that, after step 1, only nine (n − 1) clusters remain. Next, in step 2, the clusters
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2 5 9 15 16 18 25 33 33 45

2, 5

2, 5, 9

2, 5, 9, 15, 16, 18, 25, 33, 33

2, 5, 9, 15, 16, 18

2, 5, 9, 15, 16, 18, 25

15, 16, 18

33, 3315, 16

2, 5, 9, 15, 16, 18, 25, 33 33 45

Figure 8.2 Single-linkage agglomerative clustering on the sample data set.

containing values 15 and 16 are combined into a new cluster, since their distance of
1 is the minimum between any two clusters remaining.

Here are the remaining steps:

� Step 3: The cluster containing values 15 and 16 (cluster {15,16}) is combined
with cluster {18}, since the distance between 16 and 18 (the closest records in
each cluster) is two, the minimum among remaining clusters.

� Step 4: Clusters {2} and {5} are combined.
� Step 5: Cluster {2,5} is combined with cluster {9}, since the distance between 5

and 9 (the closest records in each cluster) is four, the minimum among remaining
clusters.

� Step 6: Cluster {2,5,9} is combined with cluster {15,16,18}, since the distance
between 9 and 15 is six, the minimum among remaining clusters.

� Step 7: Cluster {2,5,9,15,16,18} is combined with cluster {25}, since the dis-
tance between 18 and 25 is seven, the minimum among remaining clusters.

� Step 8: Cluster {2,5,9,15,16,18,25} is combined with cluster {33,33}, since the
distance between 25 and 33 is eight, the minimum among remaining clusters.

� Step 9: Cluster {2,5,9,15,16,18,25,33,33} is combined with cluster {45}. This
last cluster now contains all the records in the data set.

Complete-Linkage Clustering

Next, let’s examine whether using the complete-linkage criterion would result in a
different clustering of this sample data set. Complete linkage seeks to minimize the
distance among the records in two clusters that are farthest from each other. Figure 8.3
illustrates complete-linkage clustering for this data set.

� Step 1: Since each cluster contains a single record only, there is no difference
between single linkage and complete linkage at step 1. The two clusters each
containing 33 are again combined.
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2 5 9 15 16 18 25 33 33 45

2, 5

2, 5, 9

2, 5, 9, 15, 16, 18

15, 16, 18 

33, 3315, 16

2, 5, 9, 15, 16, 18, 25, 33, 33, 45

25, 33, 33

25, 33, 33, 45

Figure 8.3 Complete-linkage agglomerative clustering on the sample data set.

� Step 2: Just as for single linkage, the clusters containing values 15 and 16 are
combined into a new cluster. Again, this is because there is no difference in the
two criteria for single-record clusters.

� Step 3: At this point, complete linkage begins to diverge from its predecessor.
In single linkage, cluster {15,16} was at this point combined with cluster {18}.
But complete linkage looks at the farthest neighbors, not the nearest neighbors.
The farthest neighbors for these two clusters are 15 and 18, for a distance of
3. This is the same distance separating clusters {2} and {5}. The complete-
linkage criterion is silent regarding ties, so we arbitrarily select the first such
combination found, therefore combining the clusters {2} and {5} into a new
cluster.

� Step 4: Now cluster {15,16} is combined with cluster {18}.
� Step 5: Cluster {2,5} is combined with cluster {9}, since the complete-linkage

distance is 7, the smallest among remaining clusters.
� Step 6: Cluster {25} is combined with cluster {33,33}, with a complete-linkage

distance of 8.
� Step 7: Cluster {2,5,9} is combined with cluster {15,16,18}, with a complete-

linkage distance of 16.
� Step 8: Cluster {25,33,33} is combined with cluster {45}, with a complete-

linkage distance of 20.
� Step 9: Cluster {2,5,9,15,16,18} is combined with cluster {25,33,33,45}. All

records are now contained in this last large cluster.

Finally, with average linkage, the criterion is the average distance of all the
records in cluster A from all the records in cluster B. Since the average of a single
record is the record’s value itself, this method does not differ from the earlier meth-
ods in the early stages, where single-record clusters are being combined. At step 3,
average linkage would be faced with the choice of combining clusters {2} and {5},
or combining the {15, 16} cluster with the single-record {18} cluster. The average
distance between the {15, 16} cluster and the {18} cluster is the average of |18 − 15|
and |18 − 16|, which is 2.5, while the average distance between clusters {2} and {5} is
of course 3. Therefore, average linkage would combine the {15, 16} cluster with clus-
ter {18} at this step, followed by combining cluster {2} with cluster {5}. The reader
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may verify that the average-linkage criterion leads to the same hierarchical structure
for this example as the complete-linkage criterion. In general, average linkage leads
to clusters more similar in shape to complete linkage than does single linkage.

k-MEANS CLUSTERING

The k-means clustering algorithm [1] is a straightforward and effective algorithm for
finding clusters in data. The algorithm proceeds as follows.

� Step 1: Ask the user how many clusters k the data set should be partitioned into.
� Step 2: Randomly assign k records to be the initial cluster center locations.
� Step 3: For each record, find the nearest cluster center. Thus, in a sense, each

cluster center “owns” a subset of the records, thereby representing a partition
of the data set. We therefore have k clusters, C1, C2, . . . , Ck .

� Step 4: For each of the k clusters, find the cluster centroid, and update the
location of each cluster center to the new value of the centroid.

� Step 5: Repeat steps 3 to 5 until convergence or termination.

The “nearest” criterion in step 3 is usually Euclidean distance, although other
criteria may be applied as well. The cluster centroid in step 4 is found as fol-
lows. Suppose that we have n data points (a1, b1, c1), (a2, b2, c2), . . . , (an, bn, cn),
the centroid of these points is the center of gravity of these points and is located at
point

(∑
ai/n,

∑
bi/n,

∑
ci/n

)
. For example, the points (1,1,1), (1,2,1), (1,3,1), and

(2,1,1) would have centroid

(
1 + 1 + 1 + 2

4
,

1 + 2 + 3 + 1

4
,

1 + 1 + 1 + 1

4

)
= (1.25, 1.75, 1.00)

The algorithm terminates when the centroids no longer change. In other words,
the algorithm terminates when for all clusters C1, C2, . . . , Ck , all the records “owned”
by each cluster center remain in that cluster. Alternatively, the algorithm may terminate
when some convergence criterion is met, such as no significant shrinkage in the sum
of squared errors:

SSE =
k∑

i=1

∑
p∈Ci

d(p, mi )
2

where p ∈ Ci represents each data point in cluster i and mi represents the centroid
of cluster i .

EXAMPLE OF k-MEANS CLUSTERING AT WORK

Let’s examine an example of how the k-means algorithm works. Suppose that we
have the eight data points in two-dimensional space shown in Table 8.1 and plotted
in Figure 8.4 and are interested in uncovering k = 2 clusters.
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TABLE 8.1 Data Points for k-Means Example

a b c d e f g h

(1,3) (3,3) (4,3) (5,3) (1,2) (4,2) (1,1) (2,1)

Let’s apply the k-means algorithm step by step.

� Step 1: Ask the user how many clusters k the data set should be partitioned into.
We have already indicated that we are interested in k = 2 clusters.

� Step 2: Randomly assign k records to be the initial cluster center locations. For
this example, we assign the cluster centers to be m1 = (1,1) and m2 = (2,1).

� Step 3 (first pass): For each record, find the nearest cluster center. Table 8.2
contains the (rounded) Euclidean distances between each point and each cluster
center m1 = (1,1) and m2 = (2,1), along with an indication of which cluster
center the point is nearest to. Therefore, cluster 1 contains points {a,e,g}, and
cluster 2 contains points {b,c,d,f,h}. Once cluster membership is assigned, the
sum of squared errors may be found:

SSE =
k∑

i=1

∑
p∈Ci

d(p,mi)
2

= 22 + 2.242 + 2.832 + 3.612 + 12 + 2.242 + 02 + 02 = 36

As remarked earlier, we would like our clustering methodology to maximize
the between-cluster variation with respect to the within-cluster variation. Using
d(m1,m2) as a surrogate for BCV and SSE as a surrogate for WCV, we have:

BCV

WCV
= d(m1,m2)

SSE
= 1

36
= 0.0278

We expect this ratio to increase with successive passes.
� Step 4 (first pass): For each of the k clusters find the cluster centroid and

update the location of each cluster center to the new value of the centroid. The

5

4

3

2

1

0
0 2 3 4 5 61

Figure 8.4 How will k-means partition this data into k = 2 clusters?
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TABLE 8.2 Finding the Nearest Cluster Center for Each Record (First Pass)

Point Distance from m1 Distance from m2 Cluster Membership

a 2.00 2.24 C1

b 2.83 2.24 C2

c 3.61 2.83 C2

d 4.47 3.61 C2

e 1.00 1.41 C1

f 3.16 2.24 C2

g 0.00 1.00 C1

h 1.00 0.00 C2

centroid for cluster 1 is [(1 + 1 + 1) /3, (3 + 2 + 1) /3] = (1,2). The centroid
for cluster 2 is [(3 + 4 + 5 + 4 + 2) /5, (3 + 3 + 3 + 2 + 1) /5] = (3.6, 2.4).
The clusters and centroids (triangles) at the end of the first pass are shown in
Figure 8.5. Note that m1 has moved up to the center of the three points in cluster
1, while m2 has moved up and to the right a considerable distance, to the center
of the five points in cluster 2.

� Step 5: Repeat steps 3 and 4 until convergence or termination. The centroids
have moved, so we go back to step 3 for our second pass through the algorithm.

� Step 3 (second pass): For each record, find the nearest cluster center. Table 8.3
shows the distances between each point and each updated cluster center m1 =
(1,2) and m2 = (3.6, 2.4), together with the resulting cluster membership. There
has been a shift of a single record (h) from cluster 2 to cluster 1. The relatively
large change in m2 has left record h now closer to m1 than to m2, so that record
h now belongs to cluster 1. All other records remain in the same clusters as
previously. Therefore, cluster 1 is {a,e,g,h}, and cluster 2 is {b,c,d,f}. The new
sum of squared errors is

SSE =
k∑

i=1

∑
p∈Ci

d(p,mi )
2 = 12 + 0.852 + 0.722 + 1.522 + 02 + 0.572 + 12

+1.412 = 7.88

5

4

3

2

1

0
0 1 2 3 4 5 6

Figure 8.5 Clusters and centroids � after first pass through k-means algorithm.
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TABLE 8.3 Finding the Nearest Cluster Center for Each Record (Second Pass)

Point Distance from m1 Distance from m2 Cluster Membership

a 1.00 2.67 C1

b 2.24 0.85 C2

c 3.16 0.72 C2

d 4.12 1.52 C2

e 0.00 2.63 C1

f 3.00 0.57 C2

g 1.00 2.95 C1

h 1.41 2.13 C2

which is much reduced from the previous SSE of 36, indicating a better clus-
tering solution. We also have:

BCV

WCV
= d(m1,m2)

SSE
= 2.63

7.88
= 0.3338

which is larger than the previous 0.0278, indicating that we are increasing the
between-cluster variation with respect to the within-cluster variation.

� Step 4 (second pass): For each of the k clusters, find the cluster cen-
troid and update the location of each cluster center to the new value
of the centroid. The new centroid for cluster 1 is [(1 + 1 + 1 + 2)/4,

(3 + 2 + 1 + 1)/4] = (1.25, 1.75). The new centroid for cluster 2 is
[(3 + 4 + 5 + 4)/4, (3 + 3 + 3 + 2)/4] = (4, 2.75). The clusters and centroids
at the end of the second pass are shown in Figure 8.6. Centroids m1 and m2

have both moved slightly.
� Step 5: Repeat steps 3 and 4 until convergence or termination. Since the cen-

troids have moved, we once again return to step 3 for our third (and as it turns
out, final) pass through the algorithm.

� Step 3 (third pass): For each record, find the nearest cluster center. Table 8.4
shows the distances between each point and each newly updated cluster cen-
ter m1 = (1.25, 1.75) and m2 = (4, 2.75), together with the resulting cluster
membership. Note that no records have shifted cluster membership from the

5

4

3

2

1

0
0 1 2 3 4 5 6

Figure 8.6 Clusters and centroids � after second pass through k-means algorithm.
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TABLE 8.4 Finding the Nearest Cluster Center for Each Record (Third Pass)

Point Distance from m1 Distance from m2 Cluster Membership

a 1.27 3.01 C1

b 2.15 1.03 C2

c 3.02 0.25 C2

d 3.95 1.03 C2

e 0.35 3.09 C1

f 2.76 0.75 C2

g 0.79 3.47 C1

h 1.06 2.66 C2

preceding pass. The new sum of squared errors is

SSE =
k∑

i=1

∑
p ∈ Ci

d(p,mi )
2 = 1.272 + 1.032 + 0.252 + 1.032 + 0.352 + 0.752

+0.792 + 1.062 = 6.25

which is slightly smaller than the previous SSE of 7.88 and indicates that we
have our best clustering solution yet. We also have:

BCV

WCV
= d(m1,m2)

SSE
= 2.93

6.25
= 0.4688

which is larger than the previous 0.3338, indicating that we have again increased
the between-cluster variation with respect to the within-cluster variation. To do
so is the goal of every clustering algorithm, in order to produce well-defined
clusters such that the similarity within the cluster is high while the similarity
to records in other clusters is low.

� Step 4 (third pass): For each of the k clusters, find the cluster centroid and
update the location of each cluster center to the new value of the centroid. Since
no records have shifted cluster membership, the cluster centroids therefore also
remain unchanged.

� Step 5: Repeat steps 3 and 4 until convergence or termination. Since the cen-
troids remain unchanged, the algorithm terminates.

Note that the k-means algorithm cannot guarantee finding the the global min-
imum SSE, instead often settling at a local minimum. To improve the probability of
achieving a global minimum, the analyst should rerun the algorithm using a variety
of initial cluster centers. Moore[2] suggests (1) placing the first cluster center on a
random data point, and (2) placing the subsequent cluster centers on points as far
away from previous centers as possible.

One potential problem for applying the k-means algorithm is: Who decides
how many clusters to search for? That is, who decides k? Unless the analyst has a
priori knowledge of the number of underlying clusters, therefore, an “outer loop”
should be added to the algorithm, which cycles through various promising values of
k. Clustering solutions for each value of k can therefore be compared, with the value
of k resulting in the smallest SSE being selected.
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What if some attributes are more relevant than others to the problem formula-
tion? Since cluster membership is determined by distance, we may apply the same
axis-stretching methods for quantifying attribute relevance that we discussed in Chap-
ter 5. In Chapter 9 we examine another common clustering method, Kohonen net-
works, which are related to artificial neural networks in structure.

APPLICATION OF k-MEANS CLUSTERING USING
SAS ENTERPRISE MINER

Next, we turn to the powerful SAS Enterpriser Miner[3] software for an application
of the k-means algorithm on the churn data set from Chapter 3 (available at the book
series Web site; also available from http://www.sgi.com/tech/mlc/db/). Recall
that the data set contains 20 variables’ worth of information about 3333 customers,
along with an indication of whether or not that customer churned (left the company).

The following variables were passed to the Enterprise Miner clustering node:

� Flag (0/1) variables

◦ International Plan and VoiceMail Plan
� Numerical variables

◦ Account length, voice mail messages, day minutes, evening minutes, night
minutes, international minutes, and customer service calls,

◦ After applying min–max normalization to all numerical variables.

The Enterprise Miner clustering node uses SAS’s FASTCLUS procedure, a
version of the k-means algorithm. The number of clusters was set to k = 3. The
three clusters uncovered by the algorithm varied greatly in size, with tiny cluster 1
containing 92 records, large cluster 2 containing 2411 records, and medium-sized
cluster 3 containing 830 records.

Some basic cluster profiling will help us to learn about the types of records
falling into each cluster. Figure 8.7 provides a look at the clustering results window of
Enterprise Miner, containing a pie chart profile of the International Plan membership
across the three clusters. All members of cluster 1, a fraction of the members of
cluster 2, and no members of cluster 3 have adopted the International Plan. Note that
the left most pie chart represents all records, and is similar to cluster 2.

Next, Figure 8.8 illustrates the proportion of VoiceMail Plan adopters in each
cluster. (Note the confusing color reversal for yes/no responses.) Remarkably, clus-
ters 1 and 3 contain only VoiceMail Plan adopters, while cluster 2 contains only
non-adopters of the plan. In other words, this field was used by the k-means al-
gorithm to create a “perfect” discrimination, dividing the data set perfectly among
adopters and nonadopters of the International Plan.

It is clear from these results that the algorithm is relying heavily on the categori-
cal variables to form clusters. The comparison of the means of the numerical variables
across the clusters in Table 8.5, shows relatively little variation, indicating that the
clusters are similar across these dimensions. Figure 8.9, for example, illustrates that
the distribution of customer service calls (normalized) is relatively similar in each
cluster. If the analyst is not comfortable with this domination of the clustering by the
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Figure 8.7 Enterprise Miner profile of International Plan adopters across clusters.

Figure 8.8 VoiceMail Plan adopters and nonadopters are mutually exclusive.

TABLE 8.5 Comparison of Variable Means Across Clusters Shows Little Variation

Cluster Freq. AcctLength m VMailMessage DayMins mm

1 92 0.4340639598 0.5826939471 0.5360015616

2 2411 0.4131940041 0 0.5126334451

3 830 0.4120730857 0.5731159934 0.5093940185

Cluster EveMins mm NightMins mm IntMins mm CustServCalls

1 0.5669029659 0.4764366069 0.5467934783 0.1630434783

2 0.5507417372 0.4773586813 0.5119784322 0.1752615328

3 0.5564095259 0.4795138596 0.5076626506 0.1701472557
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Figure 8.9 Distribution of customer service calls is similar across clusters.

categorical variables, he or she can choose to stretch or shrink the appropriate axes,
as mentioned earlier, which will help to adjust the clustering algorithm to a more
suitable solution.

The clusters may therefore be summarized, using only the categorical variables,
as follows:

� Cluster 1: Sophisticated Users. A small group of customers who have adopted
both the International Plan and the VoiceMail Plan.

� Cluster 2: The Average Majority. The largest segment of the customer base,
some of whom have adopted the VoiceMail Plan but none of whom have adopted
the International Plan.

� Cluster 3: Voice Mail Users. A medium-sized group of customers who have all
adopted the VoiceMail Plan but not the International Plan.

Figure 8.10 Churn behavior across clusters for International Plan adopters and nonadopters.
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Figure 8.11 Churn behavior across clusters for VoiceMail Plan adopters and nonadopters.

A more detailed clustering profile, including both categorical and numerical
variables, is given in Chapter 9.

Using Cluster Membership to Predict Churn

Suppose, however, that we would like to apply these clusters to assist us in the churn
classification task. We may compare the proportions of churners directly among
the various clusters, using graphs such as Figure 8.10. Here we see that overall (the
leftmost column of pie charts), the proportion of churners is much higher among those
who have adopted the International Plan than among those who have not. This finding
was uncovered in Chapter 3. Note that the churn proportion is higher in cluster 1,
which contains International Plan adopters, than in cluster 2, which contains a mixture
of adopters and nonadopters, and higher still than cluster 3, which contains no such
adopters of the International Plan. Clearly, the company should look at the plan to see
why the customers who have it are leaving the company at a higher rate.

Now, since we know from Chapter 3 that the proportion of churners is lower
among adopters of the VoiceMail Plan, we would expect that the churn rate for cluster 3
would be lower than for the other clusters. This expectation is confirmed in Figure 8.11.

In Chapter 9 we explore using cluster membership as input to downstream data
mining models.
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EXERCISES
1. To which cluster for the 90210 zip code would you prefer to belong?

2. Describe the goal of all clustering methods.

3. Suppose that we have the following data (one variable). Use single linkage to identify the
clusters. Data: 0 0 1 3 3 6 7 9 10 10

4. Suppose that we have the following data (one variable). Use complete linkage to identify
the clusters. Data: 0 0 1 3 3 6 7 9 10 10

5. What is an intuitive idea for the meaning of the centroid of a cluster?

6. Suppose that we have the following data:

a b c d e f g h i j
(2,0) (1,2) (2,2) (3,2) (2,3) (3,3) (2,4) (3,4) (4,4) (3,5)

Identify the cluster by applying the k-means algorithm, with k = 2. Try using initial cluster
centers as far apart as possible.

7. Refer to Exercise 6. Show that the ratio of the between-cluster variation to the within-
cluster variation decreases with each pass of the algorithm.

8. Once again identify the clusters in Exercise 6 data, this time by applying the k-means
algorithm, with k = 3. Try using initial cluster centers as far apart as possible.

9. Refer to Exercise 8. Show that the ratio of the between-cluster variation to the within-
cluster variation decreases with each pass of the algorithm.

10. Which clustering solution do you think is preferable? Why?

Hands-on Analysis
Use the cereals data set, included at the book series Web site, for the following
exercises. Make sure that the data are normalized.

11. Using all of the variables except name and rating, run the k-means algorithm with k= 5 to
identify clusters within the data.

12. Develop clustering profiles that clearly describe the characteristics of the cereals within
the cluster.

13. Rerun the k-means algorithm withk = 3.

14. Which clustering solution do you prefer, and why?

15. Develop clustering profiles that clearly describe the characteristics of the cereals within
the cluster.

16. Use cluster membership to predict rating. One way to do this would be to construct a
histogram of rating based on cluster membership alone. Describe how the relationship
you uncovered makes sense, based on your earlier profiles.
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CHAPTER 9
KOHONEN NETWORKS

SELF-ORGANIZING MAPS

KOHONEN NETWORKS

EXAMPLE OF A KOHONEN NETWORK STUDY

CLUSTER VALIDITY

APPLICATION OF CLUSTERING USING KOHONEN NETWORKS

USING CLUSTER MEMBERSHIP AS INPUT TO DOWNSTREAM DATA
MINING MODELS

SELF-ORGANIZING MAPS

Kohonen networks were introduced in 1982 by Finnish researcher Tuevo Kohonen [1].
Although applied initially to image and sound analysis, Kohonen networks are never-
theless an effective mechanism for clustering analysis. Kohonen networks represent
a type of self-organizing map (SOM), which itself represents a special class of neural
networks, which we studied in Chapter 7.

The goal of self-organizing maps is to convert a complex high-dimensional
input signal into a simpler low-dimensional discrete map [2]. Thus, SOMs are nicely
appropriate for cluster analysis, where underlying hidden patterns among records
and fields are sought. SOMs structure the output nodes into clusters of nodes, where
nodes in closer proximity are more similar to each other than to other nodes that are
farther apart. Ritter [3] has shown that SOMs represent a nonlinear generalization of
principal components analysis, another dimension-reduction technique.

Self-organizing maps are based on competitive learning, where the output nodes
compete among themselves to be the winning node (or neuron), the only node to be
activated by a particular input observation. As Haykin [2] describes it: “The neurons
become selectively tuned to various input patterns (stimuli) or classes of input patterns
in the course of a competitive learning process.” A typical SOM architecture is shown
in Figure 9.1. The input layer is shown at the bottom of the figure, with one input
node for each field. Just as with neural networks, these input nodes do no processing
themselves but simply pass the field input values along downstream.

Discovering Knowledge in Data: An Introduction to Data Mining, By Daniel T. Larose
ISBN 0-471-66657-2 Copyright C© 2005 John Wiley & Sons, Inc.
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Output Layer

Input Layer

Connections with Weights

Age
Income

Figure 9.1 Topology of a simple self-organizing map for clustering records by age and
income.

Like neural networks, SOMs are feedforward and completely connected. Feed-
forward networks do not allow looping or cycling. Completely connected means that
every node in a given layer is connected to every node in the next layer, although
not to other nodes in the same layer. Like neural networks, each connection between
nodes has a weight associated with it, which at initialization is assigned randomly to a
value between zero and 1. Adjusting these weights represents the key for the learning
mechanism in both neural networks and self-organizing maps. Variable values need
to be normalized or standardized, just as for neural networks, so that certain variables
do not overwhelm others in the learning algorithm.

Unlike most neural networks, however, SOMs have no hidden layer. The data
from the input layer is passed along directly to the output layer. The output layer is
represented in the form of a lattice, usually in one or two dimensions, and typically
in the shape of a rectangle, although other shapes, such as hexagons, may be used.
The output layer shown in Figure 9.1 is a 3 × 3 square.

For a given record (instance), a particular field value is forwarded from a par-
ticular input node to every node in the output layer. For example, suppose that the
normalized age and income values for the first record in the data set are 0.69 and 0.88,
respectively. The 0.69 value would enter the SOM through the input node associated
with age, and this node would pass this value of 0.69 to every node in the output
layer. Similarly, the 0.88 value would be distributed through the income input node
to every node in the output layer. These values, together with the weights assigned to
each of the connections, would determine the values of a scoring function (such as
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Euclidean distance) for each output node. The output node with the “best” outcome
from the scoring function would then be designated as the winning node.

Self-organizing maps exhibit three characteristic processes:

1. Competition. As mentioned above, the output nodes compete with each other
to produce the best value for a particular scoring function, most commonly the
Euclidean distance. In this case, the output node that has the smallest Euclidean
distance between the field inputs and the connection weights would be declared
the winner. Later, we examine in detail an example of how this works.

2. Cooperation. The winning node therefore becomes the center of a neighborhood
of excited neurons. This emulates the behavior of human neurons, which are
sensitive to the output of other neurons in their immediate neighborhood. In self-
organizing maps, all the nodes in this neighborhood share in the “excitement” or
“reward” earned by the winning nodes, that of adaptation. Thus, even though
the nodes in the output layer are not connected directly, they tend to share
common features, due to this neighborliness parameter.

3. Adaptation. The nodes in the neighborhood of the winning node participate in
adaptation, that is, learning. The weights of these nodes are adjusted so as to
further improve the score function. In other words, these nodes will thereby
have an increased chance of winning the competition once again, for a similar
set of field values.

KOHONEN NETWORKS

Kohonen networks are self-organizing maps that exhibit Kohonen learning. Suppose
that we consider the set of m field values for the nth record to be an input vector xn =
xn1, xn2, . . . , xnm , and the current set of m weights for a particular output node j to
be a weight vector w j = w1 j , w2 j , . . . , wmj . In Kohonen learning, the nodes in the
neighborhood of the winning node adjust their weights using a linear combination of
the input vector and the current weight vector:

wi j,new = wi j,current + �(xni − wi j,current) (9.1)

where �, 0 < � < 1, represents the learning rate, analogous to the neural networks
case. Kohonen [4] indicates the learning rate should be a decreasing function of train-
ing epochs (runs through the data set) and that a linearly or geometrically decreasing
� is satisfactory for most purposes.

The algorithm for Kohonen networks (after Fausett [5]) is shown in the ac-
componying box. At initialization, the weights are randomly assigned, unless firm
a priori knowledge exists regarding the proper value for the weight vectors. Also at
initialization, the learning rate � and neighborhood size R are assigned. The value of
R may start out moderately large but should decrease as the algorithm progresses.
Note that nodes that do not attract a sufficient number of hits may be pruned, thereby
improving algorithm efficiency.
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KOHONEN NETWORKS ALGORITHM

For each input vector x, do:

� Competition. For each output node j, calculate the value D(w j ,xn) of the scoring

function. For example, for Euclidean distance, D(w j ,xn) =
√∑

i
(wi j − xni )2. Find

the winning node J that minimizes D(w j ,xn) over all output nodes.
� Cooperation. Identify all output nodes j within the neighborhood of J defined by the

neighborhood size R. For these nodes, do the following for all input record fields:
◦ Adaptation. Adjust the weights:

wi j,new = wi j,current + �(xni − wi j,current)

� Adjust the learning rate and neighborhood size, as needed.
� Stop when the termination criteria are met.

EXAMPLE OF A KOHONEN NETWORK STUDY

Consider the following simple example. Suppose that we have a data set with two
attributes, age and income, which have already been normalized, and suppose that we
would like to use a 2 × 2 Kohonen network to uncover hidden clusters in the data set.
We would thus have the topology shown in Figure 9.2.

A set of four records is ready to be input, with a thumbnail description of each
record provided. With such a small network, we set the neighborhood size to be
R = 0, so that only the winning node will be awarded the opportunity to adjust its
weight. Also, we set the learning rate � to be 0.5. Finally, assume that the weights
have been randomly initialized as follows:

w11 = 0.9 w21 = 0.8 w12 = 0.9 w22 = 0.2

w13 = 0.1 w23 = 0.8 w14 = 0.1 w24 = 0.2

For the first input vector, x1 = (0.8, 0.8), we perform the following competition,
cooperation, and adaptation sequence.

� Competition. We compute the Euclidean distance between this input vector and
the weight vectors for each of the four output nodes:

Node 1: D(w1,x1) =
√∑

i
(wi1 − x1i )2 =

√
(0.9 − 0.8)2 + (0.8 − 0.8)2

= 0.1

Node 2: D(w2,x1) =
√

(0.9 − 0.8)2 + (0.2 − 0.8)2 = 0.61

Node 3: D(w3,x1) =
√

(0.1 − 0.8)2 + (0.8 − 0.8)2 = 0.70

Node 4: D(w4,x1) =
√

(0.1 − 0.8)2 + (0.2 − 0.8)2 = 0.92

The winning node for this first input record is therefore node 1, since it mini-
mizes the score function D, the Euclidean distance between the input vector for this
record, and the vector of weights, over all nodes.
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Node 1 Node 3

Node 4Node 2

Output Layer

Input Layer

IncomeAge

W21W11

W12

W14

W22
W24

W13 W23

1 x11 = 0.8 x12 = 0.8 Older person with high income
2 x21 = 0.8 x22 = 0.1 Older person with low income
3 x31 = 0.2 x32 = 0.9 Younger person with high income
4 x41 = 0.1 x42 = 0.1 Younger person with low income

Figure 9.2 Example: topology of the 2 × 2 Kohonen network.

Note why node 1 won the competition for the first record, (0.8, 0.8). Node 1
won because its weights (0.9, 0.8) are more similar to the field values for this record
than are the other nodes’ weights. For this reason, we may expect node 1 to exhibit
an affinity for records of older persons with high-income. In other words, we may
expect node 1 to uncover a cluster of older, high-income persons.

� Cooperation. In this simple example we have set the neighborhood size R = 0
so that the level of cooperation among output nodes is nil! Therefore, only the
winning node, node 1, will be rewarded with a weight adjustment. (We omit
this step in the remainder of the example.)

� Adaptation. For the winning node, node 1, the weights are adjusted as follows:

wi j,new = wi j,current + �(xni − wi j,current)

For j = 1 (node 1), n = 1 (the first record) and learning rate � = 0.5, this
becomes wi1,new = wi1,current + 0.5(x1i − wi1,current) for each field:

For age: w11,new = w11,current + 0.5(x11 − w11,current)

= 0.9 + 0.5(0.8 − 0.9) = 0.85

For income: w21,new = w21,current + 0.5(x12 − w21,current)

= 0.8 + 0.5(0.8 − 0.8) = 0.8
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Note the type of adjustment that takes place. The weights are nudged in the
direction of the fields’ values of the input record. That is, w11, the weight on the age
connection for the winning node, was originally 0.9, but was adjusted in the direction
of the normalized value for age in the first record, 0.8. Since the learning rate � = 0.5,
this adjustment is half (0.5) of the distance between the current weight and the field
value. This adjustment will help node 1 to become even more proficient at capturing
the records of older, high-income persons.

Next, for the second input vector, x2 = (0.8, 0.1), we have the following se-
quence.

� Competition

Node 1: D(w1,x2) =
√∑

i
(wi1 − x2i )2 =

√
(0.9 − 0.8)2 + (0.8 − 0.1)2

= 0.71

Node 2: D(w2,x2) =
√

(0.9 − 0.8)2 + (0.2 − 0.1)2 = 0.14

Node 3: D(w3,x2) =
√

(0.1 − 0.8)2 + (0.8 − 0.1)2 = 0.99

Node 4: D(w4,x2) =
√

(0.1 − 0.8)2 + (0.2 − 0.1)2 = 0.71

Winning node: node 2. Note that node 2 won the competition for the second
record, (0.8, 0.1), because its weights (0.9, 0.2) are more similar to the field values for
this record than are the other nodes’ weights. Thus, we may expect node 2 to “collect”
records of older persons with low income. That is, node 2 will represent a cluster of
older, low-income persons.

� Adaptation. For the winning node, node 2, the weights are adjusted as follows:
For j = 2 (node 2), n = 2 (the first record) and learning rate � = 0.5, we have
wi2,new = wi2,current + 0.5(x2i − wi2,current) for each field:

For age: w12,new = w12,current + 0.5(x21 − w12,current)

= 0.9 + 0.5(0.8 − 0.9) = 0.85

For income: w22,new = w22,current + 0.5(x22 − w22,current)

= 0.2 + 0.5(0.1 − 0.2) = 0.15

Again, the weights are updated in the direction of the field values of the input
record. Weight w12 undergoes the same adjustment w11 above, since the current
weights and age field values were the same. Weight w22 for income is adjusted
downward, since the income level of the second record was lower than the current
income weight for the winning node. Because of this adjustment, node 2 will be even
better at catching records of older, low-income persons.

Next, for the third input vector, x3 = (0.2, 0.9), we have the following sequence.

� Competition

Node 1: D(w1,x3) =
√∑

i
(wi1 − x3i )2 =

√
(0.9 − 0.2)2 + (0.8 − 0.9)2

= 0.71

Node 2: D(w2,x3) =
√

(0.9 − 0.2)2 + (0.2 − 0.9)2 = 0.99
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Node 3: D(w3,x3) =
√

(0.1 − 0.2)2 + (0.8 − 0.9)2 = 0.14

Node 4: D(w4,x3) =
√

(0.1 − 0.2)2 + (0.2 − 0.9)2 = 0.71

The winning node is node 3 because its weights (0.1, 0.8) are the closest to
the third record’s field values. Hence, we may expect node 3 to represent a cluster of
younger, high-income persons.

� Adaptation. For the winning node, node 3, the weights are adjusted as follows:
wi3,new = wi3,current + 0.5(x3i − wi3,current), for each field:

For age: w13,new = w13,current + 0.5(x31 − w13,current)

= 0.1 + 0.5(0.2 − 0.1) = 0.15

For income: w23,new = w23,current + 0.5(x32 − w23,current)

= 0.8 + 0.5(0.9 − 0.8) = 0.85

Finally, for the fourth input vector, x4 = (0.1, 0.1), we have the following
sequence.

� Competition

Node 1: D(w1,x4) =
√∑

i
(wi4 − x4i )2 =

√
(0.9 − 0.1)2 + (0.8 − 0.1)2

= 1.06

Node 2: D(w2,x4) =
√

(0.9 − 0.1)2 + (0.2 − 0.1)2 = 0.81

Node 3: D(w3,x4) =
√

(0.1 − 0.1)2 + (0.8 − 0.1)2 = 0.70

Node 4: D(w4,x4) =
√

(0.1 − 0.1)2 + (0.2 − 0.1)2 = 0.10

The winning node is node 4 because its weights (0.1, 0.2) have the smallest Euclidean
distance to the fourth record’s field values. We may therefore expect node 4 to represent
a cluster of younger, low-income persons.

� Adaptation. For the winning node, node 4, the weights are adjusted as follows:
wi4,new = wi4,current + 0.5(x4i − wi4,current), for each field:

For age: w14,new = w14,current + 0.5(x41 − w14,current)

= 0.1 + 0.5(0.1 − 0.1) = 0.10

For income: w24,new = w24,current + 0.5(x42 − w24,current)

= 0.2 + 0.5(0.1 − 0.2) = 0.15

Thus, we have seen that the four output nodes will represent four distinct clusters
if the network continues to be fed data similar to the four records shown in Figure
9.2. These clusters are summarized in Table 9.1.

Clearly, the clusters uncovered by the Kohonen network in this simple example
are fairly obvious. However, this example does serve to illustrate how the network
operates at a basic level, using competition and Kohonen learning.
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TABLE 9.1 Four Clusters Uncovered by Kohonen Network

Cluster Associated with: Description

1 Node 1 Older person with high income

2 Node 2 Older person with low income

3 Node 3 Younger person with high income

4 Node 4 Younger person with low income

CLUSTER VALIDITY

To avoid spurious results, and to assure that the resulting clusters are reflective of
the general population, the clustering solution should be validated. One common
validation method is to split the original sample randomly into two groups, develop
cluster solutions for each group, and then compare their profiles using the methods
below or other summarization methods.

Now, suppose that a researcher is interested in performing further inference,
prediction, or other analysis downstream on a particular field, and wishes to use the
clusters as predictors. Then, it is important that the researcher not include the field
of interest as one of the fields used to build the clusters. For example, in the example
below, clusters are constructed using the churn data set. We would like to use these
clusters as predictors for later assistance in classifying customers as churners or not.
Therefore, we must be careful not to include the churn field among the variables used
to build the clusters.

APPLICATION OF CLUSTERING USING
KOHONEN NETWORKS

Next, we apply the Kohonen network algorithm to the churn data set from Chapter
3 (available at the book series Web site; also available from http://www.sgi.com/

tech/mlc/db/). Recall that the data set contains 20 variables worth of information
about 3333 customers, along with an indication of whether that customer churned (left
the company) or not. The following variables were passed to the Kohonen network
algorithm, using Clementine:

� Flag (0/1) variables

◦ International Plan and VoiceMail Plan
� Numerical variables

◦ Account length, voice mail messages, day minutes, evening minutes, night
minutes, international minutes, and customer service calls

◦ After applying min–max normalization to all numerical variables

The topology of the network was as in Figure 9.3, with every node in the
input layer being connected with weights (not shown) to every node in the output
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02

01 11 21

00 10 20

12 22

Output Layer

Input Layer

VMPlan IntPlan AcctLen VMMess DayMin EveMin NiteMin IntMin CSC

Figure 9.3 Topology of 3 × 3 Kohonen network used for clustering the churn data set.

layer, which are labeled in accordance with their use in the Clementine results. The
Kohonen learning parameters were set in Clementine as follows. For the first 20 cycles
(passes through the data set), the neighborhood size was set at R = 2, and the learning
rate was set to decay linearly starting at � = 0.3. Then, for the next 150 cycles, the
neighborhood size was reset to R = 1 while the learning rate was allowed to decay
linearly from � = 0.3 to at � = 0.

As it turned out, the Clementine Kohonen algorithm used only six of the nine
available output nodes, as shown in Figure 9.4, with output nodes 01, 11, and 21 being
pruned. [Note that each of the six clusters is actually of constant value in this plot,
such as (0,0), (1,2), and so on. A random shock (x, y agitation, artificial noise) was
introduced to illustrate the size of the cluster membership.]

Interpreting the Clusters

How are we to interpret these clusters? How can we develop cluster profiles? Con-
sider Figure 9.5, which is a bar chart of the clusters, with a VoiceMail Plan overlay.
Clusters 02 and 12 contain records only if they are adopters of the VoiceMail Plan,
while clusters 00, 10, and 20 contain records if and only if they have not adopted
the VoiceMail Plan. Cluster 22 contains only a tiny portion of voicemail adopters.
Excepting this small proportion of records in cluster 22, the clustering algorithm has
found a high-quality discrimination along this dimension, dividing the data set nearly
perfectly among adopters and nonadopters of the VoiceMail Plan.

Figure 9.5 also indicates to us the relative sizes of the various clusters. Clusters
smaller than a certain threshold size may not be considered significant, with the
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Figure 9.4 Clementine uncovered six clusters.

threshold varying according to the size of the data set, the area of application, and the
task at hand. Here, cluster 12 contains only 77 records, representing a rather small
2.31% of the data set. However, as we mentioned, it is nicely discriminating with
respect to the VoiceMail Plan. The distribution graph loses the geographic mapping
information present in the original cluster plot in Figure 9.4. Recall that because of the
neighborliness parameter, clusters that are closer together should be more similar than
clusters than are farther apart. Consider the original plot, this time with an overlay of
membership in the VoiceMail Plan, as in Figure 9.6. This plot clearly illustrates the
contiguity of the two clusters, containing only customers who belong to the VoiceMail
Plan, and which therefore makes these clusters more similar. Cluster 22 in the upper
right also contains a few of these customers, but none of the clusters along the bottom
row contain any customers who adopted the VoiceMail Plan.

Figure 9.5 Clusters 02 and 12 contain only adopters of the VoiceMail Plan.
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Figure 9.6 Similar clusters are closer to each other.

Next, consider Figure 9.7, which is a distribution plot of the clusters, with an
International Plan overlay. Clusters 12 and 22 contain records if and only if they are
adopters of the international plan, while the other clusters contain records if and only
if they have not adopted the international plan. This time, the clustering algorithm
has found another “perfect” discrimination along this dimension, dividing the data
set perfectly among adopters and nonadopters of the International Plan.

We see that cluster 12 represents a special subset of customers, those who have
adopted both the International Plan and the VoiceMail Plan. This is a well-defined
subset of the customer base, which perhaps explains why the Kohonen network un-
covered it, even though this subset represents only 2.31% of the customers. Figure 9.8

Figure 9.7 Clusters 12 and 22 contain only adopters of the International Plan.
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Figure 9.8 Plot of clusters with International Plan overlay.

underscores the contiguity of clusters 12 and 22, due in part to their similarity in the
International Plan dimension.

These findings are supported by the web graph in Figure 9.9, which shows the
connections among the clusters (at bottom), nonadopters of the plans on the upper
left, and adopters of the plans on the upper right. Note that cluster 12 is the only
cluster with connections to both yes nodes, that cluster 02 shows a connection to the

no
no

00 10 20 02 12 22

ClusterVMail PlanIntl Plan

yes

yes

Figure 9.9 Web graph of relationship between clusters and plans.
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TABLE 9.2 Cluster Mean Values for Numerical Variables

Account VMail Day Eve Night Intl Cust
Cluster Length Message Mins Mins Mins Mins Serv Records

00 62.329 0.000 189.256 200.249 209.246 10.203 1.467 852

02 100.722 29.229 178.695 202.366 201.483 10.153 1.531 830

10 101.240 0.000 179.208 202.060 199.434 10.379 1.627 520

12 107.120 31.229 188.781 208.319 203.990 10.919 1.494 83

20 140.948 0.000 167.969 198.451 194.123 10.113 1.694 808

22 103.017 0.529 187.713 202.421 193.789 10.528 1.454 240

yes node for the VoiceMail Plan, and that cluster 22 shows a connection to the yes
node for the International Plan.

In general, not all clusters are guaranteed to offer obvious interpretability. The
data analyst should team up with a domain expert to discuss the relevance and appli-
cability of the clusters uncovered using Kohonen or other methods. Here, however,
most of the clusters appear fairly clear-cut and self-explanatory. To complete the pro-
file of our clusters, we consider the cluster mean values for the numerical variables,
as shown in Table 9.2.

Cluster Profiles
� Cluster 00: Newbie Heavy Users. Belonging to neither the VoiceMail Plan nor

the International Plan, customers in large cluster 00 represent the company’s
newest customers, on average, with easily the shortest mean account length.
These customers set the pace with the highest mean day minutes and night
minutes usage.

� Cluster 02: Voice Mail Users. This large cluster contains members of the Voice-
Mail Plan, with therefore a high mean number of VoiceMail messages, and no
members of the International Plan. Otherwise, the cluster tends toward the
middle of the pack for the other variables.

� Cluster 10: Average Customers. Customers in this medium-sized cluster belong
to neither the VoiceMail Plan nor the International Plan. Except for the second-
largest mean number of calls to customer service, this cluster otherwise tends
toward the average values for the other variables.

� Cluster 12: Power Customers. This smallest cluster contains customers
who belong to both the VoiceMail Plan and the International Plan. These
sophisticated customers also lead the pack in usage minutes across two cate-
gories and are in second place in the other two categories. The company should
keep a watchful eye on this cluster, as they may represent a highly profitable
group.

� Cluster 20: Loyal Low-Usage Customers. Belonging to neither the VoiceMail
Plan nor the International Plan, customers in large cluster 20 have nevertheless
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been with the company the longest, with by far the largest mean account length,
which may be related to the largest number of calls to customer service. This
cluster exhibits the lowest average minutes usage for day, evening, and inter-
national minutes, and the second lowest night minutes.

� Cluster 22: International Plan Users. This small cluster contains members of
the International Plan and only a few members of the VoiceMail Plan. The
number of calls to customer service is lowest, which may mean that they need a
minimum of hand-holding. Besides the lowest mean night minutes usage, this
cluster tends toward average values for the other variables.

Cluster profiles may of themselves be of actionable benefit to companies and
researchers. They may, for example, suggest marketing segmentation strategies in an
era of shrinking budgets. Rather than targeting the entire customer base for a mass
mailing, for example, perhaps only the most profitable customers may be targeted.
Another strategy is to identify those customers whose potential loss would be of
greater harm to the company, such as the customers in cluster 12 above. Finally,
customer clusters could be identified that exhibit behavior predictive of churning;
intervention with these customers could save them for the company.

Suppose, however, that we would like to apply these clusters to assist us in the
churn classification task. We may compare the proportions of churners among the
various clusters, using graphs such as Figure 9.10.

From the figure we can see that customers in clusters 12 (power customers)
and 22 (International Plan users) are in greatest danger of leaving the company, as
shown by their higher overall churn proportions. Cluster 02 (VoiceMail Plan users)
has the lowest churn rate. The company should take a serious look at its International
Plan to see why customers do not seem to be happy with it. Also, the company should
encourage more customers to adopt its VoiceMail Plan, in order to make switching
companies more inconvenient. These results and recommendations reflect our findings
from Chapter 3, where we initially examined the relationship between churning and
the various fields. Note also that clusters 12 and 22 are neighboring clusters; even

Figure 9.10 Proportions of churners among the clusters.
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though churn was not an input field for cluster formation, the type of customers who
are likely to churn are more similar to each other than to customers not likely to churn.

USING CLUSTER MEMBERSHIP AS INPUT TO
DOWNSTREAM DATA MINING MODELS

Cluster membership may be used to enrich the data set and improve model efficacy.
Indeed, as data repositories continue to grow and the number of fields continues to
increase, clustering has become a common method of dimension reduction.

We will illustrate how cluster membership may be used as input for downstream
data mining models, using the churn data set and the clusters uncovered above. Each
record now has associated with it a cluster membership assigned by the Kohonen
networks algorithm. We shall enrich our data set by adding this cluster membership
field to the input fields used for classifying churn. A CART decision tree model was
run, to classify customers as either churners or nonchurners. The resulting decision
tree output is shown in Figure 9.11.

The root node split is on whether DayMin mm (the min–max normalization
of day minutes) is greater than about 0.75. If so, the second-level split is by cluster,
with cluster 02 split off from the remaining clusters. Note that for high day minutes,
the mode classification is True (churner), but that within this subset, membership in
cluster 02 acts to protect from churn, since the 45 customers with high day minutes
and membership in cluster 02 have a 97.8% probability of not churning. Recall that
cluster 02, which is acting as a brake on churn behavior, represents Voice Mail Users,
who had the lowest churn rate of any cluster.

We turn next to the task of mining association rules in large data sets.

Figure 9.11 Output of CART decision tree for data set enriched by cluster membership.
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EXERCISES
1. Describe some of the similarities between Kohonen networks and the neural networks of

Chapter 7. Describe some of the differences.

2. Describe the three characteristic processes exhibited by self-organizing maps such as
Kohonen networks. What differentiates Kohonen networks from other self-organizing
map models?

3. Using weights and distance, explain clearly why a certain output node will win the com-
petition for the input of a certain record.

4. For larger output layers, what would be the effect of increasing the value of R?

5. Describe what would happen if the learning rate � did not decline?

6. This chapter shows how cluster membership can be used for downstream modeling. Does
this apply to the cluster membership obtained by hierarchical and k-means clustering as
well?

Hands-on Analysis
Use the adult data set at the book series Web site for the following exercises.

7. Apply the Kohonen clustering algorithm to the data set, being careful not to include the
income field. Use a topology that is not too large, such as 3 × 3.

8. Construct a scatter plot (with x/y agitation) of the cluster membership, with an overlay
of income. Discuss your findings.

9. Construct a bar chart of the cluster membership, with an overlay of income. Discuss your
findings. Compare to the scatter plot.

10. Construct a bar chart of the cluster membership, with an overlay of marital status. Discuss
your findings.

11. If your software supports this, construct a web graph of income, marital status, and the
other categorical variables. Fine-tune the web graph so that it conveys good information.

12. Generate numerical summaries for the clusters. For example, generate a cluster mean
summary.
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13. Using the information above and any other information you can bring to bear, construct
detailed and informative cluster profiles, complete with titles.

14. Use cluster membership as a further input to a CART decision tree model for classifying
income. How important is clustering membership in classifying income?

15. Use cluster membership as a further input to a C4.5 decision tree model for classifying
income. How important is clustering membership in classifying income? Compare to the
CART model.
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AFFINITY ANALYSIS AND MARKET BASKET ANALYSIS

SUPPORT, CONFIDENCE, FREQUENT ITEMSETS, AND THE A PRIORI PROPERTY

HOW DOES THE A PRIORI ALGORITHM WORK (PART 1)?
GENERATING FREQUENT ITEMSETS

HOW DOES THE A PRIORI ALGORITHM WORK (PART 2)?
GENERATING ASSOCIATION RULES

EXTENSION FROM FLAG DATA TO GENERAL CATEGORICAL DATA

INFORMATION-THEORETIC APPROACH: GENERALIZED RULE
INDUCTION METHOD

WHEN NOT TO USE ASSOCIATION RULES

DO ASSOCIATION RULES REPRESENT SUPERVISED OR UNSUPERVISED LEARNING?

LOCAL PATTERNS VERSUS GLOBAL MODELS

AFFINITY ANALYSIS AND MARKET BASKET ANALYSIS

Affinity analysis is the study of attributes or characteristics that “go together.” Meth-
ods for affinity analysis, also known as market basket analysis, seek to uncover
associations among these attributes; that is, it seeks to uncover rules for quantifying
the relationship between two or more attributes. Association rules take the form “If
antecedent, then consequent,” along with a measure of the support and confidence as-
sociated with the rule. For example, a particular supermarket may find that of the 1000
customers shopping on a Thursday night, 200 bought diapers, and of the 200 who
bought diapers, 50 bought beer. Thus, the association rule would be: “If buy diapers,
then buy beer,” with a support of 50/1000 = 5% and a confidence of 50/200 = 25%.

Examples of association tasks in business and research include:
� Investigating the proportion of subscribers to your company’s cell phone plan

that respond positively to an offer of a service upgrade
� Examining the proportion of children whose parents read to them who are

themselves good readers

Discovering Knowledge in Data: An Introduction to Data Mining, By Daniel T. Larose
ISBN 0-471-66657-2 Copyright C© 2005 John Wiley & Sons, Inc.
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� Predicting degradation in telecommunications networks
� Finding out which items in a supermarket are purchased together, and which

items are never purchased together
� Determining the proportion of cases in which a new drug will exhibit dangerous

side effects

What types of algorithms can we apply to mine association rules from a par-
ticular data set? The daunting problem that awaits any such algorithm is the curse of
dimensionality: The number of possible association rules grows exponentially in the
number of attributes. Specifically, if there are k attributes, we limit ourselves to binary
attributes, we account only for the positive cases (e.g., buy diapers = yes), there are
on the order of k · 2k−1 possible association rules. Consider that a typical application
for association rules is market basket analysis and that there may be thousands of
binary attributes (buy beer? buy popcorn? buy milk? buy bread? etc.), the search

Sketch C© 2004 by Chantal Larose
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TABLE 10.1 Transactions Made at the Roadside Vegetable Stand

Transaction Items Purchased

1 Broccoli, green peppers, corn
2 Asparagus, squash, corn
3 Corn, tomatoes, beans, squash
4 Green peppers, corn, tomatoes, beans
5 Beans, asparagus, broccoli
6 Squash, asparagus, beans, tomatoes
7 Tomatoes, corn
8 Broccoli, tomatoes, green peppers
9 Squash, asparagus, beans

10 Beans, corn
11 Green peppers, broccoli, beans, squash
12 Asparagus, beans, squash
13 Squash, corn, asparagus, beans
14 Corn, green peppers, tomatoes, beans, broccoli

problem appears at first glance to be utterly hopeless. For example, suppose that a
tiny convenience store has only 100 different items, and a customer could either buy
or not buy any combination of those 100 items. Then there are 100 · 299 � 6.4 ×1031

possible association rules that await your intrepid search algorithm.
The a priori algorithm for mining association rules, however, takes advantage

of structure within the rules themselves to reduce the search problem to a more
manageable size. Before we examine the a priori algorithm, however, let us consider
some basic concepts and notation for association rule mining. We begin with a simple
example.

Suppose that a local farmer has set up a roadside vegetable stand and is offering
the following items for sale: {asparagus, beans, broccoli, corn, green peppers, squash,
tomatoes}. Denote this set of items as I . One by one, customers pull over, pick up
a basket, and purchase various combinations of these items, subsets of I . (For our
purposes, we don’t keep track of how much of each item is purchased, just whether or
not that particular item is purchased.) Suppose Table 10.1 lists the transactions made
during one fine fall afternoon at this roadside vegetable stand.

Data Representation for Market Basket Analysis

There are two principal methods of representing this type of market basket data: using
either the transactional data format or the tabular data format. The transactional data
format requires only two fields, an ID field and a content field, with each record rep-
resenting a single item only. For example, the data in Table 10.1 could be represented
using transactional data format as shown in Table 10.2.

In the tabular data format, each record represents a separate transaction, with as
many 0/1 flag fields as there are items. The data from Table 10.1 could be represented
using the tabular data format, as shown in Table 10.3.
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TABLE 10.2 Transactional Data Format for the
Roadside Vegetable Stand Data

Transaction ID Items

1 Broccoli

1 Green peppers

1 Corn

2 Asparagus

2 Squash

2 Corn

3 Corn

3 Tomatoes
...

...

SUPPORT, CONFIDENCE, FREQUENT ITEMSETS,
AND THE A PRIORI PROPERTY

Let D be the set of transactions represented in Table 10.1, where each transaction T
in D represents a set of items contained in I . Suppose that we have a particular set of
items A (e.g., beans and squash), and another set of items B (e.g., asparagus). Then
an association rule takes the form if A, then B (i.e., A ⇒ B), where the antecedent A
and the consequent B are proper subsets of I , and A and B are mutually exclusive.
This definition would exclude, for example, trivial rules such as if beans and squash,
then beans.

TABLE 10.3 Tabular Data Format for the Roadside Vegetable Stand Data

Transaction Asparagus Beans Broccoli Corn Green Peppers Squash Tomatoes

1 0 0 1 1 1 0 0

2 1 0 0 1 0 1 0

3 0 1 0 1 0 1 1

4 0 1 0 1 1 0 1

5 1 1 1 0 0 0 0

6 1 1 0 0 0 1 1

7 0 0 0 1 0 0 1

8 0 0 1 0 1 0 1

9 1 1 0 0 0 1 0

10 0 1 0 1 0 0 0

11 0 1 1 0 1 1 0

12 1 1 0 0 0 1 0

13 1 1 0 1 0 1 0

14 0 1 1 1 1 0 1
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The support s for a particular association rule A ⇒ B is the proportion of
transactions in D that contain both A and B. That is,

support = P(A ∩ B) = number of transactions containing both A and B

total number of transactions
.

The confidence c of the association rule A ⇒ B is a measure of the accuracy of the
rule, as determined by the percentage of transactions in D containing A that also
containB. In other words,

confidence = P(B|A) = P(A ∩ B)

P(A)

= number of transactions containing both A and B

number of transactions containing A
.

Analysts may prefer rules that have either high support or high confidence, and
usually both. Strong rules are those that meet or surpass certain minimum support
and confidence criteria. For example, an analyst interested in finding which super-
market items are purchased together may set a minimum support level of 20% and
a minimum confidence level of 70%. On the other hand, a fraud detection analyst
or a terrorism detection analyst would need to reduce the minimum support level
to 1% or less, since comparatively few transactions are either fraudulent or terror-
related.

An itemset is a set of items contained in I , and a k-itemset is an itemset containing
k items. For example, {beans, squash} is a 2-itemset, and {broccoli, green peppers,
corn} is a 3-itemset, each from the vegetable stand set I . The itemset frequency is
simply the number of transactions that contain the particular itemset. A frequent
itemset is an itemset that occurs at least a certain minimum number of times, having
itemset frequency ≥ � . For example, suppose that we set � = 4. Then itemsets that
occur more than four times are said to be frequent. We denote the set of frequent
k-itemsets asFk .

MINING ASSOCIATION RULES

The mining of association rules from large databases is a two-steps process:

1. Find all frequent itemsets; that is, find all itemsets with frequency ≥ �.

2. From the frequent itemsets, generate association rules satisfying the minimum sup-
port and confidence conditions.

The a priori algorithm takes advantage of the a priori property to shrink the
search space. The a priori property states that if an itemset Z is not frequent, then
adding another item A to the itemset Z will not make Z more frequent. That is, if Z is
not frequent, Z ∪ A will not be frequent. In fact, no superset of Z (itemset containing
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Z ) will be frequent. This helpful property reduces significantly the search space for
the a priori algorithm.

A PRIORI PROPERTY

If an itemset Z is not frequent then for any item A, Z ∪ A will not be frequent.

HOW DOES THE A PRIORI ALGORITHM WORK (PART 1)?
GENERATING FREQUENT ITEMSETS

Consider the set of transactions D represented in Table 10.1. How would the a priori
algorithm mine association rules from this data set?

Let � = 4, so that an itemset is frequent if it occurs four or more times in D. We
first find F1, the frequent 1-itemsets, which represent simply the individual vegetable
items themselves. To do so, we may turn to Table 10.3 and take the column sums,
which give us the number of transactions containing each particular vegetable. Since
each sum meets or exceeds � = 4, we conclude that each 1-itemset is frequent. Thus,
F1 = {asparagus, beans, broccoli, corn, green peppers, squash, tomatoes}.

Next, we turn to finding the frequent 2-itemsets. In general, to find Fk , the a
priori algorithm first constructs a set Ck of candidate k-itemsets by joining Fk−1 with
itself. Then it prunes Ck using the a priori property. The itemsets in Ck that survive
the pruning step then form Fk . Here, C2 consists of all the combinations of vegetables
in Table 10.4.

Since � = 4, we have F2 = { {asparagus, beans}, {asparagus, squash}, {beans,
corn}, and {beans, squash}, {beans, tomatoes}, {broccoli, green peppers}, {corn,
tomatoes} }. Next, we use the frequent itemsets in F2 to generate C3, the candidate

TABLE 10.4 Candidate 2-ItemSets

Combination Count Combination Count

Asparagus, beans 5 Broccoli, corn 2
Asparagus, broccoli 1 Broccoli, green peppers 4
Asparagus, corn 2 Broccoli, squash 1
Asparagus, green peppers 0 Broccoli, tomatoes 2
Asparagus, squash 5 Corn, green peppers 3
Asparagus, tomatoes 1 Corn, squash 3
Beans, broccoli 3 Corn, tomatoes 4
Beans, corn 5 Green peppers, squash 1
Beans, green peppers 3 Green peppers, tomatoes 3
Beans, squash 6 Squash, tomatoes 2
Beans, tomatoes 4
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3-itemsets. To do so, we join F2 with itself, where itemsets are joined if they have the
first k −1 items in common (in alphabetical order). For example, {asparagus, beans}
and {asparagus, squash} have the first k − 1 = 1 item in common, asparagus. Thus,
they are joined into the new candidate itemset {asparagus, beans, squash}. Similarly,
{beans, corn} and {beans, squash} have the first item, beans, in common, generating
the candidate 3-itemset {beans, corn, squash}. Finally, candidate 3-itemsets {beans,
corn, tomatoes} and {beans, squash, tomatoes} are generated in like fashion. Thus,
C3 = { {asparagus, beans, squash}, {beans, corn, squash}, {beans, corn, tomatoes},
{beans, squash, tomatoes} }.

C3 is then pruned, using the a priori property. For each itemset s in C3, its size
k − 1 subsets are generated and examined. If any of these subsets are not frequent, s
cannot be frequent and is therefore pruned. For example, let s = {asparagus, beans,
squash}. The subsets of size k − 1 = 2 are generated, as follows: {asparagus, beans},
{asparagus, squash}, and {beans, squash}. From Table 10.4 we see that each of these
subsets is frequent and that therefore s = {asparagus, beans, squash} is not pruned.
The reader will verify that s = {beans, corn, tomatoes} will also not be pruned.

However, consider s = {beans, corn, squash}. The subset {corn, squash} has
frequency 3 < 4 = �, so that {corn, squash} is not frequent. By the a priori property,
therefore, {beans, corn, squash} cannot be frequent, is therefore pruned, and does
not appear in F3. Also consider s = {beans, squash, tomatoes}. The subset {squash,
tomatoes} has frequency 2 < 4 = �, and hence is not frequent. Again, by the a priori
property, its superset {beans, squash, tomatoes} cannot be frequent and is also pruned,
not appearing in F3.

We still need to check the count for these candidate frequent itemsets. The
itemset {asparagus, beans, squash} occurs four times in the transaction list, {beans,
corn, tomatoes} occurs only three times. Therefore, the latter candidate itemset is
also pruned, leaving us with a singleton frequent itemset in F3: {asparagus, beans,
squash}. This completes the task of finding the frequent itemsets for the vegetable
stand data D.

HOW DOES THE A PRIORI ALGORITHM WORK (PART 2)?
GENERATING ASSOCIATION RULES

Next, we turn to the task of generating association rules using the frequent itemsets.
This is accomplished using the following two-step process, for each frequent itemset s:

GENERATING ASSOCIATION RULES

1. First, generate all subsets of s.

2. Then, let ss represent a nonempty subset of s. Consider the association rule R : ss ⇒
(s − ss), where (s − ss) indicates the set s without ss. Generate (and output) R if R
fulfills the minimum confidence requirement. Do so for every subset ss of s. Note
that for simplicity, a single-item consequent is often desired.
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TABLE 10.5 Candidate Association Rules for Vegetable Stand Data: Two Antecedents

If Antecedent, then Consequent Support Confidence

If buy asparagus and beans, then buy squash 4/14 = 28.6% 4/5 = 80%
If buy asparagus and squash, then buy beans 4/14 = 28.6% 4/5 = 80%
If buy beans and squash, then buy asparagus 4/14 = 28.6% 4/6 = 66.7%

For example, let s = {asparagus, beans, squash} from F3. The proper subsets
of s are {asparagus}, {beans}, {squash}, {asparagus, beans}, {asparagus, squash},
{beans, squash}. For the first association rule shown in Table 10.5, we let ss =
{asparagus, beans}, so that (s – ss) = {squash}. We consider the rule R: {asparagus,
beans} ⇒ {squash}. The support is the proportion of transactions in which both
{asparagus, beans} and {squash} occur, which is 4 (or 28.6%) of the 14 total trans-
actions in D. To find the confidence, we note that {asparagus, beans} occurs in five
of the 14 transactions, four of which also contain {squash}, giving us our confidence
of 4/5 = 80%. The statistics for the second rule in Table 10.5 arise similarly. For the
third rule in Table 10.5, the support is still 4/14 = 28.6%, but the confidence falls to
66.7%. This is because {beans, squash} occurs in six transactions, four of which also
contain {asparagus}. Assuming that our minimum confidence criterion is set at 60%
and that we desire a single consequent, we therefore have the candidate rules shown
in Table 10.5. If our minimum confidence were set at 80%, the third rule would not
be reported.

Finally, we turn to single antecedent/single consequent rules. Applying the
association rule generation method outlined in the box above, and using the itemsets
in F2, we may generate the candidate association rules shown in Table 10.6.

To provide an overall measure of usefulness for an association rule, analysts
sometimes multiply the support times the confidence. This allows the analyst to rank

TABLE 10.6 Candidate Association Rules for Vegetable Stand Data: One Antecedent

If Antecedent, then Consequent Support Confidence

If buy asparagus, then buy beans 5/14 = 35.7% 5/6 = 83.3%

If buy beans, then buy asparagus 5/14 = 35.7% 5/10 = 50%

If buy asparagus, then buy squash 5/14 = 35.7% 5/6 = 83.3%

If buy squash, then buy asparagus 5/14 = 35.7% 5/7 = 71.4%

If buy beans, then buy corn 5/14 = 35.7% 5/10 = 50%

If buy corn, then buy beans 5/14 = 35.7% 5/8 = 62.5%

If buy beans, then buy squash 6/14 = 42.9% 6/10 = 60%

If buy squash, then buy beans 6/14 = 42.9% 6/7 = 85.7%

If buy beans, then buy tomatoes 4/14 = 28.6% 4/10 = 40%

If buy tomatoes, then buy beans 4/14 = 28.6% 4/6 = 66.7%

If buy broccoli, then buy green peppers 4/14 = 28.6% 4/5 = 80%

If buy green peppers, then buy broccoli 4/14 = 28.6% 4/5 = 80%

If buy corn, then buy tomatoes 4/14 = 28.6% 4/8 = 50%

If buy tomatoes, then buy corn 4/14 = 28.6% 4/6 = 66.7%
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TABLE 10.7 Final List of Association Rules for Vegetable Stand Data:
Ranked by Support × Confidence, Minimum Confidence 80%

If Antecedent, Support ×
then Consequent Support Confidence Confidence

If buy squash, then buy beans 6/14 = 42.9% 6/7 = 85.7% 0.3677

If buy asparagus, then buy beans 5/14 = 35.7% 5/6 = 83.3% 0.2974

If buy asparagus, then buy squash 5/14 = 35.7% 5/6 = 83.3% 0.2974

If buy broccoli, then buy green peppers 4/14 = 28.6% 4/5 = 80% 0.2288

If buy green peppers, then buy broccoli 4/14 = 28.6% 4/5 = 80% 0.2288

If buy asparagus and beans, then buy
squash

4/14 = 28.6% 4/5 = 80% 0.2288

If buy asparagus and squash, then buy
beans

4/14 = 28.6% 4/5 = 80% 0.2288

the rules according to a combination of prevalence and accuracy. Table 10.7 provides
such a list for our present data set, after first filtering the rules through a minimum
confidence level of 80%.

Compare Table 10.7 with Figure 10.1, the association rules reported by Clemen-
tine’s version of the a priori algorithm, with minimum 80% confidence, and sorted
by support × confidence. The first column indicates the number of instances the
antecedent occurs in the transactions. The second column, which Clementine calls
“support,” is actually not what we defined support to be in this chapter (following
Han and Kamber[1], Hand et al.[2], and other texts). Instead, what Clementine calls
“support” is the proportion of occurrences of the antecedent alone rather of than the

Figure 10.1 Association rules for vegetable stand data, generated by Clementine.
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antecedent and the consequent. To find the actual support for the association rule using
the Clementine results, multiply the reported “support” times the reported confidence.

Note that after the confidence column, the single consequent appears, followed
by the first and second antecedents (if any). Apart from the “support” anomaly, the
software’s association rules shown in Figure 10.1 represent the same rules as those
we found step by step, and by hand, for the vegetable stand data.

Armed with this knowledge, the vegetable stand entrepreneur can deploy mar-
keting strategies that take advantage of the patterns uncovered above. Why do these
particular products co-occur in customers’ market baskets? Should the product lay-
out be altered to make it easier for customers to purchase these products together?
Should personnel be alerted to remind customers not to forget item B when purchasing
associated item A?

EXTENSION FROM FLAG DATA TO GENERAL
CATEGORICAL DATA

Thus far, we have examined association rules using flag data types only. That is, all
of the vegetable stand attributes took the form of Boolean 0/1 flags, resulting in the
tabular data format found in Table 10.3, reflecting a straightforward market basket
analysis problem. However, association rules are not restricted to flag data types. In
particular, the a priori algorithm can be applied to categorical data in general. Let’s
look at an example.

Recall the normalized adult data set analyzed in Chapters 6 and 7. Here in
Chapter 10 we apply the a priori algorithm to the categorical variables in that same
data set, using Clementine. Minimum support of 10% and minimum confidence of
75% were specified, with the resulting association rules shown in Figure 10.2.

The rules with the highest confidence each have sex = Male as the consequent,
reflecting the 2:1 male–female ratio in the data set. Recall that there were several
values for Marital Status and Work Class, so that these attributes are truly nonflag
categorical attributes. The a priori algorithm simply finds the frequent itemsets just
as before, this time counting the occurrences of the values of the categorical variables
rather than simply the occurrence of the flag.

For example, consider the fifth rule reported in Figure 10.2: “If Marital Status
= Never married, then Work Class = Private,” with confidence 76.9%. There were

Figure 10.2 Association rules for categorical attributes found by a priori algorithm.
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8217 instances in the data set where the attribute Marital Status took the value
Never married, which represents 32.9% of the number of records in the data set.
(Again, Clementine refers to this as the “support,” which is not how most researchers
define that term.) The support for this rule is (0.329)(0.766) = 0.252. That is, 25.2%
of the records contained the value Never married for Marital Status and the value
Private for Work Class, thus making this pairing a frequent 2-itemset of categorical
attributes.

INFORMATION-THEORETIC APPROACH:
GENERALIZED RULE INDUCTION METHOD

The structure of association rules, where the antecedent and consequent are both
Boolean statements, makes them particularly well suited for handling categorical
data, as we have seen. However, what happens when we try to extend our association
rule mining to a broader range of data, specifically, numerical attributes?

Of course, it is always possible to discretize the numerical attributes, for ex-
ample, by arbitrarily defining income under $30,000 as low, income over $70,000 as
high, and other income as medium. Also, we have seen how both C4.5 and CART
handle numerical attributes by discretizing the numerical variables at favorable loca-
tions. Unfortunately, the a priori algorithm is not well equipped to handle numeric
attributes unless they are discretized during preprocessing. Of course, discretization
can lead to a loss of information, so if the analyst has numerical inputs and prefers not
to discretize them, he or she may choose to apply an alternative method for mining
association rules: generalized rule induction (GRI). The GRI methodology can han-
dle either categorical or numerical variables as inputs, but still requires categorical
variables as outputs.

Generalized rule induction was introduced by Smyth and Goodman in 1992[3].
Rather than using frequent itemsets, GRI applies an information-theoretic approach
(as did the C4.5 decision tree algorithm) to determining the “interestingness” of a
candidate association rule.

J-Measure

Specifically, GRI applies the J-measure:

J = p(x)

[
p(y|x) ln

p(y|x)

p(y)
+ [1 − p(y|x)] ln

1 − p(y|x)

1 − p(y)

]

where

� p(x) represents the probability or confidence of the observed value of x . This
is a measure of the coverage of the antecedent. How prevalent is this value of
the antecedent attribute? You can calculate p(x) using a frequency distribution
for the variable in the antecedent.

� p(y) represents the prior probability or confidence of the value of y. This is
a measure of the prevalence of the observed value of y in the consequent.
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You can calculate p(y) using a frequency distribution for the variable in the
consequent.

� p(y|x) represents the conditional probability, or posterior confidence, of y given
that x has occurred. This is a measure of the probability of the observed value of
y given that this value of x has occurred. That is, p(y|x) represents an updated
probability of observing this value of y after taking into account the additional
knowledge of the value of x . In association rule terminology, p(y|x) is measured
directly by the confidence of the rule.

� ln represents the natural log function (log to the base e).

For rules with more than one antecedent, p(x) is considered to be the probability
of the conjunction of the variable values in the antecedent.

As usual, the user specifies desired minimum support and confidence criteria.
For GRI, however, the user also specifies how many association rules he or she would
like to be reported, thereby defining the size of an association rule table referenced by
the algorithm. The GRI algorithm then generates single-antecedent association rules,
and calculates J , the value of the J -measure for the rule. If the “interestingness” of the
new rule, as quantified by the J -measure, is higher than the current minimum J in the
rule table, the new rule is inserted into the rule table, which keeps a constant size by
eliminating the rule with minimum J . More specialized rules with more antecedents
are then considered.

How can the behavior of the J -statistic be described? Clearly [since p(x) sits
outside the brackets], higher values of J will be associated with higher values of p(x).
That is, the J -measure will tend to favor those rules whose antecedent value is more
prevalent, reflecting higher coverage in the data set. Also, the J -measure tends toward
higher values when p(y) and p(y|x) are more extreme (near zero or 1). Hence, the
J -measure will also tend to favor those rules whose consequent probability, p(y), is
more extreme, or whose rule confidence, p(y|x), is more extreme.

The J -measure favors rules with either very high or very low confidence. Why
would we be interested in an association rule with extremely low confidence? For
example, suppose that we have a rule R : If buy beer, then buy fingernail polish, with
confidence p(y|x) = 0.01%, which would presumably be favored by the J -measure,
since the confidence is so low. The analyst could then consider the negative form of R:
If buy beer, then NOT buy fingernail polish, with confidence 99.99%. Although such
negative rules are often interesting (“I guess we better move that fingernail polish out
of the beer section. . . ”), they are often not directly actionable.

Application of Generalized Rule Induction

Let’s return to the “adult” data set for an example of how to calculate the J -measure.
We applied Clementine’s GRI algorithm to the categorical variables in the data set,
again specifying minimum support of 10% and minimum confidence of 75%, and
setting the rule table maximum size to 30. The results are shown in Figure 10.3.

Let’s find the J -measure for the sixth association rule in Figure 10.3: If Sex =
Female and Marital Status = Never married, then Work Class = Private, with
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Figure 10.3 Association rules found by the generalized rule induction algorithm.

confidence of 76.3% and support of 11.1% (not 14.6%). We need the following
statistics:

� p(x), representing the probability that a randomly chosen record will be that of
a never-married female. Clementine provides this directly as p(x) = 0.1463.

� p(y), representing the prior probability that a randomly chosen record will
have Private for the Work Class attribute. Using the frequency distribution in
Figure 10.4, we can see that this prior probability is p(y) = 0.6958.

� p(y|x),representing the conditional probability that a record has Private for the
Work Class attribute, given that the record represents a never-married female.
This is nothing but the confidence reported for the rule, p(y|x) = 0.763.

Plugging these values into the formula for the J -measure, we have

J = p(x)

[
p(y|x) ln

p(y|x)

p(y)
+ [1 − p(y|x)] ln

1 − p(y|x)

1 − p(y)

]

= 0.1463

[
0.763 ln

0.763

0.6958
+ (0.237) ln

0.237

0.3042

]
= 0.1463 [0.763 ln (1.0966) + (0.237) ln(0.7791)]

= 0.001637

Figure 10.4 Finding p(y): prior probability of Work Class = Private.
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Figure 10.5 The GRI algorithm generates association rules for numerical antecedents.

As mentioned above, GRI can handle numerical inputs as well as categori-
cal inputs. We illustrate this using Clementine on the adult data set, instructing the
GRI algorithm to accept both numerical variables and categorical variables as possi-
ble antecedents (although, still, only categorical variables are possible consequents).
The results, for minimum support and confidence criteria similar to those above, are
shown in Figure 10.5.

For example, consider the sixth association rule from Figure 10.5, If age
<0.445 and education-num <0.767, then Work Class = Private. Both antecedents
are numerical with the variables normalized so that all values are between zero and 1.
The antecedent probability is p(x) = 0.2948, telling us that 29.48% of all records have
age <0.445 and education-num <0.767. The value for p(y), representing
P(Work Class) = Private, is still 0.6958 from the previous example. Finally, p(y|x),
representing the conditional probability that a record has Private for the Work Class
attribute given that the record has both age <0.445 and education-num <0.767, is
given by the confidence for the rule, p(y|x) = 0.80. Finding the value of the J -measure
for this rule is left as an exercise.

WHEN NOT TO USE ASSOCIATION RULES

Association rules need to be applied with care, since their results are sometimes
deceptive. Let’s look at an example. Turning back to the a priori algorithm, we asked
Clementine to mine association rules from the adult database using 10% minimum
support, 60% minimum confidence, and a maximum of two antecedents. The results
are shown in Figure 10.6.

Consider, for example, the third association rule from the bottom, If Work
Class = Government, then sex = Male, with 62.7% confidence. Marketing analysts
interested in government workers might be tempted to use this association rule in
support of a new marketing strategy aimed at males. However, seen in its proper light,
this rule may in fact be quite useless.

One needs to take into account the raw (prior) proportion of males in the data set,
which in this case is 66.83%. In other words, applying this association rule actually
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Figure 10.6 Association rules chosen a priori, based on rule confidence.

reduces the probability of randomly selecting a male from 0.6683 to 0.627. You would
have been better advised to pull a name out of a hat from the entire data set than apply
this rule.

Why, then, if the rule is so useless, did the software report it? The quick answer
is that the default ranking mechanism for Clementine’s a priori algorithm is confi-
dence. However, it needs to be emphasized here that data miners should never simply
believe the computer output without making the effort to understand the models and
mechanisms underlying the results. With the onset of sophisticated point-and-click
data mining software, poor analysis costing millions of dollars is more prevalent than
ever. In a word, data mining is easy to do badly. Insightful human expertise and
constant human vigilance are required to translate the nuggets hidden in the database
into actionable and profitable results.

Other useless rules in the Figure 10.6 results include:

� If sex = Male and Marital Status = Married, then Work Class = Private

◦ Confidence: 64.8%
◦ Prior probability of Work Class = Private: 69.58%

� If Work Class = Private then sex = Male

◦ Confidence: 65.6%
◦ Prior probability of sex = Male: 66.83%

� If sex = Male, then Work Class = Private

◦ Confidence: 68.3%
◦ Prior probability of Work Class = Private: 69.58%
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Figure 10.7 Association rules chosen a priori, based on confidence difference.

In each of these cases, a random selection from the database would have pro-
vided more efficacious results than applying the association rule. With association
rules, one needs to keep in mind the prior probabilities involved. To illustrate, we now
ask Clementine to provide us with a priori association rules, but this time using the
confidence difference as the evaluative measure. Here, rules are favored that provide
the greatest increase in confidence from the prior to the posterior. The results are
shown in Figure 10.7.

Note that none of the useless rules reported in Figure 10.6 show up in Fig-
ure 10.7. Also, note the new column, Evaluation, which measures the absolute differ-
ence between the prior and posterior confidences. For example, consider the last rule in
the list: If Marital Status = Divorced, then sex = Female. This rule (which, recall,
applies to the adult data set and not necessarily to the U.S. population at large) also
happens to have the largest evaluation value for the rules reported. The prior proba-
bility in this database of randomly choosing a female is 33.17%, while the confidence
for this rule is 60%. This gives us a difference of 0.3317 − 0.60=0.2683 between the
prior and posterior confidences. Note that this rule was also reported in Figure 10.6,
but was hidden among the useless rules.

Alternatively, analysts may prefer to use the confidence ratio to evaluate poten-
tial rules. This is defined as

confidence ratio = 1 − min

(
p(y|x)

p(y)
,

p(y)

p(y|x)

)

For example, for the rule: If Marital Status = Divorced, then sex = Female, we have
p(y) = 0.3317 and p(y|x) = 0.60, so that

min

(
p(y|x)

p(y)
,

p(y)

p(y|x)

)
= p(y)

p(y|x)
= 0.3317

0.60
= 0.5528

and the confidence ratio equals 1 − 0.5528 = 0.4472. This is confirmed by the
evaluation measure for this rule in Figure 10.8.
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Figure 10.8 Association rules chosen a priori, based on confidence ratio.

Note that in this case, the confidence difference criterion yielded the very same
rules as did the confidence ratio criterion. This need not always be the case. In the
exercises we explore further the differences among these rule selection criteria.

DO ASSOCIATION RULES REPRESENT SUPERVISED OR
UNSUPERVISED LEARNING?

Before we leave the subject of association rules, let us touch on a few topics of interest.
First, we may ask whether association rules represent supervised or unsupervised
learning. Recall that most data mining methods represent supervised learning, since
(1) a target variable is prespecified, and (2) the algorithm is provided with a rich
collection of examples where possible association between the target variable and
the predictor variables may be uncovered. Conversely, in unsupervised learning, no
target variable is identified explicitly. Rather, the data mining algorithm searches for
patterns and structure among all the variables. Clustering is perhaps the most common
unsupervised data mining method.

Association rule mining, however, can be applied in either a supervised or an
unsupervised manner. In market basket analysis, for example, one may simply be
interested in “which items are purchased together,” in which case no target variable
would be identified. On the other hand, some data sets are naturally structured so that
a particular variable fulfills the role of consequent, and not antecedent (see the play
example in the exercises). For example, suppose that political pollsters have collected
demographic data in their exit polling, along with the subject’s voting preference. In
this case, association rules could be mined from this data set, where the demographic
information could represent possible antecedents, and the voting preference could
represent the single consequent of interest. In this way, association rules could be
used to help classify the voting preferences of citizens with certain demographic
characteristics, in a supervised learning process.

Thus, the answer to the question is that association rules, while generally used
for unsupervised learning, may also be applied for supervised learning for a classifi-
cation task.
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LOCAL PATTERNS VERSUS GLOBAL MODELS

Finally, data analysts need to consider the difference between models and patterns.
A model is a global description or explanation of a data set, taking a high-level
perspective. Models may be descriptive or inferential. Descriptive models seek to
summarize the entire data set in a succinct manner. Inferential models aim to provide
a mechanism that enables the analyst to generalize from samples to populations.
Either way, the perspective is global, encompassing the entire data set. On the other
hand, patterns are essentially local features of the data. Recognizable patterns may in
fact hold true for only a few variables or a fraction of the records in the data.

Most of the modeling methods we have covered have dealt with global model
building. Association rules, on the other hand, are particularly well suited to uncover-
ing local patterns in the data. As soon as one applies the if clause in an association rule,
one is partitioning a data so that, usually, most of the records do not apply. Applying
the if clause “drills down” deeper into a data set, with the aim of uncovering a hidden
local pattern which may or may not be relevant to the bulk of the data.

For example, consider the following association rule from Table 10.3:
If Work Class = Self-employed, then Marital Status = Married, with confidence
69.8%. We see that this association rule applies to only 2835 (11.3%) of the records
and ignores the remaining 88.7% of the data set. Even among these 2835 records, the
association rule ignores most of the variables, concentrating on only two. Therefore,
this association rule cannot claim to be global and cannot be considered a model in
the strict sense. It represents a pattern that is local to these 2835 records and to these
two variables.

Then again, finding interesting local patterns is one of the most important goals
of data mining. Sometimes, uncovering a pattern within the data can lead to the
deployment of new and profitable initiatives. For example, recall from the churn data
set (Chapter 3) that those customers who belonged to the VoiceMail Plan were at
considerably lower risk of churning than other customers (see Figure 10.9). This

Figure 10.9 Profitable pattern: VoiceMail Plan adopters less likely to churn.
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finding affected only 922 (27.7%) of the 3333 records and only two of the variables,
and is thus to be considered a local pattern. Nevertheless, the discovery of this nugget
could lead to policy changes which, if properly deployed, could lead to increased
profits for the cell phone company.
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EXERCISES
1. Describe the two main methods of representing market basket data. What are the benefits

and drawbacks of each?

2. Describe support and confidence. Express the formula for confidence using support.

3. Restate the a priori property in your own words.

For the following several exercises, consider the following data set from Quinlan [4]
shown as Table E10. The goal is to develop association rules using the a priori
algorithm for trying to predict when a certain (evidently indoor) game may be played.
Therefore, unlike the vegetable stand example, we may restrict our itemset search to
items that include the attribute play.

4. Let � = 3. Generate the frequent 1-itemsets.

5. Let � = 3. Generate the frequent 2-itemsets.

6. Let � = 3. Generate the frequent 3-itemsets.

7. Using 75% minimum confidence and 20% minimum support, generate one-antecedent
association rules for predicting play.

8. Using 75% minimum confidence and 20% minimum support, generate two-antecedent
association rules for predicting play.

9. Multiply the observed support times the confidence for each of the rules in Exercises 7
and 8, and rank them in a table.

10. Verify your manually found results using association rule software.

11. For each of the association rules found above by the a priori algorithm, find the J -measure.
Then order the rules by J -measure. Compare the ordering with that from the a priori
support × confidence ordering.

12. Find the value of the J -measure for the sixth rule from Figure 10.5.
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TABLE E10 Weather Data Set for Association Rule Mining

No. Outlook Temperature Humidity Windy Play

1 sunny hot high false no
2 sunny hot high true no
3 overcast hot high false yes
4 rain mild high false yes
5 rain cool normal false yes
6 rain cool normal true no
7 overcast cool normal true yes
8 sunny mild high false no
9 sunny cool normal false yes

10 rain mild normal false yes
11 sunny mild normal true yes
12 overcast mild high true yes
13 overcast hot normal false yes
14 rain mild high true no

Hands-on Analysis
Use the churn data set, given at the book series Web site, for the following exercises.
Make sure that the numerical variables are normalized and that correlated variables
are accounted for.

13. Apply the a priori algorithm to uncover association rules for predicting either churn or
nonchurn behavior. Specify reasonable lower bounds for support and confidence. Which
attributes are not applicable?

14. Compare the results from Exercise 13 with the results from the EDA and decision tree
analysis in Chapters 3 and 6. Discuss similarities and differences. Which analysis format
do you prefer? Do you find a confluence of results?

15. Apply the confidence difference criterion for rule selection, and rerun the a priori algorithm.
Order the rules by magnitude of confidence difference. Discuss similarities and differences
with the set of rules above.

16. Apply the confidence ratio criterion for rule selection and rerun the a priori algorithm. Order
the rules by magnitude of confidence difference. Discuss similarities and differences with
the set of rules above.

17. Apply the GRI algorithm to uncover association rules for predicting either churn or
nonchurn behavior. Specify reasonable lower bounds for support and confidence.

18. Compare the results from the a priori algorithm with those of the GRI algorithm. Which
algorithm yields a richer set of rules, and why? Which algorithm is probably preferable
for this particular data set? Why?
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INTERWEAVING MODEL EVALUATION WITH MODEL BUILDING

CONFLUENCE OF RESULTS: APPLYING A SUITE OF MODELS

As you may recall from Chapter 1, the CRISP cross-industry standard process for
data mining consists of six phases, to be applied in an iterative cycle:

1. Business understanding phase

2. Data understanding phase

3. Data preparation phase

4. Modeling phase

5. Evaluation phase

6. Deployment phase

Nestled between the modeling and deployment phases comes the crucial
evaluation phase, techniques for which are discussed in this chapter. By the time
we arrive at the evaluation phase, the modeling phase has already generated one or
more candidate models. It is of critical importance that these models be evaluated for
quality and effectiveness before they are deployed for use in the field. Deployment

Discovering Knowledge in Data: An Introduction to Data Mining, By Daniel T. Larose
ISBN 0-471-66657-2 Copyright C© 2005 John Wiley & Sons, Inc.
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of data mining models usually represents a capital expenditure and investment on
the part of the company. If the models in question are invalid, the company’s time
and money are wasted. In this chapter we examine model evaluation techniques
for each of the six main tasks of data mining: description, estimation, prediction,
classification, clustering, and association.

MODEL EVALUATION TECHNIQUES FOR THE
DESCRIPTION TASK

In Chapter 3 we learned how to apply exploratory data analysis (EDA) to learn about
the salient characteristics of a data set. EDA represents a popular and powerful tech-
nique for applying the descriptive task of data mining. On the other hand, because
descriptive techniques make no classifications, predictions, or estimates, an objective
method for evaluating the efficacy of these techniques can be elusive. The watchword
is common sense. Remember that data mining models should be as transparent as
possible. That is, the results of the data mining model should describe clear patterns
that are amenable to intuitive interpretation and explanation. The effectiveness of
your EDA is best evaluated by the clarity of understanding elicited in your target
audience, whether a group of managers evaluating your new initiative or the evalua-
tion board of the U.S. Food and Drug Administration assessing the efficacy of a new
pharmaceutical submission.

If one insists on using a quantifiable measure to assess description, one may
apply the minimum descriptive length principle. Other things being equal, Occam’s
razor (a principle named after the medieval philosopher William of Occam) states
that simple representations are preferable to complex ones. The minimum descriptive
length principle quantifies this, saying that the best representation (or description) of
a model or body of data is the one that minimizes the information required (in bits)
to encode (1) the model and (2) the exceptions to the model.

MODEL EVALUATION TECHNIQUES FOR THE
ESTIMATION AND PREDICTION TASKS

For estimation and prediction models, which employ supervised methods, we are
provided with both the estimated (or predicted) value ŷ of the numeric target variable
and the actual value y. Therefore, a natural measure to assess model adequacy is to
examine the estimation error, or residual, |y − ŷ|. Since the average residual is
always equal to zero, we cannot use it for model evaluation; some other measure is
needed.

The usual measure used to evaluate estimation or prediction models is the mean
square error (MSE):

MSE =
∑

i
(yi − ŷi )2

n − p − 1
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Regression Analysis: Rating versus Sugars

Rating = 59.4 - 2.42 Sugars
The regression equation is

Predictor        Coef     SE Coef          T        P
Constant       59.444       1.951      30.47    0.000
Sugars        -2.4193      0.2376     -10.18    0.000

S = 9.162       R-Sq = 58.0%     R-Sq(adj) = 57.5%

Analysis of Variance

Source            DF          SS          MS         F        P
Regression         1      8701.7      8701.7    103.67    0.000
Residual Error    75      6295.1        83.9
Total             76     14996.8

Figure 11.1 Minitab regression output, with MSE and s indicated.

where p represents the number of model parameters. Models are preferred that min-
imize MSE. The square root of MSE can be regarded as an estimate of the typical
error in estimation or prediction when using the particular model. In context, this is
known as the standard error of the estimate and denoted by s = √

MSE.
For example, consider Figure 11.1 (excerpted from Chapter 4), which provides

the Minitab regression output for the estimated nutritional rating based on sugar
content for 77 breakfast cereals. Both MSE = 83.9 and s = 9.162 are circled on the
output. The value of 9.162 for s indicates that the estimated prediction error from
using this regression model to predict nutrition rating based on sugar content is 9.162
rating points.

Is this good enough to proceed to model deployment? That depends on the
objectives of the business or research problem. Certainly the model is simplicity
itself, with only one predictor and one response; however, perhaps the prediction
error is too large to consider deployment. Compare this estimated prediction er-
ror with the value of s obtained by the multiple regression in Figure 4.10: s =
1.015. Here, the estimated error in prediction has been reduced to barely one rat-
ings point. However, there is a cost: The multiple regression model contains eight
different predictors, so that the model is more complex than previously. As with
so much else in statistical analysis and data mining, there is a trade-off between
model complexity and prediction error. The domain experts for the business or re-
search problem in question need to determine where the point of diminishing returns
lies.

In Chapter 7 we examined an evaluation measure that was related to MSE:

SSE =
∑

records

∑
output nodes

(actual − output)2

which represents roughly the numerator of MSE above. Again, the goal is to minimize
the sum of squared errors over all output nodes.
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MODEL EVALUATION TECHNIQUES FOR THE
CLASSIFICATION TASK

Perhaps the most widespread usage of supervised data mining involves the classifica-
tion task. Recall that in classification, there is a target categorical variable. The data
mining model examines a large set of records, each record containing information on
the target variable as well as a set of input or predictor variables. The analyst would
like to be able to generate a classification for the target variable for new records, or
persons, not currently in the database, based on other characteristics associated with
that person. Using a training set, where information is available about both the predic-
tor variables and the (already classified) target variable, the algorithm learns which
combinations of variables are associated with which classes of the target categorical
variable. Then the algorithm would look at new records, in the test and validation sets,
for which no information about income bracket is available. Based on the classifica-
tions in the training set, the algorithm would assign classifications to the new records.

The question is: How well is our classification algorithm functioning? Classi-
fication assignments could conceivably be made based on coin flips, tea leaves, goat
entrails, or a crystal ball. Which evaluative methods should we use to assure our-
selves that the classifications made by our data mining algorithm are efficacious and
accurate? Are we outperforming the coin flips?

In this chapter we examine the following evaluative concepts, methods, and
tools: error rate, false positives, false negatives, error cost adjustment, lift, lift charts,
and gains charts, in the context of the C5.0 model for classifying income from
Chapter 6.

ERROR RATE, FALSE POSITIVES, AND FALSE NEGATIVES

Recall from Chapter 6 that we applied a C5.0 model for classifying whether a person’s
income was low (≤50,000) or high (>50,000), based on a set of predictor variables
which included capital gain, capital loss, marital status, and so on. Let us evaluate
the performance of that decision tree classification model, using the notions of error
rate, false positives, and false negatives.

Clementine provides us with a matrix of the correct and incorrect classifications
made by the algorithm, termed the confusion matrix, shown in Figure 11.2. The
columns represent the predicted classifications, and the rows represent the actual
(true) classifications, for each of the 24,986 records. There are 19,002 records whose
actual value for the target variable income is ≤50,000, and there are 5984 records
whose actual value income is >50,000. The C5.0 algorithm classified 20,162 of the
records as having income ≤50,000, and 4824 records as having income >50,000.

Of the 20,162 records whose income is predicted by the algorithm to be
≤50,000, 17,845 of these records actually do have low income. However, the algo-
rithm incorrectly classified 2317 of these 20,162 records as having income >50,000.

Now, suppose that this analysis is being carried out for a financial lending
firm, which is interested in determining whether or not a loan applicant’s income
is >50,000. A classification of income >50,000 is considered to be positive, since
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False Postives

False Negatives

Figure 11.2 Confusion matrix of correct and incorrect classifications.

the lending firm would then proceed to extend the loan to the person in question. A
classification of income ≤ 50,000 is considered to be negative, since the firm would
proceed to deny the loan application to the person, based on low income (in this
simplified scenario). Assume that in the absence of other information, the default
decision would be to deny the loan due to low income.

Thus, the 20,162 classifications (predictions) of income ≤50,000 are said to be
negatives, and the 4824 classifications of income >50,000 are said to be positives. The
2317 negative classifications that were made in error are said to be false negatives.
That is, a false negative represents a record that is classified as negative but is actually
positive. Of the 4824 positive classifications, 1157 actually had low incomes, so that
there are 1157 false positives. A false positive represents a record that is classified as
positive but is actually negative.

The overall error rate, or simply error rate, is the sum of the false negatives
and false positives, divided by the total number of records. Here we have

overall error rate = 2317 + 1157

24,986
= 0.1390

To find the false negative rate, divide the number of false negatives by the total number
of negative classifications. Similarly, to find the false positive rate, divide the number
of false positives by the total number of positive classifications. Here we have

false negative rate = 2317

20,162
= 0.1149

false positive rate = 1157

4824
= 0.2398

That is, using the present C5.0 decision tree model, we are more than twice as likely
to classify an applicant’s income incorrectly as high than to classify an applicant’s
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income incorrectly as low. Using error rate, false positive rate, and false negative rate,
analysts may compare the accuracy of various models. For example, a C5.0 decision
tree model may be compared against a CART decision tree model or a neural network
model. Model choice decisions can then be rendered based on the relative rankings
of these evaluation measures.

As an aside, in the parlance of hypothesis testing, since the default decision is
to find that the applicant has low income, we would have the following hypotheses:

H0: income ≤ 50,000

Ha : income > 50,000

where H0 represents the default, or null, hypothesis, and Ha represents the alternative
hypothesis, which requires evidence to support it. A false positive would be considered
a type I error in this setting, incorrectly rejecting the null hypothesis, while a false
negative would be considered a type II error, incorrectly accepting the null hypothesis.

MISCLASSIFICATION COST ADJUSTMENT TO REFLECT
REAL-WORLD CONCERNS

Consider this situation from the standpoint of the lending institution. Which error,
a false negative or a false positive, would be considered more damaging from the
lender’s point of view? If the lender commits a false negative, an applicant who had
high income gets turned down for a loan: an unfortunate but not very expensive
mistake.

On the other hand, if the lender commits a false positive, an applicant who
had low income would be awarded the loan. This error greatly increases the chances
that the applicant will default on the loan, which is very expensive for the lender.
Therefore, the lender would consider the false positive to be the more damaging type
of error and would prefer to minimize the false positive rate. The analyst would there-
fore adjust the C5.0 algorithm’s misclassification cost matrix to reflect the lender’s
concerns. An example of such an adjustment is shown in Figure 11.3, which shows
that the false positive cost is increase from 1 to 2, while the false negative cost re-
mains at 1. Thus, a false positive would be considered twice as damaging as a false
negative. The analyst may wish to experiment with various cost values for the two
types of errors, to find the combination best suited to the task and business problem at
hand.

How did the misclassification cost adjustment affect the performance of the
algorithm? Which rate would you expect to increase or decrease, the false negative
or the false positive? Do you have an intuition of what might happen to the overall
error rate?

Well, we would expect that the false positive rate would decrease, since the cost
of making such an error has been doubled. Fewer false positives probably means more
false negatives, however. Unfortunately, the overall error rate will probably increase,
since there are many more negative predictions made than positive, giving the false
negative rate a greater weight in the computation of the overall error rate.



WY045-11 September 23, 2004 13:21

206 CHAPTER 11 MODEL EVALUATION TECHNIQUES

False Positive Cost
False Negative Cost

Figure 11.3 Adjusting the cost matrix to reflect higher cost of false positives.

The C5.0 algorithm was rerun, this time including the misclassification cost
adjustment. The resulting confusion matrix is shown in Figure 11.4. As expected, the
false negative rate has increased, while the false positive rate has decreased. Whereas
previously, false positives were twice as likely to occur, this time the false positive rate
is lower than the false negative rate. As desired, the false positive rate has decreased.
However, this has come at a cost. The algorithm, hesitant to classify records as positive

Figure 11.4 Confusion matrix after misclassification cost adjustment.
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due to the higher cost, instead made many more negative classifications, and therefore
more false negatives.

false negative rate = 3551

22,304
= 0.1592 up from 0.1149 previously

false positive rate = 249

2682
= 0.0928 down from 0.2398 previously

Unfortunately, the overall error rate has climbed as well:

overall error rate = 3551 + 249

24,986
= 0.1521 up from 0.1390 previously

Nevertheless, a higher overall error rate and a higher false negative rate are considered
a “good trade” by this lender, which is eager to reduce the loan default rate, which
is very costly to the firm. The decrease in the false positive rate from 23.98% to
9.28% will surely result in significant savings to the financial lending firm, since
fewer applicants who cannot afford to repay the loan will be awarded the loan.

DECISION COST/BENEFIT ANALYSIS

Company managers may require that model comparisons be made in terms of cost/
benefit analysis. For example, in comparing the original C5.0 model before the mis-
classification cost adjustment (call this model 1) against the C5.0 model using the mis-
classification cost adjustment (call this model 2), managers may prefer to have the res-
pective error rates, false negatives and false positives, translated into dollars and cents.

Analysts can provide model comparison in terms of anticipated profit or loss by
associating a cost or benefit with each of the four possible combinations of correct and
incorrect classifications. For example, suppose that the analyst makes the cost/benefit
value assignments shown in Table 11.1. The $25 cost associated with a negative
decision reflect the nominal costs associated with processing loan rejections. The
“−$200” cost is actually the anticipated average interest revenue to be collected from
applicants whose income is actually >50,000. The $500 reflects the average cost

TABLE 11.1 Cost/Benefit Table for Each Combination of Correct/Incorrect Decision

Outcome Classification Actual Value Cost Rationale

True negative ≤50,000 ≤50,000 $25 Nominal cost associated with
processing loan rejection

True positive >50,000 >50,000 −$200 Anticipated average interest
revenue from loans

False negative ≤50,000 >50,000 $25 Nominal cost associated with
processing loan rejection

False positive >50,000 ≤50,000 $500 Cost of loan default averaged over
all loans to ≤50,000 group



WY045-11 September 23, 2004 13:21

208 CHAPTER 11 MODEL EVALUATION TECHNIQUES

of loan defaults, average over all loans to applicants whose income level is low. Of
course, the specific numbers assigned here are subject to discussion and are meant
for illustration only.

Using the costs from Table 11.1, we can then compare models 1 and 2:

Cost of model 1 = 17,845 ($25) + 2317 ($25) + 1157 ($500) + 3667 (−$200)

= $349,150

Cost of model 2 = 18,753 ($25) + 3551 ($25) + 249 ($500) + 2433 (−$200)

= $195,500

The estimated cost savings from deploying model 2 rather than model 1 is then

estimated cost savings = $349,150 − $195,500 = $153,650

Isn’t it amazing what a simple misclassification cost adjustment can mean
to the company’s bottom line? Thus, even though model 2 suffered from a higher
overall error rate and a higher false negative rate, it outperformed model 1 “where it
counted,” with a lower false positive rate, which for this company’s business problem,
was crucial.

LIFT CHARTS AND GAINS CHARTS

Lift charts and gains charts are graphical evaluative methods for assessing and com-
paring the usefulness of classification models. Lift is a concept, originally from the
marketing field, which seeks to compare the response rates with and without using the
classification model. We shall explore these concepts by continuing our examination
of the C5.0 models for classifying income.

Suppose that the financial lending firm is interested in identifying high-income
persons to put together a targeted marketing campaign for a new platinum credit card.
In the past, marketers may have simply canvassed an entire list of contacts without
regard to clues about the contact’s income. Such blanket initiatives are expensive and
tend to have low response rates. It is much better to apply demographic information
that the company may have about the list of contacts, build a model to predict which
contacts will have high income, and restrict the canvassing to these contacts classified
as high income. The cost of the marketing program will then be much reduced and
the response rate may be higher.

A good classification model should identify in its positive classifications (the
>50,000 column in Figures 11.2 and 11.4), a group that has a higher proportion
of positive “hits” than the database as a whole. The concept of lift quantifies this.
We define lift as the proportion of positive hits in the set of the model’s positive
classifications, divided by the proportion of positive hits in the data set overall:

lift = proportion of positive hits in set of positive classifications

proportion of positive hits in data set as a whole

For example, in Figure 11.2, model 1 identifies 4824 records as being classified
positive (income >50,000). This is the set of positive classifications. Of these 4824,
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3667 records are positive hits; that is, the actual value of income is >50,000. This
gives us 3667/4824 = 0.7602 as the proportion of positive hits in the set of positive
classifications. Now, in the data set as a whole, 5984 of the 24,986 records have income
>50,000, giving us 5984/24,986 = 0.2395 as the proportion of positive hits in the data
set as a whole. The lift, measured at the 4824 records, is therefore 0.7602/0.2395 =
3.17.

Lift is a function of sample size, which is why we had to specify that the lift
of 3.17 for model 1 was measured at n = 4824 records. When calculating lift, the
software will first sort the records by the probability of being classified positive. The
lift is then calculated for every sample size from n = 1 to n = the size of the data set.
A chart is then produced which graphs lift against the percentile of the data set.

Consider Figure 11.5, which represents the lift chart for model 1. Note that
lift is highest at the lowest percentiles, which makes sense since the data are sorted
according to the most likely positive hits. The lowest percentiles have the highest
proportion of positive hits. As the plot moves from left to right, the positive hits tend
to get “used up,” so that the proportion steadily decreases until the lift finally equals
exactly 1 when the entire data set is considered the sample. Therefore, for any lift
chart, the highest lift is always obtained with the smallest sample sizes.

Now, 4824 records represents the 19.3th percentile of the 24,986 total records.
Note in Figure 11.5 that the lift just to the left of the 20th percentile would be near

Figure 11.5 Lift chart for model 1: strong lift early, then falls away rapidly.
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Figure 11.6 Gains chart for model 1.

3.17, as we calculated above. If our market research project required merely the most
likely 5% of records, the lift would have been higher, about 4.1, as shown in Fig-
ure 11.5. On the other hand, if the project required 60% of all records, the lift would
have fallen off to about 1.6. Since the data are sorted by positive propensity, the further
we reach into the data set, the lower our overall proportion of positive hits becomes.
Another balancing act is required: between reaching lots of contacts and having a
high expectation of success per contact.

Lift charts are often presented in their cumulative form, where they are denoted
as cumulative lift charts, or gains charts. The gains chart associated with the lift
chart in Figure 11.5 is presented in Figure 11.6. The diagonal on the gains chart is
analogous to the horizontal axis at lift = 1 on the lift chart. Analysts would like to see
gains charts where the upper curve rises steeply as one moves from left to right and
then gradually flattens out. In other words, one prefers a deeper “bowl” to a shallower
bowl. How do you read a gains chart? Suppose that we canvassed the top 20% of our
contact list (percentile = 20). By doing so, we could expect to reach about 62% of
the total number of high-income persons on the list. Would doubling our effort also
double our results? No. Canvassing the top 40% on the list would enable us to reach
approximately 85% of the high-income persons on the list. Past this point, the law of
diminishing returns is strongly in effect.

Lift charts and gains charts can also be used to compare model performance.
Figure 11.7 shows the combined lift chart for models 1 and 2. The figure shows that
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Figure 11.7 Combined lift chart for models 1 and 2.

when it comes to model selection, a particular model may not be uniformly preferable.
For example, up to about the 6th percentile, there appears to be no apparent difference
in model lift. Then, up to approximately the 17th percentile, model 2 is preferable,
provided slightly higher lift. Thereafter, model 1 is preferable.

Hence, if the goal were to canvass up to the top 17% or so of the people on
the contact list with high incomes, model 2 would probably be selected. However, if
the goal were to extend the reach of the marketing initiative to 20% or more of the
likely contacts with high income, model 1 would probably be selected. This question
of multiple models and model choice is an important one, which we spend much time
discussing in Reference 1.

INTERWEAVING MODEL EVALUATION WITH
MODEL BUILDING

In Chapter 1 the graphic representing the CRISP–DM standard process for data mining
contained a feedback loop between the model building and evaluation phases. In
Chapter 5 (Figure 5.1) we presented a methodology for supervised modeling. Where
do the methods for model evaluation from Chapter 11 fit into these processes?

We would recommend that model evaluation become a nearly “automatic”
process, performed to a certain degree whenever a new model is generated. Therefore,
at any point in the process, we may have an accurate measure of the quality of
the current or working model. Therefore, it is suggested that model evaluation be
interwoven seamlessly into the methodology for supervised modeling presented in
Chapter 5, being performed on the models generated from each of the training set,
test set, and validation set. For example, when we adjust the provisional model to
minimize the error rate on the test set, we may have at our fingertips the false positive
rate, the false negative rate, the overall error rate, the lift charts, and the gains charts.
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These evaluative measures can then point the analyst in the proper direction for best
ameliorating any drawbacks of the working model.

CONFLUENCE OF RESULTS: APPLYING A SUITE OF MODELS

In Olympic figure skating, the best-performing skater is not selected by a single judge
alone. Instead, a suite of several judges is called upon to select the best skater from
among all the candidate skaters. Similarly in model selection, whenever possible, the
analyst should not depend solely on a single data mining method. Instead, he or she
should seek a confluence of results from a suite of different data mining models.

For example, for the adult database, Figures 6.5, 6.7, and 7.9, show that the
variables listed in Table 11.2 are the most influential (ranked roughly in order of
importance) for classifying income, as identified by CART, C5.0, and the neural
network algorithm, respectively. Although there is not a perfect match in the ordering
of the important variables, there is still much that these three separate classification
algorithms have uncovered, including the following:

� All three algorithms identify Marital Status, education-num, capital-gain,
capital-loss, and hours-per-week as the most important variables, except for
the neural network, where age snuck in past capital-loss.

� None of the algorithms identified either work-class or sex as important variables,
and only the neural network identified age as important.

� The algorithms agree on various ordering trends, such as education-num is more
important than hours-per-week.

When we recall the strongly differing mathematical bases on which these three
data mining methods are built, it may be considered remarkable that such convincing
concurrence prevails among them with respect to classifying income. Remember that
CART bases its decisions on the “goodness of split” criterion �(s|t), that C5.0 applies
an information-theoretic approach, and that neural network base their learning on
back-propagation. Yet these three different algorithms represent streams that broadly
speaking, have come together, forming a confluence of results. In this way, the models
act as validation for each other.

TABLE 11.2 Most Important Variables for Classifying Income, as
Identified by CART, C5.0, and the Neural Network Algorithm

CART C5.0 Neural Network

Marital Status Capital-gain Capital-gain

Education-num Capital-loss Education-num

Capital-gain Marital Status Hours-per-week

Capital-loss Education-num Marital Status

Hours-per-week Hours-per-week Age

Capital-loss
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appear 2005).

EXERCISES
Hands-on Analysis
Use the churn data set at the book series Web site for the following exercises. Make
sure that numerical variables are normalized and the correlated variables have been
accounted for.

1. Apply a CART model for predicting churn. Use default misclassification costs.

a. Determine the false positive rate.

b. Determine the false negative rate.

c. Determine the overall error rate.

d. Determine the overall model accuracy (1 − overall error rate).

2. In a typical churn model, in which interceding with a potential churner is relatively cheap
but losing a customer is expensive, which error is more costly, a false negative or a false
positive (where positive = customer predicted to churn)? Explain.

3. Based on your answer to Exercise 2, adjust the misclassification costs for your CART
model to reduce the prevalence of the more costly type of error. Rerun the CART algorithm.
Compare the false positive, false negative, and overall error rates with the previous model.
Discuss the trade-off between the various rates in terms of cost for the company.

4. Perform a cost/benefit analysis for the default CART model from exercise 1 as follows.
Assign a cost or benefit in dollar terms for each combination of false and true positives
and negatives, similar to Table 11.1. Then, using the confusion matrix, find the overall
anticipated cost.

5. Perform a cost/benefit analysis for the CART model with the adjusted misclassification
costs. Use the same cost/benefits assignments as for the default model. Find the overall
anticipated cost. Compare with the default model, and formulate a recommendation as to
which model is preferable.

6. Construct a lift chart for the default CART model. What is the estimated lift at 20%? 33%?
40%? 50%?

7. Construct a gains chart for the default CART model. Explain the relationship between this
chart and the lift chart.

8. Construct a lift chart for the CART model with the adjusted misclassification costs. What
is the estimated lift at 20%? 33%? 40%? 50%?

9. Construct a single lift chart for both of the CART models. Which model is preferable over
which regions?

10. Now turn to a C4.5 decision tree model, and redo Exercises 1 to 9. Compare the results.
Which model is preferable?
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11. Next, apply a neural network model to predict churn.

a. Determine the false positive rate.

b. Determine the false negative rate.

c. Determine the overall error rate.

d. Determine the overall model accuracy (1 − overall error rate).

12. Construct a lift chart for the neural network model. What is the estimated lift at 20%?
33%? 40%? 50%?

13. Construct a single lift chart which includes the better of the two CART models, the better
of the two C4.5 models, and the neural network model. Which model is preferable over
which regions?

14. In view of the results obtained above, discuss the overall quality and adequacy of our churn
classification models.
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EPILOGUE
“We’ve Only Just Begun”
An Invitation to Data Mining
Methods and Models

I hope you have enjoyed Discovering Knowledge in Data: An Introduction to Data
Mining, and that our experience together has whetted your appetite for learning more
about this unique and powerful field of study. In fact, it is true that “we have only just
begun” our exploration of data mining. More volumes in this Wiley Interscience data
mining series await your examination.

Data Mining Methods and Models, will extend the array of models at our
disposal, and will delve deeper into methods and models that we have already en-
countered. For example, we shall expand our collection of classification models to
include naı̈ve Bayes methods and Bayesian networks.

Further, Data Mining Methods and Models will contain chapter case studies,
where readers will be shown how to solve actual business and research problems
using data mining methods and models on large, real-world data sets. Every step
in the process will be demonstrated, from identification of the business problem,
through data pre-processing, exploratory data analysis, model development, model
assessment, and finally to reporting the results in a form understandable to non-
specialists. This is hands-on data mining under real-world conditions.

Beyond this, Data Mining the Web will cover the three main facets of web
mining, that is, web content mining, web structure mining, and web usage mining.
Among the topics that will be examined in this volume are clickstream analysis,
preprocessing of web log files, sessionization, path completion, and web log sequence
analysis.

Thank you for sharing this experience with me, and I look forward to working
with you in the future.

Daniel T. Larose, Ph.D.
Director, Data Mining @CCSU
www.ccsu.edu/datamining
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generating association rules, 186–187
generating frequent itemsets, 185–186
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Application of neural network modeling, 143–145
A priori algorithm, 184–189
A priori property, 184–185
Association, 17
Association rules, 17, 180–199

affinity analysis, 180–182
antecedent, 183
a priori algorithm, 184–189
a priori property, 184–185

generating association rules, 186–187
generating frequent itemsets, 185–186

confidence, 184
confidence difference method, 195–196
confidence ratio method, 195–196
consequent, 183
data representation for market basket analysis,

182–183
tabular data format, 182–183
transactional data format, 182–183

definition of, 183
extension to general categorical data, 189–190
frequent itemset, 184
generalized rule induction (GRI), 190–196

application of GRI, 191–193
behavior of the J statistic, 191
J -measure, 190–191

itemset, 184
itemset frequency, 184
local patterns versus global models, 197–198
market basket analysis, 180–182
procedure for mining, 184
supervised or unsupervised learning, 196
support, 184
when not to use association rules, 193–196

Back-propagation, 135
example of, 137–138
rules, 136–137

Balancing the dataset, 104
Bank of America, 1
Bar chart, 46–48
Between cluster variation (BCV), 149,

154
Bhandari, Inderpal, 3
Bias-variance trade-off, 93–95

mean square error, 95
Binary trees, 109
Binning (banding), 61–62
Boston Celtics, 3
Bremmer, Eric, 2
Brown, Dudley, 3

C4.5 algorithm, 116–127
Candidate splits, 111
CART, see Classification and regression trees
Case studies

Daimler-Chrysler: analyzing automobile
warranty claims, 8–9

mining association rules from legal data bases,
19–21

predicting abnormal stock market returns,
18–19

predicting corporate bankruptcies using
decision trees, 21–22

profiling materials and market using clustering,
23–24

CIO Magazine, 1
Claritas, Inc., 16
Classification, 14–15, 95–96, 107–127,

128–146
Classification and regression trees (CART),

109–115, 122–126
optimality measure, 110

Classification error, 114
Clinton, President Bill, 2
Cluster centroid, 153
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Clustering, 16–17, 147–162, 163–179
between cluster variation (BCV), 149, 154
hierarchical methods, 149–153

agglomerative methods, 149–153
average linkage, 150, 152–153
complete linkage, 150–152
dendrogram, 149
divisive methods, 149–150
hierarchical clustering, 49
single linkage, 150–151

k-means, see k-means clustering
within cluster variation (WCV), 149, 154

Cluster membership for making predictions, 161
Cluster profiles, 175–177
Cluster validity, 170
Combination function, 101–103

for neural networks, 132–133
Competition, 165, 166
Competitive learning, 163
Completely connected network, 131–132
Confidence, 122, 184
Confidence interval estimate, 73–74
Confidence level, 73
Confluence of results, 19, 212
Confusion matrix, 203–204
Consequent, 183
Cooperation, 165, 166
Correlation, 53–54, 78
Cross Industry Standard Process for Data Mining

(CRISP-DM), 5–7
business research understanding phase, 8,

18–19, 21, 23
data preparation phase, 7–8, 18, 20–21, 23
data understanding phase, 2, 8, 18, 20–21, 23
deployment phase, 7, 9, 19, 21–22, 24
evaluation phase, 7, 9, 19, 20, 22, 24
modeling phase, 7, 9, 18, 20–21, 23

Cross-tabulations, 47–48
Cross-validation termination, 139

Daimler-Chrysler, 5, 8–9
Data cleaning, see Data preprocessing
Data mining

case studies, see Case studies
cross industry standard process (CRISP-DM),

5–7
definition of, 2
easy to do badly, xii, 5
examples of

Bank of America, 1
Boston Celtics, 3
brain tumors, 2
New York Knicks, 3
Clinton, President Bill, 2

fallacies of, 10–11

need for human direction, 4, 10
software

Advanced Scout by IBM, 3
Clementine by SPSS, Inc., 3
Enterprise Miner by the SAS Institute, 158
Insightful Miner by Insightful Corp., 31
Minitab, 12

tasks, see Tasks, data mining
why data mining, 4

Data preprocessing, 27–40
data cleaning, 28–30

ambiguous coding, 28–30
anomalous values, 28–29
character versus numeric formatting, 28–29
min-max normalization, 36–37
z-score standardization, 37–38

identifying misclassifications, 33–34
missing data, 30–33

replace with constant, 31
replace with mean or mode, 31–32
replace with random value from distribution,

31–33
outliers, graphical methods for identifying,

34–35
definition of, 34
histogram, 34–35
interquartile range, 39
quartiles, 39
scatterplot, 35

outliers, numerical methods for identifying,
38–39

why preprocess data, 27–28
Data set

adult, 143
cereals, 75
churn, 42

Data transformation, see Data preprocessing
Decision cost/benefit analysis, 207–208
Decision nodes, 107–108
Decision rules, 121–122
Decision tree pruning, 114–115, 121
Decision trees, 107–127

C4.5 algorithm, 116–127
entropy, 116
entropy as noise, 117
entropy reduction, 116
information as signal, 117
information gain, 116

classification and regression trees (CART),
109–115, 122–126

binary trees, 109
candidate splits, 111
classification error, 114
optimality measure, 110
tree pruning, 114–115
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comparison of the CART and C4.5 algorithms,
122–126

minimum records per node, 125
decision nodes, 107–108
decision rules, 121–122

confidence, 122
support, 122

group node, 107–108
leaf nodes, 107–108
requirements for, 109

Democratic Leadership Council, 2
Dendrogram, 149
Description, 11
Description task, model evaluation techniques, 201
“Different from” function, 100
Distance function (distance metric), 99–101

city block distance, 148
Euclidian distance, 99, 148
Minkowski distance, 148

Draftsman’s plot, 83–84

Entropy, 116
Entropy reduction, 116
Error rate, classification, 203–204
Error responsibility, 137
Estimated regression equation (ERE), 76
Estimation, 12–13, 67–88, 104–105, 131
Estimation and prediction using neural networks,

131
Estimation error, 77, 201
Estimation task, model evaluation techniques,

201–202
Euclidian distance, 99, 148
Exploratory data analysis, 41–66

anomalous fields, 50–52
binning (banding), 63
categorical variables, 45–50

comparison bar chart, 46–48
cross-tabulations, 47–48
directed web graph, 50
two-way interactions among categorical

variables, 48–50
dealing with correlated variables, 44–45
getting to know the data set, 42–44
multivariate relationships, 59–61

interaction, 59–60
three dimensional scatterplot, 60–61

numerical variables, 52–59
correlation, 53–54
graphical analysis of numerical variables,

54–59
normalized histogram, 55–58
retaining variables in model, 58–59

selecting interesting subsets of the data, 61–62
versus hypothesis testing, 41–42

Extension to general categorical data,
189–190

Extrapolation, 79

False negative rate, 204
False negatives, 204
False positive rate, 204
False positives, 204
FBI, 2
Feedforward network, 131–132

Gains charts, 208–211
Gartner Group, 2
Generalized rule induction (GRI), 190–196

application of, 191–193
Global minimum, 139
Gradient descent method, 135–136
GRI, see Generalized rule induction
Grinstein, Georges, 5
Group node, 107–108

Hidden layer, 132
size of, 132

Hierarchical clustering, 149
Hipp, Jochen, 8
Histogram, normalized, 55–58

ID3 algorithm, 116
Identifying misclassifications, see Data

preprocessing
Indicator variables for neural networks, 130
Information gain, 116
Input and output encoding, neural networks,

129–131
Input layer, 131–132
Insider trading, 18
Instance-based learning, 96
Intelligent Data Analysis (journal), 19
Interquartile range, 39
Itemset, 184

frequency, 184
frequent, 184

J -measure, 190–191
J -statistic, behavior of, 191

Kelly, Chris, 1
k-means clustering, 153–162

application of, using SAS Enterprise Miner,
158–161

choosing k, 157
cluster centroid, 153
example of, 153–158
using cluster membership to make predictions,

161
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k-nearest neighbor algorithm, 90–106
choosing k, 105–106
combination function, 101–103

simple unweighted voting, 101–102
weighted voting, 102–103

database considerations, balancing the dataset,
104

distance function (distance metric), 99–101
“different from” function, 100
Euclidian distance, 99
similarity, 99–101
triangle inequality, 99

estimation and prediction, locally weighted
averaging, 104–105

instance-based learning, 96
stretching the axes, 103–104

Kohonen learning, 165
Kohonen networks, 163–179

adaptation, 165, 166
algorithm, 166
application of clustering using, 170–177
cluster membership as input to downstream

models, 177
cluster profiles, 175–177
cluster validity, 170
competition, 165, 166
cooperation, 165, 166
example of a Kohonen network study, 166–170
learning, 165
neighborhood size, 167
self-organizing maps (SOMs), 163–165

competitive learning, 163
scoring function, 163–164
winning node, 165

weight adjustment, 167–169
Kohonen, Tuevo, 163

Layered network, 131–132
Leaf nodes, 107–108
Learning rate, 139–140
Least squares, 78
Lift, 208–209
Lift charts, 208–211
Lindner, Guido, 8
Linkage

average, 150, 152–153
complete, 150–152
single, 150–151

Local minimum, 139
Local patterns versus global models, 197–198
Louie, Jen Que, 10

Margin of error, 73–74
Market basket analysis, 180–182

data representation, 182–183

Mean, 69–70
Mean square error (MSE), 95, 201
Measures of variability, 70
Median, 70
Minimum descriptive length principle, 201
Misclassification cost adjustment, 205–207
Missing data, see Data preprocessing
Mode, 70
Model complexity, 92–93
Model evaluation techniques, 200–212

confluence of results, 212
classification task, 203–211

confusion matrix, 203–204
decision cost/benefit analysis, 207–208
error rate, 203–204
false negative rate, 204
false negatives, 204
false positive rate, 204
false positives, 204
gains charts, 208–211
lift, 208–209
lift charts, 208–211
misclassification cost adjustment, 205–207
type I error, 205
type II error, 205

description task, 201
minimum descriptive length principle, 201
Occam’s razor, 201

estimation and prediction tasks, 201–202
estimation error, 201
mean square error (MSE), 201
residual, 201
standard error of the estimate, 202

interweaving model evaluation with model
building, 211–212

Mohammed Atta, 2
Momentum term, 140–142
Multicollinearity, 84

Naisbitt, John, 4
NCR, 5
Neighborhood size, 167
Neural networks, 128–146

application of neural network modeling,
143–145

back-propagation, 135
example of, 137–138
minimizing SSE, 135
stochastic back-propagation, 137

back-propagation rules, 136–137
error responsibility, 137

estimation and prediction, 131
gradient descent method, 135–136

provides direction for adjusting weights,
135
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learning rate, 139–140
helps move weights to global minimum, 139
reducing the learning rate, 140

momentum term, 140–142
momentum represents inertia, 141

neurons, 128–129
indicator variables, 130
input and output encoding, 129–131

sensitivity analysis, 142–143
opacity of neural networks, 142

sigmoid activation function, 134
squashing function, 134

simple example of a neural network, 131–134
combination function, 132–133
completely connected network, 131–132
feedforward network, 131–132
hidden layer, size of, 132
input layer, 131–132
layered network, 131–132
nonlinear behavior, 133
output layer, 132
sigmoid function, 133
weights, connection, 132

termination criteria, 139
cross-validation termination, 139
global minimum, 139
local minimum, 139

Neurons, 128–129
New York Knicks, 3
Nonlinear behavior of neural networks, 133
Normal plot of the residuals, 85

Occam’s razor, 201
Outliers, methods for identifying, see Data

preprocessing
Output layer, 132
Overfitting, 92–93

Parameter, 71
Plot of standardized residuals versus fitted values,

86
Point estimate, 72
Point estimation, 72
Population, 71
Precision, 74
Prediction, 13, 67–88, 104–105, 131
Prediction error, 77
Prediction task, see Model evaluation techniques
Procedure for mining, 184

Quartiles, 39
Quinlan, Ross, 116

Range, 71
Regression coefficients, 76

Regression line, 76–77
Regression, simple linear, 12

requirements for, 109
Residual, 77, 201

Sample, 71
Sampling error, 73
Scatterplot, three dimensional, 60–61
Scoring function, SOMs, 163–164
Self-organizing maps (SOMs), 163–165
Sensitivity analysis, 142–143
Sigmoid activation function, 134
Sigmoid function, 133
Similarity, 99–101
Simoudis, Evangelos, 2
Slope, 76
Sodium/potassium ratio, 14–15
SPSS, Inc., 2, 5
Squashing function, 134
Standard deviation, 71
Standard error of the estimate, 202
Statistic, 71
Statistical approaches to estimation and

prediction, 67–89
bivariate methods, 75–82
confidence in our estimates, 73

sampling error, 73
confidence interval estimation, 73–75

confidence interval estimate, 73–74
confidence level, 73
margin of error, 73–74
precision, 74
t-interval for the mean, 74–75

confidence intervals for the mean value of
y given x , 80–82

extrapolation, 79
dangers of, 79–80

measures of center, 69–70
mean, 69–70
measures of location, 69
mode, 70

meaures of spread, 70–71
measures of variability, 70
range, 71
standard deviation, 71

multiple regression, 83–88
draftsman’s plot, 83–84
multicollinearity, 84

prediction intervals for a randomly chosen value
of y given x , 80–82

unusual observations, 82
simple linear regression, 75–82

correlation, 78
estimated regression equation (ERE), 76
estimation error, 77
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Statistical approaches to estimation and
prediction (Continued )

least squares, 78
prediction error, 77
regression coefficients, 76
regression line, 76–77
residual, 77
slope, 76
y-intercept, 76

statistical inference, 71–75
estimation, 72
parameter, 71
point estimate, 72
point estimation, 72
population, 71
representative sample of population, 71–72
statistic, 71

univariate methods, 69–75
verifying model assumptions, 85–86

normal plot of the residuals, 85
plot of standardized residuals versus fitted

values, 86
Stochastic back-propagation, 137
Supervised methods, 91
Supervised modeling, methodology for, 91–93

model complexity, 92–93
overfitting, 92–93
test data set, 91–92
training data set, 91–92
underfitting, 92–93
validation data set, 92

Supervised versus unsupervised learning, 90–91,
196

supervised methods, 91
unsupervised methods, 90

Support, 122, 184

Tabular data format, 182–183
Target variable, 14
Tasks, data mining, 11–17

association, 17
classification, 14–15
clustering, 16–17
description, 11
estimation, 12–13
prediction, 13

Termination criteria, 139
Terrorism, 2
Test data set, 91–92
t-interval for the mean, 74–75
Training data set, 14, 91–92
Transactional data format, 182–183
Triangle inequality, 99
Type I error, 205
Type II error, 205

UCI Repository of Machine Learning Databases,
42, 122

Underfitting, 92–93
Unsupervised methods, 90
Unusual observations, 82

Validation data set, 92
Voting

simple unweighted, 101–102
weighted, 102–103

Web graph, 50
Weight adjustment, 167–169
Weights, connection, 132
Within cluster variation (WCV), 149, 154

y-intercept, 76
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