

Introduction to Programming with Go

Learn data structures and algorithms with Go

Youri Ackx

13 Apr. 2023 (preview)

Introduction to Programming with Go Youri Ackx

This book is about computer programming and algorithms, without the formal
academic approach. Learn about recursion, complexity, data structures, and solve
classical computer scienceproblems like the Towers ofHanoi, the EightQueens and
Conway’s Game Of Life.

Contents

1 Introduction 6
1.1 It’s about programming . 6
1.2 Approach . 6
1.3 Exercises . 7
1.4 Vocabulary . 8
1.5 Abstraction . 8
1.6 First program . 9
1.7 A paper and a pen . 10
1.8 About Go . 12

2 Basic data types 14
2.1 Definition . 14
2.2 Bits and bytes . 14
2.3 Numeric . 15
2.4 Strings . 17
2.5 Overflow . 22
2.6 Abstraction vs low level . 24

3 Programming blocks 25
3.1 Variables and constants . 25
3.2 Conditional statements . 26
3.3 Loops . 30
3.4 Functions . 31
3.5 Arithmetic operators . 32
3.6 Expressions . 33
3.7 Bitwise logical operators . 36

Preview ‑ 13 Apr. 2023 3

Introduction to Programming with Go Youri Ackx

4 Lists, Arrays and Slices 40
4.1 Arrays . 40
4.2 Slices . 41
4.3 Filtering . 46
4.4 Min andmax . 47
4.5 Generics . 48
4.6 Exercices . 49

5 Complex data types 50
5.1 Maps . 50
5.2 struct . 53
5.3 Interface . 58
5.4 Sets . 62
5.5 Stack . 66

6 Go techniques 70
6.1 Pointers . 70
6.2 Concurrency (goroutines) . 73
6.3 Channels . 75
6.4 Producer‑consumer . 76

7 Programming techniques 79
7.1 Recursion . 79

8 Classic computer problems 82
8.1 Fibonacci numbers . 82
8.2 Hangman . 86
8.3 Eight Queens . 94
8.4 Conway’s Game of Life . 97
8.5 Tower of Hanoi . 103
8.6 Blackjack (guided exercise) . 108

9 Appendix A ‑ Install and run 111
9.1 Go playground . 111
9.2 Install . 111
9.3 Edit . 111

Preview ‑ 13 Apr. 2023 4

Introduction to Programming with Go Youri Ackx

9.4 Run . 111
9.5 Modules . 112

10 Appendix B ‑ Credits 114

Preview ‑ 13 Apr. 2023 5

Introduction to Programming with Go Youri Ackx

1 Introduction

1.1 It’s about programming

This book is first about programming, algorithms and data structures. Of course, Go will be
our reference language, and for sure, you will learn Go along the way. But the techniques pre‑
sented in this book will also be transferable to a large extent to other programming languages
like Python, Java or C.

We will cover one single programming paradigm: imperative programming. Other paradigms
such as object oriented programming are not in the scope of this book.

We will take the time to understand what is going on under the hood. A tutorial will usually give
you a recipe to solve a specific problem, without necessarily discuss the underlying algorithm.
For instance, you can be given instructions on how to sort a list using a library or a built‑in func‑
tion, but it will probably not discuss how sorting a list actually works.

This book covers the equivalent of one semester or more of first year computer science class.
It is designed for beginners who want to acquire a good grasp on algorithms and data struc‑
tures. Teachers on the other hand can use it as a classroom support and leverage its numerous
exercises, while focusing on teaching the material.

Gomay seem a peculiar choice to learn programming. Wewill discuss the reasons of this choice
and its merits, with background information on the language.

1.2 Approach

We will take a non‑formal, intuitive and practical approach to programming, heavily based
on exercises of increasing complexity, adding the minimum amount of theory necessary as we
progress to solve them.

For beginners, the first part lays the foundation of programming. Variables, loops, conditional
statements and functions found in most languages will be presented. At this stage, you will be
able to solve simple problems, like checking if a paper fits in an enveloppe.

Wewill continuewithmore advanced data structures. Slices andmaps are the bread and butter
of Go programs. Wewill read data from files andmanipulate them. From there, you can already

Preview ‑ 13 Apr. 2023 6

Introduction to Programming with Go Youri Ackx

go a long way and write useful programs. At that point, implementing games like Blackjack or
Hangman is in reach.

Wewill extend these data structures to form lists, linked lists, queues, stack and trees tomention
the most common ones. At this intermediate level, we will talk about recursion, backtracking,
space and time complexity, finite automatons. We will solve both fun and classical academic
problems like the eight queens problem, the towers of Hanoi, or implement the classical Con‑
way’s game of life;, andmore.

1.3 Exercises

Solving exercises is a key part of the learning process.

This book offers numerous exercises. The most efficient method is to solve them completely.
First, write your resolution steps on paper in pseudo‑code. Then, once you are confident with
what you have written on paper, write the corresponding program in Go and run it. Improve it
until it is satisfactory.

Heading straight to the solution and thinking that “you get it” does not bear the same teaching
value as actually resolving the exercise yourself, which may involve sweat and tears, and some‑
times getting stuck. If you find yourself blocked, take a break, or try another exercise before
going back to the challenging part. Only through hard personal work will you progress. Do not
despair if you spend one hour on a single exercise: this is perfectly normal.

You don’t have to resolve all the exercices; however you are advised to a least test your skills on
some of them, including the hardest ones. You should at least be confident you could solve the
others as well before proceeding to the next chapters.

Figure 1: Some deep thinking moments required

Preview ‑ 13 Apr. 2023 7

Introduction to Programming with Go Youri Ackx

1.4 Vocabulary

Programmngmeanswriting a program that resolves a problem. A program is said to be correct if,
for every input, it terminates consistently with the correct output and solves the given problem.
An algorithm contains a sequence of steps to solve a problem. A program formally describes an
algorithm.The program is executed by a computer processor. The program is written in a pro‑
gramming language according to a predefined syntax. The computer processor (CPU) cannot
execute it directly. It needs tools like an interpreter or a compiler.

1.5 Abstraction

In order to write programs, we need abstractions.

Consider a hard disk drive (HDD). It is an enclosure containing rapidly rotating disks or platters,
each ofwhich is coatedwithmagneticmaterial in order to store data. Armswithmagnetic heads
move above the platters in order to read (andwrite) data that can represent an image, a song or
a poem, or more generally anything we call a file.

Figure 2: A hard drive needs an abstraction

You could read thepoemstoredon theharddrive anddisplay it on screenby sending commands
to move the heads above the right platter on the hard drive, communicating with the CPU di‑
rectly. But the task would be incredibly difficult to achieve. Every program you or someone else
writes would have to repeat the same operations, for every single data you would want to read,
and for every possible disk geometries. This would be at best a tedious task. Above all, it would
be pointless.

Preview ‑ 13 Apr. 2023 8

Introduction to Programming with Go Youri Ackx

Maybe the hard disk drive can be seen as cyclinders and sectors that form some logical organiza‑
tion. Which it does in reality. This is a first level of abstraction. But this is still not the abstraction
we are looking for — unless we are writing specific parts of an operating system, or a HDD con‑
troller.

For sure, we have a more casual purpose. Say we want to read the poem from the disk with as
little knowledge about the underlying hardware as possible. We are interessted in retrieving the
poem, not about the low‑level hardware details.

Now consider the following program fragment:

poem, err := ioutil.ReadFile("poem.txt")
defer poem.Close()
if e != nil {

panic(e)
}
fmt.Print(string(poem))

There are several things that require an explanation. What is err or panic for instance. All in
due time. For now, using a high‑level programming language, we have abstracted the process
of retrieving the information on the disk magnetic surface. In fact, the abstraction is layered:
the Go compiler provides you with a first abstraction from the operating system, which in turn
abstracts you for the processor, thememory and the hard disk. This is whatwewere looking for:
a mean to express ideas and concepts while hiding the underlying complexity and details.
It is still nice to know how a hard drive or an operating system work though. But suffice to say
it is muchmore efficient and confortable to rely on the work done by others to access a storage
medium, and focus on our program.

Note: Nowadays hard disk drives (HDD) are getting replaced by solid state drives (SDD) that
havenomechaninalmovingparts. Movingparts or not, you still want tobe abstracted from
the baremedium. By virtue of abstraction, our programabovewill still work, nomatter the
actual underlying physical media, HDD, SSD or other.

1.6 First program

Toget acquaintedwithaprogramming language, it is customary towrite aprogramthatdisplays
a friendly message. For the first chapters, you do not necessarily need to have Go installed on
your computer. You can simply enter an execute your program in the Go Playground:

Preview ‑ 13 Apr. 2023 9

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program/
https://play.golang.org/

Introduction to Programming with Go Youri Ackx

package main

import "fmt"

func main() {
fmt.Println("Hello, world!")

}

This simple programalready raises several questions. What is a package, why is there an import
with "fmt" in it? One thing at the time. For now, remember that Println prints a line on the
screen. The term “print” and its variations are found in many programming languages, more
often than “display” and comes from the ancient times where the primary interface with the
computer was a printer rather than a screen. main is the program entry point. It is where the
first instruction will be executed.

This program is found by default when you open the the playground, so you don’t even have to
copy‑paste it. Mark this page, as this program will be the skeleton for many exercises we will
solve in the next chapters.

1.7 A paper and a pen

… is all you need to write a program. For instance, let’s play hide and seek. By that, wemean to
write pseudo‑code that describes a game of hide and seek:

close eyes
count from 20 to 0
while buddy not found:

seek buddy

Pseudo‑code is an informal high‑level description of the operating principle of a computer pro‑
gram or other algorithm. It uses the structural conventions of a normal programming lan‑
guage, but is intended for human reading rather thanmachine reading.1

You can read this program almost literally:

• Close your eyes
• Count from 20 to 0

1https://en.wikipedia.org/wiki/Pseudocode

Preview ‑ 13 Apr. 2023 10

Introduction to Programming with Go Youri Ackx

• Search for your hidden buddy
• The game ends when you find them

The while section is a loop. It means to keep looking _while_ƒski you haven’t found your
buddy.

It is helpful to describe an algorithm coarsly. But we can take the same algorithm and addmore
details, for instance when we countdown:

counter <- 20
while counter is not 0:

counter <- counter - 1

Herewegivemoredetails onhowtocountdown. Insteadof just saying “countdown”and leaving
thedetails to the reader,weexplicitely say thatweneed todecrementour “counter” at each step.
Notice thatwe still lack somedetails, like for instance thedelaybetweeneach step. Is it a second,
should we count as fast as we can? It is not described, but we can bemore specific:

counter <- 20
while counter is not 0:

counter <- counter - 1
wait 1 second

Same algorithm, different levels of details. From informal to more formal. The first version is
lightweight and easy to read. It leaves out the details. The thrid version leaves less room to
interpretation. The second is in‑between.

Both have their use. In all cases, we have left many step aside. For instance, think about what
would happen if your buddy was too well hidden. As it is described, the game would go on for‑
ever as youwould keep searching for themendlessly. A compiled programwill gleefully execute
the sequence of instructions you entered, regardless of their implications, provided that they
are syntactically correct, and nomatter the aberration they can produce.

Paper andpen are great tools to learn programming, butmay not be verymotivating. A program
runon a computer gives youmore feedback, interaction and gratification thanpaper. This being
said, pseudo‑code on paper or on a drawing board2 remains a key tool before jumping to your
keyboard.

2Of course you can use your tablet and wireless pencil.

Preview ‑ 13 Apr. 2023 11

Introduction to Programming with Go Youri Ackx

Figure 3: Start with a paper and a pen

1.8 About Go

Before we roll up our sleeves, it is important to understand why the language we will use was
developed. Let’s have a look at a quote3 [video] from Rob Pike4, one of its creators.

“Go was conceived as an answer to some of the problems we were seeing developing soft‑
ware infrastructure at Google. The computing landscape today is almost unrelated to the
environment in the languages being used,mostly C++, Java and Python have been created.
The problems introduced by multicore processors, networked systems, massive compu‑
tation clusters, and the web programming model were being worked around rather than
addressed head‑on.”

“Moreover, the scale has changed: todays’s server programs comprise ten of millions of
lines of code, are worked on by hundred or even thousands of programmers, and are up‑
dated literally every day. To make matters worse, build time has stretched to many min‑
utes, even hours, on large compilation clusters”.

3Video: https://www.youtube.com/watch?v=bmZNaUcwBt4 “Go at Google: Language Design in the Service of Soft‑
ware Engineering” https://talks.golang.org/2012/splash.article

4Rob Pike https://en.wikipedia.org/wiki/Rob_Pike

Preview ‑ 13 Apr. 2023 12

https://talks.golang.org/2012/splash.article
https://www.youtube.com/watch?v=bmZNaUcwBt4
https://en.wikipedia.org/wiki/Rob_Pike

Introduction to Programming with Go Youri Ackx

The language creators all havemajor contributions to our field. Robert Griesemer5 hasworked
on the V8 Javascript engine and on the Java VM hotspot; Rob Pike was on the Unix team at the
Bell Lab and created the first windowing system for Unix; Ken Thompson designed and imple‑
mented the original Unix. Thompson and Pike the co‑creator of UTF‑8.

Gohas a very simpleprogrammingmodel, something that can fill in your headeasily. Theypur‑
posefully avoided complex and advanced constructions. You won’t find exceptions, which can
be surprising at first. Generics were added only recently. They have a “less is better” approach
and they are extremely wary not to add unnecessary features to the language.

As a result, you can learn Go in only a few days.

Some of the cruft accumulated by older languages has been removed, like the need to specifi‑
cally declare a data type, although amodern compiler should not need you to do so. Back then
Java did not have type inference for instance, although now it does.

Go also strongly favours certain idioms, and that’s an excellent thing to achieve higher consis‑
tency, and toavoid endlessdebatesonpersonal tastes. Thego fmt tool settles thedebate about
formatting. You just do it the Go way so to speak.

It is a garbage collected language, so you don’t have managememory allocation yourself.

It is built with concurrent programming inmind, with its coroutines and channels. Testing also
has a key place with dedicated constructs.

Go compiles to native code and allows cross compilation to another platform. So for instance
one can create a executable for GNU/Linux on amacOSmachine.

The tools are well designed and well thought, and so is the language. There is a decent amount
of libraries available. The memory footprint is extremely small. It is very capable to handle
heavy loads.

It was designed to run “server‑side” programs, and although solutions exist to plug Go to a GUI,
its sweet spot is on the server side. Youtube relies amongst other things on a Google project
called vitess, and vitess is written in Go6. This gives you an indication that Go delivers.

From a career perspective, Go is also is a sensible choice7.

5Robert Griesemer https://de.wikipedia.org/wiki/Robert_Griesemer
6FOSDEM 2014 https://blog.golang.org/fosdem14
7Survey on StackOverflow https://insights.stackoverflow.com/survey/2017#top‑paying‑technologie

Preview ‑ 13 Apr. 2023 13

https://de.wikipedia.org/wiki/Robert_Griesemer
https://en.wikipedia.org/wiki/Ken_Thompson
https://blog.golang.org/fosdem14
https://insights.stackoverflow.com/survey/2017#top-paying-technologies

Introduction to Programming with Go Youri Ackx

2 Basic data types

2.1 Definition

A data type is a classification that specifies which type of value a data has and what type of
operations can be applied to it.

In our first program, "Hello, world!" data type is a string of characters, or simply a string. 42
is a number.

There are many ways to categorize and group data types. For instance, numbers can be further
subdived in integers (whole numbers like 1, 42) and floating points or floats (like 1.234). But you
may encounter themoremathematical term Real to designate them. It depends on the context
and… the language.

Every programming languages has primitives. They are the data types from which all other
data types are constructed. Tomakemattersmore confusing, someprimitive data typesmay be
considered derived primitive data types.

The Go language specification8 should settle the debate.

In this chapter, we shall have a look at some basic datatypes.

2.2 Bits and bytes

It is a well‑known fact that computers only understand “ones and zeros”. Themost basic unit of
information that the computer in store is called a bit. A bit can hold two possible values: 1 or
0. Actually, one and zero are merely conventions. Instead we could use on and off, or true and
false. We’ll stick to the long standing convention though.

Dealingwith 1 or 0 exclusively would be extermely cumbersome, even for a computer processor.
Bits are usually9 grouped by 8 to form a byte.

8https://go.dev/ref/spec#Types
9It is actually more complex than that. Abate can technically be of any size. But the common definition is to use
eight bits.

Preview ‑ 13 Apr. 2023 14

https://go.dev/ref/spec#Types

Introduction to Programming with Go Youri Ackx

1

bit 7

1

bit 6

1

bit 5

0

bit 4

0

bit 3

1

bit 2

0

bit 1

1

bit 0

It gives us 28 or 256 possible combinations.

What does the above byte represents? Typically, an positive number (unsigned integer). To con‑
vert it to a decimal value, multiply each bit by 2𝑘, with 𝑘 equal to the bit position. In our exam‑
ple:

1

27

128

1

26

64

1

25

32

0

24

16

0

23

8

1

22

4

0

21

2

1

20

1

1.27 + 1.26 + 1.25 + 0.24 + 0.23 + 1.22 + 0.21 + 1.20

= 1.128 + 1.64 + 1.32 + 0.16 + 0.8 + 1.4 + 0.2 + 1.1

= 128 + 64 + 32 + 4 + 1

= 229

2.3 Numeric

Numeric types include integer, floating‑point and complex types.

Consider the following program:

package main

import "fmt"

func sumOfSquares(a, b int) int {

Preview ‑ 13 Apr. 2023 15

Introduction to Programming with Go Youri Ackx

return a*a + b*b
}

func main() {
fmt.Println(sumOfSquares(3, 2))

}

It computes and prints the sum of the squares of two integers.

𝑎2 + 𝑏2, 𝑎 = 3, 𝑏 = 23

32 + 22 = 3.3 + 2.2 = 13

The function sumOfSquares deals with the int type to compute the sum of the squares of to
integers. It makes sense. You can compute the square of 3 but not the square of an orange.
sumOfSquares does not accept types other than int. Try to replace the main call by:

sumOfSquares("hello", 2)

If we try to call the function with "hello" as a first argument, Go won’t even run our program.
The compiler will analyze it and rightfully complain:

cannot use "hello" (untyped string constant) as int value in argument to
sumOfSquares

It will not go any better if we use a floating point number:

sumOfSquares(2.5, 2)

cannot use 2.5 (untyped float constant) as int value in argument to
sumOfSquares

Next to the int type, we have discovered the string (more on that later) and the float data
types simply by looking at the compiler error message. There are actually many more prede‑
clared types10 in Go. There is a granularity to integer types, ranging from 8 to 64 bits representa‑
tion. An 8 bit integer can hold 28 or 256 different values, as we have already seen.

the set of all...
uint8 unsigned 8-bit integers (0 to 255)
uint16 unsigned 16-bit integers (0 to 65535)

10https://golang.org/ref/spec#Types

Preview ‑ 13 Apr. 2023 16

https://golang.org/ref/spec#Types
https://golang.org/ref/spec#Types

Introduction to Programming with Go Youri Ackx

uint32 unsigned 32-bit integers (0 to 4294967295)
uint64 unsigned 64-bit integers

(0 to 18446744073709551615)

Next to these types that can hold unsigned integers, there are corresponding signed integers.
They have the same number of bytes, can hold as many different values, only the range differ.
For instance, while the value of an unsigned integer uint8 range from 0 to 255, a signed integer
int8 hold values ranging from −128 to +127.

the set of all...
int8 signed 8-bit integers (-128 to 127)
int16 signed 16-bit integers (-32768 to 32767)
int32 signed 32-bit integers (-2147483648 to 2147483647)
int64 signed 64-bit integers

(-9223372036854775808 to 9223372036854775807)

Type int alone is an odd duck, as it will be either 32 or 64 bits, depending on your platform.

The situation is slightly simpler with “non integers non complex” numbers, as there are only
two types float32 and float64 IEEE‑754 32‑bit floating‑point representations. You can repre‑
sent very large and very small numbers (in absolute value) but… with a finite precision. This is
not a Go‑specific limitation as floating‑point aritmethic is very common among programming
languages.

WARNING: Never use a floating point values tomanipulate financial amounts, whatever the lan‑
guage.

2.4 Strings

In Go, a string is a defined as a slice of bytes. For now, consider it as a (possibly empty) sequence
of bytes. The package strings containsmany utility functions tomanipulate them, and the fmt
package contains numerous functions to format them.

2.4.1 Formatting

Package fmt offers formatting functions analogous to C’s printf and scanf. The format “verbs”
are derived from C. Suppose you execute the following code:

fmt.Println(1.0/3)

Preview ‑ 13 Apr. 2023 17

https://golang.org/pkg/fmt/

Introduction to Programming with Go Youri Ackx

The output would be:

0.3333333333333333

It is convenient to be able to round to a certain number of digits, while keeping the original
arbitrary precision of the variable. Let’s say we want to display the number with 2 digits. This
can be achieved as follows:

fmt.Printf("%.2f", 1.0/3)

Which would display:

0.33

Notice we’ve used Printf (print formatted) instead of Println (print line). There is something
missing however. If we were to attempt to print the value of a second expression, it would be
displayed on the same line as the first. With Printf, we need to explicitely add a new line at the
end, with the \n symbol.

fmt.Printf("%.2f\n", 1.0/3)

Go offers a large amount of formatting options as you can read in the fmt documentation.

2.4.2 Length and indices

Let us declare a variable to hold a message:

message := "1, 2, 3, Go"

The number of bytes is called the length of the string and is never negative. It can be determined
by using the built‑in len function.

fmt.Println(len(message))

Will output:

11

The string’s bytes can be access by indices. Like in most programming languages, Go starts
counting from 0 rather than from 1. The first character is therefore located at index 0. If the

Preview ‑ 13 Apr. 2023 18

https://golang.org/pkg/fmt/

Introduction to Programming with Go Youri Ackx

lengthof the string isn, the lastbyte index isn-1. Ourmessage indices range from0 to10 included
– 10 being the 11th and last byte.

Individual bytes are accessed using square bracket notation. For instance, the “G” of “Go” is the
10th character, located at index 9:

g := message[9]
fmt.Println(g)

71

The result is somewhat unexpected. Why would the program output 71 rather than G? It turns
out that 71 is the ASCII code for G. Check out the ASCII table11. If we want the character G to be
displayed, we need to print formattedwith Printf and the appropriate verb c, rather than using
Println.

fmt.Printf("%c\n", g)

Attempts to access an index below 0 or beyond the last byte result in an error:

panic: runtime error: index out of range [100] with length 11

Wecan use a loop to iterate over the bytes in the string. The for loops starts at index 0, and keeps
running as long as the index i is less than the length of the string. At each iteration, we increment
our index i.

message := "Hello"
for i := 0; i < len(message); i++ {

fmt.Printf("%c", message[i])
}

There is a different form of for loop that does not require to specify that we start at 0 and termi‑
nate at nwhile incrementing (adding 1) at each step:

message := "Hello"
for i, c := range message {

fmt.Printf("%d -> %c\n", i, c)
}

This construct with the help of rangewill assign the current index to i and the current character
to c. We can then display the current index and the corresponding character.
11ASCII is an old is still widely used way to encore characters. See this table: http://www.asciitable.com/

Preview ‑ 13 Apr. 2023 19

http://www.asciitable.com/

Introduction to Programming with Go Youri Ackx

0 -> H
1 -> e
2 -> l
3 -> l
4 -> o

This shorter form is to be preferred over the former whenever suitable.

2.4.3 Package strings

Thepackage “strings” (with an s at the end, not tobemixedwith the type string) offers aplethora
of functions to manipulate functions12. A few of themwill come very handy in this book.

Function Description

Contains Reports whether a substring is within s

Count Counts the number of times a substring appears in s

Index Returns the index (position) of the first instance (occurrence) of a substring
in s

Repeat Returns a new string consisting of count copies of the string s

Replace Replaces a substring in a given string

Split Splits s into substrings separated by a given separator

ToLower Returns s with all letters mapped to their lower case

ToUpper Returns s with all letters mapped to their upper case

We have slightly simplified the original definitions for readability. Refer to the official documen‑
tation for a more accurate and formal description. Let’s see them in action.

package main

import (
"fmt"
"strings"

12https://golang.org/pkg/strings/

Preview ‑ 13 Apr. 2023 20

https://golang.org/pkg/strings/

Introduction to Programming with Go Youri Ackx

)

func main() {
fmt.Println("Contains: ", strings.Contains("Hello", "llo"))
fmt.Println("Count: ", strings.Count("Hello", "l"))
fmt.Println("Index: ", strings.Index("test", "e"))
fmt.Println("Repeat: ", strings.Repeat("*", 5))
fmt.Println("Replace: ", strings.Replace("Hello", "l", "r", -1))
fmt.Println("Split: ", strings.Split("a-b-c-d-e", "-"))
fmt.Println("ToLower: ", strings.ToLower("Hello"))
fmt.Println("ToUpper: ", strings.ToUpper("World"))

}

Contains: true
Count: 2
Index: 1
Repeat: *****
Replace: Herro
Split: [a b c d e]
ToLower: hello
ToUpper: WORLD

Take a moment to browse the strings package documentation.

2.4.4 Immutability

Strings are immutable: once created, it is impossible to change the contents of a string. There‑
fore, the following attempt to modify the string’s first character.

func main() {
message := "hello"
message[0] = "H"

}

Will result in an error:

./prog.go:6:13: cannot assign to message[0]

Preview ‑ 13 Apr. 2023 21

Introduction to Programming with Go Youri Ackx

2.5 Overflow

If you attempt to create a numeric value that is outside of the range that can be represented
with a given number of digits, an overflow will occur. Typically, the result will “wrap around”
the maximum.

func add(a, b uint8) uint8 {
return a + b

}

func main() {
fmt.Println(add(250, 10))

}

4

(From now on, we shall omit the obvious package main and import "fmt" from our exam‑
ples.)

In this example, we are trying to add 10 to 250. The resulting 260 exceeds the capacity of uint8.
When computing, Go reaches 255 and wraps back to 0, hence a result of 4. This can be shown
with the following binary addition. It works like a the decimal addition you know, with carry,
only with 2 digits. Bits are grouped by 4 for readability. As you can see, the result has a 9th bit
on the left that won’t fit in uint8. It gets dropped, resutling in 00000100 or 4.

--uint8--
1111 1010 (250)

+ 0000 1010 (5)
= 1 0000 0100 (260)

0000 0100 (4)

It is up to theprogramauthor tomakeprovisions toavoid sucherrors. For instance, bymodifying
the return type so that it can always hold the result.

Exercise: modify the program to return a larger integer, and test it.

That condition will be most likely unanticipated, leading to an incorrect or undefined behavior
of your program. This can have dire consequences.

On June 4th, 1996, an Ariane 5 rocket bursted into flames 39 seconds after liftoff13. The explo‑
13https://en.wikipedia.org/wiki/Cluster_(spacecraft)#Launch_failure

Preview ‑ 13 Apr. 2023 22

https://en.wikipedia.org/wiki/Cluster_(spacecraft)#Launch_failure

Introduction to Programming with Go Youri Ackx

sionwas causedbyabufferoverflowwhenaprogram tried to stuffa64‑bit number into a 16‑bit
space. Sounds familiar? It is estimated that the explosion resulted in a loss of US$ 370m. Fortu‑
natelly there was no crew on board.

Figure 4: Ariane explosion was caused by buffer overflow

Sometimes, the result is less harmful. In 2014, a popular video clip caused the Youtube view
counter to overflow14, forcing Google to switch from 32 to 64 bits integer. A number of views
greater than 2 billions had not been anticipated.

The consequences were far greater in the former case than in the latter. Depending on your
context, youmay need to be extremelly wary, or you can afford to remain relatively casual while
designing and testing your program.

We can reason about a the safety of a datatype (or of a data structure) based on its purpose.

An application dealing with “small” amountsmay be confortable with int32. The numbers sup‑
ported by uint64 seem to go even beyond a banker’s wildest dreams, although today sky‑high
numbers in the financial world cast a doubt on the safest assumptions. Imagine you manipu‑
late cents rather than units in order to avoid dealing with decimal numbers. Youwouldmultiply
14https://arstechnica.com/information‑technology/2014/12/gangnam‑style‑overflows‑int_max‑forces‑youtube‑to‑

go‑64‑bit/

Preview ‑ 13 Apr. 2023 23

https://arstechnica.com/information-technology/2014/12/gangnam-style-overflows-int_max-forces-youtube-to-go-64-bit/
https://arstechnica.com/information-technology/2014/12/gangnam-style-overflows-int_max-forces-youtube-to-go-64-bit/

Introduction to Programming with Go Youri Ackx

every number by 100. Or even by 10000 to safely manipulate 4 decimals. And suppose you do
computations on a currency like japanese yen currently at 1 JPY for 0,008 EUR, leading to further
multiply values by about 1000. Say you have to deal with consolidated results in the billions of
euros, converted to yens, counting in cents.

How safe is your initial assumption now?

To safelhy manipulate large numbers, as Go has dedicated implementations for big numbers15.
But they come at the cost of convenience, readability and performance. That is why they are not
your go‑to solution in all contexts.

2.6 Abstraction vs low level

Why not simply manipulate “integers”? Why “floating point arithmetic” and different integers?
After all, we mentionned the importance to abstract ourselves from the underlyting platform.
Some languages only expose “integers” and “decimals”, but it comes with a substantial perfor‑
mance cost. Go integers types are closer to the hardware architecture. That is a trade‑off the
languages authors decided to do, based on the intent and purpose of the language, where high
performance is key.

From a teaching perspective, this design choice gets a bit into our way as it clutters the expla‑
nations, at least at the begining. On the bright side, as far as learning goes, you are exposed
to technical underlying details that would otherwise remain hidden, and you can already get a
grasp at them.

15https://golang.org/pkg/math/big/

Preview ‑ 13 Apr. 2023 24

https://golang.org/pkg/math/big/

Introduction to Programming with Go Youri Ackx

3 Programming blocks

3.1 Variables and constants

A variable is a storage place in the computer memory used by a program. It has a name that
identifies it. For instance, we could perform the following sequence of instructions in pseudo‑
code:

h <- 'hello'
a <- 1
b <- 2
score <- a + b + 4

Which would result in:

• The variable h contains the string of characters 'hello'
• The variable a contains the value 1
• The variable b contains the value 2
• The variable score is the sum of a, b and 4, that is 7.

Or visually:

ℎ ’hello’

𝑎 1

𝑏 2

𝑏 7

The equivalent in Go is to declare the variables, and to assign them a value.

func main() {
h := "hello"
a := 1
b := 2
score := a + b + 4

}

Notice the := operator to assign a value to a variable.

Assigning variables does not do much. If you were to enter this code snippet in the program
mainmethod, the programwould execute but nothing would be displayed. Go ahead and try it
in the Go Playground.

Preview ‑ 13 Apr. 2023 25

https://play.golang.org/

Introduction to Programming with Go Youri Ackx

Playwith this small programand try to add "hello" and 2. Youwill get an errormessage, as one
can of course only perform additions on numbers.

Of course, we can print the results. We can modify our program so that it displays the sum of
three numbers.

fmt.Println(sum)

Our modified programwould unsurprisingly produce the following output:

7.5

As its name implies, a variable can vary. Or more precisely, the value it holds can vary.

a := 7
a = a + 2

What is going on?

• After the first instruction, a holds the value 7
• After the second instruction, a holds the value a+2, that is 7+2, which evaluates to 9.

As opposed to variables, we can define constants whose values cannot change once they are
set.

const a := 5
a = 6 // won't compile, already set

3.2 Conditional statements

3.2.1 If‑else

Programs perform different computations or actions depending on whether a condition eval‑
uates to true or false via a mechanism called conditional statement. We can express this in
pseudo‑code:

if condition:
action1
action2

else:
action3

Preview ‑ 13 Apr. 2023 26

Introduction to Programming with Go Youri Ackx

action4

Notice the indent, as it is not accidental. The action1 and action2will only be executed if the
condition is met, a.k.a if it evaluates to true. Or else, action3 and action4will be executed.

What would our condition actually be? We could for instance check that “a is geater than 10”,
expressed as if a > 10.

You can have any number of instructions in the “if” and in the “else” block. Let’s see an example
in Go:

a := 10
b := 5
if isDivisible(a, b) {

fmt.Printf("%d is divisible by %d\n", a, b)
} else {

fmt.Printf("%d is not divisible by %d\n", a, b)
}

ProvidedsomeisDivisible() functionwehaven’tdefinedhere, theprogramwoulddisplay “10
is divisible by 5” if 10 is actually divisible by 5 (which it is). The part of the program displaying
“10 is not divisible by 5” would never be executed.

Gouses curly braces {and } todefine ablockof actions. In this case, eachblock contains a single
statement that prints a message.

The else part is optional. We could simply do nothing if the “if” condition was not met.

3.2.2 Example ‑ coffee

Here is a more practical example, in pseudo‑code:

if no coffee:
exit house
buy coffee
enter house

pour coffee
drink coffee

In this example, we will pour the cofee and drink it whether we have some left in the first place.
The condition if no coffee applies to the block represented by the 3 instructions below it, in‑

Preview ‑ 13 Apr. 2023 27

Introduction to Programming with Go Youri Ackx

dented. So we will exit house, buy coffee and enter the house only if there is no coffee left. The
two last actions pour coffee and drink coffee are outside the “if” block.

Coffee is easy. Let’s combine it with bread.

if no bread or no coffee:
exit house
if no bread:

buy bread
if no cofee:

buy cofee
enter house

slide bread
pour coffee
eat bread
drink coffee

Several blocks can be constructed. Copy‑paste the following code in the Go Playground and run
it with different values for a to get different output.

a := 10
if a > 10 {

fmt.Printf("%d is greater than 10\n", a)
} else if a < 0 {

fmt.Printf("%d is less than 0\n", a)
} else {

fmt.Printf("%d is between 0 and 10\n", a)
}

Blocks can also be nested:

a := 1000
if a < 0 {

fmt.Printf("%d is negative\n", a)
} else {

if a > 100 {
fmt.Printf("%d is a large number\n", a)

}
}

3.2.3 Example ‑ bakery

Let’s see a variation of the coffee examples.

Preview ‑ 13 Apr. 2023 28

https://play.golang.org/

Introduction to Programming with Go Youri Ackx

if no bread:
exit house
timer <- 10 minutes
while timer > 0

search bakery
if barkery found:

buy bread
enter house

if bread:
slide bread
eat bread

In this fictive example, we have two “big” chuncks: one where there is no bread, and one where
there is.

If there is no bread, we exit the house and start searching for a bakery. We have put a limit of
10minutes on the “search bakery” action, expressed casually with a “while” loop, so that we do
not end up roaming the streets endlessly. This means wemay not have found a bakery after the
time is up. Therefore, we put a condition “bakery found” on the “buy bread” action.

If we omitted this condition, and if there was no bakery found after 10 minutes, our program
would attempt to buy bread out of thin air, and would terminate abnormally, a.k.a. it would
crash to say things colloquially.

In any case, bakery found and bread found or not, we return to our house afterwards.

The second part is were there is bread, in which case we slice it and eat it. This can happen in
two cases:

• Eitherwe have bread from the beginning. We did not have to step out of the house, search
and buy bread.

• Or we had no bread upfront, we went out, found the bakery and bought the bread.

There is one case were we don’t slide and eat the bread: if we did not have any bread to start
with, went out, did not find a bakery, and returned home wihtout bread.

That’s it! We have covered explored all the cases, and hopefully we don’t run the streets forever,
we don’t try to buy bread out of nowhere and we don’t try to slice bread we don’t have. Failing
to cover any of these cases would result in a program failure.

Note: we intentionnally left the case where there is no bread in the bakery. It is a valid assump‑
tion for this illustration, as we are free to state that a bakery will always have bread in store. In

Preview ‑ 13 Apr. 2023 29

Introduction to Programming with Go Youri Ackx

real‑life, you would have to take care of that case too.

3.3 Loops

A loop repeats an action or a set of actionswhile a condition is met.

Sometimes, it can be a negative condition, e.g. “while countdown is not 0”. A program often
combines loops and conditional statements, like the coffee example we just saw.

In Go, all loops are performed using the for instruction. The following program count downs
from 10 to 0.

n := 10
for n >= 0 {

fmt.Println(n)
n = n - 1

}

On each step (called iteration), the program checks if the condition n >= 0 (is n greater or equal
to 0?) holds. If it does, it executes the instructions in the “for” block, that is it prints the current
value of the counter and decrements it.

A general form of a for statement is the following:

"for" [InitStmt] ";" [Condition] ";" [PostStmt] Block

where

• InitStmt is an initialization statement, performed once before starting the loop;
• Condition is the loop condition that must hold true to continue to iterate, for instance
i < 10;

• PostStmt is a statement executedafter each executionof the loop. Typicallywe increment
a counter.

For example, the following program will compute the sum of all integers from 0 to 10 excluded,
and print it.

sum := 0
for i := 0; i < 10; i++ {

sum += i
}

Preview ‑ 13 Apr. 2023 30

Introduction to Programming with Go Youri Ackx

fmt.Println(sum)

• Init statetment is i := 0. It is executed once;
• End condition is i < 10, aka we will perform the loop while i is less than 10;
• After each execution of the block, i is increased by 1 (incremented) with the instruction
i++, a shortcut for i = i + 1.

3.4 Functions

Suppose we want to display the sum of the squares of any two numbers.

𝑓(𝑎, 𝑏) → 𝑎2 + 𝑏2

We could do the following:

func main() {
a := 2
b := 3
fmt.Println(a*a + b*b)
a := 5
b := 4
fmt.Println(a*a + b*b)

}

You can seeweare repeating ourselves. Insteadofwriting the same formula a*a + b*bover and
over again, we could write a function. We have already used functions, namely the one called
main. It is easy to create our own. We shall call it sumOfSquares:

func sumOfSquares(a, b int) int {
return a*a + b*b

}

We say sumOfSquares is a function that take takes two parameters a and b. They are of type
int, which stands for integer, and it returns another integer. Indeed, as our arguments 2 and
3 are integer values. The function returns another integer, which the value that was computed
(the sum of squares). We can invoke it and print its output:

func sumOfSquares(a, b int) int {
return a*a + b*b

Preview ‑ 13 Apr. 2023 31

Introduction to Programming with Go Youri Ackx

}

func main() {
fmt.Println(sumOfSquares(2, 3))
fmt.Println(sumOfSquares(5, 4))

}

With a predictable result:

13
41

Our function sumOfSquares is reusable. Our mainmethods nately calls twice, hiding the calcula‑
tion details and providing a higher level of abstraction.

3.5 Arithmetic operators

3.5.1 Standard operators

Arithmetic operators apply to numeric values and yield a result of the same type as the first
operand. The four standard arithmetic operators (+, ‑, *, /) apply to integers and floating‑
points.

+ sum integers, floats, complex values, strings

- difference integers, floats, complex values

* product integers, floats, complex values

/ quotient integers, floats, complex values

% remainder integers

You are familiar with the standard arithmetic operators. However the remainder operator may
be new to you. If we divide 7 by 2, the result will be 3, and the remainder will be 1, because
7 == 2*3 + 1.

7 / 2
3

Preview ‑ 13 Apr. 2023 32

https://golang.org/ref/spec#Arithmetic_operators

Introduction to Programming with Go Youri Ackx

7 % 2
1

It gets tricky with negative numbers; refer to the Go documentation and experiment if you want
to knowmore.

3.5.2 Concatenation

The + operator can also be applied to two strings: "Hello, "+ "world!". In this case, rather
than being added, the strings are concatenated.

3.5.3 Bitwise and shift

In a later chapter, we will present bitwise logical operators and shifts, after we cover binary rep‑
resentation.

3.6 Expressions

3.6.1 Examples

An intuitive way to start programming is to have a look at expressions. "Hello, world!" we
used in our first program is an expression. 42 is another one. 3+4 a third. The basic arithmetic
operations can be performed with +, -, * and /. You can perform complex operations, with
parenthesis if you need. The * and / operators take precedence over + and -.

We can go further. All of the following are expressions:

sumOfSquare(2, 3)
sumOfSquare(2 * 4, 3 * 2)
sumOfSquare(sumOfSquare(2, 3), 3 * 2)

7 + 2
42

Preview ‑ 13 Apr. 2023 33

Introduction to Programming with Go Youri Ackx

3.6.2 Definitions

Expressions in Go are formally defined in the language specification. In the expression 7+2, + is
the operand. 7 and 2 are its operators. The operator’s arity is 2.

Expression:

An expression specifies the computation of a value by applying operators and functions to
operands.

Operand:

Operands denote the elementary values in an expression.

Arity:

The number of arguments or operands that a function takes.

Binary operator:

An operator that applies to two operands. Its artity is 2.

Unary operator:

An operator that applies to one operand. The expression -7has an operator - (negate)with
one operand 7. Its arity is 1. In this case, the operator - (of arity 1) is not to be confused
with the minus mathematical operator (of arity 2).

3.6.3 Evaluation

Let’s take a non trivial yet simple case and evaluate 3+4. The expression is evaluated to 7 after
the following steps:

3 + 4
7

Our sumOfSquarewith two integers will be evaluated as follows:

Preview ‑ 13 Apr. 2023 34

https://golang.org/ref/spec#Expressions

Introduction to Programming with Go Youri Ackx

sumOfSquare(2, 3)
(2 * 2) + (3 * 3)
4 + (3 * 3)
4 + 9
13

NOTE: Notice the use of parenthesis. Although mathematically not mandatory in this case, as
multiplation takes precendence over addition, they denote a group to be evaluated regardless
of arithmetic precedence considerations.

In order to evaluate sumOfSquare(2 * 4, 3 * 2), 2*4 and 3*2 must be evaluated first. Then
we fall back on the case of sumOfSquarewith two integers as parameters we already know.

sumOfSquare(2 * 4, 3 * 2)
sumOfSquare(8, 3 * 2)
sumOfSquare(8, 6)
(8 * 8) + (6 * 6)
64 + 36
100

Expression evaluation will come in handy at a later stage, when we examine the complexity of
an algorithm.

3.6.4 Boolean expressions

A Boolean expression is a logical statement that is either true or false.

The expression 3 < 5 is evaluated as true while 2 < 0 is evaluated as false. You can assign
a boolean expression to a variable, for instance a = 3 < 5. In that case, a will be evaluated to
true.

You can test two values for equality with == as in 3 == 3 which of course is true. The double
equal is used toavoid confusionwith a variable assignment, as in a = 3. Which canbe confusing
in itself. Actually,most languages use == to performequality comparisons, for historical reasons.
If you want to check that two expressions are different, as in “≠”, you would use !=, like so: 3 !=
5which evaluates to true as 3 is not equal to 5.

Preview ‑ 13 Apr. 2023 35

Introduction to Programming with Go Youri Ackx

Math Go Meaning

> > Greater than

≥ >= Greater or equal

< < Less than

≤ <= Less than or equal

= == Equal

≠ != Not equal

Although it would be pretty useless, for illustration purpose, we can write a function
isGreaterThan that checks if its first argument is greater than its second.

func isGreaterThan(a int, b int) bool {
return a > b

}

a := 3

With for instance the following evaluation steps:

isGreaterThan(5, 3)
5 > 3
true

3.7 Bitwise logical operators

Bitwise logical operators perform logical operations on individual bits of binary numbers. These
operatorswork at the binary level,manipulating individual bits. In binary, eachbit can have one
of two possible values, represented as 1 and 0, or I and O, or true or false.

Beforeweworkwith numbers, let’s first work on single bits. Let’s have twoof them: p and q. The
operators are:

& bitwise AND

Preview ‑ 13 Apr. 2023 36

Introduction to Programming with Go Youri Ackx

| bitwise OR

^ bitwise XOR

&^ bit clear (AND NOT)

3.7.1 Tables of truth

p q p & q p | q p ^ q p &^ q

0 0 0 0 0 0

0 1 0 1 1 0

1 0 0 1 1 1

1 1 1 1 0 0

Now that you understand how binary operators work on single bits, it is easy to see how they
operate on integers once you represent the integer in their binary form.

3.7.2 Binary numbers

Given 12 and 10 in decimal, represented in binary, one above the other:

1 1 0 0 (12)
1 0 1 0 (10)

We can perform the bitwise operations on each pair of bits taken vertically. We will say that two
bits “have the same place” if they have the same significance or weight, that is, if they both are
on the same vertical imaginary line.

Bitwise AND &will look for bits with the same significance (same place) only to keep bits that are
“1” in both integers:

1 1 0 0
& 1 0 1 0
= 1 0 0 0

Preview ‑ 13 Apr. 2023 37

Introduction to Programming with Go Youri Ackx

The binary result 1000 is 8 in decimal.

Bitwise OR will keep bits that are “1” at the same place in either integer, or in both:

1 1 0 0
| 1 0 1 0
= 1 1 1 0

The binary result 1110 is 14 in decimal.

Bitwise XOR will keep bits that are “1” at the same place in either integers, but not in both:

1 1 0 0
^ 1 0 1 0
= 0 1 1 0

Bitwise AND NOT will keep bits that are “1” for the first bit and “0” for the second:

1 1 0 0
&^ 1 0 1 0
= 0 1 0 0

3.7.3 Shift

<< left shift integer << unsigned integer
>> right shift integer >> unsigned integer

This is simply a matter of moving bits to the left (<<) or to the right (>>) as specified number of
times.

5<<2means:

• Take the binary representation of 5: 101
• Move the bits to the left, two times, filling with 0 on the right as you go: 10100
• The result is 10100 in binary or 20 in decimal.

5>>2means:

• Take the binary representation of 5: 101
• Move the bits to the right, two times, dropping the bit on the right each time: 10 then 1
• The result is 1 in binary or 1 in decimal.

Preview ‑ 13 Apr. 2023 38

Introduction to Programming with Go Youri Ackx

Attempting to shift a negative number of times results in an error.

An interresting property of shifting <<1 is that itmultiplies the original value by 2. Conversly, >>1
divides by 2.

3.7.4 Exercises

Calculate the following:

• 128^255
• 128>>4
• 64|32

Preview ‑ 13 Apr. 2023 39

Introduction to Programming with Go Youri Ackx

4 Lists, Arrays and Slices

4.1 Arrays

Suppose you want to manipulate several strings of characters. For instance, a shopping list,
where each string is an item. So far we have used variables to contain numeric (integer or float‑
ing point) and string values. They were single values. You can declare several variables to hold
several values, but this will quickly become cumbersome if the number of items on our list is not
known in advance, or if there are a large amount of items to purchase.

All high‑level languages offer some data structure to that effect. In many instances, the basic
building block is called an array, defined as a collection of elements (values or variables), each
identified by an index (plurals indices).

The following expression declares a variable fruits as an array of 3 strings:

var fruits [3]string

There are no fruits in the array yet, or more precisely, each fruit is the empty string.

0 1 2

fruits

You can assign actual values to an index:

fruits[0] = "apple"
fruits[2] = "banana"
fruits[1] = "orange"

Which can be represented as:

apple orange banana

0 1 2

fruits

The first element is at position 0. Using 0 rather than 1 as the index of the first element is awidely
spread convention in computer programming. There is no obligation to fill all the slots, nor to
fill them in any particular order, as shown in the example above. You can also declare the array
with its elements:

Preview ‑ 13 Apr. 2023 40

Introduction to Programming with Go Youri Ackx

fruits := [3]string{"apple", "banana", "orange"}

The compiler can count the elements for you, eliminating the need to explicitly declare how
many of them are present by using ..., like so:

fruits := [...]string{"apple", "banana", "organge"}

The array has a length, accessible with len

fmt.Println(len(fruits))

3

An array cannot be resized. Not to worry, in Go there is a more potent data structure at our
disposal called slice.

4.2 Slices

Arrays are a key construct but they are a bit limited in flexibility. In Go, slices are usually pre‑
ferred. They are built on top of arrays, leveraging their performance, while adding a lot of con‑
venience.

A slice canbedeclared like anarray,without counting the elements. Notice the subtle difference:
we use [] for slices when we had [...] or [3] for arrays. So the following is a slice, not an
array:

fruits := []string{"apple", "banana", "orange"}

If you do not want to declare the elements yet, a slice can be created with the make function.

fruits := make([]string, 3)

This declares a slice of 3 elements, each initialized to the empty string. Other than that, you can
access and modify the slice elements just like we did with arrays. In addition, you can add an
element at the end of a slice thanks to aptly‑named the built‑in append function.

fruits = append(fruits, "cherry")
// len(fruits) == 4
// fruits[3] == "cherry"

Preview ‑ 13 Apr. 2023 41

Introduction to Programming with Go Youri Ackx

Resutling in a slice of 4 elements, of which the three first are empty.

cherry

0 1 2 3

fruits

Notice that we assigned the result of the append expression back to fruits. The append state‑
ment alone does notmodify our slice of fruits ; instead, it returns amodified slice. On top of that,
the Go compliler rightfully prevents any attempt to execute a statement if it is not used. There‑
fore, any attempt to compile the following code would fail, because the result of the append call
would be left unused:

append(fruits, "cherry")

./prog.go:9:8: append(fruits, "cherry") evaluated but not used

Go will however allow a statement without effect if the result is explicitly discarded.

_ = append(fruits, "cherry")

Of course, this last expression does probably not make sense in a program, but you are still free
to shoot yourself in the foot. The compiler will detect many errors made in “good faith”, but not
gross or even intentional errors.

If you have two slices a and b, you can append one to the other, using ... to expand the second
slice to a list of arguments.

a := []string{"apple", "pear"}
b := []string{"grapefruit", "orange"}
a = append(a, b...)
// a == []string{"apple", "pear", "grapefruit", "orange"}

apple pear grapefruit orange

0 1 2 3

fruits

A slice can be created by “slicing” another slice (or array), that is to say, by taking a portion of it.
Slicing is achieved by specifying a half‑open range [𝑙𝑜𝑤, ℎ𝑖𝑔ℎ)where 𝑙𝑜𝑤 is the index of the first

Preview ‑ 13 Apr. 2023 42

Introduction to Programming with Go Youri Ackx

element (included) and ℎ𝑖𝑔ℎ is the index of the last element (excluded). For example, fruits
[1:3]will create a new slice including the fruits at indices from 1 included to 3 excluded— that
is, fruits at positions 1 and 2.

The newly created slice will have indices 0 and 1, not the indices 1 and 2 it has in the original
slice.

fruits := []string{"apple", "banana", "orange", "grapefruit"}
preferred := fruits[1:2]
// preferred == []string{"banana", "orange"}
// preferred[0] == "banana"
// fruits[1] == "banana"

apple banana orange grapefruit

0 1 2 3

fruits

banana orange

0 1

preferred

Start and end indices can be omitted. In s[low:high], the default value are 0 for low and len(s)
for high:

// fruits[2:] == []string{"orange", "grapefruit"}
// fruits[:2] == []string{"apple", "banana"}
// fruits[:] == fruits

WARNING: Beware that slicing does not copy data. The makes the slicing operation efficient,
but it may not be what you expect.

Take the following example. Notice how, by modifying letters, we also modified twoFirst:

letters := []byte{'a', 'b', 'c', 'd', 'e'}
twoFirst := letters[:2]
fmt.Printf("%c\n", twoFirst[0])
letters[0] = 'z'
fmt.Printf("%c\n", twoFirst[0])

The built‑in copy, as its name suggests, copies a slice from source to destination, and returns
the number of elements copied. Watch out for the order of the arguments. The destination
comes first.

Preview ‑ 13 Apr. 2023 43

Introduction to Programming with Go Youri Ackx

func copy(dst, src []T) int

The length of the destination should be equal or greater than the length of the source, otherwise
only the smaller number of elements will be copied. Example:

a := []string{"apple", "banana", "orange", "grapefruit"}
b := make([]string, len(a))
howMany := copy(b, a)
fmt.Println(b)
fmt.Println(howMany)
tooShort := make([]string, 2)
notEnough := copy(tooShort, a)
fmt.Println(tooShort)
fmt.Println(howMany)

Will produce:

[apple banana orange grapefruit]
4
[apple banana]
2

4.2.1 Iterating

Remember the chapter on loops. Back then, we wrote a simple sum function.

sum := 0
for i := 0; i < 10; i++ {

sum += i
}
fmt.Println(sum)

The very same construct can be used to iterate over an array or a slice. At each iteration, instead
of displaying the value of i (our index), we display the fruit at index i. We keep iterating while
our index is strictly less than the number of fruits, so i < len(fruits). The indexwill therefore
vary from 0 to 3, and never reach 4, otherwise we would attempt to access the fruit at index 4,
which would cause an error.

fruits := []string{"apple", "banana", "orange", "grapefruit"}
for i := 0; i < len(fruits); i++ {

fmt.Println(fruits[i])

Preview ‑ 13 Apr. 2023 44

Introduction to Programming with Go Youri Ackx

}

This loop construct is generic but somewhat verbose, as we need to explicitly declare an index,
declare the starting point at 0, the end condition and the post‑statement. Whenever possible,
simpler forms of loops using range are preferred.

fruits := []string{"apple", "banana", "orange", "grapefruit"}
for i := range fruits {

fmt.Println(fruits[i])
}

Or the alternative form that allows you to retrieve both the index and the element at the same
time:

fruits := []string{"apple", "banana", "orange", "grapefruit"}
for i, fruit := range fruits {

fmt.Printf("%d -> %s\n", i, fruit)
}

0 -> apple
1 -> banana
2 -> orange
3 -> grapefruit

What if you are not interested in the index i, but still want to retrieve the fruit? The index can be
discarded with underscore _:

fruits := []string{"apple", "banana", "orange", "grapefruit"}
for _, fruit := range fruits {

fmt.Println(fruit)
}

The generic, more verbose construct has its place. If you need to skip some elements, or loop
over them backward for instance, it can accomodate a wider range of scenarios. Let’s display
the list of fruits in reverse order:

fruits := []string{"apple", "banana", "orange", "grapefruit"}
for i := len(fruits) - 1; i >= 0; i-- {

fmt.Println(fruits[i])
}

Notice that we had to start at len(fruits)- 1with −1 because the length is 4, but the highest
possible index is 3.

Preview ‑ 13 Apr. 2023 45

Introduction to Programming with Go Youri Ackx

grapefruit
orange
banana
apple

4.2.2 Reference

Slice intro on golang blog

4.3 Filtering

A common operation on lists is to filter values from a slice that match a certain criteria. For
instance, wehave a list of scores, ranging from0 to 20. Wewant to keep all scores equal or above
12. Putting together what we already know about loops, slices, and conditional statements, we
can write the following program:

scores := []int{12, 14, 20, 3, 10, 16}
success := make([]int, 0)
for _, score := range scores {

if score >= 12 {
success = append(success, score)

}
}
fmt.Println(success)

[12 14 20 16]

Back to the kitchen. Let’s say we want to skip every other fruits, and store the result in another
slice called skimmed. To skip fruits in our iteration, instead of incrementing with i++, we will
increase i by 2. For the sake of simplicity, wewill do something inefficient by declaring skimmed
with a length of 0 and relying only on append to expand the slice.

fruits := []string{"apple", "banana", "orange", "grapefruit"}
skimmed := make([]string, 0)
for i := 0; i < len(fruits); i = i + 2 {

skimmed = append(skimmed, fruits[i])
}
fmt.Printf("%d fruits in %v\n", len(skimmed), skimmed)

Preview ‑ 13 Apr. 2023 46

https://blog.golang.org/slices-intro

Introduction to Programming with Go Youri Ackx

A more efficient technique would be to declare skimmed with the proper length, that is, half of
fruits length. On top of that, we would need a second index to remember where we stand
in skimmed, and that index would be different than the index in fruits. We could also have
leveraged the slice capacity, but we have left out that characterstic of slices in order to focus on
algorithms. Hopefully our naive and simple approach does the trick.

2 fruits in [apple orange]

4.4 Min andmax

Finding the maximum of slice is a form of filter, that yields a single element. In order to find the
greatest element of a slice, we first initialize the max as the first element of the slice.

12 34 6 13
^^
max == 12

Then, we iterate the slice. We compare each element we encounter with max. If the element is
greater, it becomes the new max. Otherwise, we keep the current max… by doing nothing.

func maxInt(values []int) int {
max := values[0]
for _, i := range values {

if i > max {
max = i

}
}
return max

}

Let’s call this function:

func main() {
a := []int{12, 34, 6, 13}
fmt.Println(maxInt(a))

}

The output is of course 34. The same logic can be applied to find the smallest element.

Preview ‑ 13 Apr. 2023 47

Introduction to Programming with Go Youri Ackx

4.5 Generics

Let’s revisit our sumOfSquare function.

package main

import "fmt"

func sumOfSquares(a, b int) int {
return a*a + b*b

}

func main() {
fmt.Println(sumOfSquares(3, 2))

}

We have seen that it won’t work with a type other than a int. It makes sense not to square
another type like string, butwe could perfectlywant to compute the square of to floating‑point
numbers.

Go allows to define a generic function16.

First, we declare a type with constraints:

type Number interface {
int | float32 | float64

}

Then, we make sumOfSquare generic by allowing it to accept any Number symbolized by T, and
return the same type T.

func sumOfSquares[T Number](a, b T) T {
return a*a + b*b

}

We can now call it with different numeric types.

fmt.Println(sumOfSquares(1, 2))
fmt.Println(sumOfSquares(1.5, 3.2))

Remark: we cannot call our function with mixed types, for instance sumOfSquare(2.5, 2). The
following error occurs: default type int of 2 does not match inferred type float64

16https://go.dev/doc/tutorial/generics#add_generic_function

Preview ‑ 13 Apr. 2023 48

Introduction to Programming with Go Youri Ackx

for T. The second argument must be turned into a float64 to be compatible with the first
one:

sumOfSquares(2.5, float64(2))

4.6 Exercices

1. Write a function minInt that accepts an array of integeters as parameter, and returns the
smallest element in the array.

2. Write a function sumInt that accepts an array of integeters as parameter, and returns the
sum of all element in the array.

3. Write a function posWord that takes an array of strings as parameter, and returns the posi‑
tion of the word in the array if found, or -1 otherwise.

4. Make the function maxInt generic to accept any type of number.

Preview ‑ 13 Apr. 2023 49

Introduction to Programming with Go Youri Ackx

5 Complex data types

5.1 Maps

5.1.1 Definition

Amap is a data type composed of a collection of key‑value pairs. Each key can appear at most
once.

With amap, you can for instance associate fruits with their energy value, or the quantity remain‑
ing in your kitchen. Conceptually, it looks like this:

fruit -> quantity

With some content:

apple -> 2
orange -> 3
pear -> 1

5.1.2 Operations

Amap offers operations to add a new key‑pair, to retrieve the value associated to a key, to check
the existence of the key and therefore of the value, to delete a key‑value pair, and to iterate
through its elements.

In Go, the corresponding type is aptly named Map.

map[KeyType]ValueType

We can declare a variable fruits as a map in which keys are string (the name of the fruit) and
the values are int (the quantity). It is up to the programmer to give meaning to the keys and
values. Here, we intended to count fruits.

var fruits map[string]int

This map is not initialized. It will behave like an empty map if you attempt to read from it, but
any attempt tomodify it will cause a runtime panic. Instead, you can declare the samemap and
initialize it with the built‑in make.

Preview ‑ 13 Apr. 2023 50

Introduction to Programming with Go Youri Ackx

fruits = make(map[string]int)
// fruits == map[]

Now that the map is initialized, we can write to it.

fruits["apple"] = 2
// fruits == map[apple: 2]

Alternatively, the map can be initialized with amap literal.

fruits := map[string]int{
"apple": 2,
"orange": 3,
"pear": 1,

}
// fruits == map[apple:2 orange:3 pear:1]

apple 2

orange 3

pear 1

Themap literal can also be empty, using the same syntaxm only with an empty literal {}. In this
case, the empty map will be readable, just like an unitialized map, but it will also be writable
(add, modify or delete entries).

fruits = map[string]int{}

A value can be retrieved and assigned to a variable. Supposing we set apple to 2:

applesCount = fruits["apple"]
// applesCount == 2

You can obtain the number of elements (keys) in the map with the built‑in len

typesOfFruits := len(fruits)
// typesOfFruits == 3

Adding a new key‑pair does not require any built‑in. Assign the value to the corresponding key
like so:

fruits["banana"] = 5

Preview ‑ 13 Apr. 2023 51

Introduction to Programming with Go Youri Ackx

There can not be any duplicate key. If you assign an existing key, its value will be replaced. Du‑
plicate values are allowed. It makes sense: there could not be two different counts of orange for
example. But two fruits can have the same count.

fruits["banana"] = 5
// map[apple:2 orange:6 pear:1, banana:5]
fruits["banana"] = 1
// "banana" value replaced, no new key
// map[apple:2 orange:6 pear:1, banana:1]

To remove an entry from themap, use delete. It does not return any value and is safe to invoke
even if the value is not present in the map.

// fruits == {"apple": 2, "orange": 3, "pear": 1}
delete(fruits, "apple")
// fruits == {"orange": 3, "pear": 1}
delete(fruits, "foo")
// fruits == {"orange": 3, "pear": 1}

In a typical Goway, you can perform a two‑values assignement that tests for the presence of the
key, and retrieve it. Starting from our original map orangeCountwill contain 3 and presentwill
be true.

orangeCount, present = fruits["orange"]
// orangeCount == 3
// present == true

Using a similar construct, you can test a key for existence by discarding the first value with _
(underscore).

_, present = fruits["orange"]
// present == true

5.1.3 Iteration

Iteration is achieved with the well‑known range. Each iteration returns a key and a value, so in
our case, a fruit and its count.

for fruit, count := range fruits {
fmt.Println("Fruit:", fruit, "Count:", count)

}

Preview ‑ 13 Apr. 2023 52

Introduction to Programming with Go Youri Ackx

Fruit: apple Count: 2
Fruit: orange Count: 3
Fruit: pear Count: 1

Note: The order of iteration is not guaranteed.

5.1.4 Exercices

1. Declare an unitialized map holding name‑age pairs. Attempt to read the key john, which
is not present. What happens? Attempt to write the pair steve: 32. Observe the behavior.

2. Declare amapwith keys=country and value=capitals, using amap litteralwith two entries:
Belgium: Brussels and Spain: Madrid. Read the values of the following countries: Spain,
Italy.

3. Using the samemap, add the entry Chile: Santiago.

4. Iterate the map to display all countries and their capitals, one per line, in the following
format: “The capital of Belgium is Brussels”.

5. Delete a country of your choice.

6. Display howmany countries you have in your map (should be 2).

5.2 struct

A struct is a typed collection of fields. It allows to group data together to form records.

5.2.1 Motivation

Suppose we want to represent a person. What data would we capture? What characteristics
represent a person? It depends on the context. Themedical department of a hospital may need
data like first name, last name, date of birth, blood type, gender, weight and height and plenty
of medical information. The administrative department of the same hospital is likely to be in‑
terested in data such as name, address (street, postal code, city, country), and social security
number.

Preview ‑ 13 Apr. 2023 53

Introduction to Programming with Go Youri Ackx

In our examples, we will limit ourselves to name and age.

So far, we have used “atomic” data types, like string and int. A string is suitable to store a
person’s name. An int is suitable to store their age. It would however be unconvenient to use
two independent variables to store those two characteristics.

name := "John"
age := 32

Arguably, this is not bad, but what if we want to represents two persons?

person1Name := "John"
person1Age := 32
person2Name := "Marge"
person2Age := 43

We only have two persons, each described by two fields, and things are already messy. Notice
how these four variables are unrelated. Nothing expresses the fact that person1Name and
person1Age are information related to the same person. Sure, they bear a common prefix
person1 that gives the reader some clue. But this alone does not create the representation of a
person. It is just a good variable naming. We are left with a bunch of unrelated charactersitics.
Imagine handling five persons, each with ten fields using this (lack of) technique. It would not
be good programming design.

Instead, we can declare a struct that acts as a blueprint for a person – any person.

type Person struct {
Name string
Age int

}

Note: Using uint8 instead of intwill use up less memory. This is not a concern here. Also,
in actual an information system, the date of birth will be used instead of the age.

We can instantiate our persons, and assign them to variables. Notice how the variables john
and marge each conveniently represent a “whole” person, with all their relevant characteristic
bundled in the object.

john := Person{"John", 32}
marge := Person{"Marge", 43}

Preview ‑ 13 Apr. 2023 54

Introduction to Programming with Go Youri Ackx

5.2.2 Arguments

We can however be more explicit, by specifying each field name.

john := Person{Name: "John", Age: 32}
marge := Persom{Name: "Marge", Age: 43}

What is the difference between these twoways to declare a struct? The second one does not rely
on the field position, which preventsmismatching fields. Sure enough, there is little risk of error
when declaring our persons with our trivial struct. Indeed, the compiler would refuse inverted
name and age, as they are of different types. But suppose we store the first name and the last
name. In that case, which one comes first? You would have to look it up. If you accidentally
invert them, the program will still compile. If someone decides to re‑arrange the field order in
the struct for any reason, the program would also still compile, but the names would be mixed
up. Spelling out each field is more verbose but avoids mistakes and makes your programmore
robust if you are coding anything non trivial.

5.2.3 Constructor

This being said, it is idomatic to encaspulate new struct creation in a function. This function’s
namestartswith Newby convention, followedby the struct name. In our case, itwouldbenamed
NewPerson. It is also idomatic to return a pointer to the newly created struct, denoted by a *.
More on pointers later. Here is how the constructor would look like:

func NewPerson(name string, age int) *Person {
return &Person{Name: name, Age: age}

}

robert := NewPerson("Robert", 67)
// robert.Name == "Robert"
// robert.Age == 67

Unfortunately, we loose the explict naming of arguments. On the other hand, this constructor
can ensure consistency between fields and check for invalid input. For instance, it could check
for negative age value, and reject it.

Preview ‑ 13 Apr. 2023 55

Introduction to Programming with Go Youri Ackx

5.2.4 Behaviors

Functions canbe “associated”with structs. For instance, let us saywewant toadd two functions:
one to determine if a senior discount is applicable, and another to determine if a junior account
is applicable. We could proceed with as follows:

func IsJuniorDiscountApplicable(p *Person) bool {
return p.age <= 12

}

fmt.Println(IsJuniorDiscountApplicable(robert))
// false

There is anotherway to declare this function, in a tightermanner, as a “behavior” for a person.

func (p *Person) IsJuniorDiscountApplicable bool {
return p.age <= 12

}
fmt.Println(robert.IsJuniorDiscountApplicable())
// false

Observe the difference. The second versionmaynot seem tobringmuch to the table, if anything
at all, but it will prove useful in the chapter about interfaces.

5.2.5 String representation

What if we try to print a person?

john := &Person{"John", 34}
fmt.Println(john)

&{John 34}

The output is readable enough, but it can customized.

func (p *Person) String() string {
return fmt.Sprintf("%s (%d)", p.Name, p.Age)

}

Let’s decompose this function.

• It is called String.

Preview ‑ 13 Apr. 2023 56

Introduction to Programming with Go Youri Ackx

• It “acts” on a person17 aliased by p, as per (p *Person).
• It returns a string.
• We use fmt.Sprintf to build our custom representation. The first argument of Sprintf is
the format. "%s (%d)" denoted a string as per %s, followed by a number as per %d. The
number is between bracket.

fmt.Println(person)will look for a String function applicable to person andwill find the one
we have just defined. If we print john, the output is now formatted as we requested.

John (34)

Every person will be formatted that way when output is requested.

5.2.6 Variable naming

We already discussed the need to havemeaningful variable names. Excessive abbreviations are
hard to read. In a toy example, names like p1 and p2may be acceptable, but we took the good
habit of properly naming variables, e.g. john and robert.

Therefore, how come we wrote (p *Person) rather than (person *Person)? Isn’t the second
version less vague? The former is more compact and arguable, there is no risk of confusion, as
the type is defined. The latter version introduces a form a stuttering. Furthermore, this p is only
used “privately” by the function, as opposed to a possible argument that could be used by the
caller. It does not “leak” outside.

It is customary in Go code to use the compact form, if not idiomatic. In any case, neither form
should be considered “wrong”.

Note: Always be consistent in your coding style. Nothing is more annoying than unconsis‑
tent coding conventions. It slows down even seasoned programmers.

5.2.7 Multiple structs

A struct instance does not have to live alone. It can be combinedwith slices. Everythingwe have
described in theArrays andSlices chapter remains applicable to structs. Insteadof declare slices
of string or int, we canmanipulate slices of *Person (a pointer to a person).
17More precisely, a pointer to a Person.

Preview ‑ 13 Apr. 2023 57

Introduction to Programming with Go Youri Ackx

robert := NewPerson("Robert", 67)
myla := NewPerson("Myla", 8)
persons := []*Person{robert, myla}
for _, person := range persons {

fmt.Println(person)
}

Robert (67)
Myla (8)

5.2.8 Exercices

1. Declare a struct Bike to hold the following information: brand, model, color, number in
stock.

2. Ensure thanwhen a bike is printed, the color is betweenbrackets and the number of items
in stock is between square brackers. For instance Cowboy Mk2 (black)[4].

3. Declare a slice inventory to contain an arbitrary number of bikes. Initiliaze it with the
following products: Blue‑Grey Trek Powerfly (3 in stock), Black‑Orange BTwin Triban 540
(2 in stock).

4. Write a function countInStock that receives our inventory and returns the total count of
bikes (in our example, 5 in stock).

5.3 Interface

An interface is a named collection of method signatures that a type can implement.

This definition is very abstract, so let us work out a canonical example: shapes. A triangle, a
square, a rectangle, and a circle are shapes. They are geometrically different, but they share
similarities. They all have anarea andaperimeter, althougheach is calculateddifferently, based
on the shape’s characteristics.

Shape Area Perimeter Terms

Triangle 1
2𝑏ℎ b=base; h=height

Preview ‑ 13 Apr. 2023 58

Introduction to Programming with Go Youri Ackx

Shape Area Perimeter Terms

Square 𝑎2 a=side

Rectangle 𝑙𝑤 l=length; w=width

Circle 𝜋𝑟2 r=radius

If you are familiar with other object‑oriented languages, notice that interfaces in Go do not en‑
force a type to implement methods.

An interface Shape would allow us to treat triangles, squares, rectangles and circles uniformly,
and to call their functions to compute area and perimeter without knowing the actual shape.

Let us declare structs for the different shapes. This is nothing different thanwhat we saw earlier,
when we used Person as an example. To limit the lines of codes, we shall limit ourselves to
Square and Rectangle.

type Square struct {
Side float64

}

type Rectangle struct {
Width float64
Height float64

}

We now declare an interface Shape. The keyword type is used. Notice the similarities and the
differences between an interface and a struct.

type Shape interface {
Area() float64
Perimeter() float64

}

As we know, functions can be added to structs. Guess what. We are going to add Area() and
Perimeter() functions to our two shapes. The actual computation depend on the shape, but
the function declarations are the same, only applied to different types.

func (s *Square) Area() float64 {
return s.Side * s.Side

}

Preview ‑ 13 Apr. 2023 59

Introduction to Programming with Go Youri Ackx

func (s *Square) Perimeter() float64 {
return 4 * s.Side

}

func (r *Rectangle) Area() float64 {
return r.Width * r.Height

}

func (r *Rectangle) Perimeter() float64 {
return 2 * (r.Width + r.Height)

}

Do not mind the *. They denote pointers, e.g. we are manipulating something that points to a
square rather than a square. We will come back to pointers later.

For the sake of readability, let us add themuch needed String functions, otherwise our shapes
will be represented as numbers, e.g. &{5} or &{4. 8}

func (s *Square) String() string {
return fmt.Sprintf("Square. s=%f", s.Side)

}

func (r *Rectangle) String() string {
return fmt.Sprintf("Rectangle. w=%f, h=%f", r.Width, r.Height)

}

Now that Square and Rectangle implement themethods defined in Shape, they are shapes and
can be treated uniformly as such ; for instance in a slice of []Shape. Notice how, after the slice
declaration, thereareno references toSquareorTriangle. There is nouseof theoriginal structs,
only of the interface Shape. We have a achieved a form of polymorphism.

square := &Square{Side: 5}
rectangle := &Rectangle{Width: 4, Height: 8}
shapes := []Shape{square, rectangle}
for _, shape := range shapes {

fmt.Printf("%s => area=%f, perimeter=%f\n",
shape, shape.Area(), shape.Perimeter())

}

Square. s=5.000000 => area=25.000000, perimeter=20.000000
Rectangle. w=4.000000, h=8.000000 => area=32.000000, perimeter=24.000000

Preview ‑ 13 Apr. 2023 60

Introduction to Programming with Go Youri Ackx

Note: Make sure you implement the exact methods from the interface. A simple typo and
you would just be declaring an unrelated function, failing to adhere to the interface.

5.3.1 The empty interface

The interface type that specifies zero methods is known as the empty interface.

interface{}

An empty interface may hold values of any type, because every type implements “at least” zero
methods. In other words, all types implement the empty interface implicitly.

Consider the following declaration18:

var i interface{}
fmt.Printf("(%v, %T)\n", i, i)

The output is (<nil>, <nil>), meaning both value and type are nil. Let us assign something
to i.

i = 42
fmt.Printf("(%v, %T)\n", i, i)

(42, int)will be printed, meaning i is an int and its value is 42. One last for the road:

i = "hello"
fmt.Printf("(%v, %T)\n", i, i)

Prints (hello, string) and, as you figured out, i is now a string and its value is "hello".

Note: These code snippets are for demonstration purpose only. Their appearance in actual
code would be dubious.

Empty interfaces are used by code that handles values of unknown type. For instance, thewell‑
known fmt.Println19 takes any number of arguments of type interface{}. All that time, you
have been using it intuitively. Now you can understand the mechanism that lies behind.

18Example comes from A Tour of Go https://tour.golang.org/methods/14
19https://golang.org/pkg/fmt/#Println

Preview ‑ 13 Apr. 2023 61

https://tour.golang.org/methods/14

Introduction to Programming with Go Youri Ackx

5.3.2 Exercices

1. Complete the Shape example by adding Triangle. Implement the requires functions so
that it becomes a shape. Make sure the output is readable when printed.

2. Declare an array containing the string "hello" and the integer 42.

5.4 Sets

A set is an abstract data type that can store unique values,without any particular order.

Unlike many high level languages, Go does not have a data type for set. It has however another
data type that can serve the same purpose: a map. Each key can appear at most once in a map,
so the first property of a set (unique keys) can be met. There is no order either so the second
property is met as well.

The trick is to ignore the values in the map.

The idiomatic way (or one of the idiomatic ways) to implement a set in Go is the following, as‑
suming a set of strings:

set := make(map[string]bool)

Supposewewant to store the folling values in a set: 𝑜𝑟𝑎𝑛𝑔𝑒, 𝑎𝑝𝑝𝑙𝑒, 𝑟𝑎𝑠𝑝𝑏𝑒𝑟𝑟𝑦. Each fruit would
be a key, with true as the associated value.

fruits := map[string]bool{
"apple": true,
"orange": true,
"pear": true,

}

All the concepts we have seen about map (add, delete, iterate) apply here.

The boolean value is a dummy value, serving no purpose other than to “make the map work”.
It is slightly inefficient (a bit of memory is used to hold a fake value) and arguably inelegant, so
youmay run into other implementations using a struct{} as the value.

type void struct{}
var member void
fruits := map[string]void{

"apple": void,

Preview ‑ 13 Apr. 2023 62

Introduction to Programming with Go Youri Ackx

"orange": void,
"pear": void,

}

The first version is more straighforward if you need to declare a set “on the spot”. In practice,
and in this chapter, we will prefer a dedicated structure that encapsulate (hide the underlying
details) the data type set and its operations.

So instead of manipulating a map acting as a set, we will be manipulating a new data type Set.
We will know that underneath, there is a map, but it won’t appear in our interactions with the
set from the outside.

First, let us create a set of strings.

package myset

type StringSet struct {
set map[string]bool

}

The set lower case is not accessible fromoutside the package myset. This is as desired, because
want to deal with a StringSet rather than with the underlyingmap. We need in return to imple‑
ment some basic functionalities, otherwise there would be noway to interact with the set. Let’s
start with a constructor.

func NewStringSet() StringSet {
return &StringSet{make(map[string]bool)}

}

NewStringSet builds a new StringSet structure by means of StringSet{...}. The unique pa‑
rameter make(map[string]bool) creates the underlying map called set (because functionally
it acts as a set, even if it is technically a map) in the StringSet structure.

If this does not make sense, consider a more verbose version:

func NewStringSet() StringSet {
// new structure, empty shell
newStringSet := StringSet{}
// actual set (yes, it's a map, don't tell anyone)
actualSet := make(map[string]bool)
// assign it to `set` inside the struct
newStringSet.set = actualSet
// return the new structure, set included

Preview ‑ 13 Apr. 2023 63

Introduction to Programming with Go Youri Ackx

return newStringSet
}

This second version is equivalent to the first one, but a trained programmer would prefer the
first one. Try to figure out how they match.

We can create a StringSet with set := NewStringSet() but we must implement a few more
operations before we can do something usefull with it.

Operation Description

Add Add an element to the set

Remove Remove an element from the set

Contains Check if the set contains a value

We already know how to add or delete an element from amap.

func (ss StringSet) Add(value string) {
ss.set[value] = true

}

func (ss StringSet) Remove(value string) {
delete(ss.set, value)

}

func (ss StringSet) Contains(value string) bool {
_, found := ss.set[value]
return found

}

All these functions are self‑explanatory. After all, our structure is merely a map in disguise. No‑
tice the repeating (ss StringSet). It means the function is applicable to a StringSet using a
dot, like so:

fruits := NewStringSet()
fruits.Add("blackberry")
fruits.Contains("orange") // false
fruits.Remove("blackberry")

Preview ‑ 13 Apr. 2023 64

Introduction to Programming with Go Youri Ackx

Tip: in real life, you should consider using a package implementing a set, and avoid re‑
inventing the whell. This advise is applicable to any data type or structure.

Finally, let us add two usual operations.

Operation Description

Intersection Return a new set containing the elements common to this set
and another set

Union Return a new set containing the elements of this set and another
set

func (ss StringSet) Union(otherSet StringSet) StringSet {
union := NewStringSet()
for k, _ := range ss.set {

union.set[k] = true
}
for k, _ := range otherSet.set {

union.set[k] = true
}
return union

}

Wecan say that Union is a functionona StringSet that accepts oneargument of type StringSet
and returns a StringSet. There are 3 sets at play: the “target” ss, the otherSet and the returned
set. The original sets ss and otherSet are left unchanged. In action:

vegetables := NewStringSet()
vegetables.Add("eggplant")
vegetables.Add("salad")
union := fruits.Union(vegetables)

For Intersection, we will start from the target set. For each key in ss, we search for the same
key in otherSet.

func (ss StringSet) Intersection(otherSet StringSet) StringSet {
intersection := NewStringSet()
for k, _ := range ss.set {

if _, found := otherSet.set[k]; found {
intersection.set[k] = true

Preview ‑ 13 Apr. 2023 65

Introduction to Programming with Go Youri Ackx

}
}
return intersection

}

We have used an idiomatic construct in the if statement: we assign and check found on the
same line. It saves one line and express the intent that we want to check if the key is present
and discard found afterwards.

To illustrate the function, I know of one fruit that can be considered as a vegetable.

fruits.Add("tomato")
vegetables.Add("tomato")
interestion := fruits.Intersection(vegetables) // tomato

Exercise: implement the following operations.

Operation Description

Pick Return an arbitrary element (any element) from this set

Pop Return an arbitrary element (any element) from this set, deleting it from
this set

Count Count the number of elements in the set

Difference Return the difference of this set and another set

IsSubset Test whether this set is a subset of another set

5.5 Stack

A stack is an abstract data type that serves as a collection of elements20, with 2 main opera‑
tions:

• push adds an element to the collection
• pop removes the most recently added element from the collection

And optional operations:
20https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Preview ‑ 13 Apr. 2023 66

Introduction to Programming with Go Youri Ackx

• len returns the number of elements in the collection
• peek returns the most recently added element (without removing it)

It is a LIFO (last in, first out) data structure.

Stacks are used for implementing function calls, storing programvariables, parsing expressions,
evaluating arithmetic expressions, …

Go includes apackage that implements a stack21. It uses anoptimizedtype that contains anode,
chainedwith pointers. It maintains a length to avoid navigating the chain when Len() is called,
for performance reasons.

5.5.1 A simple implementation

As an exercise, we can implement a simpler stack. We will use:

• a slice to store the values in the collection
• a generic type T (rather than the legacy interface{} in the Go library)
• and all functions will operate on a *Stack[T].

This translates to:

package stack

type Stack[T any] []T

func New[T any]() *Stack[T] {
return &Stack[T]{}

}

func (s *Stack[T]) Len() int {
return len(*s)

}

func (s *Stack[T]) Push(elem T) {
*s = append(*s, elem)

}

func (s *Stack[T]) Pop() (elem T, ok bool) {
if s.Len() == 0 {

21https://pkg.go.dev/github.com/golang‑collections/collections/stack

Preview ‑ 13 Apr. 2023 67

Introduction to Programming with Go Youri Ackx

return elem, false
}
index := len(*s) - 1
elem = (*s)[index]
*s = (*s)[:index]
return elem, true

}

Remarks:

• We rely on New() to create a *Stack rather than forcing the client to declare a slice.
• Pop() returns the element (if found) and a flag. This is a common and convenient way to
return an possibly missing value in Go.

Let’s add amain package to demonstrate the stack capabilities, and how to pop a value.

package main

import (
"fmt"
"be.sugoi.ipgo/stack"

)

func main() {
s := stack.New[int]()
s.Push(1)
s.Push(2)
s.Push(3)
for s.Len() > 0 {

elem, ok := s.Pop()
if !ok {

panic("stack is empty")
}
fmt.Println(elem)

}
fmt.Println(s.Pop()) // 0 false

}

Refer to the appendix “Modules” for instructions on how to store those files and execute the
program.

Preview ‑ 13 Apr. 2023 68

Introduction to Programming with Go Youri Ackx

5.5.2 Exercise

1. Make this code run on your computer.

2. Add a Peek() function. Test that it does not remove the element it returns.

Preview ‑ 13 Apr. 2023 69

Introduction to Programming with Go Youri Ackx

6 Go techniques

In this chapter, we introduce techniques that are not shared by all imperative programming lan‑
guages, like pointers, or that are the hallmarks of Go, like channels.

6.1 Pointers

A variable holds a value. A pointer holds the memory address of a value.

6.1.1 Declaration

// Declare an integer variable with value 10
val := 10

// Declare a pointer to the integer variable
ptr := &val

// Print the value of the integer variable by dereferencing pointer
fmt.Println(*ptr) // Output: 10

The following syntax is more compact. It also shows ptr is not a mere int and that it requires
the use of new.

ptr := new(int)
*ptr = 10

10 val 10 ptr

Figure 5: Illustration of a variable (left) and a pointer (right)

A pointer is represented by an asterisk * followed by the variable name. *ptr is a pointer to an
int.

The asterisk is also used to dereference the pointer. Dereferencing a pointer gives you access
to the value the pointer points to.

Preview ‑ 13 Apr. 2023 70

Introduction to Programming with Go Youri Ackx

6.1.2 Usage

Pointers in Go are useful for:

• Modifying values in‑place. When you pass a value to a function, it is passed by value,
which means that any changes made to the value within the function will not affect the
original value. However, if you pass a pointer to the value, you can modify the value in‑
place, which means that the changes made within the function will also be reflected in
the original value.

• Data structures. Pointers are essential for implementing many data structures such as
linked lists, trees, and graphs. These data structures require dynamic allocation of mem‑
ory and pointers allow you to allocate andmanagememory dynamically.

• Performance. When a large data structure such as a struct is passed to a function, it is
copied to a newmemory location. This copy can be expensive in terms of time andmem‑
ory. By passing a pointer to the original data structure, you can avoid copying the entire
data structure.

6.1.3 Modify in‑place

Consider the following function:

func AddOne(x int) {
x = x + 1

}

func main() {
x := 10
AddOne(x)
fmt.Println(x) // x is still 10

}

The function AddOne will not modify x because it is passed by value. Of course, we don’t need
no fancy pointer to add 1. We don’t even need a function. That is just an example. Let’s modify
our function to actually add 1 to x.

func AddOne(x *int) {
*x = *x + 1

}

Preview ‑ 13 Apr. 2023 71

Introduction to Programming with Go Youri Ackx

func main() {
x := 10
AddOne(&x)
fmt.Println(x) // x is 11

}

By using a pointer (*int) the AddOne function is able to modify the original x.

The & operator to obtain the address of a variable. &x returns a *int (pointer to an int) because
x is an int. This is what allows us to modify the original variable.

6.1.4 Data structures

We have already seen an example of pointers with the struct Person. Quick refresher:

type Person struct {
Name string
Age int

}

func NewPerson(name string, age int) *Person {
return &Person{Name: name, Age: age}

}

robert := NewPerson("Robert", 67)
// robert.Name == "Robert"
// robert.Age == 67

func (p *Person) IsJuniorDiscountApplicable bool {
return p.age <= 12

}
// robert.IsJuniorDiscountApplicable()) == false

6.1.5 Performance

Even if a function won’t modify your structure, it is still beneficial to pass a pointer for perfor‑
mance reason when the struct contains a lot of data.

Preview ‑ 13 Apr. 2023 72

Introduction to Programming with Go Youri Ackx

6.1.6 Safety

Goprovides ahigher level of safety thanCwith regard topointers. This is becauseGohasbuilt‑in
garbage collection, which makes it easier to manage memory allocation and deallocation. Go
also has a strong type system that helps prevent common pointer‑related errors in C, such as
dereferencing null pointers or accessing memory that has already been freed.

Go also provides some additional safety features like bounds checking for slices and arrays.

Unlike C, Go has no pointer arithmetic.

Figure 6: Ameme on C pointers

6.2 Concurrency (goroutines)

Concurrency is property of a program, when two or more tasks can start, run, and complete in
overlapping time periods.

For instance, awebcrawler that scanspageson the internet canbemadeof a scanner that down‑
loads pages, and a parser that interprets them. They may run at the same time, but it is not
mandatory to achieve concurrency. The parser could run out of work if the scanner is stuck be‑
cause of a broken internet connection.

Preview ‑ 13 Apr. 2023 73

Introduction to Programming with Go Youri Ackx

Go has outstanding built‑in support for concurrency via goroutines.

A goroutine is a function that can run concurrently with other functions. It is a plain old function
invoked with the go keyword.

package main

import "fmt"

func foo() {
for i := 0; i < 100; i++ {

fmt.Println(i)
}

}

func main() {
go foo()
fmt.Println("Terminated")

}

If you run this program, the result may not be what you expect. The program displays “Termi‑
nated” and… terminates. It does not print number from 0 to 99. This is because the goroutine
had no chance to make any progress before the end of the program.

Let’s modify this program so that waits half a second after printing the endmessage, but before
it terminates.

import (
"fmt"
"time"

)

func main() {
go foo()
fmt.Println("Terminated")
time.Sleep(time.Millisecond * 500)

}

This time, the numbers are printed… after the message. We gave time to the goroutine to com‑
plete, but there is no guarantee on the execution order.

Besides, adding time.Sleep is a bad practice (howdo you even decide on the “right” sleep dura‑
tion? Howmuch time does it need to display the number on different machines?). We will need
another approach in the next section.

Preview ‑ 13 Apr. 2023 74

Introduction to Programming with Go Youri Ackx

6.3 Channels

Channels are the Go way for goroutines to communicate with one another, and to synchronize
their work.

As Rob Pike would put it: “don’t let computations communicate by sharing memory, let them
share memory by communicating”.

The communication can be uni‑ or bi‑directional. Assuming T is the data type of the data passed
through the channel:

• chan T is a bidirectional channel
• chan<- T is a unidirectional channel, send‑only
• <-chan T is a unidirectional channel, receive‑only

6.3.1 Fake web crawler

Let’s implement a fake version of the web crawler wementionned earlier. We first make a chan‑
nel called pages. It will be used by our two workers. We shall separate fetching from parsing a
page. The program terminates when the user presses Enter. fetch and parse are invoked as
goroutine with go.

We pass the channel as a parameter. Notice the slight difference in declaration:

• chan string, bidirectional channel in main
• chan<- string, unidirectional channel, send‑only in fetch
• <-chan string, unidirectional channel, receive‑only in parse

The bidirectional channel declared in main can be “specialized” into a send‑only or receive‑only
channel when passed as an argument. This cannot be done the other way around; you cannot
turn you unidirectional channel into a bidirectional channel.

package main

import (
"fmt"
"math/rand"
"time"

)

Preview ‑ 13 Apr. 2023 75

Introduction to Programming with Go Youri Ackx

func main() {
urls := []string{

"https://www.google.com",
"https://www.yahoo.com",
"https://www.bing.com",

}
pages := make(chan string)

go fetch(urls, pages)
go parse(pages)

fmt.Println("Press ENTER to exit")
var input string
fmt.Scanln(&input)

}

func fetch(urls []string, pages chan<- string) {
for _, url := range urls {

// Pretend to fetch the page
fmt.Printf("Fetching %s\n", url)
pages <- url

}
}

func parse(pages <-chan string) {
for {

// Pretend to parse the page
url := <-pages
fmt.Printf("Parsing %s\n", url)
sleepTime := time.Duration(rand.Intn(2000)) * time.Millisecond
time.Sleep(sleepTime)

}
}

6.4 Producer‑consumer

We can generlize the webcrawler to a pattern called producer‑consumer.

The main function waits for a timeout. A channel comes in handy. Instead of sleeping, it uses
the select construct to match a particular event.

package main

import (

Preview ‑ 13 Apr. 2023 76

Introduction to Programming with Go Youri Ackx

"fmt"
"math/rand"
"time"

)

func producer(items chan<- int) {
i := 0
for {

// Pretend to produce an item
sleepTime := time.Duration(rand.Intn(2000)) * time.Millisecond
time.Sleep(sleepTime)

// Send the item on the channel
fmt.Println("Produced", i)
items <- i

i++
}

}

func consumer(items <-chan int) {
for item := range items {

// Pretend to consume the item
sleepTime := time.Duration(rand.Intn(2000)) * time.Millisecond
time.Sleep(sleepTime)
fmt.Println("Consumed", item)

}
}

func main() {
items := make(chan int)

// Launch the producer and consumer goroutines
go producer(items)
go consumer(items)

// Wait for 5 seconds
select {
case <-time.After(5 * time.Second):

fmt.Println("Timeout reached, exit")
}

}

There are many ways to organize your programwhen it comes to channels, and Go offers many

Preview ‑ 13 Apr. 2023 77

Introduction to Programming with Go Youri Ackx

mechanisms beyond the scope of this chapter 22.

22See https://go.dev/tour/concurrency/2 https://go101.org/article/channel.html

Preview ‑ 13 Apr. 2023 78

Introduction to Programming with Go Youri Ackx

7 Programming techniques

7.1 Recursion

Recursion is the technique of making a function call itself. It is a way to break down a problem
into smaller and easier problems, until the problembecomes trivial. A function (or a procedure)
that goes through recursion is said to be recursive.

The canonical use case for teaching recursion is the calculation of factorial.

𝑛! =
𝑛

∏
𝑖

𝑖 = 1 × 2 × 3 × … × (𝑛 − 1) × 𝑛 𝑛 ∈ ℕ

By convention, factorial of 0 is 1 ; 0! = 1. For example:

5! = 5 × 4 × 3 × 2 × 1 = 120

The factorial of a number can be calculated with an iterative version and a loop construct you
already know.

func factorial(n uint) uint {
result := 1
for i := 1; i <= n; i++ {

result *= i
}
return result

}

Instead, we can use recursion to solve this problem. Let’s see how it works with a methaphore.
Suppose you are asked to compute 𝑓𝑎𝑐𝑡(3). But that is too much work. You can multiply 2
numbers. You also know Alice can calculate 𝑓𝑎𝑐𝑡(2). So you ask her to give you the value of
𝑓𝑎𝑐𝑡(2), and youmultiply the result by 3.

3! = 3 * 2! // ask Alice for 2!

How does Alice calculate 𝑓𝑎𝑐𝑡(2)? She too canmultiply 2 numbers. Alice is lazy. She can’t both‑
ered to put too much thoughts into 𝑓𝑎𝑐𝑡(1). She calls Bob. He knows how to calculate 𝑓𝑎𝑐𝑡(1).
She will simply multiply 2 × 𝑓𝑎𝑐𝑡(1).

Preview ‑ 13 Apr. 2023 79

Introduction to Programming with Go Youri Ackx

2! = 2 * 1! // Alice asks Bob for 1!

So far we have:

3! = 3 * (2 * 1!)

Bob does not need to call anyone. He knows 𝑓𝑎𝑐𝑡(1) = 1 and that’s it. He deals with the termi‑
nal condition or base case, upon which the solution stops recurring. We end up with:

3 * 2!
3 * (2 * 1!)
3 * (2 * (1 * 1))
3 * (2 * 1)
3 * 2
6

In a computer program, you, Alice and Bob roles will be played by a single function. A recursive
function. More formally, the recursive definition of factorial is:

0! = 1.
n > 0, n! = (n – 1)! × n.

The definition can be translated to Go:

func factorial(n uint) uint {
if n == 0 {

return 1
}
return n * factorial(n-1)

}

The general form of recursion is:

𝑓(𝑥) = 𝑒0 if 𝑥 ∈ 𝐷0

𝑓(𝑥) = 𝐹(𝑓(𝑒1), 𝑓(𝑒2), ..., 𝑓(𝑒𝑘) if 𝑥 ∈ 𝐷𝑣

where:

• 𝑓 is the name of the function
• 𝑒𝑖(𝑖 = 0..𝑘) are expressions that depend solely on 𝑥
• 𝐹(𝑦1, ..., 𝑦𝑘) is an expression that depends solely on 𝑥 and (𝑖 = 1..𝑘)

Preview ‑ 13 Apr. 2023 80

Introduction to Programming with Go Youri Ackx

• 𝐷0 and 𝐷𝑣 are disjoint sets

There is a cost to this approach. When we decompose the chain of calls made by Alice and
friends, we realise how each recursive call cannot be evaluated before the whole chain com‑
pletes. Each call maintains a record on the program stack.

𝑓(5) → 𝑓(4) → 𝑓(3) → 𝑓(2) → 𝑓(1) → 𝑓(0)

The stack space needed for the recursive calls is proportional to the number. We say the space
complexity is 𝒪(𝑛). Compared to the iterative version, for which the space complexity is con‑
stant in 𝒪(1). For small numbers, keeping calls on the stack has limited adverse effect. For
larger numbers however, the stack may overflow.

A stack overflow can be avoided by using tail recursion, in which the recursive call is the last
call. We use an accumulator to carry on the intermediate result. An auxiliary function is used
to perform the actual recursion. The auxiliary function is not meant to be called directly.

func factorial_rec(n, accumulator uint) uint {
if n == 0 {

return accumulator
} else {

return factorial_rec(n-1, n*accumulator)
}

}

func factorial(n uint) uint {
return factorial_rec(n, 1)

}

Unfortunately, like many imperative languages, Go does not optimize tail recursion, unlike
most functional languages (Haskell, Scheme etc). But we wanted to demontrate the technique
nonetheless.

Arguablty, this last version is less readable than the initial, iterative version. Although factorial
is a traditional example to explain recursion, it may not be the preferred approach in practive.
However recursion is a key technique when solving classic problems like Fibonacci numbers or
the Tower of Hanoi. Some problems are way easier to solve with recursion.

Preview ‑ 13 Apr. 2023 81

Introduction to Programming with Go Youri Ackx

8 Classic computer problems

8.1 Fibonacci numbers

The Fibonacci numbers (𝐹𝑛) form a sequence called the Fibonacci sequence, such that each
number is the sum of the two preceding ones, starting from 0 and 1.

𝑛 > 1 ∶ 𝐹0 = 0, 𝐹1 = 1, 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

The sequence starts with

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

8.1.1 Recursivemethod

It is possible to translate the mathematical definition into Go code without much effort.

func Fib(n int) int {
if n <= 1 {

return n
}
return Fib(n - 1) + Fib(n - 2)

}

This implementation is trivial, albeit very inefficient. Let’s visualise the successive recursive calls
for 𝐹𝑖𝑏(4).

𝐹𝑖𝑏(4)
↙ ↘

𝐹𝑖𝑏(3) 𝐹 𝑖𝑏(2)
↙ ↓ ↓ ↘

𝐹𝑖𝑏(2) 𝐹 𝑖𝑏(1) 𝐹 𝑖𝑏(1) 𝐹 𝑖𝑏(0)
↙ ↓

𝐹𝑖𝑏(1) 𝐹 𝑖𝑏(0)

Preview ‑ 13 Apr. 2023 82

Introduction to Programming with Go Youri Ackx

As you can see, even for a simple case where 𝑛 is low, there is a lot of repetition. The same
𝐹𝑖𝑏(𝑛) is evaluated several times. It only gets worse as 𝑛 becomes bigger. A program cannot
“remember” thepreviously calculatedvalues if it hasnotbeenwritten todoso, andwill therefore
performs the recursive calls as many time as needed.

Exercise: draw the top of the recursive calls tree for 𝐹𝑖𝑏(5).

8.1.2 Memoization

Memoization is an optimization technique used primarily to speed up programs by storing the
results of expensive function calls and returning the cached result when the same inputs occur
again23.

Our cache will be of type map[int]int, where each key is the sequence, and each value the
corresponding Fibonacci number. So as 𝐹𝑖𝑏(6) = 8, the cache will be populated with {6: 8}
the first time this number is calculated.

We start with trivial cases {0: 0, 1: 1} to populate our cache.

Wewant to keep the function signature tidy, that is we do not want any concept ofmemoization
to appear to the calling program. FibMemoize(int)int will simply initilize the cache, and call
the auxiliary function fibMemoizeRecurse, which does the actual recursive work, passing our
cache along.

When we enter fibMemoizeRecurse, we first check if we have already computed the number by
accessing our cache. In case of a hit, we return the cached value directly. Otherwise, weperform
the recursive calls for 𝐹(𝑛 − 1) and 𝐹(𝑛 − 2), passing the cache along.
Before we return the computed number, we store it in the cache, so other callers can benefit
from it.

func FibMemoize(n int) int {
cache := map[int]int{0: 0, 1: 1}
return fibMemoizeRecurse(n, cache)

}

func fibMemoizeRecurse(n int, cache map[int]int) int {
cached, hit := cache[n]
if hit {

23https://en.wikipedia.org/wiki/Memoization

Preview ‑ 13 Apr. 2023 83

Introduction to Programming with Go Youri Ackx

return cached
}
n1 := fibMemoizeRecurse(n-1, cache)
n2 := fibMemoizeRecurse(n-2, cache)
f := n1 + n2
cache[n] = f
return f

}

The recursive call tree is greatly simplified. The cache hits are denoted by a ∗. It might not look
as much on a small tree like 𝐹𝑖𝑏(4) as used here to illustrate, but beyond that number, entire
branches of the tree are pruned.

𝐹𝑖𝑏(4)
↙ ↘

𝐹𝑖𝑏(3) 𝐹 𝑖𝑏(2)∗
↙ ↓

𝐹𝑖𝑏(2) 𝐹 𝑖𝑏(1)∗
↙ ↓

𝐹𝑖𝑏(1) 𝐹 𝑖𝑏(0)

Exercise: extend the recursive calls tree above for 𝐹𝑖𝑏(5) with memoization.

8.1.3 Iterativemethod

With the iterative approach, we loop over integers if 𝑛 is greater than 2. We retain only the two
previous numbers 𝐹(𝑛 − 1) and 𝐹(𝑛 − 2) as we progress.

Notice the use of an interesting Go property: a, b = b, awill swap the values of the variables
a and b. This is not equivalent to a = b; b = a as we would loose the value of a after the first
assignment.

func Fibo(n int) int {
if n <= 1 {

return n
}

Preview ‑ 13 Apr. 2023 84

Introduction to Programming with Go Youri Ackx

n1 := 1
n2 := 0
for i := 2; i <= n; i++ {

n2, n1 = n1, n1 + n2
}

return n1
}

There is nogrowing space complexity as𝑛 increases. This solution is arguably less readable than
the naive recursive version.

8.1.4 Related

Fibonacci numbers are used in the Fibonacci search technique, and can form a tiling.

Figure 7: Tiling pattern using Fibonacci numbers

Preview ‑ 13 Apr. 2023 85

Introduction to Programming with Go Youri Ackx

8.2 Hangman

Guess a secret word by suggesting letters.

8.2.1 The game

In this classic game, one person picks a random word, and another attempts to guess it. Each
letter of the word to guess is hidden and replaced by a dash. At each turn, the guessing player
suggests a letter. If it occurs in the word, the other player writes it at the correct position. If the
letter does not occur in the word, the other player draws one limb of a hanged man stick figure
on a gallow. The guessing playerwins if they find out out theword before the hangman is drawn.
The other player wins otherwise.

There are many variations of the game ; we will stick to a simple one. In our implementation:

• The computer will pick the word, and the human player will try to guess it.
• We play with uppercase letters only.
• If a letter occuring several times is guessed, it will be revealed at all the places it occurs.
• The program terminates after the word is guessed, or after the stickman is complete.

Preview ‑ 13 Apr. 2023 86

Introduction to Programming with Go Youri Ackx

Figure 8: Hangman

Note: Constructing a hanged stickman limb by limb is somewhat unsettling.

8.2.2 Building blocks

The game is straightforward to implement with the basic programming elements we have de‑
scribed so far. There is no complex algorithm or data structure involved. Our first step is to
decompose the game in building blocks we can eventually assemble:

• Pick a randomword from a dictionary
• Ask player for their guess
• Represent the game’s state
• Start the game
• Process the guess
• Draw the game state
• Check if game is over

Preview ‑ 13 Apr. 2023 87

Introduction to Programming with Go Youri Ackx

Even though the entire task may be daunting, each individual function is simple enough. By
taking a divide and conquer approach, a seemingly difficult task becomes simpler.

8.2.3 Pick a randomword

We will pick a random word from a dictionary stored as a file, one word per line. We will read
and store the dictionary in memory in order to choose a random entry. This simple approach is
notmemory‑efficient, but even thousands of words should not cause performance concerns on
amodern machine.

Note: There is no such thing as a len(file) function that would return the number of lines
in the file without reading it. This is not a Go specific limitation. From the operating system
point of view, a file is made of bytes and there is no concept of “lines” or “words”. The
linebreak is just a byte (or two bytes), like any other. We cannot know how many “lines”
the file contains without reading it entirely.

A different approachwould be to first count the number of words in the file (by scanning the file
entierely), generate a randomnumber smaller than the number of lines, and then rescan the file
to choose the corresponding word. It would avoid loading the whole dictionary in memory, at
the cost of two file scans insteadof one. So the efficiency gainedonmemorywould bemitigated
by the double file scan (worst case, if we pick the last word in the file).

A more effcient but also fairly involved technique would improve the first scanning phase by
reading large chuncks of bytes, rather than relying on the slower scanner.Scan() and scanner
.Text() to read lines that will will use.

These improvements are however beyond the scope of our little program.

Here is a simple implementation to read a dictionary.

const dictionaryPath = "dict.txt"

// Choose a random word from a dictionary
func randomWord(path string) string {

file, err := os.Open(path)
if err != nil {

log.Fatal(err)
}
defer file.Close()

Preview ‑ 13 Apr. 2023 88

Introduction to Programming with Go Youri Ackx

lines := make([]string, 0)
scanner := bufio.NewScanner(file)
for scanner.Scan() {

lines = append(lines, scanner.Text())
}

word := lines[rand.Intn(len(lines))]
return strings.ToUpper(word)

}

8.2.4 Ask player’s guess

We leniently read from the standard input, ignoring errors. Don’tmake a habit of ignoring errors.
It is fine in a toy program, but not adequate for a production system. Incorrect input tolerance
and error handling can take a fair amount of work, so we will that aside.

We then check that the input length is 1, that it is a letter, and convert it to upper case.

// Ask the player to enter their guess.
// Single letter only. Will be upper cased
func askGuess() string {

for {
fmt.Print("Your guess? ")
var guess string
_, _ = fmt.Scan(&guess)
if len(guess) != 1 {

continue
}
for _, c := range guess {

if !unicode.IsLetter(c) {
continue

}
}
return strings.ToUpper(guess)

}
}

Notice the endless for loop. In structured programming, one would declare a stop condition
on the iteration. Arguably the extra variable and nesting in conditional statements would not
improve readability. Idiomatic Go favors explicit exits via break (or in this case continue). The
function askGuess is short, so there is no risk of confusion when reading the code flow.

Preview ‑ 13 Apr. 2023 89

Introduction to Programming with Go Youri Ackx

8.2.5 Game state

A struct holds the game state. It is better than having free variables “floating” around.

type Hangman struct {
secret string // Secret word to guess
word string // Current player's word.

// Letters not found yet will be '-'
guesses []string // Player's guesses
limb Limb // Current limb

}

The Limbwill be an enumeration. In idomatic Go, enums are composed of:

1. A custom type declaration
2. Several constants with iota
3. A string representation (for humans)

type Limb int

const (
Empty = iota
Head
Torso
LeftArm
RightArm
LeftLeg
RightLeg

)

func (limb Limb) String() string {
return [...]string{

"Empty", "Head", "Torso", "Left Arm",
"Right Arm", "Left Leg", "Right Leg"}[limb]

}

We have included a fake limb called Empty to treat the starting point of the game like the rest of
the game.

Preview ‑ 13 Apr. 2023 90

Introduction to Programming with Go Youri Ackx

8.2.6 Start the game

When starting the game, we instantiate a consistent Hangman by performing the following ac‑
tions:

• Pick a random secretword, using the function we declared above
• Initialize the guesses to an empty slice
• Set the word to dashes
• Set the current limb to Empty

// Instantiate a new game
func newHangman() *Hangman {

return &Hangman{
guesses: make([]string, 0),
secret: randomWord(dictionaryPath),
word: strings.Repeat("-", len(secret)),
limb: Empty}

}

The pseudo‑random generator must also be intitialized. It has to be done once in the program,
nomatter howmany games are played. Initiliazation has been therefore kept out of newHangman
.

func initGame() {
rand.Seed(time.Now().UnixNano())

}

8.2.7 Process player’s guess

The bulk of the game’s logic is to process the player’s guess.

If the letter occurs in the secret, a loop will replace the dash(es) to reveal it. Notice how we
leverage slicing to construct a new word in 3 parts: 1. everything before the letter’s position [:i],
2. the letter itself and 3. what is left after the letter’s position [i+1:].

If the letter does not occur, we simply increase to the next limb.

At this stage, no check is performed to find out if one of the players won, or if the game contin‑
ues.

Preview ‑ 13 Apr. 2023 91

Introduction to Programming with Go Youri Ackx

// Attempt to guess a letter.
// If the letter exists in the secret, it is revealed in the word.
// Otherwise, limb is incremented.
func (h *Hangman) guess(letter string) {

h.guesses = append(h.guesses, letter)
found := false
for i, c := range h.secret {

s := fmt.Sprintf("%c", c)
if s == letter {

h.word = h.word[:i] + letter + h.word[i+1:] // reveal
found = true

}
}

if !found {
h.limb++

}
}

8.2.8 Display the game state

You are free to go as fancy as you want for the display. We will opt for the utmost sobriety.

func (h *Hangman) draw() {
fmt.Printf("%s %v %s\n", h.word, h.guesses, h.limb)

}

Admitedly, calling this function draw() may be an overstatement since it merely displays or
prints the game state in a raw form.

----E----E [A E P] Torso

Note: Displaying a gallow and an actual stickman will require more lines of code of their
own than the complete implementation presented here. There is nothing wrong with that
; we simply prefer to keep things simple.

8.2.9 Check game over

The guessing player wins if the wordmatches the secret. They loose if the limb is the last one.
Give them the courtesy to reveal the secret in that case. If neither won() or lost() are true, the

Preview ‑ 13 Apr. 2023 92

Introduction to Programming with Go Youri Ackx

game goes on!

// Check if player won
func (h *Hangman) won() bool {

return h.word == h.secret
}

// Check if player lost
func (h *Hangman) lost() bool {

return h.limb == RightLeg
}

// Display game result
func (h *Hangman) displayResult() {

if h.won() {
fmt.Println("You won")

} else if h.lost() {
fmt.Printf("You lost. Secret word was: %s\n", h.secret)

}
}

8.2.10 Main

Finally we assemble our building blocks in neat main function.

func main() {
initGame()
hangman := newHangman()
hangman.draw()

for !hangman.won() && !hangman.lost() {
letter := askGuess()
hangman.guess(letter)
hangman.draw()

}

hangman.displayResult()
}

8.2.11 Sample

---------- [] -

Preview ‑ 13 Apr. 2023 93

Introduction to Programming with Go Youri Ackx

Your guess? a
---------- [A] Head
Your guess? e
----E----E [A E] Head
Your guess? p
----E----E [A E P] Torso
Your guess? d
----ED---E [A E P D] Torso
Your guess? i
I---EDI--E [A E P D I] Torso
Your guess? n
IN--EDI--E [A E P D I N] Torso
Your guess? c
INC-EDI--E [A E P D I N C] Torso
Your guess? r
INCREDI--E [A E P D I N C R] Torso
Your guess? b
INCREDIB-E [A E P D I N C R B] Torso
Your guess? l
INCREDIBLE [A E P D I N C R B L] Torso
You won

8.2.12 Dictionary

You can easily find and download dictionaries from the internet, in English or in any other lan‑
guage. A short dictionary is however useful for testing purpose, like this one.

panda
cactus
dog
cat
incredible

8.3 Eight Queens

Place eight queens on a chessboard without any threat.

Preview ‑ 13 Apr. 2023 94

Introduction to Programming with Go Youri Ackx

8.3.1 Statement

The eight queens puzzle requires to place 8 queens on a 8 by 8 chessboard so that no queen
threatnensanother. Inotherwordsno twoqueens canbe foundon the same row, column (called
file in chess) or diagonal.

The puzzle admits 92 solutions, of which 12 fundamental that differ other than by symetry, re‑
flection or rotation.

The problem can be extended to 𝑛 queens on a 𝑛 × 𝑛 chessboard.

Figure 9: One solution to the puzzle

8.3.2 Data structure

An array of integers will suffice, with each index corresponding to column and each value of the
array representing a row. There is no need to declare a two‑dimensional array.

8.3.3 Backtracking

Thepuzzle servesasagoodexercise to illustrate thebacktrackingdepth‑first searchalgorithm.
Backtracking incrementally builds candidates to the solutions, and discards them (backtracks)
as soon as the candidate cannot lead to valid solution. This approach is much more effecient
than brute‑force, where we would try to build all combinations on the board, even if they are
doomed from the start, for instance by placing two queens on the first row and attempting
to place a third one although this could never lead to a valid position because of the two first
queens in check.

Preview ‑ 13 Apr. 2023 95

Introduction to Programming with Go Youri Ackx

To solve an 𝑛 queens board, we start by creating a slice of 𝑛 integers. Then we solve boards of
increasing size 𝑘, starting at 𝑘 = 0 to 𝑘 = 𝑛.

func SolveNQueens(n int) {
board := make([]int, n)
solve(board, 0, n)

}

An auxiliary solve() functions does the heavy lifting. When 𝑘 = 𝑛, it means we have managed
to put 𝑛 queens on the board, and we have found a valid solution that we can print. Otherwise,
we first test if the board with the new queen is safe. In the affirmative, we try all possibles rows
for column 𝑘.

func solve(board []int, k, n int) {
if k == n {

fmt.Println(board)
} else {

for i := 0; i < n; i++ {
if isSafe(board, k, i) {

board[k] = i
solve(board, k+1, n)

}
}

}
}

Checking if a new queen is valid on the board is done in isSafe().

func isSafe(board []int, column int, row int) bool {
for i := column - 1; i >= 0; i-- {

d := column - i
if board[i] == row || board[i] == row-d || board[i] == row+d {

return false
}

}
return true

}

Nowwe can solve a board of size 4 for instance:

func main() {
solveNQueens(4)

}

Preview ‑ 13 Apr. 2023 96

Introduction to Programming with Go Youri Ackx

With the solutions:

[1 3 0 2]
[2 0 3 1]

8.3.4 Caveats

• Our solverprints a solutionwhen it founds one, rather than returning a list of all solutions.
This can be considered as a side‑effect. It limits the ability of the caller to print the solu‑
tions the way is sees fit, for instance in chess notation. It brings simplicity however as a
list of solutions does not have to be carried around by the solving function.

• For the sake of simplicity, we did not declare a custom type Board to abstract the more
low level []int. Again, this is fine in the context of a simple exercise, and we may argue
that introducing a custom type would be overengineering the solution.

8.3.5 Other methods

• Iterative – an iterative solver would require more code and would be less intuitive.
• Channels – Go has a built‑in mechansim called channels. It is used in the context of con‑
current programming but it can act as an elegant communication mechanism between
the solver and the caller, passing solutions from the former to the latter.

• Representation – The solutions could be displayed in more natural chessboard coordi‑
nates.

8.4 Conway’s Game of Life

Cellular automaton.

8.4.1 Presentation

The Game of Life24 is a cellular automaton devised by John Horton Conway25 in 1970. It is a
zero‑player game, meaning that its evolution is determined by its initial state (seed), requiring
24https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
25https://en.wikipedia.org/wiki/John_Horton_Conway

Preview ‑ 13 Apr. 2023 97

Introduction to Programming with Go Youri Ackx

no further input. One interacts with the game by creating an initial configuration and observing
how it evolves. It is Turing complete26.

8.4.2 Rules

The simulation evolves on an infinite, two‑dimensional grid of cells, each of which is either live
or dead. Every cell interacts with its eight neighbours. At each step in time, the following transi‑
tions occur:

• Any live cell with fewer than two live neighbours dies, as if by underpopulation.
• Any live cell with two or three live neighbours lives on to the next generation.
• Any live cell with more than three live neighbours dies, as if by overpopulation.
• Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

8.4.3 Example of patterns

This simple set of rules can lead to remarkable patterns. Common patterns include:

• Oscillators – return to their initial state after a finite number of generations calledperiods
(blinker, toad, beacon, pulsar) ;

• Still lifes – remain unchanged from one generation to the next (block, beehive, loaf, boat,
tub) ;

• Spaceships – travel accross the grid (glider and other spaceships).

Figure 10: Beehive, one form of still life

DecadesafterConway releasedhis game, a self‑replicatingpattern calledGeminiwasdiscovered.

26https://en.wikipedia.org/wiki/Turing_completeness

Preview ‑ 13 Apr. 2023 98

Introduction to Programming with Go Youri Ackx

It creates a copy of itself while destroying its parent. Other astonishing patterns include gilder
guns.

8.4.4 Data structure

Some implementations use a two‑dimensional array‑like structures, for instace [][]bool to rep‑
resent the grid. This is however inefficient and not practical. It cannot represent an infinite grid
and can be a huge waste of memory on large grids. Instead, we represent a cell as pair of inte‑
gers, and the grid as a set of cells. We shall use a map[Cell]bool to represent the grid.

// Cell represents a cell, living or dead
type Cell struct {

X, Y int
}

// CellSet represents a set of cells
// used as a grid or a set of neighbors
type CellSet struct {

cells map[Cell]bool
}

Let’s add:

• A String()method to display a cell in a human‑readable format ;
• An empty grid constructor ;
• A cell‑based grid constructor.

func (c *Cell) String() string {
return fmt.Sprintf("(%d, %d)", c.X, c.Y)

}

func NewCellSet() *CellSet {
return &CellSet{make(map[Cell]bool)}

}

func CellSetFrom(cells ...Cell) *CellSet {
cs := NewCellSet()
for _, cell := range cells {

cs.Add(cell)
}
return cs

}

Preview ‑ 13 Apr. 2023 99

Introduction to Programming with Go Youri Ackx

func (cs *CellSet) String() string {
s := "["
for cell := range cs.cells {

s = s + cell.String() + ", "
}
s = strings.TrimRight(s, ", ")
s = s + "]"
return s

}

8.4.5 Implementation

Go does not offer a built‑in type for set, so we need to bring our own helper functions like Add,
Contains or Intersect to the table.

func (cs *CellSet) Add(cell Cell) {
cs.cells[cell] = true

}

func (cs *CellSet) Contains(cell Cell) bool {
_, found := cs.cells[cell]
return found

}

func (cs *CellSet) Intersect(other *CellSet) *CellSet {
intersect := NewCellSet()
for _, cell := range cs.Cells() {

for _, otherCell := range other.Cells() {
if cell == otherCell {

intersect.Add(cell)
}

}
}
return intersect

}

func (cs *CellSet) Cells() []Cell {
var cells []Cell
for cell := range cs.cells {

cells = append(cells, Cell{cell.X, cell.Y})
}
return cells

}

Preview ‑ 13 Apr. 2023 100

Introduction to Programming with Go Youri Ackx

func (cs *CellSet) Len() int {
return len(cs.Cells())

}

With this setup, we can focus on the simulation itself. We will need a function that returns the
neighbours of a cell.

// Returns all the neighbours of the given cell, living or dead
func neighbours(cell *Cell) *CellSet {

n := NewCellSet()
for i := -1; i <= 1; i++ {

for j := -1; j <= 1; j++ {
if i != 0 || j != 0 {

n.Add(Cell{i + cell.X, j + cell.Y})
}

}
}
return n

}

Lastly, Next() allows to transition from one state to the next. We first check if a cell survive to
the next generation according to the rules. Then we examine all neighbor cells to determine if
a new cell will appear (it must have 3 neighbors so the possible newborns always come next to
living cell).

If the function returns an empty grid, we have reached a terminal state.

// Next moves a grid to its next state
func Next(grid *CellSet) *CellSet {

newGrid := NewCellSet()

// All neighbours of all living cells.
// They are all candidate newborns
candidates := NewCellSet()

// Survivors and current neighbours
for _, cell := range grid.Cells() {

neighbours := neighbours(&cell)
countLivingNeighbours := grid.Intersect(neighbours).Len()
if countLivingNeighbours == 2 || countLivingNeighbours == 3 {

newGrid.Add(cell)
}
// Neighbors of this cell are newborn candidates
for _, neighbour := range neighbours.Cells() {

Preview ‑ 13 Apr. 2023 101

Introduction to Programming with Go Youri Ackx

candidates.Add(neighbour)
}

}

// Add eligible newborns
for _, candidate := range candidates.Cells() {

if !grid.Contains(candidate) { // It's a empty cell
neighbours := neighbours(&candidate)
countLivingNeighbours := grid.Intersect(neighbours).Len()
if countLivingNeighbours == 3 {

newGrid.Add(candidate)
}

}
}

return newGrid
}

Create a main()method to run the simulation with different input, for instance

• Trival case: an empty grid that remains empty.
• A single cell that dies after the first generation.
• A beehive (still life) that remains unchanged, nomatter howmany times you call the next
generation.

• A blinker of period 2.

For example:

NewCellSet()
CellSetFrom(Cell{0, 0})
CellSetFrom(

Cell{2, 1}, Cell{3, 1}, Cell{1, 2},
Cell{4, 2}, Cell{2, 3}, Cell{3, 3})

CellSetFrom(Cell{1, 0}, Cell{1, 1}, Cell{1, 2})

8.4.6 Exercise

The String() grid and cell representations we provided are accurate, although a bit dull. As an
exercise, display the automaton in a grid‑like manner.

Preview ‑ 13 Apr. 2023 102

Introduction to Programming with Go Youri Ackx

8.5 Tower of Hanoi

Learn recursion with this classical problem.

8.5.1 Presentation

The Tower of Hanoi27 is amathematical game or puzzle consisting of three rods (or sticks) and a
number of disks (or pegs) of different diameters, which can slide onto any rod. The puzzle starts
with the disks stacked on one rod in order of decreasing size, the smallest at the top.

For instance, let us label the 3 rods A, B and C and use 3 disks {3, 2, 1}, 3 being the largest:

A = {3, 2, 1}
B = {}
C = {}

Figure 11: Amodel set of the Tower of Hanoi with 8 disks

8.5.2 Rules

The objective is to move the entire stack to the last rod, obeying the following simple rules:

27https://en.wikipedia.org/wiki/Tower_of_Hanoi

Preview ‑ 13 Apr. 2023 103

Introduction to Programming with Go Youri Ackx

1. Only one disk may bemoved at a time.
2. Each move consists of taking the upper disk from one of the stacks and placing it on top

of another stack or on an empty rod.
3. No disk may be placed on top of a disk that is smaller than it.

The minimal number of moves required to solve a Tower of Hanoi puzzle is 2𝑛 − 1, where 𝑛 is
the number of disks.

8.5.3 Recursivemethod

If we only display the moves and not the rods successive states, we do not even need a data
structure to represent the rods and the disks. This solution is straightforward, at the cost of
testability.

To 𝑠𝑜𝑙𝑣𝑒(𝑛, 𝐴, 𝐵, 𝐶) for 𝑛 disks using pegs 𝐴 (source), 𝐵 (auxiliary) and 𝐶 (destination) with
𝑛 > 0:

1. 𝑠𝑜𝑙𝑣𝑒(𝑛 − 1, 𝐴, 𝐶, 𝐵)
2. 𝑚𝑜𝑣𝑒(𝐴, 𝐶)
3. 𝑠𝑜𝑙𝑣𝑒(𝑛 − 1, 𝐵, 𝐴, 𝐶)

Tophrase it in amore casual form, say you are asked to solve for𝑛pegs, but youdon’t knowhow
to do it. But you know a friend that can solve it for 𝑛 − 1. How? That’s none of your concern,
but it turns out that your friend delegates for 𝑛 − 2 to yet another person, and so on. Eventually,
there’s that special someone that can solve it for 𝑛 = 1. It is a trivial case: they must simply
move the top peg.

So to solve for (𝑛, 𝐴, 𝐵, 𝐶), you call your friend to solve for (𝑛 − 1, 𝐴, 𝐶, 𝐵). Then you call the
special someone to move the top peg from 𝐴 to 𝐶. You call your friend again, this time to solve
(𝑛 − 1, 𝐵, 𝐴, 𝐶).

func solve(n int, source, auxiliary, destination string) {
if n == 0 {

return
}
solve(n-1, source, destination, auxiliary)
fmt.Printf("Move from %s to %s\n", source, destination)
solve(n-1, auxiliary, source, destination)

}

Preview ‑ 13 Apr. 2023 104

Introduction to Programming with Go Youri Ackx

func main() {
solve(4, "A", "B", "C")

}

And that’s it! Problem solved, no sweat.

8.5.4 Iterativemethod

The iterative approach ismuchmore involved than the recursive one. It requires to create a type
Tower. Each rod is an []int labelled by a string.

type Tower struct {
n int
rods map[string][]int

}

func (tower *Tower) String() string {
return fmt.Sprintf("%v", tower.rods)

}

Provide a new tower constructor based on the number of disks:

func NewTower(n int) *Tower {
var disks []int
for i := n; i > 0; i-- {

disks = append(disks, i)
}
tower := &Tower{n,make(map[string][]int)}
tower.rods["A"] = disks // descending [3, 2, 1]
tower.rods["B"] = make([]int, 0)
tower.rods["C"] = make([]int, 0)
return tower

}

Wewill need to swap disks “smartly”, depending on the rod’s configuration.

func (tower *Tower) swap(x, y string) {
topDiskX := tower.topDisk(x)
topDiskY := tower.topDisk(y)
if topDiskX == 0 && topDiskY == 0 {

return
}
if (topDiskX < topDiskY && topDiskX != 0) || topDiskY == 0 {

Preview ‑ 13 Apr. 2023 105

Introduction to Programming with Go Youri Ackx

tower.move(x, y)
} else {

tower.move(y, x)
}

}

Return the top disk of the given rod:

func (tower *Tower) topDisk(rod string) int {
count := len(tower.rods[rod])
if count == 0 {

return 0
}
return tower.rods[rod][count-1]

}

We need to be able to move a disk from one rod to another:

func (tower *Tower) move(from, to string) {
fmt.Println(tower)
fmt.Printf("Move from %s to %s\n", from, to)
countFrom := len(tower.rods[from])
topFrom := tower.rods[from][countFrom - 1]
tower.rods[from] = tower.rods[from][:countFrom - 1]
tower.rods[to] = append(tower.rods[to], topFrom)

}

We know we are done when the destination disk C contains all the disks, that is, its size is the
size n of the tower.

func (tower *Tower) isDone() bool {
return len(tower.rods["C"]) == tower.n

}

At last, to put it all together, we have two sets of rules:

• Even number of disks
• Odd number of disks

For an even number of disks:

2. Make the legal move between rods 𝐴 and 𝐶 (in either direction),
3. Make the legal move between rods 𝐴 and 𝐵 (in either direction),
4. Make the legal move between rods 𝐵 and 𝐶 (in either direction),

Preview ‑ 13 Apr. 2023 106

Introduction to Programming with Go Youri Ackx

For an odd number of disks:

1. make the legal move between rods 𝐴 and 𝐶 (in either direction),
2. make the legal move between rods 𝐴 and 𝐵 (in either direction),
3. make the legal move between rods 𝐵 and 𝐶 (in either direction),

Repeat the steps until complete.

The part “in either direction” explains whywe designed a generic function swap() that is able to
move(x, y) or move(y, x).

We can now solve according to our algorithm above.

func (tower *Tower) solve() {
var steps [][]string

if tower.n % 2 == 0 {
steps = [][]string{{"A", "B"}, {"A", "C"}, {"B", "C"}}

} else {
steps = [][]string{{"A", "C"}, {"A", "B"}, {"B", "C"}}

}
for {

for _, step := range steps {
tower.swap(step[0], step[1])
if tower.isDone() {

return
}

}
}

}

The implementation requires us to retain the tower’s state after each step. A main function will
help our algorithm come to life.

func main() {
tower := NewTower(4)
tower.solve()
fmt.Println(tower)

}

Preview ‑ 13 Apr. 2023 107

Introduction to Programming with Go Youri Ackx

8.6 Blackjack (guided exercise)

8.6.1 Rules

Blackjack is a casino banking game. We will play a simplified version of the game: single player,
single deck of cards, no bets, no hole card.

At the table, the dealer faces the player. The card deck is shuffled. The dealer deals 2 cards to
the player, face‑down. The dealer’s hand is also two cards face‑down.

Theplayer’s goal is to create a card total higher than thoseof thedealer’s handbutnot exceeding
21.

On their turn, theplayer chooses to “hit” (takea card) or “stand” (end their turnand stopwithout
taking a card). Number cards count as their number. Jack, queen and king count as 10. Aces
count as either 1 or 11 according to the player’s choice. If the total exceeds 21 points, it busts,
and the player or dealer immediately loses. The winner scores one point.

Cards are left aside after each hand. After seven hands, the dealer grabs all the cards and re‑
shuffle them.

8.6.2 Play

The player will be a human interacting with the program. The dealer will be played by the com‑
puter.

The dealer’s decision process is simple: if their total is below the player’s, they hit. If it’s above,
they stand. If it’s equal, to make things simple, the dealer stands.

8.6.3 Design

Make sure you have completed the Hangman chapter before starting this exercise. You first task
is to decompose the problem in smaller, manageable chuncks. The main design ideas are iden‑
tical or very similar.

• Accept player’s input when it’s their turn
• Validate it
• Perform dealer’s logic

Preview ‑ 13 Apr. 2023 108

Introduction to Programming with Go Youri Ackx

• Keep track of the score
• Detect a bust
• Detect the end of the hand
• Compute total
• Handle aces (1 or 11)
• …

The game runs indefinitely. It is an endless loop. You can allow the player to enter 'q' to quit
the game at any time. Inside that loop live nested loops running for each hand, handling the
player’s and the dealer’s decisions.

Here is a simple suggested algoirthm, where the deck is shuffled before each hand (rather than
after 7 hands).

scores = 0, 0
while not quit {

shuffle
deal
while player not standing and player not bust {

ask decision
if hit {

add to hand
}

}
while dealer score < player score {

dealder hit
add to hand

}
decide winner

}
display scores

Tomake your life easier, you ignore the aces double value in your first version, counting them as
11.

Good luck!

Preview ‑ 13 Apr. 2023 109

Introduction to Programming with Go Youri Ackx

Figure 12: A table of blackjack

Preview ‑ 13 Apr. 2023 110

Introduction to Programming with Go Youri Ackx

9 Appendix A ‑ Install and run

9.1 Go playground

For the impatient, or when you are working from a computer where Go has not been installed,
the Go Playground allows you to run code in the browser.

https://play.golang.org/

9.2 Install

Go to the installation page and follow the instructions.

https://go.dev/doc/install

OnmacOS, consider using Homebrew.

https://formulae.brew.sh/formula/go

9.3 Edit

For this book, any decent editor will do.

Visual Studio Code is recommanded on all platforms.

https://code.visualstudio.com/

9.4 Run

// cat main.go

package main

import "fmt"

func main() {
fmt.Println("Hello, world!")

}

Preview ‑ 13 Apr. 2023 111

Introduction to Programming with Go Youri Ackx

Alternatively, you can open the file from your file explorer or navigator as well.

Run with go run:

$ go run main.go
Hello, world!

9.5 Modules

In some chapters, wemake the codemore modular by using modules.

A good example is found in the ch. 5.5 Stack. You don’t need to understand the details of the
code if you just began reading this book.

In this example, we have:

• a module file go.mod
• a stack implementation in package stack
• a demo in package main.

From a directory of your choosing, the file structure is:

+-- ipgo
+-- exercise

+-- stack
| +-- stack.go
+-- main.go
+-- go.mod

First, create a module:

$ go mod init be.sugoi.ipgo

Go will create the following file:

$ cat go.mod
module be.sugoi.ipgo

go 1.20

I chosebe.sugoi.ipgobecause itmatches this book’s namespace, but youcanchoosewhatever
you like.

Preview ‑ 13 Apr. 2023 112

Introduction to Programming with Go Youri Ackx

The stack:

// stack.go

package stack

type Stack[T any] []T

func New[T any]() *Stack[T] {
return &Stack[T]{}

}

func (s *Stack[T]) Len() int {
return len(*s)

}

// rest of the code omitted

The demo:

// main.go

package main

import (
"fmt"
"be.sugoi.ipgo/stack"

)

func main() {
s := stack.New[int]()
fmt.Println(s.Len()) // 0

}

Preview ‑ 13 Apr. 2023 113

Introduction to Programming with Go Youri Ackx

10 Appendix B ‑ Credits

• Eisvogel pandoc LaTeX template, copyright 2017 ‑ 2020, Pascal Wagler, copyright 2014 ‑
2020, John MacFarlane

• Hard drive, Wikipedia, licensed under CC BY‑SA 3.0.

• Gopher mascot by Takuya Ueda, licensed under the Creative Commons 3.0 Attributions
license.

• Ariane 501, Copyright ESA

• Thinking monkey, photo by Juan Rumimpunu, licensed under Unsplah license.
https://unsplash.com/photos/nLXOatvTaLo

• Chessboard, Lichess.

• Tower of Hanoi, Wikipedia, licensed under CC BY‑SA 3.0.

• Fibonnaci tiles, Wikipedia, licensed under Creative Commons Attribution‑Share Alike 4.0
International

• Blackjack table, Wikipedia, licensed under Creative Commons CC0 1.0 Universal Public
Domain Dedication

• Pointer meme, u/tuunraq, Reddit, all rights reserved.

Preview ‑ 13 Apr. 2023 114

https://github.com/Wandmalfarbe/pandoc-latex-template
https://github.com/golang-samples/gopher-vector
https://twitter.com/tenntenn
https://www.esa.int/ESA_Multimedia/Images/1998/01/Ariane_501_explosion
https://lichess.org/
https://en.wikipedia.org/wiki/Tower_of_Hanoi#/media/File:Tower_of_Hanoi.jpeg
https://en.wikipedia.org/wiki/File:34*21-FibonacciBlocks.png
https://commons.wikimedia.org/wiki/File:Blackjack_game_1.JPG
https://www.reddit.com/r/ProgrammerHumor/comments/pyl63q/pointer_pointer_new_pointer/?rdt=40822

	Introduction
	It's about programming
	Approach
	Exercises
	Vocabulary
	Abstraction
	First program
	A paper and a pen
	About Go

	Basic data types
	Definition
	Bits and bytes
	Numeric
	Strings
	Overflow
	Abstraction vs low level

	Programming blocks
	Variables and constants
	Conditional statements
	Loops
	Functions
	Arithmetic operators
	Expressions
	Bitwise logical operators

	Lists, Arrays and Slices
	Arrays
	Slices
	Filtering
	Min and max
	Generics
	Exercices

	Complex data types
	Maps
	struct
	Interface
	Sets
	Stack

	Go techniques
	Pointers
	Concurrency (goroutines)
	Channels
	Producer-consumer

	Programming techniques
	Recursion

	Classic computer problems
	Fibonacci numbers
	Hangman
	Eight Queens
	Conway's Game of Life
	Tower of Hanoi
	Blackjack (guided exercise)

	Appendix A - Install and run
	Go playground
	Install
	Edit
	Run
	Modules

	Appendix B - Credits

