Fast and Scalable Machine
Learning with GolLang

Vidyasagar N
@dumbyoda

Discussion of Machine Learning, Go
Libraries, Project Examples

->

Machine Learning
The basics of machine learning!

Golang in the architecture of

machine learning systems
Our experience on using go along with
machine learning systems

Go Libraries
Various go libraries solving specific
puposes

Machine Learning

Machine learning is programming computers to
optimize a performance criterion using example
data or past experience.

=0
&

IR

o®
=
7o

A

Process

Data Reduction
Data Transformation
Data Cleaning

Data Consolidation

Modelling

Business
Understanding

Deployment

Evaluation

Real World Data

I

Data Consolidation

—

Data
Understanding

Data
Preparation

Modeling

U

Data Cleaning

1T

=Y i N

Data Transformation

) U

1

Data Reduction

£ N\ fF

/o

Well Formed Data

Life Cycle

Business
-~ Understanding

Data

Understanding

Data
Preparation

Determining .
Business Objectives Collect Initial Data Select Data

« Background

® Business Objectives

e Business Success
Criteria

Assess Situation

® Inventory of
Resources

® Requirements,
Assumptions, and
Constraints

® Risks and
Contingencies

 Terminology

® Costs and Benefits

Determine Data
Mining Goals

® Data Mining Goals
® Data Mining Success
Criteria

Produce Project Plan

= Project Plan
Initial Assessment of
Tools and Techniques

Initial Data Collection

Report

Describe Data

« Data Description
Report

Explore Data

» Data Exploration
Report

Verify Data Quality

« Data Quality Report

» Rationale for
inclusion/Exclusion

Clean Data

» Data Cleaning Report

Construct Data

» Derived Attributes
» Generated Reports

Integrate Data

 Merge Data

Format Data

» Reformatted Data

Modeling

Select Modeling
Technique

» Modeling Technique
= Modeling
Assumptions

Generate Test
Design

« Test Design

Build Model

© Parameter Setting
= Models
= Model Description

Assess Model

® Model Assessment
® Revised Parameter
Settings

Evaluation

Evaluate Results Pl

Assessment of Data
« Mining Results w.r.t
business Success

Criteria P
« Approved Models Plan M}mltormg and
Maintenance
Review Process

® Review Of Process

Determine Next
Steps

® List of Possible
Actions Decision

Deployment

an Deployment

® Deployment Plan

[2l el s

& Monitoring and
Maintenance of Plan

Final Product Review

« Final Report
= Final Presentation

Review Project

» Experience
* Documentation

[lalE]

Ditferent Techniques

\ -~

1 '@ N
‘e, 900
\ @ ®
.« 00 o
TS . .\

O N O
@ ~ ~- \

Qe eo_.’

Semi Supervised
Learning

More

Reinforcement Learning
Forecasting
Optimization

Neural Network

Deep Neural Networks

Why golang?

Design Goals

Make managing concurrent/distributed systems easy
Improve collaboration with developers
Facilitate evolving codebases (refactoring etc.)

Very efficient and easy to build and deploy

Advantages of using golang for data science

Fun to write Go Code!
Very Fast in Runtime and Compilation

Easy Parallelization quite efficient compared to traditional languages like R(single threaded)
and Python has Global interpreter lock

Portable and has Cross-compilation, also can call other languages from Go
Type System: safety of static typing, with a flexibility of dynamic and interfaces
Native Concurrency and Parallelism implemented (Routines, Channels, Events)
BUT, Just that Go is very new so there is lots of WIP!

Lot of libraries are existing however, some require heavy tuning

Go Notebooks

Jupyter notebook binding for Golang

https://github.com/gopherds/gophernotes

= Ju pyter Simple Example (aosaves)

File Edit View Insert Cell Kernel Help

+ % @A B 4 v M B C coe

In [1]:

In [2]:
Out[2]:

In [3]:
Out[3]:

In [4]:
Out[4]:

In [5]:

In [6]:
Out[6]:

Import

import "fmt"

Hello World

world := "world"
“world"

fmt.Sprintf("hello %s", world)
"hello world"

Channels

This is an example channel

messages := make(chan string)
(chan string) (0xc4200180¢0)

go func() { messages <- "ping" }()

msg = <- messages

“ping”

v Cell Toolbar: None

| Golang O

https://github.com/gopherds/gophernotes
https://github.com/gopherds/gophernotes

Data munging

https://github.com/kniren/gota

Load/save CSV data

Load/save XML data

Load/save JSON data

Parse loaded data to the given types (Currently supported:, , &)
Row/Column subsetting (Indexing, column names, row numbers, range)
Unique/Duplicate row subsetting

Conditional subsetting (i.e.:)

DataFrame combinations by rows and columns (cbind/rbind)
DataFrame merging by keys (Inner, Outer, Left, Right, Cross)

Function application over rows

Function application over columns

Statistics and summaries over the different features (Type dependant)
Value counting (For histogram representations)

Conversion between wide and long formats

https://github.com/kniren/gota
https://github.com/kniren/gota

Mathematical Operations

https://github.com/gonum

https://github.com/gonum/unit: Package for converting between scientific units

https://github.com/gonum/mathext: mathext implements basic elementary functions not included in the Go standard library

https://github.com/gonum/matrix: Matrix packages for the Go language

https://github.com/gonum/plot: A repository for plotting and visualizing data

https://github.com/gonum/blas: Basic Linear Algebra Sub Programs Implementation

https://github.com/gonum/graph: Graph packages for the Go language

https://github.com/gonum/lapack: Linear Algebra Package

https://github.com/gonum
https://github.com/gonum
https://github.com/gonum/plot
https://github.com/gonum/plot
https://github.com/gonum/plot
https://github.com/gonum/plot
https://github.com/gonum/plot
https://github.com/gonum/plot
https://github.com/gonum/plot
https://github.com/gonum/plot
https://github.com/gonum/plot
https://github.com/gonum/plot
https://github.com/gonum/plot
https://github.com/gonum/plot
https://github.com/gonum/plot
https://github.com/gonum/plot

Probability Distributions

A probability function maps the possible values
of x against their respective probabilities of
occurrence, p(x)

p(x) is a number from O to 1.0.

The area under a probability function is always 1.

T ATt T

4 Y
s bl s e
| ‘ isson —> u |”"E|xponential | ’N Wik,
........ [—
l Y
Al
R . e
R Ny
Student’s \
.t n —

l Hﬁﬁnma
L0 T —

-

Probability Distribution in Go

https://github.com/e-dard/godist: Basic probability functions

https://github.com/chobie/go-gaussian: Gaussian (Normal Distribution)

https://github.com/e-dard/godist
https://github.com/e-dard/godist
https://github.com/chobie/go-gaussian
https://github.com/chobie/go-gaussian

Go Charting

gonum/plot — gonum/plot provides an API for building and drawing plots in Go.
goraph — A pure Go graph theory library(data structure, algorithm visualization).

SVGo: The Go Language library for SVG generation.

Text Extracting and Processing

Extracting

gocrawl: Polite, slim and concurrent web crawler.
Text Indexing

bleve: A modern text indexing library for go.
fulltext: Pure Go full text indexer and search library.
golucene: Go port of Apache Lucene.

golucy: Go bindings for the Apache Lucy full text search library.

Classification

Decision Trees

/\

To Classify To Predict j
Response Variables has two Response variables has Response variables is
categories multiple categories continuous
Use Standard Classification Use c4.5 algorithm for L Hulatioriships Non-Linear Relationships
tree cli;sszﬁcation between predictors and between predictors and
response response

e classification

Use Standard Clas'siﬁcatiorj [Use c4.5 algorithm for

Classification, Decision Trees in Go

Hector https://github.com/xlvector/hector - Golang machine learning lib. Currently, it can be
used to solve binary classification problems.Logistic Regression , Factorized Machine , CART,
Random Forest, Random Decision Tree, Gradient Boosting Decision Tree & Neural Network

Decision Trees in Go - https://github.com/ajtulloch/decisiontrees - Gradient Boosting, Random
Forests, etc. implemented in Go

CloudForest - https://github.com/ryanbressler/CloudForest - Fast, flexible, multi-threaded
ensembles of decision trees for machine learning in pure Go (golang). CloudForest allows for
a number of related algorithms for classification, regression, feature selection and structure
analysis on heterogeneous numerical / categorical data with missing values.

Random Forest Implementation: https://github.com/fxsjy/RF.go

Recommendation Engines: Collaborative Filtering

User - User based recommendation

Object - Object based recommendation

mp Mo ME s

User - Object based recommendation

Recommendation Engines in Go

Collaborative Filtering (CF) Algorithms in Go -
https://github.com/timkaye1l/goRecommend

Recommendation engine for Go - https://github.com/muesli/regommend

Optimization and Linear Algebra

N= lnan — \2F
¥

= (Dness — Jseex)

Each optimization problem consists of three elements:
» decision variables: describe our choices that are under our control;

> objective function: describes a criterion that we wish to minimize
(51.k230%, 3%, Mo g2%)

(e.g., cost) or maximize (e.g., profit);
((qstﬁ\qc\w) 2L -?}51%3&5

» constraints: describe the limitations that restrict our choices for

decision variables.

Sample Optimization Problem

A company produces copper cable of 5 and 10 mm of diameter on a
single production line with the following constraints:
e The available copper allows to produces 21000 meters of cable of
5 mm diameter per week.
e A meter of 10 mm diameter copper consumes 4 times more
copper than a meter of 5 mm diameter copper.

Due to demand, the weekly production of 5 mm cable is limited to
15000 meters and the production of 10 mm cable should not exceed
40% of the total production. Cable are respectively sold 50 and 200
euros the meter.

What should the company produce in order to maximize its weekly
revenue?

Linear Algebra in Go

Linear Algebra for Go & Matrix Library: https://github.com/skelterjohn/go.matrix

Mat64: Package mat64 provides basic linear algebra operations for float64
matrices.: https://godoc.org/github.com/gonum/matrix/mat64

BLAS Implementation for Go: https://github.com/gonum/blas

liblinear bindings for Go: https://github.com/danieldk/golinear

Neural Networks and Deep Learning

Deep Neural Network

2 " - 7
(AR INRS
is\'i\’ro:l[,’;g,-“' ",
-“

e A

N PRI
SO, A
/. "’d ;\\' . //'," . SecL
- N
NN
Y) e/

Output Layer

P/
z"/' i

Input Layer

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3
3 edges

combinations of edges object models

Neural Networks in Go

Neural Networks written in go : https://github.com/goml/gobrain
Go Fann - https://github.com/white-pony/go-fann
Multi-Layer Perceptron Neural Network - https://github.com/schuyler/neural-go

Genetic Algorithms library written in Go / golang - https://github.com/thoj/go-galib

Image Processing:

https://github.com/h2non/bimg: Small Go package for fast high-level image processing using
libvips via C bindings

https://github.com/lazywei/go-opencv: Go Bindings for OpenCV

https://github.com/thoj/go-galib
https://github.com/h2non/bimg
https://github.com/lazywei/go-opencv
https://github.com/lazywei/go-opencv

TensorFlow and Caffe support

Caffe is a deep learning framework made with expression, speed, and modularity in
mind. It is developed by the Berkeley Vision and Learning Center (BVLC)

https://github.com/wmyaoyao/gocaffe

TensorFlow is an open source software library for numerical computation using
data flow graphs. Nodes in the graph represent mathematical operations, while the
graph edges represent the multidimensional data arrays (tensors) communicated
between them

https://github.com/tensorflow/tensorflow/issues/10

Gorgonia: https://github.com/chewxy/gorgonia: Similar to theano

https://github.com/tensorflow/tensorflow/issues/10#issuecomment-246027663
https://github.com/tensorflow/tensorflow/issues/10#issuecomment-246027663
https://github.com/chewxy/gorgonia

Generic Machine Learning Libraries (More Stable)

Golearn: https://github.com/sjwhitworth/golearn: One of the most prominent Go Machine
Learning library, A very similar implementation as scikit-learn, most implemented in Go with
some c++ bindings

GoML: https://github.com/cdipaolo/goml: Algorithms that learning, used for implementation of
learning on the wire, running algorithms while the data is in the streams, channels, very well
tested, extensive documentation.

Gorgonia: https://github.com/chewxy/gorgonia, very similar implementation to theano, allows
us to define behavior about neural networks at a high level, but much much easier to deploy
on various interfaces than theano

Machine Learning libraries for Go Lang: https://github.com/alonsovidales/go_ml:

MLGo: https://code.google.com/p/mligo/
e

https://github.com/sjwhitworth/golearn
https://github.com/cdipaolo/goml
https://github.com/chewxy/gorgonia
https://github.com/alonsovidales/go_ml

Algorithms implemented across various libraries

- Linear Regression

- Logistic Regression

- Neural Networks

- Collaborative Filtering

- Gaussian Multivariate Distribution for anomaly detection systems
- Gaussian mixture model clustering

- k-means, k-medians, k-medoids clustering

- single-linkage hierarchical clustering

- forecasting (https://github.com/datastream/holtwinters)

System Architectures

Use Cases

Energy Analytics

Transactional Frauds in Banking

Network Analytics

Energy Analytics

Architecture overview

] rf -
\ I
v * +9

=3 O
T 1
VD 5 -]

el 1)

Real-time Analytics

Interactive Analytics

Predictive Analytics

Batch Analytics

Architecture overview

S~

kafka
§g e &

((())) github.com/confluentinc/
e confluent-kafka-go/kafk

Predictive Analytics

Go routines and Channels S ua
Batch Analytics

handling concurrent
requests

Systems

Pre built models are stored
as Go code and they
algorithms get processed in
near real time

Gorillatoolkit is used for
defining the rest end points
which takes care of alerts,
monitoring, publishing the

data

Models

P

.';'f’ .+ {"é"'*'.‘.;ﬁ.'l: assneas

““.TI' esveer s

LI TT] -

El:ln-.:

L "

£
[
'_.-* R T %
A
=]y e s 287
T 7
L Y
= -
i LELR .
20 T T
m&; .
}?‘\\1}2;-..;_ ‘1.
[x] [y H
- -
-1 i
—Tni}h
—on| — Estimate
A g
-4 -z [2 4
X

|

{

Using Go ML for running
the algorithms in real time,
the whole process would
go through a single process
chain
Mative HTTP Apps

include traditional, batch learning
interfaces, goml includes many
rmodels which let you learn in an

online, reactive manner by passing

data to streams held on channels.

The rules engine, PMML
~ : ,
y I ! MML JSON rules is coverted to

"{\ i + .I 1.-' e F"dml':nﬁml Go Land code
stnssnenesnsne snsbeie ® Markup Language
'I I [% Native HTTP Apps
Ell-m-ﬂ-{@ o o 4 F o
s g > BET ;—I\"“ﬁ‘
r/ -.\
n:‘i:”'-"_ |-on:p»{u
o %
[T R e JavaScript Object Notation

e@

Rules

E
/"’ i \

e B

e

Concurrency

No Thread Primitives

Concurrent

Goroutines

Channels

Design Takeaways

Design decoupled, interface contracts enabled code
Write resilient batching, draining, stateless code

HTTP native apps for monitoring, alerting, processing was great

No tail-call optimization, some of the recursive algorithm implementation slower
than Python based alternatives

Sufficient amount of tuning is required for optimizing performance

State of Go as a language for Machine Learning

A purely Go solution means fewer pieces from different languages that would have to be
packaged and deployed together.

Great Community of developers

Using GO’s concurrency, fast runtime, and compilation capabilities very efficient codes can be
written.

There are several open source libraries for various algorithms however, they are still in WIP,
with specific tuning and customizations performs quite well in several scenarios

The ecosystem is still evolving, Let’s contribute in building an good ecosystem of machine
learning with Go!

