

2

Go Machine Learning Projects

Eight projects demonstrating end-to-end machine learning
and predictive analytics applications in Go

3

Xuanyi Chew

BIRMINGHAM - MUMBAI

4

Go Machine Learning
Projects
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Nelson Morris
Content Development Editor: Snehal Kolte
Technical Editor: Dharmendra Yadav
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Jisha Chirayil
Production Coordinator: Deepika Naik

First published: November 2018

Production reference: 1301118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-340-1

www.packtpub.com

http://www.packtpub.com

5

mapt.io

Mapt is an online digital library that gives you full access to
over 5,000 books and videos, as well as industry leading tools
to help you plan your personal development and advance your
career. For more information, please visit our website.

https://mapt.io/

6

Why subscribe?
Spend less time learning and more time coding with
practical eBooks and Videos from over 4,000 industry
professionals

Improve your learning with Skill Plans built especially
for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

7

Packt.com
Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can
upgrade to the eBook version at www.packt.com and as a print book
customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on Packt books and eBooks.

http://www.packt.com
http://www.packt.com

8

Contributors

9

About the author
Xuanyi Chew is the Chief Data Scientist of a Sydney-based
logistics startup. He is the primary author of Gorgonia, an
open source deep learning package for Go. He's been
practicing machine learning for the past 12 years, applying
them typically to help startups. His goal in life is to make an
artificial general intelligence a reality. He enjoys learning new
things.

I would like to thank my incredible wife, SML for her patience . To my friends, Darrell
C., Gareth S., Makoto I. and Samaneh F. for providing me feedback and a bouncing
board for ideas. A great thank you to Barry J. for teaching me to write, and Daniel W.
for introducing me to the editors. Snehal K. and the various editors at Packt also
deserve a much vaunted thank you for all they went through to bring this book to
reality.

10

About the reviewer

Dr. Janani Selvaraj works as a senior research and
analytics consultant for a start-up in Trichy, Tamil Nadu. She
is a mathematics graduate with an interdisciplinary Ph.D in
environmental management. Her research interests include
mathematical and statistical modeling, spatial modeling, and
environmental epidemiology. She currently trains students in
data science and works as a consultant on several data-driven
projects in a variety of domains. She is an R programming
expert and founder of the R-Ladies Trichy group, a group that
promotes gender diversity.

11

What this book covers
Chapter 1, How To Solve All Machine Learning Problems,
introduces two classes of machine learning: regression and
classification. By the end of this chapter, you should feel
comfortable with the data structures used to build machine
learning programs. Most machine learning algorithms are
built based on the data structures introduced here. We are
then going to introduce Go machine learning and get you up
and running for further projects.

Chapter 2, Linear Regression – House Price Prediction, goes into
a regression analysis on a real-life dataset on house pricing.
We will start off by building the necessary data structures to
perform such analyses, along with initial exploration of the
dataset.

Chapter 3, Classification – Spam Email Detection, covers the
construction of a classification model in Go. The dataset is the
classic spam and ham email dataset in which our goal is to
build a model that classifies the emails as spam or ham. Then,
we will learn how to write the algorithms themselves, while
leveraging external libraries (such as Gonum) for data
structure support.

Chapter 4, Decomposing CO2 Trends Using Time Series
Analysis, introduces us to the subtleties of time series
analysis. Data in time series can often be decomposed for
descriptive purposes. This chapter shows us how to perform
such decompositions, and how to display them using Gonum's
plotting tools as well as gnuplot.

Chapter 5, Clean Up Your Personal Twitter Timeline by

12

Clustering Tweets, covers the clustering of tweets on Twitter.
We will be using two different clustering techniques, K-Means
and DBSCAN. For this chapter, we're going to rely on a
number of skills we built up in Chapter 2, Linear Regression –
House Price Prediction. We will also be using the same
libraries used in the aforementioned chaper. On top of that,
we will also be using the clusters library by Marcin Praski

Chapter 6, Neural Networks – MNIST Handwriting
Recognition, opens up the rich world of image recognition to
us. Images are difficult, because useful features are nonlinear
products of the input features. The aim of this project is to
introduce the various methods of handling high-dimensional
data; specifically, the use of PCA algorithms in the Gonum
library to whiten data.

Chapter 7, Convolutional Neural Networks – MNIST
Handwriting Recognition, explains how to use recent
advancements in deep learning to perform handwriting
recognition, by building a convolutional neural network using
Gorgonia tp achieve 99.87% accuracy.

Chapter 8, Basic Facial Detection, explores a basic
implementation of facial detection. By the end of this chapter,
we will have implemented a usable facial detection system
using GoCV and PIGO. This chapter teaches an important
lesson in learning to choose the correct algorithm for the job.

Chapter 9, Hot Dog or Not Hot Dog - Using External Services
culminates the book by showing how one may integrate
external services in machine learning projects, and what to
look out for when doing so.

Chapter 10, What Is Next, lists the further avenues for machine
learning in Go.

13

Packt is searching for
authors like you
If you're interested in becoming an author for Packt, please
visit authors.packtpub.com and apply today. We have worked with
thousands of developers and tech professionals, just like you,
to help them share their insight with the global tech
community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

14

Table of Contents
Title Page

Copyright and Credits

Go Machine Learning Projects

About Packt

Why subscribe?

Packt.com

Contributors

About the author

About the reviewer

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Conventions used

Get in touch

15

Reviews

1. How to Solve All Machine Learning Problems

What is a problem?

What is an algorithm?

What is machine learning?

Do you need machine learning?

The general problem solving process

What is a model?

What is a good model?

On writing and chapter organization

Why Go?

Quick start

Functions

Variables

Values

Types

Methods

Interfaces

Packages and imports

Let's Go!

2. Linear Regression - House Price Prediction

The project

Exploratory data analysis

16

Ingestion and indexing

Janitorial work

Encoding categorical data

Handling bad numbers

Final requirement

Writing the code

Further exploratory work

The conditional expectation functions

Skews

Multicollinearity

Standardization

Linear regression

The regression

Cross-validation

Running the regression

Discussion and further work

Summary

3. Classification - Spam Email Detection

The project

Exploratory data analysis

17

Tokenization

Normalizing and lemmatizing

Stopwords

Ingesting the data

Handling errors

The classifier

Naive Bayes

TF-IDF

Conditional probability

Features

Bayes' theorem

Implementating the classifier

Class

Alternative class design

Classifier part II

Putting it all together

Summary

4. Decomposing CO2 Trends Using Time Series Analysis

Exploratory data analysis

Downloading from non-HTTP sources

18

Handling non-standard data

Dealing with decimal dates

Plotting

Styling

Decomposition

STL

LOESS

The algorithm

Using STL

How to lie with statistics

More plotting

A primer on Gonum plots

The residuals plotter

Combining plots

Forecasting

Holt-Winters

Summary

References

5. Clean Up Your Personal Twitter Timeline by Clustering Tweets

The project

19

K-means

DBSCAN

Data acquisition

Exploratory data analysis

Data massage

The processor

Preprocessing a single word

Normalizing a string

Preprocessing stopwords

Preprocessing Twitter entities

Processing a single tweet

Clustering

Clustering with K-means

Clustering with DBSCAN

Clustering with DMMClust

Real data

The program

Tweaking the program

Tweaking distances

Tweaking the preprocessing step

Summary

6. Neural Networks - MNIST Handwriting Recognition

20

A neural network

Emulating a neural network

Linear algebra 101

Exploring activation functions

Learning

The project

Gorgonia

Getting the data

Acceptable format

From images to a matrix

What is a tensor?

From labels to one-hot vectors

Visualization

Preprocessing

Building a neural network

Feed forward

Handling errors with maybe

Explaining the feed forward function

Costs

Backpropagation

Training the neural network

21

Cross-validation

Summary

7. Convolutional Neural Networks - MNIST Handwriting Recognition

Everything you know about neurons is wrong

Neural networks – a redux

Gorgonia

Why?

Programming

What is a tensor? – part 2

All expressions are graphs

Describing a neural network

One-hot vector

The project

Getting the data

Other things from the previous chapter

CNNs

What are convolutions?

How Instagram filters work

Back to neural networks

Max-pooling

22

Dropout

Describing a CNN

Backpropagation

Running the neural network

Testing

Accuracy

Summary

8. Basic Facial Detection

What is a face?

Viola-Jones

PICO

A note on learning

GoCV

API

Pigo

Face detection program

Grabbing an image from the webcam

23

Displaying the image

Doodling on images

Face detection 1

Face detection 2

Putting it all together

Evaluating algorithms

Summary

9. Hot Dog or Not Hot Dog - Using External Services

MachineBox

What is MachineBox?

Signing in and up

Docker installation and setting up

Using MachineBox in Go

The project

Training

Reading from the Webcam

Prettifying the results

The results

What does this all mean?

Why MachineBox?

Summary

10. What's Next?

24

What should the reader focus on?

The practitioner

The researcher

The researcher, the practitioner, and their stakeholder

What did this book not cover?

Where can I learn more?

Thank you

Other Books You May Enjoy

Leave a review - let other readers know what you think

25

Preface
Go is the perfect language for machine learning. Its simple
syntax helps to clearly describe complex algorithms, but does
not obscure developers from understand how to run efficient
optimized code. This book will teach you how to implement
machine learning in Go to make programs that are easy to
deploy and code that is not only easy to understand and
debug, but that can also have its performance measured.

The book begins by guiding you in setting up your machine
learning environment with Go libraries and capabilities. You
will then plunge into regression analysis of a real-life house
pricing dataset and build a classification model in Go to
classify emails as spam or ham. Using Gonum, Gorgonia, and
STL, you will explore time series analysis, along with
decomposition and how to clean up your personal Twitter
timeline by clustering tweets. In addition to this, you will learn
how to recognize handwriting using neural networks and
convolutional neural networks, both of which are deep
learning techniques. Once you've covered all the techniques,
you'll learn how to choose the most appropriate machine
learning algorithms to use for your projects with the help of a
facial detection project.

By the end of this book, you will have developed a solid
machine learning mindset, a strong hold on the powerful Go
libraries, and a sound understanding of the practical
implementations of machine learning algorithms in real-world
projects.

26

Who this book is for
If you're a machine learning engineer, data science
professional, or Go programmer who wants to implement
machine learning in your real-world projects and make
smarter applications more easily, this book is for you.

27

To get the most out of
this book
Some coding experience in Golang and knowledge of basic
machine learning concepts will aid you in understanding the
concepts covered in this book.

28

Download the example
code files
You can download the example code files for this book from
your account at www.packt.com. If you purchased this book
elsewhere, you can visit www.packt.com/support and register to have
the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and

follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip
or extract the folder using the latest version of:

WinRAR/7-Zip for Windows

Zipeg/iZip/UnRarX for Mac

7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/
/github.com/PacktPublishing/Go-Machine-Learning-Projects. In case there's an
update to the code, it will be updated on the existing GitHub

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Go-Machine-Learning-Projects

29

repository.

We also have other code bundles from our rich catalog of
books and videos available at https://github.com/PacktPublishing/.
Check them out!

https://github.com/PacktPublishing/

30

Conventions used
There are a number of text conventions used throughout this
book.

CodeInText: Indicates code words in text, database table names,
folder names, filenames, file extensions, pathnames, dummy
URLs, user input, and Twitter handles. Here is an example:
"We sketched out a dummy Classifier type that does nothing."

A block of code is set as follows:

Word: she - true

Word: shan't - false

Word: be - false

Word: learning - true

Word: excessively. - true

Any command-line input or output is written as follows:

go get -u github.com/go-nlp/tfidf

Bold: Indicates a new term, an important word, or words that
you see on screen. For example, words in menus or dialog
boxes appear in the text like this. Here is an example: "Select
System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

31

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of
this book, mention the book title in the subject of your
message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the
accuracy of our content, mistakes do happen. If you have
found a mistake in this book, we would be grateful if you
would report this to us. Please visit www.packt.com/submit-errata,
selecting your book, clicking on the Errata Submission Form
link, and entering the details.

Piracy: If you come across any illegal copies of our works in
any form on the internet, we would be grateful if you would
provide us with the location address or website name. Please
contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is
a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit authors.packtp
ub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

32

Reviews
Please leave a review. Once you have read and used this book,
why not leave a review on the site that you purchased it from?
Potential readers can then see and use your unbiased opinion
to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

33

How to Solve All Machine
Learning Problems
Welcome to the book Go Machine Learning Projects.

This is a rather odd book. It's not a book about how machine
learning (ML) works. In fact, originally it was decided that
we will assume that the readers are familiar with the
machine learning (ML) algorithms I am to introduce in
these chapters. Doing so would yield a rather empty book, I
feared. If the reader knows the ML algorithm, what happens
next is to simply apply the ML algorithm in the correct context
of the problem! The ten or so chapters in this book would be
completed in under 30 pages—anyone who's written a grant
report for government agencies would have experience writing
such things.

So what is this book going to be about?

It's going to be about applying ML algorithms within a
specific, given context of the problem. These problems are
concrete, and are specified by me on a whim. But in order to
explore the avenues of the application of ML algorithms to
problems, the reader must first be familiar with algorithms
and the problems! So, this book has to strike a very delicate
balance between understanding the problem, and
understanding the specific algorithm used to solve the
problem.

But before we go too far, what is a problem? And what do I
mean when I say algorithm? And what's with this machine

34

learning business?

35

What is a problem?
In colloquial use, a problem is something to be overcome.
When people say they have money problems, the problem may
be overcome simply by having more money. When someone
has a mathematical problem, the problem may be overcome
by mathematics. The thing or process used to overcome a
problem is called a solution.

At this point, it may seem a little strange for me to define what
is a common word. Ah, but precision and clarity of mind are
required in order to solve problems with ML. You have to be
precise about what exactly you are trying to solve.

Problems can be broken down into subproblems. But at some
point, it no longer makes sense to break down those problems
any further. I put it to the reader that there are different types
of problems out there. So numerous are the types of problems
that it is not worthwhile enumerating them all. Nonetheless,
the urgency of a problem should be considered.

If you're building a photo organization tool (perhaps you are
planning to rival Google Photos or Facebook), then
recognizing faces in a photo is less urgent than knowing where
to store, and how to retrieve a photo. If you do not know how
to solve the latter, all the knowledge in the world to solve the
former would be wasted.

I argue that urgency, despite its subjectivity, is a good metric
to use when considering subproblems of the larger problem.
To use a set of more concrete examples, consider three
scenarios that all require some sort of ML solutions, but the
solutions required are of different urgency. These examples

36

are clearly made up examples, and have little or no bearing on
real life. Their entire purpose is to make a point.

First, consider a real estate intelligence business. The entire
survival of the business depends on being able to correctly
predict the prices of houses to be sold, although perhaps they
also make their money on some form of second market. To
them, the ML problem faced is urgent. They would have to
fully understand the ins and outs of the solution, otherwise
they risk going out of business. In the view of the popular
urgency/importance split, the ML problem can also be
considered important and urgent.

Second, consider an online supermarket. They would like to
know which groupings of products sell best together so they
can bundle them to appear more competitive. This is not the
core business activity, hence the ML problem faced is less
urgent than the previous example. Some knowledge about
how the solution works would be necessary. Imagine their
algorithm says that they should bundle diarrhea medication
with their home brand food products. They'd need to be able
to understand how the solution came to that.

Lastly, consider the aforementioned photo application. Facial
recognition is a nice bonus feature, but not the main feature.
Therefore, the ML problem is least urgent amongst the three.

Different urgencies lead to different requirements when it
comes to solving the problems.

37

What is an algorithm?
The previous section has been pretty diligent in the use of the
term algorithm. Throughout this book, the term is liberally
sprinkled, but is always used judiciously. But what is an
algorithm?

To answer that, well, we must first ask, what is a program? A
program is a series of steps to be performed by the computer.
An algorithm is a set of rules that will solve the problem. A ML
algorithm is hence a set of rules to solve a problem. They are
implemented as a program on a computer.

One of the most eye-opening moments in truly and deeply
understanding what exactly an algorithm is for me was an
experience I had about 15 years ago. I was staying over at a
friend's place. My friend had a seven year old child, and the
friend was exasperated at trying to get her child to learn
programming as her child had been too stubborn to learn the
discipline of syntax. The root cause, I surmised, was that the
child had not understood the idea of an algorithm. So the
following morning, we tasked the child to make his own
breakfast. Except he wasn't to make his own breakfast. He was
to write down a series of steps that his mother was to follow to
the letter.

The breakfast was simple—a bowl of cornflakes in milk.
Nonetheless, it took the child some eleven attempts to get a
bowl of cereal. It ended in tears and plenty of milk and cereal
on the countertop, but it was a lesson well learned for the
child.

This may seem like wanton child abuse. but it served me well

38

too. In particular, the child said to his mother and me, in
paraphrase, But you already know how to make cereal; why
do you need instructions to do so? His mum responded, think
of this as teaching me how to to make computer games. Here
we have a meta notion of an algorithm. The child giving
instructions on how to make cereal is teaching the child how
to program; is itself an algorithm!

A ML algorithm can refer to the algorithm that is learned, or
the algorithm that teaches the machine to use the correct
algorithm. For the most part of this book, we shall refer to the
latter, but it's quite useful to think of the former as well, if only
as a mental exercise of sorts. For the most parts since Turing,
we can substitute algorithm with machine.

Take some time to go through these sentences after reading
the following section. It will help in clarifying what I mean
upon a second read.

39

What is machine
learning?
So what then is ML? As the word may hint, it's the ML to do
something. Machines cannot learn the same way as humans
can, but they can definitely emulate some parts of human
learning. But what are they supposed to learn? Different
algorithms learn different things, but the shared themes are
that the machines learn a program. Or to put in less specific
terms, the machine learns to do the correct thing.

What then is the correct thing? Not wanting to open a
philosophical can of worms, the correct thing is what we, as
human programmers of the computer, define as the correct
thing.

There are multiple classification schemes of ML systems, but
amongst the most common classification schemes, is one that
splits ML into two types: supervised learning and
unsupervised learning. Throughout this book we will see
examples of both, but it's my opinion that such forms of
classification are squarely in the good to know but not
operationally important area of the brain. I say so because
outside of a few well-known algorithms, unsupervised
learning is still very much under active research. Supervised
learning algorithms are too, but have been used in industry for
longer than the unsupervised algorithms. That is not to say
that unsupervised learning is not of value—a few have escaped
the ivory towers of academia and have proven to be quite
useful. We shall explore K-means and k-Nearest
Neighbors (KNN) in one of the chapters.

40

Let's suppose for now we have a machine learning algorithm.
The algorithm is a black box - we don't know what goes on
inside. We feed it some data. And through its internal
mechanisms, it produces an output. The output may not be
correct. So it checks for whether the output is correct or not. If
the output is not correct, it changes its internal mechanism,
and tries again and again until the output is correct. This is
how machine learning algorithms work in general. This is
called training.

There are notions of what "correct" means of course. In
supervised learning situations, we, the humans provide the
machine with examples of correct data. In unsupervised
learning situations, the notion of correctness relies on other
metrics like distances between values. Each algorithm has its
own specifics, but in general machine learning algorithms are
as described.

41

Do you need machine
learning?
Perhaps the most surprising question to ask, is whether you
need machine learning to solve your problem. There is after
all, a good reason why this section is the fourth in the chapter
—we must understand what exactly is a problem is; and
understand what an algorithm is before we can raise the
question: do you need machine learning?

The first question to ask is of course: do you have a problem
you need to solve? I assume the answer is yes, because we live
in the world and are part of the world. Even ascetics have
problems they need solved. But perhaps the question should
be more specific: do you have a problem that can be solved
with machine learning?

I've consulted a fair bit, and in my early days of consulting, I'd
eagerly say yes to most enquiries. Ah, the things one does
when one is young and inexperienced. The problems would
often show up after I said yes. It turns out many of these
consulting enquiries would be better served by having a more
thorough understanding of the business domain and a more
thorough understanding of computer science in general.

A common variant of a problem that is brought to me often
requires information retrieval solutions, not machine learning
solutions. Consider the following request I received several
years ago:

Hi Xuanyi,
I am XXXX. We met at YYYY meetup a few months ago. My company is currently

42

building a machine learning system that extracts relationships between entities.
Wondering if you may be interested to catch up for coffee?

Naturally, this piqued my interest—relationship extraction is a
particularly challenging task in machine learning. I was young,
and ever so eager to get my hands on tough problems. So I sat
down with the company, and we worked out what was needed
based on surface information. I suggested several models, all
of which were greeted with enthusiasm. We finally settled on
an SVM-based model. Then I got to work.

The first step in any machine learning project is to collect
data. So I did. Much to my surprise, the data was already
neatly classified, and entities already identified. Further, the
entities have a static, unchanging relationship. One type of
entity would have a permanent relationship with another type
of entity. What was the machine learning problem?

I brought this up after one and a half month's worth of data
gathering. What was going on? We have clean data, we have
clean relationships. All new data had clean relationships.
Where is the need for machine learning?

It later emerged that the data came from manual data input,
which was at the time required by law. The entity
relationships were defined fairly strictly. The only data
requirement they really needed was a cleaned up database
entity-relationship diagram. Because their database structure
was so convoluted, they could not really see that all they
needed to do was to define a foreign-key relationship to
enforce the relationship. When I had requested the data, the
data had came from individual SQL queries. There was no
need for machine learning!

To their DBA's credit, that was what their DBA had been
saying all along.

This taught me a lesson: Always find out if someone really
needs machine learning solutions before spending time

43

working on it.

I've since settled on a very easy way of determining if someone
needs machine learning. These are my rules of thumb

1. Can the problem in this form: "Given X, I want to
predict Y"

2. A what-question is generally suspect. A what question
looks like this: "I want to know what is our conversion
rate for XYZ product"

44

The general problem
solving process
Only if the general rules of thumbs are fulfilled then will I
engage to further. The general problem solving process goes as
follows for me:

1. Identify clearly the problems.
2. Translate the problems into a more concrete

statement.
3. Gather data
4. Perform exploratory data analysis
5. Determine the correct machine learning solution to use
6. Build a model.
7. Train the model.
8. Test the model.

Throughout the chapters in this book, the pattern above will
be followed. The exploratory data analysis sections will be only
done for the first few chapters. It's implicit that those would
have been done in the later chapters.

I have attempted to be clear in the section headings on what
exactly are we trying to solve, but writing is a difficult task, so
I may miss some.

45

What is a model?
All models are wrong; but some are useful.

Now it would be very remarkable if any system existing in the real world could
be exactly represented by any simple model. However, cunningly chosen parsimonious
models often do provide remarkably useful approximations. For example, the law

 relating pressure , volume and temperature of an "ideal" gas via a
constant R is not exactly true for any real gas, but it frequently provides a useful
approximation and furthermore its structure is informative since it springs from a
physical view of the behavior of gas molecules.

For such a model there is no need to ask the question "Is the model true?". If "truth" is to
be the "whole truth" the answer must be "No". The only question of interest is "Is the
model illuminating and useful?".

- George Box (1978)

Model train are a fairly common hobby, despite being
lampooned by the likes of The Big Bang Theory. A model train
is not a real train. For one, the sizes are different. Model trains
do not work exactly the same way a real train does. There are
gradations of model trains, each being more similar to actual
trains than the previous.

A model is in that sense a representation of reality. What do
we represent it with? By and large, numbers. A model is a
bunch of numbers that describes reality, and a bit more.

Every time I try to explain what a model is I inevitably get
responses along the lines of "You can't just reduce us to a
bunch of numbers!". So what do I mean "numbers"?

Consider the following right angle triangle:

46

How do we describe all right angle triangles? We might say
something like this:

This says that the sum of all angles in a right angle adds up to
180 degrees, and there exists an angle that is 90 degrees. This
is sufficient to describe all right angle triangles in Cartesian
space.

But is the description the triangle itself? It is not. This issue
has plagued philosophers ever since the days of Aristotle. We
shall not enter into a philosophical discussion for such a
discussion will only serve to prolong the agony of this chapter.

So for our purposes in this chapter, we'll say that a model is
the values that describe reality, and the algorithm that
produces those values. These values are typically numbers,
though they may be of other types as well.

47

What is a good model?
A model is a bunch of values that describe the world,
alongside the program that produces these values. That much,
we have concluded from the previous section. Now we have to
pass some value judgments on models - whether a model is
good or bad.

A good model needs to describe the world accurately. This is
said in the most generic way possible. Described thus, this
statement about a good model encompasses many notions.
We shall have to make this abstract idea a bit more concrete to
proceed.

A machine learning algorithm is trained on a bunch of data.
To the machine, this bunch of data is the world. But to us, the
data that we feed the machine in for training is not the world.
To us humans, there is much more to the world than what the
machine may know about. So when I say "a good model needs
to describe the world accurately", there are two senses to the
word "world" that applies - the world as the machine knows,
and the world as we know it.

The machine has only seen portions of the world as we know
it. There are parts of the world the machine has not seen. So it
is then a good machine learning model when it is able to
provide the correct outputs for inputs it has not seen yet.

As a concrete example, let's once again suppose that we have a
machine learning algorithm that determines if an image is that
of a hot dog or not. We feed the model images of hot dogs and
hamburgers. To the machine, the world are simply images of
hot dogs and hamburgers. What happens when we pass in as

48

input, an image of vegetables? A good model would be able to
generalize and say it's not a hot dog. A poor model would
simply crash.

And thus with this analogy, we have defined a good model to
be one that generalizes well to unknown situations.

Often, as part of the process of building machine learning
systems, we would want to put this notion to test. So we would
have to split our dataset into testing and training datasets. The
machine would be trained on the training dataset, and to test
how good the model is once the training has completed, we
will then feed in the testing dataset to the machine. It's
assumed of course that the machine has never seen the testing
dataset. A good machine learning model hence would be able
to generate the correct output for the testing dataset, despite
never having seen it.

49

On writing and chapter
organization
A note on the writing in this book. As you may already have
guessed, I have decided to settle upon a more conversational
tone. I find this tone to be friendlier to the reader who may be
intimidated by machine algorithms. I am also, if you have not
yet noticed, quite opinionated in my writing. I strive to make
clear, through my writing, what is and what ought to be.
Application of Hume's fork is at the discretion at the reader.
But as a quick guide, when talking about algorithms and how
they work, they are is statements. When talking about what
should be done, and organization of code, they are ought
statements.

There are two general patterns in the design of the chapters of
this book. First, the problems get harder as the chapters go on.
Second, one may optionally want to mentally divide the
chapters into three different parts. Part 1—Chapters 2, Linear
Regression - House Price Prediction, Chapter 3, Classification -
Spam Email Detection, Chapter 4, Decomposing CO2 Trends
Using Time Series Analysis, Chapter 7, Convolutional Neural
Networks - MNIST Handwriting Recognition, Chapter 8, Basic
Facial Detection) correspond to readers who have an urgent
ML problem. Part 2—Chapters 5, Clean Up Your Personal
Twitter Timeline by Clustering Tweets, Chapter 9, Hot Dog or
Not Hot Dog - Using External Services, Chapter 6, Neural
Networks; MNIST Handwriting Recognition, Chapter 7,
Convolutional Neural Networks - MNIST Handwriting
Recognition, Chapter 8, Basic Facial Detection) are for those who
have ML problems akin to the second example. Part 3, the last

50

two chapters, are for people whose machine learning problems
are not as urgent, but still require a solution.

Up to Chapter 8, Basic Facial Detection, for each chapter there
will typically be one or two sections dedicated to the
explanation of the algorithm itself. I strongly believe that one
cannot write any meaningful program without at least a basic
understanding of the algorithms they are using. Sure, you may
use an algorithm that has been provided by someone else,
but, without a proper understanding, it's meaningless.
Sometimes meaningless programs may produce results, just
as sometimes an elephant may appear to know how to do
arithmetic, or a pet dog may appear to do a sophisticated feat,
like speak.

This also means that I may sound rather dismissive of some
ideas. For example, I am dismissive of using ML algorithms to
predict stock prices. I do not believe that doing so will be a
productive endeavor, because of an understanding of the basic
processes that generate prices in a stock market, and the
confounding effects of time.

Time, however, will tell if I am right or wrong. It may well be
that one day someone will invent a ML algorithm that will
work perfectly well on dynamical systems, but not right now,
right here. We are at the dawn of a new era of computation,
and we must strive to understand things as best as we can.
Often you can learn quite a bit from history. Therefore, I also
strive to insert important historical anecdotes on how certain
things came to be. These are by no means a comprehensive
survey. In fact, it is done without much regularity. However, I
do rather hope that it adds to the flavor of the book.

51

Why Go?
This book is a book on ML using Go. Go is a rather
opinionated programming language. There's the Go way, or no
other way at all. This may sound rather fascist, but it has
resulted in a very enjoyable programming experience. It also
makes working in teams rather efficient.

Further, Go is a fairly efficient language when compared to
Python. I have moved on almost exclusively to using Go to do
my ML and data science work.

Go also has the benefit of working well cross-platform. At
work, developers may choose to work on different operating
systems. Go works well across all of them. The programs that
are written in Go can be trivially cross-compiled for other
platforms. This makes deployment a lot easier. There's no
unnecessary mucking around with Docker or Kubernetes.

Are there drawbacks when using Go for ML? Only as a library
author. In general, using Go ML libraries is painless. But in
order for it to be painless, you must let go of any previous
ways you programmed.

52

Quick start
First install Go, which can be found at https://golang.org. It
provides comprehensive guides to Go. And now, quick start.

https://golang.org

53

Functions
Functions are the main way that anything is computed in Go.

This is a function:

func addInt(a, b int) int { return a + b }

We call func addInt(a, b int) int, which is the function
signature. The function signature is composed of the
function name, parameters, and return type(s).

The name of the function is addInt. Note the formatting being
used. The function name is in camelCase—this is the preferred
casing of names in Go. The first letter of any name, when
capitalized, like AddInt indicates that it should be exported. By
and large in this book we shan't worry about exported or
unexported names, as we will be mostly using functions. But if
you are writing a package, then it matters. Exported names are
available from outside a package.

Next, note that a and b are parameters, and both have the type
int. We'll discuss types in a bit, but the same function can also
be written as:

func addInt(a int, b int) int { return a + b }

Following that, this is what the function returns. This function
addInt returns an int. This means when a function is called
correctly, like so:

54

 z := addInt(1, 2)

z will have a type int.

After the return type is defined, {...} denotes the body. When
{...} is written in this book, it means the content of the
function body is not as important for the discussion at hand.
Some parts of the book may have snippets of function bodies,
but without the signature func foo(...). Again those snippets are
the snippets under discussion. It's expected that the reader
will piece together the function from context in the book.

A Go function may return multiple results. The function
signature looks something like this:

 func divUint(a, b uint) (uint, error) { ... }

 func divUint(a, b uint) (retVal uint, err error) { ... }

Again, the difference is mainly in naming the return values. In
the second example, the return values are named retVal and err
respectively. retVal is of type uint and err is of type error.

55

Variables
This is a variable declaration:

var a int

It says a is an int. That means a can contain any value that has
the type int. Typical int would be like 0, 1, 2, and so on and so
forth. It may seem odd to read the previous sentence, but
typically is used correctly. All values of type int are typically
int.

This is a variable declaration, followed by putting a value into
the variable:

s := "Hello World"

Here, we're saying, define s as a string, and let the value be
"Hello World". The := syntax can only be used within a function
body. The main reason for this is not to cause the programmer
to have to type var s string = "Hello World".

A note about the use of variables: variables in Go should be
thought of as buckets with a name on them, in that they hold
values. The names are important insofar as they inform the
readers about the values they are supposed to hold. However,
names do not necessarily have to cross barriers. I frequently
name my return values with retVal, but give it a different name
elsewhere. A concrete example is shown:

56

 func foo(...) (retVal int) { ... return retVal }

 func main() {

 something := foo()

 ...

 }

I have taught programming and ML for a number of years
now, and I believe that this is a hump every programmer has
got to get over. Frequently students or junior team members
may get confused by the difference in naming. They would
rather prefer something like this:

 func foo(...) (something int) { ... return something }

 func main() {

 something := foo()

 ...

 }

This is fine. However again, speaking strictly from experience,
this tends to dampen the ability to think abstractly, which is a
useful skill to have, especially in ML. My advice is, get used to
using different names, it makes you think more abstractly.

In particular, names do not persist past what my friend James
Koppel calls an abstraction barrier. What is an abstraction
barrier? A function is an abstraction barrier. Whatever
happens inside the function body, happens inside the function
body and cannot be accessed by other things in the language.
Therefore if you name a value fooBar inside the function body,
the meaning of fooBar is only valid within the function.

Later we will see another form of abstraction barrier—the
package.

57

Values
A value is what a program deals with. If you wrote a calculator
program, then the values of the program are numbers. If you
wrote a text search program, then the values are strings.

The programs we deal with nowadays as programmers are
much more complicated than calculators. We deal with
different types of values, ranging from number types (int,
float64, and so on) to text (string).

A variable holds a value:

var a int = 1

The preceding line indicates that a is a variable that holds an
int with the value 1. We've seen previous examples with the
"Hello World" string.

58

Types
Like all major programming languages (yes, including Python
and JavaScript), values in Go are typed. Unlike Python or
JavaScript however, Go's functions and variables are also
typed, and strongly so. What this means is that the following
code will cause the program not to compile:

var a int

a = "Hello World"

This sort of behavior is known outside the academic world as
strongly-typed. Within academic circles, strongly-typed is
generally meaningless.

Go allows programmers to define their own types too:

 type email string

Here, we're defining a new type email. The underlying kind of
data is a string.

Why would you want to do this? Consider this function:

 func emailSomeone(address, person string) { ... }

If both are string, it would be very easy to make a mistake—we
might accidentally do something like this:

59

var address, person string

address = "John Smith"

person = "john@smith.com"

emailSomeone(address, person)

In fact, you could even do this: emailSomeone(person, address) and
the program would still compile correctly!

Imagine, however, if emailSomeone is defined thus:

func emailSomeone(address email, person string) {...}

Then the following will fail to compile:

var address email

var person string

person = "John Smith"

address = "john@smith.com"

emailSomeone(person, address)

This is a good thing—it prevents bad things from happening.
No more shall be said on this matter.

Go also allows programmers to define their own complex
types:

type Record struct {

 Name string

 Age int

 }

Here, we defined a new type called Record. It's a struct that
contains two values: Name of type string and Age of type int.

What is a struct? Simply put, a struct is a data structure. The

60

Name and Age in Record are called the fields of the struct.

A struct, if you come from Python, is equivalent to a tuple, but
acts as a NamedTuple, if you are familiar with those. The closest
equivalent in JavaScript is that it's an object. Likewise the
closest equivalent in Java is that it's a plain old Java object.
The closest equivalent in C# would be a plain old CLR object.
In C++, the equivalent would be plain old data.

Note my careful use of the words closest equivalent and
equivalent. The reason why I have delayed introduction to
struct is because in most modern languages that the reader is
likely to come from, it may have some form of Java-esque
object orientation. A struct is not a class. It's just a definition of
how data is arranged in the CPU. Hence the comparison with
Python's tuples instead of Python's classes, or even Python's
new data classes.

Given a value that is of type Record, one might want to extract
its inner data. This can be done as so:

 r := Record {

 Name: "John Smith",

 Age: 20,

 }

 r.Name

The snippet here showcases a few things:

How to write a struct—kinded value—simply write the
name of the type, and then fill in the fields.

How to read the fields of a struct—the .Name syntax is
used.

Throughout this book, I shall use .FIELDNAME as a notation to get

61

the field name of a particular data structure. It is expected that
the reader is able to understand which data structure I am
talking about from context. Occasionally I may use a full term,
like r.Name, to make it clear which fields I am talking about.

62

Methods
Let's say we wrote these functions, and we have defined email
as before:

 type email string

 func check(a email) { ... }

 func send(a email, msg string) { ... }

Observe that email is always the first type in the function
parameters.

Calling the functions look something like this:

e := "john@smith.com"

check(e)

send(e, "Hello World")

We may want to make that into a method of the email type. We
can do so as follows:

type email string

func (e email) check() { ... }

func (e email) send(msg string) { ... }

(e email) is called the receiver of the method.

Having defined the methods thus, we may then proceed to call
them:

63

e := "john@smith.com"

e.check()

e.send("Hello World")

Observe the difference between the functions and methods.
check(e) becomes e.check(). send(e, "Hello World") becomes
e.send("Hello World"). What's the difference other than syntactic
difference? The answer is, not much.

A method in Go is exactly the same as a function in Go, with
the receiver of the method as the first parameter of the
function. It is unlike methods of classes in object-oriented
programming languages.

So why bother with methods? For one, it solves the expression
problem quite neatly. To see how, we'll look at the feature of
Go that ties everything together nicely: interfaces.

64

Interfaces
An interface is a set of methods. We can define an interface by
listing out the methods it's expected to support. For example,
consider the following interface:

var a interface {

 check()

 }

Here we are defining a to be a variable that has the type
interface{ check() }. What on earth does that mean?

It means that you can put any value into a, as long as the value
has a type that has a method called check().

Why is this valuable? It's valuable when considering multiple
types that do similar things. Consider the following:

 type complicatedEmail struct {...}

 func (e complicatedEmail) check() {...}

 func (e complicatedEmail) send(a string) {...}

 type simpleEmail string

 func (e simpleEmail) check() {...}

 func (e simpleEmail) send(a string) {...}

Now we want to write a function do, which does two things:

Check that an email address is correct

65

Send "Hello World" to the email

You would need two do functions:

func doC(a complicatedEmail) {

 a.check()

 a.send("Hello World")

 }

func doS(a simpleEmail) {

 a.check()

 a.send("Hello World")

 }

Instead, if that's all the bodies of the functions are, we may opt
to do this:

func do(a interface{

 check()

 send(a string)

 }) {

 a.check()

 a.send("Hello World")

 }

This is quite hard to read. So let's give the interface a name:

type checkSender interface{

 check()

 send(a string)

 }

Then we can simply redefine do to be the following:

func do(a checkSender) {

 a.check()

 a.send("Hello World")

66

 }

A note on naming interfaces in Go. It is customary to name
interfaces with a -er suffix. If a type implements check(), then
the interface name should be called checker. This encourages
the interfaces to be small. An interface should only define a
small number of methods—larger interfaces are signs of poor
program design.

67

Packages and imports
Finally, we come to the concept of packages and imports. For
the majority of the book, the projects described live in
something called a main package. The main package is a special
package. Compiling a main package will yield an executable file
that you can run.

Having said that, it's also often a good idea to organize your
code into multiple packages. Packages are a form of
abstraction barrier that we discussed previously with regards
to variables and names. Exported names are accessible from
outside the package. Exported fields of structs are also
accessible from outside the package.

To import a package, you need to invoke an import statement
at the top of the file:

package main

import "PACKAGE LOCATION"

Throughout this book I will be explicit in what to import,
especially with external libraries that cannot be found in the
Go standard library. We will be using a number of those, so I
will be explicit.

Go enforces code hygiene. If you import a package and don't
use it, your program will not compile. Again, this is a good
thing as it makes it less likely to confuse yourself at a later
point in time. I personally use a tool called goimports to manage
my imports for me. Upon saving my file, goimports adds the
import statements for me, and removes any unused packages

68

from my import statements.

To install goimports, run the following command in your
Terminal:

go get golang.org/x/tools/cmd/goimports

69

Let's Go!
In this chapter we've covered what a problem is and how to
model a problem as a machine learning problem. Then we
learned the basics of using Go. In the next chapter we will dive
into our first problem: linear regression.

I highly encourage you to practice some Go beforehand. But if
you already know how to use Go, well, let's Go!

70

Linear Regression -
House Price Prediction
Linear regression is one of the world's oldest machine learning
concepts. Invented in the early nineteenth century, it is still
one of the more vulnerable methods of understanding the
relationship between input and output.

The ideas behind linear regression is familiar to us all. We feel
that some things are correlated with one another. Sometimes
they are causal in nature. There exists a very fine line between
correlation and causation. For example, summer sees more
sales in ice creams and cold beverages, while winter sees more
sales in hot cocoa and coffee. We could say that the seasons
themselves cause the amount of sales—they're causal in
nature. But are they really?

Without further analysis, the best thing we can say is that they
are correlated with one another. The phenomenon of summer
is connected to the phenomenon of greater-than the-rest-of-
the-year sales of cold drinks and ice cream. The phenomenon
of winter is connected, somehow, to the phenomenon of
greater-than-the-rest-of-the-year sales of hot beverages.

Understanding the relationship between things is what linear
regression, at its core, is all about. There can be many lenses
through which linear regression may be viewed, but we will be
viewing it through a machine learning lens. That is to say, we
wish to build a machine learning model that will accurately
predict the results, given some input.

71

The desire to use correlation for predictive purposes was
indeed the very reason why linear regression was invented in
the first place. Francis Galton, who was coincidentally Charles
Darwin's cousin, hailed from an upper-class family whose
lineage included doctors. He had given up his medical studies
after a nervous breakdown and began travelling the world as a
geologist—this was back when being a geologist was the
coolest job (much like being a data scientist today)—however,
it was said that Galton hadn't the mettle of Darwin, and soon
he gave up the idea of travelling around the world, soured by
experiences in Africa. Having inherited his wealth after his
father died, Galton dabbled in all things that tickled his fancy,
including biology.

The publication of his cousin's magnum opus, On the Origin
of Species, made Galton double down on his pursuits in
biology and ultimately, eugenics. Galton experimented, rather
coincidentally in the same manner as Mendel, on peas. He had
wanted to predict the characteristics of the offspring plants,
when only information about the parent plants' characteristics
were available. He realized that the offspring was often
somewhere in between the characteristics of the parent plants.
When Galton realized that he could derive a mathematical
equation that represented inheritance using elliptical curve
fitting, he invented regression.

The reasoning behind regression was simple: there was a
driving force—a signal of sorts—that led the characteristics of
the offspring plants to go towards the curve he had fitted. If
that was the case, it meant that the driving force obeyed some
mathematical law. And if it did obey the mathematical laws,
then it could be used for prediction, Galton reasoned. To
further refine his ideas, he sought the help of the
mathematician Karl Pearson.

It took Galton and Pearson a few more attempts to refine the
concept and quantify the trends. But ultimately they adopted a
least-squares methodology for fitting the curves.

72

Even to this day, when linear regression is mentioned, it can
be safely assumed that a least- squares model will be used,
which is precisely what we will be doing.

We will be performing exploratory data analysis—this will
allow us to understand the data better. Along the way, we will
build and use the data structures necessary for a machine
learning project. We will rely heavily on Gonum's plotting
libraries for that. After that, we will run a linear regression,
interpret the results, and identify the strengths and
weaknesses of this technique of machine learning.

73

The project
What we want to do is to create a model of house prices. We
will be using this open source dataset of house prices (https://www
.kaggle.com/c/house-prices-advanced-regression-techniques/data) for our linear
regression model. Specifically, the dataset is the data of price
of houses that have been sold in the Ames area in
Massachusetts, and their associated features.

As with any machine learning project, we start by asking the
most basic of questions: what do we want to predict? In this
case, I've already indicated that we're going to be predicting
house prices, therefore all the other data will be used as
signals to predict house prices. In statistical parlance, we call
house prices the dependent variable and the other fields the
independent variables.

In the following sections, we will build a graph of dependent
logical conditions, then with that as a plan, write a program
that finds a linear regression model.

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

74

Exploratory data
analysis
Exploratory data analysis is part and parcel of any model-
building process. Understanding the algorithm at play, too, is
important. Given that this chapter revolves around linear
regression, it might be worth it to explore the data through the
lens of understanding linear regression.

But first, let's look at the data. One of the first things I
recommend any budding data scientist keen on machine
learning to do is to explore the data, or a subset of it, to get a
feel for it. I usually do it in a spreadsheet application such as
Excel or Google Sheets. I then try to understand, in human
ways, the meaning of the data.

This dataset comes with a description of fields, which I can't
enumerate in full here. A snapshot, however, would be
illuminating for the rest of the discussion in this chapter:

SalePrice: The property's sale price in dollars. This is the
dependent variable that we're trying to predict.

MSSubClass: The building class.

MSZoning: The general zoning classification.

LotFrontage: The linear feet of the street connected to the
property.

LotArea: The lot size in square feet.

75

There can be multiple ways of understanding linear
regression. However, one of my favorite ways of
understanding linear regression directly ties into exploratory
data analysis. Specifically, we're interested in looking at linear
regression through the lens of the conditional expectation
functions (CEFs) of the independent variable.

The conditional expectation function of a variable is simply
the expected value of the variable, dependent upon the value
of another variable. This seems like a rather dense subject to
get through, so I shall offer three different views of the same
topic in an attempt to clarify:

Statistical point of view: The conditional
expectation function of a dependent variable given a

vector of covariates is simply the expected value of

(the average) when is fixed to .

Programming point of view in pseudo-SQL:
select avg(Y) from dataset where X = 'Xi'. When conditioning
upon multiple conditions, it's simply this: select avg(Y)
from dataset where X1 = 'Xik' and X2 = 'Xjl'.

Concrete example: What are the expected house
prices if one of the independent variables—say,
MSZoning—is RL? The expected house price is the
population average, which translates to: of all the
houses in Boston, what is the average price of house
sold whose zoning type is RL?

As it stands, this is a pretty bastardized version of what the
CEF is—there are some subtleties involved in the definition of
the CEF, but that is not within the scope of this book, so we
shall leave that for later. For now, this rough understanding of

76

CEF is enough to get us started with our exploratory data
analysis.

The programming point of view in pseudo-SQL is useful
because it informs us about what we would need so that we
can quickly calculate the aggregate of data. We would need to
create indices. Because our dataset is small, we can be
relatively blasé about the data structures used to index the
data.

77

Ingestion and indexing
Perhaps the best way to index the data is to do it at the time of
ingestion. We will use the encoding/csv package found in the Go
standard library to ingest the data and build the index.

Before we dive into the code, let's look at the notion of an
index, and how one might be built. While indexes are
extremely commonly used in databases, they are applicable in
any production system as well. The purpose of the index is to
allow us to access data quickly.

We want to build an index that will allow us to know at any
time which row(s) has the value. In systems with much larger
datasets, a more complicated index structure (such as a B-
Tree) might be used. In the case of this dataset, however, a
map-based index would be more than sufficient.

This is what our index looks like: []map[string][]int—it's a slice of
maps. The first slice is indexed by the columns—meaning if we
want column 0, we simply get index[0], and get map[string][]int in
return. The map tells us what values are in the columns (the
key of the map), and what rows contain those values (the value
of the map).

Now, the question turns to: how do you know which variables
associate with which column? A more traditional answer
would be to have something like map[string]int, where the key
represents the variable name and the value represents the
column number. While that is a valid strategy, I prefer to
have []string as the associative map between the index and
column name. Searching is O(N), but for the most part, if you
have named variables, N is small. In future chapters, we shall

78

see much much larger Ns.

So, we return the index of column names as []string or, in the
case of reading CSVs, it's simply the first row, as shown in the
following code snippet:

// ingest is a function that ingests the file and outputs the header, data, and index.

func ingest(f io.Reader) (header []string, data [][]string, indices []map[string][]int, err error) {

 r := csv.NewReader(f)

 // handle header

 if header, err = r.Read(); err != nil {

 return

 }

 indices = make([]map[string][]int, len(header))

 var rowCount, colCount int = 0, len(header)

 for rec, err := r.Read(); err == nil; rec, err = r.Read() {

 if len(rec) != colCount {

 return nil, nil, nil, errors.Errorf("Expected Columns: %d. Got %d columns in row %d", colCount, len(rec), rowCount)

 }

 data = append(data, rec)

 for j, val := range rec {

 if indices[j] == nil {

 indices[j] = make(map[string][]int)

 }

 indices[j][val] = append(indices[j][val], rowCount)

 }

 rowCount++

 }

 return

}

Reading this code snippet, a good programmer would have
alarm bells going off in their head. Why is everything a string?
The answer to that is quite simple: we'll convert the types
later. All we need right now is some basic count-based
statistics for exploratory data analysis.

The key is in the indexes that are returned by the function.
What we have is a column count of unique values. This is how
to count them:

79

// cardinality counts the number of unique values in a column.

// This assumes that the index i of indices represents a column.

func cardinality(indices []map[string][]int) []int {

 retVal := make([]int, len(indices))

 for i, m := range indices {

 retVal[i] = len(m)

 }

 return retVal

}

With this, we can then analyze the cardinality of each
individual column—that is how many distinct values there are.
If there are as many distinct values as there are rows in each
column, then we can be quite sure that the column is not
categorical. Or, if we know that the column is categorical, and
there are as many distinct values as there are rows, then we
know for sure that the column cannot be used in a linear
regression.

Our main function now looks like this:

func main() {

 f, err := os.Open("train.csv")

 mHandleErr(err)

 hdr, data, indices, err := ingest(f)

 mHandleErr(err)

 c := cardinality(indices)

 fmt.Printf("Original Data: \nRows: %d, Cols: %d\n========\n", len(data), len(hdr))

 c := cardinality(indices)

 for i, h := range hdr {

 fmt.Printf("%v: %v\n", h, c[i])

 }

 fmt.Println("")

}

For completeness, this is the definition of mHandleError:

// mHandleErr is the error handler for the main function.

80

// If an error happens within the main function, it is not

// unexpected for a fatal error to be logged and for the program to immediately quit.

func mHandleErr(err error){

 if err != nil {

 log.Fatal(err)

 }

}

A quick go run *.go indicates this result (which has been
truncated):

$ go run *.go

Rows: 1460

========

Id: 1460

MSSubClass: 15

MSZoning: 5

LotFrontage: 111

LotArea: 1073

SaleCondition: 6

SalePrice: 663

Alone, this tells us a lot of interesting facts, chief amongst
which is that there is a lot more categorical data than there is
continuous data. Additionally, for some columns that are
indeed continuous in nature, there are only a few discrete
values available. One particular example is the LowQualSF column
—it's a continuous variable, but there are only 24 unique
values.

We'd like to calculate the CEF of the discrete covariates for
further analysis. But before that can happen, we would need to
clean up the data. While we're at it, we might also want to
create a logical grouping of data structures.

81

Janitorial work
A large part of doing data science work is focused on cleanup.
In productionized systems, this data would typically be
fetched directly from the database, already relatively clean
(high -quality production data science work requires a
database of clean data). However, we're not in production
mode yet. We're still in the model-building phase. It would be
helpful to imagine writing a program solely for cleaning data.

Let's look at our requirements: starting with our data, each
column is a variable—most of them are independent variables,
except for the last column, which is the dependent variable.
Some variables are categorical, and some are continuous. Our
task is to write a function that will convert the data,
currently [][]string to [][]float64.

To do that, we would require all the data to be converted into
float64. For the continuous variables, it's an easy task: simply
parse the string into a float. There are oddities that need to be
handled, which I hope you had spotted by the time you opened
the file in a spreadsheet. But the main pain is in converting
categorical data to float64.

Fortunately for us, people much smarter than have figured
this out decades ago. There exists an encoding scheme that
allows categorical data to play nicely with linear regression
algorithms.

82

Encoding categorical
data
The trick to encode categorical data is to expand categorical
data into multiple columns, each having a 1 or 0 representing
whether it's true or false. This of course comes with some
caveats and subtle issues that must be navigated with care. For
the rest of this subsection, I shall use a real categorical
variable to explain further.

Consider the LandSlope variable. There are three possible values
for LandSlope:

Gtl

Mod

Sev

This is one possible encoding scheme (this is commonly
known as one-hot encoding):

Slope Slope_Gtl Slope_Mod Slope_Sev

Gtl 1 0 0

Mod 0 1 0

Sev 0 0 1

83

This would be a terrible encoding scheme. To understand why,
we must first understand linear regression by means of
ordinary least squares. Without going into too much detail,
the meat of OLS-based linear regression is the following
formula (which I am so in love with that I have had multiple
T-shirts with the formula printed on):

Here, is an(m x n) matrix and is an (m x 1) vector. The
multiplications, therefore, are not straightforward
multiplications—they are matrix multiplications. When one-
hot encoding is used for linear regression, the resulting input

matrix will typically be singular—in other words, the
determinant of the matrix is 0. The problem with singular
matrices is that they cannot be inverted.

So, instead, we have this encoding scheme:

Slope Slope_Mod Slope_Sev

Gtl 0 0

Mod 1 0

Sev 0 1

Here, we see an application of the Go proverb make the zero
value useful for being applied in a data science context.
Indeed, clever encoding of categorical variables will yield
slightly better results when dealing with previously unseen
data.

84

The topic is far too wide to broach here, but if you have
categorical data that can be partially ordered, then when
exposed to unseen data, simply encode the unseen data to the
closest ordered variable value, and the results will be slightly
better than encoding to the zero value or using random
encoding. We will cover more of this in the later parts of this
chapter.

85

Handling bad numbers
Another part of the janitorial work is handling bad numbers. A
good example is in the LotFrontage variable. From the data
description, we know that this is supposed to be a continuous
variable. Therefore, all the numbers should be directly
convertible to float64. Looking at the data, however, we see that
it's not true—there is data that is NA.

LotFrontage, according to the description, is the linear feet of the
street connected to property. NA could mean one of two
things:

We have no information on whether there is a street
connected to the property

There is no street connected to the property

In either case, it would be reasonable to replace NA with 0.
This is reasonable, because the second lowest value in
LotFrontage is 21. There are other ways of imputing the data, of
course, and often the imputations will lead to better models.
But for now, we'll impute it with 0.

We can also do the same with any other continuous variables
in this dataset simply because they make sense when you
replace the NA with 0. One tip is to use it in a sentence: this
house has an Unknown GarageArea. If that is the case, then what
should be the best guess? Well, it'd be helpful to assume that
the house has no garage, so it's OK to replace NA with 0.

Note that this may not be the case in other machine learning

86

projects. Remember—human insight may be fallible, but its
often the best solution for a lot of irregularities in the data. If
you happen to be a realtor, and you have a lot more domain
knowledge, you can infuse said domain knowledge into the
imputation phase—you can use variables to calculate and
estimate other variables for example.

As for the categorical variables, we can for the most part treat
NA as the zero value of the variable, so no change there if
there is an NA. There is some categorical data for which NA or
None wouldn't make sense. This is where the aforementioned
clever encoding of category could come in handy. In the cases
of these variables, we'll use the most commonly found value as
the zero value:

MSZoning

BsmtFullBath

BsmtHalfBath

Utilities

Functional

Electrical

KitchenQual

SaleType

Exterior1st

Exterior2nd

Furthermore, there are some variables that are categorical,
but the data is numerical. An example found in the dataset is
the MSSubclass variable. It's essentially a categorical variable, but
its data is numerical. When encoding these kinds of

87

categorical data, it makes sense to have them sorted
numerically, such that the 0 value is indeed the lowest value.

88

Final requirement
Despite the fact that we're model building right now, we want
to build with the future in mind. The future is a production-
ready machine learning system that performs linear
regression. So whatever functions and methods we write have
to take into account other things that may occur in a
production environment that may not occur in the model -
building phase.

The following are things to consider:

Unseen values: We have to write a function that is
able to encode previously unseen values.

Unseen variables: At some point in the future we
might pass a different version of the data in that may
contain variables that are unknown at model-building
time. We would have to handle that.

Different imputation strategies: Different
variables will require different strategies for guessing
missing data.

89

Writing the code
Up to this point, we have only done the cleanup in our heads. I
personally find this to be a much more rewarding exercise: to
mentally clean up the data before actually cleaning up. This is
not because I'm highly confident that I will have handled all
the irregularities in the data. Instead, I like this process
because it clarifies what needs to be done. And that in turn
guides the data structures required for the job.

But, once the thinking is done, it's time to validate our
thinking with code.

We start with the clean function:

// hints is a slice of bools indicating whether it's a categorical variable

func clean(hdr []string, data [][]string, indices []map[string][]int, hints []bool, ignored []string) (int, int, []float64, []float64, []string, []bool) {

 modes := mode(indices)

 var Xs, Ys []float64

 var newHints []bool

 var newHdr []string

 var cols int

 for i, row := range data {

 for j, col := range row {

 if hdr[j] == "Id" { // skip id

 continue

 }

 if hdr[j] == "SalePrice" { // we'll put SalePrice into Ys

 cxx, _ := convert(col, false, nil, hdr[j])

 Ys = append(Ys, cxx...)

 continue

 }

 if inList(hdr[j], ignored) {

 continue

90

 }

 if hints[j] {

 col = imputeCategorical(col, j, hdr, modes)

 }

 cxx, newHdrs := convert(col, hints[j], indices[j], hdr[j])

 Xs = append(Xs, cxx...)

 if i == 0 {

 h := make([]bool, len(cxx))

 for k := range h {

 h[k] = hints[j]

 }

 newHints = append(newHints, h...)

 newHdr = append(newHdr, newHdrs...)

 }

 }

 // add bias

 if i == 0 {

 cols = len(Xs)

 }

 }

 rows := len(data)

 if len(Ys) == 0 { // it's possible that there are no Ys (i.e. the test.csv file)

 Ys = make([]float64, len(data))

 }

 return rows, cols, Xs, Ys, newHdr, newHints

}

clean takes data (in the form of [][]string), and with the help of
the indices built earlier, we want to build a matrix of Xs (which
will be float64) and Ys. In Go, it's a simple loop. We'll read over
the input data and try to convert that. A hints slice is also
passed in to help us figure out if a variable should be
considered a categorical or continuous variable.

In particular, the treatment of any year variables is of
contention. Some statisticians think it's fine to treat a year
variable as a discrete, non-categorical variable, while some
statisticians think otherwise. I'm personally of the opinion
that it doesn't really matter. If treating a year variable as a
categorical variable improves the model score, then by all

91

means use it. It's unlikely, though.

The meat of the preceding code is the conversion of a string
into []float64, which is what the convert function does. We will
look in that function in a bit, but it's important to note that the
data has to be imputed before conversion. This is because Go's
slices are well-typed. A []float64 can only contain float64.

While it's true that we can also replace any unknown data with
NaN, that would not be helpful, especially in the case of
categorical data, where NA might actually have semantic
meaning. So, we impute categorical data before converting
them. This is what imputeCategorical looks like:

// imputeCategorical replaces "NA" with the mode of categorical values

func imputeCategorical(a string, col int, hdr []string, modes []string) string {

 if a != "NA" || a != "" {

 return a

 }

 switch hdr[col] {

 case "MSZoning", "BsmtFullBath", "BsmtHalfBath", "Utilities", "Functional", "Electrical", "KitchenQual", "SaleType", "Exterior1st", "Exterior2nd":

 return modes[col]

 }

 return a

}

What this function says is, if the value is not NA and the value is
not an empty string, then it's a valid value, hence we return
early. Otherwise, we will have to consider whether to return NA
as a valid category.

For some specific categories, NAs are not valid categories, and
they are replaced by the most-commonly occurring value. This
is a logical thing to do—a shed in the middle of nowhere with
no electricity, no gas, and no bath is a very rare occurrence.
There are techniques to deal with that (such as LASSO
regression), but we're not going to do that right now. Instead,
we'll just replace them with the mode.

92

The mode was calculated in the clean function. This is a very
simple definition for finding the modes; we simply find the
value that has the greatest length and return the value:

// mode finds the most common value for each variable

func mode(index []map[string][]int) []string {

 retVal := make([]string, len(index))

 for i, m := range index {

 var max int

 for k, v := range m {

 if len(v) > max {

 max = len(v)

 retVal[i] = k

 }

 }

 }

 return retVal

}

After we've imputed the categorical data, we'll convert all the
data to []float. For numerical data, that will result in a slice
with a single value. But for categorical data, it will result in a
slice of 0s and 1s.

For the purposes of this chapter, any NAs found in the
numerical data will be converted to 0.0. There are other valid
strategies that will improve the results of the model very
slightly, but these strategies are not brief.

And so, the conversion code looks simple:

// convert converts a string into a slice of floats

func convert(a string, isCat bool, index map[string][]int, varName string) ([]float64, []string) {

 if isCat {

 return convertCategorical(a, index, varName)

 }

 // here we deliberately ignore errors, because the zero value of float64 is well, zero.

 f, _ := strconv.ParseFloat(a, 64)

 return []float64{f}, []string{varName}

}

93

// convertCategorical is a basic function that encodes a categorical variable as a slice of floats.

// There are no smarts involved at the moment.

// The encoder takes the first value of the map as the default value, encoding it as a []float{0,0,0,...}

func convertCategorical(a string, index map[string][]int, varName string) ([]float64, []string) {

 retVal := make([]float64, len(index)-1)

 // important: Go actually randomizes access to maps, so we actually need to sort the keys

 // optimization point: this function can be made stateful.

 tmp := make([]string, 0, len(index))

 for k := range index {

 tmp = append(tmp, k)

 }

 // numerical "categories" should be sorted numerically

 tmp = tryNumCat(a, index, tmp)

 // find NAs and swap with 0

 var naIndex int

 for i, v := range tmp {

 if v == "NA" {

 naIndex = i

 break

 }

 }

 tmp[0], tmp[naIndex] = tmp[naIndex], tmp[0]

 // build the encoding

 for i, v := range tmp[1:] {

 if v == a {

 retVal[i] = 1

 break

 }

 }

 for i, v := range tmp {

 tmp[i] = fmt.Sprintf("%v_%v", varName, v)

 }

 return retVal, tmp[1:]

}

I would like to draw your attention to
the convertCategorical function. There is some verbosity involved
in the code, but the verbosity wills away the magic. Because
Go randomizes access to a map, it's important to get a list of
keys, and then sort them. This way, all subsequent access will
be deterministic.

94

The function also allows room for optimization—making this
function a stateful function would optimize it further, but for
this project we shan't bother.

This is our main function so far:

func main() {

 f, err := os.Open("train.csv")

 mHandleErr(err)

 hdr, data, indices, err := ingest(f)

 mHandleErr(err)

 fmt.Printf("Original Data: nRows: %d, Cols: %dn========n", len(data), len(hdr))

 c := cardinality(indices)

 for i, h := range hdr {

 fmt.Printf("%v: %vn", h, c[i])

 }

 fmt.Println("")

 fmt.Printf("Building into matricesn=============n")

 rows, cols, XsBack, YsBack, newHdr, _ := clean(hdr, data, indices, datahints, nil)

 Xs := tensor.New(tensor.WithShape(rows, cols), tensor.WithBacking(XsBack))

 Ys := tensor.New(tensor.WithShape(rows, 1), tensor.WithBacking(YsBack

 fmt.Printf("Xs:\n%+1.1snYs:\n%1.1sn", Xs, Ys)

 fmt.Println("")

}

And the output of the code is as follows:

Original Data:

Rows: 1460, Cols: 81

========

Id: 1460

MSSubClass: 15

MSZoning: 5

LotFrontage: 111

LotArea: 1073

Street: 2

 ⋮

Building into matrices

=============

Xs:

⎡ 0 0 ⋯ 1 0⎤
⎢ 0 0 ⋯ 1 0⎥
 ⋮

95

⎢ 0 0 ⋯ 1 0⎥
⎣ 0 0 ⋯ 1 0⎦
Ys:

C[2e+05 2e+05 ⋯ 1e+05 1e+05]

Note that while the original data had 81 variables, by the time
we are done with the encoding there are 615 variables. This is
what we want to pass into the regression. At this point, the
seasoned data scientist may notice a few things that may not
sit well with her. For example, the number of variables (615) is
too close to the number of observations (1,460) for comfort, so
we might run into some issues. We will address those issues
later.

Another point to note is that we're converting the data
to *tensor.Dense. You can think of the *tensor.Dense data structure
as a matrix. It is an efficient data structure with a lot of
niceness that we will use later.

96

Further exploratory
work
At this point, it would be very tempting to just take these
matrices and run the regression on them. While that could
work, it wouldn't necessarily produce the best results.

97

The conditional
expectation functions
Instead, let's do what we originally set out to do: explore the
CEFs of the variables. Fortunately, we already have the
necessary data structures (in other words, the index), so
writing the function to find the CEF is relatively easy.

The following is the code block:

func CEF(Ys []float64, col int, index []map[string][]int) map[string]float64 {

 retVal := make(map[string]float64)

 for k, v := range index[col] {

 var mean float64

 for _, i := range v {

 mean += Ys[i]

 }

 mean /= float64(len(v))

 retVal[k]=mean

 }

 return retVal

}

This function finds the conditionally expected house price
when a variable is held fixed. We can do an exploration of all
the variables, but for the purpose of this chapter, I shall only
share the exploration of one –the yearBuilt variable—as an
example.

Now, YearBuilt is an interesting variable to dive deep into. It's
a categorical variable (1950.5 makes no sense), but it's totally
orderable as well (1,945 is smaller than 1,950). And there are

98

many values of YearBuilt. So, instead of printing it out, we
shall plot it out with the following function:

// plotCEF plots the CEF. This is a simple plot with only the CEF.

// More advanced plots can be also drawn to expose more nuance in understanding the data.

func plotCEF(m map[string]float64) (*plot.Plot, error) {

 ordered := make([]string, 0, len(m))

 for k := range m {

 ordered = append(ordered, k)

 }

 sort.Strings(ordered)

 p, err := plot.New()

 if err != nil {

 return nil, err

 }

 points := make(plotter.XYs, len(ordered))

 for i, val := range ordered {

 // if val can be converted into a float, we'll use it

 // otherwise, we'll stick with using the index

 points[i].X = float64(i)

 if x, err := strconv.ParseFloat(val, 64); err == nil {

 points[i].X = x

 }

 points[i].Y = m[val]

 }

 if err := plotutil.AddLinePoints(p, "CEF", points); err != nil {

 return nil, err

 }

 return p, nil

}

Our ever-growing main function now has this appended to it:

ofInterest := 19 // variable of interest is in column 19

cef := CEF(YsBack, ofInterest, indices)

plt, err := plotCEF(cef)

mHandleErr(err)

plt.Title.Text = fmt.Sprintf("CEF for %v", hdr[ofInterest])

plt.X.Label.Text = hdr[ofInterest]

plt.Y.Label.Text = "Conditionally Expected House Price"

mHandleErr(plt.Save(25*vg.Centimeter, 25*vg.Centimeter, "CEF.png"))

99

Running the program yields the following chart:

conditional expectation functions for Yearbuilt

Upon inspecting the chart, I must confess that I was a little
surprised. I'm not particularly familiar with real estate, but my
initial instincts were that older houses would cost more—
houses, in my mind, age like fine wine; the older the house,
the more expensive it would be. Clearly this is not the case. Oh
well, live and learn.

The CEF exploration should be done for as many variables as

100

possible. I am merely eliding for the sake of brevity in this
book.

101

Skews
Now let's look at how the data for the house prices are
distributed:

func hist(a []float64) (*plot.Plot, error){

 h, err := plotter.NewHist(plotter.Values(a), 10)

 if err != nil {

 return nil, err

 }

 p, err := plot.New()

 if err != nil {

 return nil, err

 }

 h.Normalize(1)

 p.Add(h)

 return p, nil

}

This section is added to the main function:

hist, err := plotHist(YsBack)

mHandleErr(err)

hist.Title.Text = "Histogram of House Prices"

mHandleErr(hist.Save(25*vg.Centimeter, 25*vg.Centimeter, "hist.png"))

The following diagram is:

102

Histogram of House prices

As can be noted, the histogram of the prices is a little skewed.
Fortunately, we can fix that by applying a function that
performs the logging of the value and then adds 1. The
standard library provides a function for this: math.Log1p. So, we

103

add the following to our main function:

for i := range YsBack {

 YsBack[i] = math.Log1p(YsBack[i])

 }

 hist2, err := plotHist(YsBack)

 mHandleErr(err)

 hist2.Title.Text = "Histogram of House Prices (Processed)"

 mHandleErr(hist2.Save(25*vg.Centimeter, 25*vg.Centimeter, "hist2.png"))

The following diagram is :

104

Histogram of House Prices (Processed)

105

Ahh! This looks better. We did this for all the Ys. What about
any of the Xs? To do that, we will have to iterate through each
column of Xs, find out if they are skewed, and if they are, we
need to apply the transformation function.

This is what we add to the main function:

 it, err := native.MatrixF64(Xs)

 mHandleErr(err)

 for i, isCat := range datahints {

 if isCat {

 continue

 }

 skewness := skew(it, i)

 if skewness > 0.75 {

 log1pCol(it, i)

 }

 }

native.MatrixF64s takes a *tensor.Dense and converts it into a native
Go iterator. The underlying backing data doesn't change,
therefore if one were to write it[0][0] = 1000, the actual matrix
itself would change too. This allows us to perform
transformations without additional allocations. For this topic,
it may not be as important; however, for larger projects, this
will come to be very handy.

This also allows us to write the functions to check and mutate
the matrix:

// skew returns the skewness of a column/variable

func skew(it [][]float64, col int) float64 {

 a := make([]float64, 0, len(it[0]))

 for _, row := range it {

 for _, col := range row {

 a = append(a, col)

 }

 }

 return stat.Skew(a, nil)

}

106

// log1pCol applies the log1p transformation on a column

func log1pCol(it [][]float64, col int) {

 for i := range it {

 it[i][col] = math.Log1p(it[i][col])

 }

}

107

Multicollinearity
As mentioned in the opening paragraphs of this section, the
number of variables is a little high for comfort. When there is
a high number of variables the chances of multicollinearity
increases. Multicollinearity is when two or more variables are
correlated with each other somehow.

From a cursory glance at the data, we can tell that is in fact
true. A simple thing to note is GarageArea is correlated with
GarageCars. In real life, this makes sense—a garage that can
take two cars would be logically larger in area compared to a
garage that can only store one car. Likewise, zoning is highly
correlated with the neighborhood.

A good way to think about the variables is in terms of
information included in the variables. Sometimes, the
variables have information that overlaps. For example, when
GarageArea is 0, that overlaps with the GarageType of NA
—after all, if you have no garage, the area of your garage is
zero.

The difficult part is going through the list of variables, and
deciding which to keep. It's something of an art that has help
from algorithms. In fact, the first thing we're going to do is to
find out how correlated a variable is with another variable. We
do this by calculating the correlation matrix, then plotting out
a heatmap.

To calculate the correlation matrix, we simply use the function
in Gonum with this snippet:

108

 m64, err := tensor.ToMat64(Xs, tensor.UseUnsafe())

 mHandleErr(err)

 corr := stat.CorrelationMatrix(nil, m64, nil)

 hm, err := plotHeatMap(corr, newHdr)

 mHandleErr(err)

 hm.Save(60*vg.Centimeter, 60*vg.Centimeter, "heatmap.png")

Let's go through this line by line:

m64, err := tensor.ToMat64(Xs, tensor.UseUnsafe()) performs the
conversion from *tensor.Dense to mat.Mat64. Because we don't want
to allocate an additional chunk of memory, and we've
determined that it's safe to actually reuse the data in the
matrix, we pass in a tensor.UseUnsafe() function option that tells
Gorgonia to reuse the underlying memory in the Gonum
matrix.

stat.CorrelationMatrix(nil, m64, nil) calculates the correlation
matrix. The correlation matrix is a triangular matrix—a
particularly useful data structure that the Gonum package
provides. It is a clever little data structure for this use case
because the matrix is mirrored along the diagonal.

Next, we plot heatmap using the following snippet of code:

type heatmap struct {

 x mat.Matrix

}

func (m heatmap) Dims() (c, r int) { r, c = m.x.Dims(); return c, r }

func (m heatmap) Z(c, r int) float64 { return m.x.At(r, c) }

func (m heatmap) X(c int) float64 { return float64(c) }

func (m heatmap) Y(r int) float64 { return float64(r) }

type ticks []string

func (t ticks) Ticks(min, max float64) []plot.Tick {

 var retVal []plot.Tick

 for i := math.Trunc(min); i <= max; i++ {

 retVal = append(retVal, plot.Tick{Value: i, Label: t[int(i)]})

 }

109

 return retVal

}

func plotHeatMap(corr mat.Matrix, labels []string) (p *plot.Plot, err error) {

 pal := palette.Heat(48, 1)

 m := heatmap{corr}

 hm := plotter.NewHeatMap(m, pal)

 if p, err = plot.New(); err != nil {

 return

 }

 hm.NaN = color.RGBA{0, 0, 0, 0} // black

 // add and adjust the prettiness of the chart

 p.Add(hm)

 p.X.Tick.Label.Rotation = 1.5

 p.Y.Tick.Label.Font.Size = 6

 p.X.Tick.Label.Font.Size = 6

 p.X.Tick.Label.XAlign = draw.XRight

 p.X.Tick.Marker = ticks(labels)

 p.Y.Tick.Marker = ticks(labels)

 // add legend

 l, err := plot.NewLegend()

 if err != nil {

 return p, err

 }

 thumbs := plotter.PaletteThumbnailers(pal)

 for i := len(thumbs) - 1; i >= 0; i-- {

 t := thumbs[i]

 if i != 0 && i != len(thumbs)-1 {

 l.Add("", t)

 continue

 }

 var val float64

 switch i {

 case 0:

 val = hm.Min

 case len(thumbs) - 1:

 val = hm.Max

 }

 l.Add(fmt.Sprintf("%.2g", val), t)

 }

 // this is a hack. I place the legends between the axis and the actual heatmap

 // because if the legend is on the right, we'd need to create a custom canvas to take

 // into account the additional width of the legend.

 //

110

 // So instead, we shrink the legend width to fit snugly within the margins of the plot and the axes.

 l.Left = true

 l.XOffs = -5

 l.ThumbnailWidth = 5

 l.Font.Size = 5

 p.Legend = l

 return

}

The plotter.NewHeatMap function expects an interface, which is why
I wrapped mat.Mat in the heatmap data structure, which
provides the interface for the plotter to draw a heatmap. This
pattern will become more and more common in the coming
chapters—wrapping a data structure just to provide an
additional interface to other functions. They are cheap and
readily available and should be used to the fullest extent.

A large portion of this code involves a hack for the labels. The
way Gonum plots work, is that when the canvas size is
calculated, the label is considered to be inside the plot. To be
able to draw the labels outside the plot, a lot of extra code
would have to be written. So, instead, I shrunk the labels to fit
into the gutter between the axis and the plot itself as to not
overlay into important areas of the plot:

111

Heatmap

Of particular note in this heatmap are the white streaks. We
expect a variable to correlate with itself completely. But if you
notice, there are areas of white lines that are somewhat
parallel to the diagonal white line. These are total correlations.

112

We will need to remove them.

Heatmaps are nice to look at but are quite silly. The human
eye isn't great at telling hues apart. So what we're going to do
is also report back the numbers. The correlation between
variables is between -1 and 1. We're particularly interested in
correlations that are close to either end.

This snippet prints the results:

 // heatmaps are nice to look at, but are quite ridiculous.

 var tba []struct {

 h1, h2 string

 corr float64

 }

 for i, h1 := range newHdr {

 for j, h2 := range newHdr {

 if c := corr.At(i, j); math.Abs(c) >= 0.5 && h1 != h2 {

 tba = append(tba, struct {

 h1, h2 string

 corr float64

 }{h1: h1, h2: h2, corr: c})

 }

 }

 }

 fmt.Println("High Correlations:")

 for _, a := range tba {

 fmt.Printf("\t%v-%v: %v\n", a.h1, a.h2, a.corr)

 }

Here I use an anonymous struct, instead of a named struct,
because we're not going to reuse the data—it's solely for
printing. An anonymous tuple would suffice. This is not the
best practice in most cases.

This correlation plot shows only the correlation of the
independent variables. To truly understand multicollinearity,
we would have to find the correlation of each variable to each
other, and to the dependent variable. This will be left as an
exercise for the reader.

113

If you were to plot the correlation matrix, it'd look the same as the one we
have right here, but with an additional row and column for the dependent
variable.

Ultimately, multicollinearity can only be detected after
running a regression. The correlation plot is simply a
shorthand way of guiding the inclusion and exclusion of
variables. The actual process of removing multicollinearity is
an iterative one, often with other statistics such as the
variance inflation factor to lend a hand in deciding what to
include and what not to include.

For the purpose of this chapter, I've identified multiple
variables to be included—and the majority of variables are
excluded. This can be found in the const.go file. The commented
out lines in the ignored list are what was included in the final
model.

As mentioned in the opening paragraph of this section, it's
really a bit of an art, aided by algorithms.

114

Standardization
As a last bit of transformation, we would need to standardize
our input data. This allow us to compare models to see if one
model is better than another. To do so, I wrote two different
scaling algorithms:

func scale(a [][]float64, j int) {

 l, m, h := iqr(a, 0.25, 0.75, j)

 s := h - l

 if s == 0 {

 s = 1

 }

 for _, row := range a {

 row[j] = (row[j] - m) / s

 }

}

func scaleStd(a [][]float64, j int) {

 var mean, variance, n float64

 for _, row := range a {

 mean += row[j]

 n++

 }

 mean /= n

 for _, row := range a {

 variance += (row[j] - mean) * (row[j] - mean)

 }

 variance /= (n-1)

 for _, row := range a {

 row[j] = (row[j] - mean) / variance

 }

}

If you come from the Python world of data science, the first

115

scale function is essentially what scikits-learn's RobustScaler
does. The second function is essentially StdScaler, but with the
variance adapted to work for sample data.

This function takes the values in a given column (j) and scales
them in such a way that all the values are constrained to
within a certain value. Also, note that the input to both scaling
functions is [][]float64. This is where the benefits of the tensor
package comes in handy. A *tensor.Dense can be converted to []
[]float64 without any extra allocations. An additional beneficial
side effect is that you can mutate a and the tensor values will
change as well. Essentially, [][]float64 will act as an iterator to
the underlying tensor data.

Our transform function now looks like this:

func transform(it [][]float64, hdr []string, hints []bool) []int {

 var transformed []int

 for i, isCat := range hints {

 if isCat {

 continue

 }

 skewness := skew(it, i)

 if skewness > 0.75 {

 transformed = append(transformed, i)

 log1pCol(it, i)

 }

 }

 for i, h := range hints {

 if !h {

 scale(it, i)

 }

 }

 return transformed

}

Note that we only want to scale the numerical variables. The
categorical variables can be scaled, but there isn't really much
difference.

116

Linear regression
Now that that's all done, let's do some linear regression! But
first, let's clean up our code. We'll move our exploratory work
so far into a function called exploration(). Then we will reread
the file, split the dataset into training and testing dataset, and
perform all the transformations before finally running the
regression. For that, we will use github.com/sajari/regression and
apply the regression.

The first part looks like this:

func main() {

 // exploratory() // commented out because we're done with exploratory work.

 f, err := os.Open("train.csv")

 mHandleErr(err)

 defer f.Close()

 hdr, data, indices, err := ingest(f)

 rows, cols, XsBack, YsBack, newHdr, newHints := clean(hdr, data, indices, datahints, ignored)

 Xs := tensor.New(tensor.WithShape(rows, cols), tensor.WithBacking(XsBack))

 it, err := native.MatrixF64(Xs)

 mHandleErr(err)

 // transform the Ys

 for i := range YsBack {

 YsBack[i] = math.Log1p(YsBack[i])

 }

 // transform the Xs

 transform(it, newHdr, newHints)

 // partition the data

 shuffle(it, YsBack)

 testingRows := int(float64(rows) * 0.2)

 trainingRows := rows - testingRows

 testingSet := it[trainingRows:]

 testingYs := YsBack[trainingRows:]

 it = it[:trainingRows]

117

 YsBack = YsBack[:trainingRows]

 log.Printf("len(it): %d || %d", len(it), len(YsBack))

...

We first ingest and clean the data, then we create an iterator
for the matrix of Xs for easier access. We then transform both
the Xs and the Ys. Finally, we shuffle the Xs, and partition them
into a training dataset and a testing dataset.

Recall from the first chapter on knowing whether a model is
good. A good model must be able to generalize to previously
unseen combinations of values. To prevent overfitting, we
must cross-validate our model.

In order to achieve that, we must only train on a limited
subset of data, then use the model to predict on the test set of
data. We can then get a score of how well it did when being
run on the testing set.

Ideally, this should be done before the parsing of the data into
the Xs and Ys. But we'd like to reuse the functions we wrote
earlier, so we shan't do that. The separate functions of ingest
and clean, however, allows you to do that. And if you visit the
repository on GitHub, you will find that all the functions for
such an act can easily be done.

For now, we simply take out 20% of the dataset, and set it
aside. A shuffle is used to resample the rows so that we don't
train on the same 80% every time.

Also, note that now the clean function takes ignored, while in the
exploratory mode, it took nil. This, along with the shuffle, are
important for cross-validation later on.

118

The regression
And so, now we're ready to build the regression model. Bear in
mind that this section is highly iterative in real life. I will
describe the iterations, but will only share the model that I
chose to settle on.

The github.com/sajari/regression package does an admirable job.
But we want to extend the package a little to be able to
compare models and the coefficients of the parameters. So I
wrote this function:

func runRegression(Xs [][]float64, Ys []float64, hdr []string) (r *regression.Regression, stdErr []float64) {

 r = new(regression.Regression)

 dp := make(regression.DataPoints, 0, len(Xs))

 for i, h := range hdr {

 r.SetVar(i, h)

 }

 for i, row := range Xs {

 if i < 3 {

 log.Printf("Y %v Row %v", Ys[i], row)

 }

 dp = append(dp, regression.DataPoint(Ys[i], row))

 }

 r.Train(dp...)

 r.Run()

 // calculate StdErr

 var sseY float64

 sseX := make([]float64, len(hdr)+1)

 meanX := make([]float64, len(hdr)+1)

 for i, row := range Xs {

 pred, _ := r.Predict(row)

 sseY += (Ys[i] - pred) * (Ys[i] - pred)

 for j, c := range row {

 meanX[j+1] += c

 }

 }

119

 sseY /= float64(len(Xs) - len(hdr) - 1) // n - df ; df = len(hdr) + 1

 vecf64.ScaleInv(meanX, float64(len(Xs)))

 sseX[0] = 1

 for _, row := range Xs {

 for j, c := range row {

 sseX[j+1] += (c - meanX[j+1]) * (c - meanX[j+1])

 }

 }

 sseY = math.Sqrt(sseY)

 vecf64.Sqrt(sseX)

 vecf64.ScaleInvR(sseX, sseY)

 return r, sseX

}

runRegression will perform the regression analysis, and print the
outputs of the standard errors of the coefficients. It is an
estimate of the standard deviation of the coefficients—imagine
this model being run many many times: each time the
coefficients might be slightly different. The standard error
simply reports amount of variation in the coefficients.

The standard errors are calculated with the help of the
gorgonia.org/vecf64 package, which performs in-place operations
for vectors. Optionally, you may choose to write them as loops.

This function also introduces us to the API for the
github.com/sajari/regression package—to predict, simply use
r.Predict(vars). This will be useful in cases where one would like
to use this model for production.

For now, let us focus on the other half of the main function:

 // do the regessions

 r, stdErr := runRegression(it, YsBack, newHdr)

 tdist := distuv.StudentsT{Mu: 0, Sigma: 1, Nu: float64(len(it) - len(newHdr) - 1), Src: rand.New(rand.NewSource(uint64(time.Now().UnixNano())))}

 fmt.Printf("R^2: %1.3f\n", r.R2)

 fmt.Printf("\tVariable \tCoefficient \tStdErr \tt-stat\tp-value\n")

 fmt.Printf("\tIntercept: \t%1.5f \t%1.5f \t%1.5f \t%1.5f\n", r.Coeff(0), stdErr[0], r.Coeff(0)/stdErr[0], tdist.Prob(r.Coeff(0)/stdErr[0]))

 for i, h := range newHdr {

 b := r.Coeff(i + 1)

120

 e := stdErr[i+1]

 t := b / e

 p := tdist.Prob(t)

 fmt.Printf("\t%v: \t%1.5f \t%1.5f \t%1.5f \t%1.5f\n", h, b, e, t, p)

 }

...

Here, we run the regression, and then we print the results. We
don't just want to output the regression coefficients. We also
want to output the standard errors, the t-statistic, and the P-
value. This would give us some confidence over the estimated
coefficients.

tdist := distuv.StudentsT{Mu: 0, Sigma: 1, Nu: float64(len(it) - len(newHdr)

- 1), Src: rand.New(rand.NewSource(uint64(time.Now().UnixNano())))} creates
a Student's t-distribution, which we will compare against our
data. The t-statistic is very simply calculated by dividing the
coefficient by the standard error.

121

Cross-validation
And now we come to the final part—in order to compare
models, we would like to cross-validate the model. We've
already set aside a portion of the data. Now, we will have to
test the model on the data that was set aside, and compute a
score.

The score we'll be using is a Root Mean Square Error. It's used
because it's simple and straightforward to understand:

 // VERY simple cross validation

 var MSE float64

 for i, row := range testingSet {

 pred, err := r.Predict(row)

 mHandleErr(err)

 correct := testingYs[i]

 eStar := correct - pred

 e2 := eStar * eStar

 MSE += e2

 }

 MSE /= float64(len(testingSet))

 fmt.Printf("RMSE: %v\n", math.Sqrt(MSE))

With this, now we're really ready to run the regression
analysis.

122

Running the regression
Simply run the program. If the program is run with an empty
ignored list, the result will show up as a bunch of NaNs. Do
you recall that earlier we have done some correlation analysis
on how some variables are correlated with one another?

We'll start by adding those into our ignored list, and then run
the regression. Once we have a score that is no longer NaN, we
can start comparing models.

The final model I have prints the following output:

R^2: 0.871

 Variable Coefficient StdErr t-stat p-value

 Intercept: 12.38352 0.14768 83.85454 0.00000

 MSSubClass_30: -0.06466 0.02135 -3.02913 0.00412

 MSSubClass_40: -0.03771 0.08537 -0.44172 0.36175

 MSSubClass_45: -0.12998 0.04942 -2.63027 0.01264

 MSSubClass_50: -0.01901 0.01486 -1.27946 0.17590

 MSSubClass_60: -0.06634 0.01061 -6.25069 0.00000

 MSSubClass_70: 0.04089 0.02269 1.80156 0.07878

 MSSubClass_75: 0.04604 0.03838 1.19960 0.19420

 MSSubClass_80: -0.01971 0.02177 -0.90562 0.26462

 MSSubClass_85: -0.02167 0.03838 -0.56458 0.34005

 MSSubClass_90: -0.05748 0.02222 -2.58741 0.01413

 MSSubClass_120: -0.06537 0.01763 -3.70858 0.00043

 MSSubClass_160: -0.15650 0.02135 -7.33109 0.00000

 MSSubClass_180: -0.01552 0.05599 -0.27726 0.38380

 MSSubClass_190: -0.04344 0.02986 -1.45500 0.13840

 LotFrontage: -0.00015 0.00265 -0.05811 0.39818

 LotArea: 0.00799 0.00090 8.83264 0.00000

 Neighborhood_Blueste: 0.02080 0.10451 0.19903 0.39102

 Neighborhood_BrDale: -0.06919 0.04285 -1.61467 0.10835

 Neighborhood_BrkSide: -0.06680 0.02177 -3.06894 0.00365

 Neighborhood_ClearCr: -0.04217 0.03110 -1.35601 0.15904

 Neighborhood_CollgCr: -0.06036 0.01403 -4.30270 0.00004

123

 Neighborhood_Crawfor: 0.08813 0.02500 3.52515 0.00082

 Neighborhood_Edwards: -0.18718 0.01820 -10.28179 0.00000

 Neighborhood_Gilbert: -0.09673 0.01858 -5.20545 0.00000

 Neighborhood_IDOTRR: -0.18867 0.02825 -6.67878 0.00000

 Neighborhood_MeadowV: -0.24387 0.03971 -6.14163 0.00000

 Neighborhood_Mitchel: -0.15112 0.02348 -6.43650 0.00000

 Neighborhood_NAmes: -0.11880 0.01211 -9.81203 0.00000

 Neighborhood_NPkVill: -0.05093 0.05599 -0.90968 0.26364

 Neighborhood_NWAmes: -0.12200 0.01913 -6.37776 0.00000

 Neighborhood_NoRidge: 0.13126 0.02688 4.88253 0.00000

 Neighborhood_NridgHt: 0.16263 0.01899 8.56507 0.00000

 Neighborhood_OldTown: -0.15781 0.01588 -9.93456 0.00000

 Neighborhood_SWISU: -0.12722 0.03252 -3.91199 0.00020

 Neighborhood_Sawyer: -0.17758 0.02040 -8.70518 0.00000

 Neighborhood_SawyerW: -0.11027 0.02115 -5.21481 0.00000

 Neighborhood_Somerst: 0.05793 0.01845 3.13903 0.00294

 Neighborhood_StoneBr: 0.21206 0.03252 6.52102 0.00000

 Neighborhood_Timber: -0.00449 0.02825 -0.15891 0.39384

 Neighborhood_Veenker: 0.04530 0.04474 1.01249 0.23884

 HouseStyle_1.5Unf: 0.16961 0.04474 3.79130 0.00031

 HouseStyle_1Story: -0.03547 0.00864 -4.10428 0.00009

 HouseStyle_2.5Fin: 0.16478 0.05599 2.94334 0.00531

 HouseStyle_2.5Unf: 0.04816 0.04690 1.02676 0.23539

 HouseStyle_2Story: 0.03271 0.00937 3.49038 0.00093

 HouseStyle_SFoyer: 0.02498 0.02777 0.89968 0.26604

 HouseStyle_SLvl: -0.02233 0.02076 -1.07547 0.22364

 YearBuilt: 0.01403 0.00151 9.28853 0.00000

 YearRemodAdd: 5.06512 0.41586 12.17991 0.00000

 MasVnrArea: 0.00215 0.00164 1.30935 0.16923

 Foundation_CBlock: -0.01183 0.00873 -1.35570 0.15910

 Foundation_PConc: 0.01978 0.00869 2.27607 0.03003

 Foundation_Slab: 0.01795 0.03416 0.52548 0.34738

 Foundation_Stone: 0.03423 0.08537 0.40094 0.36802

 Foundation_Wood: -0.08163 0.08537 -0.95620 0.25245

 BsmtFinSF1: 0.01223 0.00145 8.44620 0.00000

 BsmtFinSF2: -0.00148 0.00236 -0.62695 0.32764

 BsmtUnfSF: -0.00737 0.00229 -3.21186 0.00234

 TotalBsmtSF: 0.02759 0.00375 7.36536 0.00000

 Heating_GasA: 0.02397 0.02825 0.84858 0.27820

 Heating_GasW: 0.06687 0.03838 1.74239 0.08747

 Heating_Grav: -0.15081 0.06044 -2.49506 0.01785

 Heating_OthW: -0.00467 0.10451 -0.04465 0.39845

 Heating_Wall: 0.06265 0.07397 0.84695 0.27858

 CentralAir_Y: 0.10319 0.01752 5.89008 0.00000

 1stFlrSF: 0.01854 0.00071 26.15440 0.00000

 2ndFlrSF: 0.01769 0.00131 13.46733 0.00000

 FullBath: 0.10586 0.01360 7.78368 0.00000

 HalfBath: 0.09048 0.01271 7.11693 0.00000

 Fireplaces: 0.07432 0.01096 6.77947 0.00000

124

 GarageType_Attchd: -0.37539 0.00884 -42.44613 0.00000

 GarageType_Basment: -0.47446 0.03718 -12.76278 0.00000

 GarageType_BuiltIn: -0.33740 0.01899 -17.76959 0.00000

 GarageType_CarPort: -0.60816 0.06044 -10.06143 0.00000

 GarageType_Detchd: -0.39468 0.00983 -40.16266 0.00000

 GarageType_2Types: -0.54960 0.06619 -8.30394 0.00000

 GarageArea: 0.07987 0.00301 26.56053 0.00000

 PavedDrive_P: 0.01773 0.03046 0.58214 0.33664

 PavedDrive_Y: 0.02663 0.01637 1.62690 0.10623

 WoodDeckSF: 0.00448 0.00166 2.69397 0.01068

 OpenPorchSF: 0.00640 0.00201 3.18224 0.00257

 PoolArea: -0.00075 0.00882 -0.08469 0.39742

 MoSold: 0.00839 0.01020 0.82262 0.28430

 YrSold: -4.27193 6.55001 -0.65220 0.32239

RMSE: 0.1428929042451045

The cross-validation results (a RMSE of 0.143) are decent—
not the best, but not the worst either. This was done through
careful elimination of variables. A seasoned econometrician
may come into this, read the results, and decide that further
feature engineering may be done.

Indeed, looking at these results, off the top of my head I could
think of several other feature engineering that could be done—
subtracting the year remodeled from the year sold (recency of
remodeling/renovations). Another form of feature engineering
is to run a PCA-whitening process on the dataset.

For linear regression models, I tend to stay away from
complicated feature engineering. This is because the key
benefit of a linear regression is that it's explainable in natural
language.

For example, we can say this: for every unit increase in lot
area size, if everything else is held constant, we can expect a
0.07103 times increment in house price.

A particularly counter intuitive result from this regression is
the PoolArea variable. Interpreting the results, we would say: for
every unit increase in pool area, we can expect a -0.00075

125

times increment in price, ceteris paribus. Granted, the p-value
of the coefficient is 0.397, meaning that this coefficient could
have been gotten by sheer random chance. Hence, we must be
quite careful in saying this—having a pool decreases the value
of your property in Ames, Massachusetts.

126

Discussion and further
work
This model is now ready to be used to predict things. Is this
the best model? No, it's not. Finding the best model is a never
ending quest. To be sure, there are indefinite ways of
improving this model. One can use LASSO methods to
determine the importance of variables before using them.

The model is not only the linear regression, but also the data
cleaning functions and ingestion functions that come with it.
This leads to a very high number of tweakable parameters.
Maybe if you didn't like the way I imputed data, you can
always write your own method!

Furthermore the code in this chapter can be cleaned up
further. Instead of returning so many values in the clean
function, a new tuple type can be created to hold the Xs and Ys
—a data frame of sorts. In fact, that's what we're going to build
in the upcoming chapters. Several functions can be made
more efficient using a state-holder struct.

If you will note, there are not very many statistical packages
like Pandas for Go. This is not for the lack of trying. Go as a
language is all about solving problems, not about building
generic packages. There are definitely dataframe-like packages
in Go, but in my experience, using them tends to blind one to
the most obvious and efficient solutions. Often, it's better to
build your own data structures that are specific to the problem
at hand.

127

For the most part in Go, the model building is an iterative
process, while productionizing the model is a process that
happens after the model has been built. This chapter shows
that with a little awkwardness, it is possible to build a model
using an iterative process that immediately translates to a
production-ready system.

128

Summary
In this chapter, we have learned how to explore data (with
some awkwardness) using Go. We plotted some charts and
used them as a guiding rod to select variables for the
regression. Following that, we implemented a regression
model that came with reporting of errors which enabled us to
compare models. Lastly, to ensure we were not over fitting, we
used a RMSE score to cross-validate our model and came out
with a fairly decent score.

This is just a taste of what is to come. The ideas in abstract are
repeated over the next chapters—we will be cleaning data,
then writing the machine learning model, which will be cross-
validated. The only difference will generally be the data, and
the models.

In the next chapter, we'll learn a simple way to determine if an
email is spam or not.

129

Classification - Spam
Email Detection
What makes you you? I have dark hair, pale skin, and Asiatic
features. I wear glasses. My facial structure is vaguely round,
with extra subcutaneous fat in my cheeks compared to my
peers. What I have done is describe the features of my face.
Each of these features described can be thought of as a point
within a probability continuum. What is the probability of
having dark hair? Among my friends, dark hair is a very
common feature, and so are glasses (a remarkable statistic is
out of the 300 people or so I polled on my Facebook page, 281
of them require prescription glasses). The epicanthic folds of
my eyes are probably less common, as is the extra
subcutaneous fat in my cheeks.

Why am I bringing up my facial features in a chapter about
spam classification? It's because the principles are the same. If
I show you a photo of a human face, what is the probability
that the photo is of me? We can say that the probability that
the photo is a photo of my face is a combination of the
probability of having dark hair, the probability of having pale
skin, the probability of having an epicanthic fold, and so on,
and so forth. From a Naive point of view, we can think of each
of the features independently contributing to the probability
that the photo is me—the fact that I have an epicanthic fold in
my eyes is independent from the fact that my skin is of a
yellow pallor. But, of course, with recent advancements in
genetics, this has been shown to be patently untrue. These
features are, in real life, correlated with one another. We will
explore this in a future chapter.

130

Despite a real-life dependence of probability, we can still
assume the Naive position and think of these probabilities as
independent contributions to the probability that the photo is
one of my face.

In this chapter, we will build a email spam classification
system using a Naive Bayes algorithm, which can be used
beyond email spam classification. Along the way, we will
explore the very basics of natural language processing, and
how probability is inherently tied to the very language we use.
A probabilistic understanding of language will be built up
from the ground with the introduction of the term
frequency-inverse document frequency (TF-IDF),
which will then be translated into Bayesian probabilities,
which is used to classify the emails.

131

The project
What we want to do is simple: given an email, is it kosher
(which we call ham), or is it a spam email? We will be using
the LingSpam database. The emails from that database are a little
dated—spammers update their techniques and words all the
time. However, I chose the LingSpam corpus for a good reason: it
is already nicely preprocessed. The original scope of this
chapter was to introduce the preprocessing of emails;
however, the topic of preprocessing options for natural
language is itself a topic for an entire book, so we will use a
dataset that has already been preprocessed. This allows us to
focus more on the mechanics of a very elegant algorithm.

Fear not, though, as I will actually walk through the brief
basics of preprocessing. Be warned, however, that the level of
complexity jumps up in a very steep curve, so be prepared to
be sucked into a black hole of many hours on preprocessing
natural language. At the end of this chapter, I will also
recommend some libraries that will be useful for
preprocessing.

132

Exploratory data
analysis
Let's jump into the data. The LingSpam corpus comes with four
variants of the same corpus: bare, lemm, lemm_stop, and stop. In each
variant, there are ten parts and each part contains multiple
files. Each file represents an email. Files with a spmsg prefix in
its name are spam, while the rest are ham. An example email
looks as follows (from the bare variant):

Subject: re : 2 . 882 s - > np np

> date : sun , 15 dec 91 02 : 25 : 02 est > from : michael < mmorse @ vm1 . yorku . ca > > subject : re : 2 . 864 queries > > wlodek zadrozny asks if there is " anything interesting " to be said > about the construction " s > np np " . . . second , > and very much related : might we consider the construction to be a form > of what has been discussed on this list of late as reduplication ? the > logical sense of " john mcnamara the name " is tautologous and thus , at > that level , indistinguishable from " well , well now , what have we here ? " . to say that ' john mcnamara the name ' is tautologous is to give support to those who say that a logic-based semantics is irrelevant to natural language . in what sense is it tautologous ? it supplies the value of an attribute followed by the attribute of which it is the value . if in fact the value of the name-attribute for the relevant entity were ' chaim shmendrik ' , ' john mcnamara the name ' would be false . no tautology , this . (and no reduplication , either .)

Here are some things to note about this particular email:

This is an email about linguistics—specifically, about
the parsing of a natural sentence into multiple noun
phrases (np). This is a largely irrelevant fact to the
project at hand. I do, however, think it's a good idea to
go through the topics, if only to provide a sanity check
on manual occasions.

There is an email and a person attached to this email
—the dataset is not particularly anonymized. This has
some implications in the future of machine learning,
which I will explore in the final chapter of this book.

The email is very nicely split into fields (that is, space

133

separated for each word).

The email has a Subject line.

The first two points are particularly noteworthy. Sometimes,
the subject matter actually matters in machine learning. In
our case, we can build our algorithms to be blind—they can be
used generically across all emails. But there are times where
being context-sensitive will bring new heights to your
machine-learning algorithms. The second thing to note is
anonymity. We live in an age where software flaws are often
the downfall of companies. Doing machine learning on non-
anonymous datasets are often fraught with biases. We should
try to anonymize data as much as possible.

134

Tokenization
When dealing with natural language sentences, the first
activity is typically to tokenize the sentence. Given a sentence
that reads such as The child was learning a new word and was using it
excessively. "Shan't!", she cried. We need to split the sentence into
the components that make up the sentence. We call each
component a token, hence the name of the process
is tokenization. Here's one possible tokenization method, in
which we do a simple strings.Split(a, " ").

Here's a simple program:

func main() {

 a := "The child was learning a new word and was using it excessively. \"shan't!\", she cried"

 dict := make(map[string]struct{})

 words := strings.Split(a, " ")

 for _, word := range words{

 fmt.Println(word)

 dict[word] = struct{}{} // add the word to the set of words already seen before.

 }

}

This is the output we will get:

The

child

was

learning

a

new

word

and

was

using

135

it

excessively.

"shan't!",

she

cried

Now think about this in the context of adding words to a
dictionary to learn. Let's say we want to use the same set of
English words to form a new sentence: she shan't be learning
excessively. (Forgive the poor implications in the sentence). We
add it to our program, and see if it shows up in the dictionary:

func main() {

 a := "The child was learning a new word and was using it excessively. \"shan't!\", she cried"

 dict := make(map[string]struct{})

 words := strings.Split(a, " ")

 for _, word := range words{

 dict[word] = struct{}{} // add the word to the set of words already seen before.

 }

 b := "she shan't be learning excessively."

 words = strings.Split(b, " ")

 for _, word := range words {

 _, ok := dict[word]

 fmt.Printf("Word: %v - %v\n", word, ok)

 }

}

This leads to the following result:

Word: she - true

Word: shan't - false

Word: be - false

Word: learning - true

Word: excessively. - true

A superior tokenization algorithm would yield a result as
follows:

136

The

child

was

learning

a

new

word

and

was

using

it

excessively

.

"

sha

n't

!

"

,

she

cried

A particular thing to note is that the symbols and punctuation
are now tokens. Another particular thing to note is shan't is
now split into two tokens: sha and n't. The word shan't is a
contraction of shall and not; therefore, it is tokenized into two
words. This is a tokenization strategy that is unique to
English. Another unique point of English is that words are
separated by a boundary marker—the humble space. In
languages where there are no word boundary markers, such as
Chinese or Japanese, the process of tokenization becomes
significantly more complicated. Add to that languages such as
Vietnamese, where there are markers for boundaries of
syllables, but not words, and you have a very complicated
tokenizer at hand.

The details of a good tokenization algorithm are fairly
complicated, and tokenization is worthy of a book to itself, so
we shan't cover it here.

The best part about the LingSpam corpus is that the tokenization

137

has already been done. Some notes such as compound words
and contractions are not tokenized into different tokens such
as the example of shan't. They are treated as a single word. For
the purposes of a spam classifier, this is fine. However, when
working with different types of NLP projects, the reader might
want to consider better tokenization strategies.

Here is a final note about tokenization strategies: English is not a
particularly regular language. Despite this, regular expressions are useful
for small datasets. For this project, you may get away with the following
regular expression:
const re = `([A-Z])(\.[A-Z])+\.?|\w+(-\w+)*|\$?\d+(\.\d+)?%?|\.\.\.|[][.,;"'?():-_` + "`]"

138

Normalizing and
lemmatizing
In the previous section, I wrote that all the words in the
second example, she shan't be excessively learned, are already in the
dictionary from the first sentence. The observant reader might
note the word be isn't actually in the dictionary. From a
linguistics point of view, that isn't necessarily false. The word
be is the root word of is, of which was is the past tense. Here,
there is a notion that instead of just adding the words directly,
we should add the root word. This is called lemmatization.
Continuing from the previous example, the following are the
lemmatized words from the first sentence:

the

child

be

learn

a

new

word

and

be

use

it

excessively

shall

not

she

cry

Again, here I would like to point out some inconsistencies that
will be immediately obvious to the observant reader.

139

Specifically, the word excessively has the root word of excess. So
why was excessively listed? Again, the task of lemmatization
isn't exactly a straightforward lookup of the root word in a
dictionary. Often, in complex NLP related tasks, the words
have to be lemmatized according to the context they are in.
That's beyond the scope of this chapter because, as before, it's
a fairly involved topic that could span an entire chapter of a
book on NLP preprocessing.

So, let's go back to the topic of adding a word to a dictionary.
Another useful thing to do is to normalize the words. In
English, this typically means lowercasing the text, replacing
unicode combination characters and the like. In the Go
ecosystem, there is an extended standard library package that
does just this: golang.org/x/text/unicode/norm. In particular, if we are
going to work on real datasets, I personally prefer a NFC
normalization schema. A good resource on string
normalization is on the Go blog post as well: https://blog.golang.org
/normalization. The content is not specific to Go, and is a good
guide to string normalization in general.

The LingSpam corpus comes with variants that are normalized
(by lowercasing and NFC) and lemmatized. They can be found
in the lemm and lemm_stop variants of the corpus.

https://blog.golang.org/normalization

140

Stopwords
By reading this, I would assume the reader is familiar with
English. And you may have noticed that some words are used
more often than others. Words such as the, there, from, and so
on. The task of classifying whether an email is spam or ham is
inherently statistical in nature. When certain words are used
often in a document (such as an email), it conveys more
weight about what that document is about. For example, I
received an email today about cats (I am a patron of the Cat
Protection Society). The word cat or cats occurred eleven times
out of the 120 or so words. It would not be difficult to assume
that the email is about cats.

However, the word the showed up 19 times. If we were to
classify the topic of the email by a count of words, the email
would be classified under the topic the. Connective words such
as these are useful in understanding the specific context of the
sentences, but for a Naïve statistical analysis, they often add
nothing more than noise. So, we have to remove them.

Stopwords are often specific to projects, and I'm not a
particular fan of removing them outright. However, the LingSpam
corpus has two variants: stop and lemm_stop, which has the
stopwords list applied, and the stopwords removed.

141

Ingesting the data
Now, without much further ado, let's write some code to ingest
the data. First, we need a data structure of a training example:

// Example is a tuple representing a classification example

type Example struct {

 Document []string

 Class

}

The reason for this is so that we can parse our files into a list
of Example. The function is shown here:

func ingest(typ string) (examples []Example, err error) {

 switch typ {

 case "bare", "lemm", "lemm_stop", "stop":

 default:

 return nil, errors.Errorf("Expected only \"bare\", \"lemm\", \"lemm_stop\" or \"stop\"")

 }

 var errs errList

 start, end := 0, 11

 for i := start; i < end; i++ { // hold 30% for crossval

 matches, err := filepath.Glob(fmt.Sprintf("data/lingspam_public/%s/part%d/*.txt", typ, i))

 if err != nil {

 errs = append(errs, err)

 continue

 }

 for _, match := range matches {

 str, err := ingestOneFile(match)

 if err != nil {

 errs = append(errs, errors.WithMessage(err, match))

 continue

 }

142

 if strings.Contains(match, "spmsg") {

 // is spam

 examples = append(examples, Example{str, Spam})

 } else {

 // is ham

 examples = append(examples, Example{str, Ham})

 }

 }

 }

 if errs != nil {

 err = errs

 }

 return

}

Here, I used filepath.Glob to find a list of files that matches the
pattern within the specific directory, which is hardcoded. It
doesn't have to be hardcoded in your actual code, but
hardcoding the path makes for simpler demo programs. For
each of the matching filenames, we parse the file using the
ingestOneFile function. Then we check whether the filename
contains spmsg as a prefix. If it does, we create an Example that has
Spam as its class. Otherwise, it will be marked as Ham. In the later
sections of this chapter, I will walk through the Class type and
the rationale for choosing it. For now, here's the
ingestOneFile function. Take note of its simplicity:

func ingestOneFile(abspath string) ([]string, error) {

 bs, err := ioutil.ReadFile(abspath)

 if err != nil {

 return nil, err

 }

 return strings.Split(string(bs), " "), nil

}

143

Handling errors
There is a central thesis in some programming language
theories that errors in most programs happen at the boundary.
While there are many interpretations of this thesis
(boundaries of what? Some scholars think it's at the
boundaries of functions; some think it's at the boundaries of
computation), what is certainly true from experience is that
boundaries of I/O are where the most errors happen. Hence,
we have to be extra careful when dealing with input and
output.

For the purposes of ingesting the files, we define an errList type
as follows:

type errList []error

func (err errList) Error() string {

 var buf bytes.Buffer

 fmt.Fprintf(&buf, "Errors Found:\n")

 for _, e := range err {

 fmt.Fprintf(&buf, "\t%v\n", e)

 }

 return buf.String()

}

That way we can continue, even if an error happens while
reading a file. The error will be bubbled back all the way to the
top without causing any panic.

144

The classifier
Before we continue to build our classifier, let's imagine what
the main function will look as follows. It will look something
similar to this:

unc main() {

 examples, err := ingest("bare")

 log.Printf("Examples loaded: %d, Errors: %v", len(examples), err)

 shuffle(examples)

 if len(examples) == 0 {

 log.Fatal("Cannot proceed: no training examples")

 }

 // create new classifier

 c := New()

 // train new classifier

 c.Train(examples)

 // predict

 predicted := c.Predict(aDocument)

 fmt.Printf("Predicted %v", predicted)

}

The use of Train and Predict as exported methods are useful in
guiding us on what to build next. From the sketch in the
preceding code block, we need a Classifier type, that has
Train and Predict at the very least. So we'll start by doing that:

type Classifier {}

func (c *Classifier) Train(examples []Example) {}

func (c *Classifier) Predict(document []string) Class { ... }

145

So, now, it becomes a question of how the classifier works.

146

Naive Bayes
The classifier is a Naive Bayes classifier. To break it down,
Naive in the phrase Naive Bayes means that we are assuming
that all the input features are independent. To understand
how the classifier works, an additional component needs to be
introduced first: the term frequency-inverse frequency
(TF-IF) pair of statistics.

147

TF-IDF
TF-IDF, per its namesake, is comprised of two statistics: term
frequency (TF) and inverse document frequency (IDF).

The central thesis to TF is that if a word (called a term)
occurs many times in a document, it means that the document
revolves more around that word. It makes sense; look at your
emails. The keywords typically revolve around a central topic.
But TF is a lot more simplistic than that. There is no notion of
topics. It's just a count of how many times a word happens in a
document.

IDF, on the other hand, is a statistic that determines how
important a term is to a document. In the examples we've
seen, do note that the word Subject, with a capital S occurs once
in both types of documents: spam and ham. In broad strokes,
IDF is calculated by the following:

.

The exact formula varies and there are subtleties to each
variation, but all adhere to the notion of dividing the total
number of documents over the frequency of the term.

For the purposes of our project, we will be using the tf-idf
library from go-nlp, which is a repository of NLP-related
libraries for Go. To install it, simply run the following
command:

go get -u github.com/go-nlp/tfidf

148

 It is an extremely well, tested library, with 100% test
coverage.

When used together, represents a useful weighting
scheme for calculating the importance of a word in a
document. It may seem simple, but it is very powerful,
especially when used in the context of probability.

Do note that TF-IDF cannot strictly be interpreted as a probability. There
are some theoretical nastiness that presents itself when strictly interpreting
IDF as a probability. Hence, in the context of this project, we will be
treating TF-IDF as a sort of weighting scheme to a probability.

Now we are ready to talk about the basics of the Naive Bayes
algorithm. But first I'd like to further emphasize certain
intuitions of Bayes' theorem.

149

Conditional probability
We'll start with the notion of conditional probability. To set a
scene, we'll consider several fruit types:

Apple

Avocado

Banana

Pineapple

Nectarine

Mango

Strawberry

For each fruit type, we will have several instances of those
fruits—so we could have a green Granny Smith and a red Red
Delicious in the class of apples. Likewise, we could have ripe
and unripe fruits—mangoes and bananas could be yellow
(ripe) or green (unripe), for example. Lastly, we can also
classify these fruits by what kind of fruit it is—tropical
(avocado, banana, pineapple, and mango) versus non-tropical
fruits:

Fruit Can be
green

Can be
yellow

Can be
red

Is
tropical

Apple yes no yes no

Avocado yes no no yes

150

Banana yes yes no yes

Lychee yes no yes yes

Mango yes yes no yes

Nectarine no yes yes no

Pineapple yes yes no yes

Strawberry yes no yes no

I would like you to now imagine you're blindfolded and you
pick a fruit. I will then describe a feature of the fruit, and you
would guess the fruit.

Let's say the fruit you picked has a yellow outside. What are
the possible fruits? Nectarines, bananas, pineapples, and
mangoes come to mind. If you pick one of the options you
would have a one in four chance of being correct. We call this

the probability of yellow . The numerator is
the number of yeses along the Can be yellow column, and the
denominator is the total number of rows.

If I give you another feature about the fruit, you can improve
your odds. Let's say I tell you that the fruit is tropical. Now
you have a one in three chance of being right—nectarines has
been eliminated from the possible choices.

We can ask this question: If we know a fruit is tropical, what is
the probability that the fruit is yellow? The answer is 3/5.
From the preceding table, we can see that there are five
tropical fruits and three of them are yellow. This is called a
conditional probability. We write it in a formula such as

151

this (for the more mathematically inclined, this is the
Kolmogorov definition of conditional probability):

This is how you read the formula: the probability of A given
B is known, and we will need to get the probability of A AND
B happening at the same time and the probability of B itself.

The conditional probability of a fruit being yellow, given that
it's tropical is three in five; there are actually a lot of tropical
fruits that are yellow—tropical conditions allow for greater
depositions of carotinoids and vitamin C during the growth of
the fruit.

Looking at a tabulated result can yield an easier
understanding of conditional probability. However, it must be
noted that the conditional probability can be calculated.
Specifically, to calculate the conditional probability, this is the
formula:

The probability of a fruit being yellow and tropical (
) is three in eight; there are three such

fruits, out of a total of eight. The probability of a fruit being
tropical () is five in eight; there are five topical
fruits out of the eight listed.

And now, we are finally ready to figure out how we got to that
one in three number. The probability of each class of fruits is
uniform. If you had to choose randomly, you would get it right
one in eight of the time. We can rephrase the question to this:
What is the probability of a fruit being a banana given that it's
yellow and tropical?

152

Let's rewrite this as a formula:

It is important that we relied on a special trick to perform the
analysis of the preceding probabilities. Specifically, we acted
as though each yes represents a singular example existing,
while a no indicates that there are no examples, or, in short,
this table:

Fruit Is
Green

Is
Yellow

Is
Red

Is
Tropical

Apple 1 0 1 0

Avocado 1 0 0 1

Banana 1 1 0 1

Lychee 1 0 1 1

Mango 1 1 0 1

Nectarine 0 1 1 0

Pineapple 1 1 0 1

Strawberry 1 0 1 0

153

This will be important for analysis for the spam detection
project. The numbers in each would be the number of
occurrences within the dataset.

154

Features
We've seen from the previous examples, that we need features,
such as whether a fruit can be green, yellow, or red, or
whether it's tropical. We're now focused on the project at
hand. What should the features be?:

Class ??? ??? ???

Spam

Ham

What makes up an email? Words make an email. So, it would
be appropriate to consider the appearance of each word
feature. We can take it further, and take the intuition that we
have developed previously with TF-IDF and instead use the
frequency of the words among the document types. Instead of
counting 1 for the existence, we count the total number of
times a word exists in the document types.

The table would look something as follows:

Class Has
XXX

Has
Site

Has
Free

Has
Linguistics ...

Spam 200 189 70 2 ...

Ham 1 2 55 120 ...

155

That also means that there are many features. We can
certainly try to enumerate all possible calculations. But doing
so would be tedious and quite computationally intensive.
Instead, we can try to be clever about it. Specifically, we will
use another definition of conditional probability to do the trick
to reduce the amount of computations that needs to be done.

156

Bayes' theorem
A conditional probability formula can also be written as Bayes'
theorem:

We call the prior probability. is called the
likelihood. These are the things we're interested in, as
 is essentially a constant anyway.

The theory at this point is a little dry. How does this relate to
our project?

For one, we can rewrite the generic Bayes' theorem to one that
fits our project:

This formula perfectly encapsulates our project; given a
document made up of words, what is the probability that it's
Ham or Spam? In the next section, I will show you how to translate
this formula into a very powerful classifier, in fewer than 100
lines of code.

157

Implementating the
classifier
In the earlier parts of the chapter, we sketched out a dummy
Classifier type that does nothing. Let's make it do something
now:

type Classifier struct {

 corpus *corpus.Corpus

 tfidfs [MAXCLASS]*tfidf.TFIDF

 totals [MAXCLASS]float64

 ready bool

 sync.Mutex

}

Here, there are introductions to a few things. Let's walk them
through one by one:

We'll start with the corpus.Corpus type.

This is a type imported from the corpus package, which is a
subpackage of the NLP library for Go, lingo.

To install lingo, simply run go get -u
github.com/chewxy/lingo/....

To use the corpus package, simply import it like so: import
"github.com/chewxy/lingo/corpus".

158

Bear in mind that in the near future, the package will change to github.com/go-
nlp/lingo. If you are reading this after January 2019, use the new address.

A corpus.Corpus object simply maps from a word to an integer.
The reason for doing this is twofold:

It saves on memory: A []int uses considerably less
memory than []string. Once a corpus has been
converted to be IDs, the memory for the strings can be
freed. The purpose of this is to provide an alternative
to string interning.

String interning is fickle: String interning is a
procedure where for the entire program's memory,
only exactly one copy of the string exists. This turns
out to be harder than expected for most tasks. Integers
provide a more stable interning procedure.

Next, we are faced with two fields which are arrays.
Specifically, tfidfs [MAXCLASS]*tfidf.TFIDF and totals [MAXCLASS]float64.
At this point, it might be a good idea to talk about the Class
type.

159

Class
We were introduced to the Class type when we were writing the
ingestion code. This is the definition of Class:

type Class byte

const (

 Ham Class = iota

 Spam

 MAXCLASS

)

In other words, Ham is 0, Spam is 1, and MAXCLASS is 2. They're all
constant values and can't be changed at runtime.

It would be prudent to note upfront, that there are limitations
to this approach. In particular, it means that you have to know
before running the program how many classes there will be. In
our case, we know that there will be at most two classes: Spam or
Ham. If we know there is a third class, say Prosciutto, for example,
then we can code it as a value before MAXCLASS. There are many
reasons for using a constant numerical value typed as a Class.
Two of the primary reasons would be correctness and
performance.

Imagine we have a function that takes Class as an input:

func ExportedFn(a Class) error {

 // does some decision making with a

}

160

Someone who uses this function outside this library may pass
in 3 as the class: ExportedFn(Class(3)). We can instantly tell if the
value is valid if we have a validation function that looks
something as follows:

func (c Class) isValid() bool { return c < MAXCLASS }

Granted, this is not as nice as other languages, such as
Haskell, where you could just do this:

data Class = Ham

 |Spam

And let the compiler check for you if that is at the call site,
whether the value passed in was valid or not. We still want the
correctness, so we defer the checks to the runtime.
ExportedFn now reads as follows:

func ExportedFn(a Class) error {

 if !a.isValid() {

 return errors.New("Invalid class")

 }

 // does some decision making with a

 }

}

The notion of data types with ranges of valid value is not a
revolutionary notion. Ada for example, has bounded ranges
since the 1990s. And the best part about using a constant
value as a range with MAXCLASS is that we can fake the range
checks and do them at runtime. In this respect, Go is more or
less the same as Python, Java, or other unsafe languages.
Where this truly shines however, is in performance.

A tip for good software engineering practice is to make your program as
knowable by the human as possible without sacrificing understanding or
neatness. Using constant numerical values (or enums) generally allows the

161

human programmer to understand the constrains that the value is allowed
to have. Having constant string values, as we will see in the next section,
exposes the programmer to unconstrained values. This is where bugs
usually happen.

Note that in the Classifier struct, both tfidfs and totals are
arrays. Unlike slices, arrays in Go do not require an extra layer
of indirection when accessing values. This makes things a tiny
bit faster. But in order to truly understand the tradeoffs of this
design, we need to look at alternative designs for Class and with
them the alternative designs of the fields, tfidfs and totals.

162

Alternative class design
Here, we imagine an alternative design of Class:

type Class string

const (

 Ham Class = "Ham"

 Spam Class = "Spam"

)

With this change, we will have to update the definition of
Classifier:

type Classifier struct {

 corpus *corpus.Corpus

 tfidfs map[Class]*tfidf.TFIDF

 totals map[Class]float64

 ready bool

 sync.Mutex

}

Consider now the steps required to get the totals of class Ham:

1. The string has to be hashed
2. The hash will be used to look up the bucket where the

data for totals is stored
3. An indirection is made to the bucket and the data is

retrieved and returned to the user

163

Consider now the steps required to get the totals of class Ham if
the class design was the original:

Since Ham is a number, we can directly compute the
location of the data for retrieval and return to the user.

By using a constant value and a numeric definition of the type
Class, and an array type for totals, we are able to skip two steps.
This yields very slight performance improvements. In this
project, they're mostly negligible, until your data gets to a
certain size.

The aim of this section on the Class design is to instill a sense of
mechanical sympathy. If you understand how the machine
works, you can design very fast machine learning algorithms.

All this said and done, there is one assumption that underpins
this entire exercise. This is a main package. If you're designing a
package that will be reused on different datasets, the tradeoff
considerations are significantly different. In the context of
software engineering, overgeneralizing your package often
leads to leaky abstractions that are hard to debug. Better to
write slightly more concrete and specific data structures that
are purpose built.

164

Classifier part II
One of the main considerations is that a Naive Bayes classifier
is a very simple program, and very difficult to get wrong. The
entire program is in fact fewer than 100 lines. Let's look at it
further.

We have sketched out so far the method Train, which will train
the classifier on a given set of inputs. Here's how it looks:

func (c *Classifier) Train(examples []Example) {

 for _, ex := range examples {

 c.trainOne(ex)

 }

}

func (c *Classifier) trainOne(example Example) {

 d := make(doc, len(example.Document))

 for i, word := range example.Document {

 id := c.corpus.Add(word)

 d[i] = id

 }

 c.tfidfs[example.Class].Add(d)

 c.totals[example.Class]++

}

So here it's very clear that Train is an operation. But
the function is structured in such a way that it would be trivial
to parallelize the calls to c.trainOne. Within the context of this
project, this wasn't necessary because the program was able to
complete in under a second. However, if you are adapting this
program for larger and more varied datasets, it may be
instructive to parallelize the calls. The Classifier and
tfidf.TFIDF structs have mutexes in them to allow for these sorts

165

of extensions.

But what's more interesting is the trainOne example. Looking at
it, all it seems to do is to add each word to the corpus, get its
ID, and then add the ID to the doc type. doc, incidentally, is
defined as such:

type doc []int

func (d doc) IDs() []int { return []int(d) }

This definition is done to fit into the interface that
tfidf.TFIDF.Add accepts.

Let's look closer at the trainOne method. After making the doc,
the words from the example are added to the corpus, while the
IDs are then put into the doc. The doc is then added to the
tfidf.TFIDF of the relevant class.

At first glance, there isn't much training here; we're just
adding to the TF statistic.

The real magic happens in the Predict and Score methods.

Score is defined as such:

func (c *Classifier) Score(sentence []string) (scores [MAXCLASS]float64) {

 if !c.ready {

 c.Postprocess()

 }

 d := make(doc, len(sentence))

 for i, word := range sentence {

 id := c.corpus.Add(word)

 d[i] = id

 }

 priors := c.priors()

 // score per class

166

 for i := range c.tfidfs {

 score := math.Log(priors[i])

 // likelihood

 for _, word := range sentence {

 prob := c.prob(word, Class(i))

 score += math.Log(prob)

 }

 scores[i] = score

 }

 return

}

Given a tokenized sentence, we want to return the scores of
each class. The idea is so that we can then look through the
scores and find the class with the highest score:

func (c *Classifier) Predict(sentence []string) Class {

 scores := c.Score(sentence)

 return argmax(scores)

}

The Score function is worth a deeper look because that's where
all the magic happens. First, we check the classifier is ready to
score. An online machine learning system learns as new data
comes in. This design means that the classifier cannot be used
in an online fashion. All the training needs to be done up
front. Once that training is done, the classifier will be locked,
and won't train any further. Any new data will have to be part
of a different run.

The Postprocess method is quite simple. Having recorded all the
TF statistics, we now want to calculate the relative importance
of each term to the documents. The tfidf package comes with a
simple Log-based calculation of the IDF, but you can use any
other IDF calculating function, as follows:

func (c *Classifier) Postprocess() {

 c.Lock()

167

 if c.ready {

 c.Unlock()

 return

 }

 var docs int

 for _, t := range c.tfidfs {

 docs += t.Docs

 }

 for _, t := range c.tfidfs {

 t.Docs = docs

 // t.CalculateIDF()

 for k, v := range t.TF {

 t.IDF[k] = math.Log1p(float64(t.Docs) / v)

 }

 }

 c.ready = true

 c.Unlock()

}

It is important to note that there is an update to the document
count of each class: t.Docs = docs to the sum of all the documents
seen. This was because as we were adding to the term
frequency of each class, the tfidf.TFIDF struct wouldn't be aware
of documents in other classes.

The reason we would want to calculate the IDF is to control
the values a bit more.

Recall that the conditional probability can be written in the
Bayes' theorem form:

Let's familiarize ourselves with the formula, once again by
restating it in English, first by familiarizing ourselves with the
terms:

 : This is the prior probability of a class. If
we have a pool of email messages and we randomly

168

pick one out, what is the probability that the email is
Ham or Spam? This largely corresponds to the dataset that
we have. From the exploratory analysis, we know that
the ratio between Ham and Spam is around 80:20.

: This is the likelihood of any
random document belongs to a class. Because a
document is comprised of individual words, we simply
make a Naïve assumption that these words are
independent of one another. So we want the
probability of .
Assuming the words are independent gives us the
ability to simply multiply the probabilities.

So, to put it in English:

The conditional probability of a class being Ham given a document is the result of
multiplying the prior probability of a document being ham and the likelihood that the
document is Ham.

The observant reader may note that I have elided explanation
of . The reason is simple. Consider what the
probability of the document is. It's simply the multiplication of
all the probabilities of a word in the corpus. It doesn't in
anyway interact with the Class. It could well be a constant.

Furthermore, we run into another problem if we do use
probabilities multiplied. Multiplying probabilities tend to
yield smaller and smaller numbers. Computers do not have
true rational numbers. float64 is a neat trick to mask the
fundamental limitations that a computer has. You will
frequently run into edge cases where the numbers become too
small or too big when working on machine learning problems.

Fortunately, for this case, we have an elegant solution: We can
elect to work in the log domain. Instead of considering the

169

likelihood, we would consider the log likelihood. Upon taking
logs, multiplication becomes addition. This allows us to keep it
out of sight, and out of mind. For most cases, this project
included, this is a fine choice. There may be cases where you
wish to normalize the probabilities. Then, ignoring the
denominator wouldn't work well.

Let's look at some code on how to write priors:

func (c *Classifier) priors() (priors []float64) {

 priors = make([]float64, MAXCLASS)

 var sum float64

 for i, total := range c.totals {

 priors[i] = total

 sum += total

 }

 for i := Ham; i < MAXCLASS; i++ {

 priors[int(i)] /= sum

 }

 return

}

The priors are essentially the proportion of Ham or Spam to the
sum of all documents. This is fairly simple. To compute the
likelihood, let's look at the loop in Score:

 // likelihood

 for _, word := range sentence {

 prob := c.prob(word, Class(i))

 score += math.Log(prob)

 }

We incorporate the likelihood function into the scoring
function simply for ease of understanding. But the important
takeaway of the likelihood function is that we're summing the
probabilities of the word given the class. How do you
calculate ? such as the following:

170

func (c *Classifier) prob(word string, class Class) float64 {

 id, ok := c.corpus.Id(word)

 if !ok {

 return tiny

 }

 freq := c.tfidfs[class].TF[id]

 idf := c.tfidfs[class].IDF[id]

 // idf := 1.0

 // a word may not appear at all in a class.

 if freq == 0 {

 return tiny

 }

 return freq * idf / c.totals[class]

}

First, we check whether the word has been seen. If the word
hasn't been seen before, then we return a default value tiny—a
small non-zero value that won't cause a division-by-zero error.

The probability of a word occurring in a class is simply its
frequency divided by the number of words seen by the class.
But we want to go a bit further; we want to control for
frequent words being too important a factor in deciding the
probability of the class, so we multiply it by the IDF that we
had calculated earlier. And that's how you'd get the
probabilities of the word given a class.

After we have the probability, we take the log of it, and then
add it to the score.

171

Putting it all together
Now we have all the pieces. Let's look at how to put it all
together:

1. We first ingest the dataset and then split the data out
into training and cross validation sets. The dataset is
split into ten parts for a k-fold cross-validation. We
won't do that. Instead, we'll do a single fold cross-
validation by holding out 30% of the data for cross-
validation:

 typ := "bare"

 examples, err := ingest(typ)

 log.Printf("errs %v", err)

 log.Printf("Examples loaded: %d", len(examples))

 shuffle(examples)

 cvStart := len(examples) - len(examples)/3

 cv := examples[cvStart:]

 examples = examples[:cvStart]

2. We then train the classifier and then check to see
whether the classifier can predict its own dataset well:

 c := New()

 c.Train(examples)

 var corrects, totals float64

 for _, ex := range examples {

 // log.Printf("%v", c.Score(ham.Document))

172

 class := c.Predict(ex.Document)

 if class == ex.Class {

 corrects++

 }

 totals++

 }

 log.Printf("Corrects: %v, Totals: %v. Accuracy %v", corrects, totals, corrects/totals)

3. After training the classifier, we perform a cross-
validation on the data:

 log.Printf("Start Cross Validation (this classifier)")

 corrects, totals = 0, 0

 hams, spams := 0.0, 0.0

 var unseen, totalWords int

 for _, ex := range cv {

 totalWords += len(ex.Document)

 unseen += c.unseens(ex.Document)

 class := c.Predict(ex.Document)

 if class == ex.Class {

 corrects++

 }

 switch ex.Class {

 case Ham:

 hams++

 case Spam:

 spams++

 }

 totals++

 }

4. Here, I also added an unseen and totalWords count, as a
simple statistic to see how well the classifier can
generalize when encountering previously unseen
words.

Additionally, because we know ahead of time that the dataset

173

comprises roughly 80% Ham and 20% Spam, we have a baseline to
beat. Simply put, we could write a classifier that does this:

type Classifier struct{}

func (c Classifier) Predict(sentence []string) Class { return Ham }

Imagine we have such a classifier. Then it would be right 80%
of the time! For us to know that our classifier is good, it would
have to beat a baseline. For the purposes of this chapter, we
simply print out the statistics and tweak accordingly:

 fmt.Printf("Dataset: %q. Corrects: %v, Totals: %v. Accuracy %v\n", typ, corrects, totals, corrects/totals)

 fmt.Printf("Hams: %v, Spams: %v. Ratio to beat: %v\n", hams, spams, hams/(hams+spams))

 fmt.Printf("Previously unseen %d. Total Words %d\n", unseen, totalWords)

So, this is what the final main function looks as follows:

func main() {

 typ := "bare"

 examples, err := ingest(typ)

 if err != nil {

 log.Fatal(err)

 }

 fmt.Printf("Examples loaded: %d\n", len(examples))

 shuffle(examples)

 cvStart := len(examples) - len(examples)/3

 cv := examples[cvStart:]

 examples = examples[:cvStart]

 c := New()

 c.Train(examples)

 var corrects, totals float64

 for _, ex := range examples {

 // fmt.Printf("%v", c.Score(ham.Document))

 class := c.Predict(ex.Document)

 if class == ex.Class {

 corrects++

 }

 totals++

174

 }

 fmt.Printf("Dataset: %q. Corrects: %v, Totals: %v. Accuracy %v\n", typ, corrects, totals, corrects/totals)

 fmt.Println("Start Cross Validation (this classifier)")

 corrects, totals = 0, 0

 hams, spams := 0.0, 0.0

 var unseen, totalWords int

 for _, ex := range cv {

 totalWords += len(ex.Document)

 unseen += c.unseens(ex.Document)

 class := c.Predict(ex.Document)

 if class == ex.Class {

 corrects++

 }

 switch ex.Class {

 case Ham:

 hams++

 case Spam:

 spams++

 }

 totals++

 }

 fmt.Printf("Dataset: %q. Corrects: %v, Totals: %v. Accuracy %v\n", typ, corrects, totals, corrects/totals)

 fmt.Printf("Hams: %v, Spams: %v. Ratio to beat: %v\n", hams, spams, hams/(hams+spams))

 fmt.Printf("Previously unseen %d. Total Words %d\n", unseen, totalWords)

}

Running it on bare, this is the result I get the following:

Examples loaded: 2893

Dataset: "bare". Corrects: 1917, Totals: 1929. Accuracy 0.9937791601866252

Start Cross Validation (this classifier)

Dataset: "bare". Corrects: 946, Totals: 964. Accuracy 0.9813278008298755

Hams: 810, Spams: 154. Ratio to beat: 0.8402489626556017

Previously unseen 17593. Total Words 658105

To see the effects of removing stopwords and lemmatization,
we simply switch to using the lemm_stop dataset, and this is the
result I get the following:

Dataset: "lemm_stop". Corrects: 1920, Totals: 1929. Accuracy 0.995334370139969

Start Cross Validation (this classifier)

175

Dataset: "lemm_stop". Corrects: 948, Totals: 964. Accuracy 0.983402489626556

Hams: 810, Spams: 154. Ratio to beat: 0.8402489626556017

Previously unseen 16361. Total Words 489255

Either way, the classifier is brutally effective.

176

Summary
In this chapter, I have shown the basics of what a Naive Bayes
classifier looks like—a classifier written with the fundamental
understanding of statistics will trump any publicly available
library any day.

The classifier itself is fewer than 100 lines of code, but with it
comes a great deal of power. Being able to perform
classification with 98% or greater accuracy is no mean feat.

A note on the 98% figure: This is not state of the art. State of
the art is in the high 99.xx%. The main reason why there is a
race for that final percent is because of scale. Imagine you're
Google and you're running Gmail. A 0.01% error means
millions of emails being misclassified. That means many
unhappy customers.

For the most part, in machine learning, the case of whether to
go for newer untested methods really depends on the scale of
your problems. In my experience from the past 10 years doing
machine learning, most companies do not reach that scale of
data. As such, the humble Naive Bayes classifier would serve
very well.

In the next chapter, we shall look at one of the most vexing
issues that humans face: time.

177

Decomposing CO2
Trends Using Time
Series Analysis
If you are reading this book in the year 2055—assuming you're
still using a year system based on the Common Era (a year is
the time taken by the planet you're on to go around the sun
once)—congratulations! You have survived. This book is
written in the year 2018, and we as humans have much to
worry about in terms of the survival of our species.

By and large, we have managed to work our way into a
relatively stable peace, but the future of our species as a whole
is somewhat at risk from various threats. Most of these threats
have been caused by our own actions in the past. I'd like to
emphasize a point here: I'm not assigning blame to anyone in
the past for causing these threats. Our ancestors were busy
optimizing to different goals, and the threats are typically an
unforeseen/unforeseeable side-effect of the actions at that
time.

A compounding factor is that humans are, biologically
speaking, not very well suited to thinking about the future.
Our brains simply do not see our future selves as a continuity
of our current selves [0],[1]. As a result, we often think of
things that may happen to us in the future as things that
happen to someone else, or that the future is exaggerated. This
has led to decisions made today without consideration to the
effect in the future. This has led to many threats that arise
from past actions of our species.

178

One of those threats is runaway climate change that could ruin
our entire way of living, and potentially threaten the entire
human species with extinction. It is very real and very
unexaggerated. Human-induced climate change is a very wide
topic with many niches. The primary gist of the major cause of
human-induced climate change is the increased rates release
of carbon dioxide (CO) into the air.

In this chapter, we will perform a time series analysis on
CO in the air. The main goal of this chapter is to serve as an
introduction to time series analysis. On the technical end, you
will learn the finer side of plotting using Gonum. Also, we'll
learn how to deal with non-conventional data formats.

2

2

179

Exploratory data
analysis
The amount of CO in the air can be measured. The National
Oceanic and Atmospheric Administration (NOAA)
department has been collecting data on the amount of CO in
the air since the early 1950s. The data we'll be using can be
found at https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html. We'll
specifically be using that Mauna Loa monthly mean data.

The data, after removing the comments, looks something like
this:

decimal average interpolated trend #days

date (season corr)

1958 3 1958.208 315.71 315.71 314.62 -1

1958 4 1958.292 317.45 317.45 315.29 -1

1958 5 1958.375 317.50 317.50 314.71 -1

1958 6 1958.458 -99.99 317.10 314.85 -1

1958 7 1958.542 315.86 315.86 314.98 -1

1958 8 1958.625 314.93 314.93 315.94 -1

In particular, we are interested in the interpolated column.

Because this is a particularly interesting dataset, it might be
worth looking at how to download and preprocess the data
directly in Go.

2

2

https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html

180

Downloading from non-
HTTP sources
We'll start by writing the function that will download the data,
as follows:

func download() io.Reader {

 client, err := ftp.Dial("aftp.cmdl.noaa.gov:21")

 dieIfErr(err)

 dieIfErr(client.Login("anonymous", "anonymous"))

 reader, err := client.Retr("products/trends/co2/co2_mm_mlo.txt")

 dieIfErr(err)

 return reader

}

The NOAA data sits on a publicly accessible FTP server: ftp://af
tp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt. If you visit the URI via
a web browser, you would see the data immediately. To access
the data programmatically is a little tricky, as this is not a
typical HTTP URL.

To handle FTP connections, we will be using the
github.com/jlaffaye/ftp package. The package can be installed
using the standard go get method: go get -u github.com/jlaffaye/ftp.
The documentation for the package is a little sparse and
somewhat requires you to understand the FTP standards. But,
fear not, using FTP to acquire the file is relatively simple.

First we need to dial in to the server (you would need to do the
same if you were working with HTTP endpoints—net/http

merely abstracts out the dialing in so you wouldn't necessarily

ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt

181

see what's happening in the background). Because dialing in is
a fairly low-level procedure, we would need to supply the ports
as well. Just like the convention for HTTP is for the server to
listen on port 80, the convention for an FTP server is to listen
to port 21, so we'd have to connect to a server specifying that
we want to connect on port 21.

An additional oddity to those not used to working with FTP is
that FTP requires a login to the server. For servers with
anonymous read-only access, the convention is typically to use
"anonymous" as the username and password.

After successfully logging in, we retrieve the requested
resource (the file that we want) and download the file. The fttp
library at github.com/jlaffaye/ftp returns io.Reader. Think of it as a file
that contains the data.

https://github.com/jlaffaye/ftp

182

Handling non-standard
data
Parsing the data is a piece of cake with only the standard
library:

func parse(l loader) (dates []string, co2s []float64) {

 s := bufio.NewScanner(l())

 for s.Scan() {

 row := s.Text()

 if strings.HasPrefix(row, "#") {

 continue

 }

 fields := strings.Fields(row)

 dates = append(dates, fields[2])

 co2, err := strconv.ParseFloat(fields[4], 64)

 dieIfErr(err)

 co2s = append(co2s, co2)

 }

 return

}

The parsing function takes a loader, which when called, returns
a io.Reader. We then wrap the io.Reader in a bufio.Scanner. Recall
that the format is not standard. There are some things that we
want and some things we don't. The data however is in a fairly
consistent format—we can use the standard library functions
to filter the ones we want and the ones we don't.

The s.Scan() method scans io.Reader until it encounters a
newline. We can retrieve the string using s.Text(). If the string
starts with #, we skip the line.

183

Otherwise, we use strings.Fields to split the string into fields.
The reason why we use strings.Fields instead of strings.Split is
because the latter does not handle multiple spaces well.

Following the splitting of the row into fields, we parse things
that are necessary:

type loader func() io.Reader

Why do we need a loader type?

The reason is simple: we want to be good citizens— we should
not be repeatedly requesting data from the FTP server while
we are developing the program. Rather, we would cache the
file and work with that single file while in development mode.
This way, we wouldn't have to download from the internet all
the time.

The corresponding loader type that reads from the file looks
something like this, and is rather self-explanatory:

func readFromFile() io.Reader {

 reader, err := os.Open("data.txt")

 dieIfErr(err)

 return reader

}

184

Dealing with decimal
dates
One of the more interesting custom formats used in this data
is dates. It's a format known as decimal dates. They look like
as follows:

2018.5

What this means is that this date represents the halfway point
of the year 2018. There are 365 days in 2018. The 50% mark
would be 183 days into the year: July 3 2018.

We can translate this logic into the following code:

// parseDecimalDate takes a string in format of a decimal date

// "2018.05" and converts it into a date.

//

func parseDecimalDate(a string, loc *time.Location) (time.Time, error) {

 split := strings.Split(a, ".")

 if len(split) != 2 {

 return time.Time{}, errors.Errorf("Unable to split %q into a year followed by a decimal", a)

 }

 year, err := strconv.Atoi(split[0])

 if err != nil {

 return time.Time{}, err

 }

 dec, err := strconv.ParseFloat("0."+split[1], 64) // bugs can happen if you forget to add "0."

 if err != nil {

 return time.Time{}, err

 }

 // handle leap years

185

 var days float64 = 365

 if year%400 == 0 || year%4 == 0 && year%100 != 0 {

 days = 366

 }

 start := time.Date(year, time.January, 1, 0, 0, 0, 0, loc)

 daysIntoYear := int(dec * days)

 retVal := start.AddDate(0, 0, daysIntoYear)

 return retVal, nil

}

The first step is to split the string into the year and the decimal
portion. The year is parsed as an int datatype, while the
decimal part is parsed as a floating point number to ensure we
can perform math. Here, it's important to note that a bug can
happen if you're not careful about it: after splitting the string,
"0." needs to be prepended to the string.

A cleaner alternative would be to parse the string as float64,
and then use math.Modf to split the float into the integer
component and the decimal component.

Either way, once we have the decimal component, we can use
it to figure out how many days into the year it is. But first we'd
have to figure out if the year is a leap year.

We can calculate the number of days into the years simply by
multiplying the decimal number by the number of days in the
year. Following from that, we simply add the number of dates,
and return the date.

One thing to note is that we pass in a *time.Location—in this specific instance,
we know that the observatory is in Hawaii, and therefore we set it to
"Pacific/Honolulu". Although in this case, we could set the location to any other
location in the world, and it wouldn't change the results of the data. But this
is unique to this project—in other time series data, time zones may be
important as the data collection method may involve time data from
different time zones.

186

Plotting
Now that we've finished with getting the file and parsing it,
let's plot the data. Again, as in Chapter 2, Linear Regression-
House Price Prediction,we will be using Gonum's excellent
plotting library. This time around, we're going to be exploring
more of it in detail. We'll learn the following:

How to plot a time series

How a plot breaks down into its elements and how we
can manipulate those elements to style a chart

How to create plotters for chart types that Gonum does
not provide for

We'll start by writing a function to plot a time series:

func newTSPlot(xs []time.Time, ys []float64, seriesName string) *plot.Plot {

 p, err := plot.New()

 dieIfErr(err)

 xys := make(plotter.XYs, len(ys))

 for i := range ys {

 xys[i].X = float64(xs[i].Unix())

 xys[i].Y = ys[i]

 }

 l, err := plotter.NewLine(xys)

 dieIfErr(err)

 l.LineStyle.Color = color.RGBA{A: 255} // black

 p.Add(l)

 p.Legend.Add(seriesName, l)

 p.Legend.TextStyle.Font = defaultFont

 // dieIfErr(plotutil.AddLines(p, seriesName, xys))

 p.X.Tick.Marker = plot.TimeTicks{Format: "2006-01-01"}

187

 p.Y.Label.TextStyle.Font = defaultFont

 p.X.Label.TextStyle.Font = defaultFont

 p.X.Tick.Label.Font = defaultFont

 p.Y.Tick.Label.Font = defaultFont

 p.Title.Font = defaultFont

 p.Title.Font.Size = 16

 return p

}

Here, we use the already familiar plotter.XYs (which you would
have been acquainted with in the first chapter). Instead of
using plotutil.AddLines as we did the last time, we shall do it
manually, which allows us to control the styling of the lines a
bit better.

We simply create a new *Line object with plotter.NewLine. The
*Line object is primarily plot.Plotter, which is any type that can
draw itself onto a canvas. In the later part of this chapter, we
shall explore how to create our own plot.Plotter interface and
other associated types to draw a custom type.

188

Styling
But, for now, having access to the *Line object allows us to play
around with the styling a bit more. To set the right mood with
the rather gloomy nature of this chapter, I have chosen a stark
black line (in fact, I have grown rather fond of the stark black
line charts and have started using them in my daily plots as
well). A point to note is that I did this:

l.LineStyle.Color = color.RGBA{A: 255}

l.LineStyle.Color takes color.Color—color.RGBA is a struct found in the
color library in the standard library. It's a struct that has four
fields representing a color, such as Red, Green, Blue, and Alpha.
Here I take advantage of Go's default values—0s. But having
an Alpha value of 0 would mean that it's invisible. Hence, I only
set the A field to 255—the rest of the fields are defaulted to 0,
which gives it a stark black color.

After we set the line style, we add the line to the plot with
p.Add(l). Because we're not using plotutil.AddLines, which
abstracts away some of the manual work, we may find that if
we run the function there isn't a legend in the plot. A plot
without legends is generally useless. So, we also need to add a
legend by using p.Legend.Add(seriesName, l).

Aside from color, width, and the like, I also want to set a more
brutal feel to the plots I make for this chapter—after all, this
chapter is rather doom and gloom. I feel that the default font,
which is Times New Roman is a little too humanist. So, we'd
need to change fonts. Luckily, the extended Go standard
library comes with a font-processing library. While usually I'd

189

choose to go with slab serif style fonts for the brutal look, Go
itself comes with a font that works well—the Go family of
fonts.

How do we change fonts in a *plot.Plot? Most components of
*plot.Plot take a draw.TextStyle, which is a data structure that
configures the styling of text, including fonts. So, we can set
those fields to indicate we want to use the font we chose.

As I mentioned, in the extended standard library, Go comes
with fonts and font-processing utilities. We'll be using it here.
First, we'd have to install the packages: go get -u
golang.org/x/image/font/gofont/gomono and go get -u
github.com/golang/freetype/truetype. The former is the official
Monospace Type of the Go family of typefaces. The latter is
a library to handle TrueType fonts.

Here, a caveat must be mentioned—while draw.TextStyle does
allow for the configuration of fonts, the fonts are in a
vg.Font type, which wraps a *truetype.Font type. If we use
truetype.Parse(gomono.TTF), we will get *truetype.Font. The vg package
provides a function to make those fonts—vg.MakeFont. The reason
why this is necessary instead of just using *truetype.Font is
because vg has plenty of backends—some that could render
fonts would require information about the font size.

So, to avoid having many calls to parse the font and making a
vg.Font type, we can safely put it in a global variable, given
we've already decided ahead that all fonts will be of the same
brutal style:

var defaultFont vg.Font

func init() {

 font, err := truetype.Parse(gomono.TTF)

 if err != nil {

 panic(err)

 }

 vg.AddFont("gomono", font)

190

 defaultFont, err = vg.MakeFont("gomono", 12)

 if err != nil {

 panic(err)

 }

}

Once that's done, we can set all draw.TextStyle.Font to be
defaultFont. Setting a default font size of 12 does not, however,
mean that you're stuck with the size for everything. Because
vg.Font is a struct, not a pointer to a struct, once set in an
object, you are free to change the font size of that particular
field, as I have shown in the following two lines:

 p.Title.Font = defaultFont

 p.Title.Font.Size = 16

With our main function we can execute the following code:

func main() {

 dateStrings, co2s := parse(readFromFile)

 dates := parseDates(dateStrings)

 plt := newTSPlot(dates, co2s, "CO2 Level")

 plt.X.Label.Text = "Time"

 plt.Y.Label.Text = "CO2 in the atmosphere (ppm)"

 plt.Title.Text = "CO2 in the atmosphere (ppm) over time\nTaken over the Mauna-Loa observatory"

 dieIfErr(plt.Save(25*vg.Centimeter, 25*vg.Centimeter, "Moana-Loa.png"))

}

The result is stark , as shown in the following screenshot:

191

192

Decomposition
There are two things to note about the previous screenshot:

CO levels in the air are steadily rising over time.

There are dips and then bumps in the levels of CO , but
the result still ends up rising overall. These dips and
bumps happen on a regular pattern.

The first point is what is known to statisticians as a trend.
You may already be familiar with the notion of a Trend Line
from Microsoft Excel. A trend is a kind of pattern that
describes gradual change over time. In our case, it is quite
clear that the trend is upward.

The second point is called seasonality—for very apt reasons,
as it may turn out. Seasonality describes the pattern of
variance that happens regularly. If you carefully look at the
chart, typically at around August to October of each year, the
CO levels drop to the lowest point of the year. After which,
they rise steadily again until around May, where they peak.
Here's a good hint as to why this happens: plants suck CO
from the air through a process called photosynthesis.
Photosynthesis requires a organelle in a plant's cell called a
chloroplast, which contains a green pigment called
chlorophyll. If you live in the Northern Hemisphere, you
would be well aware that trees are greenest from Spring till
Autumn. This largely coincides with the period from May till
October. The changing of seasons cause a change in
atmospheric carbon dioxide levels. You can certainly see why

2

2

2

2

193

the term "seasonality" is quite apt.

A good question to ask might be this: Can we separate the
trend out from the seasonality so that we may be able to work
on each component individually? The answer is yes, we can. In
fact, in the remaining parts of this section, I'll show how to do
so.

Now, as to why you would want to do that, well, in our project
so far, we've seen seasonalities that are affected by real-life
calendar seasons. Imagine you were doing statistical analysis
for a toy company in a Western country. You'd see a yearly
spike around Christmas time. Often seasonality adds noise to
our analysis—it's hard to tell whether a bump in sales was due
to Christmas time or an actual increase in sales. Furthermore,
there are some cycles that don't necessarily follow the
calendar year. If you are dealing with sales in a largely
Chinese/Vietnamese community, you'd see spikes in sales
before Chinese New Year/Tet. Those do not follow our
calendar year. Ditto, if you were in the dates industry—you'd
see spikes around Ramadan as demand for dates increases
sharply during the Muslim fasting period.

While it's true that most time series would have some kind of
trend and seasonality component, it would be remiss for me to
mention that not all trends and seasonalities are particularly
useful. You might be tempted to take what you learn in this
chapter and apply it on the stock markets but buyer beware!
Analyzing complex market places is quite different from
analyzing trends of CO in the air or sales from a business. The
fundamental properties of time series in markets are
somewhat different—it's a process that has the Markov
property, which is best described as past performance
does not indicate future performance. By contrast, we
shall see, for this project, that the past is quite well correlated
with the present and the future.

But back to the topic at hand—decomposition. If you read the

2

194

comments on the data file (the lines we skipped from
importing), the following is mentioned:

"First, we compute for each month the average seasonal cycle in a 7-year window
around each monthly value. In this way, the seasonal cycle is allowed to change slowly
over time. We then determine the "trend" value for each month by removing the
seasonal cycle; this result is shown in the "trend" column."

195

STL
But how does one calculate a seasonal cycle? In this section,
we'll be using an algorithm invented in the late 1980s
called Seasonal and Trend Decomposition (STL) by
LOESS by Cleveland et al. I wrote a library that implements
that. You can install it by running go get -u github.com/chewxy/stl.

The library is really small—there is only one main function to
call (stl.Dcompose), and the library comes with a litany of features
to aid with decomposition of data.

Despite that, I think it would be a good idea to have a rough
understanding of the STL algorithm before using it, as usage
requires knowledge.

196

LOESS
The thing that powers STL is the notion of local regression—
LOESS itself is a terrible acronym formed from LOcal
regrESSion—whatever drugs the statisticians were on in the
1990s, sign me up for them. We're already familiar with the
idea of linear regression from Chapter 1, How to Solve All
Machine Learning.

Recall that the role of linear regression is that given a straight
line function: . We want to estimate and .
Instead of trying to fit the whole dataset at once, what if we
broke the dataset up into many small local components, and
ran a regression on each small dataset? Here's an example of
what I mean:

| X | Y |

 |:--:|:--|

 | -1 | 1 |

 | -0.9 | 0.81 |

 | -0.8 | 0.64 |

 | -0.7 | 0.49 |

 | -0.6 | 0.36 |

 | -0.5 | 0.25 |

 | -0.4 | 0.16 |

 | -0.3 | 0.09 |

 | -0.2 | 0.04 |

 | -0.1 | 0.01 |

 | 0 | 0 |

 | 0.1 | 0.01 |

 | 0.2 | 0.04 |

 | 0.3 | 0.09 |

 | 0.4 | 0.16 |

 | 0.5 | 0.25 |

 | 0.6 | 0.36 |

 | 0.7 | 0.49 |

197

 | 0.8 | 0.64 |

 | 0.9 | 0.81 |

The preceding table is a function representing .
Instead of pulling in the entire dataset for a regression, what if
we did a running regression of every three rows? We'd start
with row 2 (x = -0.9). And the data points under consideration
are 1 before it and 1 after it (x = -1 and x = -0.8). And for row 3,
we'd do a linear regression using row 2, 3, 4 as data points. At
this point, we're not particularly interested in the errors of the
local regression. We just want an estimate of the gradient and
the crossings. Here's the resulting table:

| X | Y | m | c

 |:--:|:--:|:--:|:--:|

 | -0.9 | 0.81 | -1.8 | -0.803333333333333 |

 | -0.8 | 0.64 | -1.6 | -0.633333333333334 |

 | -0.7 | 0.49 | -1.4 | -0.483333333333334 |

 | -0.6 | 0.36 | -1.2 | -0.353333333333333 |

 | -0.5 | 0.25 | -1 | -0.243333333333333 |

 | -0.4 | 0.16 | -0.8 | -0.153333333333333 |

 | -0.3 | 0.09 | -0.6 | -0.083333333333333 |

 | -0.2 | 0.04 | -0.4 | -0.033333333333333 |

 | -0.1 | 0.01 | -0.2 | -0.003333333333333 |

 | 0 | 0 | -2.71050543121376E-17 | 0.006666666666667 |

 | 0.1 | 0.01 | 0.2 | -0.003333333333333 |

 | 0.2 | 0.04 | 0.4 | -0.033333333333333 |

 | 0.3 | 0.09 | 0.6 | -0.083333333333333 |

 | 0.4 | 0.16 | 0.8 | -0.153333333333333 |

 | 0.5 | 0.25 | 1 | -0.243333333333333 |

 | 0.6 | 0.36 | 1.2 | -0.353333333333333 |

 | 0.7 | 0.49 | 1.4 | -0.483333333333334 |

 | 0.8 | 0.64 | 1.6 | -0.633333333333333 |

 | 0.9 | 0.81 | 1.8 | -0.803333333333333 |

In fact, we can show that if you plot each line individually, you
will have a somewhat "curved" shape. So, here's a side
program I wrote to plot this out:

198

// +build sidenote

package main

import (

 "image/color"

 "github.com/golang/freetype/truetype"

 "golang.org/x/image/font/gofont/gomono"

 "gonum.org/v1/plot"

 "gonum.org/v1/plot/plotter"

 "gonum.org/v1/plot/vg"

 "gonum.org/v1/plot/vg/draw"

)

var defaultFont vg.Font

func init() {

 font, err := truetype.Parse(gomono.TTF)

 if err != nil {

 panic(err)

 }

 vg.AddFont("gomono", font)

 defaultFont, err = vg.MakeFont("gomono", 12)

 if err != nil {

 panic(err)

 }

}

var table = []struct {

 x, m, c float64

}{

 {-0.9, -1.8, -0.803333333333333},

 {-0.8, -1.6, -0.633333333333334},

 {-0.7, -1.4, -0.483333333333334},

 {-0.6, -1.2, -0.353333333333333},

 {-0.5, -1, -0.243333333333333},

 {-0.4, -0.8, -0.153333333333333},

 {-0.3, -0.6, -0.083333333333333},

 {-0.2, -0.4, -0.033333333333333},

 {-0.1, -0.2, -0.003333333333333},

 {0, -2.71050543121376E-17, 0.006666666666667},

 {0.1, 0.2, -0.003333333333333},

 {0.2, 0.4, -0.033333333333333},

 {0.3, 0.6, -0.083333333333333},

 {0.4, 0.8, -0.153333333333333},

 {0.5, 1, -0.243333333333333},

 {0.6, 1.2, -0.353333333333333},

199

 {0.7, 1.4, -0.483333333333334},

 {0.8, 1.6, -0.633333333333333},

 {0.9, 1.8, -0.803333333333333},

}

type estimates []struct{ x, m, c float64 }

func (es estimates) Plot(c draw.Canvas, p *plot.Plot) {

 trX, trY := p.Transforms(&c)

 lineStyle := plotter.DefaultLineStyle

 lineStyle.Dashes = []vg.Length{vg.Points(2), vg.Points(2)}

 lineStyle.Color = color.RGBA{A: 255}

 for i, e := range es {

 if i == 0 || i == len(es)-1 {

 continue

 }

 strokeStartX := es[i-1].x

 strokeStartY := e.m*strokeStartX + e.c

 strokeEndX := es[i+1].x

 strokeEndY := e.m*strokeEndX + e.c

 x1 := trX(strokeStartX)

 y1 := trY(strokeStartY)

 x2 := trX(strokeEndX)

 y2 := trY(strokeEndY)

 x := trX(e.x)

 y := trY(e.x*e.m + e.c)

 c.DrawGlyph(plotter.DefaultGlyphStyle, vg.Point{X: x, Y: y})

 c.StrokeLine2(lineStyle, x1, y1, x2, y2)

 }

}

func main() {

 p, err := plot.New()

 if err != nil {

 panic(err)

 }

 p.Title.Text = "X^2 Function and Its Estimates"

 p.X.Label.Text = "X"

 p.Y.Label.Text = "Y"

 p.X.Min = -1.1

 p.X.Max = 1.1

 p.Y.Min = -0.1

 p.Y.Max = 1.1

 p.Y.Label.TextStyle.Font = defaultFont

 p.X.Label.TextStyle.Font = defaultFont

 p.X.Tick.Label.Font = defaultFont

 p.Y.Tick.Label.Font = defaultFont

 p.Title.Font = defaultFont

200

 p.Title.Font.Size = 16

Now, we will see how to plot the original function:

 // Original function

 original := plotter.NewFunction(func(x float64) float64 { return x * x })

 original.Color = color.RGBA{A: 16}

 original.Width = 10

 p.Add(original)

 // Plot estimates

 est := estimates(table)

 p.Add(est)

 if err := p.Save(25*vg.Centimeter, 25*vg.Centimeter, "functions.png"); err != nil {

 panic(err)

 }

}

The preceding code yields a chart, as shown in the following
screenshot:

201

202

Most of the code will be explained in the latter parts of this
chapter, but, for now, let's focus on the fact that you can
indeed run many small linear regressions on "local" subsets of
the data to plot a curve.

LOESS brings this idea further, by stating that if you have a
window of values (in the toy example, we used 3), then the
values should be weighted. The logic is simple: the closer a
value is to the row in consideration, the higher the weight. If
we had used a window size of 5, then when considering row 3,
2, and 4 would be weighted more heavily than rows 1 and 5.
This width, it turns out, is important to our smoothing.

The subpackage, "github.com/chewxy/stl/loess", implements LOESS
as a smoothing algorithm. Do read through the code if you're
interested in knowing more about the details.

203

The algorithm
Recall that our goal is to split a time series into seasonality
and trend. Obviously, once we've removed the seasonality and
trend, there will be some remaining parts. We call those
residuals. So, how do we do it?

The algorithm has a lot of fine tuning for the sake of
robustness. I will elide on explaining on the various
robustness optimizations performed, but I think it is
important to have a rough idea of how the algorithm works in
general.

The following is a rough overview of the algorithm:

1. Calculate trend (on the first loop, the trend is all 0s).
2. Subtract the trend from the input data. This is called

detrending.
3. Cycle subseries smoothing: the data is partitioned into

N subcycles. Each subcycle corresponds to a period. The
data is then smoothed using LOESS. The result is a
temporary seasonal dataset.

4. For each temporary seasonal dataset (one per period),
we perform a low pass filter—we keep the values with a
low frequency.

5. The low pass filtered values are subtracted from
temporary seasonal dataset. This is the seasonal data.

6. Subtract the seasonal data from the input data. This is
the new trend data.

204

7. Iterate step 1 to step 6 until the number of iterations is
desired. This is typically 1 or 2.

As you can see, the algorithm is iterative—each iteration
improves on the trend, which is then used to find the new
seasonal data, which is then used to update the trend, and so
on and so forth. But there is a very important blink-and-you-
miss-it "magic" that STL relies on.

And so we come to the second important reason to understand
the algorithm: STL is dependent upon the definition of
how many periods the dataset has.

205

Using STL
To recap, there are two important parts that are fundamental
to the STL algorithm:

The width used for smoothing

The periods in the dataset

When we look at the CO dataset, we can count the periods by
counting the number of peaks in the chart. I counted 60
peaks. This corresponds to the fact that the observatory has
been collecting data for the past 60 years.

From here, we move from the hard sciences of statistics into
the softer realms of interpretation. This is often true in data
science and machine learning—we often have to use our
intuition to guide us.

In this case, we have a hard starting point: there has been 60
years so we expect at least 60 periods. Another starting point
can be found in the notes of the dataset itself: the NOAA uses
a seven-year window to calculate the seasonal component. I
don't see any reason to not use those values. So, let's
decompose our time series into the trend, seasonal, and
residual components.

But before we begin, there is an additional note to make: we
want to decompose the time series into three components, but
how do these three components recompose to become whole
again? In general, there are two methods: additive or
multiplicative. Simply put, we can decompose the data as

2

206

either one of the following equations:

This can also be stated as follows:

The github.com/chewxy/stl package supports both models, and even
supports custom models that fall "in-between" additive and
multiplicative models.

When to use an additive model: Use an additive model when the
seasonality does not vary with the level of the time series. Most standard
business case time series fall in this category.

When to use a multiplicative model: Use a multiplicative model when
the seasonality or trend does vary with the level of the time series. Most
econometric models fall in this category.

For the purpose of this project, we will be using an additive
model. Here's the main function again:

func main() {

 dateStrings, co2s := parse(readFromFile)

 dates := parseDates(dateStrings)

 plt := newTSPlot(dates, co2s, "CO2 Level")

 plt.X.Label.Text = "Time"

 plt.Y.Label.Text = "CO2 in the atmosphere (ppm)"

 plt.Title.Text = "CO2 in the atmosphere (ppm) over time\nTaken over the Mauna-Loa observatory"

 dieIfErr(plt.Save(25*vg.Centimeter, 25*vg.Centimeter, "Moana-Loa.png"))

 decomposed := stl.Decompose(co2s, 12, 84, stl.Additive(), stl.WithIter(1))

 dieIfErr(decomposed.Err)

 plts := plotDecomposed(dates, decomposed)

 writeToPng(plts, "decomposed.png", 25, 25)

}

Let's break this down; in particular, the parameters:

decomposed := stl.Decompose(co2s, 12, 84, stl.Additive(), stl.WithIter(1))

207

Take a look at the following terms from the preceding code:

12: We counted 60 periods. The data is monthly data;
therefore, it would make sense that a period takes 12
months, or as we know it—a year.

 84: We use the smoothing window as specified by the
NOAA. Seven years is 84 months.

 stl.Additive(): We want to use an additive model.

stl.WithIter(1): STL is fairly sensitive to the number of
iterations run. The default is 2. But if you run it too
many times, everything gets iteratively "smoothed"
out. So, instead, we stick with 1.

In the following sections, I'll show examples of misuse and
why despite everything, 1 and 2 are still pretty good iteration
counts.

You may note that instead of specifying the number of
periods, we specified the length of a period. The package
expects the data to be evenly spaced—the distance between
any two rows should be the same.

Running this yields the following plot:

208

209

The first chart is the original data, followed by the extracted
trend and seasonality, and, finally, the residuals. There
remains some weirdness with regards to the beginning of the
graph, but that artifact is solely due to the fact that the
github.com/chewxy/stl library does not "backcast". Hence, it's
always a good idea to start with at least one extra period.

How to interpret the plot? Well, since this is an additive
model, interpretation is a lot simpler—the Y values indicate the
ppm of carbon dioxide in the air that each component
contributes to the actual data, so the first chart is literally the
result of adding the bottom charts together.

210

How to lie with statistics
It is important to note that these parameters essentially
control how much to attribute the CO in the atmosphere to
each component. And these controls are rather subjective. The
stl package offers a lot of control over how a time series is
decomposed, and I think it's up to the data scientist or
statistician reading this book (that is you), to do statistics
responsibly.

What if we said that a period was five years? Keeping
everything the same, we can use the following code and find
out:

lies := stl.Decompose(co2s, 60, 84, stl.Additive(), stl.WithIter(1))

dieIfErr(lies.Err)

plts2 := plotDecomposed(dates, lies)

writeToPng(plts2, "CO2 in the atmosphere (ppm), decomposed (Liar Edition)", "lies.png", 25, 25)

The following chart is produced:

2

211

212

We could then take this chart and parade the top two sections
and say "Look! Statistics tells us that despite the data looking
like it's going up, it's in fact trending down. Hashtag science."

You're of course free to do so. But I know you're not a
dishonest person. Instead, I hope that you are reading this
book with good intentions of saving the world.

But knowing the correct parameters to use is difficult. One
suggestion I have is to go to extremes and then come back
down. This is what I mean—we have a rough idea of how the
STL algorithm works. A known controlling factor is the
iteration count, which defaults to 2. Here's the original correct
version, with 1, 2, 5, 10, 20, and 100 iterations:

213

Interations:

214

215

216

217

218

219

Over the iterations, having been smoothed iteratively, the
seasonality loses its jaggedness. Nonetheless, the shape of the
trend stays the same. Therefore, in this case, increasing the
iteration counts merely shifts the seasonal contribution to the
trend component. This implies that the trend component is
the stronger "signal" of sorts.

By contrast, if we run the "lies" version, we see that at two
iterations, the shape of the trend changes, and by the
10th iteration onward, the shape of the trend stays the same.
This gives us a clue as to what the "real" trend is.

With STL, the thing that we're really controlling is the
seasonality. What we're saying to the algorithm is that we
believe that a period is 12 months; therefore, please find a
seasonality that fits. If we say to the algorithm that we believe
that a period is five years (60 months), the algorithm will try
its best to find a seasonality and trend that fits that pattern.

I wish to be clear—the notion of a seasonality that happens
every five years is not wrong. In fact, it is common for
business-related forecasting to work on multiple levels of
seasonalities. But knowing how many iterations to run, that
comes with experience and wisdom.

Check the units! If the units don't make sense, like in the "lies" chart, then it
probably isn't real.

220

More plotting
A major theme in this chapter other than time series analysis
is plotting. You may have also noticed a few new functions in
the main function earlier. Now it's time to revisit them.

We start with the output of stl.Decompose. This is the definition:

type Result struct {

 Data []float64

 Trend []float64

 Seasonal []float64

 Resid []float64

 Err error

}

There is no notion of time in the result. It's assumed that when you pass in
data into stl.Decompose, the data is ordered by the time series. The result also
follows this notion.

We've already defined newTSPlot previously, which works fine for
the data, trend, and seasonal, but not the residuals. The
reason why we don't want to plot residuals as a line chart is
because if done right, the residuals should be more or less
random. Having a line plot run through random points would
be rather messy.

Typical residual plots are simply scatter plots of the residuals.
However, that too is relatively uninterpretable when squashed
into a multiplot image.

Instead, we want to draw a straight vertical line for each
residual value.

To recap, this is what we want to do:

221

1. Plot a time series chart for each of Data, Trend,
and Seasonal.

2. Plot a residuals chart for Resid.
3. Combine all the preceding plots into one image.

Step 1 is easy, as we simply call newTSPlot with the parsed dates
from earlier for each of the components. Step 2 is a little
trickier. Gonum doesn't have the residuals plots that we want
by default.

To plot it, we'd need to create a new plot.Plotter interface.
Here's the definition:

type residChart struct {

 plotter.XYs

 draw.LineStyle

}

func (r *residChart) Plot(c draw.Canvas, p *plot.Plot) {

 xmin, xmax, ymin, ymax := r.DataRange()

 p.Y.Min = ymin

 p.Y.Max = ymax

 p.X.Min = xmin

 p.X.Max = xmax

 trX, trY := p.Transforms(&c)

 zero := trY(0)

 lineStyle := r.LineStyle

 for _, xy := range r.XYs {

 x := trX(xy.X)

 y := trY(xy.Y)

 c.StrokeLine2(lineStyle, x, zero, x, y)

 }

}

func (r *residChart) DataRange() (xmin, xmax, ymin, ymax float64) {

 xmin = math.Inf(1)

 xmax = math.Inf(-1)

 ymin = math.Inf(1)

 ymax = math.Inf(-1)

 for _, xy := range r.XYs {

 xmin = math.Min(xmin, xy.X)

222

 xmax = math.Max(xmax, xy.X)

 ymin = math.Min(ymin, xy.Y)

 ymax = math.Max(ymax, xy.Y)

 }

 return

}

Despite the fact that Gonum doesn't have the chart type that
we want, as you can see it doesn't take very many lines of code
for us to define our own chart type. This is part of the power of
Gonum's plot library—it's abstract enough to enable you to
write your own chart type, and at the same time, it provides all
the helper functions necessary to make it work without much
code.

223

A primer on Gonum plots
Before we go further, I think it might be worth it to have an
understanding of Gonum's plotting library in general. We've
so far been using Gonum's plot library in rather ad hoc ways.
This was to familiarize you with how to use the library. Now
that you're somewhat familiar, it's time to learn more about
the internals in order to plot better in the future.

A *plot.Plot object holds the metadata of a plot. A plot consists
of the following features:

A title

X and Y axes

A legend

A list of plot.Plotter

A plot.Plotter interface is simply anything that can take a
*plot.Plot object and draw it on to draw.Canvas, defined as follows:

type Plotter interface {

 Plot(draw.Canvas, *Plot)

}

By separating the notions of a plot object and the canvas upon
which the plot will be drawn, this opens Gonum's plots to a
variety of different plotting backend options. To see what I
mean about backend options, we need to take a closer look at

224

draw.Canvas.

The draw.Canvas is a tuple of vg.Canvas and vg.Rectangle. So what
exactly is vg? vg, it turns out, stands for vector graphics. In it,
the Canvas type is defined as an interface with a bunch of
methods. This allows for the rich variety of backends that vg
has:

vg/vgimg: This is the primary package we've been using
so far; it writes to an image file.

vg/vgpdf: This package writes to a PDF file.

vg/vgsvg: This package writes to a SVG file.

vg/vgeps: This package writes to a EPS file.

vg/vgtex: This package writes to a TEX file.

Each of these canvas implementations has a coordinate
system that begins with (0, 0) at the bottom left.

225

The residuals plotter
A deeper look at the canvasing system will be explored later in
the chapter. For now, let's return to the Plot method that
satisfies the plot.Plotter interface.

Most interesting are the following lines:

 trX, trY := p.Transforms(&c)

 zero := trY(0)

 lineStyle := r.LineStyle

 for _, xy := range r.XYs {

 x := trX(xy.X)

 y := trY(xy.Y)

 c.StrokeLine2(lineStyle, x, zero, x, y)

 }

p.Transforms(&c) returns two functions, which will transform the
coordinate of our data point to the coordinate of the backend.
This way we wouldn't have to worry about the absolute
location of each point. Instead, it will be treated in relation to
the absolute location in the final image.

Having gotten the transformation functions, we then loop
through the residuals that we have, and transform each to the
coordinate (x := trX(xy.X) and y := trY(xy.Y)) within the canvas.

Finally, we tell the canvas to draw a straight line between two
points: (x, 0) and (x, y). This draws a straight line up or down
from the X axis.

Thus, we have created our own plot.Plotter interface, which we
can now add to the plot object. But adding to a *plot.Plot object

226

directly requires a lot of tinkering. So, here's a function to
nicely wrap all that up:

func newResidPlot(xs []time.Time, ys []float64) *plot.Plot {

 p, err := plot.New()

 dieIfErr(err)

 xys := make(plotter.XYs, len(ys))

 for i := range ys {

 xys[i].X = float64(xs[i].Unix())

 xys[i].Y = ys[i]

 }

 r := &residChart{XYs: xys, LineStyle: plotter.DefaultLineStyle}

 r.LineStyle.Color = color.RGBA{A: 255}

 p.Add(r)

 p.Legend.Add("Residuals", r)

 p.Legend.TextStyle.Font = defaultFont

 p.X.Tick.Marker = plot.TimeTicks{Format: "2006-01-01"}

 p.Y.Label.TextStyle.Font = defaultFont

 p.X.Label.TextStyle.Font = defaultFont

 p.X.Tick.Label.Font = defaultFont

 p.Y.Tick.Label.Font = defaultFont

 p.Title.Font.Size = 16

 return p

}

This function is reminiscent of newTSPlot—you provide it the X
and Y values, and get a *plot.Plot object back out, with
everything properly styled and formatted.

You may note that we're also adding the plotter object as a
legend. To do this without an error, the residChart type needs to
implement plot.Thumbnailer. Again, that's fairly straightforward:

func (r *residChart) Thumbnail(c *draw.Canvas) {

 y := c.Center().Y

 c.StrokeLine2(r.LineStyle, c.Min.X, y, c.Max.X, y)

}

At this point, you may be wondering about the canvas object. If
we are to draw a line between the canvas's minimum X to

227

maximum X, wouldn't that just cause a horizontal line across
the entire canvas?

The answer is not really. Recall earlier that the canvas is
provided in the backend, and draw.Canvas is simply a tuple of a
canvas backend and a rectangle? The rectangle actually serves
to subset and constrain the canvas upon which it is being
drawn.

We shall see this in action. Now that we've finished, we can
turn our attention to the next section, which depicts a
combination of all the plots into one image.

228

Combining plots
A key function that allows us to do this is the
plot.Align function. For us to see this in action, we need to write
a that allows us to plot any number of plots to a file, as
follows:

func writeToPng(a interface{}, title, filename string, width, height vg.Length) {

 switch at := a.(type) {

 case *plot.Plot:

 dieIfErr(at.Save(width*vg.Centimeter, height*vg.Centimeter, filename))

 return

 case [][]*plot.Plot:

 rows := len(at)

 cols := len(at[0])

 t := draw.Tiles{

 Rows: rows,

 Cols: cols,

 }

 img := vgimg.New(width*vg.Centimeter, height*vg.Centimeter)

 dc := draw.New(img)

 if title != "" {

 at[0][0].Title.Text = title

 }

 canvases := plot.Align(at, t, dc)

 for i := 0; i < t.Rows; i++ {

 for j := 0; j < t.Cols; j++ {

 at[i][j].Draw(canvases[i][j])

 }

 }

 w, err := os.Create(filename)

 dieIfErr(err)

 png := vgimg.PngCanvas{Canvas: img}

 _, err = png.WriteTo(w)

 dieIfErr(err)

229

 return

 }

 panic("Unreachable")

}

We'll skip the part where if a is plot.Plot, we simply call the
.Save method. Instead, we'll look at the second case, where a is
[][]*plot.Plot.

At first this may seem rather strange—why have a slice of slice
of plots when all we want to do is to combine them in quick
succession. The key to understanding this is that Gonum
supports the tiling of charts so if you want four charts
arranged in 2x2 fashion, it can be done. Having four charts in
a row is simply a special case of a 4x1 layout.

We can arrange the layouts using a function, as follows:

func plotDecomposed(xs []time.Time, a stl.Result) [][]*plot.Plot {

 plots := make([][]*plot.Plot, 4)

 plots[0] = []*plot.Plot{newTSPlot(xs, a.Data, "Data")}

 plots[1] = []*plot.Plot{newTSPlot(xs, a.Trend, "Trend")}

 plots[2] = []*plot.Plot{newTSPlot(xs, a.Seasonal, "Seasonal")}

 plots[3] = []*plot.Plot{newResidPlot(xs, a.Resid, "Residuals")}

 return plots

}

Having acquired [][]*plot.Plot, we need to tell Gonum the tiling
format that we're interested in, so the following code snippet
defines the tiling format:

 t := draw.Tiles{

 Rows: rows,

 Cols: cols,

 }

If you're following along with the code, you will realize that

230

rows is 3 and cols is 1.

Next, we have to provide a canvas to draw on:

 img := vgimg.New(width*vg.Centimeter, height*vg.Centimeter)

 dc := draw.New(img)

Here, we use the vgimg backend because we want to write to a
PNG image. If, for example, you want to set the DPI of the
image, you may use vgimg.NewWith instead, and pass in the DPI
option.

dc is draw.Canvas initiated from the large piece of canvas img. Now
comes the magic: canvases := plot.Align(at, t, dc) basically splits
the big canvas (img) into various smaller canvases—they're still
part of the big canvas, but now, each *plot.Plot object gets
allocated a smaller piece of the canvas, each with their own
coordinate systems that are relative to the bigger canvas.

The following code simply draws the plots onto their
respective mini-canvases:

 for i := 0; i < t.Rows; i++ {

 for j := 0; j < t.Cols; j++ {

 at[i][j].Draw(canvases[i][j])

 }

 }

Naturally, this process can be recursively repeated. A
Legend object in *plot.Plot simply gets a smaller chunk of the
canvas, and drawing a straight line from minimum X to
maximum X simply draws a horizontal line across the entire
mini canvas.

And this is how plots are made.

231

Forecasting
We're decomposing a time series here with the STL algorithm.
There are other methods of decomposing time series—you
may be familiar with one: the discrete Fourier transform. If
your data is a time-based signal (like electrical pulses or
music), a Fourier transform essentially allows you to
decompose a time series into various parts. Bear in mind that
they are no longer seasonality and trend, but rather
decompositions of different time and frequency domains.

This begs the question: what is the point of decomposing a
time series?

A primary reason why we do any machine learning at all is to
be able to predict values based on an input. When done on
time series, this is called forecasting.

Think about this for a bit: if a time series is made up of
multiple components, wouldn't it be better to be able to
predict per component? If we are able to break a time series
up into its components, be it by STL or by Fourier transforms,
we would get better results if we predict per component and
then recombine the data at the end.

Since we work on STL, we already have our series
decomposed. A very simple exponential smoothing algorithm
invented by Holt in 1957 allows us to use the trend and
seasonal components, along with the original data, to forecast.

232

Holt-Winters
In this section, I shall explain a modified form of the Holt-
Winters exponential smoothing algorithm, which is quite
useful for forecasting. Holt-Winters is a fairly simple
algorithm. Here it is:

func hw(a stl.Result, periodicity, forward int, alpha, beta, gamma float64) []float64 {

 level := make([]float64, len(a.Data))

 trend := make([]float64, len(a.Trend))

 seasonal := make([]float64, len(a.Seasonal))

 forecast := make([]float64, len(a.Data)+forward)

 copy(seasonal, a.Seasonal)

 for i := range a.Data {

 if i == 0 {

 continue

 }

 level[i] = alpha*a.Data[i] + (1-alpha)*(level[i-1]+trend[i-1])

 trend[i] = beta*(level[i]-level[i-1]) + (1-beta)*(trend[i-1])

 if i-periodicity < 0 {

 continue

 }

 seasonal[i] = gamma*(a.Data[i]-level[i-1]-trend[i-1]) + (1-gamma)*(seasonal[i-periodicity])

 }

 hplus := ((periodicity - 1) % forward) + 1

 for i := 0; i+forward < len(forecast); i++ {

 forecast[i+forward] = level[i] + float64(forward)*trend[i] + seasonal[i-periodicity+hplus]

 }

 copy(forecast, a.Data)

 return forecast

}

Calling it is rather easy. We would wind up with a time series
with a number of additional periods. Hence, we would also

233

need to extend our dates range before we call newTSPlot. Again,
it's a rather simple matter:

func forecastTime(dates []time.Time, forwards int) []time.Time {

 retVal := append(dates, make([]time.Time, forwards)...)

 lastDate := dates[len(dates)-1]

 for i := len(dates); i < len(retVal); i++ {

 retVal[i] = lastDate.AddDate(0, 1, 0)

 lastDate = retVal[i]

 }

 return retVal

}

Ideally, we would also like to draw a gray background
indicating that the values in the area are forecasts. Putting it
all together, it looks rather like this:

 fwd := 120

 forecast := hw(decomposed, 12, fwd, 0.1, 0.05, 0.1)

 datesplus := forecastTime(dates, fwd)

 forecastPlot := newTSPlot(datesplus, forecast, "")

 maxY := math.Inf(-1)

 minY := math.Inf(1)

 for i := range forecast {

 if forecast[i] > maxY {

 maxY = forecast[i]

 }

 if forecast[i] < minY {

 minY = forecast[i]

 }

 }

 // extend the range a little

 minY--

 maxY++

 maxX := float64(datesplus[len(datesplus)-1].Unix())

 minX := float64(datesplus[len(dates)-1].Unix())

 shadePoly := plotter.XYs{

 {X: minX, Y: minY},

 {X: maxX, Y: minY},

 {X: maxX, Y: maxY},

 {X: minX, Y: maxY},

 }

 poly, err := plotter.NewPolygon(shadePoly)

234

 dieIfErr(err)

 poly.Color = color.RGBA{A: 16}

 poly.LineStyle.Color = color.RGBA{}

 forecastPlot.Add(poly)

 writeToPng(forecastPlot, "Forecasted CO2 levels\n(10 years)", "forecast.png", 25, 25)

This would yield the following plot:

235

236

If everything keeps going as it is, we can expect to see an
increased CO level in 10 years. Of course, it could go down if
we take action now.

2

237

Summary
This has been a rather hard chapter to write. The primary
subject matter, without exaggeration, is one of existential
threat. The methods used in the science at large are far more
sophisticated than what I have covered in this chapter.

The techniques I covered is a small part of a large field of
statistics known as time series analysis, where we've yet to
even scratch the surface of it with this composition technique.

238

References
The following are the references:

[0] Hershfield, Hal. (2011). Future self-continuity:
How conceptions of the future self transform
intertemporal choice. Annals of the New York
Academy of Sciences. 1235. 30-43. 10.1111/j.1749-
6632.2011.06201.x.

[1] Qin, P. and Northoff, G. (2011): How is our self
related to midline regions and the default-mode
network?. NeuroImage, 57(3), pp.1221-1233.

239

Clean Up Your Personal
Twitter Timeline by
Clustering Tweets
Here's a little bit of gossip for you: The original project for this
title had to do with detecting foreign influence on US elections
in social media. At about the same time, I was also applying
for a visa to the United States, to give a series of talks. It later
transpired that I hadn't needed the visa after all; ESTA
covered all the things I had wanted to do in the United States.
But as I was preparing for the visa, an attorney gave me a very
stern talking-to about writing a book on the politics of the
United States. The general advice is this—if I don't want
trouble with US Customs and Border Patrol, I should not write
or say anything on social media about American politics, and
especially not write a chapter of a book on it. So, I had to
hastily rewrite this chapter. The majority of methods used in
this chapter can be used for the original purpose, but the
content is a lot milder.

I use Twitter a lot. I mainly tweet and read Twitter in my
downtime. I follow many people who share similar interests,
among other things, machine learning, artificial intelligence,
Go, linguistics, and programming languages. These people not
only share interests with me; they also share interests with
one another. As such, sometimes, multiple people may be
tweeting about the same topic.

As may be obvious from the fact that I use Twitter a lot, I am a
novelty junkie. I like new things. Multiple people tweeting

240

about the same topic is nice if I am interested in the differing
viewpoints, but I don't use Twitter like that. I use Twitter as a
sort of summary of interesting topics. Events X, Y, and Z
happened. It's good enough that I know they happened. For
most topics, there is no benefit for me to go deep and learn
what the finer points are, and 140 characters is not a lot of
characters for nuance anyway. Therefore, a shallow overview
is enough to keep my general knowledge abreast with the rest
of the population.

Thus, when multiple people tweet about the same topic, that's
repetition in my newsfeed. That's annoying. What if, instead
of that, my feed could just be one instance of each topic?

I think of my Twitter-reading habit as happening in sessions.
Each session is typically five minutes. I really only read about
100 tweets each session. If out of 100 tweets I read, 30% of the
people I follow overlap on topics, then I really only have read
30 tweets of real content. That's not efficient at all! Efficiency
means being able to cover more topics per session.

So, how do you increase efficiency in reading tweets? Well,
remove the tweets that cover the same topic of course! There
is the secondary matter of choosing the best tweet that
summarizes the topic, but that's a subject for another day.

241

The project
What we're going to do is to cluster tweets on Twitter. We will
be using two different clustering techniques, K-means and
DBSCAN. For this chapter, we're going to rely on some skills
we built up in Chapter 2, Linear Regression – House Price
Prediction. We will also be using the same libraries used in Chap
ter 2, Linear Regression – House Price Prediction. On top of
that, we will also be using the clusters library by mpraski.

By the end of the project, we will be able to clean up any
collection of tweets from Twitter, and cluster them into
groups. The main body of code that fulfills the objective is very
simple, it's only about 150 lines of code in total. The rest of the
code is for fetching and preprocessing data.

242

K-means
K-means is a method of clustering data. The problem is
posed as this—given a dataset of N items, we wish to partition
the data into K groups. How do you do so?

Allow me to take a side bar and explore the wonderful world of
coordinates. No, no, don't run! It's very visual.

Which line is longer? How do you know?

You know which line is longer because you can measure each
line from points a, b, c, and d. Now, let's try something
different:

Which dot is closest to X? How do you know?

243

You know because again, you can measure the distance
between the dots. And now, for our final exercise:

Consider the distance between the following:

A and X

A and Y

A and Z

B and X

B and Y

B and Z

C and X

C and Y

C and Z

What is the average distance between A and X, B and X, and
C and X? What is the average distance between A and Y, B
and Y and C and Y? What is the average distance between A
and Z, B and Z, and C and Z?

If you had to choose one point between X, Y, and Z to
represent the A, B, and C, which would you choose?

Congratulations! You just did a very simple and abbreviated
version of K-means clustering. Specifically, you did a variant

244

where k = 1. If you had to pick two points between X, Y, and
Z, then that's k = 2. A cluster is therefore the set of points that
make it such that the average distance of the group is minimal.

That's a mouthful, but think back to what you just did. Now,
instead of just three points, A, B, and C, you have many
points. And you aren't given X, Y, or Z; you'd have to generate
your own X, Y, and Z points. Then, you have to find the
groups that minimize the distance to each possible points of
X, Y, and Z.

That is, in a nutshell, K-means. It's easy to understand, but
hard to implement it well. It turns out K-means is NP-hard; it
may not be solved in polynomial time.

245

DBSCAN
DBSCAN inherits the idea that data can be represented as
multidimensional points. Again, sticking with a two-
dimensional example, this is in rough steps how DBSCAN
works:

1. Pick a point that has not been visited before.
2. Draw a circle with the point as the center. The radius of

the circle is epsilon.
3. Count how many other points fall into the circle. If

there are more than a specified threshold, we mark all
the points as being part of the same cluster.

4. Recursively do the same for each point in this cluster.
Doing so expands the cluster.

5. Repeat these steps.

I highly encourage you to do this on dotted paper and try to
draw this out yourself. Start by plotting random points, and
use pencils to draw circles on paper. This will give you an
intuition of how DBSCAN works. The picture shows my
working that enhanced my intuition about how DBSCAN
works. I found this intuition to be very useful.

246

Data acquisition
In the earlier exercises, I asked you to look at the dots and
figure out the distance. This gives a hint as to how we need to
think of our data. We need to think of our data as coordinates
in some imaginary coordinate space. Now, our data won't be
just two-dimensional, because it's textual. Instead, it'll be
multidimensional. This gives us hints as to how our data will
look—slices of numbers representing a coordinate in some
arbitrarily large N-dimensional space.

But, first, we'll need to get the data.

To acquire the tweets from the feed, we'll be using Aditya
Mukherjee's excellent Anaconda library. To install it, simply
run go get -u github.com/ChimeraCoder/Anaconda.

Of course, one can't just grab data from Twitter willy-nilly. We
will need to acquire data via the Twitter API. The
documentation of Twitter's API is the best source to get
started: https://developer.twitter.com/en/docs/basics/getting-started.

You will need to first apply for a Twitter developer account (if
you don't already have it): https://developer.twitter.com/en/apply/user.
The process is rather lengthy and requires human approval for
a developer account. Despite this, you don't need developer
access to develop this project. I thought I had access to
Twitter's API when I started, but it turns out I didn't. The good
news is, the Twitter API documentation page does provide
enough examples to get started with developing the necessary
data structures.

The specific end point that we're interested in is this: https://deve

https://developer.twitter.com/en/docs/basics/getting-started
https://developer.twitter.com/en/apply/user
https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-home_timeline.html

247

loper.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-home_timeline

.html.

248

Exploratory data
analysis
Let's look at the JSON acquired from the Twitter API endpoint. A
single tweet looks something like this (from the Twitter API
documentation example):

 {

 "coordinates": null,

 "truncated": false,

 "created_at": "Tue Aug 28 19:59:34 +0000 2012",

 "favorited": false,

 "id_str": "240539141056638977",

 "in_reply_to_user_id_str": null,

 "entities": {

 "urls": [

],

 "hashtags":

],

 "user_mentions": [

]

 },

 "text": "You'd be right more often if you thought you were wrong.",

 "contributors": null,

 "id": 240539141056638977,

 "retweet_count": 1,

 "in_reply_to_status_id_str": null,

 "geo": null,

 "retweeted": false,

 "in_reply_to_user_id": null,

 "place": null,

 "source": "web",

 "user": {

 "name": "Taylor Singletary",

 "profile_sidebar_fill_color": "FBFBFB",

 "profile_background_tile": true,

 "profile_sidebar_border_color": "000000",

249

 "profile_image_url": "http://a0.twimg.com/profile_images/2546730059/f6a8zq58mg1hn0ha8vie_normal.jpeg",

 "created_at": "Wed Mar 07 22:23:19 +0000 2007",

 "location": "San Francisco, CA",

 "follow_request_sent": false,

 "id_str": "819797",

 "is_translator": false,

 "profile_link_color": "c71818",

 "entities": {

 "url": {

 "urls": [

 {

 "expanded_url": "http://www.rebelmouse.com/episod/",

 "url": "http://t.co/Lxw7upbN",

 "indices": [

 0,

 20

],

 "display_url": "rebelmouse.com/episod/"

 }

]

 },

 "description": {

 "urls": [

]

 }

 },

 "default_profile": false,

 "url": "http://t.co/Lxw7upbN",

 "contributors_enabled": false,

 "favourites_count": 15990,

 "utc_offset": -28800,

 "profile_image_url_https": "https://si0.twimg.com/profile_images/2546730059/f6a8zq58mg1hn0ha8vie_normal.jpeg",

 "id": 819797,

 "listed_count": 340,

 "profile_use_background_image": true,

 "profile_text_color": "D20909",

 "followers_count": 7126,

 "lang": "en",

 "protected": false,

 "geo_enabled": true,

 "notifications": false,

 "description": "Reality Technician, Twitter API team, synthesizer enthusiast; a most excellent adventure in timelines. I know it's hard to believe in something you can't see.",

 "profile_background_color": "000000",

 "verified": false,

 "time_zone": "Pacific Time (US & Canada)",

 "profile_background_image_url_https": "https://si0.twimg.com/profile_background_images/643655842/hzfv12wini4q60zzrthg.png",

 "statuses_count": 18076,

 "profile_background_image_url": "http://a0.twimg.com/profile_background_images/643655842/hzfv12wini4q60zzrthg.png",

 "default_profile_image": false,

250

 "friends_count": 5444,

 "following": true,

 "show_all_inline_media": true,

 "screen_name": "episod"

 },

 "in_reply_to_screen_name": null,

 "in_reply_to_status_id": null

 }

We will be representing each individual tweet in a data
structure that looks like this:

 type processedTweet struct {

 anaconda.Tweet

// post processed stuff

 ids []int // to implement Document

 textVec []float64

 normTextVec []float64

 location []float64

 isRT bool

 }

Note that we embed anaconda.Tweet, which is given as such in the
Anaconda package:

 type Tweet struct {

 Contributors []int64 `json:"contributors"`

 Coordinates *Coordinates `json:"coordinates"`

 CreatedAt string `json:"created_at"`

 DisplayTextRange []int `json:"display_text_range"`

 Entities Entities `json:"entities"`

 ExtendedEntities Entities `json:"extended_entities"`

 ExtendedTweet ExtendedTweet `json:"extended_tweet"`

 FavoriteCount int `json:"favorite_count"`

 Favorited bool `json:"favorited"`

 FilterLevel string `json:"filter_level"`

 FullText string `json:"full_text"`

 HasExtendedProfile bool `json:"has_extended_profile"`

 Id int64 `json:"id"`

 IdStr string `json:"id_str"`

 InReplyToScreenName string `json:"in_reply_to_screen_name"`

 InReplyToStatusID int64 `json:"in_reply_to_status_id"`

 InReplyToStatusIdStr string `json:"in_reply_to_status_id_str"`

251

 InReplyToUserID int64 `json:"in_reply_to_user_id"`

 InReplyToUserIdStr string `json:"in_reply_to_user_id_str"`

 IsTranslationEnabled bool `json:"is_translation_enabled"`

 Lang string `json:"lang"`

 Place Place `json:"place"`

 QuotedStatusID int64 `json:"quoted_status_id"`

 QuotedStatusIdStr string `json:"quoted_status_id_str"`

 QuotedStatus *Tweet `json:"quoted_status"`

 PossiblySensitive bool `json:"possibly_sensitive"`

 PossiblySensitiveAppealable bool `json:"possibly_sensitive_appealable"`

 RetweetCount int `json:"retweet_count"`

 Retweeted bool `json:"retweeted"`

 RetweetedStatus *Tweet `json:"retweeted_status"`

 Source string `json:"source"`

 Scopes map[string]interface{} `json:"scopes"`

 Text string `json:"text"`

 User User `json:"user"`

 WithheldCopyright bool `json:"withheld_copyright"`

 WithheldInCountries []string `json:"withheld_in_countries"`

 WithheldScope string `json:"withheld_scope"`

 }

In the interest of building the program, we'll use the example
tweets supplied by Twitter. I saved the example responses into
a file called example.json and then a mock function is created to
mock calling the API:

 func mock() []*processedTweet {

 f, err := os.Open("example.json")

 dieIfErr(err)

 return load(f)

 }

 func load(r io.Reader) (retVal []*processedTweet) {

 dec := json.NewDecoder(r)

 dieIfErr(dec.Decode(&retVal))

 return retVal

 }

The utility function dieIfErr is defined as usual:

 func dieIfErr(err error) {

 if err != nil {

252

 log.Fatal(err)

 }

 }

Note that in mock, no API calls to Twitter were made. In the
future, we will be creating a function with a similar API so we
can just replace the mock version of this function with the real
one, which acquires the timeline from the API.

For now, we can test that this works by the following program:

 func main(){

 tweets := mock()

 for _, tweet := range tweets {

 fmt.Printf("%q\n", tweet.FullText)

 }

 }

This is the output I got:

 $ go run *.go

 "just another test"

 "lecturing at the \"analyzing big data with twitter\" class at @cal with @othman http://t.co/bfj7zkDJ"

 "You'd be right more often if you thought you were wrong."

253

Data massage
When we tested that the data structure made sense, we
printed the FullText field. We wish to cluster based on the
content of the tweet. What matters to us is that content. This
can be found in the FullText field of the struct. Later on in the
chapter, we will see how we may use the metadata of the
tweets, such as location, to help cluster the tweets better.

As mentioned in the previous sections, each individual tweet
needs to be represented as a coordinate in some higher-
dimensional space. Thus, our goal is to take all the tweets in a
timeline and preprocess them in such a way that we can get
this output table:

| Tweet ID | twitter | test | right | wrong |

 |:--------:|:------:|:----:|:----:|:---:|

 | 1 | 0 | 1 | 0 | 0 |

 | 2 | 1 | 0 | 0 | 0 |

 | 3 | 0 | 0 | 1 | 1 |

Each row in the table represents a tweet, indexed by the tweet
ID. The columns that follow are words that exist in the tweet,
indexed by its header. So, in the first row, test appears in the
tweet, while twitter, right, and wrong do not. The slice of numbers
[0 1 0 0] in the first row is the input we require for the
clustering algorithms.

Of course, binary numbers indicating the presence of a word
in a tweet isn't the best. It'd be more interesting if the relative
importance of the word is used instead. Again, we turn to the
familiar TF-IDF, first introduced in Chapter 2, Linear Regression

254

– House Price Prediction, for this. More advanced techniques
such as using word embeddings exist. But you'd be surprised
how well something as simple as TF-IDF can perform.

By now, the process should be familiar—we want to represent
the text as a slice of numbers, not as a slice of bytes. In order
to do so, we would have to require some sort of dictionary to
convert the words in the text into IDs. From there, we can
built the table.

Again, like in Chapter 2, Linear Regression – House Price
Prediction, we shall approach this with a simple tokenization
strategy. More advanced tokenizers are nice, but not necessary
for our purpose. Instead, we'll rely on good old strings.Field.

https://cdp.packtpub.com/go_machine_learning_projects/wp-admin/post.php?post=28&action=edit#post_46

255

The processor
Having laid out our requirements, we can combine them into a
single data structure that contains the things we need. Here's
how the processor data structure looks:

 type processor struct {

 tfidf *tfidf.TFIDF

 corpus *corpus.Corpus

 locations map[string]int

 t transform.Transformer

 locCount int

 }

For now, ignore the locations field. We shall look into how
metadata might be useful in clustering.

To create a new processor, the following function is defined:

 func newProcessor() *processor {

 c, err := corpus.Construct(corpus.WithWords([]string{mention, hashtag, retweet, url}))

 dieIfErr(err)

 return &processor{

 tfidf: tfidf.New(),

 corpus: c,

 locations: make(map[string]int),

 }

 }

Here, we see some interesting decisions. The corpus is
constructed with a number of special strings—mention, hashtag,
retweet, and url. These are defined as follows:

256

 const (

 mention = "<@MENTION>"

 hashtag = "<#HASHTAG>"

 retweet = "<RETWEET>"

 url = "<URL>"

)

Some of the designs of this is for historical reasons. A long
time ago, before Twitter supported retweets as an action,
people manually retweeted tweets by prepending RT on to
tweets. If we are to analyze data far into the past (which we
won't for this chapter), then we'd have to be aware of the
historical designs of Twitter as well. So, you must design for
that.

But having constructed a corpus with special keywords implies
something. It implies that when converting the text of a tweet
into a bunch of IDs and numbers, mentions, hashtags,
retweets, and URLs are all treated as the same. It implies we
don't really want to care what the URL is, or who is
mentioned. However, when it comes to hashtags, that's the
interesting case.

A hashtag is typically used to denote the topic of the tweet.
Think #MeToo or #TimesUp. A hashtag contains information.
Compressing all hashtags into one single ID may not be useful.
This is a point to note when we experiment later on.

Having said all that, here's how a list of *processedTweet is
processed. We will be revisiting and revising the function as
the chapter goes on:

 func (p *processor) process(a []*processedTweet) {

 for _, tt := range a {

 for _, word := range strings.Fields(tt.FullText) {

 wordID, ok := p.single(word)

 if ok {

 tt.ids = append(tt.ids, wordID)

 }

257

if isRT(word) {

 tt.isRT = true

 }

 }

 p.tfidf.Add(tt)

 }

p.tfidf.CalculateIDF()

 // calculate scores

 for _, tt := range a {

 tt.textVec = p.tfidf.Score(tt)

 }

// normalize text vector

 size := p.corpus.Size()

 for _, tt := range a {

 tt.normTextVec = make([]float64, size)

 for i := range tt.ids {

 tt.normTextVec[tt.ids[i]] = tt.textVec[i]

 }

 }

 }

Let's go through this function line by line.

We start by ranging over all the *processedTweets. a is
[]*processedTweet for a good reason—we want to modify the
structure as we go along. If a were []processedTweet, then we
would have to either allocate a lot more, or have complicated
modification schemes.

Each tweet is comprised of its FullText. We want to extract each
word from the text, and then give each word its own ID. To do
that, this is the loop:

 for _, word := range strings.Fields(tt.FullText) {

 wordID, ok := p.single(word)

 if ok {

 tt.ids = append(tt.ids, wordID)

 }

 }

258

Preprocessing a single
word
The p.single processes a single word. It returns the ID of the
word, and whether to add it to the list of words that make up
the tweet. It is defined as follows:

 func (p *processor) single(a string) (wordID int, ok bool) {

 word := strings.ToLower(a)

 if _, ok = stopwords[word]; ok {

 return -1, false

 }

 if strings.HasPrefix(word, "#") {

 return p.corpus.Add(hashtag), true

 }

 if strings.HasPrefix(word, "@") {

 return p.corpus.Add(mention), true

 }

 if strings.HasPrefix(word, "http://") {

 return p.corpus.Add(url), true

 }

 if isRT(word) {

 return p.corpus.Add(retweet), false

 }

return p.corpus.Add(word), true

 }

We start by making the word lowercase. This makes words
such as café and Café equivalent.

Speaking of café, what would happen if there are two tweets
mentioning a café, but one user writes café and the other writes
cafe? Assume, of course, they both refer to the same thing.
We'd need some form of normalization to tell us that they're

259

the same.

260

Normalizing a string
First, the word is to be normalized into NFKC form. In Chapter
2, Linear Regression–House Price Prediction, this was
introduced, but I then mentioned that LingSpam basically
provides normalized datasets. In real-world data, which
Twitter is, data is often dirty. Hence, we need to be able to
compare them on an apples-to-apples basis.

To show this, let's write a side program:

 package main

import (

 "fmt"

 "unicode"

"golang.org/x/text/transform"

 "golang.org/x/text/unicode/norm"

)

func isMn(r rune) bool { return unicode.Is(unicode.Mn, r) }

func main() {

 str1 := "cafe"

 str2 := "café"

 str3 := "cafe\u0301"

 fmt.Println(str1 == str2)

 fmt.Println(str2 == str3)

t := transform.Chain(norm.NFD, transform.RemoveFunc(isMn), norm.NFKC)

 str1a, _, _ := transform.String(t, str1)

 str2a, _, _ := transform.String(t, str2)

 str3a, _, _ := transform.String(t, str3)

fmt.Println(str1a == str2a)

 fmt.Println(str2a == str3a)

 }

The first thing to note is that there are at least three ways of
writing the word café, which for the purposes of this
demonstration means coffee shop. It's clear from the first two

https://cdp.packtpub.com/go_machine_learning_projects/wp-admin/post.php?post=28&action=edit#post_46

261

comparisons that the words are not the same. But since they
mean the same thing, a comparison should return true.

To do that, we will need to transform all the text to one form,
and then comapare it. To do so, we would need to define a
transformer:

t := transform.Chain(norm.NFD, transform.RemoveFunc(isMn), norm.NFKC)

This transformer is a chain of text transformers, applied one
after another.

First, we convert all the text to its decomposing form, NFD.
This would turn café into cafe\u0301.

Then, we remove any non-spacing mark. This turns
cafe\u0301 into cafe. This removal function is done with the isMn
function, defined as follows:

func isMn(r rune) bool { return unicode.Is(unicode.Mn, r) }

Lastly, convert everything to NKFC form for maximum
compatibility and space saving. All three strings are now
equal.

Note that this type of comparison is done with one single
assumption that belies it all: there is one language that we're
doing our comparisons in—English. Café in French means
coffee as well as coffee shop. This kind of normalization,
where we remove diacritical marks, works so long as removing
a diacritic mark does not change the meaning of the word.
We'd have to be more careful around normalization when
dealing with multiple languages. But for this project, this is a
good enough assumption.

With this new knowledge, we will need to update our processor

262

type:

 type processor struct {

 tfidf *tfidf.TFIDF

 corpus *corpus.Corpus

 transformer transformer.Transformer

 locations map[string]int

 locCount int

 }

func newProcessor() *processor {

 c, err := corpus.Construct(corpus.WithWords([]string{mention, hashtag, retweet, url}))

 dieIfErr(err)

t := transform.Chain(norm.NFD, transform.RemoveFunc(isMn), norm.NFKC)

 return &processor{

 tfidf: tfidf.New(),

 corpus: c,

 transformer: t,

 locations: make(map[string]int),

 }

 }

The first line of our p.single function would have to change too,
from this:

 func (p *processor) single(a string) (wordID int, ok bool) {

 word := strings.ToLower(a)

It will change to this:

 func (p *processor) single(a string) (wordID int, ok bool) {

 word, _, err := transform.String(p.transformer, a)

 dieIfErr(err)

 word = strings.ToLower(word)

If you're feeling extra hard-working, try making strings.ToLower a
transform.Transformer. It is harder than you might expect, but not
as hard as it appears.

263

Preprocessing
stopwords
Enough about normalization. We now turn our focus to
stopwords.

Recall from Chapter 2, Linear Regression–House Price
Prediction, that stopwords are words such as the, there, from,
and so on. They're connective words, useful in understanding
the specific context of sentences, but for a naive statistical
analysis, they often add nothing more than noise. So, we have
to remove them.

A check for stopwords is simple. If a word matches a stopwords,
we'll return false for whether to add the word ID into the
sentence:

if _, ok = stopwords[word]; ok {

 return -1, false

 }

Where does the list of stopwords come from? It's simple enough
that I just wrote this in stopwords.go:

const sw = `a about above across after afterwards again against all almost alone along already also although always am among amongst amoungst amount an and another any anyhow anyone anything anyway anywhere are around as at back be became because become becomes becoming been before beforehand behind being below beside besides between beyond bill both bottom but by call can cannot can't cant co co. computer con could couldnt couldn't cry de describe detail did didn didn't didnt do does doesn doesn't doesnt doing don done down due during each eg e.g eight either eleven else elsewhere empty enough etc even ever every everyone everything everywhere except few fifteen fify fill find fire first five for former formerly forty found four from front full further get give go had has hasnt hasn't hasn have he hence her here hereafter hereby herein hereupon hers herself him himself his how however hundred i ie i.e. if in inc indeed interest into is it its itself just keep kg km last latter latterly least less ltd made make many may me meanwhile might mill mine more moreover most mostly move much must my myself name namely neither never nevertheless next nine no nobody none noone nor not nothing now nowhere of off often on once one only onto or other others otherwise our ours ourselves out over own part per perhaps please put quite rather re really regarding same say see seem seemed seeming seems serious several she should show side since sincere six sixty so some somehow someone something sometime sometimes somewhere still such system take ten than that the their them themselves then thence there thereafter thereby therefore therein thereupon these they thick thin third this those though three through throughout thru thus to together too top toward towards twelve twenty two un under unless until up upon us used using various very via was we well were what whatever when whence whenever where whereafter whereas whereby wherein whereupon wherever whether which while whither who whoever whole whom whose why will with within without would yet you your yours yourself yourselves`

var stopwords = make(map[string]struct{})

func init() {

 for _, s := range strings.Split(sw, " ") {

 stopwords[s] = struct{}{}

https://cdp.packtpub.com/go_machine_learning_projects/wp-admin/post.php?post=28&action=edit#post_46

264

 }

 }

And that's it! A tweet with content that looks like this—an
apple a day keeps the doctor away would have the IDs for
apple, day, doctor, and away.

The list of stopwords is adapted from the list that is used in
the lingo package. The list of stopwords in the lingo package is
meant to be used on lemmatized words. Because we're not
lemmatizing, some words were manually added. It's not
perfect but works well enough for our purpose.

265

Preprocessing Twitter
entities
After we've removed the stopwords, it's time to process the
special Twitter entities:

 if strings.HasPrefix(word, "#") {

 return p.corpus.Add(hashtag), true

 }

 if strings.HasPrefix(word, "@") {

 return p.corpus.Add(mention), true

 }

 if strings.HasPrefix(word, "http://") {

 return p.corpus.Add(url), true

 }

These are straightforwards enough.

If a word begins with "#", then it's a hashtag. We might want to
come back to this later, so it's good to keep this in mind.

Any word that begins with a "@" is a mention. This is a little
tricky. Sometimes, people tweet things such as I am @PlaceName,
indicating a location, as opposed to mentioning a user
(indeed, one may find @PlaceName does not exist). Or,
alternatively, people may tweet something such as I am @
PlaceName. In this case, the solo "@" would still be treated as a
mention. I found that for the former (@PlaceName), it doesn't
really matter if the word is treated as a mention. Twitter's API
does indeed return a list of mentions that you may check
against. But for my personal timeline, this was extra work that
isn't necessary. So, think of this as an extra credit project—

266

check against the list of mentions from the API.

Of course, we shan't be as lazy as to leave everything to extra
credit; simple checks can be made—if @ is solo, then we
shouldn't treat it as a mention. It should be treated as at.

Now, we check for URLs. The line if strings.HasPrefix(word,
"http://")checks for a http:// prefix. This isn't good. This doesn't
account for URLs with a https scheme.

Now we know how to modify this section of the code. It looks
like this:

 switch {

 case strings.HasPrefix(word, "#"):

 return p.corpus.Add(hashtag), true

 case strings.HasPrefix(word, "@"):

 if len(word) == 0 {

 return p.corpus.Add("at"), true

 }

 return p.corpus.Add(mention), true

 case strings.HasPrefix(word, "http"):

 return p.corpus.Add(url), true

 }

Lastly, a final line of code is added to handle historical tweets
before retweets were supported by Twitter:

 if word == "rt" {

 return p.corpus.Add(retweet), false

 }

267

Processing a single
tweet
Consider the following snippet of code:

 for _, tt := range a {

 for _, word := range strings.Fields(tt.FullText) {

 wordID, ok := p.single(word)

 if ok {

 tt.ids = append(tt.ids, wordID)

 }

if word == "rt" {

 tt.isRT = true

 }

 }

 p.tfidf.Add(tt)

 }

What it says is after we've preprocessed every single word, we
simply add that word to the TFIDF.

268

Clustering
The purpose of this project is to clean up the amount of tweets
that I have to read. If there is a reading budget of 100 tweets, I
don't want to be reading 50 tweets on the same topic; they
may well represent different viewpoints, but in general for
skimming purposes, are not relevant to my interests.
Clustering provides a good solution to this problem.

First, if the tweets are clustered, the 50 tweets on the same
topic will be grouped in the same cluster. This allows me to dig
in deeper if I wish. Otherwise, I can just skip those tweets and
move on.

In this project, we wish to use K-means. To do so, we'll use
Marcin Praski's clusters library. To install it, simply run go get -u
github.com/mpraski/clusters. It's a good library, and it comes built in
with multiple clustering algorithms. I introduced K-means
before, but we're also going to be using DBSCAN.

Last, we're going to be using the DMMClust algorithm to
compare against. The DMMClust algorithm is in a different
library. To install it, simply run go get -u github.com/go-nlp/dmmclust.
The purpose of DMMClust is to cluster small texts using an
innovative process.

269

Clustering with K-means
As a recap, here's what we did so far—we processed each tweet
in a list of tweets from the home timeline to be a slice of float64.
These represent the coordinates in the higher-dimensional
space. Now, all we need to do is the following:

1. Create a clusterer.
2. Create a [][]float64 representing all the tweets from the

timeline.
3. Train the clusterer.
4. Predict which tweet belongs in which cluster.

It can be done as follows:

 func main() {

 tweets := mock()

 p := newProcessor()

 p.process(tweets)

// create a clusterer

 c, err := clusters.KMeans(10000, 25, clusters.EuclideanDistance)

 dieIfErr(err)

data := asMatrix(tweets)

 dieIfErr(c.Learn(data))clusters := c.Guesses()

 for i, clust := range clusters{

 fmt.Printf("%d: %q\n", clust, tweets[i].FullText)

 }

 }

Surprised? Let's break it down.

The first few lines are for processing tweets:

270

 tweets := mock()

 p := newProcessor()

 p.process(tweets)

We then create a clusterer:

 // create a clusterer

 c, err := clusters.KMeans(10000, 25, clusters.EuclideanDistance)

 dieIfErr(err)

Here, we say we want a K-means clusterer. We'll train on the
data 10,000 times, and we want it to find 25 clusters, using
the EuclideanDistance method to calculate distances. The
Euclidean distance is your bog standard distance calculation,
the same one you'd use to calculate the distance between two
points in the exercises in the K-means section before. There
are other methods of calculating distances, which are more
suited for textual data. Later in this chapter, I'll show you how
to create a distance function, the Jacard distance, which is
much better than Euclidean distance when used on text.

After we've created a clusterer, we need to convert our list of
tweets into a matrix. We then train the clusterer:

 data := asMatrix(tweets)

 dieIfErr(c.Learn(data))

And, finally, we display the clusters:

 clusters := c.Guesses()

 for i, clust := range clusters{

 fmt.Printf("%d: %q\n", clust, tweets[i].FullText)

 }

271

Clustering with DBSCAN
Clustering with DBSCAN using Marcin's package is equally
simple. In fact, you would just need to change one single line
of code from this:

c, err := clusters.KMeans(10000, 25, clusters.EuclideanDistance)

You would change it to this:

c, err := clusters.DBSCAN(eps, minPts, clusters.EuclideanDistance)

Now, of course, the question is what values should eps and
minPts be?

eps represents the minimum distance required for two points
to be considered a neighbor. minPts is the minimum number of
points to form a dense cluster. Let's address eps first.

How do we know what the best distance is? A good way to
figure this out is usually to visualize the data. In fact, this is
what the original inventors of the DBSCAN algorithm
suggests. But what exactly are we to visualize?

We want to visualize the distance between the tweets. Given a
dataset, we can compute a distance matrix that looks
something like this:

| | A | B | C | ... |

 |--|--|--|--|--|--|

272

 | A | | | | |

 | B | | | | |

 | C | | | | |

 | ... | | | | |

To do so, we write the following function:

 func knn(a [][]float64, k int, distance func(a, b []float64) float64) ([][]float64, []float64) {

 var distances [][]float64

 for _, row := range a {

 var dists []float64

 for _, row2 := range a {

 dist := distance(row, row2)

 dists = append(dists, dist)

 }

 sort.Sort(sort.Float64Slice(dists))

 topK := dists[:k]

 distances = append(distances, topK)

 }

 var lastCol []float64

 for _, d := range distances {

 l := d[len(d)-1]

 lastCol = append(lastCol, l)

 }

 sort.Sort(sort.Float64Slice(lastCol))

 return distances, lastCol

 }

This function takes a matrix of floats; each row represents a
tweet, and finds the top k-nearest neighbors. Let's walk
through the algorithm. As we walk though the algorithm, bear
in mind that each row is a tweet; you can think of each row
therefore as a very complicated coordinate.

The first thing we want to do is to find the distance between a
tweet and another tweet, hence the following block:

 var distances [][]float64

 for _, row := range a {

 var dists []float64

 for _, row2 := range a {

273

 dist := distance(row, row2)

 dists = append(dists, dist)

 }

Of particular note are the two expressions for _, row := range
a and for _, row2 := range a. In a normal KNN function, you'd
have two matrices, a and b, and you'd find the distance
between a tweet in a and a tweet in b. But for the purposes of
drawing this chart, we are going to compare tweets within the
same dataset.

Once we acquired all the distances, we want to find the closest
neighbors, so we sort the list and then put them in the
distance matrix:

 sort.Sort(sort.Float64Slice(dists))

 topK := dists[:k]

 distances = append(distances, topK)

This, in a very quick way, is how to do K-nearest neighbors. Of
course, it's not the most efficient. The algorithm I've shown
here is O(n^2). There are better ways of doing things, but for
the purpose of this project, this suffices.

After that, we grab the last column of the matrix and sort the
last column. This is what we wish to plot. The plotting code is
not unlike that seen in previous chapters. I shall provide it
here with no further elaboration on how to use it:

 func plotKNNDist(a []float64) plotter.XYs {

 points := make(plotter.XYs, len(a))

 for i, val := range a {

 points[i].X = float64(i)

 points[i].Y = val

 }

 return points

 }

274

When I plot the real Twitter data to figure out the ideal eps, I
get the following output:

275

276

What you want to find is an elbow or knee in the picture.
Unfortunately, as you can tell, there are many of them. This is
going to make clustering with the DBSCAN algorithm difficult.
What this means is that the data is rather noisy.

One of the things that is of particular importance is the
distance function used. I will go into this a little further in
following sections on tweaking the program.

277

Clustering with
DMMClust
Having been somewhat discouraged by the distance plot of my
Twitter home feed, I looked into another way of clustering
tweets. To that end, I used the dmmclust library (of which I am
the primary author). The purpose of the DMMClust algorithm
is that it is able to handle small texts quite well. Indeed, it was
written to handle the problem of having small text.

What exactly is a small text? Most text clustering research out
there is done on texts with large amounts of words. Twitter, up
to very recently, only supported 140 characters. As you may
imagine, the amount of information that 140 characters to be
transmitted as human language is not very much.

The DMMClust algorithm works very much like students
joining high school social clubs. Imagine the tweets as a bunch
of students. Each student randomly joins a social club. Within
each social club, they may like their fellow members of the
club, or they may not. If they do not like the people in the
group, they are allowed to change social clubs. This happens
until all the clubs have people who like each other the most, or
until the amount of iterations runs out.

This, in a nutshell, is how the DMMClust algorithm works.

278

Real data
Up to this point, we've been working on an example JSON that
the Twitter documentation provides. I assume by now you
have your Twitter API access. So, let's get real Twitter data!

To get your API keys from the developer portal, click on the
Get Started link. You will come to a page such as this:

279

280

Select Create an app. You will be brought to a page that looks
like this:

I had previously created a Twitter app a long time ago (it had
very similar features to the one we're creating in this project);
hence, I have an app there already. Click on the blue Create an
app button at the top right. You will be brought to the
following form:

281

282

Fill in the form then click submit. It might take a few days
before you receive an email saying the app has been approved
for development. Be sure to be truthful in the description.
Lastly, you should then be able to click into your app, and get
the following page, which shows your API key and secret:

283

284

Click Create to create your access token and access token
secret. You'll be needing them.

Now that we have our API access key, this is how you'd access
Twitter using the Anaconda package:

 const (

 ACCESSTOKEN = "_____"

 ACCESSTOKENSECRET = "______"

 CONSUMERKEY = "_____"

 CONSUMERSECRET = "_______"

)

func main() {

 twitter := anaconda.NewTwitterApiWithCredentials(ACCESSTOKEN, ACCESSTOKENSECRET, CONSUMERKEY, CONSUMERSECRET)

 raw, err := twitter.GetHomeTimeline(nil)

f, err := os.OpenFile("dev.json", os.O_TRUNC|os.O_WRONLY|os.O_CREATE, 0644)

 dieIfErr(err)

 enc := json.NewEncoder(f)

 enc.Encode(raw)

 f.Close()

 }

At first glance, this snippet of code is a little weird. Let's go
through the code line by line. The first six lines deal with the
access tokens and keys. Obviously, they should not be
hardcoded in. A good way to handle secrets like these is to put
them in environment variables. I'll leave that as an exercise to
the reader. We'll move on to the rest of the code:

 twitter := anaconda.NewTwitterApiWithCredentials(ACCESSTOKEN, ACCESSTOKENSECRET, CONSUMERKEY, CONSUMERSECRET)

 raw, err := twitter.GetHomeTimeline(nil)

These two lines uses the Anaconda library to get the tweets
found in the Home timeline. The nil being passed in may be of
interest. Why would one do this? The GetHomeTimeline method
takes a map of url.Values. The package can be found in the
standard library as net/url. Values is defined thus:

285

type Values map[string][]string

But what do the values represent? It turns out that you may
pass some parameters to the Twitter API. The parameters and
what they do are enumerated here: https://developer.twitter.com/en/doc
s/tweets/timelines/api-reference/get-statuses-home_timeline. I don't wish to
limit anything, so passing in nil is acceptable.

The result is []anaconda.Tweet, all neatly packaged up for us to use.
The following few lines are therefore quite odd:

 f, err := os.OpenFile("dev.json", os.O_TRUNC|os.O_WRONLY|os.O_CREATE, 0644)

 dieIfErr(err)

 enc := json.NewEncoder(f)

 enc.Encode(raw)

 f.Close()

Why would I want to save this as a JSON file? The answer is
simple—when using machine learning algorithms, you may
need to tune the algorithm. Saving the request as a JSON file
serves two purposes:

It allows for consistency. Under active development,
you would expect to tweak the algorithm a lot. If the
JSON file keeps changing, how do you know if it's the
tweaks that are making the improvements, and not
because the JSON has changed?

Being a good citizen. Twitter's API is rate limited. This
means you cannot request the same thing over and
over again too many times. While testing and tuning
machine learning algorithms, you are likely to have to
repeatedly process your data over and over again.
Instead of hammering the Twitter servers, you should

https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-home_timeline

286

be a good citizen and use a locally cached copy.

We defined load earlier. Again, we shall see its usefulness in the
context of tweaking the algorithms.

287

The program
Once we've done that, we may move the previous main() into a
different function, leaving ourselves with a blank canvas for
main() again. We're now ready for the meat of the program. This
is a skeleton program. You're encouraged to actually actively
change the program while writing this:

func main() {

 f, err := os.Open("dev.json")

 dieIfErr(err)

 tweets := load(f)

 p := newProcessor()

 tweets = p.process(tweets)

expC := 20

 distances, last := knn(asMatrix(tweets), expC, clusters.EuclideanDistance)

 log.Printf("distances %v | %v", distances, last)

// plot for DBSCAN elbows

 plt, err := plot.New()

 dieIfErr(err)

 plotutil.AddLinePoints(plt, "KNN Distance", plotKNNDist(last))

 plt.Save(25*vg.Centimeter, 25*vg.Centimeter, "KNNDist.png")

// actually do the clustering

 dmmClust := dmm(tweets, expC, p.corpus.Size())

 kmeansClust := kmeans(tweets, expC)

 dbscanClust, clustCount := dbscan(tweets)

// print output

 log.Printf("len(tweets)%d", len(tweets))

 var buf bytes.Buffer

bc := byClusters2(dmmClust, expC)

 lc, tweetCount := largestCluster2(dmmClust)

 fmt.Fprintf(&buf, "Largest Cluster %d - %d tweets\n", lc, tweetCount)

 for i, t := range bc {

 fmt.Fprintf(&buf, "CLUSTER %d: %d\n", i, len(t))

 for _, c := range t {

 fmt.Fprintf(&buf, "\t%v\n", tweets[c].clean2)

 }

 }

 fmt.Fprintf(&buf, "==============\n")

288

 bc2 := byClusters(kmeansClust, expC)

 for i, t := range bc2 {

 fmt.Fprintf(&buf, "CLUSTER %d: %d\n", i, len(t))

 for _, c := range t {

 fmt.Fprintf(&buf, "\t%v\n", tweets[c].clean2)

 }

 }

 fmt.Fprintf(&buf, "==============\n")

 bc3 := byClusters(dbscanClust, clustCount)

 for i, t := range bc3 {

 fmt.Fprintf(&buf, "CLUSTER %d: %d\n", i, len(t))

 for _, c := range t {

 fmt.Fprintf(&buf, "\t%v\n", tweets[c].clean2)

 }

 }

log.Println(buf.String())

 }

There are some utility functions that I have yet to show you.
Now it's time to define them:

 func dmm(a []*processedTweet, expC int, corpusSize int) []dmmclust.Cluster {

 conf := dmmclust.Config{

 K: expC,

 Vocabulary: corpusSize,

 Iter: 1000,

 Alpha: 0.0,

 Beta: 0.01,

 Score: dmmclust.Algorithm4,

 Sampler: dmmclust.NewGibbs(rand.New(rand.NewSource(1337))),

 }

 dmmClust, err := dmmclust.FindClusters(toDocs(a), conf)

 dieIfErr(err)

 return dmmClust

 }

func kmeans(a []*processedTweet, expC int) []int {

 // create a clusterer

 kmeans, err := clusters.KMeans(100000, expC, clusters.EuclideanDistance)

 dieIfErr(err)

 data := asMatrix(a)

 dieIfErr(kmeans.Learn(data))

 return kmeans.Guesses()

 }

func dbscan(a []*processedTweet) ([]int, int) {

 dbscan, err := clusters.DBSCAN(5, 0.965, 8, clusters.EuclideanDistance)

 dieIfErr(err)

289

 data := asMatrix(a)

 dieIfErr(dbscan.Learn(data))

 clust := dbscan.Guesses()

counter := make(map[int]struct{})

 for _, c := range clust {

 counter[c] = struct{}{}

 }

 return clust, len(counter)

 }

func largestCluster(clusters []int) (int, int) {

 cc := make(map[int]int)

 for _, c := range clusters {

 cc[c]++

 }

var retVal, maxVal int

for k, v := range cc {

 if v > maxVal {

 retVal = k

 maxVal = v

 }

 }

 return retVal, cc[retVal]

 }

func largestCluster2(clusters []dmmclust.Cluster) (int, int) {

 cc := make(map[int]int)

 for _, c := range clusters {

 cc[c.ID()]++

 }

var retVal, maxVal int

for k, v := range cc {

 if v > maxVal {

 retVal = k

 maxVal = v

 }

 }

 return retVal, cc[retVal]

 }

func byClusters(a []int, expectedClusters int) (retVal [][]int) {

 if expectedClusters == 0 {

 return nil

 }

 retVal = make([][]int, expectedClusters)

 var i, v int

 defer func() {

 if r := recover(); r != nil {

 log.Printf("exp %v | %v", expectedClusters, v)

 panic(r)

 }

 }()

290

 for i, v = range a {

 if v == -1 {

 // retVal[0] = append(retVal[0], i)

 continue

 }

 retVal[v-1] = append(retVal[v-1], i)

 }

 return retVal

 }

func byClusters2(a []dmmclust.Cluster, expectedClusters int) (retVal [][]int) {

 retVal = make([][]int, expectedClusters)

 for i, v := range a {

 retVal[v.ID()] = append(retVal[v.ID()], i)

 }

 return retVal

 }

These are some of the utility functions that may be found in
utils.go. They mainly help with tweaking the program. Now run
the program by typing go run *.go.

291

Tweaking the program
If you have been following up to this point, you may get very
poor results from all the clustering algorithms. I'd like to
remind you that the stated objective of this book in general is
to impart an understanding of what it's like to do data science
in Go. For the most part, I have advocated a method that can
be described as think hard about the problem, then write the
answers down. But the reality is that often trial and error are
required.

The solution that works for me on my Twitter home timeline
may not work for you. For example, this code works well on a
friend's Twitter feed. Why is this? He follows a lot of similar
people who talk about similar things at the same time. It's a
little harder to cluster tweets in my Twitter home feed. I follow
a diverse array of people. The people I follow don't have set
schedules of tweeting and do not generally interact with other
Twitter users. Therefore, the tweets are generally quite diverse
already.

It is with this in mind that I encourage you to experiment and
tweak your program. In the subsections that follow, I shall
outline what worked for me. It may not work for you.

292

Tweaking distances
Up to this point, we had been using Euclidean distance as
provided by the Marcin library. The Euclidean distance is
computed as follows:

$ EuclideanDistance(\mathbf{q},\mathbf{p}) = \sqrt{\sum_{i=1}^n (q_i-p_i)^2}.$

The EuclideanDistance is a good metric to use when it comes to
coordinates in a Cartesian space. Indeed, earlier I had drawn
up an analogy of thinking of a tweet as a bunch of coordinates
in space, to explain K-means and DBSCAN. The reality is that
text documents aren't really in Cartesian space. You may think
of them as being in Cartesian space, but they are not strictly
so.

So, allow me to introduce another type of distance, one that is
more suited to dealing with textual elements in a bag-of-
words-style setting that we're currently doing, the Jaccard
distance.

The Jaccard distance is defined as follows:

$ d_J(A,B) = 1 - J(A,B) = { { |A \cup B| - |A \cap B| } \over |A \cup B| } $

Here, A and B are sets of words in each tweet. The
implementation of the Jaccard distance in Go is rudimentary,
but it works:

 func jaccard(a, b []float64) float64 {

293

 setA, setB := make(map[int]struct{}), make(map[int]struct{})

 union := make(map[int]struct{})

 for i := range a {

 if a[i] != 0 {

 union[i] = struct{}{}

 setA[i] = struct{}{}

 }

 }

for i := range b {

 if b[i] != 0 {

 union[i] = struct{}{}

 setB[i] = struct{}{}

 }

 }

intersection := 0.0

 for k := range setA {

 if _, ok := setB[k]; ok {

 intersection++

 }

 }

return 1 - (intersection / float64(len(union)))

 }

294

Tweaking the
preprocessing step
One thing you may note is that the preprocessing of tweets is
very minimal, and some of the rules are odd. For example, all
hashtags are treated as one, as are all links and mentions.
When this project started, it seemed like a good reason. There
is no other justification than it seemed like a good reason; one
always needs a springboard from which to jump off in any
project. A flimsy excuse at that point is as good as any other.

Nonetheless, I have tweaked my preprocessing steps. These
are the functions that I finally settled on. Do observe the
difference between this and the original, listed in previous
sections:

 var nl = regexp.MustCompile("\n+")

 var ht = regexp.MustCompile("&.+?;")

func (p *processor) single(word string) (wordID int, ok bool) {

 if _, ok = stopwords[word]; ok {

 return -1, false

 }

 switch {

 case strings.HasPrefix(word, "#"):

 word = strings.TrimPrefix(word, "#")

 case word == "@":

 return -1, false // at is a stop word!

 case strings.HasPrefix(word, "http"):

 return -1, false

 }

if word == "rt" {

 return -1, false

 }

return p.corpus.Add(word), true

 }

295

func (p *processor) process(a []*processedTweet) []*processedTweet {

 // remove things from consideration

 i := 0

 for _, tt := range a {

 if tt.Lang == "en" {

 a[i] = tt

 i++

 }

 }

 a = a[:i]

var err error

 for _, tt := range a {

 if tt.RetweetedStatus != nil {

 tt.Tweet = *tt.RetweetedStatus

 }

tt.clean, _, err = transform.String(p.transformer, tt.FullText)

 dieIfErr(err)

 tt.clean = strings.ToLower(tt.clean)

 tt.clean = nl.ReplaceAllString(tt.clean, "\n")

 tt.clean = ht.ReplaceAllString(tt.clean, "")

 tt.clean = stripPunct(tt.clean)

 log.Printf("%v", tt.clean)

 for _, word := range strings.Fields(tt.clean) {

 // word = corpus.Singularize(word)

 wordID, ok := p.single(word)

 if ok {

 tt.ids = append(tt.ids, wordID)

 tt.clean2 += " "

 tt.clean2 += word

 }

if word == "rt" {

 tt.isRT = true

 }

 }

 p.tfidf.Add(tt)

 log.Printf("%v", tt.clean2)

 }

p.tfidf.CalculateIDF()

 // calculate scores

 for _, tt := range a {

 tt.textVec = p.tfidf.Score(tt)

 }

// normalize text vector

 size := p.corpus.Size()

 for _, tt := range a {

 tt.normTextVec = make([]float64, size)

 for i := range tt.ids {

 tt.normTextVec[tt.ids[i]] = tt.textVec[i]

 }

296

 }

 return a

 }

func stripPunct(a string) string {

 const punct = ",.?;:'\"!’*-“"

 return strings.Map(func(r rune) rune {

 if strings.IndexRune(punct, r) < 0 {

 return r

 }

 return -1

 }, a)

 }

The most notable thing that I have changed is that I now
consider a hashtag a word. Mentions are removed. As for
URLs, in one of the attempts at clustering, I realized that the
clustering algorithms were clustering all the tweets with a
URL into the same cluster. That realization made me remove
hashtags, mentions, and URLs. Hashtags have the # removed
and are treated as if they were normal words.

Furthermore, you may note that I added some quick and dirty
ways to clean certain things:

 tt.clean = strings.ToLower(tt.clean)

 tt.clean = nl.ReplaceAllString(tt.clean, "\n")

 tt.clean = ht.ReplaceAllString(tt.clean, "")

 tt.clean = stripPunct(tt.clean)

Here, I used regular expressions to replace multiple newlines
with just one, and to replace all HTML-encoded text with
nothing. Lastly, I removed all punctuation.

In a more formal setting, I would use a proper lexer to handle
my text. The lexer I'd use would come from Lingo
(github.com/chewxy/lingo). But given that Twitter is a low value
environment, there wasn't much point in doing so. A proper
lexer like the one in lingo flags text as multiple things,
allowing for easy removal.

297

Another thing you might notice is that I changed the definition
of what a tweet is mid-flight:

 if tt.RetweetedStatus != nil {

 tt.Tweet = *tt.RetweetedStatus

 }

This block of code says if a tweet is indeed a retweeted status,
replace the tweet with the retweeted tweet. This works for me.
But it may not work for you. I personally consider any retweet
to be the same as repeating a tweet. So, I do not see why they
should be separate. Additionally, Twitter allows for users to
comment on a retweet. If you want to include that, you'd have
to change the logic a little bit more. Either way, the way I got
to this was by manually inspecting the JSON file I had saved.

It's asking these questions and then making a judgment call
what is important in doing data science, either in Go or any
other language. It's not about blindly applying algorithms.
Rather, it's always driven by what the data tells you.

One last thing that you may note is this curious block of code:

 // remove things from consideration

 i := 0

 for _, tt := range a {

 if tt.Lang == "en" {

 a[i] = tt

 i++

 }

 }

 a = a[:i]

Here, I only consider English tweets. I follow many people
who tweet in a variety of languages. At any given time, my
home timeline would have about 15% of tweets in French,
Chinese, Japanese, or German. Clustering tweets in a different
language is a whole different ballgame, so I chose to omit

298

them.

299

Summary
In this chapter, we have learned how to cluster tweets using a
variety of clustering methods. Though frequently touted as
one of the most robust algorithms, we've shown that DBSCAN
has problems with clustering tweets due to the nature of
tweets being noisy. Instead, we see that older, more traditional
methods, as well as a new method of clustering, would yield
better results.

This points to a lesson—there is no one machine-learning
algorithm to rule them all; there is no ultimate algorithm.
Instead, we need to try more than one thing. In the chapters
that follow, this theme will be more apparent, and we shall
approach these with more rigor. In the next chapter, we will
learn about basics of neural networks and apply them on
handwriting to recognize digits.

300

Neural Networks - MNIST
Handwriting
Recognition
Imagine, you were a postal worker. Your would be job to
deliver letters. Most of the time, the recipient's name and
address would be printed and quite legible, and your job
becomes quite easy. But come Thanksgiving and Christmas,
the number of envelopes with handwritten addresses
increases as people give their personal touches and flourishes.
And, to be frank, some people (me included) just have terrible
handwriting.

Blame it on schools for no longer emphasizing cursive
handwriting if you must, but the problem remains:
handwriting is hard to read and interpret. God forbid you have
to deliver a letter penned by a doctor (good luck doing that!).

Imagine, instead, if you had built a machine learning system
that allows you to read handwriting. That's what we will be
doing this chapter and the next; we will be building a type of
machine-learning algorithm known as an artificial neural
network, and in the next chapter, we will be expanding on the
concept with deep learning.

In this chapter, we will learn the basics of neural networks, see
how it's inspired by biological neurons, find a better way of
representing them, and finally apply neural networks on
handwriting to recognize digits.

301

A neural network
The term neural network can mean one of two things in
modern parlance. The first refers to a network of neurons
found in your brain. These neurons form specific networks
and pathways and are vital to you understanding this very
sentence. The second meaning of the term refers to an
artificial neural network; that is, things we build in software to
emulate a neural network in the brain.

This, of course, has led to very many unfortunate comparisons
between a biological neural network and an artificial neural
network. To understand why, we must start at the beginning.

From here on, I shall spell neuron with a British spelling denoting a real
neuron cell, while the American spelling, neuron, will be reserved for the
artificial variant.

This following diagram is of a neuron:

302

In general, a neuron typically consists of the soma (the general
body of the cell that contains its nucleus), an optional axon
covered in a kind of fatty tissue known as myelin, and
dendrites. The latter two components (the axon and
dendrites) are particularly interesting because together they
form a structure known as a synapse. Specifically, it's the end
of an axon the terminal) that forms such synapses.

The vast majority of synapses in mammalian brains are
between axon terminals and dendrites. The typical flow of
signals (chemical or electrical impulses) goes from one
neuron, travels along the axon, and deposits its signal onto the
next.

303

In the image above, we have three neurons, labelled A, B, and
C. Imagine A receives a signal from an external source (like
your eyes). It receives a signal that is strong enough that it
passes the signal down the axon, which touches the dendrites
of B via a synapse. B receives the signal and decides it doesn't
warrant passing along the signal to C, so nothing goes down
the axon of B.

And so we will now explore how you might emulate this.

304

Emulating a neural
network
Let's simplify the preceding diagram of the neural network:

We'll have a circle represent the body of the neuron, and we'll
call it the neuron. The "dendrites" of the neuron receive
inputs from other neurons (unshown) and add up all the
inputs. Each input represents an input from another neuron;
so, if you see three inputs, it means that this neuron is
connected to three other neurons.

If the sum of the inputs exceeds a threshold value, then we can

305

say the neuron "fires" or is activated. This simulates the
activation potential of an actual neuron. For simplicity, let's
say if it fires, then the output will be 1; otherwise, it will be 0.
Here is a good emulation of it in Go code:

func neuron(threshold int, inputs ...int) int {

 var total int

 for _, in := range inputs {

 total += in

 }

 if total > threshold {

 return 1

 }

 return 0

}

This is generally known as a perceptron, and it's a faithful
emulation of how neurons work, if your knowledge of how
neurons work is stuck in the 1940s and 1950s.

Here is a rather interesting anecdote: As I was writing this
section, King Princess' 1950 started playing in the background
and I thought it would be rather apt to imagine ourselves in
the 1950s, developing the perceptron. There remains a
problem: the artificial network we emulated so far cannot
learn! It is programmed to do whatever the inputs tell it to do.

What does it mean for an artificial neural network "to learn"
exactly? There's an idea that arose in neuroscience in the
1950s, called the Hebbian Rule, which can be briefly
summed up as: Neurons that fire together grow together.
This gives rise to an idea that some synapses are thicker;
hence,they have stronger connections, and other synapses are
thinner; hence, they have weaker connections.

To emulate this, we would need to introduce the concept of a
weighted value, the weight of which corresponds to the
strength of the input from another neuron. Here's a good
approximation of this idea:

306

func neuron(threshold, weights, inputs []int) int {

 if len(weights) != len(inputs) {

 panic("Expected length of weights to be the same as the length of inputs")

 }

 var total int

 for i, in := range inputs {

 total += weights[i]*in

 }

 if total > threshold {

 return 1

 }

 return 0

}

At this point, if you are familiar with linear algebra, you might
think to yourself that total is essentially a vector product. You
would be absolutely correct. Additionally, if the threshold is 0,
then you have simply applied a heaviside step function:

func heaviside(a float64) float64 {

 if a >= 0 {

 return 1

 }

 return 0

}

In other words, we can summarize a single neuron in the
following way:

func neuron(weights, inputs []float64) float64 {

 return heaviside(vectorDot(weights, inputs))

}

Note in the last two examples, I switched over from int to a
more canonical float64. The point remains the same: a single
neuron is simply a function applied to a vector product.

A single neuron does not do much. But stack a bunch of them

307

together and arrange them by layers like so, and then
suddenly they start to do more:

Now we come to the part that requires a conceptual leap: if a
neuron is essentially just a vector product, stacking the
neurons simply makes it a matrix!

Given an image can be represented as a flat slice of float64 ,
the vectorDot function is replaced with matVecMul, which is a
function that multiplies a matrix and vector to return a vector.
We can write a function representing the neural layer like so:

func affine(weights [][]float64, inputs []float64) []float64 {

 return activation(matVecMul(weights, inputs))

}

308

Linear algebra 101
I want to take a detour to talk about linear algebra. It's
featured quite a bit so far in this book, although it was scarcely
mentioned by name. In fact linear algebra underlies every
chapter we've done so far.

Imagine you have two equations:

Let's say and is and , respectively. We can now write
the following equations as such:

And we can solve it using basic algebra (please do work it out
on your own): and .

What if you have three, four, or five simultaneous equations?
It starts to get cumbersome to calculate these values. Instead,
we invented a new notation: the matrix notation, which will
allow us to solve simultaneous equations faster.

It had been used for about 100 years without a name (it was
first termed "matrix" by James Sylvester) and formal rules
were being used until Arthur Cayley formalized the rules in
1858. Nonetheless, the idea of grouping together parts of an
equation into a bunch had been long used.

309

We start by "factoring" out the equations into their parts:

The horizontal line indicates that it's two different equations,
not that they are ratios. Of course, we realize that we've been
making too many repetitions so we simplify the matrix of
 and

Here, you can see that and is only ever written once.
It's rather unneat to write it the way we just wrote it, so
instead we write it like so to be neater:

Not only do we write it like so, we give specific rule on how to
read this notation:

We should give the matrices names so we can refer to them
later on:

310

The bold indicates that the variable holds multiple values. An uppercase
indicates a matrix (), and lowercase indicates a vector (and . This is
to distinguish it from scalar variables (variables that only hold one value),
which are typically written without boldface (for example, and).

To solve the equations, the solution is simply this:

The superscript indicates an inverse is to be taken. This is
rather consistent with normal algebra.

Consider a problem where you are asked to solve

for . The solution is simply . Or we can rewrite it as

a series of multiplications as . And what do we
know about fractions where one is the numerator? They can
simply be written as a power to the -1. Hence, we arrive at this

solution equation:

Now if you squint very carefully, the scalar version of the
equation looks very much like the matrix notation version of
the equation.

How to calculate the inverse of a matrix is not what this book
aims to do. Instead, I encourage you to pick up a linear algebra
text book. I highly recommend Sheldon Axler's Linear
Algebra Done Right (Springer Books).

311

To recap, here are the main points:

Matrix multiplication and notation were invented to
solve simultaneous equations.

To solve the simultaneous equation, we treat the
equation as though the variables were scalar variables
and use inverses.

Now comes the interesting part. Using the same two
equations, we will turn the question around. What if we knew
what and is instead? The equations would now look
something like this:

Writing it in matrix form, we get the following:

Careful readers would have caught an error by now: there are
four variables (, , , and), but only two
equations. From high-school math, we learn that you can't
solve a system of equations where there are fewer equations
than there are variables!

The thing is, your high school math teacher kind of lied to you.
It is sort of possible to solve this, and you've already done so
yourself in Chapter 2, Linear Regression - House Price
Prediction.

In fact, most machine learning problems can be re-expressed
in linear algebra, specifically of this form:

312

And this in my opinion, is the right way to think about
artificial neural networks: a series of mathematical functions,
not an analogue of biological neurons. We will explore this a
bit more in the next chapter. In fact, this understanding is
vital to the understanding of deep learning and why it works.

For now, it suffices to follow on with the more common notion
that an artificial neural network is similar in actions to a
biologically inspired neural network.

313

Exploring activation
functions
The thing about linear algebra is, it's linear. It is useful when
the change of the output is proportional to the change in
input. The real world is full of non-linear functions and
equations. Solving non-linear equation is hard with a capital
H. But we've got a trick. We can take a linear equation, and
then add a non-linearity to it. This way, the function becomes
non-linear!

Following from this view, you can view an artificial neural
network as a generic version of all the previous chapters we've
gone through so far.

Throughout the history of artificial neural networks, the
community has favored particular activation functions in a
fashionable way. In the early days, the Heaviside function was
favored. Gradually, the community moved toward favoring
differentiable, continuous functions, such as sigmoid and
tanh. But lately, the pendulum of fashion has swung back
toward the harder, seemingly discontinuous functions. The
key is that we've learned new tricks on how to differentiate
functions, such as the rectified linear unit (ReLu).

Here are some of the more popular activation functions over
time:

314

315

'

One thing to note about these is that these functions are all
nonlinear and they all have a hard limit on the y axis.

The vertical ranges of the activation functions are limited, but
the horizontal ranges are not. We can use biases to adjust how
our activation functions look.

It should be noted that biases can be zero. It also means that
we can omit biases. Most of the time, for more complex
projects, this is fine, though adding biases will add to the
accuracy of the neural network.

316

Learning
I want you to think about how you learn. Not the learning
styles, mind; no, I want you to give your learning process a
long hard deep thought. Think of the various ways you learn.
Maybe you've touched a stove while it's hot once. Or if you
ever learned a new language, maybe you started out by
memorizing phrases before becoming fluent. Think about all
the chapters that had preceded this. What do they have in
common?

In broad strokes, learning is done by means of corrections. If
you touched a stove while it's hot, you made a mistake. The
correction is to never touch a stove when it's hot ever again.
You've learned how not to touch the stove while it's hot.

Similarly, the way a neural network learns is by means of
correction. If we want to train a machine to learn to classify
handwriting, we would need to provide some sample images,
and tell the machine which are the correct labels. If the
machine predicted the labels wrongly, we need to tell it to
change something in the neural network and try again.

What can be changed? The weights of course. The inputs can't
be changed; they're inputs. But we can always try different
weights. Hence, the process of learning can be broken down
into two steps:

Telling the neural network that it is wrong when it
made a mistake.

Updating the weights so that the next try will yield a

317

better result.

When broken down like this, we have a good idea of how to
proceed next. One way would be a binary determination
mechanism: if the neural network predicted the correct
answer, don't update the weights. If it's wrong, update the
weights.

How to update the weights, then? Well, one way would be to
completely replace the weight matrix with new values and try
again. Since the weight matrix is filled from values pulled from
a random distribution, the new weight matrix would be a new
random matrix.

It should be quite obvious that these two methods, when
combined, would take a very very long time before the neural
network learns anything; it's as if we're simply guessing our
way into the correct weight matrices.

Instead, modern neural networks use the concept
of backpropagation to tell the neural network that it's made
a mistake, and some form of gradient descent to update the
weights.

The specifics of backpropagation and gradient descent are
outside the scope of this chapter (and book). I'll, however,
briefly run through the big ideas by sharing a story. I was
having lunch with a couple of friends who also work in
machine learning and that lunch ended with us arguing. This
was because I had casually mentioned that backpropagation
was "discovered", as opposed to "invented". My friends were
adamant that backpropagation was invented, not discovered.
My reasoning was simple: Mathematics is "discovered" if
multiple people stumble upon it with the same formulation.
Mathematics is "invented" if there were no parallel discovery
of it.

318

Backpropagation, in various forms, has been constantly
rediscovered over time. The first time backpropagation was
discovered was in the invention of linear regression. I should
note that it was a very specific form of backpropagation
specific to linear regression: the sum of squared errors can be
propagated back to its inputs by differentiating the result of
the sum of squared errors with regard to the inputs.

We start with a cost. Remember how we have to tell the neural
network that it's made a mistake. We do so by telling the
neural network the cost of making a prediction. This is called a
cost function. We can define a cost so that when the neural
network makes a correct prediction, the cost is low, and when
the neural network makes a wrong prediction, the cost is high.

Imagine for now, that the cost function is . How
do you know at what values of the cost will be lowest?
From high- school math, we know that the solution is to
differentiate with regard to and solve for the solution
when it's 0:

Backpropagation takes the same cue. In short, backpropagtion
is just a bunch of partial differentiations with regard to the
weights. The main difference between our toy example and
real backpropagation is that the derivation of our expression is
easy to solve. For more complex mathematical expressions, it
can be computationally too expensive to compute the solution.
Instead, we rely on gradient descent to find the answer.

Gradient descent assumes we start our x somewhere and we
update the x iteratively toward the lowest cost. In each
iteration, we update the weights. The simplest form of
gradient descent is to add the gradient of the weights to the
weights themselves.

319

The key takeaway is the powerful notion that you can tell the
inputs that an error has occurred by performing
differentiation of the function and finding a point at which the
derivatives are at its minimum.

320

The project
The project we're embarking on is the one as mentioned in the
opening paragraphs. The dataset which we are going to
classify is a collection of handwritten numbers originally
collected by the National Institute of Standards and
Technology and later modified by Yann LeCun's team. Our
goal is to classify the handwritten numbers as either one of 0,
1, 2... 9.

We're going to build a basic neural network with the
understanding that neural networks are applied linear
algebra, and we'll be using Gorgonia for this and the next
chapter.

To install Gorgonia, simply run go get -u
gorgonia.org/gorgonia and go get -u gorgonia.org/tensor.

321

Gorgonia
Gorgonia is a library that facilitates efficient mathematical
operations for the purposes of building deep neural networks.
It operates on the fundamental understanding that neural
networks are mathematical expressions. As such it is quite
easy to build neural networks using Gorgonia.

A note on the chapters: Because Gorgonia is a relatively huge
library, parts of this chapter will elide over some things about
Gorgonia but will be expanded upon in the next chapter, as
well as another Packt book, Hands On Deep Learning in Go.

322

Getting the data
The data for the MNIST data can be found in the repository
for this chapter. In its original form, it's not in a standard
image format. So, we will need to parse the data into an
acceptable format.

The dataset comes in two parts: labels and images. So here are
a couple of functions, designed to read and parse the MNIST
file:

// Image holds the pixel intensities of an image.

// 255 is foreground (black), 0 is background (white).

type RawImage []byte

// Label is a digit label in 0 to 9

type Label uint8

const numLabels = 10

const pixelRange = 255

const (

 imageMagic = 0x00000803

 labelMagic = 0x00000801

 Width = 28

 Height = 28

)

func readLabelFile(r io.Reader, e error) (labels []Label, err error) {

 if e != nil {

 return nil, e

 }

 var magic, n int32

 if err = binary.Read(r, binary.BigEndian, &magic); err != nil {

 return nil, err

 }

323

 if magic != labelMagic {

 return nil, os.ErrInvalid

 }

 if err = binary.Read(r, binary.BigEndian, &n); err != nil {

 return nil, err

 }

 labels = make([]Label, n)

 for i := 0; i < int(n); i++ {

 var l Label

 if err := binary.Read(r, binary.BigEndian, &l); err != nil {

 return nil, err

 }

 labels[i] = l

 }

 return labels, nil

}

func readImageFile(r io.Reader, e error) (imgs []RawImage, err error) {

 if e != nil {

 return nil, e

 }

 var magic, n, nrow, ncol int32

 if err = binary.Read(r, binary.BigEndian, &magic); err != nil {

 return nil, err

 }

 if magic != imageMagic {

 return nil, err /*os.ErrInvalid*/

 }

 if err = binary.Read(r, binary.BigEndian, &n); err != nil {

 return nil, err

 }

 if err = binary.Read(r, binary.BigEndian, &nrow); err != nil {

 return nil, err

 }

 if err = binary.Read(r, binary.BigEndian, &ncol); err != nil {

 return nil, err

 }

 imgs = make([]RawImage, n)

 m := int(nrow * ncol)

 for i := 0; i < int(n); i++ {

 imgs[i] = make(RawImage, m)

 m_, err := io.ReadFull(r, imgs[i])

 if err != nil {

 return nil, err

 }

 if m_ != int(m) {

 return nil, os.ErrInvalid

 }

324

 }

 return imgs, nil

}

First, the functions read the file from a io.Reader and reading a
set of int32s. These are the metadata of the file. The first int32 is
a magic number that is used to indicate if a file is a labels file
or a file of images. n indicates the number of images or labels
the file contains. nrow and ncol are metadata that exists in the
file, and indicates how many rows/columns there are in each
image.

Zooming into the readImageFile function, we can see that after all
the metadata has been read, we know to create a []RawImage of
size n. The image format used in the MNIST dataset is
essentially a slice of 784 bytes (28 columns and 28 rows).
Each byte therefore represents a pixel in the image. The value
of each byte represents how bright the pixel is, ranging from 0
to 255:

The preceding image is an example of an MNIST image blown
up. At the top-left corner, the index of the pixel in a flat slice is
0. At the top right corner, the index of the pixel in a flat slice is
27. At the bottom-left corner, the index of the pixel in a flat
slice is 755. And, finally, at the bottom-right corner, the index
is 727. This is an important concept to keep in mind: A 2D

325

image can be represented as a 1D slice.

326

Acceptable format
What is an acceptable format to represent the image? A slice
of bytes is useful for reading and displaying the image, but it's
not particularly useful for doing any machine learning. Rather,
we should want to represent the image as a slice of floating
points. So, here's a function to convert a byte into a float64:

func pixelWeight(px byte) float64 {

 retVal := float64(px)/pixelRange*0.9 + 0.1

 if retVal == 1.0 {

 return 0.999

 }

 return retVal

}

This is essentially a scaling function that scales from 0-255 to
between 0.0 and 1.0. There is an additional check; if the value
is 1.0, we return 0.999 instead of 1. This is mainly due to the
fact that when values are 1.0, numerical instability tends to
happen, as mathematical functions tend to act weirdly. So
instead, replace 1.0 with values that are very close to 1.

So now, we can make a RawImage into a []float64. And because we
have N images in the form of []RawImage, we can make it into a []
[]float64, or a matrix.

327

From images to a matrix
So far we've established that we can convert a list of images in
a special format in to a slice of slices of float64. Recall from
earlier, that when you stack neurons together they form a
matrix, and the activation of a neural layer is simply a matrix-
vector multiplication. And when the inputs are stacked
together, it's simply matrix-matrix multiplication.

We technically can build a neural network with just [][]float64.
But the end result will be quite slow. Collectively as a species,
we have had approximately 40 years of developing algorithms
for efficient linear algebra operations, such as matrix
multiplication and matrix-vector multiplication. This
collection of algorithms are generally known as BLAS (Basic
Linear Algebra Subprograms).

We have been, up to this point in the book, using libraries
built on top of a library that provide BLAS functions, namely
Gonum's BLAS library. If you had been following the book up
to this point, you would have it installed already. Otherwise,
run go get -u gonum.org/v1/gonum/..., which would install the entire
suite of Gonum libraries.

Because of the way BLAS works in general, we need a better
way of representing matrices than [][]float64. Here we have two
options:

Gonum's mat library

Gorgonia's tensor library

328

Why Gorgonia's tensor? The reason for tensor is quite simple. It
plays well with Gorgonia itself, which requires
multidimensional arrays. Gonum's mat only takes up to two
dimensions, while in the next chapter we'll see a use of four-
dimensional arrays.

329

What is a tensor?
Fundamentally tensors are very much like vectors. The idea is
stolen from physics. Imagine pushing a box on a two-
dimensional plane. If you push the box with a force of 1
Newton along the x axis, there is no force applied to the y axis.
You would write the vector as such: [1, 0]. If the box were
moving along the x axis with at a speed of 10 km/h and along
the y axis with a speed of 2 km/h, you would write the vector
as such: [10, 2]. Note that they are unitless: the first example
was a vector of Newtons, the second example was a vector
with km/h as its units.

In short, it is a representation of something (a force, a speed,
or anything with magnitude and direction) applied to a
direction. From this idea, computer science co-opted the name
vector. But in Go, they're called a slice.

So what is a tensor? Eliding a lot of the details but without a loss of
generality, a tensor is like a vector. Except multidimensional. Imagine if
you were to describe two speeds along the plane (imagine a silly putty
being stretched in two directions at different speeds): [1, 0] and [10, 2]. You
would write it as such:
⎡ 1 0⎤
⎣10 2⎦

This is also called a matrix (when it's two-dimensional). It's
called a 3-Tensor when it's three-dimensional, 4-Tensor when
its four-dimensional, and so on and so forth. Note that if you
have a third speed (that is, the silly putty being stretched in a
third direction), you wouldn't have a 3-Tensor. Instead you'd
still have a matrix, with three rows.

To visualize a 3-Tensor while building on the previous
example, imagine if you will, that the two directions that the
silly putty was being pulled at was a slice in time. Then

330

imagine another slice in time where the same silly putty is
pulled in two directions again. So now you'd have two
matrices. A 3-Tensor is what happens when you imagine
stacking these matrices together.

To convert a []RawImage to a tensor.Tensor, the code is as follows:

func prepareX(M []RawImage) (retVal tensor.Tensor) {

 rows := len(M)

 cols := len(M[0])

 b := make([]float64, 0, rows*cols)

 for i := 0; i < rows; i++ {

 for j := 0; j < len(M[i]); j++ {

 b = append(b, pixelWeight(M[i][j]))

 }

 }

 return tensor.New(tensor.WithShape(rows, cols), tensor.WithBacking(b))

}

Gorgonia may be a bit confusing to beginners. So let me
explain the code line by line. But first, you must be aware that
like Gonum matrices, Gorgonia tensors, no matter how many
dimensions, are also internally represented as a flat slice.
Gorgonia tensors are a little more flexible in the sense that
they can take more than a flat slice of float64 (it takes slices of
other types too). This is called the backing slice or array. This
is one of the fundamental reasons why performing linear
algebra operations is more efficient in Gonum and Gorgonia
than using plain [][]float64.

rows := len(M) and cols := len(M[0]) are pretty self explanatory. We
want to know the rows (that is, number of images) and
columns (the number of pixels in the image).

b := make([]float64, 0, rows*cols) creates the backing array with a
capacity of rows * cols. This backing array is called a
backing array because throughout the lifetime of b, the size
will not change. Here we start with a length of 0 because we

331

want to use the append function later on.

a := make([]T, 0, capacity) is a good pattern to use to pre-allocate a slice.
Consider a snippet that looks like this:
a := make([]int, 0)

 for i := 0; i < 10; i++ {

 a = append(a, i)

 }

During the first call to append, the Go runtime will look at the capacity of a,
and find it's 0. So it will allocate some memory to create a slice of size 1.
Then on the second call to append, the Go runtime will look at the capacity
of a and find that it's 1, which is insufficient. So it will allocate twice the
current capacity of the slice. On the fourth iteration, it will find the capacity
of a is insufficient for appending and once again allocates twice the current
capacity of the slice.

The thing about allocation is that it is an expensive operation. Occasionally
the Go runtime may not only have to allocate memory, but copy the
memory to a new location. This adds to the cost of appending to a slice.

So instead, if we know the capacity of the slice upfront, it's best to allocate
all of it in one shot. We can specify the length, but it's often a cause of
indexing errors. So my recommendation is to allocate with the capacity and
a length of 0. That way, you can safely use append without having to worry
about indexing errors.

After creating a backing slice, we simply populate the backing
slice with the values of the pixel, converted to a float64 using
the pixelWeight function that we described earlier.

Finally, we call tensor.New(tensor.WithShape(rows, cols),
tensor.WithBacking(b)), which returns a *tensor.Dense.
The tensor.WithShape(rows, cols) construction option creates
a *tensor.Dense with the specified shape
while tensor.WithBacking(b) simply uses the already pre-allocated
and pre-filled b as a backing slice.

The tensor library will simply reuse the entire backing array so
that fewer allocations are made. What this means is you have
to be careful when handling b. Modifying the contents
of b afterward will change the content in the tensor.Dense as well.
Given that b was created in the prepareX function, once the
function has returned, there's no way to modify the contents
of b. This is a good way to prevent accidental modification.

332

From labels to one-hot
vectors
Recall that neural networks built in Gorgonia only
take tensor.Tensors as inputs. Therefore, the labels will also have
to be converted into tensor.Tensor. The function is quite similar
to prepareX:

func prepareY(N []Label) (retVal tensor.Tensor) {

 rows := len(N)

 cols := 10

 b := make([]float64, 0, rows*cols)

 for i := 0; i < rows; i++ {

 for j := 0; j < 10; j++ {

 if j == int(N[i]) {

 b = append(b, 1)

 } else {

 b = append(b, 0)

 }

 }

 }

 return tensor.New(tensor.WithShape(rows, cols), tensor.WithBacking(b))

}

What we're building here is a matrix with N rows and ten
columns. The specifics of why we build a matrix of (N,10) will
be explored in the next chapter, but for now let's zoom into an
imaginary row. Imagine the first label, (int(N[i])), is 7. The row
will look like this:

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

333

This is called a one-hot vector encoding. It will be useful to us
later, and will expanded upon in the next chapter.

334

Visualization
It's also useful to have visualization when we are dealing with
image data. Earlier we had converted our image pixels from
a byte to a float64 using pixelWeight. It'd be instructive to also have
the reverse function:

func reversePixelWeight(px float64) byte {

 return byte(((px - 0.001) / 0.999) * pixelRange)

}

Here's how to visualize 100 of the images:

// visualize visualizes the first N images given a data tensor that is made up of float64s.

// It's arranged into (rows, 10) image.

// Row counts are calculated by dividing N by 10 - we only ever want 10 columns.

// For simplicity's sake, we will truncate any remainders.

func visualize(data tensor.Tensor, rows, cols int, filename string) (err error) {

 N := rows * cols

 sliced := data

 if N > 1 {

 sliced, err = data.Slice(makeRS(0, N), nil) // data[0:N, :] in python

 if err != nil {

 return err

 }

 }

 if err = sliced.Reshape(rows, cols, 28, 28); err != nil {

 return err

 }

 imCols := 28 * cols

 imRows := 28 * rows

 rect := image.Rect(0, 0, imCols, imRows)

 canvas := image.NewGray(rect)

335

 for i := 0; i < cols; i++ {

 for j := 0; j < rows; j++ {

 var patch tensor.Tensor

 if patch, err = sliced.Slice(makeRS(i, i+1), makeRS(j, j+1)); err != nil {

 return err

 }

 patchData := patch.Data().([]float64)

 for k, px := range patchData {

 x := j*28 + k%28

 y := i*28 + k/28

 c := color.Gray{reversePixelWeight(px)}

 canvas.Set(x, y, c)

 }

 }

 }

 var f io.WriteCloser

 if f, err = os.Create(filename); err != nil {

 return err

 }

 if err = png.Encode(f, canvas); err != nil {

 f.Close()

 return err

 }

 if err = f.Close(); err != nil {

 return err

 }

 return nil

}

The dataset is a huge slice of images. We need to figure out
how many we want first; hence, N := rows * cols. Having the
number we want, we then slice using data.Slice(makeRS(0, N),
nil), which slices the tensor along the first axis. The sliced
tensor is then reshaped into a four-dimensional array
with sliced.Reshape(rows, cols, 28,28). The way you can think about
it is to have a stacked rows and columns of 28x28 images.

A primer on slicing

A *tensor.Dense acts very much like a standard Go slice; just as you can
slice a[0:2], you can do the same with Gorgonia's tensors. The .Slice() method

336

for all tensors accepts a tensor.Slice descriptor, defined as:

type Slice interface {

 Start() int

 End() int

 Step() int

}

As such, we would have to make our own data type that fulfills
the Slice interface. It's defined in the utils.go file of this project. makeRS(0,
N) simply reads as if we were doing data[0:N]. Details and reasoning for this
API can be found on the Gorgonia tensor Godoc page.

Then a grayscale image is created using the built-
in image package: canvas := image.NewGray(rect). A image.Gray is
essentially a slice of bytes and each byte is a pixel. What we
need to do next is to fill up the pixels. Quite simply, we simply
loop through the columns and rows in each patch, and we fill
it up with the correct value extracted from the tensor.
The reversePixelWeight function is used to convert the float into a
byte, which is then converted into a color.Gray. The pixel in the
canvas is then set using canvas.Set(x, y, c).

Following that, the canvas is encoded as a PNG. Et voilà, our
visualization is done!

Now Calling the visualize in the main function as such:

func main() {

 imgs, err := readImageFile(os.Open("train-images-idx3-ubyte"))

 if err != nil {

 log.Fatal(err)

 }

 log.Printf("len imgs %d", len(imgs))

 data := prepareX(imgs)

 visualize(data, 100, "image.png")

}

This yields the following image:

337

338

Preprocessing
What we are going to do next is to "whiten" our data using a
Zero Phase Component Analysis (ZCA). The definitions
of ZCA is beyond the scope of this chapter, but briefly, ZCA is
very much like Principal Component Analysis (PCA). In
our 784-pixel slice, there is a high probability that the pixels
are correlated with one another. What PCA does is it finds the
set of pixels that are uncorrelated with one another. It does
this by looking at all the images at once and figuring out how
each column correlates with one another:

func zca(data tensor.Tensor) (retVal tensor.Tensor, err error) {

 var dataᵀ, data2, sigma tensor.Tensor

 data2 = data.Clone().(tensor.Tensor)

 if err := minusMean(data2); err != nil {

 return nil, err

 }

 if dataᵀ, err = tensor.T(data2); err != nil {

 return nil, err

 }

 if sigma, err = tensor.MatMul(dataᵀ, data2); err != nil {

 return nil, err

 }

 cols := sigma.Shape()[1]

 if _, err = tensor.Div(sigma, float64(cols-1), tensor.UseUnsafe()); err != nil {

 return nil, err

 }

 s, u, _, err := sigma.(*tensor.Dense).SVD(true, true)

 if err != nil {

 return nil, err

 }

 var diag, uᵀ, tmp tensor.Tensor

339

 if diag, err = s.Apply(invSqrt(0.1), tensor.UseUnsafe()); err != nil {

 return nil, err

 }

 diag = tensor.New(tensor.AsDenseDiag(diag))

 if uᵀ, err = tensor.T(u); err != nil {

 return nil, err

 }

 if tmp, err = tensor.MatMul(u, diag); err != nil {

 return nil, err

 }

 if tmp, err = tensor.MatMul(tmp, uᵀ); err != nil {

 return nil, err

 }

 if err = tmp.T(); err != nil {

 return nil, err

 }

 return tensor.MatMul(data, tmp)

}

func invSqrt(epsilon float64) func(float64) float64 {

 return func(a float64) float64 {

 return 1 / math.Sqrt(a+epsilon)

 }

}

This is a pretty large chunk of code. Let's go through the code.
But first, let's understand the key ideas behind ZCA before
going through the code that implements it..

First, recall what PCA does: it finds the set of inputs (columns
and pixels, to be used interchangeably) that are least
correlated with one another. What ZCA does is then to take
the principal components found and multiply them by the
inputs to transform the inputs so that they become less
correlated with one another.

First, we want to subtract the row mean. To do that, we first
make a clone of the data (we'll see why later), then subtract

340

the mean with this function:

func minusMean(a tensor.Tensor) error {

 nat, err := native.MatrixF64(a.(*tensor.Dense))

 if err != nil {

 return err

 }

 for _, row := range nat {

 mean := avg(row)

 vecf64.Trans(row, -mean)

 }

 rows, cols := a.Shape()[0], a.Shape()[1]

 mean := make([]float64, cols)

 for j := 0; j < cols; j++ {

 var colMean float64

 for i := 0; i < rows; i++ {

 colMean += nat[i][j]

 }

 colMean /= float64(rows)

 mean[j] = colMean

 }

 for _, row := range nat {

 vecf64.Sub(row, mean)

 }

 return nil

}

After all the preceding spiel about efficiency of a flat slice
versus a [][]float64, what I am going to suggest next is going to
sound counter-intuitive. But please bear with
me. native.MatrixF64 takes a *tensor.Dense and returns a [][]float64,
which we call nat. nat shares the same allocation as the tensor a.
No extra allocations are made, and any modification made
to nat will show up in a. In this scenario, we should treat []
[]float64 as an easy way to iterate through the values in the
tensor. This can be seen here:

 for j := 0; j < cols; j++ {

341

 var colMean float64

 for i := 0; i < rows; i++ {

 colMean += nat[i][j]

 }

 colMean /= float64(rows)

 mean[j] = colMean

 }

Like in the visualize function, we first iterate through the
columns, albeit for a different purpose. We want to find the
mean of each column. We then store the mean of each column
in the mean variable. This allows us to subtract the column
mean:

 for _, row := range nat {

 vecf64.Sub(row, mean)

 }

This block of code uses the vecf64 package that comes with
Gorgonia to subtract a slice from another slice, element-wise.
It's rather the same as the following:

 for _, row := range nat {

 for j := range row {

 row[j] -= mean[j]

 }

 }

The only real reason to use vecf64 is that it's optimized to
perform the operation with SIMD instructions: instead of
doing row[j] -= mean[j] one at a time, it performs row[j] -=
mean[j], row[j+1] -= mean[j+1], row[j+2] -= mean[j+2], and row[j+3] -=
mean[j+3] simultaneously.

After we've subtracted the mean, we find its transpose and
make a copy of it:

342

 if dataᵀ, err = tensor.T(data2); err != nil {

 return nil, err

 }

Typically, you would find the transpose of a tensor.Tensor by
using something like data2.T(). But this does not return a copy
of it. Instead, the tensor.T function clones the data structure,
then performs a transposition on it. The reason for that?
We're about to use both the tranpose and data2 to
find Sigma (more on matrix multiplication will be expounded in
the next chapter):

 var sigma tensor.Tensor

 if sigma, err = tensor.MatMul(dataᵀ, data2); err != nil {

 return nil, err

 }

After we have found sigma, we divide it by the number of
columns-1. This provides an unbiased estimator.
The tensor.UseUnsafe option is used to indicate that the result
should be stored back into the sigma tensor:

 cols := sigma.Shape()[1]

 if _, err = tensor.Div(sigma, float64(cols-1), tensor.UseUnsafe()); err != nil {

 return nil, err

 }

All this is done so that we can perform an SVD on sigma:

 s, u, _, err := sigma.(*tensor.Dense).SVD(true, true)

 if err != nil {

 return nil, err

 }

Singular Value Decomposition, if you are not familiar with it,
is a method among many that breaks down a matrix into its

343

constituents. Why would you want to do so? For one, it makes
parts of calculations of some things easier. What it does is to
factorize , a (M, N) matrix into a (M, N) matrix called , a
(M,M) matrix called , and a (N, N) matrix called . To
reconstruct A, the formula is simply:

The decomposed parts will then be used. In our case, we're not
particularly interested about the right singular values , so
we'll ignore it for now. The decomposed parts are simply used
to transform the images, which can be found in the tailend of
the function body.

After preprocessing, we can once more visualize the first 100
or so images:

344

345

Building a
neural network
Finally, let's build a neural network! We'll be building a simple
three-layer neural network with one hidden layer. A three-
layer neural network has two weight matrices, so we can
define the neural network as such:

type NN struct {

 hidden, final *tensor.Dense

 b0, b1 float64

}

hidden represents the weight matrix between the input layer and
hidden layer, while final represents the weight matrix between
the hidden layer and the final layer.

This is a graphical representation of our *NN data structure:

346

The input layer is the slice of 784 float64 which is then fed
forward (that is, a matrix multiplication followed by an
activation function) to form the hidden layer. The hidden layer
is then fed forward to form the final layer. The final layer is a
vector of ten float64, which is exactly the one-hot encoding that
we discussed earlier. You can think of them as pseud-
probabilities, because the values don't exactly sum up to 1.

A key thing to note: b0 and b1 are bias values for the hidden
layer and the final layer, respectively. They are not actually
used mainly due to the mess; it's quite difficult to get the
correct differentiation. A challenge for the reader is to later
incorporate the use of b0 and b1.

And to create a new neural network, we have the New function:

347

func New(input, hidden, output int) (retVal *NN) {

 r := make([]float64, hidden*input)

 r2 := make([]float64, hidden*output)

 fillRandom(r, float64(len(r)))

 fillRandom(r2, float64(len(r2)))

 hiddenT := tensor.New(tensor.WithShape(hidden, input), tensor.WithBacking(r))

 finalT := tensor.New(tensor.WithShape(output, hidden), tensor.WithBacking(r2))

 return &NN{

 hidden: hiddenT,

 final: finalT,

 }

}

The fillRandom function fills a []float64 with random values. In
our case, we fill it up from random values drawn from a
uniform distribution. Here, we use the distuv package from
Gonum:

func fillRandom(a []float64, v float64) {

 dist := distuv.Uniform{

 Min: -1 / math.Sqrt(v),

 Max: 1 / math.Sqrt(v),

 }

 for i := range a {

 a[i] = dist.Rand()

 }

}

After the slices r and r2 have been filled, the
tensors hiddenT and finalT are created, and the *NN is returned.

348

Feed forward
Now that we have a conceptual idea of how the neural network
works, let's write the forward propagation function. We'll call
it Predict because, well, to predict, you merely need to run the
function forward:

func (nn *NN) Predict(a tensor.Tensor) (int, error) {

 if a.Dims() != 1 {

 return -1, errors.New("Expected a vector")

 }

 var m maybe

 hidden := m.do(func() (tensor.Tensor, error) { return nn.hidden.MatVecMul(a) })

 act0 := m.do(func() (tensor.Tensor, error) { return hidden.Apply(sigmoid, tensor.UseUnsafe()) })

 final := m.do(func() (tensor.Tensor, error) { return tensor.MatVecMul(nn.final, act0) })

 pred := m.do(func() (tensor.Tensor, error) { return final.Apply(sigmoid, tensor.UseUnsafe()) })

 if m.err != nil {

 return -1, m.err

 }

 return argmax(pred.Data().([]float64)), nil

}

This is fairly straightforward, except for a few control
structures. I should first explain that the API of
the tensor package is quite expressive in the sense in that it
allows the user multiple ways of doing the same thing, albeit
with different type signatures. Briefly, the patterns are the
following:

tensor.BINARYOPERATION(a, b tensor.Tensor, opts ...tensor.FuncOpt)

(tensor.Tensor, error)

349

tensor.UNARYOPERATION(a tensor.Tensor, opts ...tensor.FuncOpt)

(tensor.Tensor, error)

(a *tensor.Dense) BINARYOPERATION (b *tensor.Dense, opts

...tensor.FuncOpt) (*tensor.Dense, error)

(a *tensor.Dense) UNARYOPERATION(opts ...tensor.FuncOpt)

(*tensor.Dense, error)

Key things to note are package level operations
(tensor.Add, tensor.Sub , and so on) take one or more tensor.Tensors
and return a tensor.Tensor and an error. There are multiple things
that fulfill a tensor.Tensor interface, and the tensor package
provides two structural types that fulfill the interface:

*tensor.Dense: A representation of of a densely packed
tensor

*tensor.CS: A memory-efficient representation of a
sparsely packed tensor with the data arranged in
compressed sparse columns/row format

For the most part, the most commonly used type
of tensor.Tensor is the *tensor.Dense type. The *tensor.CS data
structure is only used for very specific memory-constrained
optimizations for specific algorithms. We shan't talk more
about the *tensor.CS type in this chapter.

In addition to the package level operations, each specific type
also has methods that they implement. *tensor.Dense's methods
(.Add(...), .Sub(...), and so on) take one or more *tensor.Dense and
return *tensor.Dense and an error.

350

Handling errors with
maybe
With that quick introduction out of the way, we can now talk
about the maybe type.

One of the things you may have already noticed is that almost
all the operations return an error. Indeed, there are very few
functions and methods that do not return an error. The logic
behind this is simple: most of the errors are actually
recoverable and have suitable recovery strategies.

However, for this project, we have one error recovery strategy:
bubble up the error to the main function, where a log.Fatal will
be called and the error will be inspected for debugging.

So, I defined maybe as follows:

type maybe struct {

 err error

}

func (m *maybe) do(fn func() (tensor.Tensor, error)) tensor.Tensor {

 if m.err != nil {

 return nil

 }

 var retVal tensor.Tensor

 if retVal, m.err = fn(); m.err == nil {

 return retVal

 }

 m.err = errors.WithStack(m.err)

 return nil

}

351

This way, it is able to handle any function as long as it's
wrapped within a closure.

Why do this? I personally do not enjoy this structure. I taught
it to a few students of mine as a cool trick, and since then they
claimed that the resulting code was more understandable than
having blocks of:

if foo, err := bar(); err != nil {

 return err

}

I can definitely empathize with this view. It is most useful in
my opinion in the prototyping phase, especially when it is not
clear yet when and where to handle the error (in our case,
return early). Leaving the returning of an error until the end of
the function can be useful. In production code though, I would
prefer to be as explicit as possible about error-handling
strategies.

This can be further augmented by abstracting common
function calls into methods. For example, we see this
line, m.do(func() (tensor.Tensor, error) { return hidden.Apply(sigmoid,
tensor.UseUnsafe()) }) , twice in the preceding snippet. If we want
to prioritize understandability while leaving the structure
mostly intact, we could abstract it away by creating a new
method:

func (m *maybe) sigmoid(a tensor.Tensor) (retVal tensor.Tensor){

 if m.err != nil {

 return nil

 }

 if retVal, m.err = a.Apply(sigmoid); m.err == nil {

 return retVal

 }

 m.err = errors.WithStack(m.err)

 return nil

352

}

And we would just call m.sigmoid(hidden) instead. This is one of
the many error-handling strategies that programmers can
employ to help them. Remember, you're a programmer; you
are allowed and even expected to program your way out!

353

Explaining the feed
forward function
With all that done, let's walk through the the feed forward
function, line by line.

First, recall from the section, Emulating a neural network,
that we can define a neural network as follows:

func affine(weights [][]float64, inputs []float64) []float64 {

 return activation(matVecMul(weights, inputs))

}

We do the first matrix multiplication as part of calculating the
first hidden layer: hidden := m.do(func() (tensor.Tensor, error) { return
nn.hidden.MatVecMul(a)) }). MatVecMul is used because we're
multiplying a matrix by a vector.

Then we perform the second part of calculating a layer: act0 :=
m.do(func() (tensor.Tensor, error) { return hidden.Apply(sigmoid,

tensor.UseUnsafe()) }). Once again, the tensor.UseUnsafe() function
option is used to tell the function to not allocate a new tensor.
Voila! We've successfully calculated the first layer.

The same two steps are repeated for the final layer, and we get
a one-hot-ish vector. Do note that for the first step, I
used tensor.MatVecMul(nn.final, act0) instead of nn.final.MatVecMul(act0).
This was done to show that both functions are indeed the
same, and they just take different types (the method takes a
concrete type while the package function takes an abstract
data type). They are otherwise identical in function.

354

 Notice how the affine function is quite easy to read, whereas the other
functions are quite difficult to read? Read through the section
about maybe and see if you can come up with a way to write it in such a way
that it reads more like affine.
Is there a way to abstract the function into a function like affine so that you
could just call a single function and not repeat yourself?

Before we return the result, we need to perform a check to see
if anything in the prece-ing steps have errored. Think about
what are the errors that could happen. They would, in my
experience, predominantly be shape related errors. In this
specific project, a shape error should be considered a failure,
so we return a nil result and the error.

The reason why we would have to check for errors at this point
is because we are about to use pred. If pred is nil (which it would
be if an error had occurred earlier), trying to access
the .Data() function would cause a panic.

Anyway, after the check, we call the .Data() method, which
returns the raw data as a flat slice. It's an interface{} type
though, so we would have to convert it back to a []float64 before
inspecting the data further. Because the result is a vector, it is
no different in data layout from a []float64, so we can directly
call argmax on it.

argmax simply returns the index of the greatest value in the slice.
It's defined thus:

func affine(weights [][]float64, inputs []float64) []float64 {

 return activation(matVecMul(weights, inputs))

}

And thus, we have managed to write a feed forward function
for our neural network.

355

Costs
Having written a fairly straightforward feed forward function,
let's now look at how to make the neural network learn.

Recall that we said earlier that a neural network learns when
you tell it that it's made a mistake? More technically, we ask
the question: what kind of cost function can we use so that it is
able to convey to the neural network accurately about what the
true value is.

The cost function we want to use for this project is the sum of
squared errors. What is an error? Well, an error is simply the
difference between the real value and the predicted value.
Does this mean that if the real value is 7, and the neural
network predicted 2, the cost would just be 7-2 ? No. This is
because we should not treat the labels as numbers. They are
labels.

So what do we subtract? Recall the one-hot vector that we
created earlier? If we peek inside the Predict function, we can
see that pred, the result of the final activation is a slice of
ten float64s. That's what we're going to subtract. Because both
are slices of ten float64s, we would have to subtract them
element-wise.

Merely subtracting the slices would not be useful; the results
may be negative. Imagine if you were tasked to find the lowest
possible costs for a product. If someone came up to you and
told you that their product costs negative amounts and that
they would pay you to use it, would you not use it? So to
prevent that, we take the square of the errors.

356

To calculate the sum of squared errors, we simply square the
result. Because we're training the neural network one image at
a time, the sum is simply the squared errors of that one image.

357

Backpropagation
The section on costs is a little sparse for good reason.
Furthermore, there is a twist: we're not going to entirely
calculate the full cost function, mainly because we don't need
to for this specific case. Costs are heavily tied to the notion of
backpropagation. Now we're going to do some mathematical
trickery.

Recall that our cost was the sum of squared errors. We can
write it like so:

Now what I am about to describe can sound very much like
cheating, but it's a valid strategy. The derivative with regard
to prediction is this:

To make things a bit easier on ourselves, let's redefine the cost
as this:

It doesn't make a difference to the process of finding the
lowest cost. Think about it; imagine a highest cost and a

lowest cost. The difference between them if there is a

358

multiplier in front of them does not change the fact that the
lowest cost is still lower than the highest cost. Take some time
to work this out on your own to convince yourself that having
a constant multiplier doesn't change the process.

The derivative of a sigmoid function is:

From there, we can work out the derivation of the cost
function with regard to the weights matrix. How to work out
the full backpropagation will be explained in the next chapter.
For now, here is the code:

 // backpropagation

 outputErrors := m.do(func() (tensor.Tensor, error) { return tensor.Sub(y, pred) })

 cost = sum(outputErrors.Data().([]float64))

 hidErrs := m.do(func() (tensor.Tensor, error) {

 if err := nn.final.T(); err != nil {

 return nil, err

 }

 defer nn.final.UT()

 return tensor.MatMul(nn.final, outputErrors)

 })

 if m.err != nil {

 return 0, m.err

 }

 dpred := m.do(func() (tensor.Tensor, error) { return pred.Apply(dsigmoid, tensor.UseUnsafe()) })

 m.do(func() (tensor.Tensor, error) { return tensor.Mul(pred, outputErrors, tensor.UseUnsafe()) })

 // m.do(func() (tensor.Tensor, error) { err := act0.T(); return act0, err })

 dpred_dfinal := m.do(func() (tensor.Tensor, error) {

 if err := act0.T(); err != nil {

 return nil, err

 }

 defer act0.UT()

 return tensor.MatMul(outputErrors, act0)

 })

 dact0 := m.do(func() (tensor.Tensor, error) { return act0.Apply(dsigmoid) })

359

 m.do(func() (tensor.Tensor, error) { return tensor.Mul(hidErrs, dact0, tensor.UseUnsafe()) })

 m.do(func() (tensor.Tensor, error) { err := hidErrs.Reshape(hidErrs.Shape()[0], 1); return hidErrs, err })

 // m.do(func() (tensor.Tensor, error) { err := x.T(); return x, err })

 dcost_dhidden := m.do(func() (tensor.Tensor, error) {

 if err := x.T(); err != nil {

 return nil, err

 }

 defer x.UT()

 return tensor.MatMul(hidErrs, x)

 })

And there we have it, the derivatives of the cost with regard to
the inputs matrices.

The thing to do with the derivatives is to use them as gradients
to update the input matrices. To do that, use a simple gradient
descent algorithm; we simply add the gradient to the values
itself. But we don't want to add the full value of the gradient. If
we do that and our starting value is very close to the minima,
we'd overshoot it. So we need to multiply the gradients by
some small value, known as the learn rate:

 // gradient update

 m.do(func() (tensor.Tensor, error) { return tensor.Mul(dcost_dfinal, learnRate, tensor.UseUnsafe()) })

 m.do(func() (tensor.Tensor, error) { return tensor.Mul(dcost_dhidden, learnRate, tensor.UseUnsafe()) })

 m.do(func() (tensor.Tensor, error) { return tensor.Add(nn.final, dcost_dfinal, tensor.UseUnsafe()) })

 m.do(func() (tensor.Tensor, error) { return tensor.Add(nn.hidden, dcost_dhidden, tensor.UseUnsafe()) })

And this is the training function in full:

// X is the image, Y is a one hot vector

func (nn *NN) Train(x, y tensor.Tensor, learnRate float64) (cost float64, err error) {

 // predict

 var m maybe

 m.do(func() (tensor.Tensor, error) { err := x.Reshape(x.Shape()[0], 1); return x, err })

 m.do(func() (tensor.Tensor, error) { err := y.Reshape(10, 1); return y, err })

 hidden := m.do(func() (tensor.Tensor, error) { return tensor.MatMul(nn.hidden, x) })

 act0 := m.do(func() (tensor.Tensor, error) { return hidden.Apply(sigmoid, tensor.UseUnsafe()) })

 final := m.do(func() (tensor.Tensor, error) { return tensor.MatMul(nn.final, act0) })

360

 pred := m.do(func() (tensor.Tensor, error) { return final.Apply(sigmoid, tensor.UseUnsafe()) })

 // log.Printf("pred %v, correct %v", argmax(pred.Data().([]float64)), argmax(y.Data().([]float64)))

 // backpropagation.

 outputErrors := m.do(func() (tensor.Tensor, error) { return tensor.Sub(y, pred) })

 cost = sum(outputErrors.Data().([]float64))

 hidErrs := m.do(func() (tensor.Tensor, error) {

 if err := nn.final.T(); err != nil {

 return nil, err

 }

 defer nn.final.UT()

 return tensor.MatMul(nn.final, outputErrors)

 })

 if m.err != nil {

 return 0, m.err

 }

 dpred := m.do(func() (tensor.Tensor, error) { return pred.Apply(dsigmoid, tensor.UseUnsafe()) })

 m.do(func() (tensor.Tensor, error) { return tensor.Mul(pred, outputErrors, tensor.UseUnsafe()) })

 // m.do(func() (tensor.Tensor, error) { err := act0.T(); return act0, err })

 dpred_dfinal := m.do(func() (tensor.Tensor, error) {

 if err := act0.T(); err != nil {

 return nil, err

 }

 defer act0.UT()

 return tensor.MatMul(outputErrors, act0)

 })

 dact0 := m.do(func() (tensor.Tensor, error) { return act0.Apply(dsigmoid) })

 m.do(func() (tensor.Tensor, error) { return tensor.Mul(hidErrs, dact0, tensor.UseUnsafe()) })

 m.do(func() (tensor.Tensor, error) { err := hidErrs.Reshape(hidErrs.Shape()[0], 1); return hidErrs, err })

 // m.do(func() (tensor.Tensor, error) { err := x.T(); return x, err })

 dcost_dhidden := m.do(func() (tensor.Tensor, error) {

 if err := x.T(); err != nil {

 return nil, err

 }

 defer x.UT()

 return tensor.MatMul(hidErrs, x)

 })

 // gradient update

 m.do(func() (tensor.Tensor, error) { return tensor.Mul(dcost_dfinal, learnRate, tensor.UseUnsafe()) })

 m.do(func() (tensor.Tensor, error) { return tensor.Mul(dcost_dhidden, learnRate, tensor.UseUnsafe()) })

 m.do(func() (tensor.Tensor, error) { return tensor.Add(nn.final, dcost_dfinal, tensor.UseUnsafe()) })

 m.do(func() (tensor.Tensor, error) { return tensor.Add(nn.hidden, dcost_dhidden, tensor.UseUnsafe()) })

 return cost, m.err

361

There are several observations to be made:

You may note that parts of the body of
the Predict method are repeated at the top of
the Train method

The tensor.UseUnsafe() function option is used a lot

This is going to be a pain point when we start scaling up into
deeper networks. As such, in the next chapter, we will explore
the possible solutions to these problems.

362

Training the neural
network
Our main looks like this so far:

func main() {

 imgs, err := readImageFile(os.Open("train-images-idx3-ubyte"))

 if err != nil {

 log.Fatal(err)

 }

 labels, err := readLabelFile(os.Open("train-labels-idx1-ubyte"))

 if err != nil {

 log.Fatal(err)

 }

 log.Printf("len imgs %d", len(imgs))

 data := prepareX(imgs)

 lbl := prepareY(labels)

 visualize(data, 10, 10, "image.png")

 data2, err := zca(data)

 if err != nil {

 log.Fatal(err)

 }

 visualize(data2, 10, 10, "image2.png")

 nat, err := native.MatrixF64(data2.(*tensor.Dense))

 if err != nil {

 log.Fatal(err)

 }

 log.Printf("Start Training")

 nn := New(784, 100, 10)

 costs := make([]float64, 0, data2.Shape()[0])

 for e := 0; e < 5; e++ {

 data2Shape := data2.Shape()

 var oneimg, onelabel tensor.Tensor

 for i := 0; i < data2Shape[0]; i++ {

363

 if oneimg, err = data2.Slice(makeRS(i, i+1)); err != nil {

 log.Fatalf("Unable to slice one image %d", i)

 }

 if onelabel, err = lbl.Slice(makeRS(i, i+1)); err != nil {

 log.Fatalf("Unable to slice one label %d", i)

 }

 var cost float64

 if cost, err = nn.Train(oneimg, onelabel, 0.1); err != nil {

 log.Fatalf("Training error: %+v", err)

 }

 costs = append(costs, cost)

 }

 log.Printf("%d\t%v", e, avg(costs))

 shuffleX(nat)

 costs = costs[:0]

 }

 log.Printf("End training")

}

Here are the steps in brief:

1. Load image files.
2. Load label files.
3. Convert image files into *tensor.Dense.
4. Convert label files into *tensor.Dense.
5. Visualize 100 of the images.
6. Perform ZCA whitening on the images.
7. Visualize the whitened images.
8. Create a native iterator for the dataset.
9. Create the neural network with a 100 unit hidden

layer.
10. Create a slice of the costs. This is so we can keep track

of the average cost over time.
11. Within each epoch, slice the input into single image

slices.
12. Within each epoch, slice the output labels into single

slices.

364

13. Within each epoch, call nn.Train() with a learn rate
of 0.1 and use the sliced single image and single labels
as a training example.

14. Train for five epochs.

How would we know that the neural network has learned
well? One way is to monitor the costs. If the neural network is
learning, the average costs over time will drop. There may be
bumps, of course, but the overall big picture should be that the
cost does not end up higher than when the program first runs.

365

Cross-validation
Another way we could test how well the neural network is
learning is to cross-validate. The neural network could learn
very well on the training data, in essence, memorizing which
collections of pixels will result in a particular label. However,
to check that the machine learning algorithm generalizes well,
we need to show the neural network some data it's never seen
before.

Here's the code to do so:

 log.Printf("Start testing")

 testImgs, err := readImageFile(os.Open("t10k-images.idx3-ubyte"))

 if err != nil {

 log.Fatal(err)

 }

 testlabels, err := readLabelFile(os.Open("t10k-labels.idx1-ubyte"))

 if err != nil {

 log.Fatal(err)

 }

 testData := prepareX(testImgs)

 testLbl := prepareY(testlabels)

 shape := testData.Shape()

 testData2, err := zca(testData)

 if err != nil {

 log.Fatal(err)

 }

 visualize(testData, 10, 10, "testData.png")

 visualize(testData2, 10, 10, "testData2.png")

 var correct, total float64

 var oneimg, onelabel tensor.Tensor

 var predicted, errcount int

 for i := 0; i < shape[0]; i++ {

366

 if oneimg, err = testData.Slice(makeRS(i, i+1)); err != nil {

 log.Fatalf("Unable to slice one image %d", i)

 }

 if onelabel, err = testLbl.Slice(makeRS(i, i+1)); err != nil {

 log.Fatalf("Unable to slice one label %d", i)

 }

 if predicted, err = nn.Predict(oneimg); err != nil {

 log.Fatalf("Failed to predict %d", i)

 }

 label := argmax(onelabel.Data().([]float64))

 if predicted == label {

 correct++

 } else if errcount < 5 {

 visualize(oneimg, 1, 1, fmt.Sprintf("%d_%d_%d.png", i, label, predicted))

 errcount++

 }

 total++

 }

 fmt.Printf("Correct/Totals: %v/%v = %1.3f\n", correct, total, correct/total)

Note that the code is largely the same as the code before in the
main function. The exception is that instead of calling nn.Train,
we call nn.Predict. Then we check to see whether the label is the
same as what we predicted.

Here are the tweakable parameters:

After running (it takes 6.5 minutes), and tweaking various
parameters, I ran the code and got the following results:

$ go build . -o chapter7

 $./chapter7

 Corerct/Totals: 9719/10000 = 0.972

A simple three-layer neural network leads to a 97% accuracy!
This is, of course, not close to state of the art. We'll build one
that goes up to 99.xx% in the next chapter, but requires a big
shift of mindset.

Training a neural network takes time. It's often wise to want to save the

367

result of the neural network. The *tensor.Dense type
implements gob.GobEncoder and gob.GobDecoder and to save the neural network to
disk, simply save the weights (nn.hidden and nn.final). For an additional
challenge, write a gob encoder for those weight matrices and save/load the
functionality.

Furthermore, let's have a look at a few of the things that was
wrongly classified. In the preceding code, this snippet writes
out five wrong predictions:

 if predicted == label {

 correct++

 } else if errcount < 5 {

 visualize(oneimg, 1, 1, fmt.Sprintf("%d_%d_%d.png", i, label, predicted))

 errcount++

 }

And here they are:

In the first image, the neural network classified it as a 0, while
the true value is 6. As you can see, it is an easy mistake to
make. The second image shows a 2, and the neural network
classified it as a 4. You may be inclined to think that looks a bit
like a 4. And, lastly, if you are an American reader, the chances
are you have been exposed to the Palmer handwriting method.
If so, I'll bet that you might classify the last picture as a 7,
instead of a 2, which is exactly what the neural network
predicts. Unfortunately, the real label is that it's a 2. Some
people just have terrible handwriting.

368

Summary
In this chapter, we've learned how to write a simple neural
network with one hidden layer that performs remarkably well.
Along the way, we've learned how to perform ZCA whitening
so that the data can be cleaned. There are some difficulties
with this model, of course; you'd have to pre-calculate the
derivatives by hand before you coded it.

The key takeaway point is that a simple neural network can do
a lot! While this version of the code is very Gorgonia's tensor-
centric, the principles are exactly the same, even if using
Gonum's mat. In fact, Gorgonia's tensor uses Gonum's
awesome matrix multiplication library underneath.

In the next chapter, we will revisit the notion of a neural
network on the same dataset to get a 99% accuracy, but our
mindsets of how to approach a neural network will have to
change. I would advise re-reading the section on linear algebra
to get a stronger grasp on things.

369

Convolutional Neural
Networks - MNIST
Handwriting
Recognition
In the previous chapter, I posited a scenario where you are a
postal worker trying to recognize handwriting. In that, we
ended up with a neural network built on top of Gorgonia. In
this chapter, we'll look at the same scenario, but we'll augment
our ideas of what a neural network is and write a more
advanced neural network, one that was, until very recently,
state of the art.

Specifically, in this chapter, we are going to build a
Convolutional Neural Network (CNN). A CNN is a type
of deep learning network that has been popular in recent
years.

370

Everything you know
about neurons is wrong
In the previous chapter, I mentioned that everything you
know about neural networks is wrong. Here, I repeat that
claim. Most literature out there on a neural network starts
with a comparison with biological neurones and ends there.
This leads readers to often assume that it is. I'd like to make a
point that artificial neural networks are nothing like their
biological namesake.

Instead, in the last chapter, I spent a significant amount of the
chapter describing linear algebra, and explained that the twist
is that you can express almost any machine learning (ML)
problem as linear algebra. I shall continue to do so in this
chapter.

Rather than think of artificial neural networks as analogies of
real-life neural networks, I personally encourage you to think
of artificial neural networks as mathematical equations. The
non-linearities introduced by the activation functions,
combined with linear combinations allows for artificial neural
networks to be able to approximate any function.

371

Neural networks – a
redux
The fundamental understanding that neural networks are
mathematical expressions leads to really simple and easy
implementations of neural networks. Recall from the previous
chapter that a neural network can be written like this:

func affine(weights [][]float64, inputs []float64) []float64 {

 return activation(matVecMul(weights, inputs))

}

If we rewrite the code as a mathematical equation, we can
write a neural network like this:

A side note: is the same as .

We can simply write it out using Gorgonia, like this:

import (

 G "gorgonia.org/gorgonia"

)

var Float tensor.Float = tensor.Float64

func main() {

 g := G.NewGraph()

 x := G.NewMatrix(g, Float, G.WithName("x"), G.WithShape(N, 728))

 w := G.NewMatrix(g, Float, G.WithName("w"), G.WithShape(728, 800),

 G.WithInit(G.Uniform(1.0)))

 b := G.NewMatrix(g, Float, G.WithName("b"), G.WithShape(N, 800),

 G.WithInit(G.Zeroes()))

372

 xw, _ := G.Mul(x, w)

 xwb, _ := G.Add(xw, b)

 act, _ := G.Sigmoid(xwb)

 w2 := G.NewMatrix(g, Float, G.WithName("w2"), G.WithShape(800, 10),

 G.WithInit(G.Uniform(1.0)))

 b2 := G.NewMatrix(g, Float, G.WithName("b2"), G.WithShape(N, 10),

 G.WithInit(G.Zeroes()))

 xw2, _ := G.Mul(act, w2)

 xwb2, _ := G.Add(xw2, b2)

 sm, _ := G.SoftMax(xwb2)

}

The preceding code is a representation of the following neural
network in images:

The middle layer consists of 800 hidden units.

Of course, the preceding code hides a lot of things. You can't
really expect a neural network from scratch in fewer than 20

373

lines, can you? To understand what is happening, we need to
take a brief detour into understanding what Gorgonia is.

374

Gorgonia
Gorgonia is a library that provides primitives for working with
mathematical expressions specific to deep learning. When
working with a ML related project, you will start to find
yourself more introspective about the world, and questioning
assumptions all the time. This is a good thing.

Consider what happens in your mind when you read the
following mathematical expression:

You should instantly think hang on, that's false. Why does
your brain think this?

That's mainly because your brain evaluated the mathematical
expression. In general, there are three parts to the expression:
the left-hand side, the equal symbol, and the right-hand side.
Your brain evaluated each part separately and then evaluated
the expression as false.

When we read mathematical expressions, we automatically
evaluate the expressions in our mind that we take evaluation
for granted. In Gorgonia, what we take for granted is made
explicit. There are two general parts to using Gorgonia:
defining an expression and evaluating an expression.

Since you are most probably a programmer, you can think of
the first part as writing a program, and the second part can be
thought of as running a program.

When describing a neural network in Gorgonia, it's often

375

instructive to imagine yourself writing in another
programming language, one that is specific to building neural
networks. This is because the patterns used in Gorgonia are
not unlike a new programming language. Indeed, Gorgonia
was built from ground-up with the idea that it's a
programming language without a syntactical frontend. As
such, in this section, I will often ask you to imagine writing in
another Go-like language.

376

Why?
A good question to ask is why? Why bother with this
separation of processes? After all, the preceding code could be
rewritten as the previous chapter's Predict function:

func (nn *NN) Predict(a tensor.Tensor) (int, error) {

 if a.Dims() != 1 {

 return nil, errors.New("Expected a vector")

 }

 var m maybe

 act0 := m.sigmoid(m.matVecMul(nn.hidden, a))

 pred := m.sigmoid(m.matVecMul(nn.final, act0))

 if m.err != nil {

 return -1, m.err

 }

 return argmax(pred.Data().([]float64)), nil

}

Here, we define the network in Go, and when we run the Go
code, the neural network is run as it is being defined. What's
the problem we face that we need to introduce the idea of
separating the definition of the neural network and running
it? We've already seen the problem when we wrote the Train
method.

If you recall, in the last chapter, I said that writing the Train
method requires us to actually copy and paste code from the
Predict method. To refresh your memory, here's the Train
method:

// X is the image, Y is a one hot vector

func (nn *NN) Train(x, y tensor.Tensor, learnRate float64) (cost float64, err error) {

377

 // predict

 var m maybe

 m.reshape(x, s.Shape()[0], 1)

 m.reshape(y, 10, 1)

 act0 := m.sigmoid(m.matmul(nn.hidden, x))

 pred := m.sigmoid(m.matmul(nn.final, act0))

 // backpropagation.

 outputErrors := m.sub(y, pred))

 cost = sum(outputErrors.Data().([]float64))

 hidErrs := m.do(func() (tensor.Tensor, error) {

 if err := nn.final.T(); err != nil {

 return nil, err

 }

 defer nn.final.UT()

 return tensor.MatMul(nn.final, outputErrors)

 })

 dpred := m.mul(m.dsigmoid(pred), outputErrors, tensor.UseUnsafe())

 dpred_dfinal := m.dmatmul(outputErrors, act0)

 if err := act0.T(); err != nil {

 return nil, err

 }

 defer act0.UT()

 return tensor.MatMul(outputErrors, act0)

 })

 m.reshape(m.mul(hidErrs, m.dsigmoid(act0), tensor.UseUnsafe()),

 hidErrs.Shape()[0], 1)

 dcost_dhidden := m.do(func() (tensor.Tensor, error) {

 if err := x.T(); err != nil {

 return nil, err

 }

 defer x.UT()

 return tensor.MatMul(hidErrs, x)

 })

 // gradient update

 m.mul(dpred_dfinal, learnRate, tensor.UseUnsafe())

 m.mul(dcost_dhidden, learnRate, tensor.UseUnsafe())

 m.add(nn.final, dpred_dfinal, tensor.UseUnsafe())

 m.add(nn.hidden, dcost_dhidden, tensor.UseUnsafe())

 return cost, m.err

}

Let's go through an exercise of refactoring to highlight the
problem. Taking off our ML hat for a bit, and putting on our

378

software engineer hat, let's see how we can refactor Train and
Predict, even if conceptually. We see in the Train method that we
need access to act0 and pred in order to backpropagate the
errors. Where in Predict act0 and pred are terminal values (that is,
we don't use them after the function has returned), in Train,
they are not.

So, here, we can create a new method; let's call it fwd:

func (nn *NN) fwd(x tensor.Tensor) (act0, pred tensor.Tensor, err error) {

 var m maybe

 m.reshape(x, s.Shape()[0], 1)

 act0 := m.sigmoid(m.matmul(nn.hidden, x))

 pred := m.sigmoid(m.matmul(nn.final, act0))

 return act0, pred, m.err

}

And we can refactor Predict to look like this:

func (nn *NN) Predict(a tensor.Tensor) (int, error) {

 if a.Dims() != 1 {

 return nil, errors.New("Expected a vector")

 }

 var err error

 var pred tensor.Tensor

 if _, pred, err = nn.fwd(a); err!= nil {

 return -1, err

 }

 return argmax(pred.Data().([]float64)), nil

}

And the Train method would look like this:

// X is the image, Y is a one hot vector

func (nn *NN) Train(x, y tensor.Tensor, learnRate float64) (cost float64, err error) {

 // predict

 var act0, pred tensor.Tensor

 if act0, pred, err = nn.fwd(); err != nil {

 return math.Inf(1), err

379

 }

 var m maybe

 m.reshape(y, 10, 1)

 // backpropagation.

 outputErrors := m.sub(y, pred))

 cost = sum(outputErrors.Data().([]float64))

 hidErrs := m.do(func() (tensor.Tensor, error) {

 if err := nn.final.T(); err != nil {

 return nil, err

 }

 defer nn.final.UT()

 return tensor.MatMul(nn.final, outputErrors)

 })

 dpred := m.mul(m.dsigmoid(pred), outputErrors, tensor.UseUnsafe())

 dpred_dfinal := m.dmatmul(outputErrors, act0)

 if err := act0.T(); err != nil {

 return nil, err

 }

 defer act0.UT()

 return tensor.MatMul(outputErrors, act0)

 })

 m.reshape(m.mul(hidErrs, m.dsigmoid(act0), tensor.UseUnsafe()),

 hidErrs.Shape()[0], 1)

 dcost_dhidden := m.do(func() (tensor.Tensor, error) {

 if err := x.T(); err != nil {

 return nil, err

 }

 defer x.UT()

 return tensor.MatMul(hidErrs, x)

 })

 // gradient update

 m.mul(dpred_dfinal, learnRate, tensor.UseUnsafe())

 m.mul(dcost_dhidden, learnRate, tensor.UseUnsafe())

 m.add(nn.final, dpred_dfinal, tensor.UseUnsafe())

 m.add(nn.hidden, dcost_dhidden, tensor.UseUnsafe())

 return cost, m.err

}

This looks better. What exactly are we doing here? We are
programming. We are rearranging one form of syntax into
another form of syntax but we are not changing the semantics,
the meaning of the program. The refactored program has

380

exactly the same meaning as the pre-refactored program.

381

Programming
Wait a minute, you might say to yourself. What do I mean by
the meaning of the program? This is a surprisingly deep topic
that involves a whole branch of mathematics known as
homotopy. But for all practical intents and purposes of this
chapter, let's define the meaning of a program to be the
extensional definition of the program. If two programs
compile and run, take the exact same inputs, and return the
same exact output every time, we say two programs are equal.

These two programs would be equal:

Program A Program B
fmt.Println("Hello World") fmt.Printf("Hello " + "World\n")

Intentionally, if we visualize the programs as an Abstract
Syntax Tree (AST), they look slightly different:

382

The syntax for both programs are different, but they are
semantically the same. We can refactor program B into
program A, by eliminating the +.

But note what we did here: we took a program and
represented it as an AST. Through syntax, we manipulated the
AST. This is the essence of programming.

383

What is a tensor? – part 2
In the previous chapter, there was an info box that introduced
the concept of a tensor. That info box was a little simplified. If
you google what a tensor is, you will get very conflicting
results, which only serve to confuse. I don't want to add to the
confusion. Instead, I shall only briefly touch on tensors in a
way that will be relevant to our project, and in a way very
much like how a typical textbook on Euclidean geometry
introduces the concept of a point: by holding it to be self-
evident from use cases.

Likewise, we will hold tensors to be self-evident from use.
First, we will look at the concept of multiplication:

First, let's define a vector: . You can think of
it as this diagram:

Next, let's multiply the vector by a scalar value: . The
result is something like this:

384

There are two observations:

The general direction of the arrow doesn't change.

Only the length changes. In physics terms, this is called
the magnitude. If the vector represents the distance
travelled, you would have traveled twice the distance
along the same direction.

So, how would you change directions by using multiplications
alone? What do you have to multiply to change directions?
Let's try the following matrix, which we will call T, for
transformation:

Now if we multiply the transformation matrix with the vector,
we get the following:

385

And if we plot out the starting vector and the ending vector,
we get the resultant output:

As we can see, the direction has changed. The magnitude too
has changed.

Now, you might be saying, hang on, isn't this just Linear
Algebra 101?. Yes, it is. But to really understand a tensor, we
must learn how to construct one. The matrix that we just used
is also a tensor of rank-2. The proper name for a tensor of
rank-2 is a dyad.

Why the mixing of naming conventions? Here's a bit of fun trivia. When I
was writing the earliest versions of Gorgonia, I was musing about the
terrible naming conventions computer science has had, a fact that Bjarne
Stroustrup himself lamented. The canonical name for a rank-2 tensor is
called a dyad, but can be represented as a matrix. I was struggling to
properly call it; after all, there are power in names and to name it is to
tame it.
At around the same time as I was developing the earliest versions of

386

Gorgonia, I was following a most excellent BBC TV series called Orphan
Black, in which the Dyad Institute is the primary foe of the protagonists.
They were quite villainous and that clearly left an impact in my mind. I
decided against naming it thus. In retrospect, this seemed like a rather silly
decision.

Now let's consider the transformation dyad. You can think of
the dyad as a vector u times a vector v. To write it out in
equation form:

At this point, you may be familiar with the previous chapter's
notion of linear algebra. You might think to yourself: if two
vectors multiply, that'd end up with a scalar value, no? If so,
how would you multiply two vectors and get a matrix out of it?

Here, we'd need to introduce a new type of multiplication: the
outer product (and by contrast, the multiplication introduced
in the previous chapter is an inner product). We write outer
products with this symbol: .

Specifically speaking, the outer product, also known as a dyad
product, is defined as such:

We won't be particularly interested in the specifics of u and
v in this chapter. However, being able to construct a dyad
from its constituent vectors is an integral part of what a tensor
is all about.

387

Specifically, we can replace T with uv:

Now we get as the scalar magnitude change and u as the
directional change.

So what is the big fuss with tensors? I can give two reasons.

Firstly, the idea that dyads can be formed from vectors
generalizes upward. A three-tensor, or triad can be formed by
a dyad product uvw, a four-tensor or a tetrad can be formed
by a dyad product uvwx, and so on and so forth. This affords
us a mental shortcut that will be very useful to us when we see
shapes that are associated with tensors.

The useful mental model of what a tensor can be thought as is
the following: a vector is like a list of things, a dyad is like a list
of vectors, a triad is like a list of dyads, and so on and so forth.
This is absolutely helpful when thinking of images, like those
that we've seen in the previous chapter:

An image can be seen as a (28, 28) matrix. A list of ten images
would have the shape (10, 28, 28). If we wanted to arrange the
images in such a way that it's a list of lists of ten images, it'd
have a shape of (10, 10, 28, 28).

All this comes with a caveat of course: a tensor can only be
defined in the presence of transformation. As a physics
professor once told me: that which transforms like a tensor is
a tensor. A tensor devoid of any transformation is just an n-
dimensional array of data. The data must transform, or flow

388

from tensor to tensor in an equation. In this regards, I think
that TensorFlow is a ridiculously well-named product.

For more information on tensors, I would recommend the relatively dense
text book, Linear Algebra and Geometry by Kostrikin (I failed to finish this
book, but it was this book that gave me what I believe to be a strong-ish
understanding of tensors). More on the flow of tensors can be found in
Spivak's Manifold Calculus.

389

All expressions are
graphs
Now we can finally return to the preceding example.

Our problem, if you recall, is that we had to specify the neural
network twice: once for prediction and once for learning
purposes. We then refactored the program so that we don't
have to specify the network twice. Additionally, we had to
manually write out the expression for the backpropagation.
This is error prone, especially when dealing with larger neural
networks like the one we're about to build in this chapter. Is
there a better way? The answer is yes.

Once we understand and fully internalize that neural networks
are essentially mathematical expressions, we can take the
learning's from tensors, and model a neural network where
the entire neural network is a flow of tensors.

Recall that tensors can only be defined in the presence of
transformation; then, any operation that transforms tensor(s),
used in concert with data structures that hold data are tensors.
Also, recall that computer programs can be represented as
abstract syntax trees. Mathematical expressions can be
represented as a program. Therefore, mathematical
expressions can also be represented as an abstract syntax tree.

More accurate, however, is that mathematical expressions can
be expressed as a graph; a directed acyclic graph, to be
specific. We call this the expression graph.

390

This distinction matters. Trees cannot share nodes. Graphs
can. Let's consider, for example, the following mathematical
expression:

Here are the representations as a graph and as a tree:

On the left, we have a directed acyclic graph, and on the right,
we have a tree. Note that in the tree variant of the
mathematical equation, there are repeat nodes. Both are
rooted at . The arrow should be read as
depends on. depends on two other nodes,

391

 and , and so on and so forth.

Both the graph and tree are valid representations of the same
mathematical equation, of course.

Why bother representing a mathematical expression as a
graph or a tree? Recall that an abstract syntax tree represents
a computation. If a mathematical expression, represented as a
graph or a tree, has a shared notion of computation, then it
also represents an abstract syntax tree.

Indeed, we can take each node in the graph or tree, and
perform a computation on it. If each node is a representation
of a computation, then logic holds that fewer nodes means
faster computations (and less memory usage). Therefore, we
should prefer to use the directed acyclic graph representation.

And now we come to the major benefit of representing a
mathematical expression as a graph: we get differentiation for
free.

If you recall from the previous chapter, backpropagation is
essentially differentiating the cost with regards to the inputs.
The gradients, once calculated, can then be used to update the
values of the weights themselves. Having a graph structure, we
wouldn't have to write the backpropagation parts. Instead, if
we have a virtual machine that executes the graph, starting at
the leaves and moving toward the root, the virtual machine
can automatically perform differentiation on the values as it
traverses the graph from leaf to root.

Alternatively, if we don't want to do automatic differentiation,
we can also perform symbolic differentiation by manipulating
the graph in the same way that we manipulated the AST in the
What is programming section, by adding and coalescing
nodes.

In this way, we can now shift our view of a neural network to

392

this:

393

Describing a neural
network
Now let's get back to the task of writing a neural network and
thinking of it in terms of a mathematical expression expressed
as a graph. Recall that the code looks something like this:

import (

 G "gorgonia.org/gorgonia"

)

var Float tensor.Float = tensor.Float64

func main() {

 g := G.NewGraph()

 x := G.NewMatrix(g, Float, G.WithName("x"), G.WithShape(N, 728))

 w := G.NewMatrix(g, Float, G.WithName("w"), G.WithShape(728, 800),

 G.WithInit(G.Uniform(1.0)))

 b := G.NewMatrix(g, Float, G.WithName("b"), G.WithShape(N, 800),

 G.WithInit(G.Zeroes()))

 xw, _ := G.Mul(x, w)

 xwb, _ := G.Add(xw, b)

 act, _ := G.Sigmoid(xwb)

 w2 := G.NewMatrix(g, Float, G.WithName("w2"), G.WithShape(800, 10),

 G.WithInit(G.Uniform(1.0)))

 b2 := G.NewMatrix(g, Float, G.WithName("b2"), G.WithShape(N, 10),

 G.WithInit(G.Zeroes()))

 xw2, _ := G.Mul(act, w2)

 xwb2, _ := G.Add(xw2, b2)

 sm, _ := G.SoftMax(xwb2)

}

Now let's go through this code.

First, we create a new expression graph with g := G.NewGraph().

394

An expression graph is a holder object to hold the
mathematical expression. Why would we want an expression
graph? The mathematical expression that represents a neural
network is contained in the *gorgonia.ExpressionGraph object.

Mathematical expressions are only interesting if we use
variables. is quite an uninteresting expression
because you can't do much with this expression. The only
thing you can do with it is to evaluate the expression and see if
it returns true or false. is slightly more interesting.
But, then again, a can only be 1.

Consider, however, the expression . With two
variables, it suddenly becomes a lot more interesting. The
values that a and b can take are dependent on one another,
and there is a whole range of possible pairs of numbers that
can fit into a and b.

Recall that each layer of neural network is just a mathematical
expression that reads like this: . In this case,
w, x, and b are variables. So, we create them. Note that in this
case, Gorgonia treats variables as a programming language
does: you have to tell the system what the variable represents.

In Go, you would do that by typing var x Foo, which tells the Go
compiler that x should be a type Foo. In Gorgonia, the
mathematical variables are declared by using NewMatrix, NewVector,
NewScalar, and NewTensor. x := G.NewMatrix(g, Float, G.WithName,
G.WithShape(N, 728)) simply says x is a matrix in expression graph g
with a name x, and has a shape of (N, 728).

Here, readers may observe that 728 is a familiar number. In
fact, what this tells us is that x represents the input, which is N
images. x, therefore, is a matrix of N rows, where each row
represents a single image (728 floating points).

The eagle-eyed reader would note that w and b have extra
options, where the declaration of x does not. You see, NewMatrix

395

simply declares the variable in the expression graph. There is
no value associated with it. This allows for flexibility when the
value is attached to a variable. However, with regards to the
weight matrix, we want to start the equation with some initial
values. G.WithInit(G.Uniform(1.0)) is a construction option that
populates the weight matrix with values pulled from a uniform
distribution with a gain of 1.0. If you imagine yourself coding
in another language specific to building neural networks, it'd
look something like this: var w Matrix(728, 800) = Uniform(1.0).

Following that, we simply write out the mathematical
equation: is simply a matrix multiplication between
and ; hence, xw, _ := G.Mul(x, w). At this point, it should be
clarified that we are merely describing the computation that is
supposed to happen. It is yet to happen. In this way, it is not
dissimilar to writing a program; writing code does not equal
running the program.

G.Mul and most operations in Gorgonia actually returns an
error. For the purposes of this demonstration, we're ignoring
any errors that may arise from symbolically multiplying x and
w. What could possibly go wrong with simple multiplication?
Well, we're dealing with matrix multiplication, so the shapes
must have matching inner dimensions. A (N, 728) matrix can
only be multiplied by a (728, M) matrix, which leads to an (N,
M) matrix. If the second matrix does not have 728 rows, then
an error will happen. So, in real production code, error
handling is a must.

Speaking of must, Gorgonia comes with a utility function,
called, G.Must. Taking a cue from the text/template and
html/template libraries found in the standard library, the G.Must
function panics when an error occur. To use, simply write this:
xw := G.Must(G.Mul(x,w)).

After the inputs are multiplied with the weights, we add to the
biases using G.Add(xw, b). Again, errors may occur, but in this
example, we're eliding the checks of errors.

396

Lastly, we take the result and perform a non-linearity: a
sigmoid function, with G.Sigmoid(xwb). This layer is now
complete. Its shape, if you follow, would be (N, 800).

The completed layer is then used as an input for the following
layer. The next layer has a similar layout as the first layer,
except instead of a sigmoid non-linearity, a G.SoftMax is used.
This ensures that each row in the resulting matrix sums 1.

397

One-hot vector
Perhaps, not so coincidentally, the last layer has the shape of
(N, 10). N is the number of input images (which we've gotten
from x) ; that's fairly self-explanatory. It also means that there
is a clean mapping from input to output. What's not self-
explanatory is the 10. Why 10? Simply put, there are 10
possible numbers we want to predict - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9:

The preceding diagram is an example result matrix. Recall
that we used G.SoftMax to ensure that each row sums up to 1.
Therefore, we can interpret the numbers in each column of
each row to be the probability that it is the specific digit that
we're predicting. To find the digit we're predicting, simply find
the highest probability in each column.

In the previous chapter, I introduced the concept of one-hot
vector encoding. To recap, it takes a slice of labels and returns
a matrix.

398

Now, this is clearly a matter of encoding. Who's to say that
column 0 would have to represent 0? We could of course come
up with a completely crazy encoding like such and the neural
network would still work:

399

Of course, we would not be using such a scheme for encoding;
it would be a massive source of programmer error. Instead, we
would go for the standard encoding of a one-hot vector.

I hope this has given you a taste of how powerful the notion of
an expression graph can be. One thing we haven't touched
upon yet is the execution of the graph. How do you run a
graph? We'll look further into that in the next section.

400

The project
With all that done, it's time to get on to the project! Once
again, we are going to recognize handwritten digits. But this
time around, we're going to build a CNN for that. Instead of
just using the tensor package of Gorgonia, this time we're going
to use all of Gorgonia.

Once again, to install Gorgonia, simply run go get -u
gorgonia.org/gorgonia and go get -u gorgonia.org/tensor.

401

Getting the data
The data is the same data as in the previous chapter: the
MNIST dataset. It can be found in the repository for this
chapter, and we'll be using a function we wrote in the previous
chapter to acquire the data:

// Image holds the pixel intensities of an image.

// 255 is foreground (black), 0 is background (white).

type RawImage []byte

// Label is a digit label in 0 to 9

type Label uint8

const numLabels = 10

const pixelRange = 255

const (

 imageMagic = 0x00000803

 labelMagic = 0x00000801

 Width = 28

 Height = 28

)

func readLabelFile(r io.Reader, e error) (labels []Label, err error) {

 if e != nil {

 return nil, e

 }

 var magic, n int32

 if err = binary.Read(r, binary.BigEndian, &magic); err != nil {

 return nil, err

 }

 if magic != labelMagic {

 return nil, os.ErrInvalid

 }

 if err = binary.Read(r, binary.BigEndian, &n); err != nil {

 return nil, err

402

 }

 labels = make([]Label, n)

 for i := 0; i < int(n); i++ {

 var l Label

 if err := binary.Read(r, binary.BigEndian, &l); err != nil {

 return nil, err

 }

 labels[i] = l

 }

 return labels, nil

}

func readImageFile(r io.Reader, e error) (imgs []RawImage, err error) {

 if e != nil {

 return nil, e

 }

 var magic, n, nrow, ncol int32

 if err = binary.Read(r, binary.BigEndian, &magic); err != nil {

 return nil, err

 }

 if magic != imageMagic {

 return nil, err /*os.ErrInvalid*/

 }

 if err = binary.Read(r, binary.BigEndian, &n); err != nil {

 return nil, err

 }

 if err = binary.Read(r, binary.BigEndian, &nrow); err != nil {

 return nil, err

 }

 if err = binary.Read(r, binary.BigEndian, &ncol); err != nil {

 return nil, err

 }

 imgs = make([]RawImage, n)

 m := int(nrow * ncol)

 for i := 0; i < int(n); i++ {

 imgs[i] = make(RawImage, m)

 m_, err := io.ReadFull(r, imgs[i])

 if err != nil {

 return nil, err

 }

 if m_ != int(m) {

 return nil, os.ErrInvalid

 }

 }

 return imgs, nil

403

Other things from the
previous chapter
Obviously, there is a lot from the previous chapter that we can
reuse:

The range normalization function (pixelWeight) and its
isometric counterpart (reversePixelWeight)

prepareX and prepareY

The visualize function

For convenience sake, here they are again:

func pixelWeight(px byte) float64 {

 retVal := (float64(px) / 255 * 0.999) + 0.001

 if retVal == 1.0 {

 return 0.999

 }

 return retVal

}

func reversePixelWeight(px float64) byte {

 return byte(((px - 0.001) / 0.999) * 255)

}

func prepareX(M []RawImage) (retVal tensor.Tensor) {

 rows := len(M)

 cols := len(M[0])

 b := make([]float64, 0, rows*cols)

 for i := 0; i < rows; i++ {

 for j := 0; j < len(M[i]); j++ {

 b = append(b, pixelWeight(M[i][j]))

 }

404

 }

 return tensor.New(tensor.WithShape(rows, cols), tensor.WithBacking(b))

}

func prepareY(N []Label) (retVal tensor.Tensor) {

 rows := len(N)

 cols := 10

 b := make([]float64, 0, rows*cols)

 for i := 0; i < rows; i++ {

 for j := 0; j < 10; j++ {

 if j == int(N[i]) {

 b = append(b, 0.999)

 } else {

 b = append(b, 0.001)

 }

 }

 }

 return tensor.New(tensor.WithShape(rows, cols), tensor.WithBacking(b))

}

func visualize(data tensor.Tensor, rows, cols int, filename string) (err error) {

 N := rows * cols

 sliced := data

 if N > 1 {

 sliced, err = data.Slice(makeRS(0, N), nil) // data[0:N, :] in python

 if err != nil {

 return err

 }

 }

 if err = sliced.Reshape(rows, cols, 28, 28); err != nil {

 return err

 }

 imCols := 28 * cols

 imRows := 28 * rows

 rect := image.Rect(0, 0, imCols, imRows)

 canvas := image.NewGray(rect)

 for i := 0; i < cols; i++ {

 for j := 0; j < rows; j++ {

 var patch tensor.Tensor

 if patch, err = sliced.Slice(makeRS(i, i+1), makeRS(j,

 j+1)); err != nil {

 return err

 }

 patchData := patch.Data().([]float64)

 for k, px := range patchData {

405

 x := j*28 + k%28

 y := i*28 + k/28

 c := color.Gray{reversePixelWeight(px)}

 canvas.Set(x, y, c)

 }

 }

 }

 var f io.WriteCloser

 if f, err = os.Create(filename); err != nil {

 return err

 }

 if err = png.Encode(f, canvas); err != nil {

 f.Close()

 return err

 }

 if err = f.Close(); err != nil {

 return err

 }

 return nil

}

406

CNNs
What we will be building is a CNN. So, what is a Convolutional
Neural Network? As its name suggests, it's a neural network,
not unlike the one we have built in the previous chapter. So,
clearly, there are elements that are similar. There are also
elements that are not similar, for if they were similar, we
wouldn't have this chapter.

407

What are convolutions?
The main difference between the neural network we built in
the previous chapter and a CNN is the convolutional layer.
Recall that the neural network was able to learn features
related to digits. In order to be more accurate, the neural
network layers need to learn more specific features. One way
to do this is to add more layers; more layers would lead to
more features being learned, giving rise to deep learning.

On a spring evening of 1877, people dressed in what modern-
day people would consider as black-tie gathered at the Royal
Institute, in London. The speaker for the evening was Francis
Galton, the same Galton we met in Chapter 1, How to Solve All
Machine Learning Problems. In his talk, Galton brought out a
curious device, which he called a quincunx. It was a vertical
wooden board with wooden pegs sticking out of it, arranged in
a uniform, but interleaved manner. The front of it was covered
with glass and there was an opening at the top. Tiny balls are
then dropped from the top and as they hit the pegs, bounce
left or right, and fall to the corresponding chutes. This
continues until the balls collect at the bottom:

408

A curious shape begins to form. It's the shape modern
statisticians have come to recognize as the binomial
distribution. Most statistical textbooks end the story about
here. The quincunx, now known as the Galton Board,
illustrates, very clearly and firmly, the idea of the central limit
theorem.

Our story, of course, doesn't end there. Recall in Chapter 1, How
to Solve All Machine Learning Problems, that I mentioned
that Galton was very much interested in hereditary issues. A
few years earlier, Galton had published a book
called Hereditary Genius. He had collected data on eminent
persons in Great Britain across the preceding centuries, and

409

much to his dismay, he found that eminent parentage tended
to lead to un-eminent children. He called this a reversion to
the mediocre:

410

And, yet, he reasoned, the mathematics doesn't show such
things! He explained this by showing off a quincunx with two
layers. A two-layered quincunx was a stand-in for the
generational effect. The top layer would essentially be the
distribution of a feature (say, height). Upon dropping to the
second layer, the beads would cause the distribution to flatten
out, which is not what he had observed. Instead, he surmised
that there has to be another factor which causes the regression
to the mean. To illustrate his idea, he installed chutes as the
controlling factor, which causes a regression to the mean. A
mere 40 years later, the rediscovery of Mendel's pea
experiments would reveal genetics to be the factor. That is a
story for another day.

411

What we're interested in is why the distribution would flatten
out. While the standard it's physics! would suffice as an
answer, there remains interesting questions that we could ask.
Let's look at a simplified depiction:

Here, we evaluate the probability that the ball will drop and
hit a position. The curve indicates the probability of the ball
landing at position B. Now, we add a second layer:

Say, from the previous layer, the ball landed at position 2.
Now, what is the probability that the ball's final resting place
is at position D?

To calculate this, we need to know all the possible ways that
the ball can end up at position D. Limiting our option to A to

412

D only, here they are:

Level 1
Position

L1
Horizontal
Distance

Level 2
position

L2
Horizontal
Distance

A 0 D 3

B 1 D 2

C 2 D 1

D 3 D 0

Now we can ask the question in terms of probability. The
horizontal distances in the table are an encoding that allows
us to ask the question probabilistically and generically. The
probability of the ball travelling horizontally by one unit can
be represented as P(1), the probability of the ball travelling
horizontally by two units can be represented as P(2), and so
on.

And to calculate the probability that the ball ends up in D after
two levels is essentially summing up all the probabilities:

.

We can write it as such:

We can read it as the probability of the final distance being $c
= a+b$ is the sum of $P_1(a)$, with the probability of level 1,
where the ball traveled horizontally by a and $P_2(b)$,
with the probability of level 2, where the ball traveled
horizontally by b.

413

And this is the typical definition of convolution:

If the integral scares you, we can equivalently rewrite this as a
summation operation (this is only valid because we are
considering discrete values; for continuous real values,
integrations have to be used):

Now, if you squint very carefully, this equation looks a lot like

the preceding probability equation. Instead of , we can
rewrite it as :

And what are probabilities, but functions? There is, after all, a
reason we write probabilities in the format $P(a)$. We can
indeed genericize the probability equation to the convolution
definition.

However, for now, let's strengthen our intuitions about what
convolutions are. For that, we'll keep the notion that the
function we're talking about has probabilities. First, we should
note that the probability of the ball ending up in a particular
location is dependent on where it starts. But imagine if the
platform for the second platform moves horizontally:

414

Now the probability of the final resting place of the ball is
highly dependent on where the initial starting position is, as
well as where the second layer's starting position is. The ball
may not even land on the bottom!

So, here's a good mental shortcut of thinking about
convolutions: t's as if one function in one layer is sliding
across a second function.

So, convolutions are what cause the flattening of Galton's
quincunx. In essence, it is a function that slides on top of the
probability function, flattening it out as it moves along the
horizontal dimension. This is a one-dimensional convolution;
the ball only travels along one dimension.

A two-dimensional convolution is similar to a one-
dimensional convolution. Instead, there are two distances or
metrics that we're considering for each layer:

But this equation is nigh impenetrable. Instead, here's a
convenient series of pictures of how it works, step by step:

Convolution (Step 1):

415

Convolution (Step 2):

Convolution (Step 3):

416

Convolution (Step 4):

417

Convolution (Step 5):

Convolution (Step 6):

418

Convolution (Step 7):

419

Convolution (Step 8):

420

Convolution (Step 9):

421

Again, you can think of this as sliding a function that slides
over another function (the input) in two dimensions. The
function that slides, performs the standard linear algebra
transformation of multiplication followed by addition.

You can see this in action in an image-processing example that
is undoubtedly very common: Instagram.

422

How Instagram filters
work
I am going to assume that you are familiar with Instagram. If
not, I both envy and pity you; but here's the gist of Instagram:
it's a photo sharing service that has a selling point of allowing
users to apply filters to their images. The filters would change
the color of the images, often to enhance the subject.

How do those filters work? Convolutions!

For example, let's define a filter:

To convolve, we simply slide the filter across the following
diagram (it's a very famous artwork by an artist called Piet
Chew):

423

Applying the preceding filter would yield something such as
the following:

Yes, the filter blurs images!

Here's an example written in Go to emphasize the idea:

func main() {

 kb := []float64{

 1 / 16.0, 1 / 8.0, 1 / 16.0,

 1 / 8.0, 1 / 4.0, 1 / 8.0,

 1 / 16.0, 1 / 8.0, 1 / 16.0,

 }

 k := tensor.New(tensor.WithShape(3,3), tensor.WithBacking(kb))

 for _, row := range imgIt {

 for j, px := range row {

 var acc float64

 for _, krow := range kIt {

 for _, kpx := range krow {

424

 acc += px * kpx

 }

 }

 row[j] = acc

 }

 }

}

The function is quite slow and inefficient, of course. Gorgonia
itself comes with a much more sophisticated algorithm

425

Back to neural networks
OK, so we now know that convolutions are important in the
use of filters. But how does this relate to neural networks?

Recall that a neural network is defined as a linear transform (
) with a non-linearity applied on it (written as

). Note that x, the input image, is acted upon as a
whole. This would be like having a single filter across the
entire image. But what if we could process the image one small
section at a time?

To add to that, in the preceding section, I showed how a
simple filter could be used to blur an image. Filters could also
be used to sharpen an image, picking out features that matter
and blurring out features that don't. So, what if a machine
could learn what filter to create?

That's the reason why we would want to use a convolution in a
neural network:

Convolutions act on small parts of the image at a time,
leaving only features that matter

We can learn the specific filters

This gives a lot of fine-tuned control to the machine. Now,
instead of a rough feature detector that works on the whole
image at once, we can build many filters, each specializing to a
specific feature, thus allowing us to extract the features
necessary for the classification of numbers.

426

Max-pooling
Now we have in our minds a conceptual machine that will
learn the filters that it needs to apply to extract features from
an image. But, at the same time, we don't want the machine to
overfit on the learning. A filter that is overly specific to the
training data is not useful in real life. If a filter learns, for
example, that all human faces have two eyes, a nose, and a
mouth, and that's all, it wouldn't be able to classify a picture of
a person with half their face obscured.

So, in an attempt to teach a ML algorithm to be able to
generalize better, we simply give it less information. Max-
pooling is one such process, as is dropout (see the next
section).

How max pooling works is it partitions the input data into
non-overlapping regions, and simply finds the maximum
value of that region:

427

There is, of course, an implicit understanding that this
definitely changes the shape of the output. In fact, you will
observe that it shrinks the image.

428

Dropout
The result after max-pooling is minimum information within
the output. But this may still be too much information; the
machine may still overfit. Therefore, a very interesting
quandary arises: what if some of the activations were
randomly zeroed?

This is the basis of dropout. It's a remarkably simple idea that
improves upon the machine learning algorithm's ability to
generalize, simply by having deleterious effects on
information. With every iteration, random activations are
zeroed. This forces the algorithm to only learn what is really
important. How it does so involves structural algebra and is a
story for another day.

For the purposes of this project, Gorgonia actually handles
dropout by means of element-wise multiplication by a
randomly generated matrix of 1s and 0s.

429

Describing a CNN
Having said all that, the neural network is very easy to build.
First, we define a neural network as such:

type convnet struct {

 g *gorgonia.ExprGraph

 w0, w1, w2, w3, w4 *gorgonia.Node // weights. the number at the back indicates which layer it's used for

 d0, d1, d2, d3 float64 // dropout probabilities

 out *gorgonia.Node

 outVal gorgonia.Value

}

Here, we defined a neural network with four layers. A convnet
layer is similar to a linear layer in many ways. It can, for
example, be written as an equation:

Note that in this specific example, I consider dropout and
max-pool to be part of the same layer. In many literatures,
they are considered to be separate layers.

I personally do not see the necessity to consider them as
separate layers. After all, everything is just a mathematical
equation; composing functions comes naturally.

A mathematical equation on its own without structure is quite
meaningless. Unfortunately, we do not have technology usable
enough to simply define the structure of a data type (the
hotness is in dependently-typed languages, such as Idris, but
they are not yet at the level of usability or performance that is

430

necessary for deep learning). Instead, we have to constrain our
data structure by providing a function to define a convnet:

func newConvNet(g *gorgonia.ExprGraph) *convnet {

 w0 := gorgonia.NewTensor(g, dt, 4, gorgonia.WithShape(32, 1, 3, 3),

 gorgonia.WithName("w0"),

 gorgonia.WithInit(gorgonia.GlorotN(1.0)))

 w1 := gorgonia.NewTensor(g, dt, 4, gorgonia.WithShape(64, 32, 3, 3),

 gorgonia.WithName("w1"),

 gorgonia.WithInit(gorgonia.GlorotN(1.0)))

 w2 := gorgonia.NewTensor(g, dt, 4, gorgonia.WithShape(128, 64, 3, 3),

 gorgonia.WithName("w2"),

 gorgonia.WithInit(gorgonia.GlorotN(1.0)))

 w3 := gorgonia.NewMatrix(g, dt, gorgonia.WithShape(128*3*3, 625),

 gorgonia.WithName("w3"),

 gorgonia.WithInit(gorgonia.GlorotN(1.0)))

 w4 := gorgonia.NewMatrix(g, dt, gorgonia.WithShape(625, 10),

 gorgonia.WithName("w4"),

 gorgonia.WithInit(gorgonia.GlorotN(1.0)))

 return &convnet{

 g: g,

 w0: w0,

 w1: w1,

 w2: w2,

 w3: w3,

 w4: w4,

 d0: 0.2,

 d1: 0.2,

 d2: 0.2,

 d3: 0.55,

 }

}

We'll start with dt. This is essentially a global variable denoting
what data type we would like to work in. For the purposes of
this project, we can use var dt = tensor.Float64, to indicate that we
would like to work with float64 throughout the entire project.
This allows us to immediately reuse the functions from the
previous chapter without having to handle different data
types. Note that if we do plan to use float32, the computation
speed immediately doubles. In the repository to this chapter,
you might note that the code uses float32.

431

We'll start with d0 all the way to d3. This is fairly simple. For the
first three layers, we want 20% of the activations to be
randomly zeroed. But for the last layer, we want 55% of the
activations to be randomly zeroed. In really broad strokes, this
causes an information bottleneck, which will cause the
machine to learn only the really important features.

Take a look at how w0 is defined. Here, we're saying w0 is a
variable called w0. It is a tensor with the shape of (32, 1, 3, 3).
This is typically called the Number of Batches, Channels,
Height, Width (NCHW/BCHW) format. In short, what
we're saying is that there are 32 filters we wish to learn, each
filter has a height and width of (3, 3), and it has one color
channel. MNIST is, after all, black and white.

BCHW is not the only format! Some deep learning frameworks prefer to use
BHWC formats. The reason for preferring one format over another is
purely operational. Some convolution algorithms work better with NCHW;
some work better with BHWC. The ones in Gorgonia works only in BCHW.

The choice of a 3 x 3 filter is purely unprincipled but not
without precedence. You could choose a 5 x 5 filter, or a 2 x 1
filter, or really, a filter of any shape. However, it has to be said
that a 3 x 3 filter is probably the most universal filter that can
work on all sorts of images. Square filters of these sorts are
common in image-processing algorithms, so it is in
accordance to such traditions that we chose a 3 x 3.

The weights for the higher layers start to look a bit more
interesting. For example, w1 has a shape of (64, 32, 3, 3). Why?
In order to understand why, we need to explore the interplay
between the activation functions and the shapes. Here's the
entire forward function of the convnet:

// This function is particularly verbose for educational reasons. In reality, you'd wrap up the layers within a layer struct type and perform per-layer activations

func (m *convnet) fwd(x *gorgonia.Node) (err error) {

 var c0, c1, c2, fc *gorgonia.Node

 var a0, a1, a2, a3 *gorgonia.Node

 var p0, p1, p2 *gorgonia.Node

 var l0, l1, l2, l3 *gorgonia.Node

432

 // LAYER 0

 // here we convolve with stride = (1, 1) and padding = (1, 1),

 // which is your bog standard convolution for convnet

 if c0, err = gorgonia.Conv2d(x, m.w0, tensor.Shape{3, 3}, []int{1, 1}, []int{1, 1}, []int{1, 1}); err != nil {

 return errors.Wrap(err, "Layer 0 Convolution failed")

 }

 if a0, err = gorgonia.Rectify(c0); err != nil {

 return errors.Wrap(err, "Layer 0 activation failed")

 }

 if p0, err = gorgonia.MaxPool2D(a0, tensor.Shape{2, 2}, []int{0, 0}, []int{2, 2}); err != nil {

 return errors.Wrap(err, "Layer 0 Maxpooling failed")

 }

 if l0, err = gorgonia.Dropout(p0, m.d0); err != nil {

 return errors.Wrap(err, "Unable to apply a dropout")

 }

 // Layer 1

 if c1, err = gorgonia.Conv2d(l0, m.w1, tensor.Shape{3, 3}, []int{1, 1}, []int{1, 1}, []int{1, 1}); err != nil {

 return errors.Wrap(err, "Layer 1 Convolution failed")

 }

 if a1, err = gorgonia.Rectify(c1); err != nil {

 return errors.Wrap(err, "Layer 1 activation failed")

 }

 if p1, err = gorgonia.MaxPool2D(a1, tensor.Shape{2, 2}, []int{0, 0}, []int{2, 2}); err != nil {

 return errors.Wrap(err, "Layer 1 Maxpooling failed")

 }

 if l1, err = gorgonia.Dropout(p1, m.d1); err != nil {

 return errors.Wrap(err, "Unable to apply a dropout to layer 1")

 }

 // Layer 2

 if c2, err = gorgonia.Conv2d(l1, m.w2, tensor.Shape{3, 3}, []int{1, 1}, []int{1, 1}, []int{1, 1}); err != nil {

 return errors.Wrap(err, "Layer 2 Convolution failed")

 }

 if a2, err = gorgonia.Rectify(c2); err != nil {

 return errors.Wrap(err, "Layer 2 activation failed")

 }

 if p2, err = gorgonia.MaxPool2D(a2, tensor.Shape{2, 2}, []int{0, 0}, []int{2, 2}); err != nil {

 return errors.Wrap(err, "Layer 2 Maxpooling failed")

 }

 log.Printf("p2 shape %v", p2.Shape())

 var r2 *gorgonia.Node

 b, c, h, w := p2.Shape()[0], p2.Shape()[1], p2.Shape()[2], p2.Shape()[3]

 if r2, err = gorgonia.Reshape(p2, tensor.Shape{b, c * h * w}); err != nil {

 return errors.Wrap(err, "Unable to reshape layer 2")

 }

 log.Printf("r2 shape %v", r2.Shape())

 if l2, err = gorgonia.Dropout(r2, m.d2); err != nil {

433

 return errors.Wrap(err, "Unable to apply a dropout on layer 2")

 }

 // Layer 3

 if fc, err = gorgonia.Mul(l2, m.w3); err != nil {

 return errors.Wrapf(err, "Unable to multiply l2 and w3")

 }

 if a3, err = gorgonia.Rectify(fc); err != nil {

 return errors.Wrapf(err, "Unable to activate fc")

 }

 if l3, err = gorgonia.Dropout(a3, m.d3); err != nil {

 return errors.Wrapf(err, "Unable to apply a dropout on layer 3")

 }

 // output decode

 var out *gorgonia.Node

 if out, err = gorgonia.Mul(l3, m.w4); err != nil {

 return errors.Wrapf(err, "Unable to multiply l3 and w4")

 }

 m.out, err = gorgonia.SoftMax(out)

 gorgonia.Read(m.out, &m.outVal)

 return

}

It should be noted that convolution layers do change the shape
of the inputs. Given an (N, 1, 28, 28) input, the Conv2d function
will return a (N, 32, 28, 28) output, precisely because there
are now 32 filters. The MaxPool2d will return an output with the
shape of (N, 32, 14, 14); recall that the purpose of max-pooling
is to reduce the amount of information in the neural network.
It just happens that max-pooling with a shape of (2, 2) will
nicely halve the length and width of the image (and reduce the
amount of information by four times).

The output of layer 0 would have a shape of (N, 32, 14, 14). If
we stick to our explanations of our shapes from earlier, where
it was in the format of (N, C, H, W), we would be quite
stumped. What does it mean to have 32 channels? To answer
that, let's look at how we encode a color image in terms of
BCHW:

434

Note that we encode it as three separate layers, stacked onto
one another. This is a clue as to how to think about having 32
channels. Of course, each of the 32 channels as the result of
applying each of the 32 filters; the extracted features, so to
speak. The result can, of course, be stacked in the same way
color channels be stacked.

For the most part, however, the mere act of symbol pushing is
all that is required to build a deep learning system; no real
intelligence is required. This, of course mirrors, the Chinese
Room Puzzle thought experiment, and I have quite a bit to say
on that, though it's not really the time nor the place.

The more interesting parts is in the construction of Layer 3.
Layers 1 and 2 are constructed very similarly to Layer 0, but
Layer 3 has a slightly different construction. The reason is
because the output of Layer 2 is a rank-4 tensor, but in order
to perform matrix multiplication, it needs to be reshaped into
a rank-2 tensor.

Lastly, the final layer, which decodes the output, uses a
softmax activation function to ensure that the result we get is
probability.

And really, there you have it. A CNN, written in a very neat

435

way that does not obfuscate the mathematical definitions.

436

Backpropagation
For the convnet to learn, what is required is backpropagation,
which propagates the errors, and a gradient descent function
to update the weight matrices. To do this is relatively simple
with Gorgonia, so simple that we can actually put it into our
main function without impacting understandability:

func main() {

 flag.Parse()

 parseDtype()

 imgs, err := readImageFile(os.Open("train-images-idx3-ubyte"))

 if err != nil {

 log.Fatal(err)

 }

 labels, err := readLabelFile(os.Open("train-labels-idx1-ubyte"))

 if err != nil {

 log.Fatal(err)

 }

 inputs := prepareX(imgs)

 targets := prepareY(labels)

 // the data is in (numExamples, 784).

 // In order to use a convnet, we need to massage the data

 // into this format (batchsize, numberOfChannels, height, width).

 //

 // This translates into (numExamples, 1, 28, 28).

 //

 // This is because the convolution operators actually understand height and width.

 //

 // The 1 indicates that there is only one channel (MNIST data is black and white).

 numExamples := inputs.Shape()[0]

 bs := *batchsize

 if err := inputs.Reshape(numExamples, 1, 28, 28); err != nil {

 log.Fatal(err)

 }

 g := gorgonia.NewGraph()

437

 x := gorgonia.NewTensor(g, dt, 4, gorgonia.WithShape(bs, 1, 28, 28), gorgonia.WithName("x"))

 y := gorgonia.NewMatrix(g, dt, gorgonia.WithShape(bs, 10), gorgonia.WithName("y"))

 m := newConvNet(g)

 if err = m.fwd(x); err != nil {

 log.Fatalf("%+v", err)

 }

 losses := gorgonia.Must(gorgonia.HadamardProd(m.out, y))

 cost := gorgonia.Must(gorgonia.Mean(losses))

 cost = gorgonia.Must(gorgonia.Neg(cost))

 // we wanna track costs

 var costVal gorgonia.Value

 gorgonia.Read(cost, &costVal)

 if _, err = gorgonia.Grad(cost, m.learnables()...); err != nil {

 log.Fatal(err)

 }

For the errors, we use a simple cross-entropy by multiplying
the expected output element-wise and then averaging it, as
shown in this snippet:

 losses := gorgonia.Must(gorgonia.HadamardProd(m.out, y))

 cost := gorgonia.Must(gorgonia.Mean(losses))

 cost = gorgonia.Must(gorgonia.Neg(cost))

Following that, we simply call gorgonia.Grad(cost, m.learnables()...),
which performs symbolic backpropagation. What is
m.learnables()?, you may ask. It's simply the variables that we
wish the machine to learn. The definition is as such:

func (m *convnet) learnables() gorgonia.Nodes {

 return gorgonia.Nodes{m.w0, m.w1, m.w2, m.w3, m.w4}

}

Again, it's fairly simple.

One additional comment I want the reader to note is
gorgonia.Read(cost, &costVal). Read is one of the more confusing parts

438

of Gorgonia. But when framed correctly, it is quite simple to
understand.

Earlier, in the section Describing a neural network, I likened
Gorgonia to writing in another programming language. If so,
then Read is the equivalent of io.WriteFile. What gorgonia.Read(cost,
&costVal) says is that when the mathematical expression gets
evaluated, make a copy of the result of cost and store it in
costVal. This is necessary because of the way mathematical
expressions are evaluated within the Gorgonia system.

Why is it called Read instead of Write? I initially modeled Gorgonia to be quite
monadic (in the Haskell sense of monad), and as a result, one would read
out a value. After a span of three years, the name sort of stuck.

439

Running the neural
network
Observe that up to this point, we've merely described the
computations we need to perform. The neural network doesn't
actually run; this is simply a description on the neural network
to run.

We need to be able to evaluate the mathematical expression.
In order to do so, we need to compile the expression into a
program that can be executed. Here's the code to do it:

 vm := gorgonia.NewTapeMachine(g,

 gorgonia.WithPrecompiled(prog, locMap),

 gorgonia.BindDualValues(m.learnables()...))

 solver := gorgonia.NewRMSPropSolver(gorgonia.WithBatchSize(float64(bs)))

 defer vm.Close()

It's not strictly necessary to call gorgonia.Compile(g). This was
done for pedagogical reasons, to showcase that the
mathematical expression can indeed be compiled down into
an assembly-like program. In production systems, I often just
do something like this: vm := gorgonia.NewTapeMachine(g,
gorgonia.BindDualValues(m.learnables()...)).

There are two provided vm types in Gorgonia, each
representing different modes of computation. In this project,
we're merely using NewTapeMachine to get a *gorgonia.tapeMachine. The
function to create a vm takes many options, and the BindDualValues
option simply binds the gradients of each of the variables in
the models to the variables themselves. This allows for

440

cheaper gradient descent.

Lastly, note that a VM is a resource. You should think of a VM as if
it were an external CPU, a computing resource. It is good
practice to close any external resources after we use them and,
fortunately, Go has a very convenient way of handling
cleanups: defer vm.Close().

Before we move on to talk about gradient descent, here's what
the compiled program looks like, in pseudo-assembly:

 Instructions:

 0 loadArg 0 (x) to CPU0

 1 loadArg 1 (y) to CPU1

 2 loadArg 2 (w0) to CPU2

 3 loadArg 3 (w1) to CPU3

 4 loadArg 4 (w2) to CPU4

 5 loadArg 5 (w3) to CPU5

 6 loadArg 6 (w4) to CPU6

 7 im2col<(3,3), (1, 1), (1,1) (1, 1)> [CPU0] CPU7 false false false

 8 Reshape(32, 9) [CPU2] CPU8 false false false

 9 Reshape(78400, 9) [CPU7] CPU7 false true false

 10 Alloc Matrix float64(78400, 32) CPU9

 11 A × Bᵀ [CPU7 CPU8] CPU9 true false true

 12 DoWork

 13 Reshape(100, 28, 28, 32) [CPU9] CPU9 false true false

 14 Aᵀ{0, 3, 1, 2} [CPU9] CPU9 false true false

 15 const 0 [] CPU10 false false false

 16 >= true [CPU9 CPU10] CPU11 false false false

 17 ⊙ false [CPU9 CPU11] CPU9 false true false

 18 MaxPool{100, 32, 28, 28}(kernel: (2, 2), pad: (0, 0), stride: (2,

 2)) [CPU9] CPU12 false false false

 19 0(0, 1) - (100, 32, 14, 14) [] CPU13 false false false

 20 const 0.2 [] CPU14 false false false

 21 > true [CPU13 CPU14] CPU15 false false false

 22 ⊙ false [CPU12 CPU15] CPU12 false true false

 23 const 5 [] CPU16 false false false

 24 ÷ false [CPU12 CPU16] CPU12 false true false

 25 im2col<(3,3), (1, 1), (1,1) (1, 1)> [CPU12] CPU17 false false false

 26 Reshape(64, 288) [CPU3] CPU18 false false false

 27 Reshape(19600, 288) [CPU17] CPU17 false true false

 28 Alloc Matrix float64(19600, 64) CPU19

 29 A × Bᵀ [CPU17 CPU18] CPU19 true false true

 30 DoWork

441

 31 Reshape(100, 14, 14, 64) [CPU19] CPU19 false true false

 32 Aᵀ{0, 3, 1, 2} [CPU19] CPU19 false true false

 33 >= true [CPU19 CPU10] CPU20 false false false

 34 ⊙ false [CPU19 CPU20] CPU19 false true false

 35 MaxPool{100, 64, 14, 14}(kernel: (2, 2), pad: (0, 0), stride: (2,

 2)) [CPU19] CPU21 false false false

 36 0(0, 1) - (100, 64, 7, 7) [] CPU22 false false false

 37 > true [CPU22 CPU14] CPU23 false false false

 38 ⊙ false [CPU21 CPU23] CPU21 false true false

 39 ÷ false [CPU21 CPU16] CPU21 false true false

 40 im2col<(3,3), (1, 1), (1,1) (1, 1)> [CPU21] CPU24 false false false

 41 Reshape(128, 576) [CPU4] CPU25 false false false

 42 Reshape(4900, 576) [CPU24] CPU24 false true false

 43 Alloc Matrix float64(4900, 128) CPU26

 44 A × Bᵀ [CPU24 CPU25] CPU26 true false true

 45 DoWork

 46 Reshape(100, 7, 7, 128) [CPU26] CPU26 false true false

 47 Aᵀ{0, 3, 1, 2} [CPU26] CPU26 false true false

 48 >= true [CPU26 CPU10] CPU27 false false false

 49 ⊙ false [CPU26 CPU27] CPU26 false true false

 50 MaxPool{100, 128, 7, 7}(kernel: (2, 2), pad: (0, 0), stride: (2,

 2)) [CPU26] CPU28 false false false

 51 Reshape(100, 1152) [CPU28] CPU28 false true false

 52 0(0, 1) - (100, 1152) [] CPU29 false false false

 53 > true [CPU29 CPU14] CPU30 false false false

 54 ⊙ false [CPU28 CPU30] CPU28 false true false

 55 ÷ false [CPU28 CPU16] CPU28 false true false

 56 Alloc Matrix float64(100, 625) CPU31

 57 A × B [CPU28 CPU5] CPU31 true false true

 58 DoWork

 59 >= true [CPU31 CPU10] CPU32 false false false

 60 ⊙ false [CPU31 CPU32] CPU31 false true false

 61 0(0, 1) - (100, 625) [] CPU33 false false false

 62 const 0.55 [] CPU34 false false false

 63 > true [CPU33 CPU34] CPU35 false false false

 64 ⊙ false [CPU31 CPU35] CPU31 false true false

 65 const 1.8181818181818181 [] CPU36 false false false

 66 ÷ false [CPU31 CPU36] CPU31 false true false

 67 Alloc Matrix float64(100, 10) CPU37

 68 A × B [CPU31 CPU6] CPU37 true false true

 69 DoWork

 70 exp [CPU37] CPU37 false true false

 71 Σ[1] [CPU37] CPU38 false false false

 72 SizeOf=10 [CPU37] CPU39 false false false

 73 Repeat[1] [CPU38 CPU39] CPU40 false false false

 74 ÷ false [CPU37 CPU40] CPU37 false true false

 75 ⊙ false [CPU37 CPU1] CPU37 false true false

 76 Σ[0 1] [CPU37] CPU41 false false false

 77 SizeOf=100 [CPU37] CPU42 false false false

442

 78 SizeOf=10 [CPU37] CPU43 false false false

 79 ⊙ false [CPU42 CPU43] CPU44 false false false

 80 ÷ false [CPU41 CPU44] CPU45 false false false

 81 neg [CPU45] CPU46 false false false

 82 DoWork

 83 Read CPU46 into 0xc43ca407d0

 84 Free CPU0

 Args: 11 | CPU Memories: 47 | GPU Memories: 0

 CPU Mem: 133594448 | GPU Mem []

 ```

Printing the program allows you to actually have a feel for the
complexity of the neural network. At 84 instructions, the
convnet is among the simpler programs I've seen. However,
there are quite a few expensive operations, which would
inform us quite a bit about how long each run would take. This
output also tells us roughly how many bytes of memory will be
used: 133594448 bytes, or 133 megabytes.

Now it's time to talk about, gradient descent. Gorgonia comes
with a number of gradient descent solvers. For this project,
we'll be using the RMSProp algorithm. So, we create a solver
by calling solver :=
gorgonia.NewRMSPropSolver(gorgonia.WithBatchSize(float64(bs))). Because
we are planning to perform our operations in batches, we
should correct the solver by providing it the batch size, lest the
solver overshoots its target.



443

To run the neural network, we simply run it for a number of
epochs (which is passed in as an argument to the program):

    batches := numExamples / bs

    log.Printf("Batches %d", batches)

    bar := pb.New(batches)

    bar.SetRefreshRate(time.Second)

    bar.SetMaxWidth(80)

    for i := 0; i < *epochs; i++ {

        bar.Prefix(fmt.Sprintf("Epoch %d", i))

        bar.Set(0)

        bar.Start()

        for b := 0; b < batches; b++ {

            start := b * bs

            end := start + bs

            if start >= numExamples {

                break

            }

            if end > numExamples {

                end = numExamples

            }

            var xVal, yVal tensor.Tensor

            if xVal, err = inputs.Slice(sli{start, end}); err != nil {

                log.Fatal("Unable to slice x")

            }

            if yVal, err = targets.Slice(sli{start, end}); err != nil {

                log.Fatal("Unable to slice y")



444

            }

            if err = xVal.(*tensor.Dense).Reshape(bs, 1, 28, 28); err != nil {

                log.Fatalf("Unable to reshape %v", err)

            }

            gorgonia.Let(x, xVal)

            gorgonia.Let(y, yVal)

            if err = vm.RunAll(); err != nil {

                log.Fatalf("Failed at epoch  %d: %v", i, err)

            }

            solver.Step(gorgonia.NodesToValueGrads(m.learnables()))

            vm.Reset()

            bar.Increment()

        }

        log.Printf("Epoch %d | cost %v", i, costVal)

    }

Because I was feeling a bit fancy, I decided to add a progress
bar to track the progress. To do so, I'm using cheggaaa/pb.v1 as
the library to draw a progress bar. To install it, simply run go
get gopkg.in/cheggaaa/pb.v1 and to use it, simply add import
"gopkg.in/cheggaaa/pb.v1 in the imports.

The rest is fairly straightforward. From the training dataset,
we slice out a small portion of it (specifically, we slice out bs
rows). Because our program takes a rank-4 tensor as an input,
the data has to be reshaped to xVal.(*tensor.Dense).Reshape(bs, 1, 28,
28).

Finally, we feed the value into the function by using gorgonia.Let.
Where gorgonia.Read reads a value out from the execution
environment, gorgonia.Let puts a value into the execution
environment. After which, vm.RunAll() executes the program,
evaluating the mathematical function. As a programmed and
intentional side-effect, each call to vm.RunAll() will populate the
cost value into costVal.

Once the equation has been evaluated, this also means that
the variables of the equation are now ready to be updated. As
such, we use solver.Step(gorgonia.NodesToValueGrads(m.learnables())) to
perform the actual gradient updates. After this, vm.Reset() is



445

called to reset the VM state, ready for its next iteration.

Gorgonia in general, is pretty efficient. In the current version
as this book was written, it managed to use all eight cores in
my CPU as shown here:



446



447

Testing
Of course we'd have to test our neural network.

First we load up the testing data:

testImgs, err := readImageFile(os.Open("t10k-images.idx3-ubyte"))

if err != nil {

   log.Fatal(err)

}

testlabels, err := readLabelFile(os.Open("t10k-labels.idx1-ubyte"))

  if err != nil {

     log.Fatal(err)

  }

testData := prepareX(testImgs)

testLbl := prepareY(testlabels)

shape := testData.Shape()

visualize(testData, 10, 10, "testData.png")

In the last line, we visualize the test data to ensure that we do
indeed have the correct dataset:



448

Then we have the main testing loop. Do observe that it's
extremely similar to the training loop - because it's the same
neural network!

var correct, total float32

numExamples = shape[0]

batches = numExamples / bs

for b := 0; b < batches; b++ {

    start := b * bs

    end := start + bs

    if start >= numExamples {

       break

    }

    if end > numExamples {

       end = numExamples

    }

var oneimg, onelabel tensor.Tensor

        if oneimg, err = testData.Slice(sli{start, end}); err != nil {

            log.Fatalf("Unable to slice images (%d, %d)", start, end)

        }

        if onelabel, err = testLbl.Slice(sli{start, end}); err != nil {

            log.Fatalf("Unable to slice labels (%d, %d)", start, end)

        }

        if err = oneimg.(*tensor.Dense).Reshape(bs, 1, 28, 28); err != nil {



449

            log.Fatalf("Unable to reshape %v", err)

        }

        gorgonia.Let(x, oneimg)

        gorgonia.Let(y, onelabel)

        if err = vm.RunAll(); err != nil {

            log.Fatal("Predicting (%d, %d) failed %v", start, end, err)

        }

        label, _ := onelabel.(*tensor.Dense).Argmax(1)

        predicted, _ := m.outVal.(*tensor.Dense).Argmax(1)

        lblData := label.Data().([]int)

        for i, p := range predicted.Data().([]int) {

            if p == lblData[i] {

                correct++

            }

            total++

        }

    }

    fmt.Printf("Correct/Totals: %v/%v = %1.3f\n", correct, total, correct/total)

One difference is in the following snippet:

label, _ := onelabel.(*tensor.Dense).Argmax(1)

predicted, _ := m.outVal.(*tensor.Dense).Argmax(1)

lblData := label.Data().([]int)

for i, p := range predicted.Data().([]int) {

    if p == lblData[i] {

          correct++

          }

        total++

   }

In the previous chapter, we wrote our own argmax function.
Gorgonia's tensor package actually does provide a handy
method for doing just that. But in order to understand what is
going on, we will need to first look at the results.

The shape of m.outVal is (N, 10), where N is the batch size. The
same shape also shows for onelabel.  (N, 10) means N rows of 10
columns. What can these 10 columns be? Well, of course
they're the encoded numbers! So what we want is to find the



450

maximum values amongst the column for each row. And that's
the first dimension. Hence when a call to .ArgMax() is made, we
specify 1 as the axis.

Therefore the result of the .Argmax() calls will have a shape (N).
For each value in that vector, if they are the same for lblData
and predicted, then we increment the correct counter. This gives
us a way to count accuracy.



451

Accuracy
We use accuracy because the previous chapter used accuracy.
This allows us to have a apples-to-apples comparison.
Additionally you may note that there is a lack of cross
validation. That will be left as an exercise to the reader.

After training the neural network for two hours on a batch size
of 50 and 150 epochs, I'm pleased to say I got a 99.87%
accuracy. And this isn't even state of the art!

In the previous chapter, it took just 6.5 minutes to get a 97%
accuracy. That additional 2% accuracy required a lot more
time. This is a factor in real life. Often business decisions are a
big factor in choosing ML algorithm.



452

Summary
In this chapter, we learned about neural networks and studied
about the Gorgonia library in detail. Then we learned how to
recognize handwritten digits using a CNN.

In the next chapter, we're going to strengthen our intuition
about what can be done with computer vision, by building a
multiple facial-detection system in Go.



453

Basic Facial Detection
The previous chapters can best be described as trying to read
an image. This is a subfield in machine learning called
computer vision (CV). With convolutional neural networks
(Chapter 7, Convolutional Neural Networks – MNIST
Handwriting Recognition), we found that the convolutional
layers learned how to filter an image.

There is a common misconception that any machine
learning (ML) worth doing has to come from neural
networks and deep learning. This is decidedly not the case.
Instead, one should view deep learning as a technique to get to
one's goals; deep learning is not the end-all. The purpose of
this chapter is to expose readers to some of the insights into
making ML algorithms work better in production. The code
for this chapter is exceedingly simple. The topic is trivial and
widely considered by many to be solved. However, the insights
are not trivial. It is my hope that this chapter propels the
reader to think more deeply about the problems that they face.

To that end, the algorithms that will be introduced in this
chapter began their life in academia. However, the invention
of these algorithms was driven by a highly practical
requirement, and one can learn quite a lot by analyzing how
these algorithms were invented.

In this chapter, we're going to further improve our knowledge
about what can be done with computer vision, by building
multiple facial detection systems in Go. We will be using GoCV
and Pigo. What we will be building is a program that detects
faces from a live webcam. However, this chapter will be
different from the previous ones, in that we will be comparing



454

two kinds of algorithms. The purpose is to allow the reader to
think more about the actual problems faced, rather than just
copy-pasting code.



455

What is a face? 
In order to detect faces, we need to understand what a face is,
specifically what a human face is. Think about a typical human
face. A typical human face has two eyes, a nose, and a mouth.
But having these features isn't enough to define a human face.
Dogs also have two eyes, a nose, and a mouth. We are, after
all, products of mammalian evolution.

I encourage the reader to think more carefully about what
makes a human face. We instinctively know what a face is, but
to really quantify exactly what constitutes a face takes work.
Often, it may lead to philosophical ruminations about
essentialism.

If you watch terrible procedural TV shows, you might see faces
being drawn with dots and lines when the detectives on TV are
doing facial recognition across a database. These dots and
lines are primarily due to the work of Woodrow Bledsoe,
Helen Chan, and Charles Bisson in the 1960s. They were
among the first people to study automated facial detection.
One of the first things noticed is that the standard features of
the face—hairline, browlines, gauntness of eyes, height of nose
bridge, and so on—are all dynamically definable; that is to say
that these features are measured relative to one another. This
made automatically detecting features a little bit more
challenging than expected.

Their solution was novel: using a device that is an ancestor to
today's drawing tablets, annotate the location of eyes, nose,
mouth, and other facial features. The distances between these
annotations are then used as features for facial recognition.
The process today is no different, except a lot more automatic.



456

The works of Bledsoe, Chan, and gang led to an immense
effort to quantify how pixels would co-occur to form facial
features.

In order to understand the features that make up a face,
abstract. What is the minimum possible number of dots and
lines required to depict a face? It is instructive to note
abstractions in the use of kaomoji. Consider the following
kaomoji:

It's quite easy to see that these depict faces. Contrast them
with kaomojis that depict other things (fish, spider, gun, and
bomb respectively):

The process of abstraction—the act of removing details until
only the ones that matter remain—allows one to think more
clearly about a subject matter. This is true in art, as it is in
mathematics. It is equally true of software engineering,
though careful implementation of the abstractions needs to be
made. Going back to the kaomojis, note that, even in their
highly abstract form, they are capable of displaying emotions.
In order of display, the kaomojis show happiness,
indifference, love, dissatisfaction, and anger. These abstract
depictions offer us a path to think about the facial features in
pictures. To determine whether a face exists, we simply
determine if those lines are there. The question now becomes



457

how do we take a photo and draw lines?

Start with the facial structure and assume an evenly-lit room.
Barring diseases such as Graves which cause proptosis, eyes
are generally sunken. This causes the area of the eyes to be
shadowed by the brow ridge of the face, as well as cheekbones.
In pictures of an evenly-lit face, eyes would appear in shadow.
Noses, on the other hand, would appear more brightly lit,
because noses are raised compared with the rest of the face.
Likewise, lips have a dark area and a bright area, separated by
a dark line. These are all useful features to consider when
thinking about detecting faces.



458

Viola-Jones
Fast forward to the early 2000s. Facial detection
methodologies leaped forwards with Viola and Jones
introducing a very fast method of detecting objects. The Viola-
Jones method, while generic enough for the detection of any
object, was primarily geared to detecting faces. The key genius
to the Viola-Jones method is that it used many small
classifiers to classify a region of an image, in a staged fashion.
This is called the cascade classifier.

To make the explanation clearer, whenever classifier is used in the context
of the Viola-Jones method, I mean the small classifiers in the cascade
classifier. When referring to the cascade classifier, it will be explicitly
mentioned as such.

A cascade classifier is made up of many small classifiers. Each
classifier is made up of multiple filters. For a brief
introduction to filters, see the previous chapter (How
Instagram filters work). To detect faces, first start with a small
section (called a window) of the image. Run the classifiers
one by one. If the sum of the result of applying all the filters in
the classifier exceeds a predefined threshold for the classifier,
then it's considered to be part of a face. Then, the cascade
classifier moves on to the next classifier. This is the cascading
part of the cascading classifier. Once all the classifiers are
done, the window slides to the next pixel, and the process
begins anew. Should a classifier in the cascade classifier fail to
identify something as part of the face, the entire region is
rejected and the sliding window slides on.

The filters work by detecting the aforementioned light and
dark areas of the face. Take, for example, the fact that the
areas around the eyes are typically sunken and therefore
shadowed. If we are to apply a filter to an area, we would



459

highlight only the eyes:

A classifier for eyes would have multiple filters, configured to
test against the possible configurations of eyes. A classifier for
the nose would have multiple filters specific to the nose. In a
cascading classifier, we could arrange the importance; perhaps
we define the eyes as the most important part of the face (they
are after all windows to the soul). We could arrange it so that
the cascade classifier first classifies a region for eyes. If there
are eyes, we then look for the nose, then the mouth.
Otherwise, the sliding window should slide on:

Another point of innovation with Viola-Jones is that the
method was designed to work on an image pyramid. What is
an image pyramid? Imagine you have yourself a large 1024 x
768 image. This image has two faces of multiple scales. There
is one person standing very close to the camera, and one
person standing far away. Anyone with any familiarity with
the optics of cameras would instantly realize that the person



460

standing close to the camera will have a much larger face in
the image compared to the person standing far away from the
camera. The question is, how would we be able to detect both
faces at different scales?

One possible answer is to design multiple filters, one for each
possible scale. But that leaves a lot of room for error. Instead
of designing multiple filters, the same filters can be reused, if
the image is resized multiple times:



461

The face that is very close to the camera wouldn't be detected
by a filter designed to detect a small face. Instead, in the
original resolution, the classifier will detect the smaller face.
Then, the image is resized so that the resolution is now
smaller, say 640 x 480. The big face is now small, and the



462

small faces are now single dots. The classifier will now be able
to detect the large face and not the small faces. But in total,
the classifier would have detected all the faces in the image.
Because the images are directly resized, coordinates in the
smaller image can be easily translated into coordinates in the
original image. This allows for detection in the smaller scale to
be directly translated into detections in the original scale.

At this point, if you have read the previous chapter, this starts
to feel somewhat familiar. Convolutional Neural
Networks (CNNs) work in a remarkably similar way. In a
CNN, multiple filters are applied to a sub-region, producing a
filtered image. The filtered image is then passed through a
reduction layer (max-pooling, or some other reduction
method). The key in CNNs is to learn what the filters would
be. In fact, the first layer of each CNN learns filters that are
extremely similar to the filters used in the Viola-Jones
method.

The primary similarities are that Viola-Jones essentially
amounts to having a sliding window and applying filters to the
section of the image. This is comparable to convolutions in a
CNN. Where CNNs have an advantage is that they are capable
of learning those filters, whereas in the Viola-Jones method
the filters are manually created. The Viola-Jones method on
the other hand has the benefit of cascading: it may terminate
searching a section for faces early if one of the classifiers fails.
This saves a lot of computation. Indeed, such was the
influence of the Viola-Jones method that it inspired the Joint
Face Detection and Alignment Using Multitask Cascaded
Convolutional Networks by Zhang et al. in 2016, which used
three neural networks in cascading fashion to recognize faces.

It would be tempting to equate the image pyramid with what
the pooling layers do in a CNN. This wouldn't be correct.
Multi-scale detection in the Viola-Jones method is a neat
trick, while pooling layers in a CNN lead to the learning of
higher order features. CNNs learn higher order features such



463

as eyes, noses, and mouths, whereas the Viola Jones method
doesn't.

In light of this, one may wonder if CNNs may be better. They
do detect faces the way humans do—by identifying eyes, noses,
and mouths as features, as opposed to filtering patterns on
pixels. There are still reasons to use Viola-Jones today. At this
point in time, the Viola-Jones method is well understood and
well optimized in libraries. It comes built into GoCV, which is
what we'll use. The method is also faster than deep learning-
based models, at some expense of flexibility. Most Viola-Jones
models only detect faces if those faces are front-facing.
Additionally, the Viola-Jones method may not detect rotated
faces (terrible if you want to detect the face of a head-turning
demon as proof to give an exorcist).

Depending on use cases, one might not need deep learning-
based systems to perform facial detection at all!



464

PICO 
Another technique we'll be using is Pixel Intensity
Comparison-based Object detection (PICO), originally
developed by Markus, Frljak, et al. in 2014. It uses the same
broad principles as the Viola-Jones method, in that there is a
cascade classifier. It differs in two ways. First, a sliding
window is not used. This is due to the latter differences.
Second, the classifiers of the cascade classifier are different
from that of Viola-Jones. In Viola-Jones, a method of applying
filters repeatedly and then summing the result is used as a
classifier. By contrast, in PICO, decision trees are used.

A decision tree is a tree where each node is a feature, and the
branching of the feature is defined by a threshold. In the case
of PICO, the decision tree applies for each pixel in the photo.
For each pixel considered, the intensity is compared against
the intensity of another pixel at another location. These
locations are generated from a uniform distribution, obviating
the need for a sliding window.

The PICO method also does away with needing image
pyramids and integral images. The classifiers are capable of
detecting faces straight away from an image. This makes it
very fast.

Nonetheless, the legacy of Viola-Jones is evident. The
classifiers are applied in stages. First, the simpler classifiers
are used. This would eliminate areas where the probability of
faces existing is low. Next, more complex classifiers are used
on the reduced search areas. This is repeated until the last
stage is reached. The results of each classifier are retained for
later use.



465

The reader might come to realize that areas in a picture that
definitely has a face will be searched by more classifiers. It is
with this intuition that the authors introduced a final
clustering step in the PICO classifier. The rule is simple: if
there is an overlap of areas searched by the classifier, and the
overlap percentage is greater than 30%, it's considered to be
part of the same cluster. Thus, the final result is robust to
small changes.



466

A note on learning 
You may have noted that in describing the algorithms
previously, I have neglected to mention the training
procedures for how these models learn. This omission is
rather deliberate. As we will not be training any models, how
the Viola-Jones method and the PICO method are trained to
produce models will be left as an exercise for the reader.

Instead, in this chapter we wish to use already created models.
These models are commonly used in practice. We
will then compare and contrast the methods to find out their
pros and cons.



467

GoCV 
In this chapter, we will be using GoCV. GoCV is a binding for
OpenCV and comes with a suite of features from OpenCV that
can be used. One of the features from OpenCV is the Viola-
Jones classifier, which we will use to our advantage.

Installing GoCV is a little tricky, however. It requires OpenCV
to be installed beforehand. At the time of writing, the version
supported by GoCV is OpenCV 3.4.2. Installing OpenCV can
be quite a painful experience. Perhaps the best place to find
out how to install OpenCV is a website called Learn
OpenCV. They have great guides on installing OpenCV on all
platforms:

Installing OpenCV on Ubuntu: https://www.learnopencv.com/inst
all-opencv3-on-ubuntu/

Installing OpenCV on Windows: https://www.learnopencv.com/i
nstall-opencv3-on-windows/

Installing OpenCV on MacOS: https://www.learnopencv.com/inst
all-opencv3-on-macos/

After the daunting process of installing OpenCV is done,
installing GoCV is a piece of cake. Simply run go get -u
gocv.io.x.gocv, and Bob's your uncle.

https://www.learnopencv.com/install-opencv3-on-ubuntu/
https://www.learnopencv.com/install-opencv3-on-windows/
https://www.learnopencv.com/install-opencv3-on-macos/


468

API 
The API of GoCV matches the API of OpenCV quite well. A
particularly good API to showcase is the display window. With
the display window, one is able to display the image the
webcam is receiving live. It's also a very useful tool for
debugging, in cases where one might want to write a new
classifier.

I have developed programs for many years. It's fair to say I've
seen many design patterns and packages. Among the prickliest
problems to have for almost all programming languages is the
foreign function interface, when a program has to call a library
written in another language. Not many are well done. Most are
shoddily done, as if something is plastered over the underlying
foreign function interface (FFI). In Go, FFI is handled by
cgo.

Very often, library authors (myself included) get too smart,
and attempt to manage resources on behalf of the users. While
at first blush this may seem to be good UX, good customer
service even, this ultimately leads to much pain. At the time of
writing, Gorgonia itself had just undergone a series of
refactors to make the resource metaphors more clear,
specifically with regards to CUDA usage.

With all this said, GoCV is probably one of the most consistent
Go libraries with regards to its cgo usage. The part where
GoCV is consistent is in its treatment of foreign objects.
Everything is treated as a resource; hence, most types have a
.Close() method. There are certainly other beauties of GoCV,
including the customenv build tags, which allow library users to
define where OpenCV is installed, but the chief compliment I



469

have for GoCV is in its consistency with regards to treating
OpenCV objects as an external resource.

The treatment of objects with the resource metaphor guides us
in our use of the GoCV API. All objects must be closed after
use,which is a  simple rule to abide by.



470

Pigo
Pigo is a Go library for detecting faces by using the PICO
algorithm. Compared to the Viola-Jones method, PICO is fast.
Naturally, PIGO is fast too. Add this to the fact that GoCV uses
cgo, which adds a penalty for speed, and PIGO may seem to be
a better option overall. However, it must be noted that the
PICO algorithm is more prone to false positives than the
original Viola-Jones method.

Using the PIGO library is simple. The provided
documentation is clear. However, PIGO was designed to run
within the author's workflow. Differing from that workflow
will require some tiny amount of extra work. Specifically, the
author draws images using external helpers such as
github.com/fogleman/gg. We shan't. However, the work isn't much.

To install pigo, simply run go get -u github.com/esimov/pigo/....



471

Face detection program 
What we want to do is build a program that reads an image
from a webcam, passes the image into a face detector and then
draws rectangles in the image. Finally, we want to display the
image with the rectangles drawn on.



472

Grabbing an image from
the webcam 
First, we'll open a connection to the webcam:

```

 func main() {

 // open webcam

 webcam, err := gocv.VideoCaptureDevice(0)

 if err != nil {

 log.Fatal(err)

 }

 defer webcam.Close()

 }

 ```

Here, I used VideoCaptureDevice(0) because, on my computer,
which runs Ubuntu, the webcam is device 0. Your webcam may
differ in device numbering. Also, do note defer webcam.Close().
This is the aforementioned resource metaphor that GoCV
sticks very strongly to. A webcam (specifically, a
VideoCaptureDevice) is a resource, much like a file. In fact in Linux,
this is true; the webcam on my computer is mounted in the
/dev/video0 directory and I can access raw bytes from it by just
using a variant of cat. But I digress. The point is that .Close()
has to be called on resources to free up usage.

The talk about closing resources to free up usage naturally raises a
question, given we program in Go. Is a channel a resource? The answer is
no. close(ch) of a channel  merely informs every sender that this channel is no
longer receiving data.

Having access to the webcam is nice and all, but we also want



473

to be able to grab images off it. I had mentioned one can read
raw streams off the file of a webcam. We can do the same with
GoCV as well:

```

 img := gocv.NewMat()

 defer img.Close()

width := int(webcam.Get(gocv.VideoCaptureFrameWidth))

 height := int(webcam.Get(gocv.VideoCaptureFrameHeight))

fmt.Printf("Webcam resolution: %v, %v", width, height)

if ok := webcam.Read(&img); !ok {

 log.Fatal("cannot read device 0")

 }

 ```

First, we create a new matrix, representing an image. Again,
the matrix is treated like a resource, because it is owned by the
foreign function interface. Thus, defer img.Close() is written.
Next, we query the webcam for information about the
resolution. This is not as important right now, but it will be
later. Nonetheless, it's quite nice to know what resolution a
webcam runs at. Last, we read the webcam's image into the
matrix.

At this point, if you are already familiar with Gorgonia's tensor
libraries, this pattern may seem familiar, and yet feels funny.
img := gocv.NewMat() does not define a size. How does GoCV know
how much space to allocate for the matrix? Well, the answer is
that the magic happens in webcam.Read. The underlying matrix
will be resized as necessary by OpenCV. In this way, the Go
part of the program does no real memory allocation.



474

Displaying the image 
So, the image has been magically read into the matrix. How do
we get anything out of it?

The answer is that we have to copy the data from the data
structure controlled by OpenCV into a Go-native data
structure. Fortunately, GoCV handles that as well. Here, we
write it out to a file:

 goImg, err := img.ToImage()

 if err != nil {

 log.Fatal(err)

 }

 outFile, err := os.OpenFile("first.png", os.O_WRONLY|os.O_TRUNC|os.O_CREATE, 0644)

 if err != nil {

 log.Fatal(err)

 }

 png.Encode(outFile, goImg)

First, the matrix has to be converted to image.Image. To do that,
img.ToImage() is called. Then, it is encoded as a PNG by using
png.Encode.

And you will have a test image. This was mine:



475

In the picture, I'm holding a box with a photo of Ralph Waldo
Emerson, famed American author. Readers who are familiar
with writing instruments may note that it's actually a brand of
inks I use for my writing.

So, now we have the basic pipeline of getting an image from
the webcam and writing out the image to a file. A webcam
continuously captures images, but we're only reading a single
image to a matrix, and then writing the matrix into a file. If we
put this in a loop, we would have the ability to continuously
read images from a webcam and write to file.

Analogously to having a file, we could write it to the screen
instead. The GoCV integration with OpenCV is so complete
that this is trivial. Instead of writing to a file, we can display a
window instead.

To do so, we need to first create a window object, with the title
Face Detection Window:



476

 window := gocv.NewWindow("Face Detection Window")

 defer window.Close()

Then, to show the image in the window, simply replace the
parts where we write out to a file with this:

 window.IMShow(img)

When the program is run, a window will pop up, showing you
the image captured by the webcam.



477

Doodling on images 
At some point, we would also like to draw on an image,
preferably before we output it, either to the display or a file.
GoCV handles that admirably. For our purposes in this
chapter, we'll just be drawing rectangles to denote where a
face might be. GoCV interfaces well with the standard library's
Rectangle type.

To draw a rectangle on an image with GoCV, we first define a
rectangle:

 r := image.Rect(50, 50, 100, 100)

Here, I defined a rectangle that starts at location (50, 50) and is
100 pixels wide and 100 pixels tall.

Then, a color needs to be defined. Again, GoCV plays very
nicely with image/color, found in the standard library. So, here's
the definition of the color blue:

 blue := color.RGBA{0, 0, 255, 0}

And now, onward to draw the rectangle on the image!:

 gocv.Rectangle(&amp;img, r, blue, 3)

This draws a blue rectangle with the top left of the rectangle at
(50, 50) in the image.



478

At this point, we have the components necessary to build two
different pipelines. One writes an image to a file. One creates a
window to display the image. There are two ways the input
from the webcam may be processed: one-off or continuously.
And, we are also able to modify the image matrix before
outputting. This gives us a lot of flexibility as scaffolding in the
process of building the program.



479

Face detection 1 
The first face detection algorithm we want to use is the Viola-
Jones method. It comes built into GoCV, so we can just use
that. The consistency of GoCV gives us a hint as to what to do
next. We need a classifier object (and remember to close it!)

This is how to create a classifier object:

```

 classifier := gocv.NewCascadeClassifier()

 if !classifier.Load(haarCascadeFile) {

 log.Fatalf("Error reading cascade file: %v\n", haarCascadeFile)

 }

 defer classifier.Close()

 ```

Note that at this point, it is not enough to just create a
classifier. We need to load it with the model to use. The model
used is very well established. It was first created by Rainer
Lienhart in the early 2000s. Like most products of the 2000s,
the model is serialized as an XML file.

The file can be downloaded from the GoCV GitHub repository:
https://github.com/hybridgroup/gocv/blob/master/data/haarcascade_frontalface_defaul

t.xml

In the preceding code, haarCascadeFile is a string denoting the
path to the file. GoCV handles the rest.

To detect faces, it is a simple one-liner:

```

https://github.com/hybridgroup/gocv/blob/master/data/haarcascade_frontalface_default.xml

480

 rects := classifier.DetectMultiScale(img)

 ```

In this single line of code, we are telling OpenCV to use Viola-
Jones' multiscale detection to detect faces. Internally, OpenCV
builds an image pyramid of integral images, and runs the
classifiers on the image pyramids. At each stage, rectangles
representing where the algorithm thinks the faces are,
produced. These rectangles are what is returned. They can
then be drawn on the image before being output to a file or
window.

Here's what a full windowed pipeline looks like:

```

 var haarCascadeFile = "Path/To/CascadeFile.xml"

var blue = color.RGBA{0, 0, 255, 0}

 func main() {

 // open webcam

 webcam, err := gocv.VideoCaptureDevice(0)

 if err != nil {

 log.Fatal(err)

 }

 defer webcam.Close()

var err error

 // open display window

 window := gocv.NewWindow("Face Detect")

 defer window.Close()

// prepare image matrix

 img := gocv.NewMat()

 defer img.Close()

// color for the rect when faces detected

// load classifier to recognize faces

 classifier := gocv.NewCascadeClassifier()

 if !classifier.Load(haarCascadeFile) {

 log.Fatalf("Error reading cascade file: %v\n", haarCascadeFile)

 }

 defer classifier.Close()

for {

 if ok := webcam.Read(&img); !ok {

 fmt.Printf("cannot read device %d\n", deviceID)

 return

 }

481

 if img.Empty() {

 continue

 }

 rects := classifier.DetectMultiScale(img)

for _, r := range rects {

 gocv.Rectangle(&img, r, blue, 3)

 }

window.IMShow(img)

 if window.WaitKey(1) >= 0 {

 break

 }

 }

 }

 ```

The program is now able to get an image from the webcam,
detect faces, draw rectangles around the faces, and then
display the image. You may note that it is quite quick at doing
that.



482

Face detection 2
In one fell swoop, GoCV has provided us with everything
necessary to do real-time face detection. But is it easy to use
with other face detection algorithms? The answer is yes, but
some work is required.

The algorithm we want to use is the PICO algorithm. Recall
that images in GoCV are in the gocv.Mat type. In order for PIGO
to use that, we would need to convert that into a format
readable by PICO. Incidentally, such a shared format is the
image.Image of the standard library.

Recall once again that the gocv.Mat type has a method .ToImage(),
which returns an image.Image. That's our bridge!

Before crossing it, let's look at how to create a PIGO classifier.
Here's a function to do so:

```

func pigoSetup(width, height int) (*image.NRGBA, []uint8, *pigo.Pigo,

 pigo.CascadeParams, pigo.ImageParams) {

 goImg := image.NewNRGBA(image.Rect(0, 0, width, height))

 grayGoImg := make([]uint8, width*height)

 cParams := pigo.CascadeParams{

 MinSize: 20,

 MaxSize: 1000,

 ShiftFactor: 0.1,

 ScaleFactor: 1.1,

 }

 imgParams := pigo.ImageParams{

 Pixels: grayGoImg,

 Rows: height,

 Cols: width,

 Dim: width,

 }

483

 classifier := pigo.NewPigo()

 var err error

 if classifier, err = classifier.Unpack(pigoCascadeFile); err != nil {

 log.Fatalf("Error reading the cascade file: %s", err)

 }

 return goImg, grayGoImg, classifier, cParams, imgParams

}

```

This function is quite dense. Let's unpack it. We'll do it in a
logical fashion as opposed to in a top-down linear fashion.

First, a pigo.Pigo is created with classifier := pigo.NewPigo(). This
creates a new classifier. Like the Viola-Jones method, a model
is required to be supplied.

Unlike in GoCV, the model is in a binary format which needs
to be unpacked. Additionally, classifier.Unpack takes a []byte,
instead of a string denoting the path to the file. The provided
model can be acquired on GitHub:
https://github.com/esimov/pigo/blob/master/data/facefinder.

Once the file has been acquired, it needs to be read as []byte, as
shown in the snippet below (which is wrapped in an init
function):

```

 pigoCascadeFile, err = ioutil.ReadFile("path/to/facefinder")

 if err != nil {

 log.Fatalf("Error reading the cascade file: %v", err)

 }

```

Once the pigoCascadeFile is available, we can now unpack it into
the classifier by using classifier.Unpack(pigoCascadeFile). Usual error
handling applies.

But what of the earlier parts of the section? Why is this



484

necessary?

To understand this, let's look at how PIGO does its
classification. It looks roughly like this:

dets := pigoClass.RunCascade(imgParams, cParams)

dets = pigoClass.ClusterDetections(dets, 0.3)

When PIGO runs the classifier, it takes two parameters which
determine its behavior: the ImageParam and the CascadeParams. In
particular, the details ImageParam is illuminating our process. It's
defined thus:

// ImageParams is a struct for image related settings.

// Pixels: contains the grayscale converted image pixel data.

// Rows: the number of image rows.

// Cols: the number of image columns.

// Dim: the image dimension.

type ImageParams struct {

  Pixels []uint8

  Rows int

  Cols int

  Dim int

}

It is with this in mind that the pigoSetup function has the extra
functionalities. The goImg is not strictly required, but it's useful
when considering our bridge between GoCV and PIGO.

PIGO requires images to be in []uint8, representing a grayscale
image. GoCV reads a webcam image into a gocv.Mat, which has a
.ToImage() method. The method returns a image.Image. Most
webcams capture color images. These are the steps required in
order to make GoCV and PIGO play nicely together:

1. Capture an image from the webcam.



485

2. Convert the image into an image.Image.
3. Convert that image into a gray scale image.
4. Extract the []uint8 from the gray scale image.
5. Perform face detection on the []uint8.

For our preceding pipeline, the image parameters and the
cascade parameters are more or less static. Processing of the
image is done in a linear fashion. A frame from the webcam
doesn't get captured until the face detection is done, and the
rectangles drawn, and the final image displayed in the
window.

Hence, it would be perfectly all right to allocate an image once,
and then overwrite the image in each loop. The .ToImage()
method allocates a new image every time it's called. Rather,
we can have a naughty version, where an already-allocated
image is reused.

Here's how to do it:

func naughtyToImage(m *gocv.Mat, imge image.Image) error {

                    typ := m.Type()

  if typ != gocv.MatTypeCV8UC1 &amp;&amp; typ != gocv.MatTypeCV8UC3 &amp;&amp; typ != 

            gocv.MatTypeCV8UC4 {

    return errors.New("ToImage supports only MatType CV8UC1, CV8UC3 and 

                       CV8UC4")

  }

  width := m.Cols()

  height := m.Rows()

  step := m.Step()

  data := m.ToBytes()

  channels := m.Channels()

  switch img := imge.(type) {

  case *image.NRGBA:

    c := color.NRGBA{

      R: uint8(0),

      G: uint8(0),

      B: uint8(0),



486

      A: uint8(255),

    }

    for y := 0; y &lt; height; y++ {

      for x := 0; x &lt; step; x = x + channels {

        c.B = uint8(data[y*step+x])

        c.G = uint8(data[y*step+x+1])

        c.R = uint8(data[y*step+x+2])

        if channels == 4 {

          c.A = uint8(data[y*step+x+3])

        }

        img.SetNRGBA(int(x/channels), y, c)

      }

    }

  case *image.Gray:

    c := color.Gray{Y: uint8(0)}

    for y := 0; y &lt; height; y++ {

      for x := 0; x &lt; width; x++ {

        c.Y = uint8(data[y*step+x])

        img.SetGray(x, y, c)

      }

    }

  }

  return nil

}

This function allows one to reuse an existing image. We simply
loop through the bytes of the gocv.Mat and overwrite the
underlying bytes of the image.

With the same logic, we can also create a naughty version of a
function that converts the image into gray scale:

func naughtyGrayscale(dst []uint8, src *image.NRGBA) []uint8 {

  rows, cols := src.Bounds().Dx(), src.Bounds().Dy()

  if dst == nil || len(dst) != rows*cols {

    dst = make([]uint8, rows*cols)

  }

  for r := 0; r &lt; rows; r++ {

    for c := 0; c &lt; cols; c++ {

      dst[r*cols+c] = uint8(

        0.299*float64(src.Pix[r*4*cols+4*c+0]) +

          0.587*float64(src.Pix[r*4*cols+4*c+1]) +



487

          0.114*float64(src.Pix[r*4*cols+4*c+2]),

      )

    }

  }

  return dst

}

The differences in function signature are stylistic. The latter
signature is better—it's better to return the type. This allows
for error correction as follows:

if dst == nil || len(dst) != rows*cols {

    dst = make([]uint8, rows*cols)

  }

And so our pipeline looks like this:

var haarCascadeFile = "Path/To/CascadeFile.xml"

var blue = color.RGBA{0, 0, 255, 0}

var green = color.RGBA{0, 255, 0, 0}

func main() {

var err error

  // open webcam

  if webcam, err = gocv.VideoCaptureDevice(0); err != nil {

    log.Fatal(err)

  }

  defer webcam.Close()

  width := int(webcam.Get(gocv.VideoCaptureFrameWidth))

  height := int(webcam.Get(gocv.VideoCaptureFrameHeight))

  // open display window

  window := gocv.NewWindow("Face Detect")

  defer window.Close()

  // prepare image matrix

  img := gocv.NewMat()

  defer img.Close()

  // set up pigo

  goImg, grayGoImg, pigoClass, cParams, imgParams := pigoSetup(width, 

                                                     height)

  

  for {



488

    if ok := webcam.Read(&amp;img); !ok {

      fmt.Printf("cannot read device %d\n", deviceID)

      return

    }

    if img.Empty() {

      continue

    }

    if err = naughtyToImage(&amp;img, goImg); err != nil {

      log.Fatal(err)

    }

    grayGoImg = naughtyGrayscale(grayGoImg, goImg)

    imgParams.Pixels = grayGoImg

    dets := pigoClass.RunCascade(imgParams, cParams)

    dets = pigoClass.ClusterDetections(dets, 0.3)

    for _, det := range dets {

      if det.Q &lt; 5 {

        continue

      }

      x := det.Col - det.Scale/2

      y := det.Row - det.Scale/2

      r := image.Rect(x, y, x+det.Scale, y+det.Scale)

      gocv.Rectangle(&amp;img, r, green, 3)

    }

    window.IMShow(img)

    if window.WaitKey(1) &gt;= 0 {

      break

    }

  }

}

There are some things to note here. If you follow the logic, you
will note that the only things that really changed are the data
in imgParams.Pixels. The rest of the things didn't really change as
much.

Recall from the earlier explanation of the PICO algorithm—
that there may be overlaps in detection's. A final clustering
step is required for final detections. This explains the
following two lines:



489

dets := pigoClass.RunCascade(imgParams, cParams)

dets = pigoClass.ClusterDetections(dets, 0.3)

The 0.3 value is chosen based on the original paper. In the
documentation of PIGO, the value 0.2 is recommended.

Another thing that is different is that PIGO does not return
rectangles as detections. Instead, it returns its own pigo.Detection
type. To translate from these to standard image.Rectangle is
simply done with these lines:

x := det.Col - det.Scale/2

y := det.Row - det.Scale/2

r := image.Rect(x, y, x+det.Scale, y+det.Scale)

Running the program yields a window showing the webcam
image, with green rectangles around faces.



490

Putting it all together
Now we have two different uses of two different algorithms to
detect faces.

Here are some observations:

The images using PIGO are smoother—there are fewer
jumps and lags.

The PIGO algorithm jitters a little more than the
standard Viola-Jones method.

The PIGO algorithm is more robust to rotations—I
could tilt my head more and still have my face detected
compared to the standard Viola-Jones method.

We can of course put both of them together:

var haarCascadeFile = "Path/To/CascadeFile.xml"

var blue = color.RGBA{0, 0, 255, 0}

var green = color.RGBA{0, 255, 0, 0}

func main() {

var err error

  // open webcam

  if webcam, err = gocv.VideoCaptureDevice(0); err != nil {

    log.Fatal(err)

  }

  defer webcam.Close()

  width := int(webcam.Get(gocv.VideoCaptureFrameWidth))

  height := int(webcam.Get(gocv.VideoCaptureFrameHeight))

  // open display window

  window := gocv.NewWindow("Face Detect")



491

  defer window.Close()

  // prepare image matrix

  img := gocv.NewMat()

  defer img.Close()

  // set up pigo

  goImg, grayGoImg, pigoClass, cParams, imgParams := pigoSetup(width, 

                                                       height)

  // create classifier and load model

  classifier := gocv.NewCascadeClassifier()

  if !classifier.Load(haarCascadeFile) {

    log.Fatalf("Error reading cascade file: %v\n", haarCascadeFile)

  }

  defer classifier.Close()

  

  for {

    if ok := webcam.Read(&amp;img); !ok {

      fmt.Printf("cannot read device %d\n", deviceID)

      return

    }

    if img.Empty() {

      continue

    }

    // use PIGO

    if err = naughtyToImage(&amp;img, goImg); err != nil {

      log.Fatal(err)

    }

    grayGoImg = naughtyGrayscale(grayGoImg, goImg)

    imgParams.Pixels = grayGoImg

    dets := pigoClass.RunCascade(imgParams, cParams)

    dets = pigoClass.ClusterDetections(dets, 0.3)

    for _, det := range dets {

      if det.Q &lt; 5 {

        continue

      }

      x := det.Col - det.Scale/2

      y := det.Row - det.Scale/2

      r := image.Rect(x, y, x+det.Scale, y+det.Scale)

      gocv.Rectangle(&amp;img, r, green, 3)

    }

    // use GoCV

    rects := classifier.DetectMultiScale(img)

    for _, r := range rects {



492

      gocv.Rectangle(&amp;img, r, blue, 3)

    }

    window.IMShow(img)

    if window.WaitKey(1) &gt;= 0 {

      break

    }

  }

}

Here we see PIGO and GoCV both managed to detect them
rather accurately, and that they agree with each other quite a
lot.

Additionally we can see that there is now a fairly noticeable lag
between actions and when the actions are displayed on screen.
This is because there is more work to be done.



493

Evaluating algorithms
There are many dimensions upon which we can evaluate the
algorithms. This section explores how to evaluate algorithms.

Assuming we want to have fast face detection—which
algorithm would be better?

The only way to understand the performance of an algorithm
is to measure it. Thankfully Go comes with benchmarking
built in. That is what we are about to do.

To build benchmarks we must be very careful about what
we're benchmarking. In this case, we want to benchmark the
performance of the detection algorithm. This means
comparing  classifier.DetectMultiScale versus, pigoClass.RunCascade
and pigoClass.ClusterDetections.

Also, we have to compare apples to apples—it would be unfair
if we compare one algorithm with a 3840 x 2160 image and
the other algorithm with a 640 x 480 image. There are simply
more pixels in the former compared to the latter:

func BenchmarkGoCV(b *testing.B) {

  img := gocv.IMRead("test.png", gocv.IMReadUnchanged)

  if img.Cols() == 0 || img.Rows() == 0 {

    b.Fatalf("Unable to read image into file")

  }

  classifier := gocv.NewCascadeClassifier()

  if !classifier.Load(haarCascadeFile) {

    b.Fatalf("Error reading cascade file: %v\n", haarCascadeFile)

  }

  var rects []image.Rectangle



494

  b.ResetTimer()

  for i := 0; i &lt; b.N; i++ {

    rects = classifier.DetectMultiScale(img)

  }

  _ = rects

}

There are a few things to note—the set up is made early on in
the function. Then b.ResetTimer() is called. This resets the timer
so that setups are not counted towards the benchmark. The
second thing to note is that the classifier is set to detect faces
on the same image over and over again. This is so that we can
get an accurate idea of how well the algorithm performs. The
last thing to note is the rather weird _ = rects line at the end.
This is done to prevent Go from optimizing away the calls.
Technically, it is not needed, as I am quite certain that the
DetectMultiScale function is complicated enough as to never have
been optimized away, but that line is just there for insurance.

A similar set up can be done for PIGO:

func BenchmarkPIGO(b *testing.B) {

  img := gocv.IMRead("test.png", gocv.IMReadUnchanged)

  if img.Cols() == 0 || img.Rows() == 0 {

    b.Fatalf("Unable to read image into file")

  }

  width := img.Cols()

  height := img.Rows()

  goImg, grayGoImg, pigoClass, cParams, imgParams := pigoSetup(width, 

                                                     height)

  var dets []pigo.Detection

  b.ResetTimer()

  for i := 0; i &lt; b.N; i++ {

    grayGoImg = naughtyGrayscale(grayGoImg, goImg)

    imgParams.Pixels = grayGoImg

    dets = pigoClass.RunCascade(imgParams, cParams)

    dets = pigoClass.ClusterDetections(dets, 0.3)

  }

  _ = dets

}



495

This time the set up is more involved than the GoCV
benchmark. It may seem that these two functions are
benchmarking different things—the GoCV benchmark takes a
gocv.Mat while the PIGO benchmark takes a []uint8. But
remember that we're interested in the performance of the
algorithms on an image.

The main reason why the gray scaling is also added into the
benchmark is because, although GoCV takes a color image, the
actual Viola-Jones method uses a gray scale image. Internally,
OpenCV converts the image into a gray scale before detection.
Because we're unable to separate the detection part by itself,
the only alternative is to consider conversion to gray scale as
part of the detection process.

To run the benchmark, both functions are added into
algorithms_test.go. Then go test -run=^$ -bench=. -benchmem is run. The
result is as follows:

goos: darwin

goarch: amd64

pkg: chapter9

BenchmarkGoCV-4 20 66794328 ns/op 32 B/op 1 allocs/op

BenchmarkPIGO-4 30 47739076 ns/op 0 B/op 0 allocs/op

PASS

ok chapter9 3.093s

Here we can see that GoCV is about 1/3 slower than PIGO. A
key reason for this is due to the cgo calls made in order to
interface with OpenCV. However, it should also be noted that
the PICO algorithm is faster than the original Viola-Jones
algorithm. That PIGO can exceed the performance of a highly
tuned and optimized Viola-Jones algorithm found in OpenCV,
is rather impressive.

However, speed is not the only thing that matters. There are



496

other dimensions that matter. The following are things that
matter when considering face detection algorithms. Tests for
them are suggested but left as an exercise for the reader:

| Consideration | Test |

|:---:          |:---:|

| Performance in detecting many faces | Benchmark with image of crowd |

| Correctness in detecting many faces | Test with image of crowd, with  

                                        known numbers |

| No racial discrimination | Test with images of multi-ethnic peoples  

                             with different facial features |

The last one is of particular interest. For many years, ML
algorithms have not served people of color well. I myself had
some issues when using a Viola-Jones model (a different
model from the one in the repository) to detect eyes. In a facial
feature detection project I did about five years ago, I was
trying to detect eyes on a face.

The so-called Asian eyes are composed of two major features
—an upward slant away from the nose to the outside of the
face; and eyes that have epicanthic folds, giving the illusion of
a single eyelid—that is, an eyelid without crease. The model I
was working on couldn't detect where my eyes were on
occasion because the filter looked for the crease of the eyelid,
and the creases on my eyelids are not that obvious.

On that front, some algorithms and models may appear
accidentally exclusionary. To be clear, I am NOT saying that
the creators of such algorithms and models are racist.
However there are some assumptions that were made in the
design of the algorithms that did not include considerations of
all the possible cases—nor could they ever. For example, any
contrast-based detection of facial landmarks will fare poorly
with people who have darker skin tones. On the flipside,
contrast-based detection systems are usually very fast,
because there is a minimal amount of calculation required.
Here, there is a tradeoff to be made—do you need to detect



497

everyone, or do you need to be fast?

This chapter aims to encourage readers to think more about
use cases of machine learning algorithms and the tradeoffs
required in using the algorithms. This book has mostly been
about thinking about the tradeoffs. I highly encourage the
reader to think deeply about the use cases of the machine
learning algorithms. Understand all the tradeoffs required.
Once the appropriate tradeoffs are understood,
implementation is usually a piece of cake.



498

Summary
In this chapter, we learned about using GoCV and PIGO, and
built a program that detects faces from a live webcam. At the
end of the chapter, we implemented a usable facial recognition
system, got familiar with notions of hashing of facial features,
and saw how to make fast inferences using the Gorgonia suite
of libraries as well as GoCV, which is a binding for OpenCV.

In saying that, in the next chapter, we'll look at some of the
implications of not having built your algorithm by yourself.



499

Hot Dog or Not Hot Dog -
Using External Services
In the previous chapters, I stressed the importance of
understanding the mathematics behind algorithms. Here's a
recap. We started with linear regression, followed by a Naïve
Bayes classifier. Then, the topics dovetailed into one of the
more complex topics in data science: time series. We then
detoured and discussed clustering by means of K-means. This
was followed by two chapters on neural networks. In all these
chapters, I explained the mathematics behind these
algorithms, and showed that, with much surprise, the
programs yielded are short and simple.

The purpose of this book is to walk a delicate line between the
math and the implementations. I hope I have provided enough
information so that you have an understanding of the
mathematics and how they may be useful. The projects are
real projects, but often they are in various forms, simplified
and rather academic. And so, it may be a bit of a surprise that
this chapter will not contain many mathematical explanations.
Instead, this chapter is aimed at guiding readers through more
real-world scenarios.

In the previous chapter, we discussed facial detection. Given
an image, we want to find the faces. But who are they? In
order to know who the faces belong to, we'd need to perform
facial recognition.



500

MachineBox
As mentioned, we will not focus on the math going on behind
the scenes of face detection. Instead, we will use an external
service to perform the recognition for us. The external service
is MachineBox. What it does is quite clever. Instead of having
to write your own deep learning algorithms, MachineBox
packages up the commonly-used deep learning functionalities
into containers, and you simply just use them straight out of
the box. What do I mean by commonly-used deep learning
functionalities? Nowadays people are relying more and more
on deep learning for tasks such as facial recognition.

Just like Viola-Jones in the early 2000s, there are only a few
commonly used models—we used the Haar-like cascades
generated by Rainer Lienhart in 2002. The same is becoming
true of deep learning models, and I shall talk more about the
implications of that in the next chapter. By models, I mean the
actual weights of the deep learning networks (for a more in-
depth coverage, see Chapter 7, Convolutional Neural Networks –
MNIST Handwriting Recognition, on deep neural networks).
These commonly-used models are packaged up by
MachineBox and you're able to just use it out of the box.

One thing that must be kept in mind is that MachineBox is a
paid service. They do offer a free tier, which is sufficient for
the needs of this chapter. I am in no way affiliated with
MachineBox. I just think they're a cool company and deserve
some recognition for the work they do. Plus, they do not do
sketchy things such as secretly charging your credit card, so
that's a plus from me.



501

What is MachineBox?
MachineBox is a service, first and foremost. The machine
learning algorithms are packaged nicely as a cloud service.
Further, because MachineBox cares about the developer
experience, they have provided SDKs and local instances for
you to develop against. This comes in the form of containers.
Set up Docker, run the commands found on the MachineBox
website, and you're done!

In this project, we wish to use a facial-recognition system to
recognize faces. MachineBox provides such a service, called
facebox.



502

Signing in and up 
First, we need to sign into MachineBox. Go to https://machinebox.io
and click on Sign Up. Conveniently, the sign in page is the
same. MachineBox will then email you a link. Clicking the link
should send you to this page:

https://machinebox.io


503



504

Click on Reveal your key. Copy the key. If you're using a
UNIX-based operating system, such as Linux or MacOS, in
your terminal, run the following:

export MB_KEY="YOUR KEY HERE"

Alternatively, if you want to persist this environment variable,
simply edit your terminal configuration file (I use bash on
Linux and MacOS, so the file I'd edit is .bash_profile or .bashrc
depending on which OS I'm on).

In Windows:

1. Go to System | Control Panel
2. Click on Advanced System Settings
3. Click on Environment Variables
4. In the section System Variables, click New
5. Add MB_KEY as the key and the variable is the key.

MachineBox relies on another piece of technology built on Go:
Docker. Most modern software developers already have
Docker installed on their machines. If you haven't already
done so, you can install Docker by going to https://docs.docker.com/in
stall/ and install the Community Edition of Docker.

https://docs.docker.com/install/


505

Docker installation and
setting up
Once that's all done, we're ready to get our MachineBox
running with the following command:

 docker run -p 8080:8080 -e "MB_KEY=$MB_KEY" machinebox/facebox



506

Using MachineBox in Go
To interact with MachineBox, simply go http://localhost:8080.
There, you'll see an array of options on the box. But we want
to interact with the service programmatically. To do so,
MachineBox has provided an SDK. To install it, run go get
github.com/machinebox/sdk-go/facebox. This installs the SDK for us to
interact with facebox.



507

The project
This is the last project of this book. So, for a bit of fun, let's
build on the previous chapter's project, but give it a twist.
There's an Asian rapper called MC Hot Dog. So let's build a
face-recognition system to determine whether a face is
HotDog or Not HotDog.

What we want to do is to read an image off a webcam, and use
MachineBox to determine whether MC Hot Dog is in the
picture. We'll once again be using GoCV to read images off the
webcam, but, this time, the image will be sent to MachineBox
for classification.



508

Training 
MachineBox is a machine learning system as a service. It has,
presumably, in some backend somewhere, a general model—
say, a convolutional neural network that has been trained with
many faces, such that it knows what a face is. It does not
provide the specific model that you may require for the task at
hand. So instead, we would need to fine-tune the model
provided by MachineBox by giving it training data. Per
MachineBox's terminology, this is called teaching. As part of
a curiosity collection, I have collected a small but usable
number of images of MC Hot Dog's face that are suitable for
the task of teaching the MachineBox what MC Hot Dog looks
like.

For this project, the images are in the hotdog.zip file. Unzip the
file into a folder called HotDog. This folder should be at the same
level as main.go for this project.

Training the MachineBox model is simple with the SDK
provided. The following code illustrates the program:

 import "github.com/machinebox/sdk-go/facebox"

 

 func train(box *facebox.Client) error {

     files, err := filepath.Glob("HotDog/*")

     if err != nil {

          return err

     }

     for _, filename := range files {

         f , err := os.Open(filename)

         if err != nil {

             return err

         }

 



509

         if err := box.Teach(f, filename, "HotDog"); err != nil {

             return err

         }

         if err := f.Close(); err != nil {

             return err

         }

     }

     return nil

 }

 

 func main(){

     box := facebox.New("http://localhost:8080")

     if err := train(box); err !=nil {

         log.Fatal(err)

     }

 }

And there you have it—a complete tutorial on how to teach
MachineBox how to recognize MC Hot Dog. MachineBox
makes it easy—so easy that you don't need to know the
mathematics behind the deep learning systems.



510

Reading from the
Webcam 
By this point, I hope you have already read the previous
chapter and have GoCV installed. If you haven't, then read the
GoCV section in the previous chapter to get started.

To read from the webcam, we simply add the following lines to
the main file. You may recognize them as snippets from the
previous chapter:

     // open webcam

     webcam, err := gocv.VideoCaptureDevice(0)

     if err != nil {

         log.Fatal(err)

     }

     defer webcam.Close()

 

     // prepare image matrix

     img := gocv.NewMat()

     defer img.Close()

 

     if ok := webcam.Read(&img); !ok {

         log.Fatal("Failed to read image")

     }

The confusing bit of course, is how to pass  img, which is of the
gocv.Mat type, to MachineBox. There exists a Check method on the
MachineBox client that takes io.Reader. img has a method, ToBytes,
that returns a slice of bytes; coupled with bytes.NewReader, one
should be able to easily pass io.Reader into Check.

But if you try that, it won't work.



511

Here's why: MachineBox expects an input that is formatted as
a JPEG or PNG. If it is not, you will get a 400 Bad
Request error. Poorly-formatted images would also cause
these sorts of problems, which is why the error returned by
box.Teach() is purposefully unhandled in the preceding line. In
real-life settings, one might want to actually check whether it's
a 400 Bad Request error that was returned.

The raw bytes of an image in img are not encoded as a known
image format. Instead, we have to encode the image in img as a
JPEG or a PNG and then pass it into MachineBox, as follows:

     var buf bytes.Buffer

     prop, _ := img.ToImage()

     if err = jpeg.Encode(&buf, prop, nil); err != nil {

         log.Fatal("Failed to encode image as JPG %v", err)

     }

 

     faces, err := box.Check(&buf)

     fmt.Printf("Error: %v\n", err)

     fmt.Printf("%#v", faces)

Here, we make use of the fact that *bytes.Buffer acts as both
io.Reader and io.Writer. This way, we don't have to write directly
to the file—rather, everything stays in memory.



512

Prettifying the results
The program prints the results. It looks something as follows:

 Error: <nil>

 []facebox.Face{facebox.Face{Rect:facebox.Rect{Top:221, Left:303, Width:75, Height:75}, ID:"", Name:"", Matched:false, Confidence:0, Faceprint:""}}

This is a rather boring result to be printed on the terminal
output. We live in the age of GUIs now! So let's draw our
results.

As a result, we want the window to show whatever the webcam
is showing. Then, when a key is pressed, the image is
captured, and processed by MachineBox. If a face is found, a
rectangle should be drawn around it. If the face is recognized
as MC Hot Dog, then label the box HotDog, followed by the
confidence. Otherwise, the box should be labelled Not HotDog.
The code for this looks a bit convoluted:

     // open webcam

     webcam, err := gocv.VideoCaptureDevice(0)

     if err != nil {

         log.Fatal(err)

     }

     defer webcam.Close()

 

     // prepare image matrix

     img := gocv.NewMat()

     defer img.Close()

 

     // open display window

     window := gocv.NewWindow("Face Recognition")

     defer window.Close()

 

     var recognized bool



513

     for {

         if !recognized {

             if ok := webcam.Read(&img); !ok {

                 log.Fatal("Failed to read image")

             }

         }

 

         window.IMShow(img)

         if window.WaitKey(1) >= 0 {

             if !recognized {

                 recognize(&img, box)

                 recognized = true

                 continue

             } else {

                 break

             }

         }

     }

But if we break it down, we can see that the code in the main
function can be split into two parts. The first part deals with
opening a webcam and creating a window to display the
image. A more complete account of this is covered in the
previous chapter.

In particular, let's turn our focus to the infinite loop:

     for {

         if !recognized {

             if ok := webcam.Read(&img); !ok {

                 log.Fatal("Failed to read image")

             }

         }

 

         window.IMShow(img)

         if window.WaitKey(1) >= 0 {

             if !recognized {

                 recognize(&img, box)

                 recognized = true

             } else {

                 break

             }

         }

     }



514

What this says is simply this: first check whether the
recognition process has been done. If it hasn't, grab an image
from the webcam, and then show the image using
window.IMShow(img). This constitutes the main loop—the webcam
will continuously capture an image and then immediately
display it in the window.

But what happens when a key is pressed? The block of code
that follows says to wait for a keyboard event for 1 millisecond.
If there is an event, any event at all, we check whether the
image had previously been recognized. If not, call recognize,
passing in the captured image from the matrix, and the
MachineBox client. Then we set the recognized flag as true. Thus,
upon the next key press, we exit the program.

recognize is where the meat of the drawing is done. If you have
gone through the previous chapter, this should be quite
familiar to you already. Otherwise, here's how recognize looks:

 

 var blue = color.RGBA{0, 0, 255, 0}

 

 func recognize(img *gocv.Mat, box *facebox.Client) (err error) {

     var buf bytes.Buffer

     prop, _ := img.ToImage()

     if err = jpeg.Encode(&buf, prop, nil); err != nil {

         log.Fatal("Failed to encode image as JPG %v", err)

     }

 

     // rd := bytes.NewReader(prop.(*image.RGBA).Pix)

     faces, err := box.Check(&buf)

     // fmt.Println(err)

     // fmt.Printf("%#v\n", faces)

 

     for _, face := range faces {

         // draw a rectangle

         r := rect2rect(face.Rect)

         gocv.Rectangle(img, r, blue, 3)

 

         lbl := "Not HotDog"

         if face.Matched {



515

             lbl = fmt.Sprintf("%v %1.2f%%", face.Name, face.Confidence*100)

         }

         size := gocv.GetTextSize(lbl, gocv.FontHersheyPlain, 1.2, 2)

         pt := image.Pt(r.Min.X+(r.Min.X/2)-(size.X/2), r.Min.Y-2)

         gocv.PutText(img, lbl, pt, gocv.FontHersheyPlain, 1.2, blue, 2)

     }

     return nil

 }

Here, we see the familiar code used to first encode the image
as a JPEG, and then send it to the MachineBox client for
classification. Then, for each face found, we draw a blue
rectangle around it. facebox.Face is defined as follows:

 type Face struct {

     Rect       Rect

     ID         string

     Name       string

     Matched    bool

     Confidence float64

     Faceprint  string

 }

facebox.Face allows us to identify the faces, if they are matched,
and the confidence level. So if there is a face found, these fields
would be accessible to the programmer.

But first, we must solve the issue of rectangles. MachineBox
does not use the same definition of rectangles as image.Rectangle,
which is found in the standard library.

Thus, a helper function to convert facebox.Rect into
image.Rectangle is required:

 func rect2rect(a facebox.Rect) image.Rectangle {

     return image.Rect(a.Left, a.Top, a.Left+a.Width, a.Top+a.Height)

 }



516

There are only a handful of ways to define a rectangle.
Conversion among the two different types is trivial.

After the rectangle has been drawn, a label is written. If the
face is recognized as MC Hot Dog, we'll label it as HotDog.
MachineBox also provides a confidence score, which is a
number between 0 and 1 on whether a face is HotDog or Not HotDog.
So we'll draw that into the label as well.



517

The results
You're probably curious about the results. Here are some of
them: my face is classified as HotDog with 57% confidence. In
fact, using my phone and an image of several other people, I
have found that some people are more HotDog-like than
others as shown in the following images:



518



519

What did this book not
cover?
There are a number of things that we can explore in Go. Here's
a non-exhaustive list of some things you may want to explore:

Random trees and random forests

Support vector machines

Gradient-boosting methods

Maximum-entropy methods

Graphical methods

Local outlier factors

Perhaps if there is a second edition to this book, I will cover
them. If you are familiar with machine learning methods, you
may note that these, especially the first three, are perhaps
some of the highest-performing machine learning methods,
when compared with the things written in this book. You
might wonder why they were not included. The schools of
thought that these methods belong to might supply a clue.

For example, random trees and random forests can be
considered pseudo-Symbolist—they're a distant cousin of the
Symbolist school of thought, originating from decision trees.
Support vector machines are analogizers. Maximum entropy
and graphical methods are of the Bayesian school of thought.



520

This book is biased toward the Connectionist school of
thought for a good reason: deep learning is popular right now.
If the winds of favor had been different, this book would have
been markedly different. There is also the issue of
explainability. I can explain support vector machines quite
well, but it would consist of pages and pages of mathematical
analogy. Opting not to explain how SVMs work, on the other
hand, would lead to a very thin chapter—the standard
implementation of SVMs is to use libsvm or svmlight. Simply
call the functions provided by the library and the job's done!
So an explanation of SVMs is warranted.



521

What does this all
mean? 
Does this mean that MachineBox's algorithm is not good? The
short answer is no: we cannot say that the MachineBox
algorithm is not good. The longer answer requires a more
nuanced understanding that combines engineering
understanding and an understanding of machine learning. As
far as the algorithm of facebox goes, there are no exact details
about what facebox is composed of. But we can deduce what
goes on.

First, note that the images with matches are all over 50% in
their confidence. We can then assume that facebox considers a
match being found only if the confidence level greater than
50%. I verified this by running the recognizer on a directory of
over 1,000 images of faces. Only those that are matched have a
greater-than 50% confidence. The program is as follows:

 func testFacebox() error {

     files, err := filepath.Glob("OtherFaces/*")

     if err != nil {

          return err

     }

     var count, lt50 int

     for _, filename := range files {

         f , err := os.Open(filename)

         if err != nil {

             return err

         }

         faces, err := box.Check(f)

         if err != nill {

             return err

         }



522

         for _, face := range faces {

             if face.Matched && face.Confidence < 0.5 {

                 lt50++

             }

         }

         if err := f.Close(); err != nil {

             return err

         }

         count++

     }

     fmt.Printf("%d/%d has Matched HotDog but Confidence < 0.5\n", lt50, count)

     return nil

 }

With this in mind, it also means that we cannot directly use
facebox's .Matched field as the truth value, except for very
rudimentary use cases. Instead, we'd have to consider the
confidence of the results returned.

We could, for example, set a higher threshold for a match to
be considered HotDog. Setting it to 0.8 shows that only
images of MC Hot Dog are recognized as HotDog.

The lesson learned here is that APIs created by other people
require some understanding. The code provided in this
chapter is remarkably short. This is a testament to
MachineBox's developer friendliness. But that does not
absolve the developer from having at least the most basic of
understanding of things.



523

Why MachineBox?
I personally prefer to develop my own machine learning
solutions. One may, of course, chalk this up to ego. However,
in the first chapter, I introduced the notion that there are
different types of problems. Some of these problems may be
solved by machine learning algorithms. Some problems may
only require general machine learning algorithms, while some
require specialized algorithms derived from the general
algorithms. In the majority of this book, I've shown the
general algorithms, and readers are free to adapt these to their
own specific problems.

I, too, recognize the value of having general machine learning
algorithms as being part of the solution. Imagine that you are
developing a program to reorganize your personal photos on
your computer. There is no need to spend a protracted
amount of time getting a convolutional neural network trained
upon a corpus of faces. The main task is to organize the
photos, not facial recognition! Instead, one may just use a
model that is already trained. These sorts of ready-made
solutions are suitable for problems in which the ready-made
solution is a small part. Increasingly, there is a demand for
such solutions.

As such, many machine learning algorithms are provided now
as a service. Amazon Web Services has its own offering, as do
Google Cloud and Microsoft Azure. Why did I not choose to
introduce those in this chapter? Here's another thing you
should know about me: I like to work offline. I find being
connected to the internet while working only serves as a
distraction—Slack messages, emails, and various other sites
compete for my scarce attention. No, I prefer to work and



524

think while offline.

The cloud companies do offer machine learning as a service,
and they all require internet access. MachineBox, to its credit,
provides a Docker image. A Docker pull is all that is required.
A once-off internet connection is required to download the
files. But once that's done, the entire workflow may be
developed offline—or as is the case for all the code in this
chapter, on a plane.

This is MachineBox's main benefit: you are not beholden to a
corporate entity that requires an always-on connection to their
cloud services. But of course, that's not all. MachineBox is
famous for its developer friendliness. That I am able to write
the majority of this chapter's code in-flight is testament to
their developer friendliness. To be fair, even as a seasoned
machine learning library author, facial recognition is still
pretty awesome.



525

Summary
In closing, it's only fair to mention that MachineBox does have
some limitations for its free tiers; but for personal projects, in
my experience, you won't run into them. Despite my personal
reservations on the various machine learning-as-a-service
systems out there, I do think they provide value. I have used
them from time to time, but I generally do not need them.
Nevertheless, I highly recommend that the reader check them
out.

This chapter, in combination with the previous chapter, has
shown the breadth of machine learning in the industry. Not all
machine learning algorithms have to be handwritten from
scratch if your main problem does not call for it. I am lucky
enough to have a career in doing what I love: building
customized machine learning algorithms. This may have
tainted my views on this issue. You may be an engineer on a
deadline who has to solve some bigger business problems. For
that, these two chapters are for you.

The next chapter will list further avenues for ML in Go.



526

What's Next?
The projects covered in this book can be considered bite-sized
projects. They can be completed within a day or two. A real
project will often take months. They require a combination of
machine learning expertise, engineering expertise, and
DevOps expertise. It would not quite be feasible to write about
such projects without spanning multiple chapters while
keeping the same level of detail. In fact, as can be witnessed by
the progression of this book, as projects get more complex, the
level of detail drops. In fact, the last two chapters are pretty
thin.

All said and done, we've achieved quite a bit in this book.
However, there is quite a bit we have not covered. This is
owing to my own personal lack of expertise in some other
fields in machine learning. In the introductory chapter, I
noted that there are multiple classification schemes for
machine learning systems and that we'd be choosing the
common view that there are only unsupervised and supervised
types of learning. Clearly, there are other classification
schemes. Allow me to share another, one that has five
classifications of machine learning systems:

Connectionist

Evolutionary

Bayesian

Analogizer

Symbolist



527

Here, I use the term machine learning. Others may use the
term artificial intelligence to classify these systems. The
difference is subtle. These five classes are technically schools
of thought within artificial intelligence. And this sets a much
larger stage for the topics at hand.

Except for two, we have, in this book, explored the different
schools of thought in artificial intelligence. In the
Connectionist school, we started with linear regression in Chapte
r 2, Linear Regression – House Price Prediction, and the
various neural networks from Chapters 8, Basic Facial Detection,
and Chapter 10, What's Next?. In the Bayesian school, we have
Naive Bayes from Chapter 3, Classification – Spam Email
Detection, as well as the DMMClust algorithm in Chapter 6,
Neural Networks – MNIST Handwriting Recognition; we
also have the various distance and clustering algorithms,
which somewhat fall into the analogizer school of thought.

The two schools of thought on artificial intelligence that are
not covered are the Evolutionary school and the Symbolist
school. The former I only have theoretical experiences of. My
understanding of the Evolutionary school of artificial
intelligence is not great. I have much to learn from the likes of
Martin Nowak. The latter, I am familiar with—I have been told
that my introduction to Go betrays a lot of my experience with
the Symbolist school of thought.

The main reason why I didn't write anything about the
Symbolist school of thought is that as a subject matter it is too
dense, and I am not a good enough writer to actually tackle the
subject. It opens up hairy philosophical implications more
immediately than the Connectionist school does. These
implications are something I am not yet ready to deal with,
though the reader might be.

Having said that, one of the most exhilarating times in my life
was building DeepMind's AlphaGo algorithm in Go. You can
find the code here: https://github.com/gorgonia/agogo. It's a behemoth

https://github.com/gorgonia/agogo


528

of a project, and successfully pulled off by a small team of
four. It was an immensely rewarding experience. The AlphaGo
algorithm merges Connectionist deep neural networks with
Symbolist tree search. Despite pulling off such a feat, I still do
not think I am ready to write about the symbolic approach to
artificial intelligence.

All of this brings up the question: what's next?



529

What should the reader
focus on? 
This question has been asked of me every time I give a class on
machine learning and artificial intelligence. I mentioned in the
introductory chapter that one may want to be a machine
learning practitioner or a machine learning researcher. My
professional role straddles both. This allows me some
experience to provide a bit of advice for readers interested in
either field.



530

The practitioner 
To the practitioner, the most important skill is not in machine
learning. The most important skill is in understanding the
problem. Implicit in this statement is that the practitioner
should also at least understand which machine learning
algorithms would be suitable for the problem at hand.
Obviously this entails understanding how the machine
learning algorithm works.

New people in the field often ask me whether deep learning
will solve all their problems. The answer is emphatically no.
The solution must be tailored to the problem. Indeed, often,
non-deep-learning solutions outperform deep learning
solutions in terms of speed and accuracy. These are typically
simple problems, so that's a good rule of thumb there: if the
problem is non-compositional, you most likely do not need to
use deep learning.

What do I mean by non-compositional? Recall from Chapter
1, How to Solve All Machine Learning Problems, when I
introduced the types of problems, and how problems may be
broken down into subproblems. If the subproblems are
themselves composed of further subproblems, well, that
means the problem is composed of subproblems. Problems
that aren't compositional do not need deep learning.

Granted, this is a very gross overview of the issue. A finer
understanding of the problem is always required.



531

The researcher 
To the researcher, the most important skill is understanding
how a machine learning algorithm works at a high level.
Following this, understanding data structures is the most
important. From there, an actual algorithm may be written.

Of note would be the difference between data representation
and data structure. Perhaps some day in the future—hopefully
not too far from now—we will have programming languages
where data representation does not matter. But now, data
representation still matters. A good representation will yield
an efficient algorithm. A poor representation yields poor
algorithm performance.

For the most part, my advice is to start simple, by making
things as understandable as possible as first. Then start
subtracting the parts that are not necessary. A good example is
shown in Chapter 3, Classification – Spam Email Detection, in
Naive Bayes. A direct representation of the Bayesian function
would be quite clunky. But in understanding the moving parts
of the algorithm, we are able to make it efficient and small.

Sometimes, some complexity is unavoidable. Some
complexities are unavoidable because the algorithm is
fundamentally complex. Some complexities are tradeoffs that
are required. An example of this is the use of Gorgonia. Deep
learning is at its heart, just writing a long mathematical
expression. To update the weights, backpropagation is used.
Backpropagation is simply differentiation. But nobody wants
to manually calculate the differentiation! We want to
mechanically evaluate our calculus! Therefore some
complexity is unavoidable.



532

Wisdom lies in knowing when these complexities are
unavoidable. Wisdom comes from experience, so to the
researcher, my advice is to do as much as possible. Doing
things at different scales also brings out different experiences.
For example, performing K-means at scale across multiple
machines is a very different code from the one presented in
the previous chapters.



533

The researcher, the
practitioner, and their
stakeholder
A word on scale—there is a tendency to reach out to packages
or external programs, such as Spark, to solve the problem.
Often they do solve the problem. But it's been my experience
that ultimately, when doing things at scale, there is no one-
size-fits-all solution. Therefore, it's good to learn the basics, so
that when necessary, you may refer to the basics and
extrapolate them to your situation.

Again on the topic of scale—both researchers and practitioners
would do well to learn to plan projects. This is one thing that I
am exceedingly bad at. Even with the help of multiple project
managers, machine learning projects have a tendency to spiral
out of control. It does take quite a bit of discipline to manage
these. This is both on the implementor's part and on the
stakeholder's part.

Last, learn to manage the expectations of stakeholders. Many
of my projects fail. That I can say the projects fail is itself a
qualifying statement. For most projects I enter into, I have
defined success and failure criteria. If it's a more traditional
statistics-based project, then these are your simple null
hypotheses. Failing to reject the null hypothesis would then be
a failure. Likewise, more complicated projects would have
multiple hypotheses—these come in form of F-scores and the
like. Learn these tools well, and communicate them to your
stakeholders. You must be aware that a large majority of



534

machine learning projects fail on their first few attempts.



535

Where can I learn more?
I strongly believe machine learning methods should not be
tied to programming languages. If tomorrow a new language
comes out that offers better performance than Go, while
keeping the developer friendliness of Go, I'd move to that
language in a heartbeat. I wouldn't have to be worried about
having to relearn new machine learning methods. I already
know them. I can simply rewrite them in that new language.
As such, my recommendations would be language-agnostic.

If you want to learn more about machine learning algorithms,
I recommend Christopher Bishop's, Pattern Recognition and
Machine Learning. It's a slightly older book, but you'll be
surprised at how many new developments in machine learning
have their roots in that tome.

If you want to learn more about deep learning, I recommend
Ian Goodfellow and Yoshua Bengio's, Deep Learning. It's a
new book—it's extremely theoretical, with no code, but the
insights gained will be priceless.

If you want to learn more about deep learning using Go and
Gorgonia, there is an upcoming book by Darrell Chua and
Gareth Seneque, published by Packt. It covers a wide range of
deep-learning-related topics.

If you want to learn more about data science and machine
learning in Go, I also recommend Daniel
Whitenack's, Machine Learning with Go. It's one of the first
books on machine learning in Go, and to this day, it still
stands as an excellent resource.



536

If you want to learn more about Go, I highly recommend The
Go Programming Language, by Alan Donovan and Brian
Kernighan. Kernighan is the K in the famous K&amp;R
book on C. Here, he performs a similar feat.



537

Thank you
Thank you for reading this book; I hope it has been useful to
you.



538

Other Books You May
Enjoy
If you enjoyed this book, you may be interested in these other
books by Packt:

Machine Learning With Go
Daniel Whitenack

ISBN: 978-1-78588-210-4

Learn about data gathering, organization, parsing, and
cleaning

Explore matrices, linear algebra, statistics, and
probability

See how to evaluate and validate models

Look at regression, classification, clustering

Learn about neural networks and deep learning

Utilize times series models and anomaly detection

https://india.packtpub.com/in/big-data-and-business-intelligence/machine-learning-go


539

Optimize machine learning workflow techniques

Hands-On Go Programming
Tarik Guney

ISBN: 978-1-78953-175-6

Manipulate string values and escape special characters

Work with dates, times, maps, and arrays

Handle errors and perform logging

Explore files and directories

Handle HTTP requests and responses

Perform CRUD operations on a relational database

https://india.packtpub.com/in/application-development/hands-go-programming


540

Leave a review - let
other readers know
what you think
Please share your thoughts on this book with others by leaving
a review on the site that you bought it from. If you purchased
the book from Amazon, please leave us an honest review on
this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make
purchasing decisions, we can understand what our customers
think about our products, and our authors can see your
feedback on the title that they have worked with Packt to
create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt.
Thank you!



Índice

Title Page 2
Copyright and Credits 3

Go Machine Learning Projects 4
About Packt 5

Why subscribe? 6
Packt.com 7

Contributors 8
About the author 9
About the reviewer 10
Packt is searching for authors like you 13

Preface 25
Who this book is for 26
What this book covers 11
To get the most out of this book 27

Download the example code files 28
Conventions used 30

Get in touch 31
Reviews 32

How to Solve All Machine Learning Problems 33
What is a problem?&#xA0; 35
What is an algorithm?&#xA0; 37
What is machine learning?&#xA0; 39
Do you need machine learning? 41
The general problem solving process 44
What is a model? 45

What is a good model? 47
On writing and chapter organization&#xA0; 49
Why Go?&#xA0; 51
Quick start 52
Functions 53
Variables 55

541



Values&#xA0; 57
Types&#xA0; 58
Methods&#xA0; 62
Interfaces 64
Packages and imports 67

Let's Go!&#xA0; 69
Linear Regression - House Price Prediction 70

The project 73
Exploratory data analysis 74

Ingestion and indexing 77
Janitorial work 81

Encoding categorical data 82
Handling bad numbers 85
Final requirement 88
Writing the code 89

Further exploratory work 96
The conditional expectation functions 97
Skews 101
Multicollinearity 107

Standardization 114
Linear regression 116

The regression 118
Cross-validation 121

Running the regression 122
Discussion and further work 126
Summary 128

Classification - Spam Email Detection 129
The project&#xA0; 131
Exploratory data analysis&#xA0; 132

Tokenization 134
Normalizing and lemmatizing 138
Stopwords 140
Ingesting the data 141

Handling errors 143

542



The classifier 144
Naive Bayes 146

TF-IDF&#xA0; 147
Conditional probability 149
Features 154
Bayes' theorem 156

Implementating the classifier 157
Class 159

Alternative&#xA0;class design 162
Classifier part II 164

Putting it all together 171
Summary 176

Decomposing CO2 Trends Using Time Series Analysis 177
Exploratory data analysis 179

Downloading from non-HTTP sources 180
Handling non-standard data 182
Dealing with decimal dates 184
Plotting 186

Styling 188
Decomposition 192

STL 195
LOESS 196
The algorithm 203
Using STL 205
How to lie with statistics 210

More plotting 220
A primer on Gonum plots 223
The residuals plotter 225
Combining plots 228

Forecasting 231
Holt-Winters 232

Summary 237
References 238

Clean Up Your Personal Twitter Timeline by Clustering

543



Tweets 239
The project&#xA0; 241
K-means&#xA0; 242
DBSCAN 245
Data acquisition 246
Exploratory data analysis 248
Data massage 253

The processor&#xA0; 255
Preprocessing a single word&#xA0; 258

Normalizing a string 260
Preprocessing stopwords 263
Preprocessing Twitter entities&#xA0; 265

Processing a single tweet&#xA0; 267
Clustering&#xA0; 268

Clustering with K-means&#xA0; 269
Clustering with DBSCAN&#xA0; 271
Clustering with DMMClust&#xA0; 277

Real data 278
The program&#xA0; 287
Tweaking the program 291

Tweaking distances&#xA0; 292
Tweaking the preprocessing step&#xA0; 294

Summary 299
Neural Networks - MNIST Handwriting Recognition 300

A neural network 301
Emulating a neural network 304

Linear algebra 101 308
Exploring activation functions 313

Learning 316
The project 320

Gorgonia 321
Getting the data 322

Acceptable format 326

544



What is a tensor? 329
From labels to one-hot vectors 332
Visualization 334
Preprocessing 338

Building a neural&#xA0;network 345
Feed forward 348
Handling errors with maybe 350
Explaining the feed forward function 353
Costs 355
Backpropagation 357

Training the neural network 362
Cross-validation 365
Summary 368

Convolutional Neural Networks - MNIST Handwriting
Recognition 369

Everything you know about neurons is wrong&#xA0; 370
Neural networks&#xA0;&#x2013; a redux 371

Gorgonia 374
Why? 376
Programming 381
What is a tensor? &#x2013; part 2 383
All expressions are graphs 389

Describing a neural network 393
One-hot vector 397

The project 400
Getting the data 401
Other things from the previous chapter 403

CNNs 406
What are convolutions? 407

How Instagram filters work 422
Back to neural networks 425

Max-pooling 426
Dropout 428

545



Describing a CNN 429

Backpropagation 436
Running the neural network 439
Testing 447

Accuracy 451
Summary 452

Basic Facial Detection 453
What is a face?&#xA0; 455

Viola-Jones 458
PICO&#xA0; 464

A note on learning&#xA0; 466
GoCV&#xA0; 467

API&#xA0; 468
Pigo 470
Face detection program&#xA0; 471

Grabbing an image from the webcam&#xA0; 472
Displaying the image&#xA0; 474
Doodling on images&#xA0; 477
Face detection 1&#xA0; 479
Face detection 2 482
Putting it all together 490

Evaluating algorithms 493
Summary 498

Hot Dog or Not Hot Dog - Using External Services 499
MachineBox 500
What&#xA0;is MachineBox? 501

Signing in and up&#xA0; 502
Docker installation and setting up 505
Using MachineBox in Go 506

The project 507
Training&#xA0; 508
Reading from the Webcam&#xA0; 510
Prettifying the results 512

546



What does this all mean?&#xA0; 521
Why MachineBox? 523
Summary 525

What&#x27;s Next? 526
What should the reader focus on?&#xA0; 529

The practitioner&#xA0; 530
The researcher&#xA0; 531

The researcher, the practitioner, and their stakeholder 533
What did this book not cover? 519
Where can I learn more? 535
Thank you 537

Other Books You May Enjoy 538
Leave a review - let other readers know what you think 540

547


	Title Page
	Copyright and Credits
	Go Machine Learning Projects

	About Packt
	Why subscribe?
	Packt.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews


	How to Solve All Machine Learning Problems
	What is a problem?&#xA0;
	What is an algorithm?&#xA0;
	What is machine learning?&#xA0;
	Do you need machine learning?
	The general problem solving process
	What is a model?
	What is a good model?

	On writing and chapter organization&#xA0;
	Why Go?&#xA0;
	Quick start
	Functions
	Variables
	Values&#xA0;
	Types&#xA0;
	Methods&#xA0;
	Interfaces
	Packages and imports

	Let's Go!&#xA0;

	Linear Regression - House Price Prediction
	The project
	Exploratory data analysis
	Ingestion and indexing
	Janitorial work
	Encoding categorical data
	Handling bad numbers
	Final requirement
	Writing the code

	Further exploratory work
	The conditional expectation functions
	Skews
	Multicollinearity

	Standardization

	Linear regression
	The regression
	Cross-validation
	Running the regression


	Discussion and further work
	Summary

	Classification - Spam Email Detection
	The project&#xA0;
	Exploratory data analysis&#xA0;
	Tokenization
	Normalizing and lemmatizing
	Stopwords
	Ingesting the data
	Handling errors


	The classifier
	Naive Bayes
	TF-IDF&#xA0;
	Conditional probability
	Features
	Bayes' theorem

	Implementating the classifier
	Class
	Alternative&#xA0;class design

	Classifier part II

	Putting it all together
	Summary

	Decomposing CO2 Trends Using Time Series Analysis
	Exploratory data analysis
	Downloading from non-HTTP sources
	Handling non-standard data
	Dealing with decimal dates
	Plotting
	Styling


	Decomposition
	STL
	LOESS
	The algorithm
	Using STL
	How to lie with statistics

	More plotting
	A primer on Gonum plots
	The residuals plotter
	Combining plots


	Forecasting
	Holt-Winters

	Summary
	References

	Clean Up Your Personal Twitter Timeline by Clustering Tweets
	The project&#xA0;
	K-means&#xA0;
	DBSCAN
	Data acquisition
	Exploratory data analysis
	Data massage
	The processor&#xA0;
	Preprocessing a single word&#xA0;
	Normalizing a string
	Preprocessing stopwords
	Preprocessing Twitter entities&#xA0;

	Processing a single tweet&#xA0;

	Clustering&#xA0;
	Clustering with K-means&#xA0;
	Clustering with DBSCAN&#xA0;
	Clustering with DMMClust&#xA0;

	Real data
	The program&#xA0;
	Tweaking the program
	Tweaking distances&#xA0;
	Tweaking the preprocessing step&#xA0;

	Summary

	Neural Networks - MNIST Handwriting Recognition
	A neural network
	Emulating a neural network

	Linear algebra 101
	Exploring activation functions

	Learning
	The project
	Gorgonia
	Getting the data
	Acceptable format
	From images to a matrix

	What is a tensor?
	From labels to one-hot vectors
	Visualization
	Preprocessing

	Building a neural&#xA0;network
	Feed forward
	Handling errors with maybe
	Explaining the feed forward function
	Costs
	Backpropagation

	Training the neural network
	Cross-validation
	Summary

	Convolutional Neural Networks - MNIST Handwriting Recognition
	Everything you know about neurons is wrong&#xA0;
	Neural networks&#xA0;&#x2013; a redux
	Gorgonia
	Why?
	Programming
	What is a tensor? &#x2013; part 2
	All expressions are graphs

	Describing a neural network
	One-hot vector


	The project
	Getting the data
	Other things from the previous chapter

	CNNs
	What are convolutions?
	How Instagram filters work
	Back to neural networks

	Max-pooling
	Dropout

	Describing a CNN
	Backpropagation

	Running the neural network
	Testing
	Accuracy

	Summary

	Basic Facial Detection
	What is a face?&#xA0;
	Viola-Jones

	PICO&#xA0;
	A note on learning&#xA0;

	GoCV&#xA0;
	API&#xA0;

	Pigo
	Face detection program&#xA0;
	Grabbing an image from the webcam&#xA0;
	Displaying the image&#xA0;
	Doodling on images&#xA0;
	Face detection 1&#xA0;
	Face detection 2
	Putting it all together

	Evaluating algorithms
	Summary

	Hot Dog or Not Hot Dog - Using External Services
	MachineBox
	What&#xA0;is MachineBox?
	Signing in and up&#xA0;
	Docker installation and setting up
	Using MachineBox in Go

	The project
	Training&#xA0;
	Reading from the Webcam&#xA0;
	Prettifying the results

	The results
	What does this all mean?&#xA0;
	Why MachineBox?
	Summary

	What&#x27;s Next?
	What should the reader focus on?&#xA0;
	The practitioner&#xA0;
	The researcher&#xA0;

	The researcher, the practitioner, and their stakeholder
	What did this book not cover?
	Where can I learn more?
	Thank you

	Other Books You May Enjoy
	Leave a review - let other readers know what you think


