
Python Tutorial Python\��H
Release 2.5b2

Guido van Rossum
Fred L. Drake, Jr., editor

11th July, 2006

Python Software Foundation
Email: docs@python.org

Copyright © 2001-2006 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together with its
interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most
platforms.

Python´�«N´ÆS�r��?§�ó"§�¹
p��p?êâ(�§U
^{ü
p���ª?1
¡�é�?§"Python`ä��{ÚÄ�a.§±9§U,�)ºUå§¦Ù¤�
�õê²�þ2�·
^u�+��n����óÚmu�¸"

The Python interpreter and the extensive standard library are freely available in source or binary form for all major
platforms from the Python Web site, http://www.python.org/, and may be freely distributed. The same site
also contains distributions of and pointers to many free third party Python modules, programs and tools, and additional
documentation.

Python)ºì9Ù*ÐIO¥�
èÚ?È���±lPython�WebÕ:, http://www.python.org/,9
Ù¤kº�Õþ�¤¼�§¿��±gduÙ"TÕ:þ�Jø
Python ��
1n��¬§§S§ó
ä§±9N\�©�"

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or other
languages callable from C). Python is also suitable as an extension language for customizable applications.

Python)ºì�±éN´�ÏLC½öC++£½öÙ§�±ÏLCN^��ó¤*Ð#¼êÚêâa
."Python��±��½�A^�*Ð�ó"

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system. It
helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the tutorial
can be read off-line as well.

�Ãþ�Öö0�Python�ó9ÙXÚ�Ä��£�Vg"�ÜPython)ºìÆS¬ék�Ï§ØL¤k�
~fÑ®�)3©¥§¤±ù�Ãþ�é�±l��Ö"

For a description of standard objects and modules, see the Python Library Reference document. The Python Refer-
ence Manual gives a more formal definition of the language. To write extensions in C or C++, read Extending and
Embedding the Python Interpreter and Python/C API Reference. There are also several books covering Python in
depth.

I�k'IOé�Ú�¬��[0��{§��ÎPython¥ë�Ãþ©�"Pythonë�ÃþJø
�õ�
'u�ó�¡��ª`²"I�?�C½C++*Ð§��ÖPython)ºì�*ÐÚ8¤±9Python/C APIë
�Ãþ"ùA�ÖºX
���Ýþ�Python�£"

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs, and you
will be ready to learn more about the various Python library modules described in the Python Library Reference.

�ÃþØ¬ºXPython�¤kõU§�Ø¬�)º¤^��¤k�'��£"��§§0�
NõPython
¥�Ú<58�õU§ù¬éÖöÝºù��ó�º��k�Ï"ÖL§�§\AT�±�ÖÚ?�Python
�¬Ú§S§�e5�±lPython¥ë�Ãþ¥?�ÚÆSPythonE,õC�¥Ú�¬"

http://www.python.org/
http://www.python.org/
../lib/lib.html
../ref/ref.html
../ref/ref.html
../ext/ext.html
../ext/ext.html
../api/api.html
../lib/lib.html
../ref/ref.html
../ext/ext.html
../api/api.html
../api/api.html
../lib/lib.html
../lib/lib.html

CONTENTS

1 Whetting Your Appetitemmm���èèè 1

2 Using the Python Interpreter¦¦¦^̂̂Python)))ºººììì 5
2.1 Invoking the InterpreterN^)ºì . 5
2.2 The Interpreter and Its Environment)ºì9Ù�¸ . 7

3 More Control Flow Tools���\\\666§§§������ 11
3.1 if Statements . 11
3.2 for Statements for�é . 11
3.3 The range() Function range()¼ê . 12
3.4 break and continue Statements, and else Clauses on Loops breakÚcontinue�é,±9

Ì�¥�elsefé . 13
3.5 pass Statements pass�é . 14
3.6 Defining Functions½Â¼ê . 14
3.7 More on Defining Functions�\¼ê½Â . 16

4 Data Structuresêêêâââ(((��� 23
4.1 More on Lists�\óL . 23
4.2 The del statement del�é . 28
4.3 Tuples and Sequences�|ÚS� . 28
4.4 Sets8Ü . 30
4.5 Dictionariesi; . 30
4.6 Looping TechniquesÌ�Eâ . 32
4.7 More on Conditions�\^��� . 33
4.8 Comparing Sequences and Other TypesØÓS�a.�'� . 34

5 Modules���¬¬¬ 37
5.1 More on Modules�\�¬ . 38
5.2 Standard ModulesIO�¬ . 41
5.3 The dir() Function dir()¼ê . 42
5.4 Packages� . 43

6 Input and OutputÑÑÑ\\\ÚÚÚÑÑÑÑÑÑ 49
6.1 Fancier Output Formatting�OÑÑ�ª . 49
6.2 Reading and Writing FilesÖ�©� . 53

7 Errors and Exceptions���ØØØÚÚÚÉÉÉ~~~ 57
7.1 Syntax Errors�{�Ø . 57
7.2 ExceptionsÉ~ . 57
7.3 Handling Exceptions?nÉ~ . 58

i

7.4 Raising Exceptions�ÑÉ~ . 61
7.5 User-defined Exceptions^rg½ÂÉ~ . 62
7.6 Defining Clean-up Actions½Â�n1� . 63
7.7 Predefined Clean-up Actionsý½Â�n1� . 65

8 Classes 67
8.1 A Word About Terminologyâ�û! . 67
8.2 Python Scopes and Name Spaces�^�Ú·¶�m . 68
8.3 A First Look at ClassesÐ£a . 70
8.4 Random Remarks�
`² . 74
8.5 InheritanceU« . 76
8.6 Private VariableshkCþ . 77
8.7 Odds and EndsÖ¿ . 78
8.8 Exceptions Are Classes TooÉ~�´a . 79
8.9 IteratorsS�ì . 80
8.10 Generators)¤ì . 81
8.11 Generator Expressions)¤ìL�ª . 82

9 Brief Tour of the Standard LibraryIIIOOO¥¥¥VVVAAA 83
9.1 Operating System Interfaceö�XÚ�� . 83
9.2 File Wildcards©�Ï�Î . 84
9.3 Command Line Arguments·-1ëê . 84
9.4 Error Output Redirection and Program Termination�ØÑÑ­½�Ú§Sª� 84
9.5 String Pattern MatchingiÎG�K�� . 85
9.6 MathematicsêÆ . 85
9.7 Internet Accesspé��¯ . 86
9.8 Dates and TimesFÏÚ�m . 86
9.9 Data CompressionêâØ . 87
9.10 Performance Measurement5UÝþ . 87
9.11 Quality Control�þ�� . 87
9.12 Batteries Included . 88

10 Brief Tour of the Standard Library – Part IIIIIOOO¥¥¥VVVAAA 91
10.1 Output Formatting�ªzÑÑ . 91
10.2 Templating�� . 92
10.3 Working with Binary Data Record Layouts¦^�?�P¹� . 93
10.4 Multi-threadingõ�§ . 94
10.5 LoggingF� . 95
10.6 Weak ReferencesfÚ^ . 95
10.7 Tools for Working with ListsóLóä . 96
10.8 Decimal Floating Point Arithmetic�?�2:ê�{ . 98

11 What Now? 99

A Interactive Input Editing and History Substitution 101
A.1 Line Editing . 101
A.2 History Substitution . 101
A.3 Key Bindings . 101
A.4 Commentary . 103

B Floating Point Arithmetic: Issues and Limitations 105
B.1 Representation Error . 107

C History and License 109
C.1 History of the software . 109

ii

C.2 Terms and conditions for accessing or otherwise using Python . 110
C.3 Licenses and Acknowledgements for Incorporated Software . 113

D Glossary 123

Index 127

iii

iv

CHAPTER

ONE

Whetting Your Appetitem�è

If you do much work on computers, eventually you find that there’s some task you’d like to automate. For example,
you may wish to perform a search-and-replace over a large number of text files, or rename and rearrange a bunch of
photo files in a complicated way. Perhaps you’d like to write a small custom database, or a specialized GUI application,
or a simple game.

b�XJ\�^O�Å�éõó�§\F"k
?Ö�±gÄ�¤"~X§\�UF"3�þ�©�©�
¥?1�éO�ö�§�N´ÏLE,��ª­·¶¿­#{��1ã�©�"�U\U�����½�
êâ¥§½öAÏ�GUIA^§S§½ö{ü�iZ"

If you’re a professional software developer, you may have to work with several C/C++/Java libraries but find the usual
write/compile/test/re-compile cycle is too slow. Perhaps you’re writing a test suite for such a library and find writing
the testing code a tedious task. Or maybe you’ve written a program that could use an extension language, and you
don’t want to design and implement a whole new language for your application.

XJ\´�;��^�muö§\�U�^A�C/C++/Java¥ó�§�´uyÏ~�?�/?È/ÿÁ/­?È
Ì��ú
"�U\3�z�¥?�éA�ÿÁ�è§�´uyù´���<�¹�"½ö\3?���
�k*Ð�ó�§S§
\Ø��\�A^§S�OÚ¢y���#��ó"

Python is just the language for you.

PythonÒ´\I���ó"

You could write a UNIX shell script or Windows batch files for some of these tasks, but shell scripts are best at moving
around files and changing text data, not well-suited for GUI applications or games. You could write a C/C++/Java
program, but it can take a lot of development time to get even a first-draft program. Python is simpler to use, available
on Windows, MacOS X, and UNIX operating systems, and will help you get the job done more quickly.

\U
�é�
?Ö?�UNIX shell��½öWindows1?n©�§�´���ó�ò�£Ä©�Ú?U©
�êâ§Ø·ÜGUIA^§S½öiZ"\U�C/C++/Java§S§�´ù
EâÒ´mu�{ü�§S��
^��þ�mu�m"ÃØ3Windows!MacOS X½öUNIXö�XÚþ§Python�~´u¦^§�±�Ï
\�¯��¤?Ö"

Python is simple to use, but it is a real programming language, offering much more structure and support for large pro-
grams than shell scripts or batch files can offer. On the other hand, Python also offers much more error checking than
C, and, being a very-high-level language, it has high-level data types built in, such as flexible arrays and dictionaries.
Because of its more general data types Python is applicable to a much larger problem domain than Awk or even Perl,
yet many things are at least as easy in Python as in those languages.

PythonéN´þÃ§�§´��ý��?§�ó§�éuShell§§Jø��é�.§S�|±Ú(��õ
�õ",��¡§§Jø
'C�õ��Øu�§¿�§�����~p?��ó§§PkS��p?êâ
a.§~X�Cê|Úi;§XJÏLC5¢y�{§ù
ó��U4\�ZþAU��m"Ï�Pk�õ
�Ï^êâa.§Python·Ü'Awk$�Perl�2��¯K+�§3Ù§�éõ+�§Python��'O��
ó�´^�õ"

Python allows you to split your program into modules that can be reused in other Python programs. It comes with a

1

large collection of standard modules that you can use as the basis of your programs — or as examples to start learning
to program in Python. Some of these modules provide things like file I/O, system calls, sockets, and even interfaces to
graphical user interface toolkits like Tk.

Python �±4\rgC�§S©�¤ØÓ��¬§±B3Ù§�Python §S¥­^"ù�\Ò�±4g
C�§SÄu��é��IO�¬8½ö^§���«~5ÆSPython?§"Python¥8¤
�
aq©
�I/O§XÚN^§sockets§$��Tkù��ã/óä��"

Python is an interpreted language, which can save you considerable time during program development because no
compilation and linking is necessary. The interpreter can be used interactively, which makes it easy to experiment with
features of the language, to write throw-away programs, or to test functions during bottom-up program development.
It is also a handy desk calculator.

Python´��)º.�ó§Ï�ØI�?ÈÚó���m§§�±�\�e�
mu�m")ºì�±�p
ª¦^§ù�Ò�±é�B�ÿÁ�ó¥��«õU§±Bu?�uÙ^�§S§½ö?1ge
þ�m
u"��±�§´���Ã�^�O�ì"

Python enables programs to be written compactly and readably. Programs written in Python are typically much shorter
than equivalent C, C++, or Java programs, for several reasons:

Python �±�Ñé;nÚ�Ö5ér�§S"^Python ��§SÏ~'Ó��C!C++ ½Java§S�á�
õ§ù´Ï�±eA��Ïµ

• the high-level data types allow you to express complex operations in a single statement;

• statement grouping is done by indentation instead of beginning and ending brackets;

• no variable or argument declarations are necessary.

• p?êâ(�¦\�±3��üÕ��é¥L�ÑéE,�ö�¶

• �é�|��6u ?
Ø´begin/end¬¶

• ØI�Cþ½ëê(²"

Python is extensible: if you know how to program in C it is easy to add a new built-in function or module to the
interpreter, either to perform critical operations at maximum speed, or to link Python programs to libraries that may
only be available in binary form (such as a vendor-specific graphics library). Once you are really hooked, you can
link the Python interpreter into an application written in C and use it as an extension or command language for that
application.

Python´�*Ð�µXJ\¬^C�ó�§S§@Ò�±éN´��)ºìV\#�8¤�¬ÚõU§½ö
`z´¶§¦Ù�����Ý§½ö¦PythonU
ó��¤I��?�e�þ£'X,�;^�û�ã/
¥¤"�\ý�ÙGù��
§\Ò�±òPython8¤?dC�¤�§S§rPython��ù�§S�*Ð
½·-1�ó"

By the way, the language is named after the BBC show “Monty Python’s Flying Circus” and has nothing to do with
nasty reptiles. Making references to Monty Python skits in documentation is not only allowed, it is encouraged!

^B`�e§ù��ó�¶i5
uBBC�/Monty Python’s Flying Circus0!8§Ú8��÷Ávk?Û
'X"3©�¥Ú^Monty Python;�Ø=´#N�§
��É��y�

Now that you are all excited about Python, you’ll want to examine it in some more detail. Since the best way to learn
a language is to use it, the tutorial invites you to play with the Python interpreter as you read.

y3·�®²
)
Python¥¤k-Ä<%�ÀÜ§�V\�c[�ÁÁ§
"ÆS���ó�Ð��{
Ò´¦^§§X\¤Ö��§�©¬Ú+\$^Python)ºì"

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane information, but
essential for trying out the examples shown later.

e�!¥§·���`²)ºì�^{"ùvk�o ��SN§ØLkÏu·�öS�¡Ð«�~f"

2 Chapter 1. Whetting Your Appetitem�è

The rest of the tutorial introduces various features of the Python language and system through examples, beginning
with simple expressions, statements and data types, through functions and modules, and finally touching upon ad-
vanced concepts like exceptions and user-defined classes.

��HÙ§Ü©ÏL~f0�
Python�óÚXÚ��«õU§m©´{üL�ª!�{Úêâa.§�
e5´¼êÚ�¬§��´ÃXÉ~Úg½Âaù��p?SN"

3

4

CHAPTER

TWO

Using the Python Interpreter¦
^Python)ºì

2.1 Invoking the InterpreterN^)ºì

The Python interpreter is usually installed as ‘/usr/local/bin/python’ on those machines where it is available; putting
‘/usr/local/bin’ in your UNIX shell’s search path makes it possible to start it by typing the command

Ï~Python�)ºì�SC38IÅì�‘/usr/local/bin/python’8¹e¶r‘/usr/local/bin’8¹�?\�UNIX
Shell�|¢´»p§(�§�±ÏLÑ\

python

to the shell. Since the choice of the directory where the interpreter lives is an installation option, other places are
possible; check with your local Python guru or system administrator. (E.g., ‘/usr/local/python’ is a popular alternative
location.)

5éÄ"Ï�SC´»´�À�§¤±�k�USC3Ù§ �§\�±�SCPython�^r½XÚ+n

éX"£~X§‘/usr/local/python’Ò´��é~��ÀJ¤

On Windows machines, the Python installation is usually placed in ‘C:\Python24’, though you can change this when
you’re running the installer. To add this directory to your path, you can type the following command into the command
prompt in a DOS box:

3WindowsÅìþ§Python Ï~SC3‘C:\Python25’(�©´24§�·�ù�²²´2.5�tut§w5��ö3
ùp�¿
))Èö),�,§·�3$1SC§S��ÿ�±UC§"I�rù�8¹\\�·��Path¥
�{§�±�e¡ù�3DOSI¥Ñ\·-1"

set path=%path%;C:\python24

Typing an end-of-file character (Control-D on UNIX, Control-Z on Windows) at the primary prompt causes the
interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing the following
commands: ‘import sys; sys.exit()’.

Ñ\��©�(åÎ£UNIXþ´ kbdCtrl+D§Windowsþ´Ctrl+Z¤)ºì¬±0�òÑ"XJùvkå�
^§\�±Ñ\±e·-òÑµ‘import sys; sys.exit()’"

The interpreter’s line-editing features usually aren’t very sophisticated. On UNIX, whoever installed the interpreter
may have enabled support for the GNU readline library, which adds more elaborate interactive editing and history
features. Perhaps the quickest check to see whether command line editing is supported is typing Control-P to the

5

first Python prompt you get. If it beeps, you have command line editing; see Appendix A for an introduction to the
keys. If nothing appears to happen, or if ^P is echoed, command line editing isn’t available; you’ll only be able to use
backspace to remove characters from the current line.

)ºì�1?6õU¿ØéE,"C3UNIXþ�)ºì�U¬kGNU readline ¥|±§ù�Ò�±�	
��°|��p?6Ú{¤P¹õU"�Uu�·-1?6ì|±Uå��B��ª´3ÌJ«ÎeÑ
\Ctrl-P"XJkþþ(£O�Å�(ì¤§`²\�±¦^·-1?6õU§lN¹A A�±��¯$�
�0�"XJ�o�vku(§½ö^Pw«
Ñ5§`²·-1?6õUØ�^§\�k^ò��íKÑ
\�·-
"

The interpreter operates somewhat like the UNIX shell: when called with standard input connected to a tty device, it
reads and executes commands interactively; when called with a file name argument or with a file as standard input, it
reads and executes a script from that file.

)ºì�ö�k
�UNIX Shellµ¦^ªà����IOÑ\5N^§�§)ºì�p�)ÖÚ�1·-§
ÏL©�¶ëê½±©���IOÑ\���§§l©�¥)Ö¿�1��"

A second way of starting the interpreter is ‘python -c command [arg] ...’, which executes the statement(s) in
command, analogous to the shell’s -c option. Since Python statements often contain spaces or other characters that are
special to the shell, it is best to quote command in its entirety with double quotes.

éÄ)ºì�1���{´‘python -c command [arg] ...’§ù«�{�±3·-1¥���1�é§
�ÓuShell�-cÀ�"Ï�Python�éÏ~¬�)���a�AÏiÎ§¤±�Ðr���é^VÚÒ�
å5"

Some Python modules are also useful as scripts. These can be invoked using ‘python -m module [arg] ...’,
which executes the source file for module as if you had spelled out its full name on the command line.

k
Python�¬��±����¦^"§��±^‘python -m module [arg] ...’ N^§ù�Ò¬�\
3·-1¥�ÑÙ��¶i��$1
©�"

Note that there is a difference between ‘python file’ and ‘python <file’. In the latter case, input requests
from the program, such as calls to input() and raw_input(), are satisfied from file. Since this file has already
been read until the end by the parser before the program starts executing, the program will encounter end-of-file
immediately. In the former case (which is usually what you want) they are satisfied from whatever file or device is
connected to standard input of the Python interpreter.

5 ¿‘python file’Ú‘python <file’´ k « O � " é u � � « � ¹ § § S ¥ a q u N
^input()raw_input() ù��Ñ\�¦§5gu(½�©�"Ï�3)Ûìm©�1�c§©�®
²��Ö\§¤±§S��©��"3c�«�¹£ùÏ~´\I��¤§�l5gu?Ûé��Python
)ºì�IOÑ\§ÃØ§�´©��´Ù§��"

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode afterwards.
This can be done by passing -i before the script. (This does not work if the script is read from standard input, for the
same reason as explained in the previous paragraph.)

¦^��©��§²~¬$1��,�?\�p�ª"ù��±ÏL3���c\þ-iëê5¢y"£XJ
��5gIOÑ\§ÒØUù�$1§�c�ãJ���Ï��"¤

2.1.1 Argument PassingëêD4

When known to the interpreter, the script name and additional arguments thereafter are passed to the script in the
variable sys.argv, which is a list of strings. Its length is at least one; when no script and no arguments are given,
sys.argv[0] is an empty string. When the script name is given as ’-’ (meaning standard input), sys.argv[0]
is set to ’-’. When -c command is used, sys.argv[0] is set to ’-c’. When -m module is used, sys.argv[0]
is set to the full name of the located module. Options found after -c command or -m module are not consumed by the
Python interpreter’s option processing but left in sys.argv for the command or module to handle.

6 Chapter 2. Using the Python Interpreter¦^Python)ºì

N^)ºì�§��¶ÚN\ëêD\��¶�sys.argv �iÎG�L"vk�½��Úëê
�§§���k����µsys.argv[0] d���iÎG"��¶�½�’-’ £L«IOÑ\¤
�§sys.argv[0]��½�’-’§¦^-c �- �§sys.argv[0] ��½�’-c’"¦^-m moduleëê
�§sys.agv[0]��½��½�¬��¶"-c command ½ö-m module���ëêØ¬�Python)ºì
�À�?nÅ�¤�¼§
´33sys.argv¥§ø��·-ö�"

2.1.2 Interactive Mode�p�ª

When commands are read from a tty, the interpreter is said to be in interactive mode. In this mode it prompts for the
next command with the primary prompt, usually three greater-than signs (‘»> ’); for continuation lines it prompts
with the secondary prompt, by default three dots (‘... ’). The interpreter prints a welcome message stating its
version number and a copyright notice before printing the first prompt:

lttyÖ�·-�§·�¡)ºìó�u�p�ª"ù«�ªe§�âÌJ«Î5�1§ÌJ«ÎÏ~I£
�n��uÒ£‘»> ’¤¶UY�Ü©�¡�láJ«Î§dn�:I££‘... ’¤"31�1�c§)
ºì�<�H&E!��ÒÚÇ�J«µ

python
Python 1.5.2b2 (#1, Feb 28 1999, 00:02:06) [GCC 2.8.1] on sunos5
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look at this if statement:

Ñ\õ1(��I�láJ«Î
§~X§e¡ù�if�éµ

>>> the_world_is_flat = 1
>>> if the_world_is_flat:
... print "Be careful not to fall off!"
...
Be careful not to fall off!

2.2 The Interpreter and Its Environment)ºì9Ù�¸

2.2.1 Error Handling�Ø?n

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it then returns
to the primary prompt; when input came from a file, it exits with a nonzero exit status after printing the stack trace.
(Exceptions handled by an except clause in a try statement are not errors in this context.) Some errors are uncon-
ditionally fatal and cause an exit with a nonzero exit; this applies to internal inconsistencies and some cases of running
out of memory. All error messages are written to the standard error stream; normal output from executed commands
is written to standard output.

k�Øu)�§)ºì�<���Ø&EÚÒ�lì"�p�ªe§§�£ÌJ«Î§XJl©�Ñ\�
1§§3�<Ò�lì�±�"G�òÑ"£É~�±dtry�é¥�exceptfé5��§ù�ÒØ¬Ñ
yþ©¥��Ø&E¤k�
�~�·��Ø¬���"G�eòÑ§ùdÏ~dSÜgñÚS�ÄÑE
¤"¤k��Ø&EÑ�\IO�Ø6¶·-¥�1�ÊÏÑÑ�\IOÑÑ"

Typing the interrupt character (usually Control-C or DEL) to the primary or secondary prompt cancels the input and
returns to the primary prompt.1 Typing an interrupt while a command is executing raises the KeyboardInterrupt

1 A problem with the GNU Readline package may prevent this.

2.2. The Interpreter and Its Environment)ºì9Ù�¸ 7

exception, which may be handled by a try statement.

3ÌJ«Î½NáJ«ÎÑ\¥äÎ£Ï~´Control-C½öDEL¤Ò¬���cÑ\§£�Ì·-1"2.�
1·-�Ñ\��¥äÎ¬�Ñ��KeyboardInterruptÉ~§§�±�tryé�¼"

2.2.2 Executable Python Scripts�1Python��

On BSD’ish UNIX systems, Python scripts can be made directly executable, like shell scripts, by putting the line

BSDa�UNIXXÚ¥§Python���±�Shell��@����1"��3��©�mÞ��1·-§�½
©�Ú�ªµ

#! /usr/bin/env python

(assuming that the interpreter is on the user’s PATH) at the beginning of the script and giving the file an executable
mode. The ‘#!’ must be the first two characters of the file. On some platforms, this first line must end with a
UNIX-style line ending (‘\n’), not a Mac OS (‘\r’) or Windows (‘\r\n’) line ending. Note that the hash, or pound,
character, ‘#’, is used to start a comment in Python.

(�(@Python)ºì3^r´»¥) ‘#!’ 7L´©��cü�iÎ§3,
²�þ§1�17L±UNIXº
��1(åÎ£‘\n’¤(å§ØU^Mac£‘\r’¤½Windows£‘\r\n’¤�(åÎ"5¿§‘#’´Python¥´
15º�å©Î"

The script can be given an executable mode, or permission, using the chmod command:

���±ÏLchmod·-�½�1�ªÚ��"

$ chmod +x myscript.py

2.2.3 Source Code Encoding
§S?è

It is possible to use encodings different than ASCII in Python source files. The best way to do it is to put one more
special comment line right after the #! line to define the source file encoding:

Python�
©��±ÏL?è¦^ASCII±	�iÎ8"�Ð��{´3#! 1�¡^��AÏ�5º15
½ÂiÎ8"

-*- coding: encoding -*-

With that declaration, all characters in the source file will be treated as having the encoding encoding, and it will be
possible to directly write Unicode string literals in the selected encoding. The list of possible encodings can be found
in the Python Library Reference, in the section on codecs.

�âù�(²§Python¬}Áò©�¥�iÎ?è=�encoding?è"¿�§§¦�U�ò�½�?è��
�¤Unicode©�"3Python¥ë�Ãþ¥codecsÜ°�±é��^�?è�L£�â�<²�§í�¦
^cp-936½utf-8?n¥©¨¨Èö5¤"

For example, to write Unicode literals including the Euro currency symbol, the ISO-8859-15 encoding can be used,
with the Euro symbol having the ordinal value 164. This script will print the value 8364 (the Unicode codepoint
corresponding to the Euro symbol) and then exit:

2GNU readline����¯K�U¬E¤§Ã{�~ó�"

8 Chapter 2. Using the Python Interpreter¦^Python)ºì

../lib/lib.html
../lib/module-codecs.html
../lib/lib.html
../lib/module-codecs.html

~X§�±^ISO-8859-15?è�±^5?��¹î�ÎÒ�Unicode©�§Ù?è��164"ù���¬Ñ
Ñ8364£î�ÎÒ�UnicodeéA?è¤,�òÑµ

-*- coding: iso-8859-15 -*-

currency = u"C"
print ord(currency)

If your editor supports saving files as UTF-8 with a UTF-8 byte order mark (aka BOM), you can use that in-
stead of an encoding declaration. IDLE supports this capability if Options/General/Default Source
Encoding/UTF-8 is set. Notice that this signature is not understood in older Python releases (2.2 and earlier),
and also not understood by the operating system for script files with #! lines (only used on UNIX systems).

XJ\�©�?6ì|±UTF-8�ª§¿��±��UTF-8IP£aka BOM - Byte Order Mark¤§\�±^
ù�5�O?è(²"IDLE�±ÏL�½Options/General/Default Source Encoding/UTF-85
|±§"I�5¿�´Î�PythonØ|±ù�IP£Python 2.2½�@���¤§Ó�|±#!1�ö�XÚ
�Ø¬|±§£=^uUNIXXÚ¤"

By using UTF-8 (either through the signature or an encoding declaration), characters of most languages in the world
can be used simultaneously in string literals and comments. Using non-ASCII characters in identifiers is not supported.
To display all these characters properly, your editor must recognize that the file is UTF-8, and it must use a font that
supports all the characters in the file.

¦^UTF-8Sè£ÃØ´^IP�´?è(²¤§·��±3iÎGÚ5º¥¦^­.þ��Ü©�ó"
I£Î¥ØU¦^�ASCIIiÎ8"�
�(w«¤k�iÎ§\�½�3?6ì¥ò©����UTF-8�
ª§
��¦^|±©�¥¤kiÎ�iN"

2.2.4 The Interactive Startup File�pª�¸�éÄ©�

When you use Python interactively, it is frequently handy to have some standard commands executed every time the
interpreter is started. You can do this by setting an environment variable named PYTHONSTARTUP to the name of a
file containing your start-up commands. This is similar to the ‘.profile’ feature of the UNIX shells.

¦^Python)ºì��ÿ§·��UI�3zg)ºìéÄ��1�
·-"\�±3��©�¥
�¹\���1�·-§�½��¶�PYTHONSTARTUP ��¸Cþ5�½ù�©�"ùaquUnix
shell�‘.profile’©�"

This file is only read in interactive sessions, not when Python reads commands from a script, and not when ‘/dev/tty’
is given as the explicit source of commands (which otherwise behaves like an interactive session). It is executed in
the same namespace where interactive commands are executed, so that objects that it defines or imports can be used
without qualification in the interactive session. You can also change the prompts sys.ps1 and sys.ps2 in this file.

ù�©�3�p¬{Ï´�Ö�§�Pythonl��¥)Ö©�½±ªà‘/dev/tty’��	Ü·-
�KØ¬X
d£¦+§��1�é�´?3�p¬{Ï"¤§�)ºì�1�·-?3Ó��·¶�m§¤±d§½
Â½Ú^����±3)ºì¥ØÉ���¦^"\��±3ù�©�¥UCsys.ps1Úsys.ps2�-"

If you want to read an additional start-up file from the current directory, you can program this in the global start-
up file using code like ‘if os.path.isfile(’.pythonrc.py’): execfile(’.pythonrc.py’)’. If
you want to use the startup file in a script, you must do this explicitly in the script:

XJ\��3�c8¹¥�1N\�éÄ©�§�±3�ÛéÄ©�¥\\aq±e��èµ‘if
os.path.isfile(’.pythonrc.py’): execfile(’.pythonrc.py’)’"XJ\��3,���¥
¦^éÄ©�§7L�3��¥�\ù���éµ

2.2. The Interpreter and Its Environment)ºì9Ù�¸ 9

import os
filename = os.environ.get(’PYTHONSTARTUP’)
if filename and os.path.isfile(filename):

execfile(filename)

10 Chapter 2. Using the Python Interpreter¦^Python)ºì

CHAPTER

THREE

More Control Flow Tools�\6§��

Besides the while statement just introduced, Python knows the usual control flow statements known from other
languages, with some twists.

Ø
c¡0��while�é§Python�lO��ó¥/�
�
6§��õU§¿k¤UC"

3.1 if Statements

Perhaps the most well-known statement type is the if statement. For example:

�N�k¶�´if�é"~Xµ

>>> x = int(raw_input("Please enter an integer: "))
>>> if x < 0:
... x = 0
... print ’Negative changed to zero’
... elif x == 0:
... print ’Zero’
... elif x == 1:
... print ’Single’
... else:
... print ’More’
...

There can be zero or more elif parts, and the else part is optional. The keyword ‘elif’ is short for ‘else if’, and
is useful to avoid excessive indentation. An if . . . elif . . . elif . . . sequence is a substitute for the switch or
case statements found in other languages.

�U¬k"�õ�elifÜ©§else´�À�"'�i/elif0´/else if0� �§ù��±k�;�
L�� ?"if ... elif ... elif ... S�^uO�Ù§�ó¥�switch½case�é"

3.2 for Statements for�é

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating
over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration
step and halting condition (as C), Python’s for statement iterates over the items of any sequence (a list or a string), in
the order that they appear in the sequence. For example (no pun intended):

Python ¥�for �éÚC ½Pascal ¥�ÑkØÓ"Ï~�Ì��U¬�â����ê�Ú?L§
£XPascal¤½d^r5½ÂS�Ú½Ú¥�^�£XC ¤§Python �for �é�â?¿S�£óL½

11

iÎG¤¥�f�§U§�3S�¥�^S5?1S�"~X£vkV�¤µ

>>> # Measure some strings:
... a = [’cat’, ’window’, ’defenestrate’]
>>> for x in a:
... print x, len(x)
...
cat 3
window 6
defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence types,
such as lists). If you need to modify the list you are iterating over (for example, to duplicate selected items) you must
iterate over a copy. The slice notation makes this particularly convenient:

3S�L§¥?US�S�ØS�£�k3¦^óLù���CS��â¬kù���¹¤"XJ\��
?U\S��S�£~X§E�ÀJ�¤§\�±S�§�E�"¦^��I£Ò�±é�B���ù�
:µ

>>> for x in a[:]: # make a slice copy of the entire list
... if len(x) > 6: a.insert(0, x)
...
>>> a
[’defenestrate’, ’cat’, ’window’, ’defenestrate’]

3.3 The range() Function range()¼ê

If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It generates lists
containing arithmetic progressions:

XJ\I���ê�S�§S�¼êrange()�U¬ék^§§)¤����?êóL"

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list; range(10) generates a list of 10 values, the legal indices
for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the ‘step’):

range(10))¤
���¹10���óL§§^óL�¢Ú�W¿
ù��Ý�10��L§¤)¤�óL
¥Ø�)��¥�(å�"��±4rangeö�l,��ê�m©§½ö�±�½��ØÓ�Ú?�£$�
´Kê§k�ù��¡�/Ú�0¤µ

>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(-10, -100, -30)
[-10, -40, -70]

12 Chapter 3. More Control Flow Tools�\6§��

To iterate over the indices of a sequence, combine range() and len() as follows:

I�S�óL¢Ú�{§Xe¤«(Ü¦^range()Úlen()µ

>>> a = [’Mary’, ’had’, ’a’, ’little’, ’lamb’]
>>> for i in range(len(a)):
... print i, a[i]
...
0 Mary
1 had
2 a
3 little
4 lamb

3.4 break and continue Statements, and else Clauses on Loops
breakÚcontinue�é,±9Ì�¥�elsefé

The break statement, like in C, breaks out of the smallest enclosing for or while loop.

break�éÚC¥�aq§^uaÑ�C��?for½whileÌ�"

The continue statement, also borrowed from C, continues with the next iteration of the loop.

continue�é´lC¥/�5�§§L«Ì�UY�1e�gS�"

Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of the list (with
for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement.
This is exemplified by the following loop, which searches for prime numbers:

Ì��±k��elsefé;§3Ì�S�����L£éufor¤½�1^��false£éuwhile¤��
1§�Ì��break¥���¹eØ¬�1"±e|¢�ê�«~§Sü«
ù�féµ

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print n, ’equals’, x, ’*’, n/x
... break
... else:
... # loop fell through without finding a factor
... print n, ’is a prime number’
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

3.4. break and continue Statements, and else Clauses on Loops breakÚcontinue�é,±9Ì
�¥�elsefé

13

3.5 pass Statements pass�é

The pass statement does nothing. It can be used when a statement is required syntactically but the program requires
no action. For example:

pass�é�o�Ø�"§^u@
�{þ7L�k�o�é§�§S�o�Ø��|Ü§~Xµ

>>> while True:
... pass # Busy-wait for keyboard interrupt
...

3.6 Defining Functions½Â¼ê

We can create a function that writes the Fibonacci series to an arbitrary boundary:

·��±½Â��¼ê±)¤?¿þ.��Å@êê�µ

>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while b < n:
... print b,
... a, b = b, a+b
...
>>> # Now call the function we just defined:
... fib(2000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by the function name and the parenthesized list
of formal parameters. The statements that form the body of the function start at the next line, and must be indented. The
first statement of the function body can optionally be a string literal; this string literal is the function’s documentation
string, or docstring.

'�idef Ú\
��¼ê½Â"3Ù�7L�k¼ê¶Ú�)/ªëê��)Ò"¼êN�éle
�1m©§7L´ ?�"¼êN�1�1�±´��iÎG�§ù�iÎG´T¼ê�(©�iÎG
£documentation string¤)§��¡�docstring"

There are tools which use docstrings to automatically produce online or printed documentation, or to let the user
interactively browse through code; it’s good practice to include docstrings in code that you write, so try to make a
habit of it.

k
©�iÎGóä�±3�?n½�<©�§½4^r�p�èA�è;3�è¥\\©�iÎG´��
Ð��{§AT�¤ù�S."

The execution of a function introduces a new symbol table used for the local variables of the function. More precisely,
all variable assignments in a function store the value in the local symbol table; whereas variable references first look in
the local symbol table, then in the global symbol table, and then in the table of built-in names. Thus, global variables
cannot be directly assigned a value within a function (unless named in a global statement), although they may be
referenced.

�1¼ê�¬�ÛÜCþÚ\��#�ÎÒL"¤k�ÛÜCþÑ�;3ù�ÛÜÎÒL¥"Ú^ëê
�§¬klÛÜÎÒL¥�é§,�´�ÛÎÒL§,�´S�·¶L"Ïd§�Ûëê�,�±�Ú
^§�§�ØU3¼ê¥��D�£Ø�§�^global�é·¶¤"

14 Chapter 3. More Control Flow Tools�\6§��

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not
the value of the object).1 When a function calls another function, a new local symbol table is created for that call.

¼êÚ^�¢Sëê3¼êN^�Ú\ÛÜÎÒL§Ïd§¢ëo´D�N^£ùp��o´��é�Ú
^§
Ø´Té���¤"2 ��¼ê�,��¼êN^�§��#�ÛÜÎÒL3N^L§¥�Mï"

A function definition introduces the function name in the current symbol table. The value of the function name has a
type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which
can then also be used as a function. This serves as a general renaming mechanism:

¼ê½Â3�cÎÒL¥Ú\¼ê¶"��^r½Â¼ê§¼ê¶k���)ºì@��a.�"ù��
�±D�Ù§·¶§¦ÙU
����¼ê5¦^"ùÒ���­·¶Å�µ

>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
1 1 2 3 5 8 13 21 34 55 89

You might object that fib is not a function but a procedure. In Python, like in C, procedures are just functions that
don’t return a value. In fact, technically speaking, procedures do return a value, albeit a rather boring one. This value
is called None (it’s a built-in name). Writing the value None is normally suppressed by the interpreter if it would be
the only value written. You can see it if you really want to:

\�U@�fibØ´��¼ê£function¤§
´��L§£procedure¤"PythonÚC��§L§�´��
vk�£��¼ê"¢Sþ§lEâþù§L§�k���£�§�,´��Ø?<U��"ù���¡
�None£ù´��S�·¶¤"XJ����´None�{§Ï~)ºìØ¬���NoneÑ5§XJ\ý
���w§�{§�±ù��µ

>>> print fib(0)
None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

±e«~ü«
XÛl¼ê¥�£���¹�Å@êê��ê�óL§
Ø´�<§µ

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while b < n:
... result.append(b) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

1 Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee
makes to it (items inserted into a list).

2¯¢þ§¡��N^é��Ú^�Ü·"Ï����Cé�D4?5�§N^ö�±w��N^é��?Û?U£X3óL¥�
\��#�f�¤"

3.6. Defining Functions½Â¼ê 15

This example, as usual, demonstrates some new Python features:

Ú±c��§ù�~fü«
�
#�PythonõUµ

• The return statement returns with a value from a function. return without an expression argument returns
None. Falling off the end of a procedure also returns None.

return�él¼ê¥�£���§Ø�L�ª�return�£None"L§(å��¬�£None"

• The statement result.append(b) calls a method of the list object result. A method is a function that
‘belongs’ to an object and is named obj.methodname, where obj is some object (this may be an expression),
and methodname is the name of a method that is defined by the object’s type. Different types define different
methods. Methods of different types may have the same name without causing ambiguity. (It is possible to define
your own object types and methods, using classes, as discussed later in this tutorial.) The method append()
shown in the example is defined for list objects; it adds a new element at the end of the list. In this example it is
equivalent to ‘result = result + [b]’, but more efficient.

�éresult.append(b) ¡�óLé�result ����{£method ¤"�{´��/áu0
,�é��¼ê§§�·¶�obj.methodename §ùp�obj ´,�é�£�U´��L�
ª¤§methodename ´,�3Té�a.½Â¥��{�·¶"ØÓ�a.½ÂØÓ��{"
ØÓa.�UkÓ�¶i��{§�Ø¬· "£�\½ÂgC�é�a.Ú�{�§�U¬Ñyù
«�¹§��H�¡�Ù!¬0�XÛ¦^a.¤"«~¥ü«�append()�{dóLé�½Â§
§�óL¥\\��#��"3«~¥§�Óu‘"result = result + [b]"’§ØL�Ç�p"

3.7 More on Defining Functions�\¼ê½Â

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

k�I�½Âëê�ê�C�¼ê"kn��{�±��8�§·��±|Ü¦^§�"

3.7.1 Default Argument Valuesëê%@�

The most useful form is to specify a default value for one or more arguments. This creates a function that can be called
with fewer arguments than it is defined to allow. For example:

�k^�/ª´���½õ�ëê�½%@�"ù�Mï�¼ê�±^���ëê5N^"~Xµ

def ask_ok(prompt, retries=4, complaint=’Yes or no, please!’):
while True:

ok = raw_input(prompt)
if ok in (’y’, ’ye’, ’yes’): return True
if ok in (’n’, ’no’, ’nop’, ’nope’): return False
retries = retries - 1
if retries < 0: raise IOError, ’refusenik user’
print complaint

This function can be called either like this: ask_ok(’Do you really want to quit?’) or like this:
ask_ok(’OK to overwrite the file?’, 2).

ù�¼ê��±^±e��ªN^µask_ok(’Do you really want to quit?’)§½ö�ù
�µask_ok(’OK to overwrite the file?’, 2)"

This example also introduces the in keyword. This tests whether or not a sequence contains a certain value.

ù�«~�0�
'�iin"§uÿ��S�¥´Ä�¹,��½��"

16 Chapter 3. More Control Flow Tools�\6§��

The default values are evaluated at the point of function definition in the defining scope, so that

%@�3¼ê½Âã�)Û§Xe¤«µ

i = 5

def f(arg=i):
print arg

i = 6
f()

will print 5.

±þ�è¬�<5"

Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable
object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

print f(1)
print f(2)
print f(3)

This will print

ù¬�<Ñµ

[1]
[1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

XJ\Ø�3ØÓ�¼êN^�m��ëê%@�§�±Xe¡�¢~��?�¼êµ

def f(a, L=None):
if L is None:

L = []
L.append(a)
return L

3.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form ‘keyword = value’. For instance, the following
function:

¼ê�±ÏL'�iëê�/ª5N^§/X‘keyword = value’"~X§±e�¼êµ

3.7. More on Defining Functions�\¼ê½Â 17

def parrot(voltage, state=’a stiff’, action=’voom’, type=’Norwegian Blue’):
print "-- This parrot wouldn’t", action,
print "if you put", voltage, "volts through it."
print "-- Lovely plumage, the", type
print "-- It’s", state, "!"

could be called in any of the following ways:

�±^±e�?��{N^µ

parrot(1000)
parrot(action = ’VOOOOOM’, voltage = 1000000)
parrot(’a thousand’, state = ’pushing up the daisies’)
parrot(’a million’, ’bereft of life’, ’jump’)

but the following calls would all be invalid:

ØL±eA«N^´Ã��µ

parrot() # required argument missing
parrot(voltage=5.0, ’dead’) # non-keyword argument following keyword
parrot(110, voltage=220) # duplicate value for argument
parrot(actor=’John Cleese’) # unknown keyword

In general, an argument list must have any positional arguments followed by any keyword arguments, where the
keywords must be chosen from the formal parameter names. It’s not important whether a formal parameter has a
default value or not. No argument may receive a value more than once — formal parameter names corresponding to
positional arguments cannot be used as keywords in the same calls. Here’s an example that fails due to this restriction:

Ï~§ëê�L¥�z��'�iÑ7L5gu/ªëê§z�ëêÑkéA�'�i"/ªëêkvk
%@�¿Ø­�"¢SëêØU�gDõ��))/ªëêØU3Ó�gN^¥Ó�¦^ �Ú'�i�
½�"ùpk��~fü«
3ù«�åe¤Ñy��}�¹µ

>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument ’a’

When a final formal parameter of the form **name is present, it receives a dictionary containing all keyword argu-
ments except for those corresponding to a formal parameter. This may be combined with a formal parameter of the
form *name (described in the next subsection) which receives a tuple containing the positional arguments beyond the
formal parameter list. (*name must occur before **name.) For example, if we define a function like this:

Ú\��/X**name�ëê�§§�Â��i;§Ti;�¹
¤k�Ñy3/ªëê�L¥�'�i
ëê"ùp�U�¬|Ü¦^��/X*name�/ªëê§§�Â���|£e�!¥¬�[0�¤§�
¹
¤kvkÑy3/ªëê�L¥�ëê�"£*name7L3**name�cÑy¤~X§·�ù�½Â�
�¼êµ

18 Chapter 3. More Control Flow Tools�\6§��

../lib/typesmapping.html
../lib/typesmapping.html

def cheeseshop(kind, *arguments, **keywords):
print "-- Do you have any", kind, ’?’
print "-- I’m sorry, we’re all out of", kind
for arg in arguments: print arg
print ’-’*40
keys = keywords.keys()
keys.sort()
for kw in keys: print kw, ’:’, keywords[kw]

It could be called like this:

§�±�ù�N^µ

cheeseshop(’Limburger’, "It’s very runny, sir.",
"It’s really very, VERY runny, sir.",
client=’John Cleese’,
shopkeeper=’Michael Palin’,
sketch=’Cheese Shop Sketch’)

and of course it would print:

�,§¬UXeSN�<µ

-- Do you have any Limburger ?
-- I’m sorry, we’re all out of Limburger
It’s very runny, sir.
It’s really very, VERY runny, sir.
--
client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that the sort() method of the list of keyword argument names is called before printing the contents of the
keywords dictionary; if this is not done, the order in which the arguments are printed is undefined.

5¿sort()�{3'�ii;SN�<c�N^§ÄK�{§�<ëê��^S´�½Â�"

3.7.3 Arbitrary Argument Lists�Cëê�L

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of argu-
ments. These arguments will be wrapped up in a tuple. Before the variable number of arguments, zero or more normal
arguments may occur.

��§���Ø~^�ÀJ´�±4¼êN^�C�ê�ëê"ù
ëê��C?���|"3ù
�C
�ê�ëê�c§�±k"�õ�ÊÏ�ëêµ

def fprintf(file, format, *args):
file.write(format % args)

3.7. More on Defining Functions�\¼ê½Â 19

3.7.4 Unpacking Argument Listsëê�L�©

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the built-in range() function expects separate start and
stop arguments. If they are not available separately, write the function call with the *-operator to unpack the arguments
out of a list or tuple:

,k�«����¹: �\�D4�ëê®²´���L��N^�¼ê%�É©m����ëê�.ù�
ÿ\�r®k��L
m5. ~XSï¼êrange()I��Õá�start, stopëê. \�±3N^¼ê�\�
�*ö�Î5gÄrëê�L
m:

>>> range(3, 6) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> range(*args) # call with arguments unpacked from a list
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the **-operator:

±Ó���ª§�±¦^**ö�Î©
'�iëê�i;µ

>>> def parrot(voltage, state=’a stiff’, action=’voom’):
... print "-- This parrot wouldn’t", action,
... print "if you put", voltage, "volts through it.",
... print "E’s", state, "!"
...
>>> d = {"voltage": "four million", "state": "bleedin’ demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn’t VOOM if you put four million volts through it. E’s bleedin’ demised !

3.7.5 Lambda Forms Lambda/ª

By popular demand, a few features commonly found in functional programming languages like Lisp have been added
to Python. With the lambda keyword, small anonymous functions can be created. Here’s a function that returns
the sum of its two arguments: ‘lambda a, b: a+b’. Lambda forms can be used wherever function objects are
required. They are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a
normal function definition. Like nested function definitions, lambda forms can reference variables from the containing
scope:

Ñu¢SI�§kA«Ï~3õU5�ó~XLisp¥Ñy�õU\\�
Python"ÏLlambda'�i§�
±Mïá��]¶¼ê"ùpk��¼ê�£§�ü�ëê�Úµ‘lambda a, b: a+b’"Lambda/ª
�±^u?ÛI��¼êé�"Ñu�{��§§��Uk��üÕ�L�ª"�Âþù§§��´ÊÏ
¼ê½Â¥����{E|"aqui@¼ê½Â§lambda/ª�±l�¹��SÚ^Cþµ

20 Chapter 3. More Control Flow Tools�\6§��

>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43

3.7.6 Documentation Strings©�iÎG

There are emerging conventions about the content and formatting of documentation strings.

ùp0��VgÚ�ª"

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly
state the object’s name or type, since these are available by other means (except if the name happens to be a verb
describing a function’s operation). This line should begin with a capital letter and end with a period.

1�1AT´'ué�^å�{0"{áå�§Ø^²(��ãé�¶½a.§Ï�§��±lO�å»

)�£Ø�ù�¶i-|Ò´£ãù�¼êö��Äc¤"ù�1AT±��i1mÞ§±éÒ(�"

If there are more lines in the documentation string, the second line should be blank, visually separating the summary
from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling
conventions, its side effects, etc.

XJ©�iÎGkõ1§1�1AT�Ñ5§��e5��[£ã²(©�"�e5�©�ATk�½õ
ã£ãé��N^�½!>.�A�"

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documen-
tation have to strip indentation if desired. This is done using the following convention. The first non-blank line after
the first line of the string determines the amount of indentation for the entire documentation string. (We can’t use
the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string
literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of the string. Lines that
are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of
whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Python�)ºìØ¬lõ1�©�iÎG¥�Ø ?§¤±7���ÿA�gC�Ø ?"ùÎÜÏ~�S
."1�1���1����1û½
��©�� ?�ª"£·�Ø^1�1´Ï�§Ï~;�Xå©
�ÚÒ§ ?�ªw«�Ø�Ù"¤3x/��u0´iÎG�å© ?"z�1ÑØATk ?§XJ
k ?�{§¤k�3xÑAT�ØK"3x��ÝA��u*Ð�LÎ�°Ý£Ï~´8���¤"

Here is an example of a multi-line docstring:

±e´��õ1©�iÎG�«~µ

3.7. More on Defining Functions�\¼ê½Â 21

>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn’t do anything.
... """
... pass
...
>>> print my_function.__doc__
Do nothing, but document it.

No, really, it doesn’t do anything.

22 Chapter 3. More Control Flow Tools�\6§��

CHAPTER

FOUR

Data Structuresêâ(�

This chapter describes some things you’ve learned about already in more detail, and adds some new things as well.

�Ù!�\ùã�
\®²ÆSL�ÀÜ§¿��\\
#�SN"

4.1 More on Lists�\óL

The list data type has some more methods. Here are all of the methods of list objects:

óLa.kéõ�{§ùp´óLa.�¤k�{µ

append(x)
Add an item to the end of the list; equivalent to a[len(a):] = [x].

r����V\�óL�(�§��ua[len(a):] = [x]

extend(L)
Extend the list by appending all the items in the given list; equivalent to a[len(a):] = L.

ÏLV\�½óL�¤k��5*¿óL§��ua[len(a):] = L"

insert(i, x)
Insert an item at a given position. The first argument is the index of the element before which to in-
sert, so a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is equivalent to
a.append(x).

3�½ ��\����"1��ëê´O��\�Ùc¡�@����¢Ú§~
Xa.insert(0,x)¬�\���óL�c§
a.insert(len(a), x)��ua.append(x)"

remove(x)
Remove the first item from the list whose value is x. It is an error if there is no such item.

íØóL¥��x�1����"XJvkù����§Ò¬�£���Ø"

pop([i])
Remove the item at the given position in the list, and return it. If no index is specified, a.pop() removes
and returns the last item in the list. (The square brackets around the i in the method signature denote that
the parameter is optional, not that you should type square brackets at that position. You will see this notation
frequently in the Python Library Reference.)

lóL��½ �íØ��§¿òÙ�£"XJvk�½¢Ú§a.pop()�£������"��
�=lóL¥�íØ"£�{¥iü>��)ÒL«ù�ëê´�À�§
Ø´�¦\Ñ\�é�)
Ò§\¬²~3Python¥ë�Ãþ¥��ù��IP"¤

index(x)
Return the index in the list of the first item whose value is x. It is an error if there is no such item.

�£óL¥1����x����¢Ú"XJvk�����Ò¬�£���Ø"

23

../lib/lib.html
../lib/lib.html

count(x)
Return the number of times x appears in the list.

�£x3óL¥Ñy�gê"

sort()
Sort the items of the list, in place.

éóL¥���Ò/£�©in place§¿=Tö���?UN^§�é�))Èö¤?1üS"

reverse()
Reverse the elements of the list, in place.

Ò/£�©in place§¿=Tö���?UN^§�é�))Èö¤�üóL¥���"

An example that uses most of the list methods:

e¡ù�«~ü«
óL��Ü©�{µ

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.25), a.count(’x’)
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]

4.1.1 Using Lists as StacksróL��æÒ¦^

The list methods make it very easy to use a list as a stack, where the last element added is the first element retrieved
(“last-in, first-out”). To add an item to the top of the stack, use append(). To retrieve an item from the top of the
stack, use pop() without an explicit index. For example:

óL�{¦�óL�±é�B�����æÒ5¦^§æÒ��A½�êâ(�§�k?\������
��º�£�?kÑ¤"^append()�{�±r����V\�æÒº"^Ø�½¢Ú�pop()�{�
±r����læÒºº�Ñ5"~Xµ

24 Chapter 4. Data Structuresêâ(�

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

4.1.2 Using Lists as QueuesróL��è�¦^

You can also use a list conveniently as a queue, where the first element added is the first element retrieved (“first-in,
first-out”). To add an item to the back of the queue, use append(). To retrieve an item from the front of the queue,
use pop() with 0 as the index. For example:

\��±róL��è�¦^§è���A½�êâ(�§�k?\����kº�£k?kÑ¤"¦
^append() �{�±r��V\�è���§±0�ëêN^pop() �{�±r�k?\���º�Ñ
5"~Xµ

>>> queue = ["Eric", "John", "Michael"]
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.pop(0)
’Eric’
>>> queue.pop(0)
’John’
>>> queue
[’Michael’, ’Terry’, ’Graham’]

4.1.3 Functional Programming Tools¼êz?§óä

There are three built-in functions that are very useful when used with lists: filter(), map(), and reduce().

éuóL5ù§kn�S�¼ê�~k^µfilter()§map()§Úreduce()"

‘filter(function, sequence)’ returns a sequence consisting of those items from the sequence for which func-
tion(item) is true. If sequence is a string or tuple, the result will be of the same type; otherwise, it is always a
list. For example, to compute some primes:

‘filter(function, sequence)’� £ � �sequence£ S � ¤ § �)
 � ½ S � ¥ ¤ k N
^function(item)��£��true���"£XJ�U�{§¬�£�Ó�a.¤"XJsequence ´�
�string £iÎG¤½ötuple£�|¤§�£�7½´Ó�a.§ÄK§§o´list"~X§±e
§S�±O�Ü©�êµ

4.1. More on Lists�\óL 25

>>> def f(x): return x % 2 != 0 and x % 3 != 0
...
>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

‘map(function, sequence)’ calls function(item) for each of the sequence’s items and returns a list of the return
values. For example, to compute some cubes:

‘map(function, sequence)’�z�����gN^function(item)¿ò�£�|¤��óL�£"~X§±
e§SO�á�µ

>>> def cube(x): return x*x*x
...
>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there are sequences and
is called with the corresponding item from each sequence (or None if some sequence is shorter than another). For
example:

�±D\õ�S�§¼ê�7L�kéAêþ�ëê§�1�¬�g^�S�þéA���5N^¼ê
£XJ,
S�'Ù§�á§Ò^None5�O¤"XJrNone����¼êD\§K���£ëê��O
�"~Xµ

>>> seq = range(8)
>>> def add(x, y): return x+y
...
>>> map(add, seq, seq)
[0, 2, 4, 6, 8, 10, 12, 14]

‘reduce(function, sequence)’ returns a single value constructed by calling the binary function function on the first
two items of the sequence, then on the result and the next item, and so on. For example, to compute the sum of the
numbers 1 through 10:

‘reduce(func, sequence)’�£��ü�§§´ù��E�µÄk±S��cü���N^¼ê§2±�
£�Ú1n�ëêN^§�g�1e�"~X§±e§SO�1�10��ê�Úµ

>>> def add(x,y): return x+y
...
>>> reduce(add, range(1, 11))
55

If there’s only one item in the sequence, its value is returned; if the sequence is empty, an exception is raised.

XJS�¥�k����§Ò�£§§XJS�´��§Ò�Ñ��É~"

A third argument can be passed to indicate the starting value. In this case the starting value is returned for an empty
sequence, and the function is first applied to the starting value and the first sequence item, then to the result and the
next item, and so on. For example,

�±D\1n�ëê��Ð©�"XJS�´��§Ò�£Ð©�§ÄK¼ê¬k�ÂÐ©�ÚS��1
����§,�´�£�Úe����§�daí"~Xµ

26 Chapter 4. Data Structuresêâ(�

>>> def sum(seq):
... def add(x,y): return x+y
... return reduce(add, seq, 0)
...
>>> sum(range(1, 11))
55
>>> sum([])
0

Don’t use this example’s definition of sum(): since summing numbers is such a common need, a built-in function
sum(sequence) is already provided, and works exactly like this. Ø��«~¥ù�½Âsum()µÏ�ÜOê�
´��Ï^�I¦§32.3�¥§Jø
S��sum(sequence)¼ê" New in version 2.3.

4.1.4 List ComprehensionsóLí�ª

List comprehensions provide a concise way to create lists without resorting to use of map(), filter() and/or
lambda. The resulting list definition tends often to be clearer than lists built using those constructs. Each list
comprehension consists of an expression followed by a for clause, then zero or more for or if clauses. The result
will be a list resulting from evaluating the expression in the context of the for and if clauses which follow it. If the
expression would evaluate to a tuple, it must be parenthesized.

óLí�ªJø
��MïóL�{üå»§ÃI¦^map()§filter()±9lambda"�£óL�½Â
Ï~�'Mïù
óL��ß"z��óLí�ª�)3��for�é���L�ª§"½õ�for½if
�é"�£�´dfor½iffé���L�ª�����|¤�óL"XJ�������|§7L�\
þ)Ò"

>>> freshfruit = [’ banana’, ’ loganberry ’, ’passion fruit ’]
>>> [weapon.strip() for weapon in freshfruit]
[’banana’, ’loganberry’, ’passion fruit’]
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> [x, x**2 for x in vec] # error - parens required for tuples
File "<stdin>", line 1, in ?

[x, x**2 for x in vec]
^

SyntaxError: invalid syntax
>>> [(x, x**2) for x in vec]
[(2, 4), (4, 16), (6, 36)]
>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

4.1. More on Lists�\óL 27

List comprehensions are much more flexible than map() and can be applied to complex expressions and nested
functions:

óLí�ª'map()�E,§�¦^E,�L�ªÚi@¼ê"

>>> [str(round(355/113.0, i)) for i in range(1,6)]
[’3.1’, ’3.14’, ’3.142’, ’3.1416’, ’3.14159’]

4.2 The del statement del�é

There is a way to remove an item from a list given its index instead of its value: the del statement. This differs from
the pop()) method which returns a value. The del statement can also be used to remove slices from a list or clear
the entire list (which we did earlier by assignment of an empty list to the slice). For example:

k���{�lóL¥íØ�½¢Ú���µdel�é"��£Cþ��pop()�{ØÓ§del�é��±
l��óL¥£r��Ü©½ö��óL(Ò�·�@kò���óLD���Ü©)"~Xµ

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

del can also be used to delete entire variables:

del��±^uíØ��Cþµ

>>> del a

Referencing the name a hereafter is an error (at least until another value is assigned to it). We’ll find other uses for
del later.

d�2Ú^ù�¶i¬u)�Ø£�����§D,�����¤"�¡·��¬uydel�Ù§^{"

4.3 Tuples and Sequences�|ÚS�

We saw that lists and strings have many common properties, such as indexing and slicing operations. They are two
examples of sequence data types. Since Python is an evolving language, other sequence data types may be added.
There is also another standard sequence data type: the tuple.

·���óLÚiÎGkéõÏ^�á5§~X¢ÚÚ��ö�"§�´S�a.¥�ü«"Ï�Python´
��3ØÊ?z��ó§��U¬\\Ù§�S�a.§ùpk,�«IOS�a.µ�|"

A tuple consists of a number of values separated by commas, for instance:

���|dê�ÏÒ©���|¤§~Xµ

28 Chapter 4. Data Structuresêâ(�

../lib/typesseq.html
../lib/typesseq.html

>>> t = 12345, 54321, ’hello!’
>>> t[0]
12345
>>> t
(12345, 54321, ’hello!’)
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, ’hello!’), (1, 2, 3, 4, 5))

As you see, on output tuples are always enclosed in parentheses, so that nested tuples are interpreted correctly; they
may be input with or without surrounding parentheses, although often parentheses are necessary anyway (if the tuple
is part of a larger expression).

X\¤�§�|3ÑÑ�o´k)Ò�§±Bu�(L�i@(�"3Ñ\��Uk½vk)ÒÑ�±§
ØL²~)ÒÑ´7L�£XJ�|´�����L�ª��Ü©¤"

Tuples have many uses. For example: (x, y) coordinate pairs, employee records from a database, etc. Tuples, like
strings, are immutable: it is not possible to assign to the individual items of a tuple (you can simulate much of the
same effect with slicing and concatenation, though). It is also possible to create tuples which contain mutable objects,
such as lists.

�|kéõ^å"~X(x, y)�I:§êâ¥¥�
óP¹��"�|Ò�iÎG§Ø�UCµØU��|
���Õá���D�£¦+\�±ÏLé�Ú��5��¤"��±ÏL�¹�Cé�5Mï�|§~
XóL"

A special problem is the construction of tuples containing 0 or 1 items: the syntax has some extra quirks to accom-
modate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one item is constructed by
following a value with a comma (it is not sufficient to enclose a single value in parentheses). Ugly, but effective. For
example:

��AÏ�¯K´�E�¹"�½������|µ�
·Aù«�¹§�{þk�
�	�UC"�é
��)Ò�±Mï��|¶�Mï��ü���|�±3��¡���ÏÒ£3)Ò¥�\��ü�´Ø

�¤"Î§§�´k�"~Xµ

>>> empty = ()
>>> singleton = ’hello’, # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
(’hello’,)

The statement t = 12345, 54321, ’hello!’ is an example of tuple packing: the values 12345, 54321 and
’hello!’ are packed together in a tuple. The reverse operation is also possible:

�ét = 12345, 54321, ’hello!’ ´�|µC£sequence packing¤���~fµ�12345§54321Ú’hello!’ �µ
C?�|"Ù_ö��U´ù�µ

>>> x, y, z = t

This is called, appropriately enough, sequence unpacking. Sequence unpacking requires the list of variables on the
left to have the same number of elements as the length of the sequence. Note that multiple assignment is really just a

4.3. Tuples and Sequences�|ÚS� 29

combination of tuple packing and sequence unpacking!

ù�N^�¡�S�
µ�~Ü·"S�
µ�¦�ý�Cþê8�S�����ê�Ó"�5¿�´�
Cëê£multiple assignment¤Ù¢�´�|µCÚS�
µ���(Ü�

There is a small bit of asymmetry here: packing multiple values always creates a tuple, and unpacking works for any
sequence.

ùpk�:Øé¡µµCõ­ëêÏ~¬Mï���|§

µö��±�^u?ÛS�"

4.4 Sets8Ü

Python also includes a data type for sets. A set is an unordered collection with no duplicate elements. Basic uses
include membership testing and eliminating duplicate entries. Set objects also support mathematical operations like
union, intersection, difference, and symmetric difference.

Python ��¹
��êâa.))set£8Ü¤"8Ü´��ÃSØ­E���8"Ä�õU�)'X
ÿÁÚ�Ø­E��"8Üé��|±union£éÜ¤§intersection£�¤§difference£�¤Úsysmmetric
difference£é¡�8¤�êÆ$�"

Here is a brief demonstration:

±e´��{ü�ü«µ

>>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> fruit = set(basket) # create a set without duplicates
>>> fruit
set([’orange’, ’pear’, ’apple’, ’banana’])
>>> ’orange’ in fruit # fast membership testing
True
>>> ’crabgrass’ in fruit
False

>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set(’abracadabra’)
>>> b = set(’alacazam’)
>>> a # unique letters in a
set([’a’, ’r’, ’b’, ’c’, ’d’])
>>> a - b # letters in a but not in b
set([’r’, ’d’, ’b’])
>>> a | b # letters in either a or b
set([’a’, ’c’, ’r’, ’d’, ’b’, ’m’, ’z’, ’l’])
>>> a & b # letters in both a and b
set([’a’, ’c’])
>>> a ^ b # letters in a or b but not both
set([’r’, ’d’, ’b’, ’m’, ’z’, ’l’])

4.5 Dictionariesi;

Another useful data type built into Python is the dictionary. Dictionaries are sometimes found in other languages
as “associative memories” or “associative arrays”. Unlike sequences, which are indexed by a range of numbers,
dictionaries are indexed by keys, which can be any immutable type; strings and numbers can always be keys. Tuples
can be used as keys if they contain only strings, numbers, or tuples; if a tuple contains any mutable object either

30 Chapter 4. Data Structuresêâ(�

../lib/typesmapping.html

directly or indirectly, it cannot be used as a key. You can’t use lists as keys, since lists can be modified in place using
index assignments, slice assignments, or methods like append() and extend().

,���~k^�PythonSïêâa.´i;"i;3,
�ó¥�U¡�/éÜS�0£“associative
memories”¤½/éÜê|0£“associative arrays”¤"S�´±ëY��ê�¢Ú§�dØÓ�´§i;±
'�i�¢Ú§'�i�±´?¿Ø�Ca.§Ï~^iÎG½ê�"XJ�|¥��¹iÎGÚêi§
§�±��'�i§XJ§��½m���¹
�Cé�§ÒØU��'�i"ØU^óL�'�i§Ï
�óL�±^¢Ú!��½öappend()Úextend()��{UC"

It is best to think of a dictionary as an unordered set of key: value pairs, with the requirement that the keys are unique
(within one dictionary). A pair of braces creates an empty dictionary: {}. Placing a comma-separated list of key:value
pairs within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries are written on
output.

n)i;��Z�ª´r§w�ÃS�'�iµ� é£key:value pairs¤8Ü§'�i7L´pØ�Ó�
£3Ó��i;�S¤"�é�)ÒMï����i;µ{}"Ð©zóL�§3�)ÒS���|ÏÒ©
��'�iµ�é§ù�´i;ÑÑ��ª"

The main operations on a dictionary are storing a value with some key and extracting the value given the key. It is also
possible to delete a key:value pair with del. If you store using a key that is already in use, the old value associated
with that key is forgotten. It is an error to extract a value using a non-existent key.

i;�Ì�ö�´�â'�i5�;ÚÛ��"��±^del5íØ'�iµ�é£key:value¤"XJ\^
��®²�3�'�i�;�§±c�T'�i©���Ò¬�¢#"ÁãÛ�l��Ø�3�'�i¥
Ö��¬���Ø"

The keys() method of a dictionary object returns a list of all the keys used in the dictionary, in arbitrary order (if you
want it sorted, just apply the sort() method to the list of keys). To check whether a single key is in the dictionary,
either use the dictionary’s has_key() method or the in keyword.

i;�keys()�{�£d¤k'�i|¤�óL§TóL�^SØ½£XJ\I�§kS§�UN^'�
ióL�sort()�{¤"¦^i;�has_key()�{½in'�i�±u�i;¥´Ä�3,�'�i"

Here is a small example using a dictionary:

ù´��'ui;A^��«~µ

>>> tel = {’jack’: 4098, ’sape’: 4139}
>>> tel[’guido’] = 4127
>>> tel
{’sape’: 4139, ’guido’: 4127, ’jack’: 4098}
>>> tel[’jack’]
4098
>>> del tel[’sape’]
>>> tel[’irv’] = 4127
>>> tel
{’guido’: 4127, ’irv’: 4127, ’jack’: 4098}
>>> tel.keys()
[’guido’, ’irv’, ’jack’]
>>> tel.has_key(’guido’)
True
>>> ’guido’ in tel
True

The dict() constructor builds dictionaries directly from lists of key-value pairs stored as tuples. When the pairs
form a pattern, list comprehensions can compactly specify the key-value list.

óL¥�;'�i-�é�|�{§dict()�±l¥���Ei;"'�i-�é5g,�A½�ª�§�
±^óLí�ª{ü�)¤'�i-�óL"

4.5. Dictionariesi; 31

../lib/typesmapping.html

>>> dict([(’sape’, 4139), (’guido’, 4127), (’jack’, 4098)])
{’sape’: 4139, ’jack’: 4098, ’guido’: 4127}
>>> dict([(x, x**2) for x in (2, 4, 6)]) # use a list comprehension
{2: 4, 4: 16, 6: 36}

Later in the tutorial, we will learn about Generator Expressions which are even better suited for the task of supplying
key-values pairs to the dict() constructor.

3\��H�¡�SN¥§·�ò¬ÆS�·u�dict()�Eì)¤��é�)¤ìL�ª"

When the keys are simple strings, it is sometimes easier to specify pairs using keyword arguments:

¦^{üiÎG��'�i�{§Ï~^'�iëê�{ü"

>>> dict(sape=4139, guido=4127, jack=4098)
{’sape’: 4139, ’jack’: 4098, ’guido’: 4127}

4.6 Looping TechniquesÌ�Eâ

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using the
iteritems() method.

3i;¥Ì��§'�iÚéA���±¦^iteritems()�{Ó�)ÖÑ5"

>>> knights = {’gallahad’: ’the pure’, ’robin’: ’the brave’}
>>> for k, v in knights.iteritems():
... print k, v
...
gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding value can be retrieved at the same time using
the enumerate() function.

3S�¥Ì��§¢Ú �ÚéA��±¦^enumerate()¼êÓ���"

>>> for i, v in enumerate([’tic’, ’tac’, ’toe’]):
... print i, v
...
0 tic
1 tac
2 toe

To loop over two or more sequences at the same time, the entries can be paired with the zip() function.

Ó�Ì�ü�½�õ�S�§�±¦^zip()�N)Ö"

32 Chapter 4. Data Structuresêâ(�

>>> questions = [’name’, ’quest’, ’favorite color’]
>>> answers = [’lancelot’, ’the holy grail’, ’blue’]
>>> for q, a in zip(questions, answers):
... print ’What is your %s? It is %s.’ % (q, a)
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward direction and then call the reversed()
function.

I�_�Ì�S��{§k��½ S�§,�N^reversed()¼ê

>>> for i in reversed(xrange(1,10,2)):
... print i
...
9
7
5
3
1

To loop over a sequence in sorted order, use the sorted() function which returns a new sorted list while leaving the
source unaltered.

�UüS��^SÌ�S��{§¦^sorted()¼ê§§ØUÄ�S�§
´)¤��#�üÐS�S
�"

>>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> for f in sorted(set(basket)):
... print f
...
apple
banana
orange
pear

4.7 More on Conditions�\^���

The conditions used in while and if statements can contain any operators, not just comparisons.

whileÚif�é¥¦^�^�Ø=�±¦^'�§
��±�¹?¿�ö�"

The comparison operators in and not in check whether a value occurs (does not occur) in a sequence. The operators
is and is not compare whether two objects are really the same object; this only matters for mutable objects like
lists. All comparison operators have the same priority, which is lower than that of all numerical operators.

inÚnot in'�ö�Î"Ø�´Ä3��«m�S"ö�Îis is notÚ'�ü�é�´Ä�Ó¶ù�
ÚÃXóLù���Cé�k'"¤k�'�ö�Îäk�Ó�`k?§$u¤k�ê�ö�"

Comparisons can be chained. For example, a < b == c tests whether a is less than b and moreover b equals c.

4.7. More on Conditions�\^��� 33

'�ö��±D4"~Xa < b == c"Ø´Äa�ub¿b�uc"

Comparisons may be combined using the Boolean operators and and or, and the outcome of a comparison (or of any
other Boolean expression) may be negated with not. These have lower priorities than comparison operators; between
them, not has the highest priority and or the lowest, so that A and not B or C is equivalent to (A and (not
B)) or C. As always, parentheses can be used to express the desired composition.

'�ö��±ÏLÜ6ö�ÎandÚor|Ü§'��(J�±^not5��Â"ù
ö�Î�`k?q$
u'�ö�Î§3§��¥§notäk�p�`k?§or`k?�$§¤±A and not B or C�u(A
and (not B)) or C"�,§L�ª�±^Ï"��ªL«"

The Boolean operators and and or are so-called short-circuit operators: their arguments are evaluated from left to
right, and evaluation stops as soon as the outcome is determined. For example, if A and C are true but B is false, A
and B and C does not evaluate the expression C. When used as a general value and not as a Boolean, the return
value of a short-circuit operator is the last evaluated argument.

Ü6ö�ÎandÚor�¡�á´ö�Îµ§��ëêl��m)Û§��(J�±(½ÒÊ�"~X§X
JAÚC�ý
B�b§A and B and CØ¬)ÛC"�^u��ÊÏ��Ü6��§á´ö�Î��£
�Ï~´����Cþ

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

�±r'�½Ù§Ü6L�ª��£�D���Cþ§~Xµ

>>> string1, string2, string3 = ’’, ’Trondheim’, ’Hammer Dance’
>>> non_null = string1 or string2 or string3
>>> non_null
’Trondheim’

Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may grumble about this,
but it avoids a common class of problems encountered in C programs: typing = in an expression when ==was intended.

I�5¿�´Python�CØÓ§3L�ªSÜØUD�"C§S
²~éd��§ØL§;�
�a3C§
S¥i��.��Øµ��3)Ûª¥¦==�Ø^
=ö�Î"

4.8 Comparing Sequences and Other TypesØÓS�a.�'�

Sequence objects may be compared to other objects with the same sequence type. The comparison uses lexicographical
ordering: first the first two items are compared, and if they differ this determines the outcome of the comparison; if
they are equal, the next two items are compared, and so on, until either sequence is exhausted. If two items to be
compared are themselves sequences of the same type, the lexicographical comparison is carried out recursively. If all
items of two sequences compare equal, the sequences are considered equal. If one sequence is an initial sub-sequence
of the other, the shorter sequence is the smaller (lesser) one. Lexicographical ordering for strings uses the ASCII
ordering for individual characters. Some examples of comparisons between sequences of the same type:

S�é��±��Óa.�Ù§é�'�"'�ö�Ui;S?1µÄk'�cü���§XJØÓ§Ò
û½
'��(J¶XJ�Ó§Ò'��ü���§�daí§��¤kS�Ñ�¤'�"XJü���
��Ò´Ó�a.�S�§Ò48i;S'�"XJü�S��¤kf�Ñ��§Ò@�S���"XJ
��S�´,��S��Ð©fS�§�á���S�Ò�u,��"iÎG�i;SUìüiÎ�ASCII
^S"e¡´Óa.S��m'���
~fµ

34 Chapter 4. Data Structuresêâ(�

(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
’ABC’ < ’C’ < ’Pascal’ < ’Python’
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, (’aa’, ’ab’)) < (1, 2, (’abc’, ’a’), 4)

Note that comparing objects of different types is legal. The outcome is deterministic but arbitrary: the types are
ordered by their name. Thus, a list is always smaller than a string, a string is always smaller than a tuple, etc. 1 Mixed
numeric types are compared according to their numeric value, so 0 equals 0.0, etc.

I�5¿�´ØÓa.�é�'�´Ü{�"ÑÑ(J´(½
�?¿�µa.U§��¶iüS"Ï

§��óL£list¤o´�u��iÎG£string¤§��iÎG£string¤o´�u���|£tuple¤�
�"ê�a.'��¬Ú�§��êâa.§¤±0�u0.0§��"2

1 The rules for comparing objects of different types should not be relied upon; they may change in a future version of the language.
2 ØÓa.é��'�5KØ�6ud§§�k�U¬3Python�ó��U��¥UC"

4.8. Comparing Sequences and Other TypesØÓS�a.�'� 35

36

CHAPTER

FIVE

Modules�¬

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables) are
lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to prepare the
input for the interpreter and running it with that file as input instead. This is known as creating a script. As your
program gets longer, you may want to split it into several files for easier maintenance. You may also want to use a
handy function that you’ve written in several programs without copying its definition into each program.

XJ\òÑPython)ºì­#?\§±cMï���½Â£CþÚ¼ê¤Ò�Ü¿�
"Ïd§XJ\�
��
�È���§S§�Ð¦^��©�?6ì5?�§S§r��Ð�©�Ñ\)ºì"·�¡��
Mï����"§SC����

§\�U�
�B�o
r§©l¤A�©�"\��U��3A�
§S¥Ñ¦^��~^�¼ê§�´Ø�r§�½ÂE��z��§Sp"

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance of the
interpreter. Such a file is called a module; definitions from a module can be imported into other modules or into the
main module (the collection of variables that you have access to in a script executed at the top level and in calculator
mode).

�
÷vù
I�§PythonJø
���{�±l©�¥¼�½Â§3��½ö)ºì����pª¢~¥
¦^"ù��©��¡��¬¶�¬¥�½Â�±�\�,���¬½Ì�¬¥£3���1��±N^
�Cþ8 u�p?§¿�?uO�ì�ª¤

A module is a file containing Python definitions and statements. The file name is the module name with the suffix
‘.py’ appended. Within a module, the module’s name (as a string) is available as the value of the global variable
__name__. For instance, use your favorite text editor to create a file called ‘fibo.py’ in the current directory with the
following contents:

�¬´�)Python ½ÂÚ(²�©�"©�¶Ò´�¬¶\þ‘.py’ �M"�¬��¬¶£����i
ÎG¤�±d�ÛCþ__name__ ��"~X§\�±^gC.^�©�?6ì3�c8¹eMï��
�‘fibo.py’�©�§¹\XeSNµ

37

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while b < n:

print b,
a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:

result.append(b)
a, b = b, a+b

return result

Now enter the Python interpreter and import this module with the following command:

y3?\Python)ºì§^Xe·-�\ù��¬µ

>>> import fibo

This does not enter the names of the functions defined in fibo directly in the current symbol table; it only enters the
module name fibo there. Using the module name you can access the functions:

ù��Ø¬��rfibo¥�¼ê�\�c��ÂL¶§�´Ú\
�¬¶fibo"\�±ÏL�¬¶UXe
�ª�¯ù�¼êµ

>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
’fibo’

If you intend to use a function often you can assign it to a local name:

XJ\����N^¼ê§Ï~�±�§D���/¶¡µ

>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

5.1 More on Modules�\�¬

A module can contain executable statements as well as function definitions. These statements are intended to initialize
the module. They are executed only the first time the module is imported somewhere.1

1 In fact function definitions are also ‘statements’ that are ‘executed’; the execution enters the function name in the module’s global symbol
table.

38 Chapter 5. Modules�¬

�¬�±�¼ê½Â���¹�1�é"ù
�éÏ~^uÐ©z�¬"§��3�¬1�g�\��1
�g"2

Each module has its own private symbol table, which is used as the global symbol table by all functions defined in
the module. Thus, the author of a module can use global variables in the module without worrying about accidental
clashes with a user’s global variables. éAu½Â�¬¥¤k¼ê��Û�ÂL§z���¬kgC�hk�
ÂL"Ïd§�¬�ö�±3�¬¥¦^�
�ÛCþ§Ø¬Ï��^r��ÛCþÀâ
Úu�Ø"On
the other hand, if you know what you are doing you can touch a module’s global variables with the same notation used
to refer to its functions, modname.itemname. ,��¡§XJ\(½\I�ù�§�±�Ú^�¬¥�¼ê
��¼��¬¥��ÛCþ§/Xµmodname.itemname"

Modules can import other modules. It is customary but not required to place all import statements at the beginning
of a module (or script, for that matter). The imported module names are placed in the importing module’s global
symbol table.

�¬�±�\£import¤Ù§�¬"S.þ¤k�import�éÑ�3�¬£½��§��¤�mÞ§�ù
¿Ø´7L�"��\��¬¶\3��¬��Û�ÂL¥"

There is a variant of the import statement that imports names from a module directly into the importing module’s
symbol table. For example:

import�é���CN��l��\��¬¥�\·¶���¬��ÂL¥"~Xµ

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table (so in the example,
fibo is not defined).

ù�Ø¬lÛ��ÂL¥�\�¬¶£Xþ¤«§fibovk½Â¤"

There is even a variant to import all names that a module defines:

$�k«�ª�±�\�¬¥�¤k½Âµ

>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_).

ù��±�\¤kØ
±ey�(_)mÞ�·¶"

5.1.1 The Module Search Path�¬|¢´»

When a module named spam is imported, the interpreter searches for a file named ‘spam.py’ in the current directory,
and then in the list of directories specified by the environment variable PYTHONPATH. This has the same syntax as
the shell variable PATH, that is, a list of directory names. When PYTHONPATH is not set, or when the file is not found
there, the search continues in an installation-dependent default path; on UNIX, this is usually ‘.:/usr/local/lib/python’.

�\���spam ��¬�§)ºìk3�c8¹¥|¢¶�‘spam.py’ �©�§,�3�¸C
þPYTHONPATH L«�8¹�L¥|¢§,�´�¸CþPATH ¥�´»�L"XJPYTHONPATH v
k��§½ö©�vké�§�e5|¢SC8¹§3UNIX¥§Ï~´‘.:/usr/local/lib/python’"

2 ¯¢þ¼ê½ÂQ´/(²0q´/��1N0¶�1Nd¼ê3�¬�Û�ÂL¥�·¶�\"

5.1. More on Modules�\�¬ 39

Actually, modules are searched in the list of directories given by the variable sys.path which is initialized from the
directory containing the input script (or the current directory), PYTHONPATH and the installation-dependent default.
This allows Python programs that know what they’re doing to modify or replace the module search path. Note that
because the directory containing the script being run is on the search path, it is important that the script not have the
same name as a standard module, or Python will attempt to load the script as a module when that module is imported.
This will generally be an error. See section 5.2, “Standard Modules,” for more information.

¢Sþ§)ºìdsys.path Cþ�½�´»8¹|¢�¬§TCþÐ©z�%@�¹
Ñ\��£½
ö�c8¹¤§PYTHONPATHÚSC8¹"ù�Ò#NPython§S£�©Xd§programs¶·ß�AT´
/programer0§§S
¨¨Èö¤
)XÛ?U½O��¬|¢8¹"I�5¿�´duù
8¹¥�¹
k|¢´»¥$1���§¤±ù
��ØATÚIO�¬­¶§ÄK3�\�¬�Python¬}Árù
�
����¬5\1"ùÏ~¬Úu���Ø"�ë�6.2!/IO�¬£ 5.2¤0±
)�õ�&E"

5.1.2 “Compiled” Python files Python/?È0©�

As an important speed-up of the start-up time for short programs that use a lot of standard modules, if a file called
‘spam.pyc’ exists in the directory where ‘spam.py’ is found, this is assumed to contain an already-“byte-compiled”
version of the module spam. The modification time of the version of ‘spam.py’ used to create ‘spam.pyc’ is recorded
in ‘spam.pyc’, and the ‘.pyc’ file is ignored if these don’t match.

éuÚ^
�þIO�¬�á§S§k��JpéÄ�Ý�­��{§XJ3‘spam.py’¤3�8¹e�3
��¶�‘spam.pyc’�©�§§¬�À�spam�¬�ý/?È0£“byte-compiled”§�?�?È¤��"
^uMï‘spam.pyc’�ù��‘spam.py’�?U�mP¹3‘spam.pyc’©�¥§XJüöØ��§‘.pyc’©�
Ò��Ñ"

Normally, you don’t need to do anything to create the ‘spam.pyc’ file. Whenever ‘spam.py’ is successfully compiled,
an attempt is made to write the compiled version to ‘spam.pyc’. It is not an error if this attempt fails; if for any reason
the file is not written completely, the resulting ‘spam.pyc’ file will be recognized as invalid and thus ignored later. The
contents of the ‘spam.pyc’ file are platform independent, so a Python module directory can be shared by machines of
different architectures.

Ï~\ØI��Mï‘spam.pyc’ ©��?Ûó�"��‘spam.py’ ¤õ?È§Ò¬Áã?ÈéA��
�‘spam.pyc’"XJk?Û�Ï���\Ø¤õ§�£�‘spam.pyc’ ©�Ò¬À�Ã�§��=��
Ñ"‘spam.pyc’©��SN´²�Õá�§¤±Python�¬8¹�±3ØÓe��Åì�m��"

Some tips for experts:

Ü©p?E|µ

• When the Python interpreter is invoked with the -O flag, optimized code is generated and stored in ‘.pyo’ files.
The optimizer currently doesn’t help much; it only removes assert statements. When -O is used, all bytecode
is optimized; .pyc files are ignored and .py files are compiled to optimized bytecode.

±-O ëêN^Python)ºì�§¬)¤`z�è¿��3‘.pyo’ ©�¥"y3�`zìvk�õ�
Ï¶§�´íØ
äó£assert¤�é"¦^-Oëëê§¤k��èÑ¬�`z¶.pyc©���
Ñ§.py©��?È�`z�è"

• Passing two -O flags to the Python interpreter (-OO) will cause the bytecode compiler to perform optimizations
that could in some rare cases result in malfunctioning programs. Currently only __doc__ strings are removed
from the bytecode, resulting in more compact ‘.pyo’ files. Since some programs may rely on having these
available, you should only use this option if you know what you’re doing.

�Python)ºìD4ü�-Oëê£-OO¤¬�1��`z��?�`z?È§ùó�¬)¤�Ø�§
S"y3�`zì§�´l�?��è¥íØ
__doc__ÎG§)¤��;n�‘.pyo’©�"Ï�,

§S�6uù
Cþ��^5§\AT�3(½ÃØ�|Ü¦^ù�À�"

• A program doesn’t run any faster when it is read from a ‘.pyc’ or ‘.pyo’ file than when it is read from a ‘.py’ file;
the only thing that’s faster about ‘.pyc’ or ‘.pyo’ files is the speed with which they are loaded.

40 Chapter 5. Modules�¬

5g‘.pyc’©�½‘.pyo’©�¥�§SØ¬'5g‘.py’©��$1�¯¶‘.pyc’½‘.pyo’©��´3§�
\1��ÿ�¯�
"

• When a script is run by giving its name on the command line, the bytecode for the script is never written to a
‘.pyc’ or ‘.pyo’ file. Thus, the startup time of a script may be reduced by moving most of its code to a module
and having a small bootstrap script that imports that module. It is also possible to name a ‘.pyc’ or ‘.pyo’ file
directly on the command line.

ÏL��¶3·-1$1���§Ø¬ò�T��Mï��?��è�\‘.pyc’½‘.pyo’©�"�,§
r���Ì��è£?���¬p§,�^����éÄ���\ù��¬§Ò�±Jp���éÄ
�Ý"��±��3·-1¥�½��‘.pyc’½‘.pyo’©�"

• It is possible to have a file called ‘spam.pyc’ (or ‘spam.pyo’ when -O is used) without a file ‘spam.py’ for the
same module. This can be used to distribute a library of Python code in a form that is moderately hard to reverse
engineer.

éuÓ���¬£ùp�~§‘spam.py’¨¨Èö¤§�±�k‘spam.pyc’©�£½ö‘spam.pyc’§3
¦^-Oëê�¤
vk‘spam.py’©�"ù��±��uÙ'�Ju_�ó§�Python�è¥"

• The module compileall can create ‘.pyc’ files (or ‘.pyo’ files when -O is used) for all modules in a directory.

compileall �¬�±��½8¹¥�¤k�¬Mï‘.pyc’ ©�£½ö¦^‘.pyo’ ëêMï.pyo©
�¤"

5.2 Standard ModulesIO�¬

Python comes with a library of standard modules, described in a separate document, the Python Library Reference
(“Library Reference” hereafter). Some modules are built into the interpreter; these provide access to operations that are
not part of the core of the language but are nevertheless built in, either for efficiency or to provide access to operating
system primitives such as system calls. The set of such modules is a configuration option which also depends on the
underlying platform For example, the amoeba module is only provided on systems that somehow support Amoeba
primitives. One particular module deserves some attention: sys, which is built into every Python interpreter. The
variables sys.ps1 and sys.ps2 define the strings used as primary and secondary prompts:

Python�k��IO�¬¥§¿uÙkÕá�©�§¶�Python ¥ë�Ãþ £d�¡Ù�/¥ë�Ã
þ0¤"k�
�¬S�u)ºì�¥§ù
ö���¯��Ø´�óSØ��Ü©§�´®²S�u)
ºì
"ùQ´�
Jp�Ç§�´�
�XÚN^�ö�XÚ�)�¯Jø��"ùa�¬8Ü´��
�6u.�²����À�"~X§amoeba�¬�JøéAmoeba�)XÚ�|±"k��äN��¬�
�5¿µsys§ù��¬S�u¤k�Python)ºì"Cþsys.ps1Úsys.ps2½Â
ÌJ«ÎÚBÏJ
«ÎiÎGµ

>>> import sys
>>> sys.ps1
’>>> ’
>>> sys.ps2
’... ’
>>> sys.ps1 = ’C> ’
C> print ’Yuck!’
Yuck!
C>

These two variables are only defined if the interpreter is in interactive mode.

ùü�Cþ�3)ºì��p�ªek¿Â"

5.2. Standard ModulesIO�¬ 41

../lib/module-compileall.html
../lib/module-compileall.html
../lib/lib.html
../lib/module-sys.html
../lib/lib.html
../lib/module-sys.html

The variable sys.path is a list of strings that determines the interpreter’s search path for modules. It is initialized
to a default path taken from the environment variable PYTHONPATH, or from a built-in default if PYTHONPATH is
not set. You can modify it using standard list operations:

Cþsys.path ´)ºì�¬|¢´»�iÎG�L"§d�¸CþPYTHONPATH Ð©z§XJvk�
½PYTHONPATH§ÒdS��%@�Ð©z"\�±^IO�iÎGö�?U§µ

>>> import sys
>>> sys.path.append(’/ufs/guido/lib/python’)

5.3 The dir() Function dir()¼ê

The built-in function dir() is used to find out which names a module defines. It returns a sorted list of strings:

S�¼êdir()^uU�¬¶|¢�¬½Â§§�£��iÎGa.��;�Lµ

>>> import fibo, sys
>>> dir(fibo)
[’__name__’, ’fib’, ’fib2’]
>>> dir(sys)
[’__displayhook__’, ’__doc__’, ’__excepthook__’, ’__name__’, ’__stderr__’,
’__stdin__’, ’__stdout__’, ’_getframe’, ’api_version’, ’argv’,
’builtin_module_names’, ’byteorder’, ’callstats’, ’copyright’,
’displayhook’, ’exc_clear’, ’exc_info’, ’exc_type’, ’excepthook’,
’exec_prefix’, ’executable’, ’exit’, ’getdefaultencoding’, ’getdlopenflags’,
’getrecursionlimit’, ’getrefcount’, ’hexversion’, ’maxint’, ’maxunicode’,
’meta_path’, ’modules’, ’path’, ’path_hooks’, ’path_importer_cache’,
’platform’, ’prefix’, ’ps1’, ’ps2’, ’setcheckinterval’, ’setdlopenflags’,
’setprofile’, ’setrecursionlimit’, ’settrace’, ’stderr’, ’stdin’, ’stdout’,
’version’, ’version_info’, ’warnoptions’]

Without arguments, dir() lists the names you have defined currently:

ÃëêN^�§dir()¼ê�£�c½Â�·¶µ

>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir()
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’a’, ’fib’, ’fibo’, ’sys’]

Note that it lists all types of names: variables, modules, functions, etc.

5¿T�L�Ñ
¤ka.�¶¡µCþ§�¬§¼ê§��µ

dir() does not list the names of built-in functions and variables. If you want a list of those, they are defined in the
standard module __builtin__:

dir()Ø¬�ÑS�¼êÚCþ¶"XJ\��Ñù
SN§§�3IO�¬__builtin__¥½Âµ

42 Chapter 5. Modules�¬

>>> import __builtin__
>>> dir(__builtin__)
[’ArithmeticError’, ’AssertionError’, ’AttributeError’, ’DeprecationWarning’,
’EOFError’, ’Ellipsis’, ’EnvironmentError’, ’Exception’, ’False’,
’FloatingPointError’, ’FutureWarning’, ’IOError’, ’ImportError’,
’IndentationError’, ’IndexError’, ’KeyError’, ’KeyboardInterrupt’,
’LookupError’, ’MemoryError’, ’NameError’, ’None’, ’NotImplemented’,
’NotImplementedError’, ’OSError’, ’OverflowError’,
’PendingDeprecationWarning’, ’ReferenceError’, ’RuntimeError’,
’RuntimeWarning’, ’StandardError’, ’StopIteration’, ’SyntaxError’,
’SyntaxWarning’, ’SystemError’, ’SystemExit’, ’TabError’, ’True’,
’TypeError’, ’UnboundLocalError’, ’UnicodeDecodeError’,
’UnicodeEncodeError’, ’UnicodeError’, ’UnicodeTranslateError’,
’UserWarning’, ’ValueError’, ’Warning’, ’WindowsError’,
’ZeroDivisionError’, ’_’, ’__debug__’, ’__doc__’, ’__import__’,
’__name__’, ’abs’, ’apply’, ’basestring’, ’bool’, ’buffer’,
’callable’, ’chr’, ’classmethod’, ’cmp’, ’coerce’, ’compile’,
’complex’, ’copyright’, ’credits’, ’delattr’, ’dict’, ’dir’, ’divmod’,
’enumerate’, ’eval’, ’execfile’, ’exit’, ’file’, ’filter’, ’float’,
’frozenset’, ’getattr’, ’globals’, ’hasattr’, ’hash’, ’help’, ’hex’,
’id’, ’input’, ’int’, ’intern’, ’isinstance’, ’issubclass’, ’iter’,
’len’, ’license’, ’list’, ’locals’, ’long’, ’map’, ’max’, ’min’,
’object’, ’oct’, ’open’, ’ord’, ’pow’, ’property’, ’quit’, ’range’,
’raw_input’, ’reduce’, ’reload’, ’repr’, ’reversed’, ’round’, ’set’,
’setattr’, ’slice’, ’sorted’, ’staticmethod’, ’str’, ’sum’, ’super’,
’tuple’, ’type’, ’unichr’, ’unicode’, ’vars’, ’xrange’, ’zip’]

5.4 Packages�

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example, the
module name A.B designates a submodule named ‘B’ in a package named ‘A’. Just like the use of modules saves the
authors of different modules from having to worry about each other’s global variable names, the use of dotted module
names saves the authors of multi-module packages like NumPy or the Python Imaging Library from having to worry
about each other’s module names.

�Ï~´¦^^/�:�¬¶0�(�z�¬·¶�m"~X§¶�A.B ��¬L«
¶�‘A’ ��¥¶
�‘B’�f�¬"�XÓ^�¬5��ØÓ��¬e��±;��ÛCþ�m��pÀâ§¦^�:�¬¶
���NumPy½Python Imaging Library�a�ØÓa¥e��±;��¬�m�·¶Àâ"

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and sound
data. There are many different sound file formats (usually recognized by their extension, for example: ‘.wav’, ‘.aiff’,
‘.au’), so you may need to create and maintain a growing collection of modules for the conversion between the various
file formats. There are also many different operations you might want to perform on sound data (such as mixing,
adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition you will be writing a
never-ending stream of modules to perform these operations. Here’s a possible structure for your package (expressed
in terms of a hierarchical filesystem):

b�\y3���O���¬8£��/�0¤5Ú�?n(Ñ©�Ú(Ñêâ"�3A«ØÓ�(Ñ�
ª£Ï~d§��*Ð¶5I£§~Xµ‘.wav’§‘.aiff’§‘.au’)¤§u´§�
3ØÓa.�©��ª�m
=�§\I��o��ØäO���8Ü"�U\���é(Ñêâ�éõØÓ�ö�£~X·Ñ§V\
£(§A^²ïõU§Mï��<E�J¤§¤±\�\\��Ã�6�¬5�1ù
ö�"\���U
¬´ù��f£ÏL©?�©�NX5?1©|¤µ

5.4. Packages� 43

Sound/ Top-level package
__init__.py Initialize the sound package
Formats/ Subpackage for file format conversions

__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...

Effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py
...

Filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...

When importing the package, Python searches through the directories on sys.path looking for the package subdi-
rectory.

�\�¬�§PythonÏLsys.path¥�8¹�L5|¢����f8¹"

The ‘__init__.py’ files are required to make Python treat the directories as containing packages; this is done to prevent
directories with a common name, such as ‘string’, from unintentionally hiding valid modules that occur later on the
module search path. In the simplest case, ‘__init__.py’ can just be an empty file, but it can also execute initialization
code for the package or set the __all__ variable, described later.

7L�k��‘__init__.py’ ©���3§âU¦PythonÀT8¹����¶ù´�
��,
8¹¦^

‘string’ù��Ï^¶
Ã¿¥3����¬|¢´»¥CX
�(��¬"�{ü��¹e§‘__init_-
_.py’�±�´���©�§ØL§��U�¹
��Ð©z�è§½ö��
__all__Cþ§�¡¬k�
'0�"

Users of the package can import individual modules from the package, for example:

�^r�±l�¥�\Ü{��¬§~Xµ

import Sound.Effects.echo

This loads the submodule Sound.Effects.echo. It must be referenced with its full name.

ù�Ò�\
Sound.Effects.echof�¬"§7IÏL���¶¡5Ú^"

Sound.Effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

�\��k���±ÀJ��ªµ

44 Chapter 5. Modules�¬

from Sound.Effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be used as follows:

ù�Ò\1
echof�¬§¿�¦�§3vk�cM��¹e��±¦^§¤±§�±Xe�ªN^µ

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

�k,�«CN^u���\¼ê½Cþµ

from Sound.Effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter() directly available:

ù�Òq�g\1
echof�¬§�ù�Ò�±��N^§�echofilter()¼êµ

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or subpackage) of the
package, or some other name defined in the package, like a function, class or variable. The import statement first
tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it fails to
find it, an ImportError exception is raised.

I�5¿�´¦^from package import item�ª�\��§ù�f�£item¤Q�±´�¥���f�
¬£½��f�¤§��±´�¥½Â�Ù§·¶§�¼ê!a½Cþ"import�éÄkØé´Ä�¥k
ù�f�§XJvk§§b½ù´���¬§¿}Á\1§"XJvké�§§¬Úu��ImportError
É~"

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last must be a package;
the last item can be a module or a package but can’t be a class or function or variable defined in the previous item.

��§¦^aqimport item.subitem.subsubitemù���{�§ù
f�7L´�§���f��±´�
½�¬§�ØU´c¡f�¥½Â�a!¼ê½Cþ"

5.4.1 Importing * From a Package

Now what happens when the user writes from Sound.Effects import *? Ideally, one would hope that this
somehow goes out to the filesystem, finds which submodules are present in the package, and imports them all. Un-
fortunately, this operation does not work very well on Mac and Windows platforms, where the filesystem does not
always have accurate information about the case of a filename! On these platforms, there is no guaranteed way to
know whether a file ‘ECHO.PY’ should be imported as a module echo, Echo or ECHO. (For example, Windows 95
has the annoying practice of showing all file names with a capitalized first letter.) The DOS 8+3 filename restriction
adds another interesting problem for long module names.

@o�^r�efrom Sound.Effects import *�¬u)�o¯ºn�¥§o´F"3©�XÚ¥é
Ñ�¥¤k�f�¬§,��\§�"Ø3�´§ù�ö�3MacÚWindows²�þó��¿Ø�Ð§ù

©�XÚ�©����¿Ø¯a�3ù
²�þvk�o�{�±(����‘ECHO.PY’�©�AT�\
��¬echo!Echo½ECHO"£~X§Windows 95k��?��S.§§¬r¤k�©�¶Ñw«�Äi
1���º�"¤DOS 8+3©�¶��q��©�¶�¬�5
,��k��¯K"

5.4. Packages� 45

The only solution is for the package author to provide an explicit index of the package. The import statement uses
the following convention: if a package’s ‘__init__.py’ code defines a list named __all__, it is taken to be the list
of module names that should be imported when from package import * is encountered. It is up to the package
author to keep this list up-to-date when a new version of the package is released. Package authors may also decide not
to support it, if they don’t see a use for importing * from their package. For example, the file ‘Sounds/Effects/__init_-
_.py’ could contain the following code:

éu���ö5`���)û�YÒ´�Jø��²(��¢Ú"import �éUXe^�?1=�µ�
1from package import *�§XJ�¥�‘__init__.py’�è½Â
��¶�__all__�óL§Ò¬Uì
óL¥�Ñ��¬¶?1�\"#����uÙ��ö�±?¿�#ù�óL"XJ��öØ�import *�
�ÿ�\¦���¥¤k�¬§@o��U¬û½Ø|±§£import *¤"~X§‘Sounds/Effects/__init__.py’
ù�©��U�)Xe�èµ

__all__ = ["echo", "surround", "reverse"]

This would mean that from Sound.Effects import * would import the three named submodules of the
Sound package.

ù¿�Xfrom Sound.Effects import *�é¬lSound�¥�\±þn�®·¶�f�¬"

If __all__ is not defined, the statement from Sound.Effects import * does not import all submodules
from the package Sound.Effects into the current namespace; it only ensures that the package Sound.Effects
has been imported (possibly running any initialization code in ‘__init__.py’) and then imports whatever names are
defined in the package. This includes any names defined (and submodules explicitly loaded) by ‘__init__.py’. It also
includes any submodules of the package that were explicitly loaded by previous import statements. Consider this code:

XJvk½Â__all__§from Sound.Effects import *�éØ¬lSound.Effects�¥�\¤k
�f�¬"Effects �\��c�·¶�m§�U(½�´�\
Sound.Effects �£�U¬$1‘__init__.py’
¥�Ð©z�è¤±9�¥½Â�¤k·¶¬���\"ù�Òl‘__init__.py’¥�\
z��·¶£±9
²(�\�f�¬¤"Ó���)
cã�import�él�¥²(�\�f�¬§�Ä±e�èµ

import Sound.Effects.echo
import Sound.Effects.surround
from Sound.Effects import *

In this example, the echo and surround modules are imported in the current namespace because they are defined in the
Sound.Effects package when the from...import statement is executed. (This also works when __all__ is
defined.)

3ù�~f¥§echoÚsurround�¬�\
�c�·¶�m§ù´Ï��1from...import�é�§�®
²½Â3Sound.Effects�¥
£½Â
__all__��¬Ó�ó�¤"

Note that in general the practice of importing * from a module or package is frowned upon, since it often causes poorly
readable code. However, it is okay to use it to save typing in interactive sessions, and certain modules are designed to
export only names that follow certain patterns.

I�5¿�´S.þØÌÜl���½�¬¥^import *�\¤k�¬§Ï�ù��Ï~¿�X�Ö5¬é
�",
§3�p¬{¥ù���±~�Ñ\§�é5`(½��¬��O¤��Ñ(½��ª¥·¶�
@�Ü©"

Remember, there is nothing wrong with using from Package import specific_submodule! In fact, this
is the recommended notation unless the importing module needs to use submodules with the same name from different
packages.

P4§from Package import specific_submodule vk�Ø�¯¢þ§Ø��\��¬I�¦^
Ù§�¥�Ó¶f�¬§ÄKù´É�í���{"

46 Chapter 5. Modules�¬

5.4.2 Intra-package ReferencesS��£Intra-package¤ë�

The submodules often need to refer to each other. For example, the surround module might use the echo module.
In fact, such references are so common that the import statement first looks in the containing package before looking
in the standard module search path. Thus, the surround module can simply use import echo or from echo
import echofilter. If the imported module is not found in the current package (the package of which the
current module is a submodule), the import statement looks for a top-level module with the given name.

f�¬�m²~I�p�Ú^"~X§surround �¬�U¬Ú^echo �¬"¯¢þ§ù��Ú^X
dÊH§±�uimport �é¬k|¢�SÜ§,�â´IO�¬|¢´»"Ïdsurround �¬�±{ü
�N^import echo½öfrom echo import echofilter"XJvk3�c��¥uy��\��
¬§import�é¬�â�½¶Ïé��º?�¬"

When packages are structured into subpackages (as with the Sound package in the example), there’s no shortcut to
refer to submodules of sibling packages - the full name of the subpackage must be used. For example, if the module
Sound.Filters.vocoder needs to use the echo module in the Sound.Effects package, it can use from
Sound.Effects import echo.

XJ�¥¦^
f�(�£Ò�«~¥�Sound �¤§Ø�3�ol�C��¥Ú^f�¬�B$�
{¨¨7L¦^f���¶"~X§XJSound.Filters.vocoder �I�¦^Sound.Effects �¥
�echosa�¬§§�±¦^from Sound.Effects import echo"

5.4.3 Packages in Multiple Directoriesõ­´»¥��

Packages support one more special attribute, __path__. This is initialized to be a list containing the name of the
directory holding the package’s ‘__init__.py’ before the code in that file is executed. This variable can be modified;
doing so affects future searches for modules and subpackages contained in the package.

�|±����AÏ�Cþ§__path__"3��‘__init__.py’©��è�1�c§TCþÐ©z��8¹
¶�L"TCþ�±?U§§�^u�¥�f�Ú�¬�|¢õU"

While this feature is not often needed, it can be used to extend the set of modules found in a package.

ù�õU�±^u*Ð�¥��¬8§ØL§Ø~^"

5.4. Packages� 47

48

CHAPTER

SIX

Input and OutputÑ\ÚÑÑ

There are several ways to present the output of a program; data can be printed in a human-readable form, or written to
a file for future use. This chapter will discuss some of the possibilities.

kA«�{�±Ly§S�ÑÑ(J¶êâ�±^�Ö�(��<§��±�\©�ø±�¦^"�Ùò
¬?ØA«�1��{"

6.1 Fancier Output Formatting�OÑÑ�ª

So far we’ve encountered two ways of writing values: expression statements and the print statement. (A third way
is using the write() method of file objects; the standard output file can be referenced as sys.stdout. See the
Library Reference for more information on this.)

·�kü«��»Ì�ÑÑ��{µL�ª�éÚprint�é"£1n«�¦´¦^©�é��write()
�{§IO©�ÑÑ�±ë�sys.stdout"�[SNë�¥ë�Ãþ"¤

Often you’ll want more control over the formatting of your output than simply printing space-separated values. There
are two ways to format your output; the first way is to do all the string handling yourself; using string slicing and
concatenation operations you can create any layout you can imagine. The standard module string contains some
useful operations for padding strings to a given column width; these will be discussed shortly. The second way is to use
the % operator with a string as the left argument. The % operator interprets the left argument much like a sprintf()-
style format string to be applied to the right argument, and returns the string resulting from this formatting operation.

�U\²~��éÑÑ�ª��
'{ü��<��©�Î��E,���"kü«�{�±�ªz
ÑÑ"1�«´d\5����iÎG§¦^iÎ��Úé�ö�Ò�±MïÑ?Û\���ÑÑ/
ª"IO�¬string �)
�
ö�§òiÎGW¿\�½��§ù
ö�ék^"��·�¬?Ø
ùÜ©SN"1�«�{´¦^% ö�Î§±,�iÎG��Ù�ëê"% ö�Îò�ëê)º�aq
usprintf()º���ªiÎG§¿�^umëê§lTö�¥�£�ªz�iÎG"

One question remains, of course: how do you convert values to strings? Luckily, Python has ways to convert any value
to a string: pass it to the repr() or str() functions. Reverse quotes (“) are equivalent to repr(), but they are no
longer used in modern Python code and will likely not be in future versions of the language.

�,§�k��¯K§XÛò£ØÓ�¤�=z�iÎGºé3$§Pythono´r?¿�D\repr()
½str()¼ê§=�iÎG"�ÚÒ(“)�durepr()§�5���Python¥ò¬�K§�§ù�õUØ2
Ñyuy��Python�è"

The str() function is meant to return representations of values which are fairly human-readable, while repr()
is meant to generate representations which can be read by the interpreter (or will force a SyntaxError if there
is not equivalent syntax). For objects which don’t have a particular representation for human consumption, str()
will return the same value as repr(). Many values, such as numbers or structures like lists and dictionaries, have
the same representation using either function. Strings and floating point numbers, in particular, have two distinct
representations.

49

¼êstr()^uò�=z�·u<�Ö�/ª§
repr()=z�ø)ºìÖ��/ª£XJvk�d�
�{§K¬u)SyntaxErrorÉ~¤,é�vk·u<�Ö�)º/ª�{§str()¬�£�repr()�
Ó��"éõa.§ÃXê�½óL!i;ù��(�§�é�¼êÑkXÚ��)Ö�ª"iÎGÚ2
:ê§kXÕA�)Ö�ª"

Some examples:

«~µ

>>> s = ’Hello, world.’
>>> str(s)
’Hello, world.’
>>> repr(s)
"’Hello, world.’"
>>> str(0.1)
’0.1’
>>> repr(0.1)
’0.10000000000000001’
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = ’The value of x is ’ + repr(x) + ’, and y is ’ + repr(y) + ’...’
>>> print s
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:
... hello = ’hello, world\n’
>>> hellos = repr(hello)
>>> print hellos
’hello, world\n’
>>> # The argument to repr() may be any Python object:
... repr((x, y, (’spam’, ’eggs’)))
"(32.5, 40000, (’spam’, ’eggs’))"
>>> # reverse quotes are convenient in interactive sessions:
... ‘x, y, (’spam’, ’eggs’)‘
"(32.5, 40000, (’spam’, ’eggs’))"

Here are two ways to write a table of squares and cubes:

±eü«�{�±ÑÑ²�Úá�Lµ

50 Chapter 6. Input and OutputÑ\ÚÑÑ

>>> for x in range(1, 11):
... print repr(x).rjust(2), repr(x*x).rjust(3),
... # Note trailing comma on previous line
... print repr(x*x*x).rjust(4)
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000
>>> for x in range(1,11):
... print ’%2d %3d %4d’ % (x, x*x, x*x*x)
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

(Note that one space between each column was added by the way print works: it always adds spaces between its
arguments.)

£I�5¿�´¦^print�{�zü��mk����µ§o´3ëê�m\����"¤

This example demonstrates the rjust() method of string objects, which right-justifies a string in a field of a given
width by padding it with spaces on the left. There are similar methods ljust() and center(). These methods
do not write anything, they just return a new string. If the input string is too long, they don’t truncate it, but return it
unchanged; this will mess up your column lay-out but that’s usually better than the alternative, which would be lying
about a value. (If you really want truncation you can always add a slice operation, as in ‘x.ljust(n)[:n]’.)

±þ´��rjust()¼ê�ü«§ù�¼êriÎGÑÑ���§¿ÏL��ýW¿��5¦Ùméà"
aq�¼ê�kljust() Úcenter()"ù
¼ê�´ÑÑ#�iÎG§¿ØUC�o"XJÑÑ�i
ÎG��§§��Ø¬�ä§§
´��ÑÑ§ù¬¦\�ÑÑ�ªC�·Ï§ØLorL,�«ÀJ
£�äiÎG¤§Ï�@�¬�)�Ø�ÑÑ�"£XJ\(¢I��ä§§�±¦^��ö�§~Xµ"
‘x.ljust(n)[:n]’"¤

There is another method, zfill(), which pads a numeric string on the left with zeros. It understands about plus and
minus signs:

�k��¼ê§zfill()§^u�ê��iÎGL��ýW¿0"T¼ê�±�(n)�KÒµ

6.1. Fancier Output Formatting�OÑÑ�ª 51

>>> ’12’.zfill(5)
’00012’
>>> ’-3.14’.zfill(7)
’-003.14’
>>> ’3.14159265359’.zfill(5)
’3.14159265359’

Using the % operator looks like this:

�±Xeù�¦^%ö�Îµ

>>> import math
>>> print ’The value of PI is approximately %5.3f.’ % math.pi
The value of PI is approximately 3.142.

If there is more than one format in the string, you need to pass a tuple as right operand, as in this example:

XJk�L���iÎG��ªz��N§ÒI�ò§�D\���|��m�§Xe¤«µ

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 7678}
>>> for name, phone in table.items():
... print ’%-10s ==> %10d’ % (name, phone)
...
Jack ==> 4098
Dcab ==> 7678
Sjoerd ==> 4127

Most formats work exactly as in C and require that you pass the proper type; however, if you don’t you get an
exception, not a core dump. The %s format is more relaxed: if the corresponding argument is not a string object, it is
converted to string using the str() built-in function. Using * to pass the width or precision in as a separate (integer)
argument is supported. The C formats %n and %p are not supported.

�õêaC��ªzö�ÑI�\D\·��a.§ØLXJ\vk½ÂÉ~§�Ø¬k�olSØ¥ÌÄ
��Ñ5"£however, if you don’t you get an exception, not a core dump¤¦^%s�ª¬��t
µXJéA
�ëêØ´iÎG§§¬ÏLS��str()¼ê=z�iÎG"Python|±^*�����l£�.�¤ë
ê5D4°Ý½°Ý"PythonØ|±C�%nÚ%pö�Î"

If you have a really long format string that you don’t want to split up, it would be nice if you could reference the
variables to be formatted by name instead of by position. This can be done by using form %(name)format, as
shown here:

XJ�±Å:Ú^��ªz�Cþ¶§Ò�±�)ÎÜý¢�Ý��ªziÎG§Ø¬�)m�"ù��
J�±ÏL¦^form %(name)format(�5¢yµ

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 8637678}
>>> print ’Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d’ % table
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the new built-in vars() function, which returns a dictionary contain-
ing all local variables.

ù�E|3�#�S�¼êvars()|Ü¦^��~k^§T¼ê�£���¹¤kÛÜCþ�i;"

52 Chapter 6. Input and OutputÑ\ÚÑÑ

6.2 Reading and Writing FilesÖ�©�

open() returns a file object, and is most commonly used with two arguments: ‘open(filename, mode)’.

open()�£��©�§Ï~�^{I�ü�ëêµ‘open(filename, mode)’"

>>> f=open(’/tmp/workfile’, ’w’)
>>> print f
<open file ’/tmp/workfile’, mode ’w’ at 80a0960>

The first argument is a string containing the filename. The second argument is another string containing a few charac-
ters describing the way in which the file will be used. mode can be ’r’ when the file will only be read, ’w’ for only
writing (an existing file with the same name will be erased), and ’a’ opens the file for appending; any data written
to the file is automatically added to the end. ’r+’ opens the file for both reading and writing. The mode argument is
optional; ’r’ will be assumed if it’s omitted.

1��ëê´��I£©�¶�iÎG"1��ëê´dk��i1|¤�iÎG§£ã
©�ò¬�X
Û¦^"�À��ªkµ’r’§dÀ�¦©��Ö¶’w’§dÀ�¦©���£éuÓ¶©�§Tö�¦
�k©��CX¤¶’a’§dÀ�±J\�ª�m©�¶’r+’§dÀ�±Ö��ª�m©�¶XJvk�
½§%@�’r’�ª"

On Windows and the Macintosh, ’b’ appended to the mode opens the file in binary mode, so there are also modes
like ’rb’, ’wb’, and ’r+b’. Windows makes a distinction between text and binary files; the end-of-line characters
in text files are automatically altered slightly when data is read or written. This behind-the-scenes modification to file
data is fine for ASCII text files, but it’ll corrupt binary data like that in ‘JPEG’ or ‘EXE’ files. Be very careful to use
binary mode when reading and writing such files.

3Windows ÚMacintosh²�þ§’b’�ª±�?��ª�m©�§¤±�U¬kaqu’rb’ §’wb’
§’r+b’ ���ª|Ü"Windows²�þ©�©���?�©�´k«O�§Ö�©�©��§1�¬
gÄV\1(åÎ"ù«��ö��ªéASCII©�©�vk�o¯K§�´ö�JPEG½‘.EXE’ù���?
�©��Ò¬�)»�"3ö�ù
©���½�P�±�?��ª�m"

6.2.1 Methods of File Objects©��{é�

The rest of the examples in this section will assume that a file object called f has already been created.

�!¥�«~Ñ%@©�é�f®²Mï"

To read a file’s contents, call f.read(size), which reads some quantity of data and returns it as a string. size is an
optional numeric argument. When size is omitted or negative, the entire contents of the file will be read and returned;
it’s your problem if the file is twice as large as your machine’s memory. Otherwise, at most size bytes are read and
returned. If the end of the file has been reached, f.read() will return an empty string ("").

�Ö�©�SN§I�N^f.read(size)§T�{Ö�eZêþ�êâ¿±iÎG/ª�£ÙSN§iÎ
G�Ý�ê�size¤�½���"XJvk�½size½ö�½�Kê§Ò¬Ö�¿�£��©�"�©��
���cÅìS�ü��§Ò¬�)¯K"�~�¹e§¬¦�UU'���sizeÖ�Ú�£êâ"XJ�

©�"�§f.read()¬�£���iÎG£""¤"

>>> f.read()
’This is the entire file.\n’
>>> f.read()
’’

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string, and is only

6.2. Reading and Writing FilesÖ�©� 53

omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value unambiguous; if
f.readline() returns an empty string, the end of the file has been reached, while a blank line is represented by
’\n’, a string containing only a single newline.

f.readline()l©�¥Ö�üÕ�1§iÎG(�¬gÄ\þ���1Î§�k�©����1vk±
�1Î(��§ù�ö�â¬��Ñ"ù��£�ÒØ¬k�o· Ø�§XJXJf.readline()�£
���iÎG§@ÒL«��
©�"�§XJ´���1§Ò¬£ã�’\n´§����¹�1Î�iÎ
G"

>>> f.readline()
’This is the first line of the file.\n’
>>> f.readline()
’Second line of the file\n’
>>> f.readline()
’’

f.readlines() returns a list containing all the lines of data in the file. If given an optional parameter sizehint,
it reads that many bytes from the file and enough more to complete a line, and returns the lines from that. This is
often used to allow efficient reading of a large file by lines, but without having to load the entire file in memory. Only
complete lines will be returned.

f.readlines()�£���L§Ù¥�¹
©�¥¤k�êâ1"XJ�½
sizehintëê§Ò¬Ö\õ
u�1�'Aê§l¥�£õ1©�"ù�õUÏ~^up�Ö��.1©�§;�
ò��©�Ö\S
�"ù«ö���£���1"

>>> f.readlines()
[’This is the first line of the file.\n’, ’Second line of the file\n’]

An alternate approach to reading lines is to loop over the file object. This is memory efficient, fast, and leads to simpler
code:

��Ï��±Ì�Ö�©�é�¥�1"ù´S�ö���Ç§¯�§�è{üµ

>>> for line in f:
print line,

This is the first line of the file.
Second line of the file

The alternative approach is simpler but does not provide as fine-grained control. Since the two approaches manage
line buffering differently, they should not be mixed.

��Ï�é{ü§�´ØJø�����"Ï�ü�Ï�+n��ÀØÓ§§�ØU·Ü"

f.write(string) writes the contents of string to the file, returning None.

f.write(string)òstring�SN�\©�§�£None"

>>> f.write(’This is a test\n’)

To write something other than a string, it needs to be converted to a string first:

XJI��\iÎG±	�êâ§Ò�krù
êâ=��iÎG"

54 Chapter 6. Input and OutputÑ\ÚÑÑ

>>> value = (’the answer’, 42)
>>> s = str(value)
>>> f.write(s)

f.tell() returns an integer giving the file object’s current position in the file, measured in bytes from the beginning
of the file. To change the file object’s position, use ‘f.seek(offset, from_what)’. The position is computed from
adding offset to a reference point; the reference point is selected by the from_what argument. A from_what value of 0
measures from the beginning of the file, 1 uses the current file position, and 2 uses the end of the file as the reference
point. from_what can be omitted and defaults to 0, using the beginning of the file as the reference point.

f.tell()�£���ê§�L©�é�3©�¥��� �§Tê�Oþ
g©�mÞ���?�'A
ê"I�UC©�é���{{§¦^‘f.seek(offset,from_what)’"��3Tö�¥l�½�Ú^ �£
Äoffset 'A§Ú^ �dfrom_what ëê�½"from_what��0L«g©�åÐ?m©§1L«g�c©�
�� �m©§2L«g©�"�m©"from_what�±�Ñ§Ù%@��"§d�l©�Þm©"

>>> f = open(’/tmp/workfile’, ’r+’)
>>> f.write(’0123456789abcdef’)
>>> f.seek(5) # Go to the 6th byte in the file
>>> f.read(1)
’5’
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
>>> f.read(1)
’d’

When you’re done with a file, call f.close() to close it and free up any system resources taken up by the open file.
After calling f.close(), attempts to use the file object will automatically fail.

©�¦^��§N^f.close()�±'4©�§º��m©��Ó^�XÚ]
"N^f.close()��§
2N^©�é�¬gÄÚu�Ø"

>>> f.close()
>>> f.read()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: I/O operation on closed file

File objects have some additional methods, such as isatty() and truncate() which are less frequently used;
consult the Library Reference for a complete guide to file objects.

©�é��k�
Ø�~^�N\�{§'Xisatty()Útruncate()3¥ë�Ãþ¥k©�é���
��H"

6.2.2 The pickle Module pickle�¬

Strings can easily be written to and read from a file. Numbers take a bit more effort, since the read() method only
returns strings, which will have to be passed to a function like int(), which takes a string like ’123’ and returns
its numeric value 123. However, when you want to save more complex data types like lists, dictionaries, or class
instances, things get a lot more complicated.

·��±éN´�Ö�©�¥�iÎG"ê�Ò�õ¤:�±ò§Ï�read()�{�¬�£iÎG§AT
òÙD\int()�{¥§Ò�±ò’123’ù��iÎ=�éA�ê�123"ØL§�\I�����E,�
êâa.§~XóL!i;§a�¢~§¯�Ò¬C��E,
"

6.2. Reading and Writing FilesÖ�©� 55

Rather than have users be constantly writing and debugging code to save complicated data types, Python provides a
standard module called pickle. This is an amazing module that can take almost any Python object (even some forms
of Python code!), and convert it to a string representation; this process is called pickling. Reconstructing the object
from the string representation is called unpickling. Between pickling and unpickling, the string representing the object
may have been stored in a file or data, or sent over a network connection to some distant machine.

Ð3^rØ7���gC?�ÚNÁ��E,êâa.��è"PythonJø
��¶�pickle�IO�
¬"ù´��-<7'��¬§A��±r?ÛPythoné�£$�´�
Python�èã�¤L���iÎ
G§ù�L§¡��µC£pickling¤"liÎGL�Ñ­#�Eé�¡��
µ£unpickling¤"µCG�
¥�é��±�;3©�½é�¥§��±ÏL�ä3�§�Åì�mDÑ"

If you have an object x, and a file object f that’s been opened for writing, the simplest way to pickle the object takes
only one line of code:

XJ\k��é�x§��±��ª�m�©�é�f§µCé���{ü��{�I��1�èµ

pickle.dump(x, f)

To unpickle the object again, if f is a file object which has been opened for reading:

XJf´��±Ö�ª�m�©�é�§Ò�±­C
µù�é�µ

x = pickle.load(f)

(There are other variants of this, used when pickling many objects or when you don’t want to write the pickled data to
a file; consult the complete documentation for pickle in the Python Library Reference.)

£XJØ�rµC�êâ�\©�§ùp�k�
Ù§�Cz�^"���pickle©���Python¥ë�
Ãþ¤"

pickle is the standard way to make Python objects which can be stored and reused by other programs or by a future
invocation of the same program; the technical term for this is a persistent object. Because pickle is so widely used,
many authors who write Python extensions take care to ensure that new data types such as matrices can be properly
pickled and unpickled.

pickle´�;Pythoné�±øÙ§§S½Ù��±�N^�IO�{"Jøù�|Eâ�´��±Èzé
�£persistent object¤"Ï�pickle�^åé2�§éõPython*Ð��öÑ�~5¿aqÝ
ù��#
êâa.´Ä·ÜµCÚ
µ"

56 Chapter 6. Input and OutputÑ\ÚÑÑ

../lib/module-pickle.html
../lib/module-pickle.html
../lib/module-pickle.html
../lib/
../lib/module-pickle.html
../lib/
../lib/
../lib/module-pickle.html
../lib/module-pickle.html
../lib/module-pickle.html
../lib/module-pickle.html

CHAPTER

SEVEN

Errors and Exceptions�ØÚÉ~

Until now error messages haven’t been more than mentioned, but if you have tried out the examples you have probably
seen some. There are (at least) two distinguishable kinds of errors: syntax errors and exceptions.

�8���vk?�Ú�!ØL�Ø&E§ØL3\®²Á�L�@
~f¥§�U®²��L�

"Python¥£��¤kü«�Øµ�{�ØÚÉ~£syntax errorsand exceptions¤"

7.1 Syntax Errors�{�Ø

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you are
still learning Python:

�{�Ø§�¡�)Û�Ø§�U´ÆSPython�L§¥�N´��µ

>>> while True print ’Hello world’
File "<stdin>", line 1, in ?

while True print ’Hello world’
^

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest point in the line where the
error was detected. The error is caused by (or at least detected at) the token preceding the arrow: in the example, the
error is detected at the keyword print, since a colon (‘:’) is missing before it. File name and line number are printed
so you know where to look in case the input came from a script.

)Ûì¬­EÑ��1§¿31¥�@uy��Ø �þw«����Þ"�Ø£��´�uÿ��¤Ò
u)3�Þ��� �"«~¥��ØLy3'�iprintþ§Ï�3§�c�
��kÒ£‘:’¤"Ó�
�¬w«©�¶Ú1Ò§ù�\Ò�±���Ø5g=���§�o �"

7.2 ExceptionsÉ~

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute it.
Errors detected during execution are called exceptions and are not unconditionally fatal: you will soon learn how to
handle them in Python programs. Most exceptions are not handled by programs, however, and result in error messages
as shown here:

=¦´3�{þ���(��é§}Á�1§��ÿ§�k�U¬u)�Ø"3§S$1¥uÿÑ��Ø
¡��É~§§Ï~Ø¬���·�¯K§\é¯Ò¬Æ�XÛ3Python§S¥��§�"�õêÉ~Ø
¬d§S?n§
´w«���Ø&Eµ

57

>>> 10 * (1/0)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: name ’spam’ is not defined
>>> ’2’ + 2
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: cannot concatenate ’str’ and ’int’ objects

The last line of the error message indicates what happened. Exceptions come in different types, and the type is printed
as part of the message: the types in the example are ZeroDivisionError, NameError and TypeError. The
string printed as the exception type is the name of the built-in exception that occurred. This is true for all built-in
exceptions, but need not be true for user-defined exceptions (although it is a useful convention). Standard exception
names are built-in identifiers (not reserved keywords).

�Ø&E����1�Ñu)
�o�Ø"É~�kØÓ�a.§É~a.���Ø&E��Ü©w«
Ñ5µ«~¥�É~©O�"Ø�Ø£ZeroDivisionError ¤§·¶�Ø£NameError¤Úa.�Ø
£TypeError¤"�<�Ø&E�§É~�a.��É~�S�¶w«"éu¤k�S�É~Ñ´Xd§
ØL^rg½ÂÉ~ÒØ�½
£¦+ù´��ék^��½¤"IOÉ~¶´S��I££vk�3'
�i¤"

The rest of the line provides detail based on the type of exception and what caused it.

ù�1��Ü©´'uTÉ~a.��[`²§ù¿�X§�SN�6uÉ~a."

The preceding part of the error message shows the context where the exception happened, in the form of a stack
traceback. In general it contains a stack traceback listing source lines; however, it will not display lines read from
standard input.

�Ø&E�c�Ü©±æÒ�/ª�ÑÉ~u)� �"Ï~3æÒ¥�Ñ

�è1§,
§5gIO
Ñ\�
èØ¬w«Ñ5"

The Python Library Reference lists the built-in exceptions and their meanings.

Python¥ë�Ãþ�Ñ
S�É~Ú§��¹Â"

7.3 Handling Exceptions?nÉ~

It is possible to write programs that handle selected exceptions. Look at the following example, which asks the user
for input until a valid integer has been entered, but allows the user to interrupt the program (using Control-C
or whatever the operating system supports); note that a user-generated interruption is signalled by raising the
KeyboardInterrupt exception.

ÏL?§�±?n�½�É~"±e�~f­E�¦^rÑ\���§��^rÑ\�´��Ü{��ê
��"ØLù�§S#N^r¥ä§S£¦^Control-C½öÙ§ö�XÚ|±��{¤"I�5¿�´
^ruÑ�¥ä¬Úu��KeyboardInterruptÉ~"

58 Chapter 7. Errors and Exceptions�ØÚÉ~

../lib/module-exceptions.html
../lib/module-exceptions.html

>>> while True:
... try:
... x = int(raw_input("Please enter a number: "))
... break
... except ValueError:
... print "Oops! That was no valid number. Try again..."
...

The try statement works as follows.

try�éUXe�ªó�µ

• First, the try clause (the statement(s) between the try and except keywords) is executed.

Äk§�1tryfé£3tryÚexcept'�i�m�Ü©¤"

• If no exception occurs, the except clause is skipped and execution of the try statement is finished.

XJvkÉ~u)§exceptfé3try�é�1�.�Ò��Ñ
"

• If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then if its type
matches the exception named after the except keyword, the except clause is executed, and then execution
continues after the try statement.

XJ3try fé�1L§¥u)
É~§@oTféÙ{�Ü©Ò¬��Ñ"XJÉ~��
uexcept '�i�¡�½�É~a.§Ò�1éA�exceptfé§�Ñtryfé�Ù§Ü©",�
UY�1try�é����è"

• If an exception occurs which does not match the exception named in the except clause, it is passed on to outer
try statements; if no handler is found, it is an unhandled exception and execution stops with a message as
shown above.

XJu)
��É~§3exceptfé¥vk�����©|§§Ò¬D4�þ�?try�é¥"XJ
�ªEéØ�éA�?n�é§§Ò¤����?nÉ~§ª�§S$1§w«J«&E"

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one
handler will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other
handlers of the same try statement. An except clause may name multiple exceptions as a parenthesized tuple, for
example:

��try�é�U�¹õ�exceptfé§©O�½?nØÓ�É~"�õ�¬k��©|��1"É~?n
§S�¬?néA�tryfé¥u)�É~§3Ó��try�é¥§Ù¦fé¥u)�É~KØ�?n"
��exceptfé�±3)Ò¥�Ñõ�É~�¶i§~Xµ

... except (RuntimeError, TypeError, NameError):

... pass

The last except clause may omit the exception name(s), to serve as a wildcard. Use this with extreme caution, since it
is easy to mask a real programming error in this way! It can also be used to print an error message and then re-raise
the exception (allowing a caller to handle the exception as well):

����exceptfé�±�ÑÉ~¶§r§����Ï��¦^"�½�&^ù«�{§Ï�§é�U¬¶
-Ký��§S�Ø§¦<Ã{uy�§��±^u�<�1�Ø&E§,�­#�ÑÉ~£�±¦N^
ö�Ð�?nÉ~¤"

7.3. Handling Exceptions?nÉ~ 59

import sys

try:
f = open(’myfile.txt’)
s = f.readline()
i = int(s.strip())

except IOError, (errno, strerror):
print "I/O error(%s): %s" % (errno, strerror)

except ValueError:
print "Could not convert data to an integer."

except:
print "Unexpected error:", sys.exc_info()[0]
raise

The try . . . except statement has an optional else clause, which, when present, must follow all except clauses. It
is useful for code that must be executed if the try clause does not raise an exception. For example:

try . . . except�é�±�k��elsefé§Tfé�UÑy3¤kexceptfé��"�try�évk�Ñ
É~�§I��1�
�è§�±¦^ù�fé"~Xµ

for arg in sys.argv[1:]:
try:

f = open(arg, ’r’)
except IOError:

print ’cannot open’, arg
else:

print arg, ’has’, len(f.readlines()), ’lines’
f.close()

The use of the else clause is better than adding additional code to the try clause because it avoids accidentally
catching an exception that wasn’t raised by the code being protected by the try . . . except statement.

¦^elsefé'3tryfé¥N\�è�Ð§Ï�ù��±;�try . . .
keywordexcept¿	��¼�5Øáu§��o�@
�è�Ñ�É~"

When an exception occurs, it may have an associated value, also known as the exception’s argument. The presence
and type of the argument depend on the exception type.

u)É~�§�U¬k��Ná�§��É~�ëê�3"ù�ëê´Ä�3!´�oa.§�6uÉ~
�a."

The except clause may specify a variable after the exception name (or tuple). The variable is bound to an excep-
tion instance with the arguments stored in instance.args. For convenience, the exception instance defines __-
getitem__ and __str__ so the arguments can be accessed or printed directly without having to reference .args.

3É~¶£�L¤��§��±�except fé�½��Cþ"ù�Cþ�½u��É~¢~§§�;
3instance.args �ëê¥"�
�Bå�§É~¢~½Â
__getitem__ Ú__str__§ù�Ò�±
���¯L�<ëê
Ø7Ú^.args"

But use of .args is discouraged. Instead, the preferred use is to pass a single argument to an exception (which can
be a tuple if multiple arguments are needed) and have it bound to the message attribute. One my also instantiate an
exception first before raising it and add any attributes to it as desired.

ù«�{ØÉ�y"��§�Ð��{´�É~D4��ëê£XJ�D4õ�ëê§�±D4���
|¤§r§�½�messageá5"��É~u)§§¬3�Ñc�½¤k�½�á5"

60 Chapter 7. Errors and Exceptions�ØÚÉ~

>>> try:
... raise Exception(’spam’, ’eggs’)
... except Exception, inst:
... print type(inst) # the exception instance
... print inst.args # arguments stored in .args
... print inst # __str__ allows args to printed directly
... x, y = inst # __getitem__ allows args to be unpacked directly
... print ’x =’, x
... print ’y =’, y
...
<type ’instance’>
(’spam’, ’eggs’)
(’spam’, ’eggs’)
x = spam
y = eggs

If an exception has an argument, it is printed as the last part (‘detail’) of the message for unhandled exceptions.

éu�?n�É~§XJ§k��ëê§@�Ò¬���Ø&E����Ü©£/²[0¤�<Ñ5"

Exception handlers don’t just handle exceptions if they occur immediately in the try clause, but also if they occur
inside functions that are called (even indirectly) in the try clause. For example:

É~?néYØ��±?n��u)3tryfé¥�É~§=¦´Ù¥£$�´m�¤N^�¼ê§u)

É~§����±?n"~Xµ

>>> def this_fails():
... x = 1/0
...
>>> try:
... this_fails()
... except ZeroDivisionError, detail:
... print ’Handling run-time error:’, detail
...
Handling run-time error: integer division or modulo by zero

7.4 Raising Exceptions�ÑÉ~

The raise statement allows the programmer to force a specified exception to occur. For example:

§S
�±^raise�ér��½�É~u)"~Xµ

>>> raise NameError, ’HiThere’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: HiThere

The first argument to raise names the exception to be raised. The optional second argument specifies the exception’s
argument. Alternatively, the above could be written as raise NameError(’HiThere’). Either form works fine,
but there seems to be a growing stylistic preference for the latter.

1��ëê�½
¤�ÑÉ~�¶¡§1���½
É~�ëê"�k�«�±O���{´raise

7.4. Raising Exceptions�ÑÉ~ 61

NameError(’HiThere’)"ü«/ªÑU^§�ØLwþ�c�«º�'��«�Ð"

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler form of the raise
statement allows you to re-raise the exception:

XJ\û½�Ñ��É~
Ø?n§§raise�é�±4\é{ü�­#�ÑTÉ~"

>>> try:
... raise NameError, ’HiThere’
... except NameError:
... print ’An exception flew by!’
... raise
...
An exception flew by!
Traceback (most recent call last):

File "<stdin>", line 2, in ?
NameError: HiThere

7.5 User-defined Exceptions^rg½ÂÉ~

Programs may name their own exceptions by creating a new exception class. Exceptions should typically be derived
from the Exception class, either directly or indirectly. For example:

3§S¥�±ÏLMï#�É~a.5·¶gC�É~"É~aÏ~AT��½m��lExceptiona�
)§~Xµ

>>> class MyError(Exception):
... def __init__(self, value):
... self.value = value
... def __str__(self):
... return repr(self.value)
...
>>> try:
... raise MyError(2*2)
... except MyError, e:
... print ’My exception occurred, value:’, e.value
...
My exception occurred, value: 4
>>> raise MyError, ’oops!’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
__main__.MyError: ’oops!’

In this example, the default __init__ of Exception has been overridden. The new behavior simply creates the
value attribute. This replaces the default behavior of creating the args attribute.

3ù�~f¥§Exception%@�__init__�CX"#��ª{ü�Mïvalueá5"ùÒO�
�5
Mïargsá5��ª"

Exception classes can be defined which do anything any other class can do, but are usually kept simple, often only
offering a number of attributes that allow information about the error to be extracted by handlers for the exception.
When creating a module that can raise several distinct errors, a common practice is to create a base class for exceptions
defined by that module, and subclass that to create specific exception classes for different error conditions:

É~a¥�±½Â?ÛÙ§a¥�±½Â�ÀÜ§�´Ï~�
�±{ü§�3Ù¥\\A�á5&E§

62 Chapter 7. Errors and Exceptions�ØÚÉ~

±øÉ~?néYJ�"XJ��#Mï��¬¥I��ÑA«ØÓ��Ø�§��Ï~��{´�T�
¬½Â��É~Äa§,��éØÓ��Øa.�)ÑéA�É~fa"

class Error(Exception):
"""Base class for exceptions in this module."""
pass

class InputError(Error):
"""Exception raised for errors in the input.

Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error

"""

def __init__(self, expression, message):
self.expression = expression
self.message = message

class TransitionError(Error):
"""Raised when an operation attempts a state transition that’s not
allowed.

Attributes:
previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific transition is not allowed

"""

def __init__(self, previous, next, message):
self.previous = previous
self.next = next
self.message = message

Most exceptions are defined with names that end in “Error,” similar to the naming of the standard exceptions.

�IOÉ~�q§�õêÉ~�·¶Ñ±/Error0(�"

Many standard modules define their own exceptions to report errors that may occur in functions they define. More
information on classes is presented in chapter 8, “Classes.”

éõIO�¬¥Ñ½Â
gC�É~§^±�w3¦�¤½Â�¼ê¥�Uu)��Ø"'ua�?�Ú
&E�ë�19Ù8§/a0"

7.6 Defining Clean-up Actions½Â�n1�

The try statement has another optional clause which is intended to define clean-up actions that must be executed
under all circumstances. For example:

try�é�k,���À�fé§8�3u½Â3?Û�¹eÑ�½��1�õU"~Xµ

7.6. Defining Clean-up Actions½Â�n1� 63

>>> try:
... raise KeyboardInterrupt
... finally:
... print ’Goodbye, world!’
...
Goodbye, world!
Traceback (most recent call last):

File "<stdin>", line 2, in ?
KeyboardInterrupt

A finally clause is always executed before leaving the try statement, whether an exception has occurred or not. When
an exception has occurred in the try clause and has not been handled by an except clause (or it has occurred in a
except or else clause), it is re-raised after the finally clause has been executed. The finally clause is also
executed “on the way out” when any other clause of the try statement is left via a break, continue or return
statement. A more complicated example:

Ø+try fé¥kvku)É~§finally fé3§Slmtry �Ñ�½¬��1"�try fé¥u)
�
�except Ó¼�É~£½ö§u)3excepte ½else fé¥¤§3finally fé�1��§¬�­#�
Ñ"tryfé²dbreak§continue½return�éòÑ���¬�1finallyfé"±e´���E,

�~fµ

>>> def divide(x, y):
... try:
... result = x / y
... except ZeroDivisionError:
... print "division by zero!"
... else:
... print "result is", result
... finally:
... print "executing finally clause"
...
>>> divide(2, 1)
result is 2
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: ’str’ and ’str’

As you can see, the finally clause is executed in any event. The TypeError raised by dividing two strings is not
handled by the except clause and therefore re-raised after the finally clauses has been executed.

X\¤�§(finally)fé3?Û�¹eÑ¬�1"TypeError3ü�iÎG�Ø��ÿ�Ñ§��except
féÓ¼§Ïd3finallyfé�1�.�­#�Ñ"

In real world applications, the finally clause is useful for releasing external resources (such as files or network
connections), regardless of whether the use of the resource was successful.

3¢S�A^§S¥§finallyfé^uº�	Ü]
£~X©�½�äë�¤§ÃØ]
�¦^´Ä¤
õ"

64 Chapter 7. Errors and Exceptions�ØÚÉ~

7.7 Predefined Clean-up Actionsý½Â�n1�

Some objects define standard clean-up actions to be undertaken when the object is no longer needed, regardless of
whether or not the operation using the object succeeded or failed. Look at the following example, which tries to open
a file and print its contents to the screen.

k
é�½Â
IO��n1�§ÃØé�ö�´Ä¤õ§Ø2I�Té���ÿÒ¬å�^"±e«~
}Á�m©�¿rSN�<�¶4þ"

for line in open("myfile.txt"):
print line

The problem with this code is that it leaves the file open for an indeterminate amount of time after the code has finished
executing. This is not an issue in simple scripts, but can be a problem for larger applications. The with statement
allows objects like files to be used in a way that ensures they are always cleaned up promptly and correctly.

ùã�è�¯K3u3�è�1��vká='4�m�©�"ù3{ü���pv�o§�´�.A^
§SÒ¬Ñ¯K"with�é¦�©��a�é��±(�oU9�O(/?1�n"

with open("myfile.txt") as f:
for line in f:

print line

After the statement is executed, the file f is always closed, even if a problem was encountered while processing the
lines. Other objects which provide predefined clean-up actions will indicate this in their documentation.

�é�1�§©�f o¬�'4§=¦´3?n©�¥�êâ�Ñ����"Ù§é�´ÄJø
ý½Â�
�n1���w§��©�"

7.7. Predefined Clean-up Actionsý½Â�n1� 65

66

CHAPTER

EIGHT

Classes

Python’s class mechanism adds classes to the language with a minimum of new syntax and semantics. It is a mixture
of the class mechanisms found in C++ and Modula-3. As is true for modules, classes in Python do not put an absolute
barrier between definition and user, but rather rely on the politeness of the user not to “break into the definition.”
The most important features of classes are retained with full power, however: the class inheritance mechanism allows
multiple base classes, a derived class can override any methods of its base class or classes, and a method can call the
method of a base class with the same name. Objects can contain an arbitrary amount of private data.

Python 3¦�UØO\#��{Ú�Â��¹e\\
aÅ�"ù«Å�´C++ ÚModula-3 �·
Ü"Python¥�avk3^rÚ½Â�mïá��ýé�¶æ§
´�6u^rgú�Ø�/»�½Â0"
,
§aÅ��­��õUÑ����3e5"aU«Å�#NõU«§�)a�±CX£override¤Äa
¥�?Û�{§�{¥�±N^Äa¥�Ó¶�{"é��±�¹?¿êþ�hk¤
"

In C++ terminology, all class members (including the data members) are public, and all member functions are virtual.
There are no special constructors or destructors. As in Modula-3, there are no shorthands for referencing the object’s
members from its methods: the method function is declared with an explicit first argument representing the object,
which is provided implicitly by the call. As in Smalltalk, classes themselves are objects, albeit in the wider sense of
the word: in Python, all data types are objects. This provides semantics for importing and renaming. Unlike C++
and Modula-3, built-in types can be used as base classes for extension by the user. Also, like in C++ but unlike in
Modula-3, most built-in operators with special syntax (arithmetic operators, subscripting etc.) can be redefined for
class instances.

^C++ â�5ù§¤k�a¤
£�)êâ¤
¤Ñ´úk£public ¤�§¤k�¤
¼êÑ´J[
£virtual¤�"vkA½��EÚÛ�¼ê"^Modula-3�â�5ù§3¤
�{¥vk�o{B��ª
£shorthands¤�±Ú^é��¤
µ�{¼ê3½Â�I�±Ú^�é���1��ëê§N^�K¬Û
ªÚ^é�"ù�Ò/¤
�Âþ�Ú\Ú­·¶"£This provides semantics for importing and renaming. ¤
�´§�C++
�Modula-3¥@�§�õê�kAÏ�{�S�ö�Î£�{$�Î!eI�¤Ñ�±�
éa�I�­#½Â"

8.1 A Word About Terminologyâ�û!

Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++
terms. (I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++, but I
expect that few readers have heard of it.)

duvk�o'ua�Ï^â�§·lSmalltalkÚC++¥/^�
£·�F"^Modula-3�§Ï�§�¡
�é�Å�'C++��CPython§ØL·�võ�Ööf`L§¤"

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is known
as aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be safely ignored
when dealing with immutable basic types (numbers, strings, tuples). However, aliasing has an (intended!) effect
on the semantics of Python code involving mutable objects such as lists, dictionaries, and most types representing

67

entities outside the program (files, windows, etc.). This is usually used to the benefit of the program, since aliases
behave like pointers in some respects. For example, passing an object is cheap since only a pointer is passed by the
implementation; and if a function modifies an object passed as an argument, the caller will see the change — this
eliminates the need for two different argument passing mechanisms as in Pascal.

é�´�Az�§õ�¶i£3õ��^�¥¤�±�½Ó��é�"ù��uÙ§�ó¥�O¶"Ï~
éPython�1�<�¥¬�Ñù�:§¦^@
Ø�C�Ä�a.£ê�!iÎG!�|¤���±é�
%��À§",
§3Python�èN^i;!óL�a�Cé�§±9�õê�9§S	Ü¢N£©�!
IN��¤�a.�§ù��ÂÒ¬kK�"ùÏ^kÏu`z§S§Ï�O¶�1�3,
�¡aqu
��"~X§éN´D4��é�§Ï�31�þ�´D4
����"XJ¼ê?U
��ÏLëêD
4�é�§N^ö�±�Â�Cz¨¨3Pascal¥ùI�ü�ØÓ�ëêD4Å�"

8.2 Python Scopes and Name Spaces�^�Ú·¶�m

Before introducing classes, I first have to tell you something about Python’s scope rules. Class definitions play some
neat tricks with namespaces, and you need to know how scopes and namespaces work to fully understand what’s going
on. Incidentally, knowledge about this subject is useful for any advanced Python programmer.

30�a�c§·Äk0��
k'Python�^��5Kµa�½Â�~|©�$^
·¶�m§���
n)�e5��£§I�kn)�^�Ú·¶�m�ó��n",	§ù����£éu?Ûp?Python
§S
Ñ�~k^"

Let’s begin with some definitions.

·�l�
½Âm©"

A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python dictionaries,
but that’s normally not noticeable in any way (except for performance), and it may change in the future. Examples of
namespaces are: the set of built-in names (functions such as abs(), and built-in exception names); the global names
in a module; and the local names in a function invocation. In a sense the set of attributes of an object also form a
namespace. The important thing to know about namespaces is that there is absolutely no relation between names in
different namespaces; for instance, two different modules may both define a function “maximize” without confusion
— users of the modules must prefix it with the module name.

·¶�m´l·¶�é��N�"�c·¶�mÌ�´ÏLPythoni;¢y�§ØLÏ~Ø'%äN�¢
y�ª£Ø�Ñu5U�Ä¤§±��k�U¬UCÙ¢y�ª"±ek�
·¶�m�~fµS�·¶
£�abs()ù��¼ê§±9S�É~¶¤8§�¬¥��Û·¶§¼êN^¥�ÛÜ·¶",«¿Âþ
ùé��á58�´��·¶�m"'u·¶�mI�
)���é­��¯Ò´ØÓ·¶�m¥�·¶
vk?ÛéX§~Xü�ØÓ��¬�UÑ¬½Â��¶�/maximize0�¼ê
Ø¬u)· ¨¨^r7
L±�¬¶�cM5Ú^§�"

By the way, I use the word attribute for any name following a dot — for example, in the expression z.real, real is
an attribute of the object z. Strictly speaking, references to names in modules are attribute references: in the expression
modname.funcname, modname is a module object and funcname is an attribute of it. In this case there happens
to be a straightforward mapping between the module’s attributes and the global names defined in the module: they
share the same namespace! 1

^BJ�é§·¡Python¥?Û��/.0���·¶�á5¨¨~X§L�ªz.real¥�real´é�z
���á5"î�5ù§l�¬¥Ú^·¶´Ú^á5µL�ªmodname.funcname¥§modname´�
��¬é�§funcname´§���á5"Ïd§�¬�á5Ú�¬¥��Û·¶k���N�'Xµ§
���Ó�·¶�m�2

1 Except for one thing. Module objects have a secret read-only attribute called __dict__ which returns the dictionary used to implement
the module’s namespace; the name __dict__ is an attribute but not a global name. Obviously, using this violates the abstraction of namespace
implementation, and should be restricted to things like post-mortem debuggers.

2 k��~	"�¬é�k��Û���Öé�§¶�__dict__§§�£^u¢y�¬·¶�m�i;§·¶__dict__´��á5

��Û·¶"w,§¦^§��
·¶�m¢y�Ä��K§AT�î���uNÁ¥"

68 Chapter 8. Classes

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module attributes are
writable: you can write ‘modname.the_answer = 42’. Writable attributes may also be deleted with the del
statement. For example, ‘del modname.the_answer’ will remove the attribute the_answer from the object
named by modname.

á5�±´�ÖL½��"��«�¹e§�±éá5D�"\�±ù��µ‘modname.the_answer =
42’"���á5��±^del �éíØ"~Xµ‘del modname.the_answer’ ¬lmodname é�¥í
Øthe_answerá5"

Name spaces are created at different moments and have different lifetimes. The namespace containing the built-in
names is created when the Python interpreter starts up, and is never deleted. The global namespace for a module
is created when the module definition is read in; normally, module namespaces also last until the interpreter quits.
The statements executed by the top-level invocation of the interpreter, either read from a script file or interactively,
are considered part of a module called __main__, so they have their own global namespace. (The built-in names
actually also live in a module; this is called __builtin__.)

ØÓ�·¶�m3ØÓ���Mï§kØÓ�)�Ï"�¹S�·¶�·¶�m3Python)ºìéÄ�M
ï§¬���3§Ø�íØ"�¬��Û·¶�m3�¬½Â�Ö\�Mï§Ï~§�¬·¶�m�¬�
����)ºìòÑ"d)ºì3�p�N^�1��é§Ø+§´l��©�¥Ö\�´5g�pªÑ
\§Ñ´__main__�¬��Ü©§¤±§��PkgC�·¶�m"£S�·¶�Ó���¹3���¬
¥§§�¡�__builtin__"¤

The local namespace for a function is created when the function is called, and deleted when the function returns or
raises an exception that is not handled within the function. (Actually, forgetting would be a better way to describe
what actually happens.) Of course, recursive invocations each have their own local namespace.

�¼ê�N^�Mï��ÛÜ·¶�m§¼ê���£L�Ñ���3¼êS?n�É~�íØ"£¢S
þ§`´¢#��b�¤"�,§z��48N^PkgC�·¶�m"

A scope is a textual region of a Python program where a namespace is directly accessible. “Directly accessible” here
means that an unqualified reference to a name attempts to find the name in the namespace.

�^�´Python§S¥��·¶�m�±���¯��©«�"/���¯03ùp�¿g´�é·¶�
ÃIÚ^·¶cM"

Although scopes are determined statically, they are used dynamically. At any time during execution, there are at least
three nested scopes whose namespaces are directly accessible: the innermost scope, which is searched first, contains
the local names; the namespaces of any enclosing functions, which are searched starting with the nearest enclosing
scope; the middle scope, searched next, contains the current module’s global names; and the outermost scope (searched
last) is the namespace containing built-in names.

¦+�^�´·�½Â§3¦^�¦�Ñ´Ä��"zg�1�§��kn�·¶�m�±���¯��
^�i@3�åµ�¹ÛÜ·¶�¦^�3�p¡§Äk�|¢¶Ùg|¢�´¥���^�§ùp�¹

Ó?�¼ê¶��|¢�	¡��^�§§�¹S�·¶"

If a name is declared global, then all references and assignments go directly to the middle scope containing the
module’s global names. Otherwise, all variables found outside of the innermost scope are read-only (an attempt to
write to such a variable will simply create a new local variable in the innermost scope, leaving the identically named
outer variable unchanged).

XJ��·¶(²��Û�§@o¤k�D�ÚÚ^Ñ���é�¹��Û·¶�¥?�^�",	§l
	Ü�¯��¤kS��^��CþÑ´�Ö�"£Áã�ù��Cþ�¬3SÜ�^�Mï��#ÛÜ
Cþ§	ÜI«·¶�@�CþØ¬UC¤"

Usually, the local scope references the local names of the (textually) current function. Outside functions, the local
scope references the same namespace as the global scope: the module’s namespace. Class definitions place yet another
namespace in the local scope.

li¡¿Âþù§ÛÜ�^�Ú^�c¼ê�·¶"3¼ê�	§ÛÜ�^���Û¦^�Ú^Ó�·¶
�mµ�¬·¶�m"a½Â�´ÛÜ�^�¥�,��·¶�m"

8.2. Python Scopes and Name Spaces�^�Ú·¶�m 69

It is important to realize that scopes are determined textually: the global scope of a function defined in a module
is that module’s namespace, no matter from where or by what alias the function is called. On the other hand, the
actual search for names is done dynamically, at run time — however, the language definition is evolving towards static
name resolution, at “compile” time, so don’t rely on dynamic name resolution! (In fact, local variables are already
determined statically.)

­��´�^�û½u
§S�©�µ��½Âu,�¬¥�¼ê��Û�^�´T�¬�·¶�m§

Ø´T¼ê�O¶�½Â½N^� �§
)ù�:�~­�",��¡§·¶�¢S|¢L§´Ä�
�§3$1�(½�)),
§Python�ó�3ØäuÐ§±�k�U¬¤�·��/?È0�(½§¤
±Ø��6Ä�)Û�£¯¢þ§ÛÜCþ®²´·�(½
"¤

A special quirk of Python is that assignments always go into the innermost scope. Assignments do not copy data —
they just bind names to objects. The same is true for deletions: the statement ‘del x’ removes the binding of x from
the namespace referenced by the local scope. In fact, all operations that introduce new names use the local scope:
in particular, import statements and function definitions bind the module or function name in the local scope. (The
global statement can be used to indicate that particular variables live in the global scope.)

Python���AO�?3uÙD�ö�o´3�p���^�"D�Ø¬E�êâ))�´ò·¶�½�
é�"íØ�´Xdµ‘del x’�´lÛÜ�^��·¶�m¥íØ·¶x"¯¢þ§¤kÚ\#·¶�ö
�Ñ�^uÛÜ�^�"AO´import�éÚ¼ê½ò�¬¶½¼ê�½uÛÜ�^�"£�±¦^global
�éòCþÚ\��Û�^�"¤

8.3 A First Look at ClassesÐ£a

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

aÚ\
�:#��{§n«#�é�a.§±9�
#��Â"

8.3.1 Class Definition Syntaxa½Â�{

The simplest form of class definition looks like this:

�{ü�a½Â/ªXeµ

class ClassName:
<statement-1>
.
.
.
<statement-N>

Class definitions, like function definitions (def statements) must be executed before they have any effect. (You could
conceivably place a class definition in a branch of an if statement, or inside a function.)

a�½ÂÒ�¼ê½Â£def�é¤§�k�1âU)�"£\�,�±r§�?if�é�,�©|§½
ö��¼ê�SÜ"¤

In practice, the statements inside a class definition will usually be function definitions, but other statements are allowed,
and sometimes useful — we’ll come back to this later. The function definitions inside a class normally have a peculiar
form of argument list, dictated by the calling conventions for methods — again, this is explained later.

S.þ§a½Â�é�SNÏ~´¼ê½Â§ØLÙ§�é��±§k�¬ék^))�¡·�2£LÞ
5?Ø"a¥�¼ê½ÂÏ~�)
��AÏ/ª�ëê�L§^u�{N^�½))Ó�·�3�¡?
Øù
"

70 Chapter 8. Classes

When a class definition is entered, a new namespace is created, and used as the local scope — thus, all assignments to
local variables go into this new namespace. In particular, function definitions bind the name of the new function here.

S.þ§a½Â�é�SNÏ~´¼ê½Â§ØLÙ§�é��±§k�¬ék^))�¡·�2£LÞ
5?Ø"a¥�¼ê½ÂÏ~�)
��AÏ/ª�ëê�L§^u�{N^�½))Ó�·�3�¡?
Øù
"

When a class definition is left normally (via the end), a class object is created. This is basically a wrapper around the
contents of the namespace created by the class definition; we’ll learn more about class objects in the next section. The
original local scope (the one in effect just before the class definition was entered) is reinstated, and the class object is
bound here to the class name given in the class definition header (ClassName in the example).

a½Â�¤�£�~òÑ¤§ÒMï
��aé�"Ä�þ§´éa½ÂMï�·¶�m?1
���
C¶·�3e�!?�ÚÆSaé���£"�©�ÛÜ�^�£a½ÂÚ\�c)��@�¤��¡
E§aé�3ùp�½�a½ÂÞÜ�a¶£~f¥´ClassName¤"

8.3.2 Class Objectsaé�

Class objects support two kinds of operations: attribute references and instantiation.

aé�|±ü«ö�µá5Ú^Ú¢~z"

Attribute references use the standard syntax used for all attribute references in Python: obj.name. Valid attribute
names are all the names that were in the class’s namespace when the class object was created. So, if the class definition
looked like this:

á5Ú^¦^ÚPython¥¤k�á5Ú^���IO�{µobj.name"aé�Mï�§a·¶�m¥¤k
�·¶Ñ´k�á5¶"¤±XJa½Â´ù�µ

class MyClass:
"A simple example class"
i = 12345
def f(self):

return ’hello world’

then MyClass.i and MyClass.f are valid attribute references, returning an integer and a function object, re-
spectively. Class attributes can also be assigned to, so you can change the value of MyClass.i by assignment.
__doc__ is also a valid attribute, returning the docstring belonging to the class: "A simple example class".

@oMyClass.i ÚMyClass.f ´k��á5Ú^§©O�£���êÚ���{é�"��±éaá
5D�§\�±ÏL�MyClass.i D�5?U§"__doc__ �´��k��á5§�£a�©�iÎ
Gµ"A simple example class""

Class instantiation uses function notation. Just pretend that the class object is a parameterless function that returns a
new instance of the class. For example (assuming the above class):

a�¢~z¦^¼êÎÒ"��òaé�w�´���£#�a¢~�Ãëê¼ê=�"~X£b�÷^
c¡�a¤µ

x = MyClass()

creates a new instance of the class and assigns this object to the local variable x.

±þMï
��#�a¢~¿òTé�D�ÛÜCþx"

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create objects with
instances customized to a specific initial state. Therefore a class may define a special method named __init__(),

8.3. A First Look at ClassesÐ£a 71

like this:

ù�¢~zö�£/N^0��aé�¤5Mï����é�"éõaÑ��uòé�Mï�kÐ©G�
�"Ïda�U¬½Â��¶�__init__()�AÏ�{§�e¡ù�µ

def __init__(self):
self.data = []

When a class defines an __init__() method, class instantiation automatically invokes __init__() for the
newly-created class instance. So in this example, a new, initialized instance can be obtained by:

a½Â
__init__()�{�{§a�¢~zö�¬gÄ�#Mï�a¢~N^__init__()�{"¤±
3e~¥§�±ù�Mï��#�¢~µ

x = MyClass()

Of course, the __init__() method may have arguments for greater flexibility. In that case, arguments given to the
class instantiation operator are passed on to __init__(). For example,

�,§Ñu�5�I�§__init__()�{�±këê"¯¢þ§ëêÏL__init__()D4�a�¢~
zö�þ"~Xµ

>>> class Complex:
... def __init__(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
>>> x = Complex(3.0, -4.5)
>>> x.r, x.i
(3.0, -4.5)

8.3.3 Instance Objects¢~é�

Now what can we do with instance objects? The only operations understood by instance objects are attribute refer-
ences. There are two kinds of valid attribute names, data attributes and methods.

y3·��±^¢~é���oº¢~é����^�ö�Ò´á5Ú^"kü«k��á5¶"

data attributes correspond to “instance variables” in Smalltalk, and to “data members” in C++. Data attributes need
not be declared; like local variables, they spring into existence when they are first assigned to. For example, if x is the
instance of MyClass created above, the following piece of code will print the value 16, without leaving a trace:

êâá5��uSmalltalk¥�/¢~Cþ0½C++¥�/êâ¤
0"ÚÛÜCþ��§êâá5ØI�(
²§1�g¦^�§�Ò¬)¤"~X§XJx´c¡Mï�MyClass¢~§e¡ùã�è¬�<Ñ16

Ø¬k?Ûõ{�í3µ

x.counter = 1
while x.counter < 10:

x.counter = x.counter * 2
print x.counter
del x.counter

72 Chapter 8. Classes

The other kind of instance attribute reference is a method. A method is a function that “belongs to” an object. (In
Python, the term method is not unique to class instances: other object types can have methods as well. For example,
list objects have methods called append, insert, remove, sort, and so on. However, in the following discussion, we’ll
use the term method exclusively to mean methods of class instance objects, unless explicitly stated otherwise.)

,�«�¢~é�¤�É�Ú^á5´�{"�{´/áu0��é��¼ê"£3Python¥§�{Ø�
´a¢~¤ÕkµÙ§a.�é���k�{"~X§óLé�kappend§insert§remove§sort���{"
,
§3�¡�0�¥§Ø�AO`²§·�J���{A�a�{¤

Valid method names of an instance object depend on its class. By definition, all attributes of a class that are function
objects define corresponding methods of its instances. So in our example, x.f is a valid method reference, since
MyClass.f is a function, but x.i is not, since MyClass.i is not. But x.f is not the same thing as MyClass.f
— it is a method object, not a function object.

¢~é��k�¶¡�6u§�a"Uì½Â§a¥¤k£^r½Â¤�¼êé�éA§�¢~¥��
{"¤±3·��~f¥§x.f ´��k���{Ú^§Ï�MyClass.f ´��¼ê"�x.i Ø´§Ï
�MyClass.i´Ø´¼ê"ØLx.fÚMyClass.fØÓ¨¨§´���{é�§Ø´��¼êé�"

8.3.4 Method Objects�{é�

Usually, a method is called right after it is bound:

Ï~§�{ÏLm�½N^µ

x.f()

In the MyClass example, this will return the string ’hello world’. However, it is not necessary to call a method
right away: x.f is a method object, and can be stored away and called at a later time. For example:

3MyClass«~¥§ù¬�£iÎG’hello world’",
§�Ø´�½���N^�{"x.f´��
�{é�§§�±�;å5±�N^"~Xµ

xf = x.f
while True:

print xf()

will continue to print ‘hello world’ until the end of time.

¬Øä��<‘hello world’"

What exactly happens when a method is called? You may have noticed that x.f() was called without an argument
above, even though the function definition for f specified an argument. What happened to the argument? Surely
Python raises an exception when a function that requires an argument is called without any — even if the argument
isn’t actually used...

N^�{�u)
�oº\�U5¿�N^x.f()�vkÚ^c¡IÑ�Cþ§¦+3f�¼ê½Â¥�
²
��ëê"ù�ëêNo
º¯¢þXJ¼êN^¥"�ëê§Python¬�ÑÉ~¨¨$�ù�ëê
¢Sþv�o^,,

Actually, you may have guessed the answer: the special thing about methods is that the object is passed as the first
argument of the function. In our example, the call x.f() is exactly equivalent to MyClass.f(x). In general,
calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list
that is created by inserting the method’s object before the first argument.

¢Sþ§\�U®²ß�
�Yµ�{�AO�?3u¢~é���¼ê�1��ëêD�
¼ê"3·
��~f¥§N^x.f()��uMyClass.f(x)"Ï~§±n�ëê��L�N^���{Ò��uò�

8.3. A First Look at ClassesÐ£a 73

{�é��\�ëê�L��c¡�§±ù��L�N^�A�¼ê"

If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters. When an
instance attribute is referenced that isn’t a data attribute, its class is searched. If the name denotes a valid class attribute
that is a function object, a method object is created by packing (pointers to) the instance object and the function object
just found together in an abstract object: this is the method object. When the method object is called with an argument
list, it is unpacked again, a new argument list is constructed from the instance object and the original argument list,
and the function object is called with this new argument list.

XJ\�´Øn)�{�ó��n§
)�e§�¢y�Nk�Ï"Ú^�êâá5�¢~á5�§¬|
¢§�a"XJù�·¶(@���k��¼êé�aá5§Ò¬ò¢~é�Ú¼êé�µC?��Ä�
é�µùÒ´�{é�"±��ëê�LN^�{é��§§�­#
µ§^¢~é�Ú�©�ëê�L
�E��#�ëê�L§,�¼êé�N^ù�#�ëê�L"

8.4 Random Remarks�
`²

Data attributes override method attributes with the same name; to avoid accidental name conflicts, which may cause
hard-to-find bugs in large programs, it is wise to use some kind of convention that minimizes the chance of conflicts.
Possible conventions include capitalizing method names, prefixing data attribute names with a small unique string
(perhaps just an underscore), or using verbs for methods and nouns for data attributes.

Ó¶�êâá5¬CX�{á5§�
;��U�·¶Àâ¨¨ù3�.§S¥�U¬��J±uy�bug
¨¨�Ð±,«·¶�½5;�Àâ"�À��½�)�{�Äi1��§êâá5¶cM��£�U�
´��ey�¤§½ö�{¦^Äc
êâá5¦^¶c"

Data attributes may be referenced by methods as well as by ordinary users (“clients”) of an object. In other words,
classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce
data hiding — it is all based upon convention. (On the other hand, the Python implementation, written in C, can
completely hide implementation details and control access to an object if necessary; this can be used by extensions to
Python written in C.)

êâá5�±d�{Ú^§��±dÊÏ^r£�r¤N^"�é{`§aØU¢yX�êâa."¯¢
þPython¥vk�o�{�±r�Ûõêâ¨¨��ÑÄ��½�.~"£,��{ù§Python�¢y´
^C�¤�§XJk7�§�±^C5?�Python*Ð§��Ûõ¢y�[!§��é���¯"¤

Clients should use data attributes with care — clients may mess up invariants maintained by the methods by stamping
on their data attributes. Note that clients may add data attributes of their own to an instance object without affecting
the validity of the methods, as long as name conflicts are avoided — again, a naming convention can save a lot of
headaches here.

�rAT�%¦^êâá5¨¨�r�U¬Ï��¿?Uêâá5
»�
�5d�{�o�êâ��
5"I�5¿�´§�r��5¿;�·¶Àâ§Ò�±�¿�¢~¥V\êâá5
Ø¬K��{�k
�5¨¨2grN§·¶�½�±��éõæ�"

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this actually
increases the readability of methods: there is no chance of confusing local variables and instance variables when
glancing through a method.

l�{SÜÚ^êâá5£±9Ù§�{�¤vk�o¯$��ª"·@�ù¯¢þO\
�{��Ö
5µ=¦oÑ�èA���{§�Ø¬k· ÛÜCþÚ¢~Cþ�Å¬"

Often, the first argument of a method is called self. This is nothing more than a convention: the name self has
absolutely no special meaning to Python. (Note, however, that by not following the convention your code may be less
readable to other Python programmers, and it is also conceivable that a class browser program might be written that
relies upon such a convention.)

Ï~�{�1��ëê·¶�self"ù==´���½µéPython
ó§selfýévk?ÛAÏ¹Â"
£,
�5¿�´§XJØ�Åù��½§O�Python§S
�Ö\��è�¬kØB§
�k
aèA

74 Chapter 8. Classes

§S�´�Ìd�½mu�"¤

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the
function definition is textually enclosed in the class definition: assigning a function object to a local variable in the
class is also ok. For example:

aá5¥�?Û¼êé�3a¢~¥Ñ½Â��{"Ø´7L�ò¼ê½Â�è�?a½Â¥§��±ò
��¼êé�D�a¥���Cþ"~Xµ

Function defined outside the class
def f1(self, x, y):

return min(x, x+y)

class C:
f = f1
def g(self):

return ’hello world’
h = g

Now f, g and h are all attributes of class C that refer to function objects, and consequently they are all methods of
instances of C — h being exactly equivalent to g. Note that this practice usually only serves to confuse the reader of a
program.

y3f, gÚhÑ´aC�á5§Ú^�Ñ´¼êé�§Ïd§�Ñ´C¢~��{¨¨hî��ug"�5¿
�´ù«S.Ï~�¬�¾§S�Öö"

Methods may call other methods by using method attributes of the self argument:

ÏLselfëê��{á5§�{�±N^Ù§��{µ

class Bag:
def __init__(self):

self.data = []
def add(self, x):

self.data.append(x)
def addtwice(self, x):

self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary functions. The global scope associated with a
method is the module containing the class definition. (The class itself is never used as a global scope!) While one
rarely encounters a good reason for using global data in a method, there are many legitimate uses of the global scope:
for one thing, functions and modules imported into the global scope can be used by methods, as well as functions and
classes defined in it. Usually, the class containing the method is itself defined in this global scope, and in the next
section we’ll find some good reasons why a method would want to reference its own class!

�{�±�Ú^ÊÏ�¼ê@�Ú^�Û·¶"��{'é��Û�^�´�¹a½Â��¬"£a��
[�Ø¬���Û�^�¦^�¤¦+é�kÐ�nd3�{¥¦^�Ûêâ§�Û�^�(kéõÜ{
�^åµÙ�´�{�±N^�\�Û�^��¼êÚ�{§��±N^½Â3Ù¥�aÚ¼ê"Ï~§
�¹d�{�a�¬½Â3ù��Û�^�§3e�!·�¬
)�Û���{�Ú^gC�a�

8.4. Random Remarks�
`² 75

8.5 InheritanceU«

Of course, a language feature would not be worthy of the name “class” without supporting inheritance. The syntax for
a derived class definition looks like this:

�,§XJ�«�óØ|±U«Ò§/a0Òvk�o¿Â"�)a�½ÂXe¤«µ

class DerivedClassName(BaseClassName):
<statement-1>
.
.
.
<statement-N>

The name BaseClassName must be defined in a scope containing the derived class definition. In place of a base
class name, other arbitrary expressions are also allowed. This can be useful, for example, when the base class is
defined in another module:

·¶BaseClassName£«~¥�Äa¶¤7L��)a½Â3���^�S"Ø
a§��±^L�ª§
Äa½Â3,���¬¥�ù�:�~k^µ

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class. When the class object is constructed, the
base class is remembered. This is used for resolving attribute references: if a requested attribute is not found in the
class, the search proceeds to look in the base class. This rule is applied recursively if the base class itself is derived
from some other class.

�)a½Â��1L§ÚÄa´���"�E�)aé��§ÒP4
Äa"ù3)Ûá5Ú^��ÿc
Ùk^µXJ3a¥éØ��¦N^�á5§Ò|¢Äa"XJÄa´dO�a�)
5§ù�5K¬4
8�A^þ�"

There’s nothing special about instantiation of derived classes: DerivedClassName() creates a new instance of
the class. Method references are resolved as follows: the corresponding class attribute is searched, descending down
the chain of base classes if necessary, and the method reference is valid if this yields a function object.

�)a�¢~zvk�oAÏ�?µDerivedClassName()£«�¥��)a¤Mï��#�a¢~"
�{Ú^UXe5K)Ûµ|¢éA�aá5§7��÷ÄaóÅ?|¢§XJé�
¼êé�ù��{
Ú^Ò´Ü{�

Derived classes may override methods of their base classes. Because methods have no special privileges when calling
other methods of the same object, a method of a base class that calls another method defined in the same base class
may end up calling a method of a derived class that overrides it. (For C++ programmers: all methods in Python are
effectively virtual.)

�)a�U¬CXÙÄa��{"Ï��{N^Ó��é�¥�Ù§�{�vkA�§Äa��{N^Ó
��Äa��{�§�U¢Sþ�ªN^
�)a¥�CX�{"£éuC++§S
5`§Python¥�¤k
�{��þÑ´J�{"¤

An overriding method in a derived class may in fact want to extend rather than simply replace the base
class method of the same name. There is a simple way to call the base class method directly: just call
‘BaseClassName.methodname(self, arguments)’. This is occasionally useful to clients as well. (Note
that this only works if the base class is defined or imported directly in the global scope.)

�)a¥�CX�{�U´��*¿
Ø´{ü�O�Äa¥�­¶�{"k��{ü��{�±��N
^Äa�{§��N^µ‘BaseClassName.methodname(self, arguments)’"k�ùéu�r�é

76 Chapter 8. Classes

k^"£�5¿�¥�kÄa3Ó��Û�^�½Â½�\�âUù�^"¤

8.5.1 Multiple InheritanceõU«

Python supports a limited form of multiple inheritance as well. A class definition with multiple base classes looks like
this:

PythonÓ�k��|±õU«/ª"õU«�a½Â/Xe~µ

class DerivedClassName(Base1, Base2, Base3):
<statement-1>
.
.
.
<statement-N>

The only rule necessary to explain the semantics is the resolution rule used for class attribute references. This is
depth-first, left-to-right. Thus, if an attribute is not found in DerivedClassName, it is searched in Base1, then
(recursively) in the base classes of Base1, and only if it is not found there, it is searched in Base2, and so on.

ùp��I�)º��Â´)Ûaá5�5K"^S´�Ý`k§l��m"Ïd§XJ
3DerivedClassName £«~¥��)a¤¥vké�,�á5§Ò¬|¢Base1 §,�£48�¤
|¢ÙÄa§XJ�ªvké�§Ò|¢Base2§±daí"

(To some people breadth first — searching Base2 and Base3 before the base classes of Base1 — looks more
natural. However, this would require you to know whether a particular attribute of Base1 is actually defined in
Base1 or in one of its base classes before you can figure out the consequences of a name conflict with an attribute of
Base2. The depth-first rule makes no differences between direct and inherited attributes of Base1.)

£k
<@�2Ý`k¨¨3|¢Base1�Äa�c|¢Base2ÚBase3¨¨wå5��g,",
§X
JBase1ÚBase2�mu)
·¶Àâ§\I�
)ù�á5´½ÂuBase1�´Base1�Äa¥"
�
Ý`kØ«©á5U«gÄa�´��½Â"¤

It is clear that indiscriminate use of multiple inheritance is a maintenance nightmare, given the reliance in Python on
conventions to avoid accidental name conflicts. A well-known problem with multiple inheritance is a class derived
from two classes that happen to have a common base class. While it is easy enough to figure out what happens in this
case (the instance will have a single copy of “instance variables” or data attributes used by the common base class), it
is not clear that these semantics are in any way useful.

w,Ø\���¦^õU«¬�5�oþ�ý�§Ï�Python ¥����½5;�·¶Àâ"õU«�
�ék¶�¯K´�)U«�ü�ÄaÑ´lÓ��ÄaU«
5"8c�Ø�Ùù3�Âþk�o¿
Â§,
éN´��ù¬E¤�o�J£¢~¬k��Õá�/¢~Cþ0½êâá5E��^uú�Ä
a"¤

8.6 Private VariableshkCþ

There is limited support for class-private identifiers. Any identifier of the form __spam (at least two leading under-
scores, at most one trailing underscore) is textually replaced with _classname__spam, where classname is the
current class name with leading underscore(s) stripped. This mangling is done without regard to the syntactic position
of the identifier, so it can be used to define class-private instance and class variables, methods, variables stored in
globals, and even variables stored in instances. private to this class on instances of other classes. Truncation may
occur when the mangled name would be longer than 255 characters. Outside classes, or when the class name consists
of only underscores, no mangling occurs.

8.6. Private VariableshkCþ 77

Pythonéa�hk¤
Jø
k��|±"?Û/X__spam£±��Vey�mÞ§�õüey�(�¤
�=Ñ�O��_classname__spam§�Kc�ey��classname=�c�a¶"ù«· Ø'%I
£Î��{ �§¤±�^5½Âhka¢~ÚaCþ!�{§±9�ÛCþ§$�uòÙ§a�¢~�
��hkCþ"· ¶�Ý�L255�iÎ��ÿ�U¬u)�ä"3a�	Ü§½a¶��¹ey��§
Ø¬u)�ä"

Name mangling is intended to give classes an easy way to define “private” instance variables and methods, without
having to worry about instance variables defined by derived classes, or mucking with instance variables by code outside
the class. Note that the mangling rules are designed mostly to avoid accidents; it still is possible for a determined soul
to access or modify a variable that is considered private. This can even be useful in special circumstances, such as in
the debugger, and that’s one reason why this loophole is not closed. (Buglet: derivation of a class with the same name
as the base class makes use of private variables of the base class possible.)

·¶· ¿3�Ñ��3a¥½Â/hk0¢~CþÚ�{�{üå»§;��)a�¢~Cþ½Â�)
¯K§½ö�	.�è¥�Cþt·"�5¿�´· 5KÌ�8�3u;�¿	�Ø§�@��hk�
CþE,k�U��¯½?U"3A½�|Ü§�´k^�§'XNÁ��ÿ§ù�´��vk×þù�
¦É��Ï��£�¦Éµ�)aÚÄa��Ó�¶iÒ�±¦^Äa�hkCþ"¤

Notice that code passed to exec, eval() or evalfile() does not consider the classname of the invoking class to
be the current class; this is similar to the effect of the global statement, the effect of which is likewise restricted to
code that is byte-compiled together. The same restriction applies to getattr(), setattr() and delattr(), as
well as when referencing __dict__ directly.

�5¿�´D\exec§eval() ½evalfile() ��èØ¬òN^§��aÀ��ca§ù�global
�é��¹aq§global ��^Û�u/Ó�10?1i!?È��è"Ó�����·^
ugetattr()§setattr()Údelattr()§±9��Ú^__dict__��ÿ"

8.7 Odds and EndsÖ¿

Sometimes it is useful to have a data type similar to the Pascal “record” or C “struct”, bundling together a few named
data items. An empty class definition will do nicely:

k�aquPascal¥/P¹£record¤0½C¥/(�£struct¤0�êâa.ék^§§ò�|®·¶�ê
â��½3�å"����a½Â�±éÐ�¢yù§µ

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = ’John Doe’
john.dept = ’computer lab’
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that emulates the
methods of that data type instead. For instance, if you have a function that formats some data from a file object, you
can define a class with methods read() and readline() that get the data from a string buffer instead, and pass it
as an argument.

,�ãPython �èI���AÏ�Ä�êâ(��{§Ï~�±D\��a§¯¢þù��
Ta
��{"~X§XJ\k��^ul©�é�¥�ªzêâ�¼ê§\�±½Â���kread()
Úreadline()�{�a§±dliÎG�ÀÖ�êâ§,�òTa�é���ëêD\cã�¼ê"

Instance method objects have attributes, too: m.im_self is the instance object with the method m, and m.im_func

78 Chapter 8. Classes

is the function object corresponding to the method.

¢~�{é��ká5µm.im_self´��¢~�{¤á�é�§
m.im_func´ù��{éA�¼ê
é�"

8.8 Exceptions Are Classes TooÉ~�´a

User-defined exceptions are identified by classes as well. Using this mechanism it is possible to create extensible
hierarchies of exceptions.

^rg½ÂÉ~��±´a"|^ù�Å��±Mï�*Ð�É~NX"

There are two new valid (semantic) forms for the raise statement:

±e´ü«#�k�£�Âþ�¤É~�Ñ/ªµ

raise Class, instance

raise instance

In the first form, instance must be an instance of Class or of a class derived from it. The second form is a
shorthand for:

1�«/ª¥§instance7L´Class½Ù�)a���¢~"1�«/ª´±e/ª�{�µ

raise instance.__class__, instance

A class in an except clause is compatible with an exception if it is the same class or a base class thereof (but not the
other way around — an except clause listing a derived class is not compatible with a base class). For example, the
following code will print B, C, D in that order:

u)�É~Ùa.XJ´É~fé¥�Ñ�a§½ö´Ù�)a§@o§�Ò´�Î�£�L5`¨
¨u)�É~Ùa.XJ´É~fé¥�Ñ�a�Äa§§�ÒØ�Î¤"~X§±e�è¬U^S�
<B§C§Dµ

class B:
pass

class C(B):
pass

class D(C):
pass

for c in [B, C, D]:
try:

raise c()
except D:

print "D"
except C:

print "C"
except B:

print "B"

Note that if the except clauses were reversed (with ‘except B’ first), it would have printed B, B, B — the first

8.8. Exceptions Are Classes TooÉ~�´a 79

matching except clause is triggered.

�5¿�´XJÉ~fé�^S6�L5£‘execpt B’3�c¤§§Ò¬�<B§B§B¨¨1�����
É~�>u"

When an error message is printed for an unhandled exception, the exception’s class name is printed, then a colon and
a space, and finally the instance converted to a string using the built-in function str().

�<��É~a��Ø&E�§k�<a¶§,�´����!��kÒ§,�´^S�¼êstr()òa
=������iÎG"

8.9 IteratorsS�ì

By now you have probably noticed that most container objects can be looped over using a for statement:

y3\�U5¿��õêNìé�Ñ�±^forH{µ

for element in [1, 2, 3]:
print element

for element in (1, 2, 3):
print element

for key in {’one’:1, ’two’:2}:
print key

for char in "123":
print char

for line in open("myfile.txt"):
print line

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind the
scenes, the for statement calls iter() on the container object. The function returns an iterator object that defines
the method next() which accesses elements in the container one at a time. When there are no more elements,
next() raises a StopIteration exception which tells the for loop to terminate. This example shows how it all
works:

ù«/ª��¯�ß!{'!�B"S�ì�^{3Python¥ÊH
�Ú�"3��§for�é3Nìé
�¥N^iter()"T¼ê�£��½Â
next()�{�S�ìé�§§3Nì¥Å��¯��"vk�
Y����§next()�Ñ��StopIterationÉ~Ï�for�éÌ�(å"±e´Ùó��n�«~µ

>>> s = ’abc’
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> it.next()
’a’
>>> it.next()
’b’
>>> it.next()
’c’
>>> it.next()

Traceback (most recent call last):
File "<stdin>", line 1, in ?

it.next()
StopIteration

80 Chapter 8. Classes

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. Define
a __iter__() method which returns an object with a next() method. If the class defines next(), then __-
iter__() can just return self:

)
S�ì�Æ���Å�§Ò�±éN´��gC�aV\S�ì1�"½Â��__iter__() �
{§¦Ù�£���knext()�{�é�"XJù�a®²½Â
next()§@o__iter__()�I��
£selfµ

class Reverse:
"Iterator for looping over a sequence backwards"
def __init__(self, data):

self.data = data
self.index = len(data)

def __iter__(self):
return self

def next(self):
if self.index == 0:

raise StopIteration
self.index = self.index - 1
return self.data[self.index]

>>> for char in Reverse(’spam’):
... print char
...
m
a
p
s

8.10 Generators)¤ì

Generators are a simple and powerful tool for creating iterators. They are written like regular functions but use the
yield statement whenever they want to return data. Each time next() is called, the generator resumes where it
left-off (it remembers all the data values and which statement was last executed). An example shows that generators
can be trivially easy to create:

)¤ì´MïS�ì�{ü
r��óä"§��å5Ò�´�K¼ê§I��£êâ��ÿ¦^yield
�é"zgnext()�N^�§)¤ì£E§øl� �£§PÁ�é���g�1� �Ú¤k�êâ
�¤"±e«~ü«
)¤ì�±é{ü�MïÑ5µ

def reverse(data):
for index in range(len(data)-1, -1, -1):

yield data[index]

>>> for char in reverse(’golf’):
... print char
...
f
l
o
g

Anything that can be done with generators can also be done with class based iterators as described in the previous

8.10. Generators)¤ì 81

section. What makes generators so compact is that the __iter__() and next()methods are created automatically.

c�!¥£ã
Äua�S�ì§§U��z��¯)¤ì�U��"Ï�gÄMï
__iter__()
Únext()�{§)¤ìw�Xd{'"

Another key feature is that the local variables and execution state are automatically saved between calls. This made
the function easier to write and much more clear than an approach using instance variables like self.index and
self.data.

,	��'��õU´ügN^�m�ÛÜCþÚ�1�¹ÑgÄ��
e5"ù�¼ê?�å5Ò'Ã
ÄN^self.indexÚself.dataù��aCþN´�õ"

In addition to automatic method creation and saving program state, when generators terminate, they automatically
raise StopIteration. In combination, these features make it easy to create iterators with no more effort than
writing a regular function.

Ø
MïÚ��§SG��gÄ�{§�u)ìª(�§�¬gÄ�ÑStopIteration É~"nþ¤
ã§ù
õU¦�?����K¼ê¤�MïS�ì��{ü�{"

8.11 Generator Expressions)¤ìL�ª

Some simple generators can be coded succinctly as expressions using a syntax similar to list comprehensions but with
parentheses instead of brackets. These expressions are designed for situations where the generator is used right away
by an enclosing function. Generator expressions are more compact but less versatile than full generator definitions and
tend to be more memory friendly than equivalent list comprehensions.

k�{ü�)¤ì�±^{'��ªN^§Ò�Ø�¥)Ò�óLí�ª"ù
L�ª´�¼êN^)¤
ì
�O�")¤ìL�ª'���)¤ì½Â�{'§�´vk@oõC§
�Ï~'�d�óLí�
ª�N´P"

Examples:

~Xµ

>>> sum(i*i for i in range(10)) # sum of squares
285

>>> xvec = [10, 20, 30]
>>> yvec = [7, 5, 3]
>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin
>>> sine_table = dict((x, sin(x*pi/180)) for x in range(0, 91))

>>> unique_words = set(word for line in page for word in line.split())

>>> valedictorian = max((student.gpa, student.name) for student in graduates)

>>> data = ’golf’
>>> list(data[i] for i in range(len(data)-1,-1,-1))
[’f’, ’l’, ’o’, ’g’]

82 Chapter 8. Classes

CHAPTER

NINE

Brief Tour of the Standard LibraryIO¥
VA

9.1 Operating System Interfaceö�XÚ��

The os module provides dozens of functions for interacting with the operating system:

os�¬Jø
Ø��ö�XÚ�'é�¼ê"

>>> import os
>>> os.system(’time 0:02’)
0
>>> os.getcwd() # Return the current working directory
’C:\\Python24’
>>> os.chdir(’/server/accesslogs’)

Be sure to use the ‘import os’ style instead of ‘from os import *’. This will keep os.open() from shad-
owing the builtin open() function which operates much differently.

AT^‘import os’ º�
�‘from os import *’"ù��±�y�ö�XÚØÓ
k¤Cz
�os.open()Ø¬CXS�¼êopen()"

The builtin dir() and help() functions are useful as interactive aids for working with large modules like os:

3¦^�
�osù���.�¬�S��dir()Úhelp()¼ê�~k^"

>>> import os
>>> dir(os)
<returns a list of all module functions>
>>> help(os)
<returns an extensive manual page created from the module’s docstrings>

For daily file and directory management tasks, the shutil module provides a higher level interface that is easier to
use:

�éF~�©�Ú8¹+n?Ö§shutil�¬Jø
��´u¦^�p?��"

83

../lib/module-os.html
../lib/module-os.html
../lib/module-shutil.html
../lib/module-shutil.html

>>> import shutil
>>> shutil.copyfile(’data.db’, ’archive.db’)
>>> shutil.move(’/build/executables’, ’installdir’)

9.2 File Wildcards©�Ï�Î

The glob module provides a function for making file lists from directory wildcard searches:

glob�¬Jø
��¼ê^ul8¹Ï�Î|¢¥)¤©��L"

>>> import glob
>>> glob.glob(’*.py’)
[’primes.py’, ’random.py’, ’quote.py’]

9.3 Command Line Arguments·-1ëê

Common utility scripts often need to process command line arguments. These arguments are stored in the sys
module’s argv attribute as a list. For instance the following output results from running ‘python demo.py one
two three’ at the command line:

Ï^óä��²~N^·-1ëê"ù
·-1ëê±óL/ª�;usys�¬�argvCþ"~X3·-
1¥�1‘python demo.py one two three’��±��±eÑÑ(Jµ

>>> import sys
>>> print sys.argv
[’demo.py’, ’one’, ’two’, ’three’]

The getopt module processes sys.argv using the conventions of the UNIX getopt() function. More powerful and
flexible command line processing is provided by the optparse module.

getopt�¬¦^UNIX getopt()¼?nsys.argv"�õ�E,·-1?ndoptparse�¬Jø"

9.4 Error Output Redirection and Program Termination �ØÑÑ­½�
Ú§Sª�

The sys module also has attributes for stdin, stdout, and stderr. The latter is useful for emitting warnings and error
messages to make them visible even when stdout has been redirected:

sys�kstdin§stdoutÚstderrá5§=¦3stdout�­½��§�ö��±^uw«´wÚ�Ø&E"

>>> sys.stderr.write(’Warning, log file not found starting a new one\n’)
Warning, log file not found starting a new one

The most direct way to terminate a script is to use ‘sys.exit()’.

�õ���½�ª�Ñ¦^‘sys.exit()’"

84 Chapter 9. Brief Tour of the Standard LibraryIO¥VA

../lib/module-glob.html
../lib/module-glob.html
../lib/module-sys.html
../lib/module-sys.html
../lib/module-getopt.html
../lib/module-optparse.html
../lib/module-getopt.html
../lib/module-optparse.html
../lib/module-sys.html
../lib/module-sys.html

9.5 String Pattern MatchingiÎG�K��

The re module provides regular expression tools for advanced string processing. For complex matching and manipu-
lation, regular expressions offer succinct, optimized solutions:

re�¬�p?iÎG?nJø
�KL�ªóä"éuE,���Ú?n§�KL�ªJø
{'!`z
�)û�Y"

>>> import re
>>> re.findall(r’\bf[a-z]*’, ’which foot or hand fell fastest’)
[’foot’, ’fell’, ’fastest’]
>>> re.sub(r’(\b[a-z]+) \1’, r’\1’, ’cat in the the hat’)
’cat in the hat’

When only simple capabilities are needed, string methods are preferred because they are easier to read and debug:

XJ�I�{ü�õU§ATÄk�ÄiÎG�{§Ï�§��~{ü§´u�ÖÚNÁ"

>>> ’tea for too’.replace(’too’, ’two’)
’tea for two’

9.6 MathematicsêÆ

The math module gives access to the underlying C library functions for floating point math:

math�¬�2:$�Jø
é.�C¼ê¥��¯"

>>> import math
>>> math.cos(math.pi / 4.0)
0.70710678118654757
>>> math.log(1024, 2)
10.0

The random module provides tools for making random selections:

randomJø
)¤�Åê�óä"

>>> import random
>>> random.choice([’apple’, ’pear’, ’banana’])
’apple’
>>> random.sample(xrange(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
>>> random.random() # random float
0.17970987693706186
>>> random.randrange(6) # random integer chosen from range(6)
4

9.5. String Pattern MatchingiÎG�K�� 85

../lib/module-re.html
../lib/module-re.html
../lib/module-math.html
../lib/module-math.html
../lib/module-random.html
../lib/module-random.html

9.7 Internet Accesspé��¯

There are a number of modules for accessing the internet and processing internet protocols. Two of the simplest are
urllib2 for retrieving data from urls and smtplib for sending mail:

kA��¬^u�¯pé�±9?n�äÏ&�Æ"Ù¥�{ü�ü�´^u?nlurls �Â�êâ
�urllib2±9^uux>fe��smtplib"

>>> import urllib2
>>> for line in urllib2.urlopen(’http://tycho.usno.navy.mil/cgi-bin/timer.pl’):
... if ’EST’ in line or ’EDT’ in line: # look for Eastern Time
... print line

Nov. 25, 09:43:32 PM EST

>>> import smtplib
>>> server = smtplib.SMTP(’localhost’)
>>> server.sendmail(’soothsayer@example.org’, ’jcaesar@example.org’,
"""To: jcaesar@example.org
From: soothsayer@example.org

Beware the Ides of March.
""")
>>> server.quit()

9.8 Dates and TimesFÏÚ�m

The datetime module supplies classes for manipulating dates and times in both simple and complex ways. While
date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for output
formatting and manipulation. The module also supports objects that are timezone aware.

datetime�¬�FÏÚ�m?nÓ�Jø
{üÚE,��{"|±FÏÚ�m�{�Ó�§¢y�­
:�3�k��?nÚ�ªzÑÑ"T�¬�|±�«?n"

dates are easily constructed and formatted
>>> from datetime import date
>>> now = date.today()
>>> now
datetime.date(2003, 12, 2)
>>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")
’12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.’

dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday
>>> age.days
14368

86 Chapter 9. Brief Tour of the Standard LibraryIO¥VA

../lib/module-urllib2.html
../lib/module-smtplib.html
../lib/module-urllib2.html
../lib/module-smtplib.html
../lib/module-datetime.html
../lib/module-datetime.html

9.9 Data CompressionêâØ

Common data archiving and compression formats are directly supported by modules including: zlib, gzip, bz2,
zipfile, and tarfile.

±e�¬��|±Ï^�êâ��ÚØ �ªµ

zlib§gzip§bz2§zipfile§±9tarfile

>>> import zlib
>>> s = ’witch which has which witches wrist watch’
>>> len(s)
41
>>> t = zlib.compress(s)
>>> len(t)
37
>>> zlib.decompress(t)
’witch which has which witches wrist watch’
>>> zlib.crc32(s)
226805979

9.10 Performance Measurement5UÝþ

Some Python users develop a deep interest in knowing the relative performance of different approaches to the same
problem. Python provides a measurement tool that answers those questions immediately.

k
^ré
))ûÓ�¯K�ØÓ�{�m�5U�Ééa,�"PythonJø
��Ýþóä§�ù

¯KJø
���Y"

For example, it may be tempting to use the tuple packing and unpacking feature instead of the traditional approach to
swapping arguments. The timeit module quickly demonstrates a modest performance advantage:

~X§¦^�|µCÚ
µ5����wå5�'¦^DÚ��{�p<�õ"timeity²
DÚ��{
�¯�
"

>>> from timeit import Timer
>>> Timer(’t=a; a=b; b=t’, ’a=1; b=2’).timeit()
0.57535828626024577
>>> Timer(’a,b = b,a’, ’a=1; b=2’).timeit()
0.54962537085770791

In contrast to timeit’s fine level of granularity, the profile and pstats modules provide tools for identifying
time critical sections in larger blocks of code.

�éutimeit�[âÝ§profileÚpstats�¬Jø
�é���è¬��mÝþóä"

9.11 Quality Control�þ��

One approach for developing high quality software is to write tests for each function as it is developed and to run those
tests frequently during the development process.

mup�þ^���{��´�z��¼êmuÿÁ�è§¿�3muL§¥²~?1ÿÁ"

9.9. Data CompressionêâØ 87

../lib/module-zlib.html
../lib/module-gzip.html
../lib/module-bz2.html
../lib/module-zipfile.html
../lib/module-tarfile.html
../lib/module-zlib.html
../lib/module-gzip.html
../lib/module-bz2.html
../lib/module-zipfile.html
../lib/module-tarfile.html
../lib/module-timeit.html
../lib/module-timeit.html
../lib/module-profile.html
../lib/module-profile.html

The doctest module provides a tool for scanning a module and validating tests embedded in a program’s docstrings.
Test construction is as simple as cutting-and-pasting a typical call along with its results into the docstring. This
improves the documentation by providing the user with an example and it allows the doctest module to make sure the
code remains true to the documentation:

doctest�¬Jø
��óä§×£�¬¿�â§S¥Si�©�iÎG�1ÿÁ"ÿÁ�EXÓ{ü�
ò§�ÑÑ(J}�¿Êb�©�iÎG¥"ÏL^rJø�~f§§uÐ
©�§#Ndoctest�¬(@
�è�(J´Ä�©���"

def average(values):
"""Computes the arithmetic mean of a list of numbers.

>>> print average([20, 30, 70])
40.0
"""
return sum(values, 0.0) / len(values)

import doctest
doctest.testmod() # automatically validate the embedded tests

The unittest module is not as effortless as the doctest module, but it allows a more comprehensive set of tests
to be maintained in a separate file:

unittest�¬Ø�doctest�¬@oN´¦^§ØL§�±3��Õá�©�pJø����¡�ÿÁ
8"

import unittest

class TestStatisticalFunctions(unittest.TestCase):

def test_average(self):
self.assertEqual(average([20, 30, 70]), 40.0)
self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
self.assertRaises(ZeroDivisionError, average, [])
self.assertRaises(TypeError, average, 20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

9.12 Batteries Included

Python has a “batteries included” philosophy. This is best seen through the sophisticated and robust capabilities of its
larger packages. For example:

Python Ny
/batteries included0óÆ"Python �±ÏL�����5��AG�«E,�¹�r�U
å§lù�:·��±wÑTg��A^"~Xµ

• The xmlrpclib and SimpleXMLRPCServer modules make implementing remote procedure calls into an
almost trivial task. Despite the modules names, no direct knowledge or handling of XML is needed.

xmlrpclibÚSimpleXMLRPCServer�¬¢y
3¡��?Ö¥N^�§L§"¦+kù��¶
i§Ù¢^rØI���?nXML§�ØI�ù�¡��£"

• The email package is a library for managing email messages, including MIME and other RFC 2822-based
message documents. Unlike smtplib and poplib which actually send and receive messages, the email

88 Chapter 9. Brief Tour of the Standard LibraryIO¥VA

../lib/module-doctest.html
../lib/module-doctest.html
../lib/module-unittest.html
../lib/module-unittest.html
../lib/module-xmlrpclib.html
../lib/module-SimpleXMLRPCServer.html
../lib/module-xmlrpclib.html
../lib/module-SimpleXMLRPCServer.html
../lib/module-email.html

package has a complete toolset for building or decoding complex message structures (including attachments)
and for implementing internet encoding and header protocols.

email�´��e��E+n¥§�±?nMIME½Ù§ÄuRFC 2822��E©�"ØÓu¢Su
xÚ�Â�E�smtplib Úpoplib �¬§email �k��^u�ï½)ÛE,�E(�£�)N
�¤±9¢ypé�?èÚÞ�Æ���óä8"

• The xml.dom and xml.sax packages provide robust support for parsing this popular data interchange format.
Likewise, the csv module supports direct reads and writes in a common database format. Together, these
modules and packages greatly simplify data interchange between python applications and other tools.

xml.domÚxml.sax��61�&E���ªJø
r��|±"Ó�§csv�¬|±3Ï^êâ
¥�ª¥��Ö�"nÜå5§ù
�¬Ú���{z
Python A^§SÚÙ§óä�m�êâ�
�"

• Internationalization is supported by a number of modules including gettext, locale, and the codecs
package.

ISzdgettext§localeÚcodecs�|±

9.12. Batteries Included 89

../lib/module-email.html
../lib/module-xml.dom.html
../lib/module-xml.sax.html
../lib/module-csv.html
../lib/module-xml.dom.html
../lib/module-xml.sax.html
../lib/module-gettext.html
../lib/module-locale.html
../lib/module-codecs.html
../lib/module-gettext.html
../lib/module-locale.html
../lib/module-codecs.html

90

CHAPTER

TEN

Brief Tour of the Standard Library – Part II
IO¥VA

This second tour covers more advanced modules that support professional programming needs. These modules rarely
occur in small scripts.

1�Ü©�¹
|±;�?§ó�¤I��p?��¬§ù
�¬é�Ñy3���¥"

10.1 Output Formatting�ªzÑÑ

The repr module provides a version of repr() customized for abbreviated displays of large or deeply nested
containers:

>>> import repr
>>> repr.repr(set(’supercalifragilisticexpialidocious’))
"set([’a’, ’c’, ’d’, ’e’, ’f’, ’g’, ...])"

The pprint module offers more sophisticated control over printing both built-in and user defined objects in a way
that is readable by the interpreter. When the result is longer than one line, the “pretty printer” adds line breaks and
indentation to more clearly reveal data structure:

The pprint�¬�PÃJø
�«)ºì�Ö��ª�\��S�Ú^rg½Âé���<"�ÑÑ�L
�1��ÿ§/{z�<£pretty printer¤0V\ä1ÚI£Î§¦�êâ(�w«���ßµ

>>> import pprint
>>> t = [[[[’black’, ’cyan’], ’white’, [’green’, ’red’]], [[’magenta’,
... ’yellow’], ’blue’]]]
...
>>> pprint.pprint(t, width=30)
[[[[’black’, ’cyan’],

’white’,
[’green’, ’red’]],
[[’magenta’, ’yellow’],
’blue’]]]

The textwrap module formats paragraphs of text to fit a given screen width:

The textwrap�¬�ªz©�ãá±·A�½�¶°µ

91

../lib/module-repr.html
../lib/module-pprint.html
../lib/module-pprint.html
../lib/module-textwrap.html
../lib/module-textwrap.html

>>> import textwrap
>>> doc = """The wrap() method is just like fill() except that it returns
... a list of strings instead of one big string with newlines to separate
... the wrapped lines."""
...
>>> print textwrap.fill(doc, width=40)
The wrap() method is just like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

The locale module accesses a database of culture specific data formats. The grouping attribute of locale’s format
function provides a direct way of formatting numbers with group separators:

The locale�¬U�¯ý½Ð�I[&Eêâ¥"locale��ªz¼êá58Jø
�����ª±©|
I«�ªzêiµ

>>> import locale
>>> locale.setlocale(locale.LC_ALL, ’English_United States.1252’)
’English_United States.1252’
>>> conv = locale.localeconv() # get a mapping of conventions
>>> x = 1234567.8
>>> locale.format("%d", x, grouping=True)
’1,234,567’
>>> locale.format("%s%.*f", (conv[’currency_symbol’],
... conv[’frac_digits’], x), grouping=True)
’$1,234,567.80’

10.2 Templating��

The string module includes a versatile Template class with a simplified syntax suitable for editing by end-users.
This allows users to customize their applications without having to alter the application.

stringJø
��(¹õC���atemplate§¦^§�ª^r�±^{ü�?1?6"ù¦^r�±
3Ø?1UC��¹e½�¦��A^§S"

The format uses placeholder names formed by ‘$’ with valid Python identifiers (alphanumeric characters and un-
derscores). Surrounding the placeholder with braces allows it to be followed by more alphanumeric letters with no
intervening spaces. Writing ‘$$’ creates a single escaped ‘$’:

�ª¦^‘$’�mÞ�PythonÜ{I££êi!i1Úey�¤��Ó Î"Ó Î	¡��)Ò¦§�±
ÚÙ§�iÎØ\��·3�å"‘$$’Mï��üÕ�‘$’"

>>> from string import Template
>>> t = Template(’${village}folk send $$10 to $cause.’)
>>> t.substitute(village=’Nottingham’, cause=’the ditch fund’)
’Nottinghamfolk send $10 to the ditch fund.’

The substitute method raises a KeyError when a placeholder is not supplied in a dictionary or a keyword
argument. For mail-merge style applications, user supplied data may be incomplete and the safe_substitute
method may be more appropriate — it will leave placeholders unchanged if data is missing:

92 Chapter 10. Brief Tour of the Standard Library – Part IIIO¥VA

../lib/module-locale.html
../lib/module-locale.html
../lib/module-string.html
../lib/module-string.html

i;½ö'�iëê¥"�,�Ó Î��ÿsubstitute �{�ÑKeyError É~"3e�-Ü¿º�
�A^§S¥§^rJø�êâ�U¿Ø��§�N^safe-substitute�{�Ü·))XJêâØ�
�§§�3�UÄ�Ó Îµ

>>> t = Template(’Return the $item to $owner.’)
>>> d = dict(item=’unladen swallow’)
>>> t.substitute(d)
Traceback (most recent call last):

. . .
KeyError: ’owner’
>>> t.safe_substitute(d)
’Return the unladen swallow to $owner.’

Template subclasses can specify a custom delimiter. For example, a batch renaming utility for a photo browser may
elect to use percent signs for placeholders such as the current date, image sequence number, or file format:

��fa�±�½��½�©�Î"~X§ã�èAì�1þ·¶óä�UÀ^z©Ò��L«�cF
Ï!ã�S�Ò½©��ª�Ó Îµ

>>> import time, os.path
>>> photofiles = [’img_1074.jpg’, ’img_1076.jpg’, ’img_1077.jpg’]
>>> class BatchRename(Template):
... delimiter = ’%’
>>> fmt = raw_input(’Enter rename style (%d-date %n-seqnum %f-format): ’)
Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f

>>> t = BatchRename(fmt)
>>> date = time.strftime(’%d%b%y’)
>>> for i, filename in enumerate(photofiles):
... base, ext = os.path.splitext(filename)
... newname = t.substitute(d=date, n=i, f=ext)
... print ’%s --> %s’ % (filename, newname)

img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

Another application for templating is separating program logic from the details of multiple output formats. This makes
it possible to substitute custom templates for XML files, plain text reports, and HTML web reports.

,��A^´òõ�z�ÑÑ�ª[!l§SÜ6¥©lÑ5"ù¦��XML©�§X©��L§HTML
web�L½�O���¤��U"

10.3 Working with Binary Data Record Layouts¦^�?�P¹�

The struct module provides pack() and unpack() functions for working with variable length binary record
formats. The following example shows how to loop through header information in a ZIP file (with pack codes "H"
and "L" representing two and four byte unsigned numbers respectively):

struct�¬Jøpack()Úunpack()¼ê^uC��?�P¹�ª"±e«~w«
XÛÏLZIP©�
�Þ&E£Ø �è¥�"H"Ú"L"©OD4�Úoi!ÃÎÒ�ê¤"

10.3. Working with Binary Data Record Layouts¦^�?�P¹� 93

../lib/module-struct.html
../lib/module-struct.html

import struct

data = open(’myfile.zip’, ’rb’).read()
start = 0
for i in range(3): # show the first 3 file headers

start += 14
fields = struct.unpack(’LLLHH’, data[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

start += 16
filename = data[start:start+filenamesize]
start += filenamesize
extra = data[start:start+extra_size]
print filename, hex(crc32), comp_size, uncomp_size

start += extra_size + comp_size # skip to the next header

10.4 Multi-threadingõ�§

Threading is a technique for decoupling tasks which are not sequentially dependent. Threads can be used to improve
the responsiveness of applications that accept user input while other tasks run in the background. A related use case is
running I/O in parallel with computations in another thread.

�§´��©lÃ^S�6'X?Ö�Eâ"3,
?Ö$1u����ÿA^§S¬C�´�§�§�
±J,Ù�Ý"��k'�^å´3I/O�Ó�Ù§�§�±¿1O�"

The following code shows how the high level threading module can run tasks in background while the main
program continues to run:

e¡��èw«
p?�¬threadingXÛ3Ì§S$1�Ó�$1?Ö"

import threading, zipfile

class AsyncZip(threading.Thread):
def __init__(self, infile, outfile):

threading.Thread.__init__(self)
self.infile = infile
self.outfile = outfile

def run(self):
f = zipfile.ZipFile(self.outfile, ’w’, zipfile.ZIP_DEFLATED)
f.write(self.infile)
f.close()
print ’Finished background zip of: ’, self.infile

background = AsyncZip(’mydata.txt’, ’myarchive.zip’)
background.start()
print ’The main program continues to run in foreground.’

background.join() # Wait for the background task to finish
print ’Main program waited until background was done.’

The principal challenge of multi-threaded applications is coordinating threads that share data or other resources. To
that end, the threading module provides a number of synchronization primitives including locks, events, condition

94 Chapter 10. Brief Tour of the Standard Library – Part IIIO¥VA

../lib/module-threading.html
../lib/module-threading.html

variables, and semaphores.

õ�§A^§S�­��]Ô´3�N�§���êâÚÙ§]
"�ª§�§�¬Jø
A�Ä��Ó
Ú�ªX£!¯�§^�CþÚá�"

While those tools are powerful, minor design errors can result in problems that are difficult to reproduce. So, the
preferred approach to task coordination is to concentrate all access to a resource in a single thread and then use the
Queuemodule to feed that thread with requests from other threads. Applications using Queue objects for inter-thread
communication and coordination are easier to design, more readable, and more reliable.

¦+óäér�§����O�Ø��UE¤J±�£��æ"Ïd§�Ð��{´ò¤k�]
�¯8
¥���Õá��§¥§,�¦^Queue�¬NÝT�§�AÙ§�§��¦"A^§S¦^Queueé�
�±4SÜ�§Ï&Ú�N�N´�O§��Ö§���"

10.5 LoggingF�

The logging module offers a full featured and flexible logging system. At its simplest, log messages are sent to a
file or to sys.stderr:

logging �¬Jø
��Ú(¹�F�XÚ"§�{ü�^{´P¹&E¿ux���©�
½sys.stderr:

import logging
logging.debug(’Debugging information’)
logging.info(’Informational message’)
logging.warning(’Warning:config file %s not found’, ’server.conf’)
logging.error(’Error occurred’)
logging.critical(’Critical error -- shutting down’)

This produces the following output: ùp´ÑÑµ

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are suppressed and the output is sent to standard error. Other
output options include routing messages through email, datagrams, sockets, or to an HTTP Server. New filters can
select different routing based on message priority: DEBUG, INFO, WARNING, ERROR, and CRITICAL.

%@�¹eÓ¼&EÚNÁ�E¿òÑÑux�IO�Ø6"Ù§�À�´d&E�ª
ÏLemail§êâ�©§socket½öHTTP Server"Äu�Eá5§#�LÈì�±ÀJØÓ�´
dµDEBUG,INFO§WARNING§ERRORÚCRITICAL"

The logging system can be configured directly from Python or can be loaded from a user editable configuration file for
customized logging without altering the application.

F�XÚ�±��3Python¥½�§��±Ø²LA^§S��3��^r�?6���©�¥\1"

10.6 Weak ReferencesfÚ^

Python does automatic memory management (reference counting for most objects and garbage collection to eliminate
cycles). The memory is freed shortly after the last reference to it has been eliminated.

10.5. LoggingF� 95

../lib/module-Queue.html
../lib/module-Queue.html
../lib/module-logging.html
../lib/module-logging.html

Python gÄ?1S�+n£é�õê�é�?1Ú^OêÚ-Ã£Â±Ì�|^¤3����Ú^��
�§S�¬é¯º�"

This approach works fine for most applications but occasionally there is a need to track objects only as long as they
are being used by something else. Unfortunately, just tracking them creates a reference that makes them permanent.
The weakref module provides tools for tracking objects without creating a reference. When the object is no longer
needed, it is automatically removed from a weakref table and a callback is triggered for weakref objects. Typical
applications include caching objects that are expensive to create:

ù�ó��ªé�õêA^§Só�ûÐ§�´ó�¬I��lé�5��
¯"Ø3�´§==��l
§�MïÚ^�¬¦Ù�Ï�3"weakref �¬Jø
Ø^MïÚ^��lé�óä§��é�Ø2�
3§§gÄlfÚ^LþíØ¿>u£N";.�A^�)Ó¼J±�E�é�µ

>>> import weakref, gc
>>> class A:
... def __init__(self, value):
... self.value = value
... def __repr__(self):
... return str(self.value)
...
>>> a = A(10) # create a reference
>>> d = weakref.WeakValueDictionary()
>>> d[’primary’] = a # does not create a reference
>>> d[’primary’] # fetch the object if it is still alive
10
>>> del a # remove the one reference
>>> gc.collect() # run garbage collection right away
0
>>> d[’primary’] # entry was automatically removed
Traceback (most recent call last):

File "<pyshell#108>", line 1, in -toplevel-
d[’primary’] # entry was automatically removed

File "C:/PY24/lib/weakref.py", line 46, in __getitem__
o = self.data[key]()

KeyError: ’primary’

10.7 Tools for Working with ListsóLóä

Many data structure needs can be met with the built-in list type. However, sometimes there is a need for alternative
implementations with different performance trade-offs.

éõêâ(��U¬^�S�óLa.",
§k��UI�ØÓ5U�d�¢y"

The array module provides an array() object that is like a list that stores only homogenous data and stores it more
compactly. The following example shows an array of numbers stored as two byte unsigned binary numbers (typecode
"H") rather than the usual 16 bytes per entry for regular lists of python int objects:

array�¬Jø
��aqóL�array()é�§§==´�;êâ§��;n"±e�«~ü«
��
�;Vi!ÃÎÒ�ê�ê|£a.?è"H"¤
��;16i!Python�êé��ÊÏ�5óL§µ

96 Chapter 10. Brief Tour of the Standard Library – Part IIIO¥VA

../lib/module-weakref.html
../lib/module-weakref.html
../lib/module-array.html
../lib/module-array.html

>>> from array import array
>>> a = array(’H’, [4000, 10, 700, 22222])
>>> sum(a)
26932
>>> a[1:3]
array(’H’, [10, 700])

The collections module provides a deque() object that is like a list with faster appends and pops from the left
side but slower lookups in the middle. These objects are well suited for implementing queues and breadth first tree
searches:

collections�¬Jø
aqóL�deque()é�§§l�>V\£append¤Ú�Ñ£pop¤�¯§�´
3SÜ�Î�ú"ù
é��·^uè�¢yÚ2Ý`k�ä|¢µ

>>> from collections import deque
>>> d = deque(["task1", "task2", "task3"])
>>> d.append("task4")
>>> print "Handling", d.popleft()
Handling task1

unsearched = deque([starting_node])
def breadth_first_search(unsearched):

node = unsearched.popleft()
for m in gen_moves(node):

if is_goal(m):
return m

unsearched.append(m)

In addition to alternative list implementations, the library also offers other tools such as the bisect module with
functions for manipulating sorted lists:

Ø
óL�O�¢y§T¥�Jø
bisectù���¬±ö��;óLµ

>>> import bisect
>>> scores = [(100, ’perl’), (200, ’tcl’), (400, ’lua’), (500, ’python’)]
>>> bisect.insort(scores, (300, ’ruby’))
>>> scores
[(100, ’perl’), (200, ’tcl’), (300, ’ruby’), (400, ’lua’), (500, ’python’)]

The heapq module provides functions for implementing heaps based on regular lists. The lowest valued entry is
always kept at position zero. This is useful for applications which repeatedly access the smallest element but do not
want to run a full list sort:

heapqJø
Äu�5óL�æ¢y"����o´�±30:"ù3F"Ì��¯�����´Ø��1
��æüS��ÿ�~k^"

>>> from heapq import heapify, heappop, heappush
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> heapify(data) # rearrange the list into heap order
>>> heappush(data, -5) # add a new entry
>>> [heappop(data) for i in range(3)] # fetch the three smallest entries
[-5, 0, 1]

10.7. Tools for Working with ListsóLóä 97

../lib/module-collections.html
../lib/module-collections.html
../lib/module-bisect.html
../lib/module-bisect.html
../lib/module-heapq.html
../lib/module-heapq.html

10.8 Decimal Floating Point Arithmetic�?�2:ê�{

The decimal module offers a Decimal datatype for decimal floating point arithmetic. Compared to the built-
in float implementation of binary floating point, the new class is especially helpful for financial applications and
other uses which require exact decimal representation, control over precision, control over rounding to meet legal or
regulatory requirements, tracking of significant decimal places, or for applications where the user expects the results
to match calculations done by hand.

decimal�¬Jø
��Decimalêâa.^u2:êO�"�'S���?�2:ê¢yfloat§#
a.AO·^u7KA^ÚÙ§I�°(�?�L��|Ü§��°Ý§���\±·A{Æ½ö5½�
¦§(��?�ê °Ý§½ö^rF"^�êÆO��|Ü"

For example, calculating a 5% tax on a 70 cent phone charge gives different results in decimal floating point and binary
floating point. The difference becomes significant if the results are rounded to the nearest cent:

~X§O�70©>{¤�5%[O�§�?�2:êÚ�?�2:êO�(J��OXe"XJ3©�þ�
\§ù��OÒé­�
"

>>> from decimal import *
>>> Decimal(’0.70’) * Decimal(’1.05’)
Decimal("0.7350")
>>> .70 * 1.05
0.73499999999999999

The Decimal result keeps a trailing zero, automatically inferring four place significance from multiplicands with two
place significance. Decimal reproduces mathematics as done by hand and avoids issues that can arise when binary
floating point cannot exactly represent decimal quantities.

Decimal�(Jo´�k(��0§gÄlü °Ýò��4 "Decimal­y
Ãó�êÆ$�§ùÒ(�

�?�2:êÃ{°(�k�êâ°Ý"

Exact representation enables the Decimal class to perform modulo calculations and equality tests that are unsuitable
for binary floating point:

p°Ý¦Decimal�±�1�?�2:êÃ{?1��$�Ú��ÿÁ"

>>> Decimal(’1.00’) % Decimal(’.10’)
Decimal("0.00")
>>> 1.00 % 0.10
0.09999999999999995

>>> sum([Decimal(’0.1’)]*10) == Decimal(’1.0’)
True
>>> sum([0.1]*10) == 1.0
False

The decimal module provides arithmetic with as much precision as needed:

decimalJø
°Ý�{"

>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal("0.142857142857142857142857142857142857")

98 Chapter 10. Brief Tour of the Standard Library – Part IIIO¥VA

../lib/module-decimal.html
../lib/module-decimal.html

CHAPTER

ELEVEN

What Now?

Reading this tutorial has probably reinforced your interest in using Python — you should be eager to apply Python to
solving your real-world problems. Where should you go to learn more?

This tutorial is part of Python’s documentation set. Some other documents in the set are:

• Python Library Reference:

You should browse through this manual, which gives complete (though terse) reference material about types,
functions, and the modules in the standard library. The standard Python distribution includes a lot of additional
code. There are modules to read UNIX mailboxes, retrieve documents via HTTP, generate random numbers,
parse command-line options, write CGI programs, compress data, and many other tasks. Skimming through the
Library Reference will give you an idea of what’s available.

• Installing Python Modules explains how to install external modules written by other Python users.

• Language Reference: A detailed explanation of Python’s syntax and semantics. It’s heavy reading, but is useful
as a complete guide to the language itself.

More Python resources:

• http://www.python.org: The major Python Web site. It contains code, documentation, and pointers
to Python-related pages around the Web. This Web site is mirrored in various places around the world, such
as Europe, Japan, and Australia; a mirror may be faster than the main site, depending on your geographical
location.

• http://docs.python.org: Fast access to Python’s documentation.

• http://cheeseshop.python.org: The Python Package Index, nicknamed the Cheese Shop, is an index
of user-created Python modules that are available for download. Once you begin releasing code, you can register
it here so that others can find it.

• http://aspn.activestate.com/ASPN/Python/Cookbook/: The Python Cookbook is a sizable
collection of code examples, larger modules, and useful scripts. Particularly notable contributions are collected
in a book also titled Python Cookbook (O’Reilly & Associates, ISBN 0-596-00797-3.)

For Python-related questions and problem reports, you can post to the newsgroup comp.lang.python, or send them to
the mailing list at python-list@python.org. The newsgroup and mailing list are gatewayed, so messages posted to one
will automatically be forwarded to the other. There are around 120 postings a day (with peaks up to several hundred),
asking (and answering) questions, suggesting new features, and announcing new modules. Before posting, be sure to
check the list of Frequently Asked Questions (also called the FAQ), or look for it in the ‘Misc/’ directory of the Python
source distribution. Mailing list archives are available at http://mail.python.org/pipermail/. The FAQ
answers many of the questions that come up again and again, and may already contain the solution for your problem.

99

../lib/lib.html
../inst/inst.html
../ref/ref.html
http://www.python.org
http://docs.python.org
http://cheeseshop.python.org
http://aspn.activestate.com/ASPN/Python/Cookbook/
http://www.python.org/doc/faq/
http://mail.python.org/pipermail/

100

APPENDIX

A

Interactive Input Editing and History
Substitution

Some versions of the Python interpreter support editing of the current input line and history substitution, similar to
facilities found in the Korn shell and the GNU Bash shell. This is implemented using the GNU Readline library,
which supports Emacs-style and vi-style editing. This library has its own documentation which I won’t duplicate here;
however, the basics are easily explained. The interactive editing and history described here are optionally available in
the UNIX and Cygwin versions of the interpreter.

This chapter does not document the editing facilities of Mark Hammond’s PythonWin package or the Tk-based envi-
ronment, IDLE, distributed with Python. The command line history recall which operates within DOS boxes on NT
and some other DOS and Windows flavors is yet another beast.

A.1 Line Editing

If supported, input line editing is active whenever the interpreter prints a primary or secondary prompt. The current
line can be edited using the conventional Emacs control characters. The most important of these are: C-A (Control-A)
moves the cursor to the beginning of the line, C-E to the end, C-B moves it one position to the left, C-F to the right.
Backspace erases the character to the left of the cursor, C-D the character to its right. C-K kills (erases) the rest of
the line to the right of the cursor, C-Y yanks back the last killed string. C-underscore undoes the last change you
made; it can be repeated for cumulative effect.

A.2 History Substitution

History substitution works as follows. All non-empty input lines issued are saved in a history buffer, and when a new
prompt is given you are positioned on a new line at the bottom of this buffer. C-P moves one line up (back) in the
history buffer, C-N moves one down. Any line in the history buffer can be edited; an asterisk appears in front of the
prompt to mark a line as modified. Pressing the Return key passes the current line to the interpreter. C-R starts an
incremental reverse search; C-S starts a forward search.

A.3 Key Bindings

The key bindings and some other parameters of the Readline library can be customized by placing commands in an
initialization file called ‘˜/.inputrc’. Key bindings have the form

101

key-name: function-name

or

"string": function-name

and options can be set with

set option-name value

For example:

I prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:
Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding for Tab in Python is to insert a Tab character instead of Readline’s default filename
completion function. If you insist, you can override this by putting

Tab: complete

in your ‘˜/.inputrc’. (Of course, this makes it harder to type indented continuation lines if you’re accustomed to using
Tab for that purpose.)

Automatic completion of variable and module names is optionally available. To enable it in the interpreter’s interactive
mode, add the following to your startup file:1

import rlcompleter, readline
readline.parse_and_bind(’tab: complete’)

This binds the Tab key to the completion function, so hitting the Tab key twice suggests completions; it looks at
Python statement names, the current local variables, and the available module names. For dotted expressions such as
string.a, it will evaluate the expression up to the final ‘.’ and then suggest completions from the attributes of the
resulting object. Note that this may execute application-defined code if an object with a __getattr__() method is
part of the expression.

A more capable startup file might look like this example. Note that this deletes the names it creates once they are no
longer needed; this is done since the startup file is executed in the same namespace as the interactive commands, and
removing the names avoids creating side effects in the interactive environment. You may find it convenient to keep

1 Python will execute the contents of a file identified by the PYTHONSTARTUP environment variable when you start an interactive interpreter.

102 Appendix A. Interactive Input Editing and History Substitution

some of the imported modules, such as os, which turn out to be needed in most sessions with the interpreter.

Add auto-completion and a stored history file of commands to your Python
interactive interpreter. Requires Python 2.0+, readline. Autocomplete is
bound to the Esc key by default (you can change it - see readline docs).
#
Store the file in ~/.pystartup, and set an environment variable to point
to it: "export PYTHONSTARTUP=/max/home/itamar/.pystartup" in bash.
#
Note that PYTHONSTARTUP does *not* expand "~", so you have to put in the
full path to your home directory.

import atexit
import os
import readline
import rlcompleter

historyPath = os.path.expanduser("~/.pyhistory")

def save_history(historyPath=historyPath):
import readline
readline.write_history_file(historyPath)

if os.path.exists(historyPath):
readline.read_history_file(historyPath)

atexit.register(save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath

A.4 Commentary

This facility is an enormous step forward compared to earlier versions of the interpreter; however, some wishes are
left: It would be nice if the proper indentation were suggested on continuation lines (the parser knows if an indent
token is required next). The completion mechanism might use the interpreter’s symbol table. A command to check (or
even suggest) matching parentheses, quotes, etc., would also be useful.

A.4. Commentary 103

../lib/module-os.html

104

APPENDIX

B

Floating Point Arithmetic: Issues and
Limitations

Floating-point numbers are represented in computer hardware as base 2 (binary) fractions. For example, the decimal
fraction

0.125

has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction

0.001

has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only real difference being that the first is
written in base 10 fractional notation, and the second in base 2.

Unfortunately, most decimal fractions cannot be represented exactly as binary fractions. A consequence is that, in
general, the decimal floating-point numbers you enter are only approximated by the binary floating-point numbers
actually stored in the machine.

The problem is easier to understand at first in base 10. Consider the fraction 1/3. You can approximate that as a base
10 fraction:

0.3

or, better,

0.33

or, better,

0.333

and so on. No matter how many digits you’re willing to write down, the result will never be exactly 1/3, but will be an
increasingly better approximation of 1/3.

In the same way, no matter how many base 2 digits you’re willing to use, the decimal value 0.1 cannot be represented

105

exactly as a base 2 fraction. In base 2, 1/10 is the infinitely repeating fraction

0.0001100110011001100110011001100110011001100110011...

Stop at any finite number of bits, and you get an approximation. This is why you see things like:

>>> 0.1
0.10000000000000001

On most machines today, that is what you’ll see if you enter 0.1 at a Python prompt. You may not, though, because
the number of bits used by the hardware to store floating-point values can vary across machines, and Python only
prints a decimal approximation to the true decimal value of the binary approximation stored by the machine. On most
machines, if Python were to print the true decimal value of the binary approximation stored for 0.1, it would have to
display

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

instead! The Python prompt uses the builtin repr() function to obtain a string version of everything it displays. For
floats, repr(float) rounds the true decimal value to 17 significant digits, giving

0.10000000000000001

repr(float) produces 17 significant digits because it turns out that’s enough (on most machines) so that
eval(repr(x)) == x exactly for all finite floats x, but rounding to 16 digits is not enough to make that true.

Note that this is in the very nature of binary floating-point: this is not a bug in Python, and it is not a bug in your
code either. You’ll see the same kind of thing in all languages that support your hardware’s floating-point arithmetic
(although some languages may not display the difference by default, or in all output modes).

Python’s builtin str() function produces only 12 significant digits, and you may wish to use that instead. It’s unusual
for eval(str(x)) to reproduce x, but the output may be more pleasant to look at:

>>> print str(0.1)
0.1

It’s important to realize that this is, in a real sense, an illusion: the value in the machine is not exactly 1/10, you’re
simply rounding the display of the true machine value.

Other surprises follow from this one. For example, after seeing

>>> 0.1
0.10000000000000001

you may be tempted to use the round() function to chop it back to the single digit you expect. But that makes no
difference:

106 Appendix B. Floating Point Arithmetic: Issues and Limitations

>>> round(0.1, 1)
0.10000000000000001

The problem is that the binary floating-point value stored for "0.1" was already the best possible binary approximation
to 1/10, so trying to round it again can’t make it better: it was already as good as it gets.

Another consequence is that since 0.1 is not exactly 1/10, summing ten values of 0.1 may not yield exactly 1.0, either:

>>> sum = 0.0
>>> for i in range(10):
... sum += 0.1
...
>>> sum
0.99999999999999989

Binary floating-point arithmetic holds many surprises like this. The problem with "0.1" is explained in precise detail
below, in the "Representation Error" section. See The Perils of Floating Point for a more complete account of other
common surprises.

As that says near the end, “there are no easy answers.” Still, don’t be unduly wary of floating-point! The errors in
Python float operations are inherited from the floating-point hardware, and on most machines are on the order of no
more than 1 part in 2**53 per operation. That’s more than adequate for most tasks, but you do need to keep in mind
that it’s not decimal arithmetic, and that every float operation can suffer a new rounding error.

While pathological cases do exist, for most casual use of floating-point arithmetic you’ll see the result you expect
in the end if you simply round the display of your final results to the number of decimal digits you expect. str()
usually suffices, and for finer control see the discussion of Python’s % format operator: the %g, %f and %e format
codes supply flexible and easy ways to round float results for display.

B.1 Representation Error

This section explains the “0.1” example in detail, and shows how you can perform an exact analysis of cases like this
yourself. Basic familiarity with binary floating-point representation is assumed.

Representation error refers to the fact that some (most, actually) decimal fractions cannot be represented exactly as
binary (base 2) fractions. This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many others) often
won’t display the exact decimal number you expect:

>>> 0.1
0.10000000000000001

Why is that? 1/10 is not exactly representable as a binary fraction. Almost all machines today (November 2000) use
IEEE-754 floating point arithmetic, and almost all platforms map Python floats to IEEE-754 "double precision". 754
doubles contain 53 bits of precision, so on input the computer strives to convert 0.1 to the closest fraction it can of the
form J/2**N where J is an integer containing exactly 53 bits. Rewriting

1 / 10 ~= J / (2**N)

as

B.1. Representation Error 107

http://www.lahey.com/float.htm

J ~= 2**N / 10

and recalling that J has exactly 53 bits (is >= 2**52 but < 2**53), the best value for N is 56:

>>> 2**52
4503599627370496L
>>> 2**53
9007199254740992L
>>> 2**56/10
7205759403792793L

That is, 56 is the only value for N that leaves J with exactly 53 bits. The best possible value for J is then that quotient
rounded:

>>> q, r = divmod(2**56, 10)
>>> r
6L

Since the remainder is more than half of 10, the best approximation is obtained by rounding up:

>>> q+1
7205759403792794L

Therefore the best possible approximation to 1/10 in 754 double precision is that over 2**56, or

7205759403792794 / 72057594037927936

Note that since we rounded up, this is actually a little bit larger than 1/10; if we had not rounded up, the quotient would
have been a little bit smaller than 1/10. But in no case can it be exactly 1/10!

So the computer never “sees” 1/10: what it sees is the exact fraction given above, the best 754 double approximation
it can get:

>>> .1 * 2**56
7205759403792794.0

If we multiply that fraction by 10**30, we can see the (truncated) value of its 30 most significant decimal digits:

>>> 7205759403792794 * 10**30 / 2**56
100000000000000005551115123125L

meaning that the exact number stored in the computer is approximately equal to the decimal value
0.100000000000000005551115123125. Rounding that to 17 significant digits gives the 0.10000000000000001 that
Python displays (well, will display on any 754-conforming platform that does best-possible input and output conver-
sions in its C library — yours may not!).

108 Appendix B. Floating Point Arithmetic: Issues and Limitations

APPENDIX

C

History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see http:
//www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see http:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see http://www.python.org/
psf/) was formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope
Corporation is a sponsoring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition).
Historically, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

109

http://www.cwi.nl/
http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.python.org/psf/
http://www.opensource.org/

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no

1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no

2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes

2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes

2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes

2.4.1 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
2.5 2.4 2006 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.5

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python 2.5 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 2.5 alone or in any derivative version, provided, however, that PSF’s
License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2006 Python Software Foundation;
All Rights Reserved” are retained in Python 2.5 alone or in any derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.5 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.5.

4. PSF is making Python 2.5 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.5 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

110 Appendix C. History and License

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.5 FOR ANY IN-
CIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.5, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.5, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

C.2. Terms and conditions for accessing or otherwise using Python 111

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI’s License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URL: http://hdl.handle.net/1895.
22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA

112 Appendix C. History and License

http://hdl.handle.net/1895.22/1013
http://hdl.handle.net/1895.22/1013

OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.keio.ac.jp/
~matumoto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3. Licenses and Acknowledgements for Incorporated Software 113

http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html
http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html

C.3.2 Sockets

The socket module uses the functions, getaddrinfo, and getnameinfo, which are coded in separate source
files from the WIDE Project, http://www.wide.ad.jp/about/index.html.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘AS IS’’ AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

114 Appendix C. History and License

http://www.wide.ad.jp/about/index.html

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

C.3. Licenses and Acknowledgements for Incorporated Software 115

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

116 Appendix C. History and License

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Profiling

The profile and pstats modules contain the following notice:

C.3. Licenses and Acknowledgements for Incorporated Software 117

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the software
to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

The trace module contains the following notice:

118 Appendix C. History and License

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O’Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.9 UUencode and UUdecode functions

The uu module contains the following notice:

C.3. Licenses and Acknowledgements for Incorporated Software 119

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3.10 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

120 Appendix C. History and License

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 121

122

APPENDIX

D

Glossary

»> The typical Python prompt of the interactive shell. Often seen for code examples that can be tried right away in
the interpreter.

... The typical Python prompt of the interactive shell when entering code for an indented code block.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

byte code The internal representation of a Python program in the interpreter. The byte code is also cached in .pyc
and .pyo files so that executing the same file is faster the second time (recompilation from source to byte code
can be avoided). This “intermediate language” is said to run on a “virtual machine” that calls the subroutines
corresponding to each bytecode.

classic class Any class which does not inherit from object. See new-style class.

coercion The implicit conversion of an instance of one type to another during an operation which involves two argu-
ments of the same type. For example, int(3.15) converts the floating point number to the integer 3, but in
3+4.5, each argument is of a different type (one int, one float), and both must be converted to the same type be-
fore they can be added or it will raise a TypeError. Coercion between two operands can be performed with the
coerce builtin function; thus, 3+4.5 is equivalent to calling operator.add(*coerce(3, 4.5)) and
results in operator.add(3.0, 4.5). Without coercion, all arguments of even compatible types would
have to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of -1), often written i in mathematics or j in engineering. Python has builtin support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get
access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

descriptor Any new-style object that defines the methods __get__(), __set__(), or __delete__(). When a
class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, writing
a.b looks up the object b in the class dictionary for a, but if b is a descriptor, the defined method gets called.
Understanding descriptors is a key to a deep understanding of Python because they are the basis for many
features including functions, methods, properties, class methods, static methods, and reference to super classes.

dictionary An associative array, where arbitrary keys are mapped to values. The use of dict much resembles that
for list, but the keys can be any object with a __hash__() function, not just integers starting from zero.
Called a hash in Perl.

duck-typing Pythonic programming style that determines an object’s type by inspection of its method or attribute
signature rather than by explicit relationship to some type object ("If it looks like a duck and quacks like a
duck, it must be a duck.") By emphasizing interfaces rather than specific types, well-designed code improves its
flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance().
Instead, it typically employs hasattr() tests or EAFP programming.

123

http://www.python.org/T1	extasciitilde {}guido/

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of
valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style that is common in many other languages such as C.

__future__ A pseudo module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If the module in which
it is executed had enabled true division by executing:

from __future__ import division

the expression 11/4 would evaluate to 2.75. By importing the __future__ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

generator A function that returns an iterator. It looks like a normal function except that values are returned to the
caller using a yield statement instead of a return statement. Generator functions often contain one or more
for or while loops that yield elements back to the caller. The function execution is stopped at the yield
keyword (returning the result) and is resumed there when the next element is requested by calling the next()
method of the returned iterator.

generator expression An expression that returns a generator. It looks like a normal expression followed by a for
expression defining a loop variable, range, and an optional if expression. The combined expression generates
values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

global interpreter lock The lock used by Python threads to assure that only one thread can be run at a time. This
simplifies Python by assuring that no two processes can access the same memory at the same time. Locking the
entire interpreter makes it easier for the interpreter to be multi-threaded, at the expense of some parallelism on
multi-processor machines. Efforts have been made in the past to create a “free-threaded” interpreter (one which
locks shared data at a much finer granularity), but performance suffered in the common single-processor case.

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment that
ships with the standard distribution of Python. Good for beginners, it also serves as clear example code for those
wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable An object with fixed value. Immutable objects are numbers, strings or tuples (and more). Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently eval-
uates to 2 in contrast to the 2.75 returned by float division. Also called floor division. When dividing two
integers the outcome will always be another integer (having the floor function applied to it). However, if one of
the operands is another numeric type (such as a float), the result will be coerced (see coercion) to a common
type. For example, an integer divided by a float will result in a float value, possibly with a decimal fraction.
Integer division can be forced by using the // operator instead of the / operator. See also __future__.

124 Appendix D. Glossary

../lib/module-future.html

interactive Python has an interactive interpreter which means that you can try out things and immediately see their
results. Just launch python with no arguments (possibly by selecting it from your computer’s main menu). It
is a very powerful way to test out new ideas or inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one. This means that the source files can be
run directly without first creating an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs generally also run more slowly. See also
interactive.

iterable A container object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict and file and objects of any
classes you define with an __iter__() or __getitem__() method. Iterables can be used in a for loop
and in many other places where a sequence is needed (zip(), map(), ...). When an iterable object is passed
as an argument to the builtin function iter(), it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s next() method return successive
items in the stream. When no more data is available a StopIteration exception is raised instead. At this
point, the iterator object is exhausted and any further calls to its next() method just raise StopIteration
again. Iterators are required to have an __iter__() method that returns the iterator object itself so every
iterator is also iterable and may be used in most places where other iterables are accepted. One notable exception
is code that attempts multiple iteration passes. A container object (such as a list) produces a fresh new iterator
each time you pass it to the iter() function or use it in a for loop. Attempting this with an iterator will just
return the same exhausted iterator object used in the previous iteration pass, making it appear like an empty
container.

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

list comprehension A compact way to process all or a subset of elements in a sequence and return a list with the
results. result = ["0x%02x" %x for x in range(256) if x %2 == 0] generates a list of
strings containing hex numbers (0x..) that are even and in the range from 0 to 255. The if clause is optional. If
omitted, all elements in range(256) are processed.

mapping A container object (such as dict) that supports arbitrary key lookups using the special method __-
getitem__().

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

mutable Mutable objects can change their value but keep their id(). See also immutable.

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and builtin namespaces as well as nested namespaces in objects (in methods). Namespaces support mod-
ularity by preventing naming conflicts. For instance, the functions __builtin__.open() and os.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed() or itertools.izip()
makes it clear that those functions are implemented by the random and itertools modules respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

125

../lib/module-random.html
../lib/module-itertools.html

new-style class Any class that inherits from object. This includes all built-in types like list and dict. Only
new-style classes can use Python’s newer, versatile features like __slots__, descriptors, properties, __-
getattribute__(), class methods, and static methods.

Python3000 A mythical python release, not required to be backward compatible, with telepathic interface.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() and
__len__() special methods. Some built-in sequence types are list, str, tuple, and unicode. Note that
dict also supports __getitem__() and __len__(), but is considered a mapping rather than a sequence
because the lookups use arbitrary immutable keys rather than integers.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

126 Appendix D. Glossary

INDEX

..., 113
»>, 113
__all__, 47
__builtin__ (built-in module), 45
__future__, 114
__slots__, 116

append() (list method), 29

BDFL, 113
byte code, 113

classic class, 113
coercion, 113
compileall (standard module), 43
complex number, 113
count() (list method), 29

descriptor, 113
dictionary, 113
docstrings, 22, 27
documentation strings, 22, 27
duck-typing, 113

EAFP, 113
environment variables

PATH, 5, 43
PYTHONPATH, 43, 44
PYTHONSTARTUP, 6, 92

extend() (list method), 29

file
object, 52

for
statement, 19

generator, 114
generator expression, 114
GIL, 114
global interpreter lock, 114

help() (built-in function), 75

IDLE, 114

immutable, 114
index() (list method), 29
insert() (list method), 29
integer division, 114
interactive, 114
interpreted, 115
iterable, 115
iterator, 115

LBYL, 115
list comprehension, 115

mapping, 115
metaclass, 115
method

object, 67
module

search path, 43
mutable, 115

namespace, 115
nested scope, 115
new-style class, 115

object
file, 52
method, 67

open() (built-in function), 52

PATH, 5, 43
path

module search, 43
pickle (standard module), 54
pop() (list method), 29
Python3000, 116
PYTHONPATH, 43, 44
PYTHONSTARTUP, 6, 92

readline (built-in module), 92
remove() (list method), 29
reverse() (list method), 29
rlcompleter (standard module), 92

127

search
path, module, 43

sequence, 116
sort() (list method), 29
statement

for, 19
string (standard module), 49
strings, documentation, 22, 27
sys (standard module), 44

unicode() (built-in function), 14

Zen of Python, 116

128 Index

	Whetting Your Appetite 开胃菜
	Using the Python Interpreter 使用Python解释器
	Invoking the Interpreter 调用解释器
	The Interpreter and Its Environment 解释器及其环境

	More Control Flow Tools 深入流程控制
	if Statements
	for Statements for 语句
	The range() Function range()函数
	break and continue Statements, and else Clauses on Loops break 和 continue 语句, 以及 循环中的 else 子句
	pass Statements pass 语句
	Defining Functions 定义函数
	More on Defining Functions 深入函数定义

	Data Structures 数据结构
	More on Lists 深入链表
	The del statement del语句
	Tuples and Sequences 元组和序列
	Sets 集合
	Dictionaries 字典
	Looping Techniques 循环技术
	More on Conditions 深入条件控制
	Comparing Sequences and Other Types 不同序列类型的比较

	Modules 模块
	More on Modules 深入模块
	Standard Modules 标准模块
	The dir() Function dir() 函数
	Packages 包

	Input and Output 输入和输出
	Fancier Output Formatting 设计输出格式
	Reading and Writing Files 读写文件

	Errors and Exceptions 错误和异常
	Syntax Errors 语法错误
	Exceptions 异常
	Handling Exceptions 处理异常
	Raising Exceptions 抛出异常
	User-defined Exceptions 用户自定义异常
	Defining Clean-up Actions 定义清理行为
	Predefined Clean-up Actions 预定义清理行为

	Classes
	A Word About Terminology 术语漫谈
	Python Scopes and Name Spaces 作用域和命名空间
	A First Look at Classes 初识类
	Random Remarks 一些说明
	Inheritance 继承
	Private Variables 私有变量
	Odds and Ends 补充
	Exceptions Are Classes Too 异常也是类
	Iterators 迭代器
	Generators 生成器
	Generator Expressions 生成器表达式

	Brief Tour of the Standard Library 标准库概览
	Operating System Interface 操作系统接口
	File Wildcards 文件通配符
	Command Line Arguments 命令行参数
	Error Output Redirection and Program Termination 错误输出重定向和程序终止
	String Pattern Matching 字符串正则匹配
	Mathematics 数学
	Internet Access 互联网访问
	Dates and Times 日期和时间
	Data Compression 数据压缩
	Performance Measurement 性能度量
	Quality Control 质量控制
	Batteries Included

	Brief Tour of the Standard Library -- Part II 标准库概览
	Output Formatting 格式化输出
	Templating 模版
	Working with Binary Data Record Layouts 使用二进制记录层
	Multi-threading 多线程
	Logging 日志
	Weak References 弱引用
	Tools for Working with Lists 链表工具
	Decimal Floating Point Arithmetic 十进制浮点数算法

	What Now?
	Interactive Input Editing and History Substitution
	Line Editing
	History Substitution
	Key Bindings
	Commentary

	Floating Point Arithmetic: Issues and Limitations
	Representation Error

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Glossary
	Index

