

Go Design Patterns

Learn idiomatic, efficient, clean, and extensible Go design and
concurrency patterns by using TDD

Mario Castro Contreras

 BIRMINGHAM - MUMBAI

Go Design Patterns

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2017

Production reference: 1170217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-620-4

www.packtpub.com

http://www.packtpub.com

Credits

Author

Mario Castro Contreras

Copy Editor

Safis Editing

Reviewer

Shiju Varghese

Project Coordinator

Izzat Contractor

Commissioning Editor

Kunal Parikh

Proofreader

Safis Editing

Acquisition Editor

Chaitanya Nair

Indexer

Mariammal Chettiyar

Content Development Editor

Zeeyan Pinheiro

Graphics

 Abhinash Sahu

Technical Editor

Pavan Ramchandani

Production Coordinator

Deepika Naik

  

About the Author
Mario Castro Contreras is a software engineer who has specialized in distributed systems
and big data solutions. He works as a site reliability engineer, and now he is focused on
containerized solutions and apps using most of Google Cloud suite; especially, Kubernetes.
He has a wide experience in systems and solutions integration, and he has written many
scalable and reliable 12 factor apps using Go and Docker. He has designed Big Data
architectures for financial services and media, and he has written data processing pipelines
using event-driven architectures written purely in Go. He is also very active in the open
source community, and you can find him on his GitHub account with the username sayden.
In the past, he has also written mobile applications and backends in Java.

Mario is passionate about programming languages, and he found the best balance between
fun and productivity in Go; however, recently, he enjoys writing in Rust and embedded
systems in C. He is also passionate about road cycling and winter sports.

I'd like to express my deep gratitude to my parents for supporting me in my journey
through computers since I was 8. To Urszula, Tyrion and Tesla for their daily support and
for being with me in the long nights writing this book.

I'd like to thank Chaitanya, for her guidance at the beginning of the book, Zeeyan, for his
patience and help on every chapter, and Pavan, for the help and explanations. But also to
all the reviewers, especially to Shiju, and the entire team at Packt that made this book
possible.

About the Reviewer
Shiju Varghese is a solutions architect focused on building highly scalable cloud native
applications with a special interest in APIs, microservices, containerized architectures, and
distributed systems. He currently specializes in Go, Google Cloud, and container
technologies. He is an early adopter of the Go programming language and provides
consultation and training for building backend systems and microservices with Go
ecosystem. He has been a mentor to various start-ups and enterprises for the technology
transformation to Go. He has been a speaker at numerous technology conferences,
including GopherCon India.

Shiju has authored two books on Go, titled Web Development with Go and Go Recipes, both
published by Apress.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1786466201.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201
https://www.amazon.com/dp/1786466201

Table of Contents
Preface 1

Chapter 1: Ready... Steady... Go! 8

A little bit of history 9
Installing Go 9

Linux 10
Go Linux advanced installation 10

Windows 11
Mac OS X 11
Setting the workspace – Linux and Apple OS X 12

Starting with Hello World 13
Integrated Development Environment – IDE 14
Types 15
Variables and constants 16
Operators 17
Flow control 18

The if… else statement 18
The switch statement 19
The for…range statement 19

Functions 20
What does a function look like? 20
What is an anonymous function? 21
Closures 22
Creating errors, handling errors and returning errors. 22
Function with undetermined number of parameters 23

Naming returned types 24
Arrays, slices, and maps 24

Arrays 24
Zero-initialization 24

Slices 25
Maps 26

Visibility 26
Zero-initialization 27
Pointers and structures 29

What is a pointer? Why are they good? 29
Structs 30

[ii]

Interfaces 32
Interfaces – signing a contract 32

Testing and TDD 34
The testing package 35
What is TDD? 37

Libraries 38
The Go get tool 41
Managing JSON data 42

The encoding package 43
Go tools 45

The golint tool 45
The gofmt tool 46
The godoc tool 47
The goimport tool 47

Contributing to Go open source projects in GitHub 48
Summary 49

Chapter 2: Creational Patterns - Singleton, Builder, Factory, Prototype,
and Abstract Factory Design Patterns 50

Singleton design pattern – having a unique instance of a type in the
entire program 50

Description 50
Objectives 51
Example – a unique counter 51
Requirements and acceptance criteria 52
Writing unit tests first 52
Implementation 54
A few words about the Singleton design pattern 56

Builder design pattern – reusing an algorithm to create many
implementations of an interface 56

Description 57
Objectives 57
Example – vehicle manufacturing 57
Requirements and acceptance criteria 58
Unit test for the vehicle builder 58
Implementation 62
Wrapping up the Builder design pattern 65

Factory method – delegating the creation of different types of payments 66
Description 66
Objectives 66

[iii]

The example – a factory of payment methods for a shop 67
Acceptance criteria 67
First unit test 67
Implementation 70
Upgrading the Debitcard method to a new platform 72
What we learned about the Factory method 74

Abstract Factory – a factory of factories 74
Description 75
The objectives 75
The vehicle factory example, again? 75
Acceptance criteria 76
Unit test 76
Implementation 82
A few lines about the Abstract Factory method 83

Prototype design pattern 83
Description 84
Objective 84
Example 84
Acceptance criteria 84
Unit test 85
Implementation 88
What we learned about the Prototype design pattern 90

Summary 90

Chapter 3: Structural Patterns - Composite, Adapter, and Bridge Design
Patterns 91

Composite design pattern 91
Description 92
Objectives 92
The swimmer and the fish 93
Requirements and acceptance criteria 93
Creating compositions 93
Binary Tree compositions 97
Composite pattern versus inheritance 98
Final words on the Composite pattern 99

Adapter design pattern 99
Description 99
Objectives 100
Using an incompatible interface with an Adapter object 100
Requirements and acceptance criteria 100

[iv]

Unit testing our Printer adapter 100
Implementation 102
Examples of the Adapter pattern in Go's source code 103
What the Go source code tells us about the Adapter pattern 108

Bridge design pattern 108
Description 108
Objectives 108
Two printers and two ways of printing for each 109
Requirements and acceptance criteria 109
Unit testing the Bridge pattern 109
Implementation 116
Reuse everything with the Bridge pattern 119

Summary 120

Chapter 4: Structural Patterns - Proxy, Facade, Decorator, and
Flyweight Design Patterns 121

Proxy design pattern 121
Description 121
Objectives 122
Example 122
Acceptance criteria 122
Unit test 122
Implementation 127
Proxying around actions 130

Decorator design pattern 130
Description 130
Objectives 131
Example 131
Acceptance criteria 131
Unit test 132
Implementation 136
A real-life example – server middleware 138

Starting with the common interface, http.Handler 139
A few words about Go's structural typing 144
Summarizing the Decorator design pattern – Proxy versus Decorator 145

Facade design pattern 145
Description 145
Objectives 146
Example 146
Acceptance criteria 146

[v]

Unit test 147
Implementation 151
Library created with the Facade pattern 153

Flyweight design pattern 154
Description 154
Objectives 154
Example 155
Acceptance criteria 155
Basic structs and tests 155
Implementation 158
What's the difference between Singleton and Flyweight then? 162

Summary 163

Chapter 5: Behavioral Patterns - Strategy, Chain of Responsibility, and
Command Design Patterns 164

Strategy design pattern 164
Description 165
Objectives 165
Rendering images or text 165
Acceptance criteria 166
Implementation 167
Solving small issues in our library 172
Final words on the Strategy pattern 179

Chain of responsibility design pattern 179
Description 179
Objectives 180
A multi-logger chain 180
Unit test 181
Implementation 186
What about a closure? 188
Putting it together 191

Command design pattern 191
Description 191
Objectives 192
A simple queue 193
Acceptance criteria 193
Implementation 193
More examples 195
Chain of responsibility of commands 197
Rounding-up the Command pattern up 199

[vi]

Summary 200

Chapter 6: Behavioral Patterns - Template, Memento, and Interpreter
Design Patterns 201

Template design pattern 201
Description 202
Objectives 202
Example – a simple algorithm with a deferred step 202
Requirements and acceptance criteria 203
Unit tests for the simple algorithm 203
Implementing the Template pattern 205
Anonymous functions 206
How to avoid modifications on the interface 209
Looking for the Template pattern in Go's source code 212
Summarizing the Template design pattern 213

Memento design pattern 214
Description 214
Objectives 214
A simple example with strings 215
Requirements and acceptance criteria 215
Unit test 215
Implementing the Memento pattern 219
Another example using the Command and Facade patterns 221
Last words on the Memento pattern 225

Interpreter design pattern 225
Description 226
Objectives 226
Example – a polish notation calculator 226
Acceptance criteria for the calculator 226
Unit test of some operations 227
Implementation 228
Complexity with the Interpreter design pattern 232
Interpreter pattern again – now using interfaces 233
The power of the Interpreter pattern 235

Summary 236

Chapter 7: Behavioral Patterns - Visitor, State, Mediator, and Observer
Design Patterns 237

Visitor design pattern 237
Description 238

[vii]

Objectives 238
A log appender 238
Acceptance criteria 239
Unit tests 239
Implementation of Visitor pattern 243
Another example 245
Visitors to the rescue! 250

State design pattern 250
Description 250
Objectives 250
A small guess the number game 251
Acceptance criteria 251
Implementation of State pattern 251
A state to win and a state to lose 256
The game built using the State pattern 257

Mediator design pattern 257
Description 257
Objectives 257
A calculator 258
Acceptance criteria 258
Implementation 258
Uncoupling two types with the Mediator 262

Observer design pattern 262
Description 262
Objectives 263
The notifier 263
Acceptance criteria 263
Unit tests 264
Implementation 268
Summary 272

Chapter 8: Introduction to Gos Concurrency 273

A little bit of history and theory 273
Concurrency versus parallelism 274
CSP versus actor-based concurrency 276

Goroutines 277
Our first Goroutine 277
Anonymous functions launched as new Goroutines 279
WaitGroups 280

Callbacks 283

[viii]

Callback hell 285
Mutexes 286

An example with mutexes – concurrent counter 287
Presenting the race detector 288

Channels 291
Our first channel 291
Buffered channels 293
Directional channels 295
The select statement 296
Ranging over channels too! 300

Using it all – concurrent singleton 301
Unit test 301
Implementation 302

Summary 307

Chapter 9: Concurrency Patterns - Barrier, Future, and Pipeline Design
Patterns 308

Barrier concurrency pattern 309
Description 309
Objectives 309
An HTTP GET aggregator 309
Acceptance criteria 310
Unit test – integration 311
Implementation 314
Waiting for responses with the Barrier design pattern 318

Future design pattern 319
Description 319
Objectives 321
A simple asynchronous requester 321
Acceptance criteria 321
Unit tests 322
Implementation 326
Putting the Future together 330

Pipeline design pattern 330
Description 330
Objectives 330
A concurrent multi-operation 331
Acceptance criteria 331
Beginning with tests 331
Implementation 333

[ix]

The list generator 336
Raising numbers to the power of 2 336
Final reduce operation 337
Launching the Pipeline pattern 337

Final words on the Pipeline pattern 338
Summary 338

Chapter 10: Concurrency Patterns - Workers Pool and
Publish/Subscriber Design Patterns 340

Workers pool 340
Description 341
Objectives 341
A pool of pipelines 341
Acceptance criteria 341
Implementation 342

The dispatcher 343
The pipeline 345

An app using the workers pool 349
No tests? 351
Wrapping up the Worker pool 353

Concurrent Publish/Subscriber design pattern 353
Description 353
Objectives 354
Example – a concurrent notifier 354
Acceptance criteria 355
Unit test 356

Testing subscriber 356
Testing publisher 360

Implementation 364
Implementing the publisher 367
Handling channels without race conditions 368

A few words on the concurrent Observer pattern 370
Summary 371

Index 372

Preface
Welcome to the book Go Design Patterns! With this book, you'll learn basic and advanced
techniques and patterns with the Go language. Don't worry if you have never written Go
code before; this book will gradually introduce you to the various concepts in Go
programming. At the same time, experts will find many tips and tricks on the language, so I
encourage you to not miss any chapter. If you already know the classic design patterns,
you'll find this book very handy, not only as a reference book but also as a way to learn
idiomatic Go approaches to solve common problems that you may already know.

The book is divided in three sections:

Introduction to the Go language: This is the first part of the book, where you'll
learn the basic syntax, the tools that comes with the binary distributions, basic
testing, JSON parsing, and more. We leave concurrency for a later chapter to
focus on the way that the syntax and the compiler work in a typical Go app.
Classic design patterns in idiomatic Go: The second section presents the classic
design patterns but as we will see, they are quite different, partly because of the
lack of inheritance in Go, but also because we have different and more optimal
ways to solve the same problems. A newcomer to the language will find the
examples in this section very useful as a way to understand the roots of Go and
the idiomatic ways in which you can solve problems using Go in the same
manner as you would solve in languages such as Java or C++. Most examples are
presented by using TDD and some of them even show examples within Go
standard library that uses these patterns.
Concurrency patterns: The focus in this section is learning about concurrent
structures and parallel execution. You will learn most of the primitives in Go to
write concurrent apps, and we will develop some of the classical design patterns
with concurrent structures to maximize parallelism. Also, we will learn some of
the typical structures to develop concurrent apps in Go. You learn how a classical
pattern can become more complex if we need it to work in a concurrent way but
the idea is to understand Go concurrent primitives so that the reader finishes the
book knowing how to write their own concurrent design patterns by using the
knowledge taken from the book.

The book will slowly raise the difficulty of some tasks. We have explained tips and tricks in
every chapter.

Preface

[2]

What this book covers
Chapter 1, Ready… Steady…Go!, attempts to help newcomers to the Go programming
language who have some background in any other programming language. It will begin by
showing how to install the Go environment in a Linux machine, moving to syntax, type and
flow control.

Chapter 2, Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory
Design Patterns, introduces the problems that can arise when an object creation or
management is particularly complex or expensive using the Singleton, Builder, Factory, and
Abstract Factory design patterns.

Chapter 3, Structural Patterns - Composite, Adapter, and Bridge Design Patterns, deals with the
first set of Structural patterns about object composition to get some new functionality. Such
as creating an intermediate object and using of various objects as if there is only one.

Chapter 4, Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns, is less
oriented to multi-object composition but focuses more on obtaining new functionality in
existing objects. The Decorator pattern is commonly used to follow the open-closed
principle. Facade is extensively used in API’s where you want a single source for many
sources of information and actions. Flyweight is not so common but it’s a very useful
pattern when the memory is becoming a problem caused by a large collection of similar
objects. Finally, the Proxy pattern wraps on an object to provide the same functionality, but
at the same time, adding something to the proxy’s functionality.

Chapter 5, Behavioral patterns - Strategy, Chain of Responsibility, Command, and Mediator
Design Patterns, deals with the first behavioral pattern to make objects react in an expected
or bounded way. We’ll start with the Strategy pattern, perhaps the most important design
pattern in object-oriented programming, as many design patterns have something in
common with it. Then we’ll move to the Chain of Responsibility to build chains of objects
that can decide which between them must deal with a particular case. Finally, Command
pattern to encapsulate actions that don’t necessarily need to be executed immediately or
must be stored.

Chapter 6, Behavioral Patterns - Template, Memento, and Interpreter Design Patterns, continues
with Behavioral patterns introducing the Interpreter pattern, a quite complex pattern to
create small languages and Interpreters for them. It can be very useful when a problem can
be solved by inventing a small language for it. The Memento pattern is in front of our eyes
every day with the Undo button in apps. The Template pattern helps developers by
defining an initial structure of an operation so that the final users of the code can finish it.

Preface

[3]

Chapter 7, Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns, depicts
the Observer pattern, an important pattern that is becoming tremendously popular in
distributed systems and reactive programming. The Visitor pattern deals with complex
hierarchies of objects where you need to apply a particular action depending on the object.
Finally, the State pattern is commonly used in video games and finite state machines and
allows an object to change its behavior depending on its own state.

Chapter 8, Introduction to Go's Concurrency, explains with more detail the CSP concurrency
model used in Go by going through some examples using Goroutines and channels, as well
as mutexes and syncs.

Chapter 9, Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns, will introduce
some of the CSP concurrency patterns that are idiomatic to the Go language by walking
through some examples and explanations. These are small but really powerful patterns so
we will provides a few examples of the use of each of them, as well as some schemas (if
possible) that will make the understanding of each of them easier.

Chapter 10, Concurrency Patterns - Workers Pool, and Publish or Subscriber Design Patterns,
talks about a couple of patterns with concurrent structures. We will explain every step in
detail so you can follow the examples carefully. The idea is to learn patterns to design
concurrent applications in idiomatic Go. We are using channels and Goroutines heavily,
instead of locks or sharing variables.

What you need for this book
Most of the chapters in this book are written following a simple TDD approach, here the
requirements are written first, followed by some unit tests and finally the code that satisfies
those requirements. We will use only tools that comes with the standard library of Go as a
way to better understand the language and its possibilities. This idea is key to follow the
book and understanding the way that Go solves problems, especially in distributed systems
and concurrent applications.

Who this book is for
This book is for both beginners and advanced-level developers in the Go programming
language. No knowledge of design patterns is expected.

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "we need
a main function to use it as libraries cannot be converted to executable files directly."

A block of code is set as follows:

 package main

 func main() {
 ten := 10
 if ten == 20 {
 println("This shouldn't be printed as 10 isn't equal to 20")
 } else {
 println("Ten is not equals to 20")
 }
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 if "a" == "b" || 10 == 10 || true == false {
 println("10 is equal to 10")
 } else if 11 == 11 && "go" == "go" {
 println("This won't because previous condition was satisfied")
 }
 }

Any command-line input or output is written as follows:

$ go run main.go

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /G o - D e s i g n - P a t t e r n s . We also have other code bundles from our rich catalog of
books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/Go-Design-Patterns
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[7]

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Ready... Steady... Go!

Design Patterns have been the foundation for hundreds of thousands of pieces of software.
Since the Gang Of Four (Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides)
wrote the book Design Patterns: Elements of Reusable Object-Oriented Software in 1994 with
examples in C++ and Smalltalk, the twenty-three classic patterns have been re-implemented
in most of major languages of today and they have been used in almost every project you
know about.

The Gang of Four detected that many small architectures were present in many of their
projects, they started to rewrite them in a more abstract way and they released the famous
book.

This book is a comprehensive explanation and implementation of the most common design
patterns from the Gang of Four and today's patterns plus some of the most idiomatic
concurrency patterns in Go.

But what is Go…?

Ready... Steady... Go!

[9]

A little bit of history
On the last 20 years, we have lived an incredible growth in computer science. Storage
spaces have been increased dramatically, RAM has suffered a substantial growth, and
CPU's are… well… simply faster. Have they grown as much as storage and RAM memory?
Not really, CPU industry has reached a limit in the speed that their CPU's can deliver,
mainly because they have become so fast that they cannot get enough power to work while
they dissipate enough heat. The CPU manufacturers are now shipping more cores on each
computer. This situation crashes against the background of many systems programming
languages that weren't designed for multi-processor CPUs or large distributed systems that
act as a unique machine. In Google, they realized that this was becoming more than an issue
while they were struggling to develop distributed applications in languages like Java or C++
that weren't designed with concurrency in mind.

At the same time, our programs were bigger, more complex, more difficult to maintain and
with a lot of room for bad practices. While our computers had more cores and were faster,
we were not faster when developing our code neither our distributed applications. This was
Go's target.

Go design started in 2007 by three Googlers in the research of a programming language that
could solve common issues in large scale distributed systems like the ones you can find at
Google. The creators were:

Rob Pike: Plan 9 and Inferno OS.
Robert Griesemer: Worked at Google's V8 JavaScript engine that powers Google
Chrome.
Ken Thompson: Worked at Bell labs and the Unix team. It has been involved in
designing of the Plan 9 operating system as well as the definition of the UTF-8
encoding.

In 2008, the compiler was done and the team got the help of Russ Cox and Ian Lance Taylor.
The team started their journey to open source the project in 2009 and in March 2012 they
reached a version 1.0 after more than fifty releases.

Installing Go
Any Go Installation needs two basic things: the binaries of the language somewhere on
your disk and a GOPATH path in your system where your projects and the projects that
you download from other people will be stored.

Ready... Steady... Go!

[10]

In the following lines, we will explore how to install Go binaries in Linux, Windows and OS
X. For a detailed explanation of how to install the latest version of Go, you can refer to the
official documentation at h t t p s ://g o l a n g . o r g /d o c /i n s t a l l .

Linux
To install Go in Linux you have two options:

Easy option: Use your distribution package manager:
RHEL/Fedora/Centos users with YUM/DNF:
sudo yum install -y golang

Ubuntu/Debian users using APT with:
sudo apt-get install -y golang

Advanced: Downloading the latest distribution from h t t p s ://g o l a n g . o r g .

I recommend using the second and downloading a distribution. Go's updates maintains
backward compatibility and you usually should not be worried about updating your Go
binaries frequently.

Go Linux advanced installation
The advanced installation of Go in Linux requires you to download the binaries from
golang webpage. After entering https://golang.org, click the Download Go button
(usually at the right) some Featured Downloads option is available for each distribution.
Select Linux distribution to download the latest stable version.

At https://golang.org you can also download beta versions of the
language.

Let's say we have saved the tar.gz file in Downloads folder so let's extract it and move it
to a different path. By convention, Go binaries are usually placed in /usr/local/go
directory:

 tar -zxvf go*.*.*.linux-amd64.tar.gz
 sudo mv go /usr/local/go

On extraction remember to replace asterisks (*) with the version you have downloaded.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org

Ready... Steady... Go!

[11]

Now we have our Go installation in/usr/local/go path so now we have to add the bin
subfolder to our PATH and the bin folder within our GOPATH.

 mkdir -p $HOME/go/bin

With -p we are telling bash to create all directories that are necessary. Now we need to
append bin folder paths to our PATH, append the following lines at the end of your
~/.bashrc:

 export PATH=$PATH:/usr/local/go/bin

Check that our go/bin directory is available:

 $ go version
 Go version go1.6.2 linux/amd64

Windows
To install Go in Windows, you will need administrator privileges. Open your favorite
browser and navigate to https://golang.org. Once there click the Download Go button
and select Microsoft Windows distribution. A *.msi file will start downloading.

Execute the MSI installer by double clicking it. An installer will appear asking you to accept
the End User License Agreement (EULA) and select a target folder for your installation. We
will continue with the default path that in my case was C:\Go.

Once the installation is finished you will have to add the binary Go folder, located in
C:\Go\bin to your Path. For this, you must go to Control Panel and select System option.
Once in System, select the Advanced tab and click the Environment variables button. Here
you'll find a window with variables for your current user and system variables. In system
variables, you'll find the Path variable. Click it and click the Edit button to open a text box.
You can add your path by adding ;C:\Go/bin at the end of the current line (note the
semicolon at the beginning of the path). In recent Windows versions (Windows 10) you will
have a manager to add variables easily.

Mac OS X
In Mac OS X the installation process is very similar to Linux. Open your favorite browser
and navigate to https://golang.org and click the Download Go. From the list of possible
distributions that appear, select Apple OS X. This will download a *.pkg file to your
download folder.

https://golang.org

Ready... Steady... Go!

[12]

A window will guide you through the installation process where you have to type your
administrator password so that it can put Go binary files in /usr/local/go/bin folder
with the proper permissions. Now, open Terminal to test the installation by typing this on
it:

 $ go version
 Go version go1.6.2 darwin/amd64

If you see the installed version, everything was fine. If it doesn't work check that you have
followed correctly every step or refer to the documentation at https://golang.org.

Setting the workspace – Linux and Apple OS X
Go will always work under the same workspace. This helps the compiler to find packages
and libraries that you could be using. This workspace is commonly called GOPATH.

GOPATH has a very important role in your working environment while developing Go
software. When you import a library in your code it will search for this library in your
$GOPATH/src. The same when you install some Go apps, binaries will be stored in
$GOPATH/bin.

At the same, all your source code must be stored in a valid route within $GOPATH/src
folder. For example, I store my projects in GitHub and my username is Sayden so, for a
project called minimal-mesos-go-framework I will have this folder structure
like $GOPATH/src/github.com/sayden/minimal-mesos-go-framework which reflects
the URI where this repo is stored at GitHub:

 mkdir -p $HOME/go

The $HOME/go path is going to be the destination of our $GOPATH. We have to set an
environment variable with our $GOPATH pointing to this folder. To set the environment
variable, open again the file $HOME/.bashrc with your favorite text editor and add the
following line at the end of it:

 export GOPATH=${HOME}/go

Save the file and open a new terminal. To check that everything is working, just write an
echo to the $GOPATH variable like this:

 echo $GOPATH/home/mcastro/go

If the output of the preceding command points to your chosen Go path, everything is
correct and you can continue to write your first program.

https://golang.org

Ready... Steady... Go!

[13]

Starting with Hello World
This wouldn't be a good book without a Hello World example. Our Hello World example
can't be simpler, open your favorite text editor and create a file called main.go within our
$GOPATH/src/[your_name]/hello_world with the following content:

package main

func main(){
println("Hello World!")
}

Save the file. To run our program, open the Terminal window of your operating system:

In Linux, go to programs and find a program called Terminal.
In Windows, hit Windows + R, type cmd without quotes on the new window and
hit Enter.
In Mac OS X, hit Command + Space to open a spotlight search, type terminal
without quotes. The terminal app must be highlighted so hit Enter.

Once we are in our terminal, navigate to the folder where we have created our main.go file.
This should be under your $GOPATH/src/[your_name]/hello_world and execute it:

 go run main.go
 Hello World!

That's all. The go run [file] command will compile and execute our application but it
won't generate an executable file. If you want just to build it and get an executable file, you
must build the app using the following command:

 go build -o hello_world

Nothing happens. But if you search in the current directory (ls command in Linux and Mac
OS X; and dir in Windows), you'll find an executable file with the name hello_world. We
have given this name to the executable file when we wrote -o hello_world command
while building. You can now execute this file:

 /hello_world
 Hello World!

And our message appeared! In Windows, you just need to type the name of the .exe file to
get the same result.

Ready... Steady... Go!

[14]

The go run [my_main_file.go] command will build and execute the
app without intermediate files.
The go build -o [filename] command will create an executable file
that I can take anywhere and has no dependencies.

Integrated Development Environment – IDE
An IDE (Integrated Development Environment) is basically a user interface to help
developers, code their programs by providing a set of tools to speed up common tasks
during development process like compiling, building, or managing dependencies. The IDEs
are powerful tools that take some time to master and the purpose of this book is not to
explain them (an IDE like Eclipse has its own books).

In Go, you have many options but there are only two that are fully oriented to Go
development LiteIDE and Intellij Gogland. LiteIDE is not the most powerful though but
Intellij has put lots of efforts to make Gogland a very nice editor with completion,
debugging, refactoring, testing, visual coverage, inspections, etc. Common IDEs or text
editors that have a Go plugin/integration are as following:

IntelliJ Idea
Sublime Text 2/3
Atom
Eclipse

But you can also find Go plugins for:

Vim
Visual Studio and Visual Code

The IntelliJ Idea and Atom IDEs, for the time of this writing, has the support for debugging
using a plugin called Delve. The IntelliJ Idea is bundled with the official Go plugin. In
Atom you'll have to download a plugin called Go-plus and a debugger that you can find
searching the word Delve.

Ready... Steady... Go!

[15]

Types
Types give the user the ability to store values in mnemonic names. All programming
languages have types related with numbers (to store integers, negative numbers, or floating
point for example) with characters (to store a single character) with strings (to store
complete words) and so on. Go language has the common types found in most
programming languages:

The bool keyword is for Boolean type which represents a True or False state.
Many numeric types being the most common:

The int type represents a number from 0 to 4294967295 in 32 bits
machines and from 0 to 18446744073709551615 in 64 bits.
The byte type represents a number from 0 to 255.
The float32 and float64 types are the set of all IEEE-754 64/-bit
floating-point numbers respectively.
You also have signed int type like rune which is an alias of
int32 type, a number that goes from -2147483648 to 2147483647
and complex64 and complex128 which are the set of all complex
numbers with float32/ float64 real and imaginary parts like
2.0i.

The string keyword for string type represents an array of characters enclosed in
quotes like "golang" or "computer".
An array that is a numbered sequence of elements of a single type and a fixed
size (more about arrays later in this chapter). A list of numbers or lists of words
with a fixed size is considered arrays.
The slice type is a segment of an underlying array (more about this later in this
chapter). This type is a bit confusing at the beginning because it seems like an
array but we will see that actually, they are more powerful.
The structures that are the objects that are composed of another objects or types.
The pointers (more about this later in this chapter)are like directions in the
memory of our program (yes, like mailboxes that you don't know what's inside).
The functions are interesting (more about this later in this chapter). You can also
define functions as variables and pass them to other functions (yes, a function
that uses a function, did you like Inception movie?).
The interface is incredibly important for the language as they provide many
encapsulation and abstraction functionalities that we'll need often. We'll use
interfaces extensively during the book and they are presented in greater detail
later.

Ready... Steady... Go!

[16]

The map types are unordered key-value structures. So for a given key, you have
an associated value.
The channels are the communication primitive in Go for concurrency programs.
We'll look on channels with more detail on Chapter 8, Dealing with Go's CSP
concurrency.

Variables and constants
Variables are spaces in computer's memory to store values that can be modified during the
execution of the program. Variables and constants have a type like the ones described in
preceding text. Although, you don't need to explicitly write the type of them (although you
can do it). This property to avoid explicit type declaration is what is called Inferred types.
For example:

 //Explicitly declaring a "string" variable
 var explicit string = "Hello, I'm a explicitly declared variable"

Here we are declaring a variable (with the keyword var) called explicit of string type. At
the same time, we are defining the value to Hello World!.

 //Implicitly declaring a "string". Type inferred
inferred := ", I'm an inferred variable "

But here we are doing exactly the same thing. We have avoided the var keyword and the
string type declaration. Internally, Go's compiler will infer (guess) the type of the variable
to a string type. This way you have to write much less code for each variable definition.

The following lines use the reflect package to gather information about a variable. We are
using it to print the type of (the TypeOf variable in the code) of both variables:

 fmt.Println("Variable 'explicit' is of type:",
 reflect.TypeOf(explicit))
 fmt.Println("Variable 'inferred' is of type:",
 reflect.TypeOf(inferred))

When we run the program, the result is the following:

 $ go run main.go
 Hello, I'm a explicitly declared variable
 Hello, I'm an inferred variable
 Variable 'explicit' is of type: string
 Variable 'inferred' is of type: string

Ready... Steady... Go!

[17]

As we expected, the compiler has inferred the type of the implicit variable to string too.
Both have written the expected output to the console.

Operators
The operators are used to perform arithmetic operations and make comparisons between
many things. The following operators are reserved by Go language.

Most commonly used operators are the arithmetic operators and comparators. Arithmetic
operators are as following:

The + operator for sums
The - operator for subtractions
The * operator for multiplications
The / operator for divisions
The % operator for division remainders
The ++ operator to add 1 to the current variable
The -- operator to subtract 1 to the current variable

On the other side, comparators are used to check the differences between two statements:

The == operator to check if two values are equal
The != operator to check if two values are different
The > operator to check if left value is higher than right value
The < operator to check if left value is lower than right value
The >= operator to check if left value is higher or equal to right value
The <= operator to check if left value is lower or equal to right value
The &&operator to check if two values are true

Ready... Steady... Go!

[18]

You also have the shifters to perform a binary shift to left or right of a value and a negated
operator to invert some value. We´ll use these operators a lot during the following chapters
so don´t worry too much about them now, just keep in mind that you cannot set the name
of any variable, field or function in your code like this operators.

What's the inverted value of 10? What's the negated value of 10? -10?
Incorrect.. 10 in binary code is 1010 so if we negate every number we will
have 0101 or 101 which is the number 5.

Flow control
Flow control is referred as the ability to decide which portion of code or how many times
you execute some code on a condition. In Go, it is implemented using familiar imperative
clauses like if, else, switch and for. The syntax is easy to grasp. Let´s review major flow
control statements in Go.

The if… else statement
Go language, like most programming languages, has if…else conditional statement for
flow control. The Syntax is similar to other languages but you don't need to encapsulate the
condition between parenthesis:

ten := 10
if ten == 20 {
 println("This shouldn't be printed as 10 isn't equal to 20")
} else {
 println("Ten is not equals to 20");
}

The else...if condition works in a similar fashion, you don't need parentheses either and
they are declared as programmer would expect:

if "a" == "b" || 10 == 10 || true == false {
 println("10 is equal to 10")
 } else if 11 == 11 &&"go" == "go" {
 println("This isn't print because previous condition was satisfied");
 } else {
 println("In case no condition is satisfied, print this")
 }
}

Ready... Steady... Go!

[19]

Go does not have ternary conditions like condition ? true : false.

The switch statement
The switch statement is also similar to most imperative languages. You take a variable and
check possible values for it:

number := 3
switch(number){
 case 1:
 println("Number is 1")
 case 2:
 println("Number is 2")
 case 3:
 println("Number is 3")
}

The for…range statement
The _for_ loop is also similar than in common programming languages but you don't use
parentheses either

for i := 0; i<=10; i++ {
 println(i)
}

As you have probably imagined if you have computer science background, we infer an int
variable defined as 0 and execute the code between the brackets while the condition
(i<=10) is satisfied. Finally, for each execution, we added 1 to the value of i. This code will
print the numbers from 0 to 10. You also have a special syntax to iterate over arrays or slices
which is range:

for index, value := range my_array {
 fmt.Printf("Index is %d and value is %d", index, value)
}

First, the fmt (format) is a very common Go package that we will use extensively to give
shape to the message that we will print in the console.

Ready... Steady... Go!

[20]

Regarding for, you can use the range keyword to retrieve every item in a collection like
my_array and assign them to the value temporal variable. It will also give you an index
variable to know the position of the value you're retrieving. It's equivalent to write the
following:

for index := 0, index < len(my_array); index++ {
 value := my_array[index]
 fmt.Printf("Index is %d and value is %d", index, value)
}

The len method is used to know the length of a collection.

If you execute this code, you'll see that the result is the same.

Functions
A function is a small portion of code that surrounds some action you want to perform and
returns one or more values (or nothing). They are the main tool for developer to maintain
structure, encapsulation, and code readability but also allow an experienced programmer to
develop proper unit tests against his or her functions.

Functions can be very simple or incredibly complex. Usually, you'll find that simpler
functions are also easier to maintain, test and debug. There is also a very good advice in
computer science world that says: A function must do just one thing, but it must do it damn well.

What does a function look like?
A function is a piece of code with its own variables and flow that doesn't affect anything
outside of the opening and close brackets but global package or program variables.
Functions in Go has the following composition:

func [function_name] (param1 type, param2 type...) (returned type1,
returned type2...) {
 //Function body
}

Following the previous definition, we could have the following example:

func hello(message string) error {

Ready... Steady... Go!

[21]

 fmt.Printf("Hello %s\n", message)
 return nil
}

Functions can call other functions. For example, in our previous hello function, we are
receiving a message argument of type string and we are calling a different function
fmt.Printf("Hello %s\n", message) with our argument as parameter. Functions can
also be used as parameters when calling other functions or be returned.

It is very important to choose a good name for your function so that it is very clear what it is
about without writing too many comments over it. This can look a bit trivial but choosing a
good name is not so easy. A short name must show what the function does and let the
reader imagine what error is it handling or if it's doing any kind of logging. Within your
function, you want to do everything that a particular behavior need but also to control
expected errors and wrapping them properly.

So, to write a function is more than simply throw a couple of lines that does what you need,
that's why it is important to write a unit test, make them small and concise.

What is an anonymous function?
An anonymous function is a function without a name. This is useful when you want to
return a function from another function that doesn't need a context or when you want to
pass a function to a different function. For example, we will create a function that accepts
one number and returns a function that accepts a second number that it adds it to the first
one. The second function does not have a declarative name (as we have assigned it to a
variable) that is why it is said to be anonymous:

func main(){
 add := func(m int){
 return m+1
}

 result := add(6)

 //1 + 6 must print 7
 println(result)
}

The add variable points to an anonymous function that adds one to the specified parameter.
As you can see, it can be used only for the scope its parent function main and cannot be
called from anywhere else.

Ready... Steady... Go!

[22]

Anonymous functions are really powerful tools that we will use extensively on design
patterns.

Closures
Closures are something very similar to anonymous functions but even more powerful. The
key difference between them is that an anonymous function has no context within itself and
a closure has. Let's rewrite the previous example to add an arbitrary number instead of one:

func main(){
 addN := func(m int){
 return func(n int){
 return m+n
 }
 }

 addFive := addN(5)
 result := addN(6)
 //5 + 6 must print 7
 println(result)
}

The addN variable points to a function that returns another function. But the returned
function has the context of the m parameter within it. Every call to addN will create a new
function with a fixed m value, so we can have main addN functions, each adding a different
value.

This ability of closures is very useful to create libraries or deal with functions with
unsupported types.

Creating errors, handling errors and returning
errors.
Errors are extensively used in Go, probably thanks to its simplicity. To create an error
simply make a call to errors.New(string) with the text you want to create on the error.
For example:

err := errors.New("Error example")

Ready... Steady... Go!

[23]

As we have seen before, we can return errors to a function. To handle an error you'll see the
following pattern extensively in Go code:

func main(){
 err := doesReturnError()
 if err != nil {
 panic(err)
 }
}

func doesReturnError() error {
 err := errors.New("this function simply returns an error")
 return err
}

Function with undetermined number of
parameters
Functions can be declared as variadic. This means that its number of arguments can vary.
What this does is to provide an array to the scope of the function that contains the
arguments that the function was called with. This is convenient if you don't want to force
the user to provide an array when using this function. For example:

func main() {
 fmt.Printf("%d\n", sum(1,2,3))
 fmt.Printf("%d\n", sum(4,5,6,7,8))
}

func sum(args ...int) (result int) {
 for _, v := range args {
 result += v
 }
 return
}

In this example, we have a sum function that will return the sum of all its arguments but
take a closer look at the main function where we call sum. As you can see now, first we call
sum with three arguments and then with five arguments. For sum functions, it doesn't
matter how many arguments you pass as it treats its arguments as an array all in all. So on
our sum definition, we simply iterate over the array to add each number to the result
integer.

Ready... Steady... Go!

[24]

Naming returned types
Have you realized that we have given a name to the returned type? Usually, our declaration
would be written as func sum(args int) int but you can also name the variable that
you'll use within the function as a return value. Naming the variable in the return type
would also zero-value it (in this case, an int will be initialized as zero). At the end, you just
need to return the function (without value) and it will take the respective variable from the
scope as returned value. This also makes easier to follow the mutation that the returning
variable is suffering as well as to ensure that you aren't returning a mutated argument.

Arrays, slices, and maps
Arrays are one of the most widely used types of computer programming. They are lists of
other types that you can access by using their position on the list. The only downside of
an array is that its size cannot be modified. Slices allow the use of arrays with variable size.
The maps type will let us have a dictionary like structures in Go. Let's see how each work.

Arrays
An array is a numbered sequence of elements of a single type. You can store 100 different
unsigned integers in a unique variable, three strings or 400 bool values. Their size cannot
be changed.

You must declare the length of the array on its creation as well as the type. You can also
assign some value on creation. For example here you have 100 int values all with 0 as
value:

var arr [100]int

Or an array of size 3 with strings already assigned:

arr := [3]string{"go", "is", "awesome"}

Here you have an array of 2 bool values that we initialize later:

var arr [2]bool
arr[0] = true
arr[1] = false

Ready... Steady... Go!

[25]

Zero-initialization
In our previous example, we have initialized an array of bool values of size 2. We
wouldn't need to assign arr[1] to false because of the nature of zero-initialization in the
language. Go will initialize every value in a bool array to false. We will look deeper to
zero-initialization later in this chapter.

Slices
Slices are similar to arrays, but their size can be altered on runtime. This is achieved, thanks
to the underlying structure of a slice that is an array. So, like arrays, you have to specify the
type of the slice and its size. So, use the following line to create a slice:

mySlice := make([]int, 10)

This command has created an underlying array of ten elements. If we need to change the
size of the slice by, for example, adding a new number, we would append the number to
the slice:

mySlice := append(mySlice, 5)

The syntax of append is of the form ([array to append an item to], [item to append]) and
returns the new slice, it does not modify the actual slice. This is also true to delete an item.
For example, let's delete the first item of the array as following:

mySlice := mySlice[1:]

Yes, like in arrays. But what about deleting the second item? We use the same syntax:

mySlice = append(mySlice[:1], mySlice[2:]...)

We take all elements from zero index (included) to the first index (not included) and each
element from the second index (included) to the end of the array, effectively deleting the
value at the second position in the slice (index 1 as we start counting with 0). As you can
see, we use the undetermined arguments syntax as the second parameter.

Ready... Steady... Go!

[26]

Maps
Maps are like dictionaries–for each word, we have a definition but we can use any type as
word or definition and they'll never be ordered alphabetically. We can create maps of string
that point to numbers, a string that points to interfaces and structs that point to int
and int to function. You cannot use as key: slices, the functions, and maps. Finally, you
create maps by using the keyword make and specifying the key type and the value type:

myMap := make(map[string]int)
myMap["one"] = 1
myMap["two"] = 2
fmt.Println(myMap["one"])

When parsing JSON content, you can also use them to get a string[interface] map:

myJsonMap := make(map[string]interface{})
jsonData := []byte(`{"hello":"world"}`)
err := json.Unmarshal(jsonData, &myJsonMap)
if err != nil {
panic(err)
}
fmt.Printf("%s\n", myJsonMap["hello"])

The myJsonMap variable is a map that will store the contents of JSON and that we will need
to pass its pointer to the Unmarshal function. The jsonData variable declares an array of
bytes with the typical content of a JSON object; we are using this as the mock object. Then,
we unmarshal the contents of the JSON storing the result of the memory location of
myJsonMap variable. After checking that the conversion was ok and the JSON byte array
didn't have syntax mistakes, we can access the contents of the map in a JSON-like syntax.

Visibility
Visibility is the attribute of a function or a variable to be visible to different parts of the
program. So a variable can be used only in the function that is declared, in the entire
package or in the entire program.

How can I set the visibility of a variable or function? Well, it can be confusing at the
beginning but it cannot be simpler:

Uppercase definitions are public (visible in the entire program).
Lowercase are private (not seen at the package level) and function definitions
(variables within functions) are visible just in the scope of the function.

Ready... Steady... Go!

[27]

Here you can see an example of a public function:

package hello

func Hello_world(){
 println("Hello World!")
}

Here, Hello_world is a global function (a function that is visible across the entire source
code and to third party users of your code). So, if our package is called hello, we could call
this function from outside of this package by using hello.Hello_world() method.

package different_package

import "github.com/sayden/go-design-patters/first_chapter/hello"

func myLibraryFunc() {
hello.Hello_world()
}

As you can see, we are in the different_package package. We have to import the
package we want to use with the keyword import. The route then is the path within your
$GOPATH/src that contains the package we are looking for. This path conveniently matches
the URL of a GitHub account or any other Concurrent Versions System(CVS) repository.

Zero-initialization
Zero-initialization is a source of confusion sometimes. They are default values for many
types that are assigned even if you don't provide a value for the definition. Following are
the zero-initialization for various types:

The false initialization for bool type.
Using 0 values for int type.
Using 0.0 for float type.
Using "" (empty strings) for string type.
Using nil keyword for pointers, functions, interfaces, slices, channels and maps.
Empty struct for structures without fields.
Zero-initialized struct for structures with fields. The zero value of a structure is
defined as the structure that has its fields initialized as zero value too.

Ready... Steady... Go!

[28]

Zero-initialization is important when programming in Go because you won't be able to
return a nil value if you have to return an int type or a struct. Keep this in mind, for
example, in functions where you have to return a bool value. Imagine that you want to
know if a number is divisible by a different number but you pass 0 (zero) as the divisor.

func main() {
 res := divisibleBy(10,0)
 fmt.Printf("%v\n", res)
}

func divisibleBy(n, divisor int) bool {
 if divisor == 0 {
 //You cannot divide by zero
 return false
 }

 return (n % divisor == 0)
}

The output of this program is false but this is incorrect. A number divided by zero is an
error, it's not that 10 isn't divisible by zero but that a number cannot be divided by zero by
definition. Zero-initialization is making things awkward in this situation. So, how can we
solve this error? Consider the following code:

func main() {
 res, err := divisibleBy(10,0)
 if err != nil {
log.Fatal(err)
 }

 log.Printf("%v\n", res)
}

func divisibleBy(n, divisor int) (bool, error) {
 if divisor == 0 {
 //You cannot divide by zero
 return false, errors.New("A number cannot be divided by zero")
 }

 return (n % divisor == 0), nil
}

We're dividing 10 by 0 again but now the output of this function is A number cannot be
divided by zero. Error captured, the program finished gracefully.

Ready... Steady... Go!

[29]

Pointers and structures
Pointers are the number one source of a headache of every C or C++ programmer. But they
are one of the main tools to achieve high-performance code in non-garbage-collected
languages. Fortunately for us, Go's pointers have achieved the best of both worlds by
providing high-performance pointers with garbage-collector capabilities and easiness.

On the other side for its detractors, Go lacks inheritance in favor of composition. Instead of
talking about the objects that are in Go, your objects have other . So, instead of having a car
structure that inherits the class vehicle (a car is a vehicle), you could have a vehicle
structure that contains a car structure within.

What is a pointer? Why are they good?
Pointers are hated, loved, and very useful at the same time. To understand what a pointer is
can be difficult so let's try with a real world explanation. As we mentioned earlier in this
chapter, a pointer is a like a mailbox. Imagine a bunch of mailboxes in a building; all of
them have the same size and shape but each refers to a different house within the building.
Just because all mailboxes are the same size does not mean that each house will have the
same size. We could even have a couple of houses joined, a house that was there but now
has a license of commerce, or a house that is completely empty. So the pointers are the
mailboxes, all of them of the same size and that refer to a house. The building is our
memory and the houses are the types our pointers refer to and the memory they allocate. If
you want to receive something in your house, it's far easier to simply send the address of
your house (to send the pointer) instead of sending the entire house so that your package is
deposited inside. But they have some drawbacks as if you send your address and your
house (variable it refers to) disappears after sending, or its type owner change–you'll be in
trouble.

How is this useful? Imagine that somehow you have 4 GB of data in a variable and you
need to pass it to a different function. Without a pointer, the entire variable is cloned to the
scope of the function that is going to use it. So, you'll have 8 GB of memory occupied by
using this variable twice that, hopefully, the second function isn't going to use in a different
function again to raise this number even more.

You could use a pointer to pass a very small reference to this chunk to the first function so
that just the small reference is cloned and you can keep your memory usage low.

While this isn't the most academic nor exact explanation, it gives a good view of what a
pointer is without explaining what a stack or a heap is or how they work in x86
architectures.

Ready... Steady... Go!

[30]

Pointers in Go are very limited compared with C or C++ pointers. You can't use pointer
arithmetic nor can you create a pointer to reference an exact position in the stack.

Pointers in Go can be declared like this:

number := 5

Here number := 5 code represents our 4 GB variable and pointer_to_number contains
the reference (represented by an ampersand) to this variable. It's the direction to the
variable (the one that you put in the mailbox of this house/type/variable). Let's print
the variable pointer_to_number , which is a simple variable:

println(pointer_to_number)
0x005651FA

What's that number? Well, the direction to our variable in memory. And how can I print the
actual value of the house? Well, with an asterisk (*) we tell the compiler to take the value
that the pointer is referencing, which is our 4 GB variable.

 println(*pointer_to_number)
5

Structs
A struct is an object in Go. It has some similarities with classes in OOP as they have fields.
Structs can implement interfaces and declare methods. But, for example, in Go, there's not
inheritance. Lack of inheritance looks limiting but in fact, composition over inheritance was a
requirement of the language.

To declare a structure, you have to prefix its name with the keyword type and suffix with
the keyword struct and then you declare any field or method between brackets, for
example:

type Person struct {
 Name string
 Surname string
 Hobbies []string
 id string
}

Ready... Steady... Go!

[31]

In this piece of code, we have declared a Person structure with three public fields (Name,
Age , and Hobbies) and one private field (id, if you recall the Visibility section in this
chapter, lowercase fields in Go refers to private fields are just visible within the same
package). With this struct, we can now create as many instances of Person as we want.
Now we will write a function called GetFullName that will give the composition of the
name and the surname of the struct it belongs to:

func (person *Person) GetFullName() string {
 return fmt.Sprintf("%s %s", person.Name, person.Surname)
}

func main() {
 p := Person{
 Name: "Mario",
 Surname: "Castro",
 Hobbies: []string{"cycling", "electronics", "planes"},
 id: "sa3-223-asd",
 }

 fmt.Printf("%s likes %s, %s and %s\n", p.GetFullName(), p.Hobbies[0],
p.Hobbies[1], p.Hobbies[2])
}

Methods are defined similarly to functions but in a slightly different way. There is a(p
*Person) that refers to a pointer to the created instance of the struct (recall the Pointers
section in this chapter). It's like using the keyword this in Java or self in Python when
referring to the pointing object.

Maybe you are thinking why does (p *Person) have the pointer operator to reflect that p is
actually a pointer and not a value? This is because you can also pass Person by value by
removing the pointer signature, in which case a copy of the value of Person is passed to the
function. This has some implications, for example, any change that you make in p if you
pass it by value won't be reflected in source p. But what about our GetFullName()
method?

func (person Person) GetFullName() string {
 return fmt.Sprintf("%s %s", person.Name, person.Surname)
}

Its console output has no effect in appearance but a full copy was passed before evaluating
the function. But if we modify person here, the source p won't be affected and the new
person value will be available only on the scope of this function.

Ready... Steady... Go!

[32]

On the main function, we create an instance of our structure called p. As you can see, we
have used implicit notation to create the variable (the := symbol). To set the fields, you
have to refer to the name of the field, colon, the value, and the comma (don't forget the
comma at the end!). To access the fields of the instantiated structure, we just refer to them
by their name like p.Name or p.Surname. You use the same syntax to access the methods of
the structure like p.GetFullName().

The output of this program is:

$ go run main.go
Mario Castro likes cycling, electronics and planes

Structures can also contain another structure (composition) and implement interface
methods apart from their own but, what's an interface method?

Interfaces
Interfaces are essential in object-oriented programming, in functional programming
(traits) and, especially, in design patterns. Go's source code is full of interfaces
everywhere because they provide the abstraction needed to deliver uncoupled code with
the help of functions. As a programmer, you also need this type of abstraction when you
write libraries but also when you write code that is going to be maintained in the future
with new functionality.

Interfaces are something difficult to grasp at the beginning but very easy once you have
understood their behavior and provide very elegant solutions for common problems. We
will use them extensively during this book so put special focus on this section.

Interfaces – signing a contract
An interface is something really simple but powerful. It's usually defined as a contract
between the objects that implement it but this explanation isn't clear enough in my honest
opinion for newcomers to the interface world.

A water-pipe is a contract too; whatever you pass through it must be a liquid. Anyone can
use the pipe, and the pipe will transport whatever liquid you put in it (without knowing the
content). The water-pipe is the interface that enforces that the users must pass liquids (and
not something else).

Ready... Steady... Go!

[33]

Let's think about another example: a train. The railroads of a train are like an interface. A
train must construct (implement) its width with a specified value so that it can enter the
railroad but the railroad never knows exactly what it's carrying (passengers or cargo). So for
example, an interface of the railroad will have the following aspect:

type RailroadWideChecker interface {
 CheckRailsWidth() int
}

The RailroadWideChecker is the type our trains must implement to provide information
about their width. The trains will verify that the train isn't too wide or too narrow to use its
railroads:

type Railroad struct {
 Width int
}

func (r *Railroad) IsCorrectSizeTrain(r RailRoadWideChecker) bool {
 return r.CheckRailsWidth() != r.Width
}

The Railroad is implemented by an imaginary station object that contains the information
about the width of the railroads in this station and that has a method to check whether a
train fits the needs of the railroad with the IsCorrectSizeTrain method. The
IsCorrectSizeTrain method receives an interface object which is a pointer to a train that
implements this interface and returns a validation between the width of the train and the
railroad:

Type Train struct {
 TrainWidth int
}

func (p *Train) CheckRailsWidth() int {
 return p.TrainWidth
}

Now we have created a passenger's train. It has a field to contain its width and implements
our CheckRailsWidth interface method. This structure is considered to fulfill the needs of
a RailRoadWideChecker interface (because it has an implementation of the methods that
the interfaces ask for).

So now, we'll create a railroad of 10 units wide and two trains–one of 10 units wide that fit
the railroad size and another of 15 units that cannot use the railroad.

func main(){
 railroad := Railroad{Width:10}

Ready... Steady... Go!

[34]

 passengerTrain := Train{TrainWidth: 10}
 cargoTrain := Train {TrainWidth: 15}

 canPassengerTrainPass := railroad.IsCorrectSizeTrain(passengerTrain)
 canCargoTrainPass := railroad.IsCorrectSizeTrain(cargoTrain)

 fmt.Printf("Can passenger train pass? %b\n", canPassengerTrainPass)
 fmt.Printf("Can cargo train pass? %b\n", canCargoTrainPass)
}

Let's dissect this main function. First, we created a railroad object of 10 units called
railroad. Then two trains, of 10 and 15 units' width for passengers and cargo
respectively. Then, we pass both objects to the railroad method that accepts interfaces of the
RailroadWideChecker interface. The railroad itself does not know the width of each train
separately (we'll have a huge list of trains) but it has an interface that trains must implement
so that it can ask for each width and returns a value telling you if a train can or cannot use
of the railroads. Finally, the output of the call to printf function is the following:

 Can passenger train pass? true
 Can cargo train pass? false

As I mentioned earlier, interfaces are so widely used during this book that it doesn't matter
if it still looks confusing for the reader as they'll be plenty of examples during the book.

Testing and TDD
When you write the first lines of some library, it's difficult to introduce many bugs. But once
the source code gets bigger and bigger, it becomes easier to break things. The team grows
and now many people are writing the same source code, new functionality is added on top
of the code that you wrote at the beginning. And code stopped working by some
modification in some function that now nobody can track down.

This is a common scenario in enterprises that testing tries to reduce (it doesn't completely
solve it, it's not a holy grail). When you write unit tests during your development process,
you can check whether some new feature is breaking something older or whether your
current new feature is achieving everything expected in the requirements.

Go has a powerful testing package that allows you also to work in a TDD environment
quite easily. It is also very convenient to check the portions of your code without the need to
write an entire main application that uses it.

Ready... Steady... Go!

[35]

The testing package
Testing is very important in every programming language. Go creators knew it and decided
to provide all libraries and packages needed for the test in the core package. You don't need
any third-party library for testing or code coverage.

The package that allows for testing Go apps is called, conveniently, testing. We will create a
small app that sums two numbers that we provide through the command line:

func main() {
 //Atoi converts a string to an int
 a, _ := strconv.Atoi(os.Args[1])
 b, _ := strconv.Atoi(os.Args[2])

 result := sum(a,b)
 fmt.Printf("The sum of %d and %d is %d\n", a, b, result)
}

func sum(a, b int) int {
 return a + b
}

Let's execute our program in the terminal to get the sum:

 $ go run main.go 3 4
 The sum of 3 and 4 is 7

By the way, we're using the strconv package to convert strings to other types, in this case,
to int. The method Atoi receives a string and returns an int and an error that, for
simplicity, we are ignoring here (by using the underscore).

You can ignore variable returns by using the underscores if necessary, but
usually, you don't want to ignore errors.

Ok, so let's write a test that checks the correct result of the sum. We're creating a new file
called main_test.go. By convention, test files are named like the files they're testing plus
the _test suffix:

func TestSum(t *testing.T) {
 a := 5
 b := 6
 expected := 11

 res := sum(a, b)

Ready... Steady... Go!

[36]

 if res != expected {
 t.Errorf("Our sum function doens't work, %d+%d isn't %d\n", a, b,
res)
 }
}

Testing in Go is used by writing methods started with the prefix Test, a test name, and the
injection of the testing.T pointer called t. Contrary to other languages, there are no
asserts nor special syntax for testing in Go. You can use Go syntax to check for errors and
you call t with information about the error in case it fails. If the code reaches the end of the
Test function without arising errors, the function has passed the tests.

To run a test in Go, you must use the go test -v command (-v is to receive verbose
output from the test) keyword, as following:

 $ go test -v
 === RUN TestSum
 --- PASS: TestSum (0.00s)
 PASS
 ok github.com/go-design-patterns/introduction/ex_xx_testing 0.001s

Our tests were correct. Let's see what happens if we break things on purpose and we
change the expected value of the test from 11 to 10:

 $ go test
 --- FAIL: TestSum (0.00s)
 main_test.go:12: Our sum function doens't work, 5+6 isn't 10
 FAIL
 exit status 1
 FAIL github.com/sayden/go-design-patterns/introduction/ex_xx_testing
0.002s

The test has failed (as we expected). The testing package provides the information you set
on the test. Let's make it work again and check test coverage. Change the value of the
variable expected from 10 to 11 again and run the command go test -cover to see
code coverage:

 $ go test -cover
 PASS
 coverage: 20.0% of statements
 ok github.com/sayden/go-design-patterns/introduction/ex_xx_testing
0.001s

The -cover options give us information about the code coverage for a given package.
Unfortunately, it doesn't provide information about overall application coverage.

Ready... Steady... Go!

[37]

What is TDD?
TDD is the acronym for Test Driven Development. It consists of writing the tests first
before writing the function (instead of what we did just before when we wrote the sum
function first and then we wrote the test function).

TDD changes the way to write code and structure code so that it can be tested (a lot of code
you can find in GitHub, even code that you have probably written in the past is probably
very difficult, if not impossible, to test).

So, how does it work? Let's explain this with a real life example–imagine that you are in
summer and you want to be refreshed somehow. You can build a pool, fill it with cold
water, and jump into it. But in TDD terms, the steps will be:

You jump into a place where the pool will be built (you write a test that you1.
know it will fail).
It hurts… and you aren't cool either (yes… the test failed, as we predicted).2.
You build a pool and fill it with cold water (you code the functionality).3.
You jump into the pool (you repeat the point 1 test again).4.
You're cold now. Awesome! Object completed (test passed).5.
Go to the fridge and take a beer to the pool. Drink. Double awesomeness (refactor6.
the code).

So let's repeat the previous example but with a multiplication. First, we will write the
declaration of the function that we're going to test:

func multiply(a, b int) int {
 return 0
}

Now let's write the test that will check the correctness of the previous function:

import "testing"

func TestMultiply(t *testing.T) {
 a := 5
 b := 6
 expected := 30

 res := multiply(a, b)
 if res != expected {
 t.Errorf("Our multiply function doens't work, %d*%d isn't %d\n", a,
b, res)
 }

Ready... Steady... Go!

[38]

}

And we test it through the command line:

$ go test
--- FAIL: TestMultiply (0.00s)
main_test.go:12: Our multiply function doens't work, 5+6 isn't 0
FAIL
exit status 1
FAIL github.com/sayden/go-
designpatterns/introduction/ex_xx_testing/multiply
0.002s

Nice. Like in our pool example where the water wasn't there yet, our function returns an
incorrect value too. So now we have a function declaration (but isn't defined yet) and the
test that fails. Now we have to make the test pass by writing the function and executing the
test to check:

func multiply(a, b int) int {
 return a*b
}

And we execute again our testing suite. After writing our code correctly, the test should
pass so we can continue to the refractoring process:

$ go test
PASS
ok github.com/sayden/go-design-
patterns/introduction/ex_xx_testing/multiply
0.001s

Great! We have developed the multiply function following TDD. Now we must refactor
our code but we cannot make it more simple or readable so the loop can be considered
closed.

During this book, we will write many tests that define the functionality that we want to
achieve in our patterns. TDD promotes encapsulation and abstraction (just like design
patterns do).

Libraries
Until now, most of our examples were applications. An application is defined by its main
function and package. But with Go, you can also create pure libraries. In libraries, the
package need not be called main nor do you need the main function.

Ready... Steady... Go!

[39]

As libraries aren't applications, you cannot build a binary file with them and you need the
main package that is going to use them.

For example, let's create an arithmetic library to perform common operations on integers:
sums, subtractions, multiplications, and divisions. We'll not get into many details about the
implementation to focus on the particularities of Go's libraries:

package arithmetic

func Sum(args ...int) (res int) {
 for _, v := range args {
 res += v
 }
 return
}

First, we need a name for our library; we set this name by giving a name to the entire
package. This means that every file in this folder must have this package name too and the
entire group of files composes the library called arithmetic too in this case (because it only
contains one package). This way, we won't need to refer to the filenames for this library and
to provide the library name and path will be enough to import and use it. We have defined
a Sum function that takes as many arguments as you need and that will return an integer
that, during the scope of the function, is going to be called res. This allows us to initialize
to 0 the value we're returning. We defined a package (not the main package but a library
one) and called it arithmetic. As this is a library package, we can't run it from the
command line directly so we'll have to create the main function for it or a unit test file. For
simplicity , we'll create a main function that runs some of the operations now but let's finish
the library first:

func Subtract(args ...int) int {
 if len(args) < 2 {
 return 0
 }

 res := args[0]
 for i := 1; i < len(args); i++ {
 res -= args[i]
 }
 return res
}

The Subtraction code will return 0 if the number of arguments is less than zero and the
subtraction of all its arguments if it has two arguments or more:

func Multiply(args ...int) int {

Ready... Steady... Go!

[40]

 if len(args) < 2 {
 return 0
 }

 res := 1
 for i := 0; i < len(args); i++ {
 res *= args[i]
 }
 return res
}

The Multiply function works in a similar fashion. It returns 0 when arguments are less
than two and the multiplication of all its arguments when it has two or more. Finally,
the Division code changes a bit because it will return an error if you ask it to divided by
zero:

func Divide(a, b int) (float64, error) {
 if b == 0 {
 return 0, errors.New("You cannot divide by zero")
 }
 return float64(a) / float64(b), nil
}

So now we have our library finished, but we need a main function to use it as libraries
cannot be converted to executable files directly. Our main function looks like the following:

package main

import (
"fmt"

"bitbucket.org/mariocastro/go-design-
patterns/introduction/libraries/arithmetic"
)

func main() {
 sumRes := arithmetic.Sum(5, 6)
 subRes := arithmetic.Subtract(10, 5)
 multiplyRes := arithmetic.Multiply(8, 7)
 divideRes, _ := arithmetic.Divide(10, 2)

 fmt.Printf("5+6 is %d. 10-5 is %d, 8*7 is %d and 10/2 is %f\n", sumRes,
subRes, multiplyRes, divideRes)
}

Ready... Steady... Go!

[41]

We are performing an operation over every function that we have defined. Take a closer
look at the import clause. It is taking the library we have written from its folder within
$GOPATH that matches its URL in https://bitbucket.org/. Then, to use every one of the
functions that are defined within a library, you have to name the package name that the
library has before each method.

Have you realized that we called our functions with uppercase names?
Because of the visibility rules we have seen before, exported functions in a
package must have uppercase names or they won't be visible outside of
the scope of the package. So, with this rule in mind, you cannot call a
lowercase function or variable within a package and package calls will
always be followed by uppercase names.

Let's recall, some naming conventions about libraries:

Each file in the same folder must contain the same package name. Files don't
need to be named in any special way.
A folder represents a package name within a library. The folder name will be
used on import paths and it doesn't need to reflect the package name (although
it's recommended for the parent package).
A library is one or many packages representing a tree that you import by the
parent of all packages folder.
You call things within a library by their package name.

The Go get tool
Go get is a tool to get third party projects from CVS repositories. Instead of using the git
clone command, you can use Go get to receive a series of added benefits. Let's write an
example using CoreOS's ETCD project which is a famous distributed key-value store.

CoreOS's ETCD is hosted on GitHub at https://github.com/coreos/etcd.git. To
download this project source code using the Go get tool, we must type in the Terminal it's
resulting import path that it will have in our GOPATH:

$ go get github.com/coreos/etcd

Note that we have just typed the most relevant information so that Go get figures out the
rest. You'll get some output, depending on the state of the project, but after, while, it will
disappear. But what did happen?

https://bitbucket.org/
https://github.com/coreos/etcd.git

Ready... Steady... Go!

[42]

Go get has created a folder in $GOPATH/src/github.com/coreos.
It has cloned the project in that location, so now the source code of ETCD is
available at $GOPATH/src/github.com/coreos/etcd.
Go get has cloned any repository that ETCD could need.
It has tried to install the project if it is not a library. This means, it has generated a
binary file of ETCD and has put it in $GOPATH/bin folder.

By simply typing the go get [project] command, you'll get all that material from a
project in your system. Then in your Go apps, you can just use any library by importing the
path within the source. So for the ETCD project, it will be:

import "github.com/coreos/etcd"

It's very important that you get familiar with the use of the Go get tool and stop using git
clone when you want a project from a Git repository. This will save you some headaches
when trying to import a project that isn't contained within your GOPATH.

Managing JSON data
JSON is the acronym for JavaScript Object Notation and, like the name implies, it's
natively JavaScript. It has become very popular and it's the most used format for
communication today. Go has very good support for JSON serialization/deserialization
with the JSON package that does most of the dirty work for you. First of all, there are two
concepts to learn when working with JSON:

Marshal: When you marshal an instance of a structure or object, you are
converting it to its JSON counterpart.
Unmarshal: When you are unmarshaling some data, in the form of an array of
bytes, you are trying to convert some JSON-expected-data to a known struct or
object. You can also unmarshal to a map[string]interface{} in a fast but not
very safe way to interpret the data as we'll see now.

Let's see an example of marshaling a string:

import (
"encoding/json"
"fmt"
)

func main(){
 packt := "packt"

Ready... Steady... Go!

[43]

 jsonPackt, ok := json.Marshal(packt)
 if !ok {
 panic("Could not marshal object")
 }
 fmt.Println(string(jsonPackt))
}
$ "pack"

First, we have defined a variable called packt to hold the contents of the packt string.
Then, we have used the json library to use the Marshal command with our new variable.
This will return a new bytearray with the JSON and a flag to provide and boolOK result
for the operation. When we print the contents of the bytes array (previous casting to string)
the expected value appears. Note that packt appeared actually between quotes as the JSON
representation would be.

The encoding package
Have you realized that we have imported the package encoding/json? Why is it prefixed
with the word encoding? If you take a look at Go's source code to the src/encoding
folder you'll find many interesting packages for encoding/decoding such as, XML, HEX,
binary, or even CSV.

Now something a bit more complicated:

type MyObject struct {
 Number int
 `json:"number"`
 Word string
}

func main(){
 object := MyObject{5, "Packt"}
 oJson, _ := json.Marshal(object)
 fmt.Printf("%s\n", oJson)
}
$ {"Number":5,"Word":"Packt"}

Conveniently, it also works pretty well with structures but what if I want to not use
uppercase in the JSON data? You can define the output/input name of the JSON in the
structure declaration:

type MyObject struct {
 Number int
 Word string
}

Ready... Steady... Go!

[44]

func main(){
 object := MyObject{5, "Packt"}
 oJson, _ := json.Marshal(object)
 fmt.Printf("%s\n", oJson)
}
$ {"number":5,"string":"Packt"}

We have not only lowercased the names of the keys, but we have even changed the name of
the Word key to string.

Enough of marshalling, we will receive JSON data as an array of bytes, but the process is
very similar with some changes:

type MyObject struct {
Number int`json:"number"`
Word string`json:"string"`
}

func main(){
 jsonBytes := []byte(`{"number":5, "string":"Packt"}`)
 var object MyObject
 err := json.Unmarshal(jsonBytes, &object)
 if err != nil {
 panic(err)
 }
 fmt.Printf("Number is %d, Word is %s\n", object.Number, object.Word)
}

The big difference here is that you have to allocate the space for the structure first (with a
zero value) and the pass the reference to the method Unmarshal so that it tries to fill it.
When you use Unmarshal, the first parameter is the array of bytes that contains the JSON
information while the second parameter is the reference (that's why we are using an
ampersand) to the structure we want to fill. Finally, let's use a generic
map[string]interface{} method to hold the content of a JSON:

type MyObject struct {
 Number int `json:"number"`
 Word string `json:"string"`
}

func main(){
 jsonBytes := []byte(`{"number":5, "string":"Packt"}`)
 var dangerousObject map[string]interface{}
 err := json.Unmarshal(jsonBytes, &dangerousObject)
 if err != nil {
 panic(err)
 }

Ready... Steady... Go!

[45]

 fmt.Printf("Number is %d, ", dangerousObject["number"])
 fmt.Printf("Word is %s\n", dangerousObject["string"])
 fmt.Printf("Error reference is %v\n",
dangerousObject["nothing"])
}
$ Number is %!d(float64=5), Word is Packt
Error reference is <nil>

What happened in the result? This is why we described the object as dangerous. You can
point to a nil location when using this mode if you call a non-existing key in the JSON. Not
only this, like in the example, it could also interpret a value as a float64 when it is simply
a byte, wasting a lot of memory.

So remember to just use map[string]interface{} when you need dirty quick access to
JSON data that is fairly simple and you have under control the type of scenarios described
previously.

Go tools
Go comes with a series of useful tools to ease the development process every day. Also in
the golang page of GitHub, there are some tools that are supported by the Go team but they
are not part of the compiler.

Most of the projects use tools such as gofmt so that all the code base looks similar. Godoc
helps us to find useful information in Go's documentation and the goimport command to
auto-import the packages we are using. Let's see them.

The golint tool
A linter analyzes source code to detect errors or improvements. The golint linter is
available on h t t p s ://g i t h u b . c o m /g o l a n g /l i n t for installation (it doesn't come bundled
with the compiler). It is very easy to use and is integrated some IDEs to be run when you
save a source code file (Atom or Sublime Text, for example). Do you remember the
implicit/explicit code that we run when talking about variables? Let's lint it:

//Explicitly declaring a "string" variable
var explicit string = "Hello, I'm a explicitly declared variable"
//Implicitly declaring a "string".
Type inferred inferred := ", I'm an inferred variable "

$ golint main.go

https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint

Ready... Steady... Go!

[46]

The main.go:10:21: command should omit the type string from the declaration of
the explicitString variable; it will be inferred from the right-hand side.

It is telling us that Go compiler will actually infer this type of a variable from the code and
you don't need to declare its type. What about the Train type on the interface section?

Type Train struct {
 TrainWidth int
}

$ golint main.go

The main.go:5:6: type exported Train type should have a comment or remain not
exported.

In this case, it's pointing us that a public type such as Train type must be commented so
that users can read the generated documentation to know its behavior.

The gofmt tool
The gofmt tool comes bundled with the compiler that already has access to it. Its purpose is
to provide a set of indentation, formatting, spacing and few other rules to achieve good-
looking Go code. For example, let's take the code of Hello World and make it a bit weirder
by inserting spaces everywhere:

package main

func main(){
 println("Hello World!")
}

$ gofmt main.go
package main

func main() {
 println("Hello World!")
}

The gofmt command prints it correctly again. What is more, we can use the -w flag to
overwrite the original file:

 $ gofmt -w main.go

And now we'll have our file properly corrected.

Ready... Steady... Go!

[47]

The godoc tool
Go documentation is pretty extended and verbose. You can find detailed information about
any topic you want to achieve. The godoc tool also helps you access this documentation
directly from the command line. For example, we can query the package encoding/json:

$godoc cmd/encoding/json
[...]
FUNCTIONS
func Compact(dst *bytes.Buffer, src []byte) error
Compact appends to dst the JSON-encoded src with insignificant space
characters elided.
func HTMLEscape(dst *bytes.Buffer, src []byte)
[...]

You can also use grep, a bash utility for Linux and Mac, to find specific information about
some functionality. For example, we'll use grep to look for text that mentions anything
about parsing JSON files:

$ godoc cmd/encoding/json | grep parse

The Unmarshal command parses the JSON encoded data and stores the result in the object
being parsed.

One of the things that the golint command warns about is to use the beginning of a
comment with the same name of the function it describes. This way, if you don't remember
the name of the function that parses JSON, you can use godoc with grep and search for
parse so the beginning of the line will always be the function name like in the example
preceding the Unmarshal command.

The goimport tool
The goimport tool is a must have in Go. Sometimes you remember your packages so well
that you don't need to search much to remember their API but it's more difficult to
remember the project they belong to when doing the import. The goimport command
helps you by searching your $GOPATH for occurrences of a package that you could be using
to provide you with the project import line automatically. This is very useful if you
configure your IDE to run goimport on save so that all used packages in the source file are
imported automatically if you used them. It also works the other way around–if you delete
the function you were using from a package and the package isn't being used anymore, it
will remove the import line.

Ready... Steady... Go!

[48]

Contributing to Go open source projects in
GitHub
One important thing to mention about Go packaging system is that it needs to have a
proper folder structure within the GOPATH. This introduces a small problem when
working with GitHub projects. We are used to forking a project, cloning our fork and start
working before committing the pull-request to the original project. Wrong!

When you fork a project, you create a new repository on GitHub within your username. If
you clone this repository and start working with it, all new import references in the project
will point to your repository instead of the original! Imagine the following case in the
original repository:

package main
import "github.com/original/a_library"
[some code]

Then, you make a fork and add a subfolder with a library called a_library/my_library
that you want to use from the main package. The result is going to be the following:

package main
import (
 "github.com/original/a_library"
 "github.com/myaccount/a_library/my_library"
)

Now if you commit this line, the original repository that contains the code you have pushed
will download this code anyways from your account again and it will use the references
downloaded! Not the ones contained in the project!

So, the solution to this is simply to replace the git clone command with a go get
pointing to the original library:

$ go get github.com/original/a_library
$ cd $GOPATH/src/github.com/original/a_library
$ git remote add my_origin https://github.com/myaccount/a_libbrary

With this modification, you can work normally in the original code without fear as the
references will stay correct. Once you are done you just have to commit and push to your
remote.

$ git push my_origin my_brach

This way, you can now access the GitHub web user interface and open the pull request
without polluting the actual original code with references to your account.

Ready... Steady... Go!

[49]

Summary
After this first chapter, you must be familiar with the syntax of Go and some of the
command-line tools that come bundled with the compiler. We have left apart concurrency
capabilities for a later chapter as they are large and pretty complex to grasp at the beginning
so that the reader learns the syntax of the language first, becomes familiar and confident
with it, and then they can jump to understanding Communicating Sequential Processes
(CSP) concurrency patterns and distributed applications. The next steps are to start with the
creational design patterns.

2
Creational Patterns - Singleton,
Builder, Factory, Prototype, and

Abstract Factory Design
Patterns

We have defined two types of cars-luxury and family. The car Factory will have to return
The first groups of design patterns that we are going to cover are the Creational patterns. As
the name implies, it groups common practices for creating objects, so object creation is more
encapsulated from the users that need those objects. Mainly, creational patterns try to give
ready-to-use objects to users instead of asking for their creation, which, in some cases, could
be complex, or which would couple your code with the concrete implementations of the
functionality that should be defined in an interface.

Singleton design pattern – having a unique
instance of a type in the entire program
Have you ever done interviews for software engineers? It's interesting that when you ask
them about design patterns, more than 80% will mention Singleton design pattern. Why is
that? Maybe it's because it is one of the most used design patterns out there or one of the
easiest to grasp. We will start our journey on creational design patterns because of the latter
reason.

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[51]

Description
The Singleton pattern is easy to remember. As the name implies, it will provide you with a
single instance of an object, and guarantee that there are no duplicates.

At the first call to use the instance, it is created and then reused between all the parts in the
application that need to use that particular behavior.

You'll use the Singleton pattern in many different situations. For example:

When you want to use the same connection to a database to make every query
When you open a Secure Shell (SSH) connection to a server to do a few tasks,
and don't want to reopen the connection for each task
If you need to limit the access to some variable or space, you use a Singleton as
the door to this variable (we'll see in the following chapters that this is more
achievable in Go using channels anyway)
If you need to limit the number of calls to some places, you create a Singleton
instance to make the calls in the accepted window

The possibilities are endless, and we have just mentioned some of them.

Objectives
As a general guide, we consider using the Singleton pattern when the following rule
applies:

We need a single, shared value, of some particular type.
We need to restrict object creation of some type to a single unit along the entire
program.

Example – a unique counter
As an example of an object of which we must ensure that there is only one instance, we will
write a counter that holds the number of times it has been called during program
execution. It shouldn't matter how many instances we have of the counter, all of them must
count the same value and it must be consistent between the instances.

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[52]

Requirements and acceptance criteria
There are some requirements and acceptance criteria to write the described single counter.
They are as follows:

When no counter has been created before, a new one is created with the value 0
If a counter has already been created, return this instance that holds the actual
count
If we call the method AddOne, the count must be incremented by 1

We have a scenario with three tests to check in our unit tests.

Writing unit tests first
Go's implementation of this pattern is slightly different from what you'll find in pure object-
oriented languages such as Java or C++, where you have static members. In Go, there's
nothing like static members, but we have package scope to deliver a similar result.

To set up our project, we must create a new folder within our $GOPATH/src directory. The
general rule as we mentioned in the Chapter 1, Ready… Steady… Go!, is to create a subfolder
with the VCS provider (such as GitHub), the username, and the name of the project.

For example, in my case, I use GitHub as my VCS and my username is sayden, so I will
create the path $GOPATH/src/github.com/sayden/go-design-
patterns/creational/singleton. The go-design-patterns instance in the path is
the project name, the creational subfolder will also be our library name, and singleton the
name of this particular package and subfolder:

mkdir -p $GOPATH/src/github.com/sayden/go-design-
patterns/creational/singleton

cd $GOPATH/src/github.com/sayden/go-design-patterns/creational/singleton

Create a new file inside the singleton folder called singleton.go to also reflect the name
of the package and write the following package declarations for the singleton type:

package singleton

type Singleton interface {
 AddOne() int
}

type singleton struct {

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[53]

 count int
}

var instance *singleton

func GetInstance() Singleton {
 return nil
}
func (s *singleton) AddOne() int {
 return 0
}

As we are following a TDD approach while writing the code, let's code the tests that use the
functions we have just declared. The tests are going to be defined by following the
acceptance criteria that we have written earlier. By convention in test files, we must create a
file with the same name as the file to test, suffixed with _test.go. Both must reside in the
same folder:

package singleton

import "testing"

func TestGetInstance(t *testing.T) {
 counter1 := GetInstance()

 if counter1 == nil {
 //Test of acceptance criteria 1 failed
 t.Error("expected pointer to Singleton after calling
GetInstance(), not nil")
 }

 expectedCounter := counter1
}

The first test checks something obvious, but no less important, in complex applications. We
actually receive something when we ask for an instance of the counter. We have to think of
it as a Creational pattern–we delegate the creation of the object to an unknown package that
could fail in the creation or retrieval of the object. We also store the current counter in
the expectedCounter variable to make a comparison later:

currentCount := counter1.AddOne()
if currentCount != 1 {
 t.Errorf("After calling for the first time to count, the count must be
1 but it is %d\n", currentCount)
}

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[54]

Now we take advantage of the zero-initialization feature of Go. Remember that integer
types in Go cannot be nil and as we know, that this is the first call to the counter, and it is an
integer type of variable, and we also know that it is zero-initialized. So after the first call to
the AddOne() function, the value of the count must be 1.

The test that checks the second condition proves that the expectedConnection variable is
not different to the returned connection that we requested later. If they were different, the
message Singleton instances must be different will cause the test to fail:

counter2 := GetInstance()
if counter2 != expectedCounter {
 //Test 2 failed
 t.Error("Expected same instance in counter2 but it got a different
instance")
}

The last test is simply counting 1 again with the second instance. The previous result was 1,
so now it must give us 2:

currentCount = counter2.AddOne()
if currentCount != 2 {
 t.Errorf("After calling 'AddOne' using the second counter, the current
count must be 2 but was %d\n", currentCount)
}

The last thing we have to do to finish our test part is to execute the tests to make sure that
they are failing before implementation. If one of them doesn't fail, it implies that we have
done something wrong, and we have to reconsider that particular test. We must open the
terminal and navigate to the path of the singleton package to execute:

 $ go test -v .
 === RUN TestGetInstance
 --- FAIL: TestGetInstance (0.00s)
 singleton_test.go:9: expected pointer to Singleton after
calling GetInstance(), not nil
 singleton_test.go:15: After calling for the first time to
count, the count must be 1 but it is 0
 singleton_test.go:27: After calling 'AddOne' using the second
counter, the current count must be 2 but was 0
 FAIL
 exit status 1
 FAIL

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[55]

Implementation
Finally, we have to implement the Singleton pattern. As we mentioned earlier, we'll usually
write a static method and instance to retrieve the Singleton instance in languages such as
Java or C++. In Go, we don't have the keyword static, but we can achieve the same result
by using the scope of the package. First, we create a struct that contains the object which
we want to guarantee to be a Singleton during the execution of the program:

package creational

type singleton struct{
 count int
}

var instance *singleton

func GetInstance() *singleton {
 if instance == nil {
 instance = new(singleton)
 }
 return instance
}

func (s *singleton) AddOne() int {
 s.count++
 return s.count
}

We must pay close attention to this piece of code. In languages such as Java or C++, the
variable instance would be initialized to NULL at the beginning of the program. In Go, you
can initialize a pointer to a struct as nil, but you cannot initialize a structure to nil (the
equivalent of NULL). So the var instance *singleton line defines a pointer to a struct
of type Singleton as nil, and the variable called instance.

We created a GetInstance method that checks if the instance has not been initialized
already (instance == nil), and creates an instance in the space already allocated in the
line instance = new(singleton). Remember, when we use the keyword new, we are
creating a pointer to an instance of the type between the parentheses.

The AddOne method will take the count of the variable instance, raise it by 1, and return the
current value of the counter.

Let's run now our unit tests again:

 $ go test -v -run=GetInstance

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[56]

 === RUN TestGetInstance
 --- PASS: TestGetInstance (0.00s)
 PASS
 ok

A few words about the Singleton design pattern
We have seen a very simple example of the Singleton pattern, partially applied to some
situation, that is, a simple counter. Just keep in mind that the Singleton pattern will give
you the power to have a unique instance of some struct in your application and that no
package can create any clone of this struct.

With Singleton, you are also hiding the complexity of creating the object, in case it requires
some computation, and the pitfall of creating it every time you need an instance of it if all of
them are similar. All this code writing, checking if the variable already exists, and storage,
are encapsulated in the singleton and you won't need to repeat it everywhere if you use a
global variable.

Here we are learning the classic singleton implementation for single threaded context. We
will see a concurrent singleton implementation when we reach the chapters about
concurrency because this implementation is not thread safe!

Builder design pattern – reusing an
algorithm to create many implementations of
an interface
Talking about Creational design patterns, it looks pretty semantic to have a Builder design
pattern. The Builder pattern helps us construct complex objects without directly
instantiating their struct, or writing the logic they require. Imagine an object that could have
dozens of fields that are more complex structs themselves. Now imagine that you have
many objects with these characteristics, and you could have more. We don't want to write
the logic to create all these objects in the package that just needs to use the objects.

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[57]

Description
Instance creation can be as simple as providing the opening and closing braces {} and
leaving the instance with zero values, or as complex as an object that needs to make some
API calls, check states, and create objects for its fields. You could also have an object that is
composed of many objects, something that's really idiomatic in Go, as it doesn't support
inheritance.

At the same time, you could be using the same technique to create many types of objects.
For example, you'll use almost the same technique to build a car as you would build a bus,
except that they'll be of different sizes and number of seats, so why don't we reuse the
construction process? This is where the Builder pattern comes to the rescue.

Objectives
A Builder design pattern tries to:

Abstract complex creations so that object creation is separated from the object
user
Create an object step by step by filling its fields and creating the embedded
objects
Reuse the object creation algorithm between many objects

Example – vehicle manufacturing
The Builder design pattern has been commonly described as the relationship between a
director, a few Builders, and the product they build. Continuing with our example of the
car, we'll create a vehicle Builder. The process (widely described as the algorithm) of
creating a vehicle (the product) is more or less the same for every kind of vehicle–choose
vehicle type, assemble the structure, place the wheels, and place the seats. If you think
about it, you could build a car and a motorbike (two Builders) with this description, so we
are reusing the description to create cars in manufacturing. The director is represented by
the ManufacturingDirector type in our example.

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[58]

Requirements and acceptance criteria
As far as we have described, we must dispose of a Builder of type Car and Motorbike and
a unique director called ManufacturingDirector to take builders and construct products.
So the requirements for a Vehicle builder example would be the following:

I must have a manufacturing type that constructs everything that a vehicle needs
When using a car builder, the VehicleProduct with four wheels, five seats, and
a structure defined as Car must be returned
When using a motorbike builder, the VehicleProduct with two wheels, two
seats, and a structure defined as Motorbike must be returned
A VehicleProduct built by any BuildProcess builder must be open to
modifications

Unit test for the vehicle builder
With the previous acceptance criteria, we will create a director variable,
the ManufacturingDirector type, to use the build processes represented by the product
builder variables for a car and motorbike. The director is the one in charge of construction
of the objects, but the builders are the ones that return the actual vehicle. So our builder
declaration will look as follows:

package creational

type BuildProcess interface {
 SetWheels() BuildProcess
 SetSeats() BuildProcess
 SetStructure() BuildProcess
 GetVehicle() VehicleProduct
}

This preceding interface defines the steps that are necessary to build a vehicle. Every
builder must implement this interface if they are to be used by the manufacturing. On
every Set step, we return the same build process, so we can chain various steps together in
the same statement, as we'll see later. Finally, we'll need a GetVehicle method to retrieve
the Vehicle instance from the builder:

type ManufacturingDirector struct {}

func (f *ManufacturingDirector) Construct() {
 //Implementation goes here
}

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[59]

func (f *ManufacturingDirector) SetBuilder(b BuildProcess) {
 //Implementation goes here
}

The ManufacturingDirector director variable is the one in charge of accepting the
builders. It has a Construct method that will use the builder that is stored in
Manufacturing, and will reproduce the required steps. The SetBuilder method will
allow us to change the builder that is being used in the Manufacturing director:

type VehicleProduct struct {
 Wheels int
 Seats int
 Structure string
}

The product is the final object that we want to retrieve while using the manufacturing. In
this case, a vehicle is composed of wheels, seats, and a structure:

type CarBuilder struct {}

func (c *CarBuilder) SetWheels() BuildProcess {
 return nil
}

func (c *CarBuilder) SetSeats() BuildProcess {
 return nil
}

func (c *CarBuilder) SetStructure() BuildProcess {
 return nil
}

func (c *CarBuilder) Build() VehicleProduct {
 return VehicleProduct{}
}

The first Builder is the Car builder. It must implement every method defined in the
BuildProcess interface. This is where we'll set the information for this particular builder:

type BikeBuilder struct {}

func (b *BikeBuilder) SetWheels() BuildProcess {
 return nil
}

func (b *BikeBuilder) SetSeats() BuildProcess {
 return nil

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[60]

}

func (b *BikeBuilder) SetStructure() BuildProcess {
 return nil
}

func (b *BikeBuilder) Build() VehicleProduct {
 return VehicleProduct{}
}

The Motorbike structure must be the same as the Car structure, as they are all Builder
implementations, but keep in mind that the process of building each can be very different.
With this declaration of objects, we can create the following tests:

package creational

import "testing"

func TestBuilderPattern(t *testing.T) {
 manufacturingComplex := ManufacturingDirector{}

 carBuilder := &CarBuilder{}
 manufacturingComplex.SetBuilder(carBuilder)
 manufacturingComplex.Construct()

 car := carBuilder.Build()

 //code continues here...

We will start with the Manufacturing director and the Car Builder to fulfill the first two
acceptance criteria. In the preceding code, we are creating our Manufacturing director that
will be in charge of the creation of every vehicle during the test. After creating the
Manufacturing director, we created a CarBuilder that we then passed to manufacturing
by using the SetBuilder method. Once the Manufacturing director knows what it has to
construct now, we can call the Construct method to create the VehicleProduct using
CarBuilder. Finally, once we have all the pieces for our car, we call the GetVehicle
method on CarBuilder to retrieve a Car instance:

if car.Wheels != 4 {
 t.Errorf("Wheels on a car must be 4 and they were %d\n", car.Wheels)
}

if car.Structure != "Car" {
 t.Errorf("Structure on a car must be 'Car' and was %s\n",
car.Structure)
}

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[61]

if car.Seats != 5 {
 t.Errorf("Seats on a car must be 5 and they were %d\n", car.Seats)
}

We have written three small tests to check if the outcome is a car. We checked that the car
has four wheels, the structure has the description Car, and the number of seats is five. We
have enough data to execute the tests and make sure that they are failing so that we can
consider them reliable:

 $ go test -v -run=TestBuilder .
 === RUN TestBuilderPattern
 --- FAIL: TestBuilderPattern (0.00s)
 builder_test.go:15: Wheels on a car must be 4 and they were 0
 builder_test.go:19: Structure on a car must be 'Car' and was
 builder_test.go:23: Seats on a car must be 5 and they were 0
 FAIL

Perfect! Now we will create tests for a Motorbike builder that covers the third and fourth
acceptance criteria:

bikeBuilder := &BikeBuilder{}

manufacturingComplex.SetBuilder(bikeBuilder)
manufacturingComplex.Construct()

motorbike := bikeBuilder.GetVehicle()
motorbike.Seats = 1

if motorbike.Wheels != 2 {
 t.Errorf("Wheels on a motorbike must be 2 and they were %d\n",
motorbike.Wheels)
}

if motorbike.Structure != "Motorbike" {
 t.Errorf("Structure on a motorbike must be 'Motorbike' and was %s\n",
motorbike.Structure)
}

The preceding code is a continuation of the car tests. As you can see, we reuse the
previously created manufacturing to create the bike now by passing the Motorbike builder
to it. Then we hit the construct button again to create the necessary parts, and call the
builder GetVehicle method to retrieve the motorbike instance.

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[62]

Take a quick look, because we have changed the default number of seats for this particular
motorbike to 1. What we want to show here is that even while having a builder, you must
also be able to change the default information in the returned instance to fit some specific
needs. As we set the wheels manually, we won't test this feature.

Re-running the tests triggers the expected behavior:

 $ go test -v -run=Builder .
 === RUN TestBuilderPattern
 --- FAIL: TestBuilderPattern (0.00s)
 builder_test.go:15: Wheels on a car must be 4 and they were 0
 builder_test.go:19: Structure on a car must be 'Car' and was
 builder_test.go:23: Seats on a car must be 5 and they were 0
 builder_test.go:35: Wheels on a motorbike must be 2 and they
were 0
 builder_test.go:39: Structure on a motorbike must be
'Motorbike' and was
 FAIL

Implementation
We will start implementing the manufacturing. As we said earlier (and as we set in our unit
tests), the Manufacturing director must accept a builder and construct a vehicle using the
provided builder. To recall, the BuildProcess interface will define the common steps
needed to construct any vehicle and the Manufacturing director must accept builders and
construct vehicles together with them:

package creational

type ManufacturingDirector struct {
 builder BuildProcess
}

func (f *ManufacturingDirector) SetBuilder(b BuildProcess) {
 f.builder = b
}

func (f *ManufacturingDirector) Construct() {
 f.builder.SetSeats().SetStructure().SetWheels()
}

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[63]

Our ManufacturingDirector needs a field to store the builder in use; this field will be
called builder. The SetBuilder method will replace the stored builder with the one
provided in the arguments. Finally, take a closer look at the Construct method. It takes the
builder that has been stored and reproduces the BuildProcess method that will create a
full vehicle of some unknown type. As you can see, we have used all the setting calls in the
same line thanks to returning the BuildProcess interface on each of the calls. This way the
code is more compact:

Have you realized that the director entity in the Builder pattern is a clear
candidate for a Singleton pattern too? In some scenarios, it could be critical
that just an instance of the Director is available, and that is where you'll
create a Singleton pattern for the Director of the Builder only. Design
patterns composition is a very common technique and a very powerful
one!

type CarBuilder struct {
 v VehicleProduct
}

func (c *CarBuilder) SetWheels() BuildProcess {
 c.v.Wheels = 4
 return c
}

func (c *CarBuilder) SetSeats() BuildProcess {
 c.v.Seats = 5
 return c
}

func (c *CarBuilder) SetStructure() BuildProcess {
 c.v.Structure = "Car"
 return c
}

func (c *CarBuilder) GetVehicle() VehicleProduct {
 return c.v
}

Here is our first builder, the car builder. A builder will need to store a VehicleProduct
object, which here we have named v. Then we set the specific needs that a car has in our
business–four wheels, five seats, and a structure defined as Car. In the GetVehicle
method, we just return the VehicleProduct stored within the Builder that must be already
constructed by the ManufacturingDirector type.

type BikeBuilder struct {

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[64]

 v VehicleProduct
}

func (b *BikeBuilder) SetWheels() BuildProcess {
 b.v.Wheels = 2
 return b
}

func (b *BikeBuilder) SetSeats() BuildProcess {
 b.v.Seats = 2
 return b
}

func (b *BikeBuilder) SetStructure() BuildProcess {
 b.v.Structure = "Motorbike"
 return b
}

func (b *BikeBuilder) GetVehicle() VehicleProduct {
 return b.v
}

The Motorbike Builder is the same as the car builder. We defined a motorbike to have two
wheels, two seats, and a structure called Motorbike. It's very similar to the car object, but
imagine that you want to differentiate between a sports motorbike (with only one seat) and
a cruise motorbike (with two seats). You could simply create a new structure for sports
motorbikes that implements the build process.

You can see that it's a repetitive pattern, but within the scope of every method of the
BuildProcess interface, you could encapsulate as much complexity as you want such that
the user need not know the details about the object creation.

With the definition of all the objects, let's run the tests again:

 === RUN TestBuilderPattern
 --- PASS: TestBuilderPattern (0.00s)
 PASS
 ok _/home/mcastro/pers/go-design-patterns/creational 0.001s

Well done! Think how easy it could be to add new vehicles to the
ManufacturingDirector director just create a new class encapsulating the data for the
new vehicle. For example, let´s add a BusBuilder struct:

type BusBuilder struct {
 v VehicleProduct
}

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[65]

func (b *BusBuilder) SetWheels() BuildProcess {
 b.v.Wheels = 4*2
 return b
}

func (b *BusBuilder) SetSeats() BuildProcess {
 b.v.Seats = 30
 return b
}

func (b *BusBuilder) SetStructure() BuildProcess {
 b.v.Structure = "Bus"
 return b
}

func (b *BusBuilder) GetVehicle() VehicleProduct {
 return b.v
}

That's all; your ManufacturingDirector would be ready to use the new product by
following the Builder design pattern.

Wrapping up the Builder design pattern
The Builder design pattern helps us maintain an unpredictable number of products by
using a common construction algorithm that is used by the director. The construction
process is always abstracted from the user of the product.

At the same time, having a defined construction pattern helps when a newcomer to our
source code needs to add a new product to the pipeline. The BuildProcess interface
specifies what he must comply to be part of the possible builders.

However, try to avoid the Builder pattern when you are not completely sure that the
algorithm is going to be more or less stable because any small change in this interface will
affect all your builders and it could be awkward if you add a new method that some of your
builders need and others Builders do not.

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[66]

Factory method – delegating the creation of
different types of payments
The Factory method pattern (or simply, Factory) is probably the second-best known and
used design pattern in the industry. Its purpose is to abstract the user from the knowledge
of the struct he needs to achieve for a specific purpose, such as retrieving some value,
maybe from a web service or a database. The user only needs an interface that provides him
this value. By delegating this decision to a Factory, this Factory can provide an interface that
fits the user needs. It also eases the process of downgrading or upgrading of the
implementation of the underlying type if needed.

Description
When using the Factory method design pattern, we gain an extra layer of encapsulation so
that our program can grow in a controlled environment. With the Factory method, we
delegate the creation of families of objects to a different package or object to abstract us
from the knowledge of the pool of possible objects we could use. Imagine that you want to
organize your holidays using a trip agency. You don't deal with hotels and traveling and
you just tell the agency the destination you are interested in so that they provide you with
everything you need. The trip agency represents a Factory of trips.

Objectives
After the previous description, the following objectives of the Factory Method design
pattern must be clear to you:

Delegating the creation of new instances of structures to a different part of the
program
Working at the interface level instead of with concrete implementations
Grouping families of objects to obtain a family object creator

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[67]

The example – a factory of payment methods for
a shop
For our example, we are going to implement a payments method Factory, which is going to
provide us with different ways of paying at a shop. In the beginning, we will have two
methods of paying–cash and credit card. We'll also have an interface with the method, Pay,
which every struct that wants to be used as a payment method must implement.

Acceptance criteria
Using the previous description, the requirements for the acceptance criteria are the
following:

To have a common method for every payment method called Pay
To be able to delegate the creation of payments methods to the Factory
To be able to add more payment methods to the library by just adding it to the
factory method

First unit test
A Factory method has a very simple structure; we just need to identify how many
implementations of our interface we are storing, and then provide a method,
GetPaymentMethod, where you can pass a type of payment as an argument:

type PaymentMethod interface {
 Pay(amount float32) string
}

The preceding lines define the interface of the payment method. They define a way of
making a payment at the shop. The Factory method will return instances of types that
implement this interface:

const (
 Cash = 1
 DebitCard = 2
)

We have to define the identified payment methods of the Factory as constants so that we
can call and check the possible payment methods from outside of the package.

func GetPaymentMethod(m int) (PaymentMethod, error) {

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[68]

 return nil, errors.New("Not implemented yet")
}

The preceding code is the function that will create the objects for us. It returns a pointer,
which must have an object that implements the PaymentMethod interface, and an error if
asked for a method which is not registered.

type CashPM struct{}
type DebitCardPM struct{}

func (c *CashPM) Pay(amount float32) string {
 return ""
}

func (c *DebitCardPM) Pay(amount float32) string {
 return ""
}

To finish the declaration of the Factory, we create the two payment methods. As you can
see, the CashPM and DebitCardPM structs implement the PaymentMethod interface by
declaring a method, Pay(amount float32) string. The returned string will contain
information about the payment.

With this declaration, we will start by writing the tests for the first acceptance criteria: to
have a common method to retrieve objects that implement the PaymentMethod interface:

package creational

import (
 "strings"
 "testing"
)

func TestCreatePaymentMethodCash(t *testing.T) {
 payment, err := GetPaymentMethod(Cash)
 if err != nil {
 t.Fatal("A payment method of type 'Cash' must exist")
 }

 msg := payment.Pay(10.30)
 if !strings.Contains(msg, "paid using cash") {
 t.Error("The cash payment method message wasn't correct")
 }
 t.Log("LOG:", msg)
}

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[69]

Now we'll have to separate the tests among a few of the test functions. GetPaymentMethod
is a common method to retrieve methods of payment. We use the constant Cash, which we
have defined in the implementation file (if we were using this constant outside for the scope
of the package, we would call it using the name of the package as the prefix, so the syntax
would be creational.Cash). We also check that we have not received an error when
asking for a payment method. Observe that if we receive the error when asking for a
payment method, we call t.Fatal to stop the execution of the tests; if we called just
t.Error like in the previous tests, we would have a problem in the next lines when trying
to access the Pay method of a nil object, and our tests would crash execution. We continue
by using the Pay method of the interface by passing 10.30 as the amount. The returned
message will have to contain the text paid using cash. The t.Log(string) method is a
special method in testing. This struct allows us to write some logs when we run the tests if
we pass the -v flag.

func TestGetPaymentMethodDebitCard(t *testing.T) {
 payment, err = GetPaymentMethod(Debit9Card)

 if err != nil {
 t.Error("A payment method of type 'DebitCard' must exist")
 }

 msg = payment.Pay(22.30)

 if !strings.Contains(msg, "paid using debit card") {
 t.Error("The debit card payment method message wasn't correct")
 }

 t.Log("LOG:", msg)
}

We repeat the same operation with the debit card method. We ask for the payment method
defined with the constant DebitCard, and the returned message, when paying with debit
card, must contain the paid using debit card string.

func TestGetPaymentMethodNonExistent(t *testing.T) {
 payment, err = GetPaymentMethod(20)

 if err == nil {
 t.Error("A payment method with ID 20 must return an error")
 }
 t.Log("LOG:", err)
}

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[70]

Finally, we are going to test the situation when we request a payment method that doesn´t
exist (represented by the number 20, which doesn't match any recognized constant in the
Factory). We will check if an error message (any) is returned when asking for an unknown
payment method.

Let's check whether all tests are failing:

 $ go test -v -run=GetPaymentMethod .
 === RUN TestGetPaymentMethodCash
 --- FAIL: TestGetPaymentMethodCash (0.00s)
 factory_test.go:11: A payment method of type 'Cash' must exist
 === RUN TestGetPaymentMethodDebitCard
 --- FAIL: TestGetPaymentMethodDebitCard (0.00s)
 factory_test.go:24: A payment method of type 'DebitCard' must
exist
 === RUN TestGetPaymentMethodNonExistent
 --- PASS: TestGetPaymentMethodNonExistent (0.00s)
 factory_test.go:38: LOG: Not implemented yet
 FAIL
 exit status 1
 FAIL

As you can see in this example, we can only see tests that return the PaymentMethod
interfaces failing. In this case, we'll have to implement just a part of the code, and then test
again before continuing.

Implementation
We will start with the GetPaymentMethod method. It must receive an integer that matches
with one of the defined constants of the same file to know which implementation it should
return.

package creational

import (
 "errors"
 "fmt"
)

type PaymentMethod interface {
 Pay(amount float32) string
}

const (
 Cash = 1

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[71]

 DebitCard = 2
)

type CashPM struct{}
type DebitCardPM struct{}

func GetPaymentMethod(m int) (PaymentMethod, error) {
 switch m {
 case Cash:
 return new(CashPM), nil
 case DebitCard:
 return new(DebitCardPM), nil
 default:
 return nil, errors.New(fmt.Sprintf("Payment method %d not
recognized\n", m))
 }
}

We use a plain switch to check the contents of the argument m (method). If it matches any of
the known methods–cash or debit card, it returns a new instance of them. Otherwise, it will
return a nil and an error indicating that the payment method has not been recognized. Now
we can run our tests again to check the second part of the unit tests:

 $go test -v -run=GetPaymentMethod .
 === RUN TestGetPaymentMethodCash
 --- FAIL: TestGetPaymentMethodCash (0.00s)
 factory_test.go:16: The cash payment method message wasn't
correct
 factory_test.go:18: LOG:
 === RUN TestGetPaymentMethodDebitCard
 --- FAIL: TestGetPaymentMethodDebitCard (0.00s)
 factory_test.go:28: The debit card payment method message
wasn't correct
 factory_test.go:30: LOG:
 === RUN TestGetPaymentMethodNonExistent
 --- PASS: TestGetPaymentMethodNonExistent (0.00s)
 factory_test.go:38: LOG: Payment method 20 not recognized
 FAIL
 exit status 1
 FAIL

Now we do not get the errors saying it couldn't find the type of payment methods. Instead,
we receive a message not correct error when it tries to use any of the methods that it
covers. We also got rid of the Not implemented message that was being returned when we
asked for an unknown payment method. Let's implement the structs now:

type CashPM struct{}

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[72]

type DebitCardPM struct{}

func (c *CashPM) Pay(amount float32) string {
 return fmt.Sprintf("%0.2f paid using cash\n", amount)
}

func (c *DebitCardPM) Pay(amount float32) string {
 return fmt.Sprintf("%#0.2f paid using debit card\n", amount)
}

We just get the amount, printing it in a nicely formatted message. With this
implementation, the tests will all be passing now:

 $ go test -v -run=GetPaymentMethod .
 === RUN TestGetPaymentMethodCash
 --- PASS: TestGetPaymentMethodCash (0.00s)
 factory_test.go:18: LOG: 10.30 paid using cash
 === RUN TestGetPaymentMethodDebitCard
 --- PASS: TestGetPaymentMethodDebitCard (0.00s)
 factory_test.go:30: LOG: 22.30 paid using debit card
 === RUN TestGetPaymentMethodNonExistent
 --- PASS: TestGetPaymentMethodNonExistent (0.00s)
 factory_test.go:38: LOG: Payment method 20 not recognized
 PASS
 ok

Do you see the LOG: messages? They aren't errors, we just print some information that we
receive when using the package under test. These messages can be omitted unless you pass
the -v flag to the test command:

 $ go test -run=GetPaymentMethod .
 ok

Upgrading the Debitcard method to a new
platform
Now imagine that your DebitCard payment method has changed for some reason, and
you need a new struct for it. To achieve this scenario, you will only need to create the new
struct and replace the old one when the user asks for the DebitCard payment method:

type CreditCardPM struct {}
 func (d *CreditCardPM) Pay(amount float32) string {
 return fmt.Sprintf("%#0.2f paid using new credit card implementation\n",
amount)
}

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[73]

This is our new type that will replace the DebitCardPM structure. The CreditCardPM
implements the same PaymentMethod interface as the debit card. We haven't deleted the
previous one in case we need it in the future. The only difference lies in the returned
message that now contains the information about the new type. We also have to modify the
method to retrieve the payment methods:

func GetPaymentMethod(m int) (PaymentMethod, error) {
 switch m {
 case Cash:
 return new(CashPM), nil
 case DebitCard:
 return new(CreditCardPM), nil
 default:
 return nil, errors.New(fmt.Sprintf("Payment method %d not
recognized\n", m))
 }
}

The only modification is in the line where we create the new debit card that now points to
the newly created struct. Let's run the tests to see if everything is still correct:

 $ go test -v -run=GetPaymentMethod .
 === RUN TestGetPaymentMethodCash
 --- PASS: TestGetPaymentMethodCash (0.00s)
 factory_test.go:18: LOG: 10.30 paid using cash
 === RUN TestGetPaymentMethodDebitCard
 --- FAIL: TestGetPaymentMethodDebitCard (0.00s)
 factory_test.go:28: The debit card payment method message
wasn't correct
 factory_test.go:30: LOG: 22.30 paid using new debit card
implementation
 === RUN TestGetPaymentMethodNonExistent
 --- PASS: TestGetPaymentMethodNonExistent (0.00s)
 factory_test.go:38: LOG: Payment method 20 not recognized
 FAIL
 exit status 1
 FAIL

Uh, oh! Something has gone wrong. The expected message when paying with a credit card
does not match the returned message. Does it mean that our code isn't correct? Generally
speaking, yes, you shouldn't modify your tests to make your program work. When defining
tests, you should be also aware of not defining them too much because you could achieve
some coupling in the tests that you didn't have in your code. With the message restriction,
we have a few grammatically correct possibilities for the message, so we'll change it to the
following:

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[74]

return fmt.Sprintf("%#0.2f paid using debit card (new)\n", amount)

We run the tests again now:

 $ go test -v -run=GetPaymentMethod .
 === RUN TestGetPaymentMethodCash
 --- PASS: TestGetPaymentMethodCash (0.00s)
 factory_test.go:18: LOG: 10.30 paid using cash
 === RUN TestGetPaymentMethodDebitCard
 --- PASS: TestGetPaymentMethodDebitCard (0.00s)
 factory_test.go:30: LOG: 22.30 paid using debit card (new)
 === RUN TestGetPaymentMethodNonExistent
 --- PASS: TestGetPaymentMethodNonExistent (0.00s)
 factory_test.go:38: LOG: Payment method 20 not recognized
 PASS
 ok

Everything is okay again. This was just a small example of how to write good unit tests, too.
When we wanted to check that a debit card payment method returns a message that
contains paid using debit card string, we were probably being a bit restrictive, and it
would be better to check for those words separately or define a better formatting for the
returned messages.

What we learned about the Factory method
With the Factory method pattern, we have learned how to group families of objects so that
their implementation is outside of our scope. We have also learned what to do when we
need to upgrade an implementation of a used structs. Finally, we have seen that tests must
be written with care if you don't want to tie yourself to certain implementations that don't
have anything to do with the tests directly.

Abstract Factory – a factory of factories
After learning about the factory design pattern, where we grouped a family of related
objects in our case payment methods, one can be quick to think–what if I group families of
objects in a more structured hierarchy of families?

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[75]

Description
The Abstract Factory design pattern is a new layer of grouping to achieve a bigger (and
more complex) composite object, which is used through its interfaces. The idea behind
grouping objects in families and grouping families is to have big factories that can be
interchangeable and can grow more easily. In the early stages of development, it is also
easier to work with factories and abstract factories than to wait until all concrete
implementations are done to start your code. Also, you won't write an Abstract Factory
from the beginning unless you know that your object's inventory for a particular field is
going to be very large and it could be easily grouped into families.

The objectives
Grouping related families of objects is very convenient when your object number is growing
so much that creating a unique point to get them all seems the only way to gain
the flexibility of the runtime object creation. The following objectives of the Abstract Factory
method must be clear to you:

Provide a new layer of encapsulation for Factory methods that return a common
interface for all factories
Group common factories into a super Factory (also called a factory of factories)

The vehicle factory example, again?
For our example, we are going to reuse the Factory we created in the Builder design pattern.
We want to show the similarities to solve the same problem using a different approach so
that you can see the strengths and weaknesses of each approach. This is going to show you
the power of implicit interfaces in Go, as we won't have to touch almost anything. Finally,
we are going to create a new Factory to create shipment orders.

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[76]

Acceptance criteria
The following are the acceptance criteria for using the Vehicle object's Factory method:

We must retrieve a Vehicle object using a factory returned by the abstract
factory.
The vehicle must be a concrete implementation of a Motorbike or a Car that
implements both interfaces (Vehicle and Car or Vehicle and Motorbike).

Unit test
This is going to be a long example, so pay attention, please. We will have the following
entities:

Vehicle: The interface that all objects in our factories must implement:
Motorbike: An interface for motorbikes of the types sport (one
seat) and cruise (two seats).
Car: An interface for cars of types luxury (with four doors) and
family (with five doors).

VehicleFactory: An interface (the Abstract Factory) to retrieve factories that
implement the VehicleFactory method:

Motorbike Factory: A factory that implements the
VehicleFactory interface to return vehicle that implements the
Vehicle and Motorbike interfaces.
Car Factory: Another factory that implements the
VehicleFactory interface to return vehicles that implement the
Vehicle and Car interfaces.

For clarity, we are going to separate each entity into a different file. We will start with the
Vehicle interface, which will be in the vehicle.go file:

package abstract_factory

type Vehicle interface {
 NumWheels() int
 NumSeats() int
}

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[77]

The Car and Motorbike interfaces will be in the car.go and motorbike.go files,
respectively:

// Package abstract_factory file: car.go
package abstract_factory

type Car interface {
 NumDoors() int
}
// Package abstract_factory file: motorbike.go
package abstract_factory

type Motorbike interface {
 GetMotorbikeType() int
}

We have one last interface, the one that each factory must implement. This will be in the
vehicle_factory.go file:

package abstract_factory

type VehicleFactory interface {
 NewVehicle(v int) (Vehicle, error)
}

So, now we are going to declare the car factory. It must implement the VehicleFactory
interface defined previously to return Vehicles instances:

const (
 LuxuryCarType = 1
 FamilyCarType = 2
)

type CarFactory struct{}
func (c *CarFactory) NewVehicle(v int) (Vehicle, error) {
 switch v {
 case LuxuryCarType:
 return new(LuxuryCar), nil
 case FamilyCarType:
 return new(FamilyCar), nil
 default:
 return nil, errors.New(fmt.Sprintf("Vehicle of type %d not
recognized\n", v))
 }
}

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[78]

We have defined two types of cars–luxury and family. The car Factory will have to return
cars that implement the Car and the Vehicle interfaces, so we need two concrete
implementations:

//luxury_car.go
package abstract_factory

type LuxuryCar struct{}

func (*LuxuryCar) NumDoors() int {
 return 4
}
func (*LuxuryCar) NumWheels() int {
 return 4
}
func (*LuxuryCar) NumSeats() int {
 return 5
}

package abstract_factory

type FamilyCar struct{}

func (*FamilyCar) NumDoors() int {
 return 5
}
func (*FamilyCar) NumWheels() int {
 return 4
}
func (*FamilyCar) NumSeats() int {
 return 5
}

That's all for cars. Now we need the motorbike factory, which, like the car factory, must
implement the VehicleFactory interface:

const (
 SportMotorbikeType = 1
 CruiseMotorbikeType = 2
)

type MotorbikeFactory struct{}

func (m *MotorbikeFactory) Build(v int) (Vehicle, error) {
 switch v {
 case SportMotorbikeType:
 return new(SportMotorbike), nil
 case CruiseMotorbikeType:

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[79]

 return new(CruiseMotorbike), nil
 default:
 return nil, errors.New(fmt.Sprintf("Vehicle of type %d not
recognized\n", v))
 }
}

For the motorbike Factory, we have also defined two types of motorbikes using the const
keywords: SportMotorbikeType and CruiseMotorbikeType. We will switch over the v
argument in the Build method to know which type shall be returned. Let's write the two
concrete motorbikes:

//sport_motorbike.go
package abstract_factory

type SportMotorbike struct{}

func (s *SportMotorbike) NumWheels() int {
 return 2
}
func (s *SportMotorbike) NumSeats() int {
 return 1
}
func (s *SportMotorbike) GetMotorbikeType() int {
 return SportMotorbikeType
}

//cruise_motorbike.go
package abstract_factory

type CruiseMotorbike struct{}

func (c *CruiseMotorbike) NumWheels() int {
 return 2
}
func (c *CruiseMotorbike) NumSeats() int {
 return 2
}
func (c *CruiseMotorbike) GetMotorbikeType() int {
 return CruiseMotorbikeType
}

To finish, we need the abstract factory itself, which we will put in the previously created
vehicle_factory.go file:

package abstract_factory

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[80]

import (
 "fmt"
 "errors"
)

type VehicleFactory interface {
 Build(v int) (Vehicle, error)
}

const (
 CarFactoryType = 1
 MotorbikeFactoryType = 2
)

func BuildFactory(f int) (VehicleFactory, error) {
 switch f {
 default:
 return nil, errors.New(fmt.Sprintf("Factory with id %d not
recognized\n", f))
 }
}

We are going to write enough tests to make a reliable check as the scope of the book doesn't
cover 100% of the statements. It will be a good exercise for the reader to finish these tests.
First, a motorbike Factory test:

package abstract_factory

import "testing"

func TestMotorbikeFactory(t *testing.T) {
 motorbikeF, err := BuildFactory(MotorbikeFactoryType)
 if err != nil {
 t.Fatal(err)
 }

 motorbikeVehicle, err := motorbikeF.Build(SportMotorbikeType)
 if err != nil {
 t.Fatal(err)
 }

 t.Logf("Motorbike vehicle has %d wheels\n",
motorbikeVehicle.NumWheels())

 sportBike, ok := motorbikeVehicle.(Motorbike)
 if !ok {
 t.Fatal("Struct assertion has failed")
 }

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[81]

 t.Logf("Sport motorbike has type %d\n", sportBike.GetMotorbikeType())
}

We use the package method, BuildFactory , to retrieve a motorbike Factory (passing the
MotorbikeFactory ID in the parameters), and check if we get any error. Then, already
with the motorbike factory, we ask for a vehicle of the type SportMotorbikeType and
check for errors again. With the returned vehicle, we can ask for methods of the vehicle
interface (NumWheels and NumSeats). We know that it is a motorbike, but we cannot ask
for the type of motorbike without using the type assertion. We use the type assertion on the
vehicle to retrieve the motorbike that the motorbikeVehicle represents in the code line
sportBike, found := motorbikeVehicle.(Motorbike), and we must check that the
type we have received is correct.

Finally, now we have a motorbike instance, we can ask for the bike type by using
the GetMotorbikeType method. Now we are going to write a test that checks the car
factory in the same manner:

func TestCarFactory(t *testing.T) {
 carF, err := BuildFactory(CarFactoryType)
 if err != nil {
 t.Fatal(err)
 }

 carVehicle, err := carF.Build(LuxuryCarType)
 if err != nil {
 t.Fatal(err)
 }

 t.Logf("Car vehicle has %d seats\n", carVehicle.NumWheels())

 luxuryCar, ok := carVehicle.(Car)
 if !ok {
 t.Fatal("Struct assertion has failed")
 }
 t.Logf("Luxury car has %d doors.\n", luxuryCar.NumDoors())
}

Again, we use the BuildFactory method to retrieve a Car Factory by using the
CarFactoryType in the parameters. With this factory, we want a car of the Luxury type so
that it returns a vehicle instance. We again do the type assertion to point to a car instance
so that we can ask for the number of doors using the NumDoors method.

Let's run the unit tests:

 go test -v -run=Factory .
 === RUN TestMotorbikeFactory

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[82]

 --- FAIL: TestMotorbikeFactory (0.00s)
 vehicle_factory_test.go:8: Factory with id 2 not recognized
 === RUN TestCarFactory
 --- FAIL: TestCarFactory (0.00s)
 vehicle_factory_test.go:28: Factory with id 1 not recognized
 FAIL
 exit status 1
 FAIL

Done. It can't recognize any factory as their implementation is still not done.

Implementation
The implementation of every factory is already done for the sake of brevity. They are very
similar to the Factory method with the only difference being that in the Factory method, we
don't use an instance of the Factory method because we use the package functions directly.
The implementation of the vehicle Factory is as follows:

func BuildFactory(f int) (VehicleFactory, error) {
 switch f {
 case CarFactoryType:
 return new(CarFactory), nil
 case MotorbikeFactoryType:
 return new(MotorbikeFactory), nil
 default:
 return nil, errors.New(fmt.Sprintf("Factory with id %d not
recognized\n", f))
 }
}

Like in any factory, we switched between the factory possibilities to return the one that was
demanded. As we have already implemented all concrete vehicles, the tests must run too:

 go test -v -run=Factory -cover .
 === RUN TestMotorbikeFactory
 --- PASS: TestMotorbikeFactory (0.00s)
 vehicle_factory_test.go:16: Motorbike vehicle has 2 wheels
 vehicle_factory_test.go:22: Sport motorbike has type 1
 === RUN TestCarFactory
 --- PASS: TestCarFactory (0.00s)
 vehicle_factory_test.go:36: Car vehicle has 4 seats
 vehicle_factory_test.go:42: Luxury car has 4 doors.
 PASS
 coverage: 45.8% of statements
 ok

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[83]

All of them passed. Take a close look and note that we have used the -cover flag when
running the tests to return a coverage percentage of the package: 45.8%. What this tells us is
that 45.8% of the lines are covered by the tests we have written, but 54.2% are still not under
the tests. This is because we haven't covered the cruise motorbike and the family car with
the tests. If you write those tests, the result should rise to around 70.8%.

Type assertion is also known as casting in other languages. When you
have an interface instance, which is essentially a pointer to a struct, you
just have access to the interface methods. With type assertion, you can tell
the compiler the type of the pointed struct, so you can access the entire
struct fields and methods.

A few lines about the Abstract Factory method
We have learned how to write a factory of factories that provides us with a very generic
object of vehicle type. This pattern is commonly used in many applications and libraries,
such as cross-platform GUI libraries. Think of a button, a generic object, and button factory
that provides you with a factory for Microsoft Windows buttons while you have another
factory for Mac OS X buttons. You don't want to deal with the implementation details of
each platform, but you just want to implement the actions for some specific behavior raised
by a button.

Also, we have seen the differences when approaching the same problem with two different
solutions–the Abstract factory and the Builder pattern. As you have seen, with the Builder
pattern, we had an unstructured list of objects (cars with motorbikes in the same factory).
Also, we encouraged reusing the building algorithm in the Builder pattern. In the Abstract
factory, we have a very structured list of vehicles (the factory for motorbikes and a factory
for cars). We also didn't mix the creation of cars with motorbikes, providing more flexibility
in the creation process. The Abstract factory and Builder patterns can both resolve the same
problem, but your particular needs will help you find the slight differences that should lead
you to take one solution or the other.

Prototype design pattern
The last pattern we will see in this chapter is the Prototype pattern. Like all creational
patterns, this too comes in handy when creating objects, and it is very common to see the
Prototype pattern surrounded by more patterns.

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[84]

While with the Builder pattern, we are dealing with repetitive building algorithms and with
the factories we are simplifying the creation of many types of objects; with the Prototype
pattern, we will use an already created instance of some type to clone it and complete it
with the particular needs of each context. Let's see it in detail.

Description
The aim of the Prototype pattern is to have an object or a set of objects that is already
created at compilation time, but which you can clone as many times as you want at runtime.
This is useful, for example, as a default template for a user who has just registered with
your webpage or a default pricing plan in some service. The key difference between this
and a Builder pattern is that objects are cloned for the user instead of building them at
runtime. You can also build a cache-like solution, storing information using a prototype.

Objective
The main objective for the Prototype design pattern is to avoid repetitive object creation.
Imagine a default object composed of dozens of fields and embedded types. We don't want
to write everything needed by this type every time that we use the object, especially if we
can mess it up by creating instances with different foundations:

Maintain a set of objects that will be cloned to create new instances
Provide a default value of some type to start working on top of it
Free CPU of complex object initialization to take more memory resources

Example
We will build a small component of an imaginary customized shirts shop that will have a
few shirts with their default colors and prices. Each shirt will also have a Stock Keeping
Unit (SKU), a system to identify items stored at a specific location) that will need an
update.

Acceptance criteria
To achieve what is described in the example, we will use a prototype of shirts. Each time we
need a new shirt we will take this prototype, clone it and work with it. In particular, those
are the acceptance criteria for using the Prototype pattern design method in this example:

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[85]

To have a shirt-cloner object and interface to ask for different types of shirts
(white, black, and blue at 15.00, 16.00, and 17.00 dollars respectively)
When you ask for a white shirt, a clone of the white shirt must be made, and the
new instance must be different from the original one
The SKU of the created object shouldn't affect new object creation
An info method must give me all the information available on the instance fields,
including the updated SKU

Unit test
First, we will need a ShirtCloner interface and an object that implements it. Also, we need
a package-level function called GetShirtsCloner to retrieve a new instance of the cloner:

type ShirtCloner interface {
 GetClone(s int) (ItemInfoGetter, error)
}

const (
 White = 1
 Black = 2
 Blue = 3
)

func GetShirtsCloner() ShirtCloner {
 return nil
}

type ShirtsCache struct {}
func (s *ShirtsCache)GetClone(s int) (ItemInfoGetter, error) {
 return nil, errors.New("Not implemented yet")
}

Now we need an object struct to clone, which implements an interface to retrieve the
information of its fields. We will call the object Shirt and the ItemInfoGetter interface:

type ItemInfoGetter interface {
 GetInfo() string
}

type ShirtColor byte

type Shirt struct {
 Price float32
 SKU string

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[86]

 Color ShirtColor
}
func (s *Shirt) GetInfo()string {
 return ""
}

func GetShirtsCloner() ShirtCloner {
 return nil
}

var whitePrototype *Shirt = &Shirt{
 Price: 15.00,
 SKU: "empty",
 Color: White,
}

func (i *Shirt) GetPrice() float32 {
 return i.Price
}

Have you realized that the type called ShirtColor that we defined is just
a byte type? Maybe you are wondering why we haven't simply used the
byte type. We could, but this way we created an easily readable struct,
which we can upgrade with some methods in the future if required. For
example, we could write a String() method that returns the color in the
string format (White for type 1, Black for type 2, and Blue for type 3).

With this code, we can already write our first tests:

func TestClone(t *testing.T) {
 shirtCache := GetShirtsCloner()
 if shirtCache == nil {
 t.Fatal("Received cache was nil")
 }

 item1, err := shirtCache.GetClone(White)
 if err != nil {
 t.Error(err)
}

//more code continues here...

We will cover the first case of our scenario, where we need a cloner object that we can use to
ask for different shirt colors.

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[87]

For the second case, we will take the original object (which we can access because we are in
the scope of the package), and we will compare it with our shirt1 instance.

if item1 == whitePrototype {
 t.Error("item1 cannot be equal to the white prototype");
}

Now, for the third case. First, we will type assert item1 to a shirt so that we can set an SKU.
We will create a second shirt, also white, and we will type assert it too to check that the
SKUs are different:

shirt1, ok := item1.(*Shirt)
if !ok {
 t.Fatal("Type assertion for shirt1 couldn't be done successfully")
}
shirt1.SKU = "abbcc"

item2, err := shirtCache.GetClone(White)
if err != nil {
 t.Fatal(err)
}

shirt2, ok := item2.(*Shirt)
if !ok {
 t.Fatal("Type assertion for shirt1 couldn't be done successfully")
}

if shirt1.SKU == shirt2.SKU {
 t.Error("SKU's of shirt1 and shirt2 must be different")
}

if shirt1 == shirt2 {
 t.Error("Shirt 1 cannot be equal to Shirt 2")
}

Finally, for the fourth case, we log the info of the first and second shirts:

t.Logf("LOG: %s", shirt1.GetInfo())
t.Logf("LOG: %s", shirt2.GetInfo())

We will be printing the memory positions of both shirts, so we make this assertion at a more
physical level:

t.Logf("LOG: The memory positions of the shirts are different %p != %p
\n\n", &shirt1, &shirt2)

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[88]

Finally, we run the tests so we can check that it fails:
go test -run=TestClone .
--- FAIL: TestClone (0.00s)
prototype_test.go:10: Not implemented yet
FAIL
FAIL

We have to stop there so that the tests don't panic if we try to use a nil object that is
returned by the GetShirtsCloner function.

Implementation
We will start with the GetClone method. This method should return an item of the
specified type and we have three type: white, black and blue:

var whitePrototype *Shirt = &Shirt{
 Price: 15.00,
 SKU: "empty",
 Color: White,
}

var blackPrototype *Shirt = &Shirt{
 Price: 16.00,
 SKU: "empty",
 Color: Black,
}

var bluePrototype *Shirt = &Shirt{
 Price: 17.00,
 SKU: "empty",
 Color: Blue,
}

So now that we have the three prototypes to work over we can implement GetClone(s
int) method:

type ShirtsCache struct {}
func (s *ShirtsCache)GetClone(s int) (ItemInfoGetter, error) {
 switch m {
 case White:
 newItem := *whitePrototype
 return &newItem, nil
 case Black:
 newItem := *blackPrototype
 return &newItem, nil
 case Blue:

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[89]

 newItem := *bluePrototype
 return &newItem, nil
 default:
 return nil, errors.New("Shirt model not recognized")
 }
}

The Shirt structure also needs a GetInfo implementation to print the contents of the
instances.

type ShirtColor byte

type Shirt struct {
 Price float32
 SKU string
 Color ShirtColor
}

func (s *Shirt) GetInfo() string {
 return fmt.Sprintf("Shirt with SKU '%s' and Color id %d that costs
%f\n", s.SKU, s.Color, s.Price)
}

Finally, let's run the tests to see that everything is now working:

go test -run=TestClone -v .
=== RUN TestClone
--- PASS: TestClone (0.00s)
prototype_test.go:41: LOG: Shirt with SKU 'abbcc' and Color id 1 that costs
15.000000
prototype_test.go:42: LOG: Shirt with SKU 'empty' and Color id 1 that costs
15.000000
prototype_test.go:44: LOG: The memory positions of the shirts are different
0xc42002c038 != 0xc42002c040

PASS
ok

In the log, (remember to set the -v flag when running the tests) you can check that shirt1
and shirt2 have different SKUs. Also, we can see the memory positions of both objects.
Take into account that the positions shown on your computer will probably be different.

Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns

[90]

What we learned about the Prototype design
pattern
The Prototype pattern is a powerful tool to build caches and default objects. You have
probably realized too that some patterns can overlap a bit, but they have small differences
that make them more appropriate in some cases and not so much in others.

Summary
We have seen the five main creational design patterns commonly used in the software
industry. Their purpose is to abstract the user from the creation of objects for complexity or
maintainability purposes. They have been the foundation of thousands of applications and
libraries since the 1990s, and most of the software we use today has many of these
creational patterns under the hood.

It's worth mentioning that these patterns are not thread-free. In a more advanced chapter,
we will see concurrent programming in Go, and how to create some of the more critical
design patterns using a concurrent approach.

3
Structural Patterns - Composite,

Adapter, and Bridge Design
Patterns

We are going to start our journey through the world of structural patterns. Structural
patterns, as the name implies, help us to shape our applications with commonly used
structures and relationships.

The Go language, by nature, encourages use of composition almost exclusively by its lack of
inheritance. Because of this, we have been using the Composite design pattern extensively
until now, so let's start by defining the Composite design pattern.

Composite design pattern
The Composite design pattern favors composition (commonly defined as a has a
relationship) over inheritance (an is a relationship). The composition over inheritance approach
has been a source of discussions among engineers since the nineties. We will learn how to
create object structures by using a has a approach. All in all, Go doesn't have inheritance
because it doesn't need it!

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[92]

Description
In the Composite design pattern, you will create hierarchies and trees of objects. Objects
have different objects with their own fields and methods inside them. This approach is very
powerful and solves many problems of inheritance and multiple inheritances. For example,
a typical inheritance problem is when you have an entity that inherits from two completely
different classes, which have absolutely no relationship between them. Imagine an athlete
who trains, and who is a swimmer who swims:

The Athlete class has a Train() method
The Swimmer class has a Swim() method

The Swimmer class inherits from the Athlete class, so it inherits its Train method and
declares its own Swim method. You could also have a cyclist who is also an athlete, and
declares a Ride method.

But now imagine an animal that eats, like a dog that also barks:

The Cyclist class has a Ride() method
The Animal class has Eat(), Dog(), and Bark() methods

Nothing fancy. You could also have a fish that is an animal, and yes, swims! So, how do you
solve it? A fish cannot be a swimmer that also trains. Fish don't train (as far as I know!). You
could make a Swimmer interface with a Swim method, and make the swimmer athlete and
fish implement it. This would be the best approach, but you still would have to implement
swim method twice, so code reusability would be affected. What about a triathlete? They are
athletes who swim, run, and ride. With multiple inheritances, you could have a sort of
solution, but that will become complex and not maintainable very soon.

Objectives
As you have probably imagined already, the objective of the composition is to avoid this
type of hierarchy hell where the complexity of an application could grow too much, and the
clarity of the code is affected.

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[93]

The swimmer and the fish
We will solve the described problem of the athlete and the fish that swims in a very
idiomatic Go way. With Go, we can use two types of composition–the direct composition
and the embedding composition. We will first solve this problem by using direct
composition which is having everything that is needed as fields within the struct.

Requirements and acceptance criteria
Requirements are like the ones described previously. We'll have an athlete and a swimmer.
We will also have an animal and a fish. The Swimmer and the Fish methods must share the
code. The athlete must train, and the animal must eat:

We must have an Athlete struct with a Train method
We must have a Swimmer with a Swim method
We must have an Animal struct with an Eat method
We must have a Fish struct with a Swim method that is shared with the
Swimmer, and not have inheritance or hierarchy issues

Creating compositions
The Composite design pattern is a pure structural pattern, and it doesn't have much to test
apart from the structure itself. We won't write unit tests in this case, and we'll simply
describe the ways to create those compositions in Go.

First, we'll start with the Athlete structure and its Train method:

type Athlete struct{}

func (a *Athlete) Train() {
 fmt.Println("Training")
}

The preceding code is pretty straightforward. Its Train method prints the word Training
and a new line. We'll create a composite swimmer that has an Athlete struct inside it:

type CompositeSwimmerA struct{
 MyAthlete Athlete
 MySwim func()
}

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[94]

The CompositeSwimmerA type has a MyAthlete field of type Athlete. It also stores a
func() type. Remember that in Go, functions are first-class citizens and they can be used as
parameters, fields, or arguments just like any variable. So CompositeSwimmerA has a
MySwim field that stores a closure, which takes no arguments and returns nothing. How can
I assign a function to it? Well, let's create a function that matches the func() signature (no
arguments, no return):

func Swim(){
 fmt.Println("Swimming!")
}

That's all! The Swim() function takes no arguments and returns nothing, so it can be used
as the MySwim field in the CompositeSwimmerA struct:

swimmer := CompositeSwimmerA{
 MySwim: Swim,
}

swimmer.MyAthlete.Train()
swimmer.MySwim()

Because we have a function called Swim(), we can assign it to the MySwim field. Note that
the Swim type doesn't have the parenthesis that will execute its contents. This way we take
the entire function and copy it to MySwim method.

But wait. We haven't passed any athlete to the MyAthlete field and we are using it! It's
going to fail! Let's see what happens when we execute this snippet:

$ go run main.go
Training
Swimming!

That's weird, isn't it? Not really because of the nature of zero-initialization in Go. If you
don't pass an Athlete struct to the CompositeSwimmerA type, the compiler will create one
with its values zero-initialized, that is, an Athlete struct with its fields initialized to zero.
Check out Chapter 1, Ready… Steady… Go! to recall zero-initialization if this seems
confusing. Consider the CompositeSwimmerA struct code again:

type CompositeSwimmerA struct{
 MyAthlete Athlete
 MySwim func()
}

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[95]

Now we have a pointer to a function stored in the MySwim field. We can assign the Swim
function the same way, but with an extra step:

localSwim := Swim

swimmer := CompositeSwimmerA{
 MySwim: localSwim,
}

swimmer.MyAthlete.Train()
swimmer.MySwim ()

First, we need a variable that contains the function Swim. This is because a function doesn't
have an address to pass it to the CompositeSwimmerA type. Then, to use this function
within the struct, we have to make a two-step call.

What about our fish problem? With our Swim function, it is not a problem anymore. First,
we create the Animal struct:

type Animal struct{}

func (r *Animal)Eat() {
 println("Eating")
}

Then we'll create a Shark object that embeds the Animal object:

type Shark struct{
 Animal
 Swim func()
}

Wait a second! Where is the field name of the Animal type? Did you realize that I used the
word embed in the previous paragraph? This is because, in Go, you can also embed objects
within objects to make it look a lot like inheritance. That is, we won't have to explicitly call
the field name to have access to its fields and method because they'll be part of us. So the
following code will be perfectly okay:

fish := Shark{
 Swim: Swim,
}

fish.Eat()
fish.Swim()

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[96]

Now we have an Animal type, which is zero-initialized and embedded. This is why I can
call the Eat method of the Animal struct without creating it or using the intermediate field
name. The output of this snippet is the following:

$ go run main.go
Eating
Swimming!

Finally, there is a third method to use the Composite pattern. We could create a Swimmer
interface with a Swim method and a SwimmerImpl type to embed it in the athlete swimmer:

type Swimmer interface {
 Swim()
}
type Trainer interface {
 Train()
}

type SwimmerImpl struct{}
func (s *SwimmerImpl) Swim(){
 println("Swimming!")
}

type CompositeSwimmerB struct{
 Trainer
 Swimmer
}

With this method, you have more explicit control over object creation. The Swimmer field is
embedded, but won't be zero-initialized as it is a pointer to an interface. The correct use of
this approach will be the following:

swimmer := CompositeSwimmerB{
 &Athlete{},
 &SwimmerImpl{},
}

swimmer.Train()
swimmer.Swim()

And the output for CompositeSwimmerB is the following, as expected:

$ go run main.go
Training
Swimming!

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[97]

Which approach is better? Well, I have a personal preference, which shouldn't be
considered the rule of thumb. In my opinion, the interfaces approach is the best for quite a
few reasons, but mainly for explicitness. First of all, you are working with interfaces which
are preferred instead of structs. Second, you aren't leaving parts of your code to the zero-
initialization feature of the compiler. It's a really powerful feature, but one that must be
used with care, because it can lead to runtime problems which you'll find at compile time
when working with interfaces. In different situations, zero-initialization will save you at
runtime, in fact! But I prefer to work with interfaces as much as possible, so this is not
actually one of the options.

Binary Tree compositions
Another very common approach to the Composite pattern is when working with Binary
Tree structures. In a Binary Tree, you need to store instances of itself in a field:

type Tree struct {
 LeafValue int
 Right *Tree
 Left *Tree
}

This is some kind of recursive compositing, and, because of the nature of recursivity, we
must use pointers so that the compiler knows how much memory it must reserve for this
struct. Our Tree struct stored a LeafValue object for each instance and a new Tree in its
Right and Left fields.

With this structure, we could create an object like this:

root := Tree{
 LeafValue: 0,
 Right:&Tree{
 LeafValue: 5,
 Right: &1Tree{ 6, nil, nil },
 Left: nil,
 },
 Left:&Tree{ 4, nil, nil },
}

We can print the contents of its deepest branch like this:

fmt.Println(root.Right.Right.LeafValue)

$ go run main.go
6

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[98]

Composite pattern versus inheritance
When using the Composite design pattern in Go, you must be very careful not to confuse it
with inheritance. For example, when you embed a Parent struct within a Son struct, like in
the following example:

type Parent struct {
 SomeField int
}

type Son struct {
 Parent
}

You cannot consider that the Son struct is also the Parent struct. What this means is that
you cannot pass an instance of the Son struct to a function that is expecting a Parent struct
like the following:

func GetParentField(p *Parent) int{
 fmt.Println(p.SomeField)
}

When you try to pass a Son instance to the GetParentField method, you will get the
following error message:

cannot use son (type Son) as type Parent in argument to GetParentField

This, in fact, makes a lot of sense. What's the solution for this? Well, you can simply
composite the Son struct with the parent without embedding so that you can access the
Parent instance later:

type Son struct {
 P Parent
}

So now you could use the P field to pass it to the GetParentField method:

son := Son{}
GetParentField(son.P)

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[99]

Final words on the Composite pattern
At this point, you should be really comfortable using the Composite design pattern. It's a
very idiomatic Go feature, and the switch from a pure object-oriented language is not very
painful. The Composite design pattern makes our structures predictable but also allows us
to create most of the design patterns as we will see in later chapters.

Adapter design pattern
One of the most commonly used structural patterns is the Adapter pattern. Like in real life,
where you have plug adapters and bolt adapters, in Go, an adapter will allow us to use
something that wasn't built for a specific task at the beginning.

Description
The Adapter pattern is very useful when, for example, an interface gets outdated and it's
not possible to replace it easily or fast. Instead, you create a new interface to deal with the
current needs of your application, which, under the hood, uses implementations of the old
interface.

Adapter also helps us to maintain the open/closed principle in our apps, making them more
predictable too. They also allow us to write code which uses some base that we can't
modify.

The open/closed principle was first stated by Bertrand Meyer in his book
Object-Oriented Software Construction. He stated that code should be open
to new functionality, but closed to modifications. What does it mean?
Well, it implies a few things. On one hand, we should try to write code
that is extensible and not only one that works. At the same time, we
should try not to modify the source code (yours or other people's) as much
as we can, because we aren't always aware of the implications of this
modification. Just keep in mind that extensibility in code is only possible
through the use of design patterns and interface-oriented programming.

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[100]

Objectives
The Adapter design pattern will help you fit the needs of two parts of the code that are
incompatible at first. This is the key to being kept in mind when deciding if the Adapter
pattern is a good design for your problem–two interfaces that are incompatible, but which
must work together, are good candidates for an Adapter pattern (but they could also use
the facade pattern, for example).

Using an incompatible interface with an Adapter
object
For our example, we will have an old Printer interface and a new one. Users of the new
interface don't expect the signature that the old one has, and we need an Adapter so that
users can still use old implementations if necessary (to work with some legacy code, for
example).

Requirements and acceptance criteria
Having an old interface called LegacyPrinter and a new one called ModernPrinter,
create a structure that implements the ModernPrinter interface and can use the
LegacyPrinter interface as described in the following steps:

Create an Adapter object that implements the ModernPrinter interface.1.
The new Adapter object must contain an instance of the LegacyPrinter2.
interface.
When using ModernPrinter, it must call the LegacyPrinter interface under3.
the hood, prefixing it with the text Adapter.

Unit testing our Printer adapter
We will write the legacy code first, but we won't test it as we should imagine that it isn't our
code:

type LegacyPrinter interface {
 Print(s string) string
}
type MyLegacyPrinter struct {}

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[101]

func (l *MyLegacyPrinter) Print(s string) (newMsg string) {
 newMsg = fmt.Sprintf("Legacy Printer: %s\n", s)
 println(newMsg)
 return
}

The legacy interface called LegacyPrinter has a Print method that accepts a string and
returns a message. Our MyLegacyPrinter struct implements the LegacyPrinter interface
and modifies the passed string by prefixing the text Legacy Printer:. After modifying
the text, the MyLegacyPrinter struct prints the text on the console, and then returns it.

Now we'll declare the new interface that we'll have to adapt:

type ModernPrinter interface {
 PrintStored() string
}

In this case, the new PrintStored method doesn't accept any string as an argument,
because it will have to be stored in the implementers in advance. We will call our Adapter
pattern's PrinterAdapter interface:

type PrinterAdapter struct{
 OldPrinter LegacyPrinter
 Msg string
}
func(p *PrinterAdapter) PrintStored() (newMsg string) {
 return
}

As mentioned earlier, the PrinterAdapter adapter must have a field to store the string to
print. It must also have a field to store an instance of the LegacyPrinter adapter. So let's
write the unit tests:

func TestAdapter(t *testing.T){
 msg := "Hello World!"

We will use the message Hello World! for our adapter. When using this message with an
instance of the MyLegacyPrinter struct, it prints the text Legacy Printer: Hello
World!:

adapter := PrinterAdapter{OldPrinter: &MyLegacyPrinter{}, Msg: msg}

We created an instance of the PrinterAdapter interface called adapter. We passed an
instance of the MyLegacyPrinter struct as the LegacyPrinter field called OldPrinter.
Also, we set the message we want to print in the Msg field:

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[102]

returnedMsg := adapter.PrintStored()

if returnedMsg != "Legacy Printer: Adapter: Hello World!\n" {
 t.Errorf("Message didn't match: %s\n", returnedMsg)
}

Then we used the PrintStored method of the ModernPrinter interface; this method
doesn't accept any argument and must return the modified string. We know that the
MyLegacyPrinter struct returns the passed string prefixed with the text
LegacyPrinter:, and the adapter will prefix it with the text Adapter: So, in the end, we
must have the text Legacy Printer: Adapter: Hello World!\n.

As we are storing an instance of an interface, we must also check that we handle the
situation where the pointer is nil. This is done with the following test:

adapter = PrinterAdapter{OldPrinter: nil, Msg: msg}
returnedMsg = adapter.PrintStored()

if returnedMsg != "Hello World!" {
 t.Errorf("Message didn't match: %s\n", returnedMsg)
}

If we don't pass an instance of the LegacyPrinter interface, the Adapter must ignore its
adapt nature, and simply print and return the original message. Time to run our tests;
consider the following:

$ go test -v .
=== RUN TestAdapter
--- FAIL: TestAdapter (0.00s)
 adapter_test.go:11: Message didn't match:
 adapter_test.go:17: Message didn't match:
FAIL
exit status 1
FAIL

Implementation
To make our single test pass, we must reuse the old MyLegacyPrinter that is stored in
PrinterAdapter struct:

type PrinterAdapter struct{
 OldPrinter LegacyPrinter
 Msg string
}

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[103]

func(p *PrinterAdapter) PrintStored() (newMsg string) {
 if p.OldPrinter != nil {
 newMsg = fmt.Sprintf("Adapter: %s", p.Msg)
 newMsg = p.OldPrinter.Print(newMsg)
 }
 else {
 newMsg = p.Msg
 }
return
}

In the PrintStored method, we check whether we actually have an instance of a
LegacyPrinter. In this case, we compose a new string with the stored message and the
Adapter prefix to store it in the returning variable (called newMsg). Then we use the pointer
to the MyLegacyPrinter struct to print the composed message using the LegacyPrinter
interface.

In case there is no LegacyPrinter instance stored in the OldPrinter field, we simply
assign the stored message to the returning variable newMsg and return the method. This
should be enough to pass our tests:

$ go test -v .
=== RUN TestAdapter
Legacy Printer: Adapter: Hello World!
--- PASS: TestAdapter (0.00s)
PASS
ok

Perfect! Now we can still use the old LegacyPrinter interface by using this Adapter
while we use the ModernPrinter interface for future implementations. Just keep in mind
that the Adapter pattern must ideally just provide the way to use the old LegacyPrinter
and nothing else. This way, its scope will be more encapsulated and more maintainable in
the future.

Examples of the Adapter pattern in Go's source
code
You can find Adapter implementations at many places in the Go language's source code.
The famous http.Handler interface has a very interesting adapter implementation. A very
simple, Hello World server in Go is usually done like this:

package main

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[104]

import (
 "fmt"
 "log"
 "net/http"
)
type MyServer struct{
 Msg string
}
func (m *MyServer) ServeHTTP(w http.ResponseWriter,r *http.Request){
 fmt.Fprintf(w, "Hello, World")
}

func main() {
 server := &MyServer{
 Msg:"Hello, World",
}

http.Handle("/", server)
log.Fatal(http.ListenAndServe(":8080", nil))
}

The HTTP package has a function called Handle (like a static method in Java) that
accepts two parameters–a string to represent the route and a Handler interface. The
Handler interface is like the following:

type Handler interface {
 ServeHTTP(ResponseWriter, *Request)
}

We need to implement a ServeHTTP method that the server side of an HTTP connection
will use to execute its context. But there is also a function HandlerFunc that allows you to
define some endpoint behavior:

func main() {
 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Hello, World")
 })

 log.Fatal(http.ListenAndServe(":8080", nil))
}

The HandleFunc function is actually part of an adapter for using functions directly as
ServeHTTP implementations. Read the last sentence slowly again–can you guess how it is
done?

type HandlerFunc func(ResponseWriter, *Request)

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[105]

func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
 f(w, r)
}

We can define a type that is a function in the same way that we define a struct. We make
this function-type to implement the ServeHTTP method. Finally, from the ServeHTTP
function, we call the receiver itself f(w, r).

You have to think about the implicit interface implementation of Go. When we define a
function like func(ResponseWriter, *Request), it is implicitly being recognized as
HandlerFunc. And because the HandleFunc function implements the Handler interface,
our function implements the Handler interface implicitly too. Does this sound familiar to
you? If A = B and B = C, then A = C. Implicit implementation gives a lot of flexibility and
power to Go, but you must also be careful, because you don't know if a method or function
could be implementing some interface that could provoke undesirable behaviors.

We can find more examples in Go's source code. The io package has another powerful
example with the use of pipes. A pipe in Linux is a flow mechanism that takes something
on the input and outputs something else on the output. The io package has two interfaces,
which are used everywhere in Go's source code–the io.Reader and the io.Writer
interface:

type Reader interface {
 Read(p []byte) (n int, err error)
}

type Writer interface {
 Write(p []byte) (n int, err error)
}

We use io.Reader everywhere, for example, when you open a file using os.OpenFile, it
returns a file, which, in fact, implements the io.Reader interface. Why is it useful? Imagine
that you write a Counter struct that counts from the number you provide to zero:

type Counter struct {}
func (f *Counter) Count(n uint64) uint64 {
 if n == 0 {
 println(strconv.Itoa(0))
 return 0
 }

 cur := n
 println(strconv.FormatUint(cur, 10))
 return f.Count(n - 1)
}

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[106]

If you provide the number 3 to this small snippet, it will print the following:

3
2
1

Well, not really impressive! What if I want to write to a file instead of printing? We can
implement this method too. What if I want to print to a file and to the console? Well, we can
implement this method too. We must modularize it a bit more by using the io.Writer
interface:

type Counter struct {
 Writer io.Writer
}
func (f *Counter) Count(n uint64) uint64 {
 if n == 0 {
 f.Writer.Write([]byte(strconv.Itoa(0) + "\n"))
 return 0
 }

 cur := n
 f.Writer.Write([]byte(strconv.FormatUint(cur, 10) + "\n"))
 return f.Count(n - 1)
}

Now we provide an io.Writer in the Writer field. This way, we could create the counter
like this: c := Counter{os.Stdout}, and we will get a console Writer. But wait a
second, we haven't solved the issue where we wanted to take the count to many Writer
consoles. But we can write a new Adapter with an io.Writer and, using a Pipe() to
connect a reader with a writer, we can read on the opposite extreme. This way, you can
solve the issue where these two interfaces, Reader and Writer, which are incompatible,
can be used together.

In fact, we don't need to write the Adapter–the Go's io library has one for us in io.Pipe().
The pipe will allow us to convert a Reader to a Writer interface. The io.Pipe() method
will provide us a Writer (the entrance of the pipe) and a Reader (the exit) to play with. So
let's create a pipe, and assign the provided writer to the Counter of the preceding example:

pipeReader, pipeWriter := io.Pipe()
defer pw.Close()
defer pr.Close()

counter := Counter{
 Writer: pipeWriter,
}

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[107]

Now we have a Reader interface where we previously had a Writer. Where can we use
the Reader? The io.TeeReader function helps us to copy the stream of data from a
Reader interface to the Writer interface and, it returns a new Reader that you can still use
to stream data again to a second writer. So we will stream the data from the same reader to
two writers–the file and the Stdout.

tee := io.TeeReader(pipeReader, file)

So now we know that we are writing to a file that we have passed to the TeeReader
function. We still need to print to the console. The io.Copy adapter can be used like
TeeReader–it takes a reader and writes its contents to a writer:

go func(){
 io.Copy(os.Stdout, tee)
}()

We have to launch the Copy function in a different Go routine so that the writes are
performed concurrently, and one read/write doesn't block a different read/write. Let's
modify the counter variable to make it count till 5 again:

counter.Count(5)

With this modification to the code, we get the following output:

$ go run counter.go
5
4
3
2
1
0

Okay, the count has been printed on the console. What about the file?

$ cat /tmp/pipe
5
4
3
2
1
0

Awesome! By using the io.Pipe() adapter provided in the Go native library, we have
uncoupled our counter from its output, and we have adapted a Writer interface to a
Reader one.

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[108]

What the Go source code tells us about the
Adapter pattern
With the Adapter design pattern, you have learned a quick way to achieve the open/close
principle in your applications. Instead of modifying your old source code (something which
could not be possible in some situations), you have created a way to use the old
functionality with a new signature.

Bridge design pattern
The Bridge pattern is a design with a slightly cryptic definition from the original Gang of
Four book. It decouples an abstraction from its implementation so that the two can vary
independently. This cryptic explanation just means that you could even decouple the most
basic form of functionality: decouple an object from what it does.

Description
The Bridge pattern tries to decouple things as usual with design patterns. It decouples
abstraction (an object) from its implementation (the thing that the object does). This way, we
can change what an object does as much as we want. It also allows us to change the
abstracted object while reusing the same implementation.

Objectives
The objective of the Bridge pattern is to bring flexibility to a struct that change often.
Knowing the inputs and outputs of a method, it allows us to change code without knowing
too much about it and leaving the freedom for both sides to be modified more easily.

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[109]

Two printers and two ways of printing for each
For our example, we will go to a console printer abstraction to keep it simple. We will have
two implementations. The first will write to the console. Having learned about the
io.Writer interface in the previous section, we will make the second write to an
io.Writer interface to provide more flexibility to the solution. We will also have two
abstracted object users of the implementations–a Normal object, which will use each
implementation in a straightforward manner, and a Packt implementation, which will
append the sentence Message from Packt: to the printing message.

At the end of this section, we will have two abstraction objects, which have two different
implementations of their functionality. So, actually, we will have 22 possible combinations
of object functionality.

Requirements and acceptance criteria
As we mentioned previously, we will have two objects (Packt and Normal printer) and
two implementations (PrinterImpl1 and PrinterImpl2) that we will join by using the
Bridge design pattern. More or less, we will have the following requirements and
acceptance criteria:

A PrinterAPI that accepts a message to print
An implementation of the API that simply prints the message to the console
An implementation of the API that prints to an io.Writer interface
A Printer abstraction with a Print method to implement in printing types
A normal printer object, which will implement the Printer and the
PrinterAPI interface
The normal printer will forward the message directly to the implementation
A Packt printer, which will implement the Printer abstraction and the
PrinterAPI interface
The Packt printer will append the message Message from Packt: to all prints

Unit testing the Bridge pattern
Let's start with acceptance criteria 1, the PrinterAPI interface. Implementers of this interface
must provide a PrintMessage(string) method that will print the message passed as an
argument:

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[110]

type PrinterAPI interface {
 PrintMessage(string) error
}

We will pass to acceptance criteria 2 with an implementation of the previous API:

type PrinterImpl1 struct{}

func (p *PrinterImpl1) PrintMessage(msg string) error {
 return errors.New("Not implemented yet")
}

Our PrinterImpl1 is a type that implements the PrinterAPI interface by providing an
implementation of the PrintMessage method. The PrintMessage method is not
implemented yet, and returns an error. This is enough to write our first unit test to
cover PrinterImpl1:

func TestPrintAPI1(t *testing.T){
 api1 := PrinterImpl1{}

 err := api1.PrintMessage("Hello")
 if err != nil {
 t.Errorf("Error trying to use the API1 implementation: Message: %s\n",
err.Error())
 }
}

In our test to cover PrintAPI1, we created an instance of PrinterImpl1 type. Then we
used its PrintMessage method to print the message Hello to the console. As we have no
implementation yet, it must return the error srring Not implemented yet:

$ go test -v -run=TestPrintAPI1 .
=== RUN TestPrintAPI1
--- FAIL: TestPrintAPI1 (0.00s)
 bridge_test.go:14: Error trying to use the API1 implementation:
Message: Not implemented yet
FAIL
exit status 1
FAIL _/C_/Users/mario/Desktop/go-design-
patterns/structural/bridge/traditional

Okay. Now we have to write the second API test that will work with an io.Writer
interface:

type PrinterImpl2 struct{
 Writer io.Writer
}

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[111]

func (d *PrinterImpl2) PrintMessage(msg string) error {
 return errors.New("Not implemented yet")
}

As you can see, our PrinterImpl2 struct stores an io.Writer implementer. Also, our
PrintMessage method follows the PrinterAPI interface.

Now that we are familiar with the io.Writer interface, we are going to make a test object
that implements this interface, and stores whatever is written to it in a local field. This will
help us check the contents that are being sent through the writer:

type TestWriter struct {
 Msg string
}

func (t *TestWriter) Write(p []byte) (n int, err error) {
 n = len(p)
 if n > 0 {
 t.Msg = string(p)
 return n, nil
 }
 err = errors.New("Content received on Writer was empty")
 return
}

In our test object, we checked that the content isn't empty before writing it to the local field.
If it's empty, we return the error, and if not, we write the contents of p in the Msg field. We
will use this small struct in the following tests for the second API:

func TestPrintAPI2(t *testing.T){
 api2 := PrinterImpl2{}

 err := api2.PrintMessage("Hello")
 if err != nil {
 expectedErrorMessage := "You need to pass an io.Writer to PrinterImpl2"
 if !strings.Contains(err.Error(), expectedErrorMessage) {
 t.Errorf("Error message was not correct.\n
 Actual: %s\nExpected: %s\n", err.Error(), expectedErrorMessage)
 }
 }

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[112]

Let's stop for a second here. We create an instance of PrinterImpl2 called api2 in the first
line of the preceding code. We haven't passed any instance of io.Writer on purpose, so
we also checked that we actually receive an error first. Then we try to use its
PrintMessage method, but we must get an error because it doesn't have any io.Writer
instance stored in the Writer field. The error must be You need to pass an io.Writer
to PrinterImpl2, and we implicitly check the contents of the error. Let's continue with
the test:

 testWriter := TestWriter{}
 api2 = PrinterImpl2{
 Writer: &testWriter,
 }

 expectedMessage := "Hello"
 err = api2.PrintMessage(expectedMessage)
 if err != nil {
 t.Errorf("Error trying to use the API2 implementation: %s\n",
err.Error())
 }

 if testWriter.Msg != expectedMessage {
 t.Fatalf("API2 did not write correctly on the io.Writer. \n Actual:
%s\nExpected: %s\n", testWriter.Msg, expectedMessage)
 }
}

For the second part of this unit test, we use an instance of the TestWriter object as an
io.Writer interface, testWriter. We passed the message Hello to api2, and checked
whether we receive any error. Then, we check the contents of the testWriter.Msg
field–remember that we have written an io.Writer interface that stored any bytes passed
to its Write method in the Msg field. If everything is correct, the message should contain the
word Hello.

Those were our tests for PrinterImpl2. As we don't have any implementations yet, we
should get a few errors when running this test:

$ go test -v -run=TestPrintAPI2 .
=== RUN TestPrintAPI2
--- FAIL: TestPrintAPI2 (0.00s)
bridge_test.go:39: Error message was not correct.
Actual: Not implemented yet
Expected: You need to pass an io.Writer to PrinterImpl2
bridge_test.go:52: Error trying to use the API2 implementation: Not
implemented yet
bridge_test.go:57: API2 did not write correctly on the io.Writer.

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[113]

Actual:
Expected: Hello
FAIL
exit status 1
FAIL

At least one test passes–the one that checks that an error message (any) is being returned
when using the PrintMessage without io.Writer being stored. Everything else fails, as
expected at this stage.

Now we need a printer abstraction for objects that can use PrinterAPI implementers. We
will define this as the PrinterAbstraction interface with a Print method. This covers
the acceptance criteria 4:

type PrinterAbstraction interface {
 Print() error
}

For acceptance criteria 5, we need a normal printer. A Printer abstraction will need a field
to store a PrinterAPI. So our the NormalPrinter could look like the following:

type NormalPrinter struct {
 Msg string
 Printer PrinterAPI
}

func (c *NormalPrinter) Print() error {
 return errors.New("Not implemented yet")
}

This is enough to write a unit test for the Print() method:

func TestNormalPrinter_Print(t *testing.T) {
 expectedMessage := "Hello io.Writer"

 normal := NormalPrinter{
 Msg:expectedMessage,
 Printer: &PrinterImpl1{},
 }

 err := normal.Print()
 if err != nil {
 t.Errorf(err.Error())
 }
}

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[114]

The first part of the test checks that the Print() method isn't implemented yet when using
PrinterImpl1 PrinterAPI interface. The message we'll use along this test is Hello
io.Writer. With the PrinterImpl1, we don't have an easy way to check the contents of
the message, as we print directly to the console. Checking, in this case, is visual, so we can
check acceptance criteria 6:

 testWriter := TestWriter{}
 normal = NormalPrinter{
 Msg: expectedMessage,
 Printer: &PrinterImpl2{
 Writer:&testWriter,
 },
 }

 err = normal.Print()
 if err != nil {
 t.Error(err.Error())
 }

 if testWriter.Msg != expectedMessage {
 t.Errorf("The expected message on the io.Writer doesn't match actual.\n
Actual: %s\nExpected: %s\n", testWriter.Msg, expectedMessage)
 }
}

The second part of NormalPrinter tests uses PrinterImpl2, the one that needs an
io.Writer interface implementer. We reuse our TestWriter struct here to check the
contents of the message. So, in short, we want a NormalPrinter struct that accepts a Msg of
type string and a Printer of type PrinterAPI. At this point, if I use the Print method, I
shouldn't get any error, and the Msg field on TestWriter must contain the message we
passed to NormalPrinter on its initialization.

Let's run the tests:

$ go test -v -run=TestNormalPrinter_Print .
=== RUN TestNormalPrinter_Print
--- FAIL: TestNormalPrinter_Print (0.00s)
 bridge_test.go:72: Not implemented yet
 bridge_test.go:85: Not implemented yet
 bridge_test.go:89: The expected message on the io.Writer doesn't
match actual.
 Actual:
 Expected: Hello io.Writer
FAIL
exit status 1
FAIL

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[115]

There is a trick to quickly check the validity of a unit test–the number of times we called
t.Error or t.Errorf must match the number of messages of error on the console and the
lines where they were produced. In the preceding test results, there are three errors at lines
72, 85, and 89, which exactly match the checks we wrote.

Our PacktPrinter struct will have a very similar definition to NormalPrinter at this
point:

type PacktPrinter struct {
 Msg string
 Printer PrinterAPI
}

func (c *PacktPrinter) Print() error {
 return errors.New("Not implemented yet")
}

This covers acceptance criteria 7. And we can almost copy and paste the contents of the
previous test with a few changes:

func TestPacktPrinter_Print(t *testing.T) {
 passedMessage := "Hello io.Writer"
 expectedMessage := "Message from Packt: Hello io.Writer"

 packt := PacktPrinter{
 Msg:passedMessage,
 Printer: &PrinterImpl1{},
 }

 err := packt.Print()
 if err != nil {
 t.Errorf(err.Error())
 }

 testWriter := TestWriter{}
 packt = PacktPrinter{
 Msg: passedMessage,
 Printer:&PrinterImpl2{
 Writer:&testWriter,
 },
 }

 err = packt.Print()
 if err != nil {
 t.Error(err.Error())
 }

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[116]

 if testWriter.Msg != expectedMessage {
 t.Errorf("The expected message on the io.Writer doesn't match actual.\n
Actual: %s\nExpected: %s\n", testWriter.Msg,expectedMessage)
 }
}

What have we changed here? Now we have passedMessage, which represents the message
we are passing to PackPrinter. We also have an expected message that contains the
prefixed message from Packt. If you remember acceptance criteria 8, this abstraction must
prefix the text Message from Packt: to any message that is passed to it, and, at the same
time, it must be able to use any implementation of a PrinterAPI interface.

The second change is that we actually create PacktPrinter structs instead of the
NormalPrinter structs; everything else is the same:

$ go test -v -run=TestPacktPrinter_Print .
=== RUN TestPacktPrinter_Print
--- FAIL: TestPacktPrinter_Print (0.00s)
 bridge_test.go:104: Not implemented yet
 bridge_test.go:117: Not implemented yet
 bridge_test.go:121: The expected message on the io.Writer doesn't
match actual.
 Actual:
 Expected: Message from Packt: Hello io.Writer
FAIL
exit status 1
FAIL

Three checks, three errors. All tests have been covered, and we can finally move on to the
implementation.

Implementation
We will start implementing in the same order that we created our tests, first with the
PrinterImpl1 definition:

type PrinterImpl1 struct{}
func (d *PrinterImpl1) PrintMessage(msg string) error {
 fmt.Printf("%s\n", msg)
 return nil
}

Our first API takes the message msg and prints it to the console. In the case of an empty
string, nothing will be printed. This is enough to pass the first test:

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[117]

$ go test -v -run=TestPrintAPI1 .
=== RUN TestPrintAPI1
Hello
--- PASS: TestPrintAPI1 (0.00s)
PASS
ok

You can see the Hello message in the second line of the output of the test, just after the RUN
message.

The PrinterImpl2 struct isn't very complex either. The difference is that instead of
printing to the console, we are going to write on an io.Writer interface, which must be
stored in the struct:

type PrinterImpl2 struct {
 Writer io.Writer
}

func (d *PrinterImpl2) PrintMessage(msg string) error {
 if d.Writer == nil {
 return errors.New("You need to pass an io.Writer to PrinterImpl2")
 }

 fmt.Fprintf(d.Writer, "%s", msg)
 return nil
}

As defined in our tests, we checked the contents of the Writer field first and returned the
expected error message You need to pass an io.Writer to PrinterImpl2, if
nothing is stored. This is the message we'll check later in the test. Then, the fmt.Fprintf
method takes an io.Writer interface as the first field and a message formatted as the rest,
so we simply forward the contents of the msg argument to the io.Writer provided:

$ go test -v -run=TestPrintAPI2 .
=== RUN TestPrintAPI2
--- PASS: TestPrintAPI2 (0.00s)
PASS
ok

Now we'll continue with the normal printer. This printer must simply forward the message
to the PrinterAPI interface stored without any modification. In our test, we are using two
implementations of PrinterAPI–one that prints to the console and one that writes to an
io.Writer interface:

type NormalPrinter struct {
 Msg string

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[118]

 Printer PrinterAPI
}

func (c *NormalPrinter) Print() error {
 c.Printer.PrintMessage(c.Msg)
 return nil
}

We returned nil as no error has occurred. This should be enough to pass the unit tests:

$ go test -v -run=TestNormalPrinter_Print .
=== RUN TestNormalPrinter_Print
Hello io.Writer
--- PASS: TestNormalPrinter_Print (0.00s)
PASS
ok

In the preceding output, you can see the Hello io.Writer message that
the PrinterImpl1 struct writes to stdout. We can consider this check as having passed:

Finally, the PackPrinter method is similar to NormalPrinter, but just prefixes every
message with the text Message from Packt: :

type PacktPrinter struct {
 Msg string
 Printer PrinterAPI
}

func (c *PacktPrinter) Print() error {
 c.Printer.PrintMessage(fmt.Sprintf("Message from Packt: %s", c.Msg))
 return nil
}

Like in the NormalPrinter method, we accepted a Msg string and a PrinterAPI
implementation in the Printer field. Then we used the fmt.Sprintf method to compose
a new string with the text Message from Packt: and the provided message. We took the
composed text and passed it to the PrintMessage method of PrinterAPI stored in the
Printer field of the PacktPrinter struct:

$ go test -v -run=TestPacktPrinter_Print .
=== RUN TestPacktPrinter_Print
Message from Packt: Hello io.Writer
--- PASS: TestPacktPrinter_Print (0.00s)
PASS
ok

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[119]

Again, you can see the results of using PrinterImpl1 for writing to stdout with the text
Message from Packt: Hello io.Writer. This last test should cover all of our code in
the Bridge pattern. As you have seen previously, you can check the coverage by using the -
cover flag:

$ go test -cover .
ok
2.622s coverage: 100.0% of statements

Wow! 100% coverage–this looks good. However, this doesn't mean that the code is perfect.
We haven't checked that the contents of the messages weren't empty, maybe something that
should be avoided, but it isn't a part of our requirements, which is also an important point.
Just because some feature isn't in the requirements or the acceptance criteria doesn't mean
that it shouldn't be covered.

Reuse everything with the Bridge pattern
With the Bridge pattern, we have learned how to uncouple an object and its implementation
for the PrintMessage method. This way, we can reuse its abstractions as well as its
implementations. We can swap the printer abstractions as well as the printer APIs as much
as we want without affecting the user code.

We have also tried to keep things as simple as possible, but I'm sure that you have realized
that all implementations of the PrinterAPI interface could have been created using a
factory. This would be very natural, and you could find many implementations that have
followed this approach. However, we shouldn't get into over-engineering, but should
analyze each problem to make a precise design of its needs and finds the best way to create
a reusable, maintainable, and readable source code. Readable code is commonly forgotten,
but a robust and uncoupled source code is useless if nobody can understand it to maintain
it. It's like a book of the tenth century–it could be a precious story but pretty frustrating if
we have difficulty understanding its grammar.

Structural Patterns - Composite, Adapter, and Bridge Design Patterns

[120]

Summary
We have seen the power of composition in this chapter and many of the ways that Go takes
advantage of it by its own nature. We have seen that the Adapter pattern can help us make
two incompatible interfaces work together by using an Adapter object in between. At the
same time, we have seen some real-life examples in Go's source code, where the creators of
the language used this design pattern to improve the possibilities of some particular piece
of the standard library. Finally, we have seen the Bridge pattern and its possibilities,
allowing us to create swapping structures with complete reusability between objects and
their implementations.

Also, we have used the Composite design pattern throughout the chapter, not only when
explaining it. We have mentioned it earlier but design patterns make use of each other very
frequently. We have used pure composition instead of embedding to increase readability,
but, as you have learned, you can use both interchangeably according to your needs. We
will keep using the Composite pattern in the following chapters, as it is the foundation for
building relationships in the Go programming language.

4
Structural Patterns - Proxy,

Facade, Decorator, and
Flyweight Design Patterns

With this chapter, we will finish with the Structural patterns. We have left some of the most
complex ones till the end so that you get more used to the mechanics of design patterns,
and the features of Go language.

In this chapter, we will work at writing a cache to access a database, a library to gather
weather data, a server with runtime middleware, and discuss a way to save memory by
saving shareable states between the types values.

Proxy design pattern
We'll start the final chapter on structural patterns with the Proxy pattern. It's a simple
pattern that provides interesting features and possibilities with very little effort.

Description
The Proxy pattern usually wraps an object to hide some of its characteristics. These
characteristics could be the fact that it is a remote object (remote proxy), a very heavy object
such as a very big image or the dump of a terabyte database (virtual proxy), or a restricted
access object (protection proxy).

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[122]

Objectives
The possibilities of the Proxy pattern are many, but in general, they all try to provide the
same following functionalities:

Hide an object behind the proxy so the features can be hidden, restricted, and so
on
Provide a new abstraction layer that is easy to work with, and can be changed
easily

Example
For our example, we are going to create a remote proxy, which is going to be a cache of
objects before accessing a database. Let's imagine that we have a database with many users,
but instead of accessing the database each time we want information about a user, we will
have a First In First Out (FIFO) stack of users in a Proxy pattern (FIFO is a way of saying
that when the cache needs to be emptied, it will delete the first object that entered first).

Acceptance criteria
We will wrap an imaginary database, represented by a slice, with our Proxy pattern. Then,
the pattern will have to stick to the following acceptance criteria:

All accesse to the database of users will be done through the Proxy type.1.
A stack of n number of recent users will be kept in the Proxy.2.
If a user already exists in the stack, it won't query the database, and will return3.
the stored one
If the queried user doesn't exist in the stack, it will query the database, remove4.
the oldest user in the stack if it's full, store the new one, and return it.

Unit test
Since version 1.7 of Go, we can embed tests within tests by using closures so we can group
them in a more human-readable way, and reduce the number of Test_ functions. Refer to
Chapter 1, Ready… Steady… Go! to learn how to install the new version of Go if your current
version is older than version 1.7.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[123]

The types for this pattern will be the proxy user and user list structs as well as a
UserFinder interface that the database and the Proxy will implement. This is key because
the Proxy must implement the same interfaces as the features of the type it tries to wrap:

type UserFinder interface {
 FindUser(id int32) (User, error)
}

The UserFinder is the interface that the database and the Proxy implement. The User is a
type with a member called ID, which is int32 type:

type User struct {
 ID int32
}

Finally, the UserList is a type of a slice of users. Consider the following syntax for that:

type UserList []User

If you are asking why we aren't using a slice of users directly, the answer is that by
declaring a sequence of users this way, we can implement the UserFinder interface but
with a slice, we can't.

Finally, the Proxy type, called UserListProxy will be composed of a UserList slice,
which will be our database representation. The StackCache members which will also be of
UserList type for simplicity, StackCapacity to give our stack the size we want.

We will cheat a bit for the purpose of this tutorial and declare a Boolean state on a field
called DidDidLastSearchUsedCache that will hold if the last performed search has used
the cache, or has accessed the database:

type UserListProxy struct {
 SomeDatabase UserList
 StackCache UserList
 StackCapacity int
 DidDidLastSearchUsedCache bool
}

func (u *UserListProxy) FindUser(id int32) (User, error) {
 return User{}, errors.New("Not implemented yet")
}

The UserListProxy type will cache a maximum of StackCapacity users, and rotate the
cache if it reaches this limit. The StackCache members will be populated from objects from
SomeDatabase type.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[124]

The first test is called TestUserListProxy, and is listed next:

import (
 "math/rand"
 "testing"
)

func Test_UserListProxy(t *testing.T) {
 someDatabase := UserList{}

 rand.Seed(2342342)
 for i := 0; i < 1000000; i++ {
 n := rand.Int31()
 someDatabase = append(someDatabase, User{ID: n})
 }

The preceding test creates a user list of 1 million users with random names. To do so, we
feed the random number generator by calling the Seed() function with some constant seed
so our randomized results are also constant; and the user IDs are generated from it. It might
have some duplicates, but it serves our purpose.

Next, we need a proxy with a reference to someDatabase, which we have just created:

proxy := UserListProxy{
 SomeDatabase: &someDatabase,
 StackCapacity: 2,
 StackCache: UserList{},
}

At this point, we have a proxy object composed of a mock database with 1 million users,
and a cache implemented as a FIFO stack with a size of 2. Now we will get three random
IDs from someDatabase to use in our stack:

knownIDs := [3]int32 {someDatabase[3].ID,
someDatabase[4].ID,someDatabase[5].ID}

We took the fourth, fifth, and sixth IDs from the slice (remember that arrays and slices start
with 0, so the index 3 is actually the fourth position in the slice).

This is going to be our starting point before launching the embedded tests. To create an
embedded test, we have to call the Run method of the testing.T pointer, with a
description and a closure with the func(t *testing.T) signature:

t.Run("FindUser - Empty cache", func(t *testing.T) {
 user, err := proxy.FindUser(knownIDs[0])
 if err != nil {
 t.Fatal(err)

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[125]

 }

For example, in the preceding code snippet, we give the description FindUser - Empty
cache. Then we define our closure. First it tries to find a user with a known ID, and checks
for errors. As the description implies, the cache is empty at this point, and the user will have
to be retrieved from the someDatabase array:

 if user.ID != knownIDs[0] {
 t.Error("Returned user name doesn't match with expected")
 }

 if len(proxy.StackCache) != 1 {
 t.Error("After one successful search in an empty cache, the size of it
must be one")
 }

 if proxy.DidLastSearchUsedCache {
 t.Error("No user can be returned from an empty cache")
 }
}

Finally, we check whether the returned user has the same ID as that of the expected user at
index 0 of the knownIDs slice, and that the proxy cache now has a size of 1. The state of the
member DidLastSearchUsedCache proxy must not be true, or we will not pass the test.
Remember, this member tells us whether the last search has been retrieved from the slice
that represents a database, or from the cache.

The second embedded test for the Proxy pattern is to ask for the same user as before, which
must now be returned from the cache. It's very similar to the previous test, but now we
have to check if the user is returned from the cache:

t.Run("FindUser - One user, ask for the same user", func(t *testing.T) {
 user, err := proxy.FindUser(knownIDs[0])
 if err != nil {
 t.Fatal(err)
 }

 if user.ID != knownIDs[0] {
 t.Error("Returned user name doesn't match with expected")
 }

 if len(proxy.StackCache) != 1 {
 t.Error("Cache must not grow if we asked for an object that is stored
on it")
 }

 if !proxy.DidLastSearchUsedCache {

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[126]

 t.Error("The user should have been returned from the cache")
 }
})

So, again we ask for the first known ID. The proxy cache must maintain a size of 1 after this
search, and the DidLastSearchUsedCache member must be true this time, or the test will
fail.

The last test will overflow the StackCache array on the proxy type. We will search for two
new users that our proxy type will have to retrieve from the database. Our stack has a size
of 2, so it will have to remove the first user to allocate space for the second and third users:

user1, err := proxy.FindUser(knownIDs[0])
if err != nil {
 t.Fatal(err)
}

user2, _ := proxy.FindUser(knownIDs[1])
if proxy.DidLastSearchUsedCache {
 t.Error("The user wasn't stored on the proxy cache yet")
}

user3, _ := proxy.FindUser(knownIDs[2])
if proxy.DidLastSearchUsedCache {
 t.Error("The user wasn't stored on the proxy cache yet")
}

We have retrieved the first three users. We aren't checking for errors because that was the
purpose of the previous tests. This is important to recall that there is no need to over-test
your code. If there is any error here, it will arise in the previous tests. Also, we have checked
that the user2 and user3 queries do not use the cache; they shouldn't be stored there yet.

Now we are going to look for the user1 query in the Proxy. It shouldn't exist, as the stack
has a size of 2, and user1 was the first to enter, hence, the first to go out:

for i := 0; i < len(proxy.StackCache); i++ {
 if proxy.StackCache[i].ID == user1.ID {
 t.Error("User that should be gone was found")
 }
}

if len(proxy.StackCache) != 2 {
 t.Error("After inserting 3 users the cache should not grow" +
" more than to two")
}

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[127]

It doesn't matter if we ask for a thousand users; our cache can't be bigger than our
configured size.

Finally, we are going to again range over the users stored in the cache, and compare them
with the last two we queried. This way, we will check that just those users are stored in the
cache. Both must be found on it:

 for _, v := range proxy.StackCache {
 if v != user2 && v != user3 {
 t.Error("A non expected user was found on the cache")
 }
 }
}

Running the tests now should give some errors, as usual. Let's run them now:

 $ go test -v .
 === RUN Test_UserListProxy
 === RUN Test_UserListProxy/FindUser_-_Empty_cache
 === RUN Test_UserListProxy/FindUser_-_One_user,_ask_for_the_same_user
 === RUN Test_UserListProxy/FindUser_-_overflowing_the_stack
 --- FAIL: Test_UserListProxy (0.06s)
 --- FAIL: Test_UserListProxy/FindUser_-_Empty_cache (0.00s)
 proxy_test.go:28: Not implemented yet
 --- FAIL: Test_UserListProxy/FindUser_-
_One_user,_ask_for_the_same_user (0.00s)
 proxy_test.go:47: Not implemented yet
 --- FAIL: Test_UserListProxy/FindUser_-_overflowing_the_stack
(0.00s)
 proxy_test.go:66: Not implemented yet
 FAIL
 exit status 1
 FAIL

So, let's implement the FindUser method to act as our Proxy.

Implementation
In our Proxy, the FindUser method will search for a specified ID in the cache list. If it finds
it, it will return the ID. If not, it will search in the database. Finally, if it's not in the database
list, it will return an error.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[128]

If you remember, our Proxy pattern is composed of two UserList types (one of them a
pointer), which are actually slices of User type. We will implement a FindUser method in
User type too, which, by the way, has the same signature as the UserFinder interface:

type UserList []User

func (t *UserList) FindUser(id int32) (User, error) {
 for i := 0; i < len(*t); i++ {
 if (*t)[i].ID == id {
 return (*t)[i], nil
 }
 }
 return User{}, fmt.Errorf("User %s could not be found\n", id)
}

The FindUser method in the UserList slice will iterate over the list to try and find a user
with the same ID as the id argument, or return an error if it can't find it.

You may be wondering why the pointer t is between parentheses. This is to dereference the
underlying array before accessing its indexes. Without it, you'll have a compilation error,
because the compiler tries to search the index before dereferencing the pointer.

So, the first part of the proxy FindUser method can be written as follows:

func (u *UserListProxy) FindUser(id int32) (User, error) {
 user, err := u.StackCache.FindUser(id)
 if err == nil {
 fmt.Println("Returning user from cache")
 u.DidLastSearchUsedCache = true
 return user, nil
 }

We use the preceding method to search for a user in the StackCache member. The error
will be nil if it can find it, so we check this to print a message to the console, change the state
of DidLastSearchUsedCache to true so that the test can check whether the user was
retrieved from cache, and finally, return the user.

So, if the error was not nil, it means that it couldn't find the user in the stack. So, the next
step is to search in the database:

 user, err = u.SomeDatabase.FindUser(id)
 if err != nil {
 return User{}, err
 }

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[129]

We can reuse the FindUser method we wrote for UserList database in this case, because
both have the same type for the purpose of this example. Again, it searches the user in the
database represented by the UserList slice, but in this case, if the user isn't found, it
returns the error generated in UserList.

When the user is found (err is nil), we have to add the user to the stack. For this purpose,
we write a dedicated private method that receives a pointer of type UserListProxy:

func (u *UserListProxy) addUserToStack(user User) {
 if len(u.StackCache) >= u.StackCapacity {
 u.StackCache = append(u.StackCache[1:], user)
 }
 else {
 u.StackCache.addUser(user)
 }
}

func (t *UserList) addUser(newUser User) {
 *t = append(*t, newUser)
}

The addUserToStack method takes the user argument, and adds it to the stack in place. If
the stack is full, it removes the first element in it before adding. We have also written an
addUser method to UserList to help us in this. So, now in FindUser method, we just
have to add one line:

u.addUserToStack(user)

This adds the new user to the stack, removing the last if necessary.

Finally, we just have to return the new user of the stack, and set the appropriate value on
DidLastSearchUsedCache variable. We also write a message to the console to help in the
testing process:

 fmt.Println("Returning user from database")
 u.DidLastSearchUsedCache = false
 return user, nil
}

With this, we have enough to pass our tests:

 $ go test -v .
 === RUN Test_UserListProxy
 === RUN Test_UserListProxy/FindUser_-_Empty_cache
 Returning user from database
 === RUN Test_UserListProxy/FindUser_-_One_user,_ask_for_the_same_user
 Returning user from cache

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[130]

 === RUN Test_UserListProxy/FindUser_-_overflowing_the_stack
 Returning user from cache
 Returning user from database
 Returning user from database
 --- PASS: Test_UserListProxy (0.09s)
 --- PASS: Test_UserListProxy/FindUser_-_Empty_cache (0.00s)
 --- PASS: Test_UserListProxy/FindUser_-_One_user,_ask_for_the_same_user
(0.00s)
 --- PASS: Test_UserListProxy/FindUser_-_overflowing_the_stack (0.00s)
 PASS
 ok

You can see in the preceding messages that our Proxy has worked flawlessly. It has
returned the first search from the database. Then, when we search for the same user again,
it uses the cache. Finally, we made a new test that calls three different users and we can
observe, by looking at the console output, that just the first was returned from the cache and
that the other two were fetched from the database.

Proxying around actions
Wrap proxies around types that need some intermediate action, like giving authorization to
the user or providing access to a database, like in our example.

Our example is a good way to separate application needs from database needs. If our
application accesses the database too much, a solution for this is not in your database.
Remember that the Proxy uses the same interface as the type it wraps, and, for the user,
there shouldn't be any difference between the two.

Decorator design pattern
We'll continue this chapter with the big brother of the Proxy pattern, and maybe, one of the
most powerful design patterns of all. The Decorator pattern is pretty simple, but, for
instance, it provides a lot of benefits when working with legacy code.

Description
The Decorator design pattern allows you to decorate an already existing type with more
functional features without actually touching it. How is it possible? Well, it uses an
approach similar to matryoshka dolls, where you have a small doll that you can put inside a
doll of the same shape but bigger, and so on and so forth.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[131]

The Decorator type implements the same interface of the type it decorates, and stores an
instance of that type in its members. This way, you can stack as many decorators (dolls) as
you want by simply storing the old decorator in a field of the new one.

Objectives
When you think about extending legacy code without the risk of breaking something, you
should think of the Decorator pattern first. It's a really powerful approach to deal with this
particular problem.

A different field where the Decorator is very powerful may not be so obvious though it
reveals itself when creating types with lots of features based on user inputs, preferences, or
similar inputs. Like in a Swiss knife, you have a base type (the frame of the knife), and from
there you unfold its functionalities.

So, precisely when are we going to use the Decorator pattern? Answer to this question:

When you need to add functionality to some code that you don't have access to,
or you don't want to modify to avoid a negative effect on the code, and follow the
open/close principle (like legacy code)
When you want the functionality of an object to be created or altered
dynamically, and the number of features is unknown and could grow fast

Example
In our example, we will prepare a Pizza type, where the core is the pizza and the
ingredients are the decorating types. We will have a couple of ingredients for our
pizza–onion and meat.

Acceptance criteria
The acceptance criteria for a Decorator pattern is to have a common interface and a core
type, the one that all layers will be built over:

We must have the main interface that all decorators will implement. This
interface will be called IngredientAdd, and it will have the AddIngredient()
string method.
We must have a core PizzaDecorator type (the decorator) that we will add
ingredients to.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[132]

We must have an ingredient “onion” implementing the same IngredientAdd
interface that will add the string onion to the returned pizza.
We must have a ingredient “meat” implementing the IngredientAdd interface
that will add the string meat to the returned pizza.
When calling AddIngredient method on the top object, it must return a fully
decorated pizza with the text Pizza with the following ingredients:
meat, onion.

Unit test
To launch our unit tests, we must first create the basic structures described in accordance
with the acceptance criteria. To begin with, the interface that all decorating types must
implement is as follows:

type IngredientAdd interface {
 AddIngredient() (string, error)
}

The following code defines the PizzaDecorator type, which must have IngredientAdd
inside, and which implements IngredientAdd too:

type PizzaDecorator struct{
 Ingredient IngredientAdd
}

func (p *PizzaDecorator) AddIngredient() (string, error) {
 return "", errors.New("Not implemented yet")
}

The definition of the Meat type will be very similar to that of the
PizzaDecorator structure:

type Meat struct {
 Ingredient IngredientAdd
}

func (m *Meat) AddIngredient() (string, error) {
 return "", errors.New("Not implemented yet")
}

Now we define the Onion struct in a similar fashion:

type Onion struct {
 Ingredient IngredientAdd

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[133]

}

func (o *Onion) AddIngredient() (string, error) {
 return "", errors.New("Not implemented yet")
}

This is enough to implement the first unit test, and to allow the compiler to run them
without any compiling errors:

func TestPizzaDecorator_AddIngredient(t *testing.T) {
 pizza := &PizzaDecorator{}
 pizzaResult, _ := pizza.AddIngredient()
 expectedText := "Pizza with the following ingredients:"
 if !strings.Contains(pizzaResult, expectedText) {
 t.Errorf("When calling the add ingredient of the pizza decorator it
must return the text %sthe expected text, not '%s'", pizzaResult,
expectedText)
 }
}

Now it must compile without problems, so we can check that the test fails:

 $ go test -v -run=TestPizzaDecorator .
 === RUN TestPizzaDecorator_AddIngredient
 --- FAIL: TestPizzaDecorator_AddIngredient (0.00s)
 decorator_test.go:29: Not implemented yet
 decorator_test.go:34: When the the AddIngredient method of the pizza
decorator object is called, it must return the text Pizza with the
following ingredients:
 FAIL
 exit status 1
 FAIL

Our first test is done, and we can see that the PizzaDecorator struct isn't returning
anything yet, that's why it fails. We can now move on to the Onion type. The test of the
Onion type is quite similar to that of the Pizza decorator, but we must also make sure that
we actually add the ingredient to the IngredientAdd method and not to a nil pointer:

func TestOnion_AddIngredient(t *testing.T) {
 onion := &Onion{}
 onionResult, err := onion.AddIngredient()
 if err == nil {
 t.Errorf("When calling AddIngredient on the onion decorator without" +
"an IngredientAdd on its Ingredient field must return an error, not a
string with '%s'", onionResult)
 }

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[134]

The first half of the preceding test examines the returning error when no
IngredientAdd method is passed to the Onion struct initializer. As no pizza is available to
add the ingredient, an error must be returned:

 onion = &Onion{&PizzaDecorator{}}
 onionResult, err = onion.AddIngredient()

 if err != nil {
 t.Error(err)
 }
 if !strings.Contains(onionResult, "onion") {
 t.Errorf("When calling the add ingredient of the onion decorator it" +
"must return a text with the word 'onion', not '%s'", onionResult)
 }
}

The second part of the Onion type test actually passes PizzaDecorator structure to the
initializer. Then, we check whether no error is being returned, and also whether the
returning string contains the word onion in it. This way, we can ensure that onion has been
added to the pizza.

Finally for the Onion type, the console output of this test with our current implementation
will be the following:

 $ go test -v -run=TestOnion_AddIngredient .
 === RUN TestOnion_AddIngredient
 --- FAIL: TestOnion_AddIngredient (0.00s)
 decorator_test.go:48: Not implemented yet
 decorator_test.go:52: When calling the add ingredient of the onion
decorator it must return a text with the word 'onion', not ''
 FAIL
 exit status 1
 FAIL

The meat ingredient is exactly the same, but we change the type to meat instead of onion:

func TestMeat_AddIngredient(t *testing.T) {
 meat := &Meat{}
 meatResult, err := meat.AddIngredient()
 if err == nil {
 t.Errorf("When calling AddIngredient on the meat decorator without" +
"an IngredientAdd in its Ingredient field must return an error," + "not a
string with '%s'", meatResult)
 }

 meat = &Meat{&PizzaDecorator{}}
 meatResult, err = meat.AddIngredient()

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[135]

 if err != nil {
 t.Error(err)
 }

 if !strings.Contains(meatResult, "meat") {
 t.Errorf("When calling the add ingredient of the meat decorator it" +
"must return a text with the word 'meat', not '%s'", meatResult)
 }
}

So, the result of the tests will be similar:

 go test -v -run=TestMeat_AddIngredient .
 === RUN TestMeat_AddIngredient
 --- FAIL: TestMeat_AddIngredient (0.00s)
 decorator_test.go:68: Not implemented yet
 decorator_test.go:72: When calling the add ingredient of the meat
decorator it must return a text with the word 'meat', not ''
 FAIL
 exit status 1
 FAIL

Finally, we must check the full stack test. Creating a pizza with onion and meat must return
the text Pizza with the following ingredients: meat, onion:

func TestPizzaDecorator_FullStack(t *testing.T) {
 pizza := &Onion{&Meat{&PizzaDecorator{}}}
 pizzaResult, err := pizza.AddIngredient()
 if err != nil {
 t.Error(err)
 }

 expectedText := "Pizza with the following ingredients: meat, onion"
 if !strings.Contains(pizzaResult, expectedText){
 t.Errorf("When asking for a pizza with onion and meat the returned " +
"string must contain the text '%s' but '%s' didn't have it",
expectedText,pizzaResult)
 }

 t.Log(pizzaResult)
}

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[136]

Our test creates a variable called pizza which, like the matryoshka dolls, embeds types of
the IngredientAdd method in several levels. Calling the AddIngredient method executes
the method at the “onion” level, which executes the “meat” one, which, finally, executes that
of the PizzaDecorator struct. After checking that no error had been returned, we check
whether the returned text follows the needs of the acceptance criteria 5. The tests are run with
the following command:

 go test -v -run=TestPizzaDecorator_FullStack .
 === RUN TestPizzaDecorator_FullStack
 --- FAIL: TestPizzaDecorator_FullStack (0.
 decorator_test.go:80: Not implemented yet
 decorator_test.go:87: When asking for a pizza with onion and meat the
returned string must contain the text 'Pizza with the following
ingredients: meat, onion' but '' didn't have it
 FAIL
 exit status 1
 FAIL

From the preceding output, we can see that the tests now return an empty string for our
decorated type. This is, of course, because no implementation has been done yet. This was
the last test to check the fully decorated implementation. Let's look closely at the
implementation then.

Implementation
We are going to start implementing the PizzaDecorator type. Its role is to provide the
initial text of the full pizza:

type PizzaDecorator struct {
 Ingredient IngredientAdd
}

func (p *PizzaDecorator) AddIngredient() (string, error) {
 return "Pizza with the following ingredients:", nil
}

A single line change on the return of the AddIngredient method was enough to pass the
test:

 go test -v -run=TestPizzaDecorator_Add .
 === RUN TestPizzaDecorator_AddIngredient
 --- PASS: TestPizzaDecorator_AddIngredient (0.00s)
 PASS
 ok

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[137]

Moving on to the Onion struct implementation, we must take the beginning of our
IngredientAdd returned string, and add the word onion at the end of it in order to get a
composed pizza in return:

type Onion struct {
 Ingredient IngredientAdd
}

func (o *Onion) AddIngredient() (string, error) {
 if o.Ingredient == nil {
 return "", errors.New("An IngredientAdd is needed in the Ingredient
field of the Onion")
 }
 s, err := o.Ingredient.AddIngredient()
 if err != nil {
 return "", err
 }
 return fmt.Sprintf("%s %s,", s, "onion"), nil
}

Checking that we actually have a pointer to IngredientAdd first, we use the contents of
the inner IngredientAdd, and check it for errors. If no errors occur, we receive a new
string composed of this content, a space, and the word onion (and no errors). Looks good
enough to run the tests:

 go test -v -run=TestOnion_AddIngredient .
 === RUN TestOnion_AddIngredient
 --- PASS: TestOnion_AddIngredient (0.00s)
 PASS
 ok

Implementation of the Meat struct is very similar:

type Meat struct {
 Ingredient IngredientAdd
}

func (m *Meat) AddIngredient() (string, error) {
 if m.Ingredient == nil {
 return "", errors.New("An IngredientAdd is needed in the Ingredient
field of the Meat")
 }
 s, err := m.Ingredient.AddIngredient()
 if err != nil {
 return "", err
 }
 return fmt.Sprintf("%s %s,", s, "meat"), nil

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[138]

}

And here goes their test execution:

 go test -v -run=TestMeat_AddIngredient .
 === RUN TestMeat_AddIngredient
 --- PASS: TestMeat_AddIngredient (0.00s)
 PASS
 ok

Okay. So, now all the pieces are to be tested separately. If everything is okay, the test of the
full stacked solution must be passing smoothly:

 go test -v -run=TestPizzaDecorator_FullStack .
 === RUN TestPizzaDecorator_FullStack
 --- PASS: TestPizzaDecorator_FullStack (0.00s)
 decorator_test.go:92: Pizza with the following ingredients: meat,
onion,
 PASS
 ok

Awesome! With the Decorator pattern, we could keep stacking IngredientAdds which call
their inner pointer to add functionality to PizzaDecorator. We aren't touching the core
type either, nor modifying or implementing new things. All the new features are
implemented by an external type.

A real-life example – server middleware
By now, you should have understood how the Decorator pattern works. Now we can try a
more advanced example using the small HTTP server that we designed in the Adapter
pattern section. You learned that an HTTP server can be created by using the http package,
and implementing the http.Handler interface. This interface has only one method called
ServeHTTP(http.ResponseWriter, http.Request). Can we use the Decorator pattern
to add more functionality to a server? Of course!

We will add a couple of pieces to this server. First, we are going to log every connection
made to it to the io.Writer interface (for the sake of simplicity, we'll use the io.Writer
implementation of the os.Stdout interface so that it outputs to the console). The second
piece will add basic HTTP authentication to every request made to the server. If the
authentication passes, a Hello Decorator! message will appear. Finally, the user will be
able to select the number of decoration items that he/she wants in the server, and the server
will be structured and created at runtime.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[139]

Starting with the common interface, http.Handler
We already have the common interface that we will decorate using nested types. We first
need to create our core type, which is going to be the Handler that returns the sentence
Hello Decorator!:

type MyServer struct{}

func (m *MyServer) ServeHTTP(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintln(w, "Hello Decorator!")
}

This handler can be attributed to the http.Handle method to define our first endpoint.
Let's check this now by creating the package's main function, and sending a GET request to
it:

func main() {
 http.Handle("/", &MyServer{})

 log.Fatal(http.ListenAndServe(":8080", nil))
}

Execute the server using the Terminal to execute the go run main.go command. Then,
open a new Terminal to make the GET request. We'll use the curl command to make our
requests:

 $ curl http://localhost:8080
 Hello Decorator!

We have crossed the first milestone of our decorated server. The next step is to decorate it
with logging capabilities. To do so, we must implement the http.Handler interface, in a
new type, as follows:

type LoggerServer struct {
 Handler http.Handler
 LogWriter io.Writer
}

func (s *LoggerServer) ServeHTTP(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(s.LogWriter, "Request URI: %s\n", r.RequestURI)
 fmt.Fprintf(s.LogWriter, "Host: %s\n", r.Host)
 fmt.Fprintf(s.LogWriter, "Content Length: %d\n",
r.ContentLength)
 fmt.Fprintf(s.LogWriter, "Method: %s\n",
r.Method)fmt.Fprintf(s.LogWriter, "--------------------------------\n")

 s.Handler.ServeHTTP(w, r)

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[140]

}

We call this type LoggerServer. As you can see, it stores not only a Handler, but also
io.Writer to write the output of the log. Our implementation of the ServeHTTP method
prints the request URI, the host, the content length, and the used method io.Writer. Once
printing is finished, it calls the ServeHTTP function of its inner Handler field.

We can decorate MyServer with this LoggerMiddleware:

func main() {
 http.Handle("/", &LoggerServer{
 LogWriter:os.Stdout,
 Handler:&MyServer{},
 })

 log.Fatal(http.ListenAndServe(":8080", nil))
}

Now run the curl command:

 $ curl http://localhost:8080
 Hello Decorator!

Our curl command returns the same message, but if you look at the Terminal where you
have run the Go application, you can see the logging:

 $ go run server_decorator.go
 Request URI: /
 Host: localhost:8080
 Content Length: 0
 Method: GET

We have decorated MyServer with logging capabilities without actually modifying it. Can
we do the same with authentication? Of course! After logging the request, we will
authenticate it by using HTTP Basic Authentication as follows:

type BasicAuthMiddleware struct {
 Handler http.Handler
 User string
 Password string
}

The BasicAuthMiddleware middleware stores three fields–a handler to decorate like in the
previous middlewares, a user, and a password, which will be the only authorization to
access the contents on the server. The implementation of the decorating method will
proceed as follows:

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[141]

func (s *BasicAuthMiddleware) ServeHTTP(w http.ResponseWriter, r
*http.Request) {
 user, pass, ok := r.BasicAuth()

 if ok {
 if user == s.User && pass == s.Password {
 s.Handler.ServeHTTP(w, r)
 }
 else {
 fmt.Fprintf(w, "User or password incorrect\n")
 }
 }
 else {
 fmt.Fprintln(w, "Error trying to retrieve data from Basic auth")
 }
}

In the preceding implementation, we use the BasicAuth method from http.Request to
automatically retrieve the user and password from the request, plus an ok/ko from the
parsing action. Then we check whether the parsing is correct (returning a message to the
requester if incorrect, and finishing the request). If no problems have been detected during
parsing, we check whether the username and the password match with the ones stored in
BasicAuthMiddleware. If the credentials are valid, we shall call the decorated type (our
server), but if the credentials aren't valid, we receive the User or password incorrect
message in return, and the request is finished.

Now, we need to provide the user with a way to choose among different types of servers.
We will retrieve user input data in the main function. We'll have three options to choose
from:

Simple server
Server with logging
Server with logging and authentication

We have to use the Fscanf function to retrieve input from the user:

func main() {
 fmt.Println("Enter the type number of server you want to launch from the
following:")
 fmt.Println("1.- Plain server")
 fmt.Println("2.- Server with logging")
 fmt.Println("3.- Server with logging and authentication")

 var selection int
 fmt.Fscanf(os.Stdin, "%d", &selection)

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[142]

}

The Fscanf function needs an io.Reader implementor as the first argument (which is
going to be the input in the console), and it takes the server selected by the user from it.
We'll pass os.Stdin as the io.Reader interface to retrieve user input. Then, we'll write the
type of data it is going to parse. The %d specifier refers to an integer number. Finally, we'll
write memory direction to store the parsed input, in this case, the memory position of
the selection variable.

Once the user selects an option, we can take the basic server and decorate it at runtime,
switching over to the selected option:

 switch selection {
 case 1:
 mySuperServer = new(MyServer)
 case 2:
 mySuperServer = &LoggerMiddleware{
 Handler: new(MyServer),
 LogWriter: os.Stdout,
 }
 case 3:
 var user, password string

 fmt.Println("Enter user and password separated by a space")
 fmt.Fscanf(os.Stdin, "%s %s", &user, &password)

 mySuperServer = &LoggerMiddleware{
 Handler: &SimpleAuthMiddleware{
 Handler: new(MyServer),
 User: user,
 Password: password,
 },
 LogWriter: os.Stdout,
 }
 default:
 mySuperServer = new(MyServer)
 }

The first option will be handled by the default switch option–a plain MyServer. In the case
of the second option, we decorate a plain server with logging. The third Option is a bit more
developed–we ask the user for a username and a password using Fscanf again. Note that
you can scan more than one input, as we are doing to retrieve the user and the password.
Then, we take the basic server, decorate it with authentication, and finally, with logging.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[143]

If you follow the indentation of the nested types of option three, the request passes through
the logger, then the authentication middleware, and finally, the MyServer argument if
everything is okay. The requests will follow the same route.

The end of the main function takes the decorated handler, and launches the server on
the 8080 port:

http.Handle("/", mySuperServer)
log.Fatal(http.ListenAndServe(":8080", nil))

So, let's launch the server with the third option:

$go run server_decorator.go
Enter the server type number you want to launch from the following:
1.- Plain server
2.- Server with logging
3.- Server with logging and authentication

Enter user and password separated by a space
mario castro

We will first test the plain server by choosing the first option. Run the server with the
command go run server_decorator.go, and select the first option. Then, in a different
Terminal, run the basic request with curl, as follows:

 $ curl http://localhost:8080
 Error trying to retrieve data from Basic auth

Uh, oh! It doesn't give us access. We haven't passed any user and password, so it tells us
that we cannot continue. Let's try with some random user and password:

 $ curl -u no:correct http://localhost:8080
 User or password incorrect

No access! We can also check in the Terminal where we launched the server and where
every request is being logged:

 Request URI: /
 Host: localhost:8080
 Content Length: 0
 Method: GET

Finally, enter the correct username and password:

 $ curl -u packt:publishing http://localhost:8080
 Hello Decorator!

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[144]

Here we are! Our request has also been logged, and the server has granted access to us.
Now we can improve our server as much as we want by writing more middlewares
to decorate the server's functionality.

A few words about Go's structural typing
Go has a feature that most people dislike at the beginning–structural typing. This is when
your structure defines your type without explicitly writing it. For example, when you
implement an interface, you don't have to write explicitly that you are actually
implementing it, contrary to languages such as Java where you have to write the keyword
implements. If your method follows the signature of the interface, you are actually
implementing the interface. This can also lead to accidental implementations of interface,
something that could provoke an impossible-to-track mistake, but that is very unlikely.

However, structural typing also allows you to define an interface after defining their
implementers. Imagine a MyPrinter struct as follows:

type MyPrinter struct{}
func(m *MyPrinter)Print(){
 println("Hello")
}

Imagine we have been working with the MyPrinter type for few months now, but it didn't
implement any interface, so it can't be a possible candidate for a Decorator pattern, or
maybe it can? What if we wrote an interface that matches its Print method after a few
months? Consider the following code snippet:

type Printer interface {
 Print()
}

It actually implements the Printer interface, and we can use it to create a Decorator
solution.

Structural typing allows a lot of flexibility when writing programs. If you don't know
whether a type should be a part of an interface or not, you can leave it and add the interface
later, when you are completely sure about it. This way, you can decorate types very easily
and with little modification in your source code.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[145]

Summarizing the Decorator design pattern –
Proxy versus Decorator
You might be wondering, what's the difference between the Decorator pattern and the
Proxy pattern? In the Decorator pattern, we decorate a type dynamically. This means that
the decoration may or may not be there, or it may be composed of one or many types. If you
remember, the Proxy pattern wraps a type in a similar fashion, but it does so at compile
time and it's more like a way to access some type.

At the same time, a decorator might implement the entire interface that the type it decorates
also implements or not. So you can have an interface with 10 methods and a decorator that
just implements one of them and it will still be valid. A call on a method not implemented
by the decorator will be passed to the decorated type. This is a very powerful feature but
also very prone to undesired behaviors at runtime if you forget to implement any interface
method.

In this aspect, you may think that the Proxy pattern is less flexible, and it is. But the
Decorator pattern is weaker, as you could have errors at runtime, which you can avoid at
compile time by using the Proxy pattern. Just keep in mind that the Decorator is commonly
used when you want to add functionality to an object at runtime, like in our web server. It's
a compromise between what you need and what you want to sacrifice to achieve it.

Facade design pattern
The next pattern we'll see in this chapter is the Facade pattern. When we discussed the
Proxy pattern, you got to know that it was a way to wrap an type to hide some of its
features of complexity from the user. Imagine that we group many proxies in a single point
such as a file or a library. This could be a Facade pattern.

Description
A facade, in architectural terms, is the front wall that hides the rooms and corridors of a
building. It protects its inhabitants from cold and rain, and provides them privacy. It orders
and divides the dwellings.

The Facade design pattern does the same, but in our code. It shields the code from
unwanted access, orders some calls, and hides the complexity scope from the user.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[146]

Objectives
You use Facade when you want to hide the complexity of some tasks, especially when most
of them share utilities (such as authentication in an API). A library is a form of facade,
where someone has to provide some methods for a developer to do certain things in a
friendly way. This way, if a developer needs to use your library, he doesn't need to know all
the inner tasks to retrieve the result he/she wants.

So, you use the Facade design pattern in the following scenarios:

When you want to decrease the complexity of some parts of our code. You hide
that complexity behind the facade by providing a more easy-to-use method.
When you want to group actions that are cross-related in a single place.
When you want to build a library so that others can use your products without
worrying about how it all works.

Example
As an example, we are going to take the first steps toward writing our own library that
accesses OpenWeatherMaps service. In case you are not familiar with OpenWeatherMap
service, it is an HTTP service that provides you with live information about weather, as well
as historical data on it. The HTTP REST API is very easy to use, and will be a good example
on how to create a Facade pattern for hiding the complexity of the network connections
behind the REST service.

Acceptance criteria
The OpenWeatherMap API gives lots of information, so we are going to focus on getting live
weather data in one city in some geo-located place by using its latitude and longitude
values. The following are the requirements and acceptance criteria for this design pattern:

Provide a single type to access the data. All information retrieved from1.
OpenWeatherMap service will pass through it.
Create a way to get the weather data for some city of some country.2.
Create a way to get the weather data for some latitude and longitude position.3.
Only second and thrird point must be visible outside of the package; everything4.
else must be hidden (including all connection-related data).

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[147]

Unit test
To start with our API Facade, we will need an interface with the methods asked in
acceptance criteria 2 and acceptance criteria 3:

type CurrentWeatherDataRetriever interface {
 GetByCityAndCountryCode(city, countryCode string) (Weather, error)
 GetByGeoCoordinates(lat, lon float32) (Weather, error)
}

We will call acceptance criteria 2 GetByCityAndCountryCode; we will also need a city name
and a country code in the string format. A country code is a two-character code, which
represents the International Organization for Standardization (ISO) name of world
countries. It returns a Weather value, which we will define later, and an error if something
goes wrong.

Acceptance criteria 3 will be called GetByGeoCoordinates, and will need latitude and
longitude values in the float32 format. It will also return a Weather value and an error.
The Weather value is going to be defined according to the returned JSON that the
OpenWeatherMap API works with. You can find the description of this JSON at the
webpage http://openweathermap.org/current#current_JSON.

If you look at the JSON definition, it has the following type:

type Weather struct {
 ID int `json:"id"`
 Name string `json:"name"`
 Cod int `json:"cod"`
 Coord struct {
 Lon float32 `json:"lon"`
 Lat float32 `json:"lat"`
 } `json:"coord"`
 Weather []struct {
 Id int `json:"id"`
 Main string `json:"main"`
 Description string `json:"description"`
 Icon string `json:"icon"`
 } `json:"weather"`

 Base string `json:"base"`
 Main struct {
 Temp float32 `json:"temp"`
 Pressure float32 `json:"pressure"`
 Humidity float32 `json:"humidity"`
 TempMin float32 `json:"temp_min"`
 TempMax float32 `json:"temp_max"`

http://openweathermap.org/current#current_JSON

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[148]

 } `json:"main"`

 Wind struct {
 Speed float32 `json:"speed"`
 Deg float32 `json:"deg"`
 } `json:"wind"`

 Clouds struct {
 All int `json:"all"`
 } `json:"clouds"`
 Rain struct {
 ThreeHours float32 `json:"3h"`
 } `json:"rain"`
 Dt uint32 `json:"dt"`
 Sys struct {
 Type int `json:"type"`
 ID int `json:"id"`
 Message float32 `json:"message"`
 Country string `json:"country"`
 Sunrise int `json:"sunrise"`
 Sunset int `json:"sunset"`
 }`json:"sys"`
}

It's quite a long struct, but we have everything that a response could include. The struct is
called Weather, as it is composed of an ID, a name and a Code (Cod), and a few anonymous
structs, which are: Coord, Weather, Base, Main, Wind, Clouds, Rain, Dt, and Sys. We
could write these anonymous structs outside of the Weather struct by giving them a name,
but it would only be useful if we have to work with them separately.

After every member and struct within our Weather struct, you can find a
`json:"something"` line. This comes in handy when differentiating between the JSON
key name and your member name. If the JSON key is something, we aren't forced to call
our member something. For example, our ID member will be called id in the JSON
response.

Why don't we give the name of the JSON keys to our types? Well, if your fields in your type
are lowercase, the encoding/json package won't parse them correctly. Also, that last
annotation provides us a certain flexibility, not only in terms of changing the members'
names, but also of omitting some key if we don't need it, with the following signature:

`json:"something,omitempty"

With omitempty at the end, the parse won't fail if this key is not present in the bytes
representation of the JSON key.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[149]

Okay, our acceptance criteria 1 ask for a single point of access to the API. This is going to be
called CurrentWeatherData:

type CurrentWeatherData struct {
 APIkey string
}

The CurrentWeatherData type has an API key as public member to work. This is because
you have to be a registered user in OpenWeatherMap to enjoy their services. Refer to the
OpenWeatherMap API's webpage for documentation on how to get an API key. We won't
need it in our example, because we aren't going to do integration tests.

We need mock data so that we can write a mock function to retrieve the data. When sending
an HTTP request, the response is contained in a member called body in the form of an
io.Reader. We have already worked with types that implement the io.Reader interface,
so this should look familiar to you. Our mock function appears like this:

 func getMockData() io.Reader {
 response := `{
 "coord":{"lon":-3.7,"lat":40.42},"weather :
[{"id":803,"main":"Clouds","description":"broken
clouds","icon":"04n"}],"base":"stations","main":{"temp":303.56,"pressure":1
016.46,"humidity":26.8,"temp_min":300.95,"temp_max":305.93},"wind":{"speed"
:3.17,"deg":151.001},"rain":{"3h":0.0075},"clouds":{"all":68},"dt":14712958
23,"sys":{"type":3,"id":1442829648,"message":0.0278,"country":"ES","sunrise
":1471238808,"sunset":1471288232},"id":3117735,"name":"Madrid","cod":200}`

 r := bytes.NewReader([]byte(response))
 return r
}

This preceding mocked data was produced by making a request to OpenWeatherMap using
an API key. The response variable is a string containing a JSON response. Take a close
look at the grave accent (`) used to open and close the string. This way, you can use as
many quotes as you want without any problem.

Further on, we use a special function in the bytes package called NewReader, which accepts
an slice of bytes (which we create by converting the type from string), and returns an
io.Reader implementor with the contents of the slice. This is perfect to mimic the Body
member of an HTTP response.

We will write a test to try response parser. Both methods return the same type, so we
can use the same JSON parser for both:

func TestOpenWeatherMap_responseParser(t *testing.T) {

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[150]

 r := getMockData()
 openWeatherMap := CurrentWeatherData{APIkey: ""}

 weather, err := openWeatherMap.responseParser(r)
 if err != nil {
 t.Fatal(err)
 }

 if weather.ID != 3117735 {
 t.Errorf("Madrid id is 3117735, not %d\n", weather.ID)
 }
}

In the preceding test, we first asked for some mock data, which we store in the variable r.
Later, we created a type of CurrentWeatherData, which we called openWeatherMap.
Finally, we asked for a weather value for the provided io.Reader interface that we store in
the variable weather. After checking for errors, we make sure that the ID is the same as the
one stored in the mock data that we got from the getMockData method.

We have to declare the responseParser method before running tests, or the code won't
compile:

func (p *CurrentWeatherData) responseParser(body io.Reader) (*Weather,
error) {
 return nil, fmt.Errorf("Not implemented yet")
}

With all the aforementioned, we can run this test:

 go test -v -run=responseParser .
 === RUN TestOpenWeatherMap_responseParser
 --- FAIL: TestOpenWeatherMap_responseParser (0.00s)
 facade_test.go:72: Not implemented yet
 FAIL
 exit status 1
 FAIL

Okay. We won't write more tests, because the rest would be merely integration tests, which
are outside of the scope of explanation of a structural pattern, and will force us to have an
API key as well as an Internet connection. If you want to see what the integration tests look
like for this example, refer to the code that comes bundled with the book.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[151]

Implementation
First of all, we are going to implement the parser that our methods will use to parse the
JSON response from the OpenWeatherMap REST API:

func (p *CurrentWeatherData) responseParser(body io.Reader) (*Weather,
error) {
 w := new(Weather)
 err := json.NewDecoder(body).Decode(w)
 if err != nil {
 return nil, err
 }

 return w, nil
}

And this should be enough to pass the test by now:

go test -v -run=responseParser .
=== RUN TestOpenWeatherMap_responseParser
--- PASS: TestOpenWeatherMap_responseParser (0.00s)
PASS
ok

At least we have our parser well tested. Let's structure our code to look like a library. First,
we will create the methods to retrieve the weather of a city by its name and its country code,
and the method that uses its latitude and longitude:

func (c *CurrentWeatherData) GetByGeoCoordinates(lat, lon float32) (weather
*Weather, err error) {
 return c.doRequest(
 fmt.Sprintf("http://api.openweathermap.org/data/2.5/weather
q=%s,%s&APPID=%s", lat, lon, c.APIkey))
}

func (c *CurrentWeatherData) GetByCityAndCountryCode(city, countryCode
string) (weather *Weather, err error) {
 return c.doRequest(
fmt.Sprintf("http://api.openweathermap.org/data/2.5/weather?lat=%f&lon=%f&A
PPID=%s", city, countryCode, c.APIkey))
}

A piece of cake? Of course! Everything must be as easy as possible, and it is a sign of a good
job. The complexity in this facade is to create connections to the OpenWeatherMap API, and
control the possible errors. This problem is shared between all the Facade methods in our
example, so we don't need to write more than one API call right now.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[152]

What we do is pass the URL that the REST API needs in order to return the information we
desire. This is achieved by the fmt.Sprintf function, which formats the strings in each
case. For example, to gather the data using a city name and a country code, we use the
following string:

fmt.Sprintf("http://api.openweathermap.org/data/2.5/weather?lat=%f&lon=%f&A
PPID=%s", city, countryCode, c.APIkey)

This takes the pre-formatted string https://openweathermap.org/api and formats it by
replacing each %s specifier with the city, the countryCode that we introduced in the
arguments, and the API key member of the CurrentWeatherData type.

But, we haven't set any API key! Yes, because this is a library, and the users of the library
will have to use their own API keys. We are hiding the complexity of creating the URIs, and
handling the errors.

Finally, the doRequest function is a big fish, so we will see it in detail, step by step:

func (o *CurrentWeatherData) doRequest(uri string) (weather *Weather, err
error) {
 client := &http.Client{}
 req, err := http.NewRequest("GET", uri, nil)
 if err != nil {
 return
 }
 req.Header.Set("Content-Type", "application/json")

First, the signature tells us that the doRequest method accepts a URI string, and returns a
pointer to the Weather variable and an error. We start by creating an http.Client class,
which will make the requests. Then, we create a request object, which will use the GET
method, as described in the OpenWeatherMap webpage, and the URI we passed. If we were
to use a different method, or more than one, they would have to be brought about by
arguments in the signature. Nevertheless, we will use just the GET method, so we could
hardcode it there.

Then, we check whether the request object has been created successfully, and set a header
that says that the content type is a JSON:

resp, err := client.Do(req)
if err != nil {
 return
}

if resp.StatusCode != 200 {
 byt, errMsg := ioutil.ReadAll(resp.Body)

https://openweathermap.org/api

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[153]

 if errMsg == nil {
 errMsg = fmt.Errorf("%s", string(byt))
 }
 err = fmt.Errorf("Status code was %d, aborting. Error message
was:\n%s\n",resp.StatusCode, errMsg)

 return
}

Then we make the request, and check for errors. Because we have given names to our return
types, if any error occurs, we just have to return the function, and Go will return the
variable err and the variable weather in the state they were in at that precise moment.

We check the status code of the response, as we only accept 200 as a good response. If 200
isn't returned, we will create an error message with the contents of the body and the status
code returned:

 weather, err = o.responseParser(resp.Body)
 resp.Body.Close()

 return
}

Finally, if everything goes well, we use the responseParser function we wrote earlier to
parse the contents of Body, which is an io.Reader interface. Maybe you are wondering
why we aren't controlling err from the response parser method. It's funny, because we
are actually controlling it. responseParser and doRequest have the same return
signature. Both return a Weather pointer and an error (if any), so we can return directly
whatever the result was.

Library created with the Facade pattern
We have the first milestone for a library for the OpenWeatherMap API using the facade
pattern. We have hidden the complexity of accessing the OpenWeatherMap REST API in the
doRequest and responseParser functions, and the users of our library have an easy-to-
use syntax to query the API. For example, to retrieve the weather for Madrid, Spain, a user
will only have to introduce arguments and an API key at the beginning:

 weatherMap := CurrentWeatherData{*apiKey}

 weather, err := weatherMap.GetByCityAndCountryCode("Madrid", "ES")
 if err != nil {
 t.Fatal(err)
 }

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[154]

 fmt.Printf("Temperature in Madrid is %f celsius\n",
weather.Main.Temp-273.15)

The console output for the weather in Madrid at the moment of writing this chapter is the
following:

$ Temperature in Madrid is 30.600006 celsius

A typical summer day!

Flyweight design pattern
Our next pattern is the Flyweight design pattern. It's very commonly used in computer
graphics and the video game industry, but not so much in enterprise applications.

Description
Flyweight is a pattern which allows sharing the state of a heavy object between many
instances of some type. Imagine that you have to create and store too many objects of some
heavy type that are fundamentally equal. You'll run out of memory pretty quickly. This
problem can be easily solved with the Flyweight pattern, with additional help of the Factory
pattern. The factory is usually in charge of encapsulating object creation, as we saw
previously.

Objectives
Thanks to the Flyweight pattern, we can share all possible states of objects in a single
common object, and thus minimize object creation by using pointers to already created
objects.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[155]

Example
To give an example, we are going to simulate something that you find on betting webpages.
Imagine the final match of the European championship, which is viewed by millions of
people across the continent. Now imagine that we own a betting webpage, where we
provide historical information about every team in Europe. This is plenty of information,
which is usually stored in some distributed database, and each team has, literally,
megabytes of information about their players, matches, championships, and so on.

If a million users access information about a team and a new instance of the information is
created for each user querying for historical data, we will run out of memory in the blink of
an eye. With our Proxy solution, we could make a cache of the n most recent searches to
speed up queries, but if we return a clone for every team, we will still get short on memory
(but faster thanks to our cache). Funny, right?

Instead, we will store each team's information just once, and we will deliver references to
them to the users. So, if we face a million users trying to access information about a match,
we will actually just have two teams in memory with a million pointers to the same
memory direction.

Acceptance criteria
The acceptance criteria for a Flyweight pattern must always reduce the amount of memory
that is used, and must be focused primarily on this objective:

We will create a Team struct with some basic information such as the team's1.
name, players, historical results, and an image depicting their shield.
We must ensure correct team creation (note the word creation here, candidate for2.
a creational pattern), and not having duplicates.
When creating the same team twice, we must have two pointers pointing to the3.
same memory address.

Basic structs and tests
Our Team struct will contain other structs inside, so a total of four structs will be created.
The Team struct has the following signature:

type Team struct {
 ID uint64
 Name string

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[156]

 Shield []byte
 Players []Player
 HistoricalData []HistoricalData
}

Each team has an ID, a name, some image in an slice of bytes representing the team's shield,
a slice of players, and a slice of historical data. This way, we will have two teams' ID:

const (
 TEAM_A = iota
 TEAM_B
)

We declare two constants by using the const and iota keywords. The const keyword
simply declares that the following declarations are constants. iota is a untyped integer that
automatically increments its value for each new constant between the parentheses.
The iota value starts to reset to 0 when we declare TEAM_A, so TEAM_A is equal to 0. On
the TEAM_B variable, iota is incremented by one so TEAM_B is equal to 1.
The iota assignment is an elegant way to save typing when declaring constant values that
doesn't need specific value (like the Pi constant on the math package).

Our Player and HistoricalData are the following:

type Player struct {
 Name string
 Surname string
 PreviousTeam uint64
 Photo []byte
}

type HistoricalData struct {
 Year uint8
 LeagueResults []Match
}

As you can see, we also need a Match struct, which is stored within
HistoricalData struct. A Match struct, in this context, represents the historical result of a
match:

type Match struct {
 Date time.Time
 VisitorID uint64
 LocalID uint64
 LocalScore byte
 VisitorScore byte
 LocalShoots uint16

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[157]

 VisitorShoots uint16
}

This is enough to represent a team, and to fulfill Acceptance Criteria 1. You have probably
guessed that there is a lot of information on each team, as some of the European teams have
existed for more than 100 years.

For Acceptance Criteria 2, the word creation should give us some clue about how to approach
this problem. We will build a factory to create and store our teams. Our Factory will consist
of a map of years, including pointers to Teams as values, and a GetTeam function. Using a
map will boost the team search if we know their names in advance. We will also dispose of
a method to return the number of created objects, which will be called
the GetNumberOfObjects method:

type teamFlyweightFactory struct {
 createdTeams map[string]*Team
}

func (t *teamFlyweightFactory) GetTeam(name string) *Team {
 return nil
}

func (t *teamFlyweightFactory) GetNumberOfObjects() int {
 return 0
}

This is enough to write our first unit test:

func TestTeamFlyweightFactory_GetTeam(t *testing.T) {
 factory := teamFlyweightFactory{}

teamA1 := factory.GetTeam(TEAM_A)
 if teamA1 == nil {
 t.Error("The pointer to the TEAM_A was nil")
 }

 teamA2 := factory.GetTeam(TEAM_A)
 if teamA2 == nil {
 t.Error("The pointer to the TEAM_A was nil")
 }

 if teamA1 != teamA2 {
 t.Error("TEAM_A pointers weren't the same")
 }

 if factory.GetNumberOfObjects() != 1 {
 t.Errorf("The number of objects created was not 1: %d\n",

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[158]

factory.GetNumberOfObjects())
 }
}

In our test, we verify all the acceptance criteria. First we create a factory, and then ask for a
pointer of TEAM_A. This pointer cannot be nil, or the test will fail.

Then we call for a second pointer to the same team. This pointer can't be nil either, and it
should point to the same memory address as the previous one so we know that it has not
allocated a new memory.

Finally, we should check whether the number of created teams is only one, because we have
asked for the same team twice. We have two pointers but just one instance of the team. Let's
run the tests:

 $ go test -v -run=GetTeam .
 === RUN TestTeamFlyweightFactory_GetTeam
 --- FAIL: TestTeamFlyweightFactory_GetTeam (0.00s)
 flyweight_test.go:11: The pointer to the TEAM_A was nil
 flyweight_test.go:21: The pointer to the TEAM_A was nil
 flyweight_test.go:31: The number of objects created was not 1: 0
 FAIL
 exit status 1
 FAIL

Well, it failed. Both pointers were nil and it has not created any object. Interestingly, the
function that compares the two pointers doesn't fail; all in all, nil equals nil.

Implementation
Our GetTeam method will need to scan the map field called createdTeams to make sure
the queried team is already created, and return it if so. If the team wasn't created, it will
have to create it and store it in the map before returning:

func (t *teamFlyweightFactory) GetTeam(teamID int) *Team {
 if t.createdTeams[teamID] != nil {
 return t.createdTeams[teamID]
 }

 team := getTeamFactory(teamID)
 t.createdTeams[teamID] = &team

 return t.createdTeams[teamID]
}

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[159]

The preceding code is very simple. If the parameter name exists in the createdTeams map,
return the pointer. Otherwise, call a factory for team creation. This is interesting enough to
stop for a second and analyze. When you use the Flyweight pattern, it is very common to
have a Flyweight factory, which uses other types of creational patterns to retrieve the
objects it needs.

So, the getTeamFactory method will give us the team we are looking for, we will store it
in the map, and return it. The team factory will be able to create the two teams: TEAM_A and
TEAM_B:

func getTeamFactory(team int) Team {
 switch team {
 case TEAM_B:
 return Team{
 ID: 2,
 Name: TEAM_B,
 }
 default:
 return Team{
 ID: 1,
 Name: TEAM_A,
 }
 }
}

We are simplifying the objects' content so that we can focus on the Flyweight pattern's
implementation. Okay, so we just have to define the function to retrieve the number of
objects created, which is done as follows:

func (t *teamFlyweightFactory) GetNumberOfObjects() int {
 return len(t.createdTeams)
}

This was pretty easy. The len function returns the number of elements in an array or slice,
the number of characters in a string, and so on. It seems that everything is done, and we
can launch our tests again:

$ go test -v -run=GetTeam .
=== RUN TestTeamFlyweightFactory_GetTeam
--- FAIL: TestTeamFlyweightFactory_GetTeam (0.00s)
panic: assignment to entry in nil map [recovered]
 panic: assignment to entry in nil map

goroutine 5 [running]:
panic(0x530900, 0xc0820025c0)
 /home/mcastro/Go/src/runtime/panic.go:481 +0x3f4

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[160]

testing.tRunner.func1(0xc082068120)
 /home/mcastro/Go/src/testing/testing.go:467 +0x199
panic(0x530900, 0xc0820025c0)
 /home/mcastro/Go/src/runtime/panic.go:443 +0x4f7
/home/mcastro/go-design-
patterns/structural/flyweight.(*teamFlyweightFactory).GetTeam(0xc08202fec0,
0x0, 0x0)
 /home/mcastro/Desktop/go-design-
patterns/structural/flyweight/flyweight.go:71 +0x159
/home/mcastro/go-design-
patterns/structural/flyweight.TestTeamFlyweightFactory_GetTeam(0xc082068120
)
 /home/mcastro/Desktop/go-design-
patterns/structural/flyweight/flyweight_test.go:9 +0x61
testing.tRunner(0xc082068120, 0x666580)
 /home/mcastro/Go/src/testing/testing.go:473 +0x9f
created by testing.RunTests
 /home/mcastro/Go/src/testing/testing.go:582 +0x899
exit status 2
FAIL

Panic! Have we forgotten something? By reading the stack trace on the panic message, we
can see some addresses, some files, and it seems that the GetTeam method is trying to
assign an entry to a nil map on line 71 of the flyweight.go file. Let's look at line 71 closely
(remember, if you are writing code while following this tutorial, that the error will probably
be in a different line so look closely at your own stark trace):

t.createdTeams[teamName] = &team

Okay, this line is on the GetTeam method, and, when the method passes through here, it
means that it had not found the team on the map-it has created it (the variable team), and is
trying to assign it to the map. But the map is nil, because we haven't initialized it when
creating the factory. This has a quick solution. In our test, initialize the map where we have
created the factory:

factory := teamFlyweightFactory{
 createdTeams: make(map[int]*Team,0),
}

I'm sure you have seen the problem here already. If we don't have access to the package, we
can initialize the variable. Well, we can make the variable public, and that's all. But this
would involve every implementer necessarily knowing that they have to initialize the map,
and its signature is neither convenient, or elegant. Instead, we are going to create a simple
factory builder to do it for us. This is a very common approach in Go:

func NewTeamFactory() teamFlyweightFactory {

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[161]

 return teamFlyweightFactory{
 createdTeams: make(map[int]*Team),
 }
}

So now, in the test, we replace the factory creation with a call to this function:

func TestTeamFlyweightFactory_GetTeam(t *testing.T) {
 factory := NewTeamFactory()
 ...
}

And we run the test again:

 $ go test -v -run=GetTeam .
 === RUN TestTeamFlyweightFactory_GetTeam
 --- PASS: TestTeamFlyweightFactory_GetTeam (0.00s)
 PASS
 ok

Perfect! Let's improve the test by adding a second test, just to ensure that everything will be
running as expected with more volume. We are going to create a million calls to the team
creation, representing a million calls from users. Then, we will simply check that the
number of teams created is only two:

func Test_HighVolume(t *testing.T) {
 factory := NewTeamFactory()

 teams := make([]*Team, 500000*2)
 for i := 0; i < 500000; i++ {
 teams[i] = factory.GetTeam(TEAM_A)
}

for i := 500000; i < 2*500000; i++ {
 teams[i] = factory.GetTeam(TEAM_B)
}

if factory.GetNumberOfObjects() != 2 {
 t.Errorf("The number of objects created was not 2:
%d\n",factory.GetNumberOfObjects())
 }
}

In this test, we retrieve TEAM_A and TEAM_B 500,000 times each to reach a million users.
Then, we make sure that just two objects were created:

$ go test -v -run=Volume .
=== RUN Test_HighVolume

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[162]

--- PASS: Test_HighVolume (0.04s)
PASS
ok

Perfect! We can even check where the pointers are pointing to, and where they are located.
We will check with the first three as an example. Add these lines at the end of the last test,
and run it again:

for i:=0; i<3; i++ {
 fmt.Printf("Pointer %d points to %p and is located in %p\n", i, teams[i],
&teams[i])
}

In the preceding test, we use the Printf method to print information about pointers. The
%p flag gives you the memory location of the object that the pointer is pointing to. If you
reference the pointer by passing the & symbol, it will give you the direction of the pointer
itself.

Run the test again with the same command; you will see three new lines in the output with
information similar to the following:

 Pointer 0 points to 0xc082846000 and is located in 0xc082076000
 Pointer 1 points to 0xc082846000 and is located in 0xc082076008
 Pointer 2 points to 0xc082846000 and is located in 0xc082076010

What it tells us is that the first three positions in the map point to the same location, but that
we actually have three different pointers, which are, effectively, much lighter than our team
object.

What's the difference between Singleton and
Flyweight then?
Well, the difference is subtle but it's just there. With the Singleton pattern, we ensure that
the same type is created only once. Also, the Singleton pattern is a Creational pattern. With
Flyweight, which is a Structural pattern, we aren't worried about how the objects are
created, but about how to structure a type to contain heavy information in a light way. The
structure we are talking about is the map[int]*Team structure in our example. Here, we
really didn't care about how we created the object; we have simply written an
uncomplicated the getTeamFactory method for it. We gave major importance to having a
light structure to hold a shareable object (or objects), in this case, the map.

Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns

[163]

Summary
We have seen several patterns to organize code structures. Structural patterns are
concerned about how to create objects, or how they do their business (we'll see this in the
behavioral patterns).

Don't feel confused about mixing several patterns. You could end up mixing six or seven
quite easily if you strictly follow the objectives of each one. Just keep in mind that over-
engineering is as bad as no engineering at all. I remember prototyping a load balancer one
evening, and after two hours of crazy over-engineered code, I had such a mess in my head
that I preferred to start all over again.

In the next chapter, we'll see behavioral patterns. They are a bit more complex, and they
often use Structural and Creational patterns for their objectives, but I'm sure that the reader
will find them quite challenging and interesting.

5
Behavioral Patterns - Strategy,

Chain of Responsibility, and
Command Design Patterns

The last group of common patterns we are going to see are the behavioral patterns. Now,
we aren't going to define structures or encapsulate object creation but we are going to deal
with behaviors.

What's to deal with in behavior patterns? Well, now we will encapsulate behaviors, for
example, algorithms in the Strategy pattern or executions in the command pattern.

Correct Behavior design is the last step after knowing how to deal with object creation and
structures. Defining the behavior correctly is the last step of good software design because,
all in all, good software design lets us improve algorithms and fix errors easily while the
best algorithm implementation will not save us from bad software design.

Strategy design pattern
The Strategy pattern is probably the easiest to understand of the Behavioral patterns. We
have used it a few times while developing the previous patterns but without stopping to
talk about it. Now we will.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[165]

Description
The Strategy pattern uses different algorithms to achieve some specific functionality. These
algorithms are hidden behind an interface and, of course, they must be interchangeable. All
algorithms achieve the same functionality in a different way. For example, we could have a
Sort interface and few sorting algorithms. The result is the same, some list is sorted, but we
could have used quick sort, merge sort, and so on.

Can you guess when we used a Strategy pattern in the previous chapters? Three, two, one…
Well, we heavily used the strategy pattern when we used the io.Writer interface. The
io.Writer interface defines a strategy to write, and the functionality is always the same–to
write something. We could write it to the standard out, to some file or to a user-defined
type, but we do the same thing at the end–to write. We just change the strategy to write (in
this case, we change the place where we write).

Objectives
The objectives of the Strategy pattern are really clear. The pattern should do the following:

Provide a few algorithms to achieve some specific functionality
All types achieve the same functionality in a different way but the client of the
strategy isn't affected

The problem is that this definition covers a huge spectrum of possibilities. This is because
Strategy pattern is actually used for a variety of scenarios and many software engineering
solutions come with some kind of strategy within. Therefore it's better to see it in action
with a real example.

Rendering images or text
We are going to do something different for this example. Instead of printing text on the
console only, we are also going to paint objects on a file.

In this case, we will have two strategies: console and file. But the user of the library won't
have to deal with the complexity behind them.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[166]

The key feature is that the “caller” doesn´t know how the underlying library is working and
he just knows the information available on the defined strategy. This is nicely seen on the
following diagram:

In this diagram, we have chosen to print to console but we won´t deal with the
ConsoleStrategy type directly, we´ll always use an interface that represents it.
The ConsoleStrategy type will hide the implementation details of printing to console to
caller in main function. FileStrategy hides its implementation details as well as any future
strategy.

Acceptance criteria
A strategy must have a very clear objective and we will have two ways to achieve it. Our
objectives will be as follows:

Provide a way to show to the user an object (a square) in text or image
The user must choose between image or text when launching the app
The app must be able to add more visualization strategies (audio, for example)
If the user selects text, the word Square must be printed in the console
If the user selects image, an image of a white square on a black background will
be printed on a file

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[167]

Implementation
We aren't going to write tests for this example as it will be quite complicated to check that
an image has appeared on the screen (although not impossible by using OpenCV, an
impressive library for computer vision). We will start directly by defining our strategy
interface that each printing strategy must implement (in our case, the file and console
types):

type PrintStrategy interface {
 Print() error
}

That's all. Our strategy defines a simple Print() method that returns an error (the error-
returning type is mandatory when dealing with files, for example). The types that needs to
implement PrintStrategy will be called ConsoleSquare and a ImageSquare type:

type ConsoleSquare struct {}

type ImageSquare struct {
 DestinationFilePath string
}

The ConsoleSquare struct doesn't need any inner field because it will always print the
word Square to the console. The ImageSquare struct will store a field for the destination of
the image file where we will print the square. We will start with the implementation of the
ConsoleSquare type as it is the simplest:

func(c *ConsoleSquare) Print() error {
 println("Square")
 return nil
}

Very easy, but the image is more complex. We won't spend too much time in explaining in
detail how the image package works because the code is easily understandable:

func (t *ImageSquare) Print() error {
 width := 800
 height := 600

 origin := image.Point{0, 0}

 bgImage := image.NewRGBA(image.Rectangle{
 Min: origin,
 Max: image.Point{X: width, Y: height},
 })

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[168]

 bgColor := image.Uniform{color.RGBA{R: 70, G: 70, B: 70, A:0}}
 quality := &jpeg.Options{Quality: 75}

 draw.Print(bgImage, bgImage.Bounds(), &bgColor, origin, draw.Src)

However, here is a short explanation:

We define a size for the image (width and height variables) of 800 pixels of
width and 600 pixels of height. Those are going to be the size limits of our image
and anything that we write outside of that size won't be visible.
The origin variable stores an image.Point, a type to represent a position in
any two-dimensional space. We set the position of this point at (0, 0), the upper-
left corner of the image.
We need a bitmap that will represent our background, here we called it bgImage.
We have a very handy function in the image package to create the image.RGBA
types called image.NewRGBA. We need to pass a rectangle to this function so that
it knows the bounds of the image. A rectangle is represented by two
image.Point types–its upper left corner point (the Min field) and its lower right
corner point (the Max field). We use origin as the upper-left and a new point
with the values of width and height as the lower-right point.
The image will have a gray background color (bgColor). This is done by
instancing a type of image.Uniform, which represents a uniform color (hence
the name). The image.Uniform type needs an instance of a color.Color
interface. A color.Color type is any type that implements the RGBA() (r, g,
b, a uint32) method to return a uint32 value for red, green, blue, and alpha
colors (RGBA). Alpha is a value for the transparency of a pixel. The color
package conveniently provides a type called color.RGBA for this purpose (in
case we don't need to implement our own, which is our case).
When storing an image in certain formats, we have to specify the quality of the
image. It will affect not only the quality but the size of the file, of course. Here, it
is defined as 75; 100 is the maximum quality possible that we can set. As you can
see, we are using the jpeg package here to set the value of a type called Options
that simply stores the value of the quality, it doesn't have more values to apply.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[169]

Finally, the draw.Print function writes the pixels on the supplied image
(bgImage) with the characteristics that we have defined on the bounds defined
by the same image. The first argument of the draw.Print method takes the
destination image, where we used bgImage. The second argument is the bounds
of the object to draw in the destination image, we used the same bounds of the
image but we could use any other if we wanted a smaller rectangle. The third
argument is the color to use to colorize the bounds. The Origin variable is used
to tell where the upper-left corner of the bound must be placed. In this case, the
bounds are the same size as the image so we need to set it to the origin. The last
argument specified is the operation type; just leave it in the draw.Src argument.

Now we have to draw the square. The operation is essentially the same as to draw the
background but, in this case, we are drawing a square over the previously drawn bgImage:

 squareWidth := 200
 squareHeight := 200
 squareColor := image.Uniform{color.RGBA{R: 255, G: 0, B: 0, A: 1}}
 square := image.Rect(0, 0, squareWidth, squareHeight)
 square = square.Add(image.Point{
 X: (width / 2) - (squareWidth / 2),
 Y: (height / 2) - (squareHeight / 2),
 })
 squareImg := image.NewRGBA(square)

 draw.Print(bgImage, squareImg.Bounds(), &squareColor, origin, draw.Src)

The square will be of 200*200 pixels of red color. When using the method Add, the Rect
type origin is translated to the supplied point; this is to center the square on the image. We
create an image with the square Rect and call the Print function on the bgImage image
again to draw the red square over it:

 w, err := os.Create(t.DestinationFilePath)
 if err != nil {
 return fmt.Errorf("Error opening image")
 }
 defer w.Close()

 if err = jpeg.Encode(w, bgImage, quality); err != nil {
 return fmt.Errorf("Error writing image to disk")
 }

 return nil
}

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[170]

Finally, we will create a file to store the contents of the image. The file will be stored in the
path supplied in the DestinationFilePath field of the ImageSquare struct. To create a
file, we use os.Create that returns the *os.File. As with every file, it must be closed
after using it so don't forget to use the defer keyword to ensure that you close it when the
method finishes.

To defer, or not to defer?
Some people ask why the use of defer at all? Wouldn't it be the same to
simply write it without defer at the end of the function? Well, actually
not. If any error occurs during the method execution and you return this
error, the Close method won't be executed if it's at the end of the function.
You can close the file before returning but you'll have to do it in every
error check. With defer, you don't have to worry about this because the
deferred function is executed always (with or without error). This way, we
ensure that the file is closed.

To parse the arguments, we'll use the flag package. We have used it before but let's recall
its usage. A flag is a command that the user can pass when executing our app. We can
define a flag by using the flag.[type] methods defined in the flag package. We want to
read the output that the user wants to use from the console. This flag will be called output.
A flag can have a default value; in this case, it will have the value console that will be used
when printing to console. So, if the user executes the program without arguments, it prints
to console:

var output = flag.String("output", "console", "The output to use between
'console' and 'image' file")

Our final step is to write the main function:

func main(){
 flag.Parse()

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[171]

Remember that the first thing to do in the main when using flags is to parse them using
the flag.Parse() method! It's very common to forget this step:

var activeStrategy PrintStrategy

switch *output {
case "console":
 activeStrategy = &TextSquare{}
case "image":
 activeStrategy = &ImageSquare{"/tmp/image.jpg"}
default:
 activeStrategy = &TextSquare{}
}

We define a variable for the strategy that the user has chosen, called activeStrategy. But
check that the activeStrategy variable has the PrintStrategy type so it can be
populated with any implementation of the PrintStrategy variable. We will set
activeStrategy to a new instance of TextSquare when the user writes the --
output=console command and an ImageSquare when we write the --output=image
command.

Finally, here is the design pattern execution:

 err := activeStrategy.Print()
 if err != nil {
 log.Fatal(err)
 }
}

Our activeStrategy variable is a type implementing PrintStrategy and either
the TextSquare or ImageSquare classes. The user will choose at runtime which strategy
he wants to use for each particular case. Also, we could have written a factory method
pattern to create strategies, so that the strategy creation will also be uncoupled from the
main function and abstracted in a different independent package. Think about it: if we have
the strategy creation in a different package, it will also allow us to use this project as a
library and not only as a standalone app.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[172]

Now we will execute both strategies; the TextSquare instance will give us a square by
printing the word Square on the console:

 $ go run main.go --output=console
 Square

It has worked as expected. Recalling how flags work, we have to use the -- (double dash)
and the defined flag, output in our case. Then you have two options–using = (equals) and
immediately writing the value for the flag or writing <space> and the value for the flag. In
this case, we have defined the default value of output to the console so the following three
executions are equivalent:

 $ go run main.go --output=console
 Square
 $ go run main.go --output console
 Square
 $ go run main.go
 Square

Now we have to try the file strategy. As defined before, the file strategy will print a red
square to a file as an image with dark gray background:

 $ go run main.go --output image

Nothing happened? But everything worked correctly. This is actually bad practice. Users
must always have some sort of feedback when using your app or your library. Also, if they
are using your code as a library, maybe they have a specific format for output so it won't be
nice to directly print to the console. We will solve this issue later. Right now, open the
folder /tmp with your favourite file explorer and you will see a file called image.jpg with
our red square in a dark grey background.

Solving small issues in our library
We have a few issues in our code:

It cannot be used as a library. We have critical code written in the main package
(strategy creation).
Solution: Abstract to two different packages the strategy creation from the
command-line application.
None of the strategies are doing any logging to file or console. We must provide a
way to read some logs that an external user can integrate in their logging
strategies or formats.
Solution: Inject an io.Writer interface as dependency to act as a logging sink.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[173]

Our TextSquare class is always writing to the console (an implementer of
the io.Writer interface) and the ImageSquare is always writing to file (another
implementer of the io.Writer interface). This is too coupled.
Solution: Inject an io.Writer interface so that the TextSquare and
ImageSquare can write to any of the io.Writer implementations that are
available (file and console, but also bytes buffer, binary encoders, JSON
handlers… dozens of packages).

So, to use it as a library and solve the first issue, we will follow a common approach in Go
file structures for apps and libraries. First, we will place our main package and function
outside of the root package; in this case, in a folder called cli. It is also common to call this
folder cmd or even app. Then, we will place our PrintStrategy interface in the root
package, which now will be called the strategy package. Finally, we will create a shapes
package in a folder with the same name where we will put both text and image strategies.
So, our file structure will be like this:

Root package: strategy

File: print_strategy.go

SubPackage: shapes

Files: image.go, text.go, factory.go

SubPackage: cli

File: main.go

We are going to modify our interface a bit to fit the needs we have written previously:

type PrintStrategy interface {
 Print() error
 SetLog(io.Writer)
 SetWriter(io.Writer)
}

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[174]

We have added the SetLog(io.Writer) method to add a logger strategy to our types; this
is to provide feedback to users. Also, it has a SetWriter method to set the io.Writer
strategy. This interface is going to be located on the root package in
the print_strategy.go file. So the final schema looks like this:

Both the TextSquare and ImageSquare strategies have to satisfy the SetLog and
SetWriter methods which simply store some object on their fields so, instead of
implementing the same twice, we can create a struct that implements them and embed this
struct in the strategies. By the way, this would be the composite pattern we have seen
previously:

type PrintOutput struct {
 Writer io.Writer
 LogWriter io.Writer
}

func(d *PrintOutput) SetLog(w io.Writer) {
 d.LogWriter = w
}

func(d *PrintOutput) SetWriter(w io.Writer) {
 d.Writer = w
}

So now each strategy must have the PrintOutput struct embedded if we want to modify
their Writer and logger fields.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[175]

We also need to modify our strategy implementation. The TextSquare struct now needs a
field to store the output io.Writer (the place where it is going to write instead of writing
always to the console) and the log writer. These two fields can be provided by embedding
the PrintOutput struct. The TextSquare struct is also stored in the file text.go within
the shapes package. So, the struct is now like this:

package shapes

type TextSquare struct {
 strategy.PrintOutput
}

So now the Print() method is slightly different because, instead of writing directly to the
console by using the println function, we have to write whichever io.Writer is stored in
the Writer field:

func (t *TextSquare) Print() error {
 r := bytes.NewReader([]byte("Circle"))
 io.Copy(t.Writer, r)
 return nil
}

The bytes.NewReader is a very useful function that takes an array of bytes and converts
them to an io.Reader interface. We need an io.Reader interface to use the io.Copy
function. The io.Copy function is also incredibly useful as it takes an io.Reader (as the
second parameter) and pipes it to an io.Writer (its first parameter). So, we won't return
an error in any case. However, it's easier to do so using directly the Write method of
t.Writer:

func (t *TextSquare) Print() error {
 t.Writer.Write([]byte("Circle"))
 return nil
}

You can use whichever method you like more. Usually, you will use the Write method but
it's nice to know the bytes.NewReader function too.

Did you realize that when we use t.Writer, we are actually accessing
PrintOutput.Writer? The TextSquare type has a Writer field because
the PrintOutput struct has it and it's embedded on the TextSquare struct.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[176]

Embedding is not inheritance. We have embedded the
PrintOutput struct on the TextSquare struct. Now we can access
PrintOutput fields as if they were in TextSquare fields. This feels a bit
like inheritance but there is a very important difference here: TextSquare
is not a PrintOutput value but it has a PrintOutput in its composition.
What does it mean? That if you have a function that expects a
PrintOutput, you cannot a pass TextSquare just because it has a
PrintOutput embedded.
But, if you have a function that accepts an interface that PrintOutput
implements, you can pass TextSquare if it has a PrintOutput
embedded. This is what we are doing in our example.

The ImageSquare struct is now like the TextSquare, with a PrintOutput embedded:

type ImageSquare struct {
 strategy.PrintOutput
}

The Print method also needs to be modified. Now, we aren't creating a file from the Print
method, as it was breaking the single responsibility principle. A file implements an
io.Writer so we will open the file outside of the ImageSquare struct and inject it on the
Writer field. So, we just need to modify the end of the Print() method where we wrote to
the file:

draw.Print(bgImage, squareImg.Bounds(), &squareColor, origin, draw.Src)

if i.Writer == nil {
 return fmt.Errorf("No writer stored on ImageSquare")
}
if err := jpeg.Encode(i.Writer, bgImage, quality); err != nil {
 return fmt.Errorf("Error writing image to disk")
}

if i.LogWriter != nil {
 io.Copy(i.LogWriter, "Image written in provided writer\n")
}

return nil

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[177]

If you check our previous implementation, after using draw, you can see that we used the
Print method, we created a file with os.Create and passed it to the jpeg.Encode
function. We have deleted this part about creating the file and we have replaced it with a
check looking for a Writer in the fields (if i.Writer != nil). Then, on jpeg.Encode
we can replace the file value we were using previously with the content of the i.Writer
field. Finally, we are using io.Copy again to log some message to the LogWriter if a
logging strategy is provided.

We also have to abstract the knowledge needed from the user to create instances of
implementors of the PrintStrategy for which we are going to use a Factory method:

const (
 TEXT_STRATEGY = "text"
 IMAGE_STRATEGY = "image"
)

func NewPrinter(s string) (strategy.Output, error) {
 switch s {
 case TEXT_STRATEGY:
 return &TextSquare{
 PrintOutput: strategy.PrintOutput{
 LogWriter: os.Stdout,
 },
 }, nil
 case IMAGE_STRATEGY:
 return &ImageSquare{
 PrintOutput: strategy.PrintOutput{
 LogWriter: os.Stdout,
 },
 }, nil
 default:
 return nil, fmt.Errorf("Strategy '%s' not found\n", s)
 }
}

We have two constants, one of each of our strategies: TEXT_STRATEGY and
IMAGE_STRATEGY. Those are the constants that must be provided to the factory to retrieve
each square drawer strategy. Our factory method receives an argument s, which is a string
with one of the previous constants.

Each strategy has a PrintOutput type embedded with a default logger to stdout but you
can override it later by using the SetLog(io.Writer) methods. This approach could be
considered a Factory of prototypes. If it is not a recognized strategy, a proper message error
will be returned.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[178]

What we have now is a library. We have all the functionality we need between the
strategy and shapes packages. Now we will write the main package and function in a
new folder called cli:

var output = flag.String("output", "text", "The output to use between "+
 "'console' and 'image' file")

func main() {
 flag.Parse()

Again, like before, the main function starts by parsing the input arguments on the console
to gather the chosen strategy. We can use the variable output now to create a strategy
without Factory:

activeStrategy, err := shapes.NewPrinter(*output)
if err != nil {
 log.Fatal(err)
}

With this snippet, we have our strategy or we stop program execution in the log.Fatal
method if any error is found (such as an unrecognized strategy).

Now we will implement the business needs by using our library. For the purpose of the
TextStrategy, we want to write, for example, to stdout. For the purpose of the image, we
will write to /tmp/image.jpg. Just like before. So, following the previous statements, we
can write:

switch *output {
case shapes.TEXT_STRATEGY:
 activeStrategy.SetWriter(os.Stdout)
case shapes.IMAGE_STRATEGY:
 w, err := os.Create("/tmp/image.jpg")
 if err != nil {
 log.Fatal("Error opening image")
 }
 defer w.Close()

 activeStrategy.SetWriter(w)
}

In the case of TEXT_STRATEGY, we use SetWriter to set the io.Writer to os.Stdout. In
the case of IMAGE_STRATEGY, we create an image in any of our folders and pass the file
variable to the SetWriter method. Remember that os.File implements the io.Reader
and io.Writer interfaces, so it's perfectly legal to pass it as an io.Writer to the
SetWriter method:

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[179]

err = activeStrategy.Print()
if err != nil {
 log.Fatal(err)
}

Finally, we call the Print method of whichever strategy was chosen by the user and check
for possible errors. Let's try the program now:

 $ go run main.go --output text
 Circle

It has worked as expected. What about the image strategy?

 $ go run main.go --output image
 Image written in provided writer

If we check in /tmp/image.jpg, we can find our red square on the dark background.

Final words on the Strategy pattern
We have learned a powerful way to encapsulate algorithms in different structs. We have
also used embedding instead of inheritance to provide cross-functionality between types,
which will come in handy very often in our apps. You'll find yourself combining strategies
here and there as we have seen in the second example, where we have strategies for logging
and writing by using the io.Writer interface, a strategy for byte-streaming operations.

Chain of responsibility design pattern
Our next pattern is called chain of responsibility. As its name implies, it consists of a chain
and, in our case, each link of the chain follows the single responsibility principle.

Description
The single responsibility principle implies that a type, function, method, or any similar
abstraction must have one single responsibility only and it must do it quite well. This way,
we can apply many functions that achieve one specific thing each to some struct, slice, map,
and so on.

When we apply many of these abstractions in a logical way very often, we can chain them
to execute in order such as, for example, a logging chain.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[180]

A logging chain is a set of types that logs the output of some program to more than one
io.Writer interface. We could have a type that logs to the console, a type that logs to a file,
and a type that logs to a remote server. You can make three calls every time you want to do
some logging, but it's more elegant to make only one and provoke a chain reaction.

But also, we could have a chain of checks and, in case one of them fails, break the chain and
return something. This is the authentication and authorization middleware works.

Objectives
The objective of the chain of responsibility is to provide to the developer a way to chain
actions at runtime. The actions are chained to each other and each link will execute some
action and pass the request to the next link (or not). The following are the objectives
followed by this pattern:

Dynamically chain the actions at runtime based on some input
Pass a request through a chain of processors until one of them can process it, in
which case the chain could be stopped

A multi-logger chain
We are going to develop a multi-logger solution that we can chain in the way we want. We
will use two different console loggers and one general-purpose logger:

We need a simple logger that logs the text of a request with a prefix First logger1.
and passes it to the next link in the chain.
A second logger will write on the console if the incoming text has the word2.
hello and pass the request to a third logger. But, if not, the chain will be broken
and it will return immediately.
A third logger type is a general purpose logger called WriterLogger that uses3.
an io.Writer interface to log.
A concrete implementation of the WriterLogger writes to a file and represents4.
the third link in the chain.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[181]

The implementation of these steps is described in the following figure:

Unit test
The very first thing to do for the chain is, as usual, to define the interface. A chain of
responsibility interface will usually have, at least, a Next() method. The Next() method is
the one that executes the next link in the chain, of course:

type ChainLogger interface {
 Next(string)
}

The Next method on our example's interface takes the message we want to log and passes it
to the following link in the chain. As written in the acceptance criteria, we need three
loggers:

type FirstLogger struct {
 NextChain ChainLogger
}

func (f *FirstLogger) Next(s string) {}

type SecondLogger struct {
 NextChain ChainLogger
}

func (f *SecondLogger) Next(s string) {}

type WriterLogger struct {
 NextChain ChainLogger
 Writer io.Writer
}
func (w *WriterLogger) Next(s string) {}

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[182]

The FirstLogger and SecondLogger types have exactly the same structure–both implement
ChainLogger and have a NextChain field that points to the next ChainLogger.
The WriterLogger type is equal to the FirstLogger and SecondLogger types but also has a field
to write its data to, so you can pass any io.Writer interface to it.
As we have done before, we'll implement an io.Writer struct to use in our testing. In our
test file, we define the following struct:

type myTestWriter struct {
 receivedMessage string
}

func (m *myTestWriter) Write(p []byte) (int, error) {
 m.receivedMessage += string(p)
 return len(p), nil
}

func(m *myTestWriter) Next(s string){
 m.Write([]byte(s))
}

We will pass an instance of the myTestWriter struct to WriterLogger so we can track
what's being logged on testing. The myTestWriter class implements the common
Write([]byte) (int, error) method from the io.Writer interface. Remember, if it
has the Write method, it can be used as io.Writer. The Write method simply stored the
string argument to the receivedMessage field so we can check later its value on tests.

This is the beginning of the first test function:

func TestCreateDefaultChain(t *testing.T) {
 //Our test ChainLogger
 myWriter := myTestWriter{}

 writerLogger := WriterLogger{Writer: &myWriter}
 second := SecondLogger{NextChain: &writerLogger}
 chain := FirstLogger{NextChain: &second}

Let's describe these few lines a bit as they are quite important. We create a variable with a
default myTestWriter type that we'll use as an io.Writer interface in the last link of our
chain. Then we create the last piece of the link chain, the writerLogger interface. When
implementing the chain, you usually start with the last piece on the link and, in our case, it
is a WriterLogger. The WriterLogger writes to an io.Writer so we pass myWriter as
io.Writer interface.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[183]

Then we have created a SecondLogger, the middle link in our chain, with a pointer to the
writerLogger. As we mentioned before, SecondLogger just logs and passes the message
in case it contains the word hello. In a production app, it could be an error-only logger.

Finally, the first link in the chain has the variable name chain. It points to the second logger.
So, to resume, our chain looks like this: FirstLogger | SecondLogger | WriterLogger.

This is going to be our default setup for our tests:

t.Run("3 loggers, 2 of them writes to console, second only if it founds " +
 "the word 'hello', third writes to some variable if second found
'hello'",
 func(t *testing.T){
 chain.Next("message that breaks the chain\n")

 if myWriter.receivedMessage != "" {
 t.Fatal("Last link should not receive any message")
 }

 chain.Next("Hello\n")

 if !strings.Contains(myWriter.receivedMessage, "Hello") {
 t.Fatal("Last link didn't received expected message")
 }
})

Continuing with Go 1.7 or later testing signatures, we define an inner test with the
following description: three loggers, two of them write to console, the second only if it finds the
word 'hello', the third writes to some variable if the second found 'hello'. It's quite descriptive and
very easy to understand if someone else has to maintain this code.

First, we use a message on the Next method that will not reach the third link in the chain as
it doesn't contain the word hello. We check the contents of the receivedMessage
variable, that by default is empty, to see if it has changed because it shouldn't.

Next, we use the chain variable again, our first link in the chain, and pass the message
"Hello\n". According to the description of the test, it should log using FirstLogger, then
in SecondLogger and finally in WriterLogger because it contains the word hello and the
SecondLogger will let it pass.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[184]

The test checks that myWriter, the last link in the chain that stored the past message in a
variable called receivedMessage, has the word that we passed first in the chain: hello.
Let's run it so it fails:

 go test -v .
 === RUN TestCreateDefaultChain
 === RUN
TestCreateDefaultChain/3_loggers,_2_of_them_writes_to_console,_second_only_
if_it_founds_the_word_'hello',_third_writes_to_some_variable_if_second_foun
d_'hello'
 --- FAIL: TestCreateDefaultChain (0.00s)
 --- FAIL:
TestCreateDefaultChain/3_loggers,_2_of_them_writes_to_console,_second_only_
if_it_founds_the_word_'hello',_third_writes_to_some_variable_if_second_foun
d_'hello' (0.00s)
 chain_test.go:33: Last message didn't received expected message
 FAIL
 exit status 1
 FAIL

The test passed for the first check of the test and didn't for the second check. Well… ideally
no check should pass before any implementation is done. Remember that in test-driven
development, tests must fail on the first launch because the code they are testing isn't
implemented yet. Go zero-initialization misleads us with this passed check on the test. We
can solve this in two ways:

Making the signature of the ChainLogger to return an error: Next(string)
error. This way, we would break the chain returning an error. This is a much
more convenient way in general, but it will introduce quite a lot of boilerplate
right now.
Changing the receivedMessage field to a pointer. A default value of a pointer is
nil, instead of an empty string.

We will use the second option now, as it's much simpler and quite effective too. So let's
change the signature of the myTestWriter struct to the following:

type myTestWriter struct {
 receivedMessage *string
}

func (m *myTestWriter) Write(p []byte) (int, error) {
 if m.receivedMessage == nil {
 m.receivedMessage = new(string)
}
 tempMessage := fmt.Sprintf("%s%s", m.receivedMessage, p)

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[185]

 m.receivedMessage = &tempMessage
 return len(p), nil
}

func (m *myTestWriter) Next(s string) {
 m.Write([]byte(s))
}

Check that the type of receivedMessage has the asterisk (*) now to indicate that it's a
pointer to a string. The Write function needed to change too. Now we have to check the
contents of the receivedMessage field because, as every pointer, it's initialized to nil. Then
we have to store the message in a variable first, so we can take the address in the next line
on the assignment (m.receivedMessage = &tempMessage).

So now our test code should change a bit too:

t.Run("3 loggers, 2 of them writes to console, second only if it founds "+
"the word 'hello', third writes to some variable if second found 'hello'",
func(t *testing.T) {
 chain.Next("message that breaks the chain\n")

 if myWriter.receivedMessage != nil {
 t.Error("Last link should not receive any message")
 }

 chain.Next("Hello\n")

 if myWriter.receivedMessage == "" ||
!strings.Contains(*myWriter.receivedMessage, "Hello") {
 t.Fatal("Last link didn't received expected message")
 }
})

Now we are checking that myWriter.receivedMessage is actually nil, so no content has
been written for sure on the variable. Also, we have to change the second if to check first
that the member isn't nil before checking its contents or it can throw a panic on test. Let's
test it again:

go test -v .
=== RUN TestCreateDefaultChain
=== RUN
TestCreateDefaultChain/3_loggers,_2_of_them_writes_to_console,_second_only_
if_it_founds_the_word_'hello',_third_writes_to_some_variable_if_second_foun
d_'hello'
--- FAIL: TestCreateDefaultChain (0.00s)
--- FAIL:
TestCreateDefaultChain/3_loggers,_2_of_them_writes_to_console,_second_only_

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[186]

if_it_founds_the_word_'hello',_third_writes_to_some_variable_if_second_foun
d_'hello' (0.00s)
 chain_test.go:40: Last link didn't received expected message
FAIL
exit status 1
FAIL

It fails again and, again, the first half of the test passes correctly without implemented code.
So what should we do now? We have change the signature of the myWriter type to make
the test fail in both checks and, again, just fail in the second. Well, in this case we can pass
this small issue. When writing tests, we must be very careful to not get too crazy about
them; unit tests are tools to help us write and maintain code, but our target is to write
functionality, not tests. This is important to keep in mind as you can get really crazy
engineering unit tests.

Implementation
Now we have to implement the first, second, and third loggers called FirstLogger,
SecondLogger, and WriterLogger respectively. The FirstLogger logger is the easiest
one as described in the first acceptance criterion: We need a simple logger that logs the text of a
request with a prefix First logger: and passes it to the next link in the chain. So let's do it:

type FirstLogger struct {
 NextChain ChainLogger
}

func (f *FirstLogger) Next(s string) {
 fmt.Printf("First logger: %s\n", s)

 if f.NextChain != nil {
 f.NextChain.Next(s)
 }
}

The implementation is quite easy. Using the fmt.Printf method to format and print the
incoming string, we appended the text First Logger: text. Then, we check that
the NextChain type has actually some content and pass the control to it by calling its
Next(string) method. The test shouldn't pass yet so we'll continue with the
SecondLogger logger:

type SecondLogger struct {
 NextChain ChainLogger
}

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[187]

func (se *SecondLogger) Next(s string) {
 if strings.Contains(strings.ToLower(s), "hello") {
 fmt.Printf("Second logger: %s\n", s)

 if se.NextChain != nil {
 se.NextChain.Next(s)
 }

 return
 }

 fmt.Printf("Finishing in second logging\n\n")
}

As mentioned in the second acceptance criterion, the SecondLogger description is: A second
logger will write on the console if the incoming text has the word “hello” and pass the request to a
third logger. First of all, it checks whether the incoming text contains the text hello. If it's
true, it prints the message to the console, appending the text Second logger: and passes
the message to the next link in the chain (check previous instance that a third link exists).

But if it doesn't contain the text hello, the chain is broken and it prints the message
Finishing in second logging.

We'll finalize with the WriterLogger type:

type WriterLogger struct {
 NextChain ChainLogger
 Writer io.Writer
}

func (w *WriterLogger) Next(s string) {
 if w.Writer != nil {
 w.Writer.Write([]byte("WriterLogger: " + s))
 }

 if w.NextChain != nil {
 w.NextChain.Next(s)
 }
}

The WriterLogger struct's Next method checks that there is an existing io.Writer
interface stored in the Writer member and writes there the incoming message appending
the text WriterLogger: to it. Then, like the previous links, check that there are more links
to pass the message.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[188]

Now the tests will pass successfully:

 go test -v .
 === RUN TestCreateDefaultChain
 === RUN
TestCreateDefaultChain/3_loggers,_2_of_them_writes_to_console,_second_only_
if_it_founds_the_word_'hello',_third_writes_to_some_variable_if_second_foun
d_'hello'
 First logger: message that breaks the chain
 Finishing in second logging
 First logger: Hello
 Second logger: Hello
 --- PASS: TestCreateDefaultChain (0.00s)
 --- PASS:
TestCreateDefaultChain/3_loggers,_2_of_them_writes_to_console,_second_only_
if_it_founds_the_word_'hello',_third_writes_to_some_variable_if_second_foun
d_'hello' (0.00s)
 PASS
 ok

The first half of the test prints two messages–the First logger: message that breaks the
chain, which is the expected message for the FirstLogger. But it halts in the
SecondLogger because no hello word has been found on the incoming message; that's
why it prints the Finishing in second logging string.

The second half of the test receives the message Hello. So the FirstLogger prints and the
SecondLogger prints too. The third logger doesn't print to console at all but to our
myWriter.receivedMessage line defined in the test.

What about a closure?
Sometimes it can be useful to define an even more flexible link in the chain for quick
debugging. We can use closures for this so that the link functionality is defined by the
caller. What does a closure link look like? Similar to the WriterLogger logger:

type ClosureChain struct {
 NextChain ChainLogger
 Closure func(string)
}

func (c *ClosureChain) Next(s string) {
 if c.Closure != nil {
 c.Closure(s)
 }

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[189]

 if c.NextChain != nil {
 c.Next(s)
 }
}

The ClosureChain type has a NextChain, as usual, and a Closure member. Look at the
signature of the Closure: func(string). This means it is a function that takes a string
and returns nothing.

The Next(string) method for ClosureChain checks that the Closure member is stored
and executes it with the incoming string. As usual, the link checks for more links to pass the
message as every link in the chain.

So, how do we use it now? We'll define a new test to show its functionality:

t.Run("2 loggers, second uses the closure implementation", func(t
*testing.T) {
 myWriter = myTestWriter{}
 closureLogger := ClosureChain{
 Closure: func(s string) {
 fmt.Printf("My closure logger! Message: %s\n", s)
 myWriter.receivedMessage = &s
 },
 }

 writerLogger.NextChain = &closureLogger

 chain.Next("Hello closure logger")

 if *myWriter.receivedMessage != "Hello closure logger" {
 t.Fatal("Expected message wasn't received in myWriter")
 }
})

The description of this test makes it clear: "2 loggers, second uses the closure
implementation". We simply use two ChainLogger implementations and we use the
closureLogger in the second link. We have created a new myTestWriter to store the
contents of the message. When defining the ClosureChain, we defined an anonymous
function directly on the Closure member when creating closureLogger. It prints "My
closure logger! Message: %s\n" with the incoming message replacing

"%s". Then, we store the incoming message on myWriter, to check later.

After defining this new link, we use the third link from the previous test, add the closure as
the fourth link, and passed the message Hello closure logger. We use the word Hello
at the beginning so that we ensure that the message will pass the SecondLogger.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[190]

Finally, the contents of myWriter.receivedMessage must contain the pased text: Hello
closure logger. This is quite a flexible approach with one drawback: when defining a
closure like this, we cannot test its contents in a very elegant way. Let's run the tests again:

go test -v .
=== RUN TestCreateDefaultChain
=== RUN
TestCreateDefaultChain/3_loggers,_2_of_them_writes_to_console,_second_only_
if_it_founds_the_word_'hello',_third_writes_to_some_variable_if_second_foun
d_'hello'
First logger: message that breaks the chain
Finishing in second logging

First logger: Hello
Second logger: Hello
=== RUN
TestCreateDefaultChain/2_loggers,_second_uses_the_closure_implementation
First logger: Hello closure logger
Second logger: Hello closure logger
My closure logger! Message: Hello closure logger
--- PASS: TestCreateDefaultChain (0.00s)
 --- PASS:
TestCreateDefaultChain/3_loggers,_2_of_them_writes_to_console,_second_only_
if_it_founds_the_word_'hello',_third_writes_to_some_variable_if_second_foun
d_'hello' (0.00s)
 --- PASS:
TestCreateDefaultChain/2_loggers,_second_uses_the_closure_implementation
(0.00s)
PASS
ok

Look at the third RUN: the message passes correctly through the first, second, and third links
to arrive at the closure that prints the expected My closure logger! Message: Hello
closure logger message.

It's very useful to add a closure method implementation to some interfaces as it provides
quite a lot of flexibility when using the library. You can find this approach very often in Go
code, being the most known the one of package net/http. The HandleFunc function
which we used previously in the structural patterns to define a handler for an HTTP
request.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[191]

Putting it together
We learned a powerful tool to achieve dynamic processing of actions and state handling.
The Chain of responsibility pattern is widely used, also to create Finite State Machines
(FSM). It is also used interchangeably with the Decorator pattern with the difference that
when you decorate, you change the structure of an object while with the chain you define a
behavior for each link in the chain that can break it too.

Command design pattern
To finish with this chapter, we will see also the Command pattern–a tiny design pattern but
still frequently used. You need a way to connect types that are really unrelated? So design a
Command for them.

Description
The Command design pattern is quite similar to the Strategy design pattern but with key
differences. While in the strategy pattern we focus on changing algorithms, in the
Command pattern, we focus on the invocation of something or on the abstraction of some
type.

A Command pattern is commonly seen as a container. You put something like the info for
user interaction on a UI that could be click on login and pass it as a command. You
don't need to have the complexity related to the click on login action in the command
but simply the action itself.

An example for the organic world would be a box for a delivery company. We can put
anything on it but, as a delivery company, we are interested in managing the box instead of
its contents directly.

The command pattern will be used heavily when dealing with channels. With channels you
can send any message through it but, if we need a response from the receiving side of the
channel, a common approach is to create a command that has a second, response channel
attached where we are listening.

Similarly, a good example would be a multi-player video game, where every stroke of each
user can be sent as commands to the rest of the users through the network.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[192]

Objectives
When using the Command design pattern, we are trying to encapsulate some sort of action
or information in a light package that must be processed somewhere else. It's similar to the
Strategy pattern but, in fact, a Command could trigger a preconfigured Strategy somewhere
else, so they are not the same. The following are the objectives for this design pattern:

Put some information into a box. Just the receiver will open the box and know its
contents.
Delegate some action somewhere else.

The behavior is also explained in the following diagram:

There we have a Command interface with a Get() interface{} method. We have a type A
and a type B. The idea is that A and B implement the Command interface to return
themselves as an interface{}. As now they implement Command, they can be used in a
Command handler which doesn't care very much about the underlying type. Now A and B
can travel through functions that handles commands or store Commands freely. But B
handler can take an object from any Command handler to “unwrap” it and take its B
content as well as A command handler with its A content.

We put the information in a box (the Command) and delegate what to do with it to the
handlers of Commands.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[193]

A simple queue
Our first example is going to be pretty small. We will put some information into a
Command implementer and we will have a queue. We will create many instances of a type
implementing a Command pattern and we will pass them to a queue that will store the
commands until three of them are in the queue, at which time it will process them.

Acceptance criteria
So the ideal acceptance criteria to understand well the implications of the Command should
reflect somehow the creation of a box that can accept unrelated types and the execution of
the Command itself:

We need a constructor of console printing commands. When using this
constructor with a string, it will return a command that will print it. In this case,
the handler is inside the command that acts as a box and as a handler.
We need a data structure that stores incoming commands in a queue and prints
them once the queue reaches the length of three.

Implementation
This pattern is quite simple and we will write a few different examples so we'll implement
the library directly to keep things light and short. The classical Command design pattern
usually has a common type structure with an Execute method. We are also going to use
this structure as it's quite flexible and simple:

type Command interface {
 Execute()
}

This is generic enough to fill a lot of unrelated types! Think about it–we are going to create a
type that prints to console when using the Execute() method but it could print a number
or launch a rocket as well! The key here is to focus on invocations because the handlers are
also in Command. So we need some type implementing this interface and printing to the
console some sort of message:

type ConsoleOutput struct {
 message string
}

func (c *ConsoleOutput) Execute() {

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[194]

 fmt.Println(c.message)
}

The ConsoleOutput type implements the Command interface and prints to the console the
member called message.

As defined in the first acceptance criterion, we need a Command constructor that accepts a
message string and returns the Command interface. It will have the signature func
CreateCommand(s string) Command:

 func CreateCommand(s string) Command {
 fmt.Println("Creating command")

 return &ConsoleOutput{
 message: s,
 }
}

For the command queue, we'll define a very simple type called CommandQueue to store in a
queue any type implementing the Command interface:

type CommandQueue struct {
 queue []Command
}

func (p *CommandQueue) AddCommand(c Command) {
 p.queue = append(p.queue, c)

 if len(p.queue) == 3 {
 for _, command := range p.queue {
 command.Execute()
 }

 p.queue = make([]Command, 3)
 }
}

The CommandQueue type stores an array of the Commands interface. When the queue array
reaches three items, it executes all the commands stored in the queue field. If it hasn't
reached the required length yet, it just stores the command.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[195]

We will create five commands, enough to trigger the command queue mechanism, and add
them to the queue. Each time a command is created, the message Creating command will
be printed to the console. When we create the third command, the automatic command
executor will be launched, printing the first three messages. We create and add two
commands more, but because we haven't reached the third command again, they won't be
printed and just the Creating command messages will be printed:

func main() {
 queue := CommandQueue{}

 queue.AddCommand(CreateCommand("First message"))
 queue.AddCommand(CreateCommand("Second message"))
 queue.AddCommand(CreateCommand("Third message"))

 queue.AddCommand(CreateCommand("Fourth message"))
 queue.AddCommand(CreateCommand("Fifth message"))
}

Let's run the main program. Our definition said that the commands are processed once
every three messages and we will create a total of five messages. The first three messages
must be printed but not the fourth and fifth because we didn't reach a sixth message to
trigger the command processing:

 $go run command.go
 Creating command
 Creating command
 Creating command
 First message
 Second message
 Third message
 Creating command
 Creating command

As you can see, the fourth and fifth messages aren't printed, as expected, but we know that
the commands were created and stored on the array. They just weren't processed because
the queue was waiting for one command more to trigger the processor.

More examples
The previous example shows how to use a Command handler that executes the content of
the command. But a common way to use a Command pattern is to delegate the information,
instead of the execution, to a different object.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[196]

For example, instead of printing to the console, we will create a command that extracts
information:

type Command interface {
 Info() string
}

In this case, our Command interface will have a method named Info that will retrieve some
information from its implementor. We will create two implementations; one will return the
time passed since the creation of the command to its execution:

type TimePassed struct {
 start time.Time
}

func (t *TimePassed) Info() string {
 return time.Since(t.start).String()
}

The time.Since function returns the time elapsed since the time stored in the provided
parameter. We returned the string representation of the passed time by calling
the String() method on the time.Time type. The second implementation of our new
Command will return the message Hello World!:

type HelloMessage struct{}

func (h HelloMessage) Info() string {
 return "Hello world!"
}

And our main function will simply create an instance of each type, then waits for a second
and print the info returned from each Command:

func main() {
 var timeCommand Command
 timeCommand = &TimePassed{time.Now()}

 var helloCommand Command
 helloCommand = &HelloMessage{}

 time.Sleep(time.Second)
 fmt.Println(timeCommand.Info())
 fmt.Println(helloCommand.Info())
}

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[197]

The time.Sleep function stops the execution of the current goroutine for the specified
period (a second). So, to recall–the timeCommand variable stores the time when the program
was started and its Info() method returns a string representation of the time that passed
since we give a value to the type to the moment were we called the Info() method on it.
The helloCommand variable returns the message Hello World! when we call its Info()
method. Here we haven't implemented a Command handler again to keep things simple but
we can consider the console as the handler because we can only print ASCII characters on it
like the ones retrieved by the Info() method.

Let's run the main function:

 go run command.go
 1.000216755s
 Hello world!

Here we are. In this case, we retrieve some information by using the Command pattern.
One type stores time information while the other stores nothing and it simply returns the
same simple string. Each time we run the main function will return a different elapsed time,
so don't worry if the time doesn't match with the one in the example.

Chain of responsibility of commands
Do you remember the chain of responsibility design pattern? We were passing a string
message between links to print its contents. But we could be using the previous Command
to retrieve information for logging to the console. We'll mainly reuse the code that we have
written already.

The Command interface will be from the type interface that returns a string from the
previous example:

type Command interface {
 Info() string
}

We will use the Command implementation of the TimePassed type too:

type TimePassed struct {
 start time.Time
}

func (t *TimePassed) Info() string {
 return time.Since(t.start).String()
}

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[198]

Remember that this type returns the elapsed time from the object creation on its Info()
string method. We also need the ChainLogger interface from the Chain of
responsibility design pattern section of this chapter but, this time, it will pass Commands on
its Next method instead of string:

type ChainLogger interface {
 Next(Command)
}

We'll use just the same type for two links in the chain for simplicity. This link is very similar
to the FirstLogger type from the chain of responsibility example, but this time it will
append the message Elapsed time from creation: and it will wait 1 second before
printing. We'll call it Logger instead of FirstLogger:

type Logger struct {
 NextChain ChainLogger
}

func (f *Logger) Next(c Command) {
 time.Sleep(time.Second)

 fmt.Printf("Elapsed time from creation: %s\n", c.Info())

 if f.NextChain != nil {
 f.NextChain.Next(c)
 }
}

Finally, we need a main function to execute the chain that takes Command pointers:

func main() {
 second := new(Logger)
 first := Logger{NextChain: second}

 command := &TimePassed{start: time.Now()}

 first.Next(command)
}

Line by line, we create a variable called second with a pointer to a Logger; this is going to
be the second link in our chain. Then we create a variable called first, that will be the first
link in the chain. The first link points to the second variable, the second link in the chain.

Then, we create an instance of TimePassed to use it as the Command type. The start time of
this command is the execution time (the time.Now() method returns the time in the
moment of the execution).

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[199]

Finally, we pass the Command interface to the chain on the first.Next(command)
statement. The output of this program is the following:

 go run chain_command.go
 Elapsed time from creation: 1.0003419s
 Elapsed time from creation: 2.000682s

The resulting output is reflected in the following diagram: The command with the time field
is pushed to the first link that knows how to execute Commands of any type. Then it passes
the Command to the second link that also knows how to execute Commands:

This approach hides the complexity behind each Command execution from the Command
handlers on each link. The functionality hidden behind a Command can be simple or
incredibly complex but the idea here is to reuse the handler to manage many types of
unrelated implementations.

Rounding-up the Command pattern up
Command is a very tiny design pattern; its functionality is quite easy to understand but it's
widely used for its simplicity. It looks very similar to the Strategy pattern but remember
that Strategy is about having many algorithms to achieve some specific task, but all of them
achieve the same task. In the Command pattern, you have many tasks to execute, and not
all of them need to be equal.

So, in short, the Command pattern is about execution encapsulation and delegation so that
just the receiver or receivers trigger that execution.

Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns

[200]

Summary
We have taken our first steps in the Behavioral patterns. The objective of this chapter was to
introduce the reader to the concept of algorithm and execution encapsulation using proper
interfaces and structures. With the strategy, we have encapsulated algorithms, with the
chain of responsibility handlers and with the Command design pattern executions.

Now, with the knowledge we have acquired about the strategy pattern, we can uncouple
heavily our applications from their algorithms, just for testing, this is a very useful feature
to inject mocks in different types that would be almost impossible to test. But also for
anything that could need different approaches based on some context (such as shorting a
list; some algorithms perform better depending on the distribution of the list).

The Chain of Responsibility pattern opens the door of middleware of any type and plugin-
like libraries to improve the functionality of some part. Many open source projects uses a
Chain of Responsibility to handler HTTP requests and responses to extract information to
the end user (such as cookies info) or check authentication details (I'll let you pass to the
next link only if I have you on my database).

Finally, the Command pattern is the most common pattern for UI handling but also very
useful in many other scenarios where we need some type of handling between many
unrelated types that are travelling through the code (such as a message passed through a
channel).

6
Behavioral Patterns - Template,

Memento, and Interpreter
Design Patterns

In this chapter, we will see the next three Behavioral design patterns. The difficulty is being
raised as now we will use combinations of Structural and Creational patterns to better solve
the objective of some of the Behavioral patterns.

We will start with Template design pattern, a pattern that looks very similar to the Strategy
pattern but that provides greater flexibility. Memento design pattern is used in 99% of
applications we use every day to achieve undo functions and transactional operations.
Finally, we will write a reverse polish notation interpreter to perform simple mathematical
operations.

Let's start with the Template design pattern.

Template design pattern
The Template pattern is one of those widely used patterns that are incredibly useful,
especially when writing libraries and frameworks. The idea is to provide a user some way
to execute code within an algorithm.

In this section, we will see how to write idiomatic Go Template patterns and see some Go
source code where it's wisely used. We will write an algorithm of three steps where the
second step is delegated to the user while the first and third aren't. The first and third steps
on the algorithm represent the template.

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[202]

Description
While with the Strategy pattern we were encapsulating algorithm implementation in
different strategies, with the Template pattern we will try to achieve something similar but
with just part of the algorithm.

The Template design pattern lets the user write a part of an algorithm while the rest is
executed by the abstraction. This is common when creating libraries to ease in some
complex task or when reusability of some algorithm is compromised by only a part of it.

Imagine, for example, that we have a long transaction of HTTP requests. We have to
perform the following steps:

Authenticate user.1.
Authorize him.2.
Retrieve some details from a database.3.
Make some modification.4.
Send the details back in a new request.5.

It wouldn't make sense to repeat steps 1 to 5 in the user's code every time he needs to
modify something on the database. Instead, steps 1, 2, 3, and 5 will be abstracted in the
same algorithm that receives an interface with whatever the fifth step needs to finish the
transaction. It doesn't need to be a interface either, it could be a callback.

Objectives
The Template design pattern is all about reusability and giving responsibilities to the user.
So the objectives for this pattern are following:

Defer a part of an algorithm of the library to a the user
Improve reusability by abstracting the parts of the code that are not common
between executions

Example – a simple algorithm with a deferred
step
In our first example, we are going to write an algorithm that is composed of three steps and
each of them returns a message. The first and third steps are controlled by the Template and
just the second step is deferred to the user.

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[203]

Requirements and acceptance criteria
A brief description of what the Template pattern has to do is to define a template for an
algorithm of three steps that defers the implementation of the second step to the user:

Each step in the algorithm must return a string.1.
The first step is a method called first() and returns the string hello.2.
The third step is a method called third() and returns the string template.3.
The second step is whatever string the user wants to return but it's defined by the4.
MessageRetriever interface that has a Message() string method.
The algorithm is executed sequentially by a method called ExecuteAlgorithm5.
and returns the strings returned by each step joined in a single string by a space.

Unit tests for the simple algorithm
We will focus on testing the public methods only. This is a very common approach. All in
all, if your private methods aren't called from some level of the public ones, they aren't
called at all. We need two interfaces here, one for the Template implementors and one for
the abstract step of the algorithm:

type MessageRetriever interface {
 Message()string
}

type Template interface {
 first() string
 third() string
 ExecuteAlgorithm(MessageRetriever) string
}

A Template implementor will accept a MessageRetriever interface to execute as part of
its execution algorithm. We need a type that implements this interface called Template, we
will call it TemplateImpl:

type TemplateImpl struct{}

func (t *TemplateImpl) first() string {
 return ""
}

func (t *TemplateImpl) third() string {
 return ""
}

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[204]

func (t *TemplateImpl) ExecuteAlgorithm(m MessageRetriever) string {
 return ""
}

So our first test checks the fourth and fifth acceptance criteria. We will create the
TestStruct type that implements the MessageRetriever interface returning the string
world and has embedded the Template so that it can call the ExecuteAlgorithm method.
It will act as the Template and the abstraction:

type TestStruct struct {
 Template
}

func (m *TestStruct) Message() string {
 return "world"
}

First, we will define the TestStruct type. In this case, the part of the algorithm deferred to
us is going to return the world text. This is the string we will look for later in the test doing
a check of type “is the word world present on this string?”.

Take a close look, the TestStruct embeds a type called Template which represents the
Template pattern of our algorithm.

When we implement the Message() method, we are implicitly implementing the
MessageRetriever interface. So now we can use TestStruct type as a pointer to a
MessageRetriever interface:

func TestTemplate_ExecuteAlgorithm(t *testing.T) {
 t.Run("Using interfaces", func(t *testing.T){
 s := &TestStruct{}
 res := s.ExecuteAlgorithm(s)
 expected := "world"

 if !strings.Contains(res, expected) {
 t.Errorf("Expected string '%s' wasn't found on returned string\n",
expected)
 }
 })
}

In the test, we will use the type we have just created. When we call the ExecuteAlgorithm
method, we need to pass the MessageRetriever interface. As the TestStruct type also
implements the MessageRetriever interface, we can pass it as an argument, but this is not
mandatory, of course.

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[205]

The result of the ExecuteAlgorithm method, as defined in the fifth acceptance criterion,
must return a string that contains the returned value of the first() method, the returned
value of TestStruct (the world string) and the returned value of the third() method
separated by a space. Our implementation is on the second place; that's why we checked
that a space is prefixed and suffixed on the string world.

So, if the returned string, when calling the ExecuteAlgorithm method, doesn't contain the
string world, the test fails.

This is enough to make the project compile and run the tests that should fail:

 go test -v .
 === RUN TestTemplate_ExecuteAlgorithm
 === RUN TestTemplate_ExecuteAlgorithm/Using_interfaces
 --- FAIL: TestTemplate_ExecuteAlgorithm (0.00s)
 --- FAIL: TestTemplate_ExecuteAlgorithm/Using_interfaces (0.00s)
 template_test.go:47: Expected string ' world ' was not found on
returned string
 FAIL
 exit status 1
 FAIL

Time to pass to the implementation of this pattern.

Implementing the Template pattern
As defined in the acceptance criteria, we have to return the string hello in the
first() method and the string template in the third() method. That's pretty easy to
implement:

type Template struct{}

func (t *Template) first() string {
 return "hello"
}

func (t *Template) third() string {
 return "template"
}

With this implementation, we should be covering the second and third acceptance criteria
and partially covering the first criterion (each step in the algorithm must return a string).

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[206]

To cover the fifth acceptance criterion, we define an ExecuteAlgorithm method that
accepts the MessageRetriever interface as argument and returns the full algorithm: a
single string done by joining the strings returned by the first(), Message() string and
third() methods:

func (t *Template) ExecuteAlgorithm(m MessageRetriever) string {
 return strings.Join([]string{t.first(), m.Message(), t.third()}, " ")
}

The strings.Join function has the following signature:

func Join([]string,string) string

It takes an array of strings and joins them, placing the second argument between each item
in the array. In our case, we create a string array on the fly to pass it as the first argument.
Then we pass a whitespace as the second argument.

With this implementation, the tests must be passing already:

go test -v .
=== RUN TestTemplate_ExecuteAlgorithm
=== RUN TestTemplate_ExecuteAlgorithm/Using_interfaces
--- PASS: TestTemplate_ExecuteAlgorithm (0.00s)
 --- PASS: TestTemplate_ExecuteAlgorithm/Using_interfaces (0.00s)
PASS
ok

The tests passed. The test has checked that the string world is present in the returned result,
which is the hello world template message. The hello text was the string returned by
the first() method, the world string was returned by our MessageRetriever
implementation, and template was the string returned by the third() method. The
whitespaces are inserted by Go's strings.Join function. But any use of the
TemplateImpl.ExecuteAlgorithm type will always return “hello [something] template”
in its result.

Anonymous functions
This is not the only way to achieve the Template design pattern. We can also use an
anonymous function to give our implementation to the ExecuteAlgorithm method.

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[207]

Let's write a test in the same method that was used previously just after the test (marked in
bold):

func TestTemplate_ExecuteAlgorithm(t *testing.T) {
 t.Run("Using interfaces", func(t *testing.T){
 s := &TestStruct{}
 res := s.ExecuteAlgorithm(s)

 expectedOrError(res, " world ", t)
 })

 t.Run("Using anonymous functions", func(t *testing.T)
 {
 m := new(AnonymousTemplate)
 res := m.ExecuteAlgorithm(func() string {
 return "world"
 })
 expectedOrError(res, " world ", t)
 })
}

func expectedOrError(res string, expected string, t *testing.T){
 if !strings.Contains(res, expected) {
 t.Errorf("Expected string '%s' was not found on returned string\n",
expected)
 }
}

Our new test is called Using anonymous functions. We have also extracted the checking on
the test to an external function to reuse it in this test. We have called this function
expectedOrError because it will fail with an error if the expected value isn't received.

In our test, we will create a type called AnonymousTemplate that replaces the previous
Template type. The ExecuteAlgorithm method of this new type accepts the func()
method string type that we can implement directly in the test to return the string world.

The AnonymousTemplate type will have the following structure:

type AnonymousTemplate struct{}

func (a *AnonymousTemplate) first() string {
 return ""
}

func (a *AnonymousTemplate) third() string {
 return ""
}

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[208]

func (a *AnonymousTemplate) ExecuteAlgorithm(f func() string) string {
 return ""
}

The only difference with the Template type is that the ExecuteAlgorithm method accepts
a function that returns a string instead of a MessageRetriever interface. Let's run the new
test:

 go test -v .
 === RUN TestTemplate_ExecuteAlgorithm
 === RUN TestTemplate_ExecuteAlgorithm/Using_interfaces
 === RUN TestTemplate_ExecuteAlgorithm/Using_anonymous_functions
 --- FAIL: TestTemplate_ExecuteAlgorithm (0.00s)
 --- PASS: TestTemplate_ExecuteAlgorithm/Using_interfaces (0.00s)
 --- FAIL: TestTemplate_ExecuteAlgorithm/Using_anonymous_functions
(0.00s)
 template_test.go:47: Expected string ' world ' was not found on
returned string
 FAIL
 exit status 1
 FAIL

As you can read in the output of the test execution, the error is thrown on the Using
anonymous functions test, which is what we were expecting. Now we will write the
implementation as follows:

type AnonymousTemplate struct{}

func (a *AnonymousTemplate) first() string {
 return "hello"
}

func (a *AnonymousTemplate) third() string {
 return "template"
}

func (a *AnonymousTemplate) ExecuteAlgorithm(f func() string) string {
 return strings.Join([]string{a.first(), f(), a.third()}, " ")
}

The implementation is quite similar to the one in the Template type. However, now we
have passed a function called f that we will use as the second item in the string array we
used on Join function. As f is simply a function that returns a string, the only thing we
need to do with it is to execute it in the proper place (the second position in the array).

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[209]

Run the tests again:

 go test -v .
 === RUN TestTemplate_ExecuteAlgorithm
 === RUN TestTemplate_ExecuteAlgorithm/Using_interfaces
 === RUN TestTemplate_ExecuteAlgorithm/Using_anonymous_functions
 --- PASS: TestTemplate_ExecuteAlgorithm (0.00s)
 --- PASS: TestTemplate_ExecuteAlgorithm/Using_interfaces (0.00s)
 --- PASS: TestTemplate_ExecuteAlgorithm/Using_anonymous_functions
(0.00s)
 PASS
 ok

Awesome! Now we know two ways to implement the Template design pattern.

How to avoid modifications on the interface
The problem of the previous approach is that now we have two templates to maintain and
we could end duplicating code. What can we do in the situation that we cannot change the
interface are we using? Our interface was MessageRetriever but we want to use an
anonymous function now.

Well, do you remember the Adapter design pattern? We just have to create an Adapter
type that, accepting a func() string type, returns an implementation of the
MessageRetriever interface. We will call this type TemplateAdapter:

type TemplateAdapter struct {
 myFunc func() string
}

func (a *TemplateAdapter) Message() string {
 return ""
}

func MessageRetrieverAdapter(f func() string) MessageRetriever {
 return nil
}

As you can see, the TemplateAdapter type has a field called myFunc which is of type
func() string. We have also defined adapter as private because it shouldn't be used
without a function defined in the myFunc field. We have created a public function called the
MessageRetrieverAdapter to achieve this. Our test should look more or less like this:

t.Run("Using anonymous functions adapted to an interface", func(t
*testing.T){

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[210]

 messageRetriever := MessageRetrieverAdapter(func() string {
 return "world"
 })

 if messageRetriever == nil {
 t.Fatal("Can not continue with a nil MessageRetriever")
 }

 template := Template{}
 res := template.ExecuteAlgorithm(messageRetriever)

 expectedOrError(res, " world ", t)
})

Look at the statement where we called the MessageRetrieverAdapter method. We
passed an anonymous function as an argument defined as func() string. Then, we reuse
the previously defined Template type from our first test to pass the messageRetriever
variable. Finally, we checked again with the expectedOrError method. Take a look at the
MessageRetrieverAdapter method, it will return a function that has nil value. If strictly
following the test-driven development rules, we must do tests first and they must not pass
before implementation is done. That's why we returned nil on the
MessageRetrieverAdapter function.

So, let's run the tests:

 go test -v .
 === RUN TestTemplate_ExecuteAlgorithm
 === RUN TestTemplate_ExecuteAlgorithm/Using_interfaces
 === RUN TestTemplate_ExecuteAlgorithm/Using_anonymous_functions
 === RUN
TestTemplate_ExecuteAlgorithm/Using_anonymous_functions_adapted_to_an_inter
face
 --- FAIL: TestTemplate_ExecuteAlgorithm (0.00s)
 --- PASS: TestTemplate_ExecuteAlgorithm/Using_interfaces (0.00s)
 --- PASS: TestTemplate_ExecuteAlgorithm/Using_anonymous_functions
(0.00s)
 --- FAIL:
TestTemplate_ExecuteAlgorithm/Using_anonymous_functions_adapted_to_an_inter
face (0.00s)
 template_test.go:39: Can not continue with a nil MessageRetriever
 FAIL
 exit status 1
 FAIL

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[211]

The test fails on line 39 of the code and it doesn't continue (again, depending on how you
wrote your code, the line representing your error could be somewhere else). We stop test
execution because we will need a valid MessageRetriever interface when we call the
ExecuteAlgorithm method.

For the implementation of the adapter for our Template pattern, we will start with
MessageRetrieverAdapter method:

func MessageRetrieverAdapter(f func() string) MessageRetriever {
 return &adapter{myFunc: f}
}

It's very easy, right? You could be wondering what happens if we pass nil value for the f
argument. Well, we will cover this issue by calling the myFunc function.

The adapter type is finished with this implementation:

type adapter struct {
 myFunc func() string
}

func (a *adapter) Message() string {
 if a.myFunc != nil {
 return a.myFunc()
 }

 return ""
}

When calling the Message() function, we check that we actually have something stored in
the myFunc function before calling. If nothing was stored, we return an empty string.

Now, our third implementation of the Template type, using the Adapter pattern, is done:

 go test -v .
 === RUN TestTemplate_ExecuteAlgorithm
 === RUN TestTemplate_ExecuteAlgorithm/Using_interfaces
 === RUN TestTemplate_ExecuteAlgorithm/Using_anonymous_functions
 === RUN
TestTemplate_ExecuteAlgorithm/Using_anonymous_functions_adapted_to_an_inter
face
 --- PASS: TestTemplate_ExecuteAlgorithm (0.00s)
 --- PASS: TestTemplate_ExecuteAlgorithm/Using_interfaces (0.00s)
 --- PASS: TestTemplate_ExecuteAlgorithm/Using_anonymous_functions
(0.00s)
 --- PASS:
TestTemplate_ExecuteAlgorithm/Using_anonymous_functions_adapted_to_an_inter

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[212]

face (0.00s)
 PASS
 ok

Looking for the Template pattern in Go's source
code
The Sort package in Go's source code can be considered a Template implementation of a
sort algorithm. As defined in the package itself, the Sort package provides primitives for
sorting slices and user-defined collections.

Here, we can also find a good example of why Go authors aren't worried about
implementing generics. Sorting the lists is maybe the best example of generic usage in other
languages. The way that Go deals with this is very elegant too-it deals with this issue with
an interface:

type Interface interface {
 Len() int
 Less(i, j int) bool
 Swap(i, j int)
}

This is the interface for lists that need to be sorted by using the sort package. In the words
of Go's authors:

“A type, typically, is a collection that satisfies sort. Interface can be sorted by the routines
in this package. The methods require that the elements of the collection be enumerated by
an integer index.”

In other words, write a type that implements this Interface so that the Sort package can
be used to sort any slice. The sorting algorithm is the template and we must define how to
retrieve values in our slice.

If we peek in the sort package, we can also find an example of how to use the sorting
template but we will create our own example:

package main

import (
 "sort"
 "fmt"
)

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[213]

type MyList []int

func (m MyList) Len() int {
 return len(m)
}

func (m MyList) Swap(i, j int) {
 m[i], m[j] = m[j], m[i]
}

func (m MyList) Less(i, j int) bool {
 return m[i] < m[j]
}

First, we have done a very simple type that stores an int list. This could be any kind of list,
usually a list of some kind of struct. Then we have implemented the sort.Interface
interface by defining the Len, Swap, and Less methods.

Finally, the main function creates an unordered list of numbers of the MyList type:

func main() {
 var myList MyList = []int{6,4,2,8,1}

 fmt.Println(myList)
 sort.Sort(myList)
 fmt.Println(myList)
}

We print the list that we created (unordered) and then we sort it (the sort.Sort method
actually modifies our variable instead of returning a new list so beware!). Finally, we print
again the resulting list. The console output of this main method is the following:

 go run sort_example.go
 [6 4 2 8 1]
 [1 2 4 6 8]

The sort.Sort function has sorted our list in a transparent way. It has a lot of code written
and delegates Len, Swap and Less methods to an interface, like we did in our template
delegating to the MessageRetriever interface.

Summarizing the Template design pattern
We wanted to put a lot of focus on this pattern because it is very important when
developing libraries and frameworks and allows a lot of flexibility and control to users of
our library.

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[214]

We have also seen again that it's very common to mix patterns to provide flexibility to the
users, not only in a behavioral way but also structural. This will come very handy when
working with concurrent apps where we need to restrict access to parts of our code to avoid
races.

Memento design pattern
Let's now look at a pattern with a fancy name. If we check a dictionary to see the meaning
of memento, we will find the following description:

“An object kept as a reminder of a person or event.”

Here, the key word is reminder as we will remember actions with this design pattern.

Description
The meaning of memento is very similar to the functionality it provides in design patterns.
Basically, we'll have a type with some state and we want to be able to save milestones of its
state. Having a finite amount of states saved, we can recover them if necessary for a variety
of tasks-undo operations, historic, and so on.

The Memento design pattern usually has three players (usually called actors):

Memento: A type that stores the type we want to save. Usually, we won't store
the business type directly and we provide an extra layer of abstraction through
this type.
Originator: A type that is in charge of creating mementos and storing the current
active state. We said that the Memento type wraps states of the business type and
we use originator as the creator of mementos.
Care Taker: A type that stores the list of mementos that can have the logic to
store them in a database or to not store more than a specified number of them.

Objectives
Memento is all about a sequence of actions over time, say to undo one or two operations or
to provide some kind of transactionality to some application.

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[215]

Memento provides the foundations for many tasks, but its main objectives could be defined
as follows:

Capture an object state without modifying the object itself
Save a limited amount of states so we can retrieve them later

A simple example with strings
We will develop a simple example using a string as the state we want to save. This way, we
will focus on the common Memento pattern implementations before making it a bit more
complex with a new example.

The string, stored in a field of a State instance, will be modified and we will be able to
undo the operations done in this state.

Requirements and acceptance criteria
We are constantly talking about state; all in all, the Memento pattern is about storing and
retrieving states. Our acceptance criteria must be all about states:

We need to store a finite amount of states of type string.1.
We need a way to restore the current stored state to one of the state list.2.

With these two simple requirements, we can already start writing some tests for this
example.

Unit test
As mentioned previously, the Memento design pattern is usually composed of three actors:
state, memento, and originator. So we will need three types to represent these actors:

type State struct {
 Description string
}

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[216]

The State type is the core business object we will be using during this example. It's any
kind of object that we want to track:

type memento struct {
 state State
}

The memento type has a field called state representing a single value of a State type. Our
states will be containerized within this type before storing them into the care taker
type. You could be wondering why we don't store directly State instances. Basically,
because it will couple the originator and the careTaker to the business object and we
want to have as little coupling as possible. It will also be less flexible, as we will see in the
second example:

type originator struct {
 state State
}

func (o *originator) NewMemento() memento {
 return memento{}
}

func (o *originator) ExtractAndStoreState(m memento) {
 //Does nothing
}

The originator type also stores a state. The originator struct's objects will take states
from mementos and create new mementos with their stored state.

What's the difference between the originator object and the Memento
pattern? Why don't we use Originator pattern's object directly? Well, if the
Memento contains a specific state, the originator type contains the state
that is currently loaded. Also, to save the state of something could be as
simple as to take some value or as complex as to maintain the state of
some distributed application.

The Originator will have two public methods–the NewMemento() method and the
ExtractAndStoreState(m memento) method. The NewMemento method will return a
new Memento built with originator current State value. The ExtractAndStoreState
method will take the state of a Memento and store it in the Originator's state field:

type careTaker struct {
 mementoList []memento
}

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[217]

func (c *careTaker) Add(m memento) {
 //Does nothing
}

func (c *careTaker) Memento(i int) (memento, error) {
 return memento{}, fmt.Errorf("Not implemented yet")
}

The careTaker type stores the Memento list with all the states we need to save. It also
stores an Add method to insert a new Memento on the list and a Memento retriever that
takes an index on the Memento list.

So let's start with the Add method of the careTaker type. The Add method must take a
memento object and add it to the careTaker object's list of Mementos:

func TestCareTaker_Add(t *testing.T) {
 originator := originator{}
 originator.state = State{Description:"Idle"}

 careTaker := careTaker{}
 mem := originator.NewMemento()
 if mem.state.Description != "Idle" {
 t.Error("Expected state was not found")
 }

At the beginning of our test, we created two basic actors for memento–the originator and
the careTaker. We set a first state on the originator with the description Idle.

Then, we create the first Memento calling the NewMemento method. This should wrap the
current originator's state in a memento type. Our first check is very simple–the state
description of the returned Memento must be like the state description we pass to the
originator, that is, the Idle description.

The last step to check whether our Memento's Add method works correctly is to see whether
the Memento list has grown after adding one item:

 currentLen := len(careTaker.mementoList)
 careTaker.Add(mem)

 if len(careTaker.mementoList) != currentLen+1 {
 t.Error("No new elements were added on the list")
 }

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[218]

We also have to test the Memento(int) memento method. This should take a memento
value from the careTaker list. It takes the index you want to retrieve from the list so, as
usual with lists, we must check that it behaves correctly against negative numbers and out
of index values:

func TestCareTaker_Memento(t *testing.T) {
 originator := originator{}
 careTaker := careTaker{}

 originator.state = State{"Idle"}
 careTaker.Add(originator.NewMemento())

We have to start like we did in our previous test–creating an originator and careTaker
objects and adding the first Memento to the caretaker:

 mem, err := careTaker.Memento(0)
 if err != nil {
 t.Fatal(err)
 }

 if mem.state.Description != "Idle" {
 t.Error("Unexpected state")
 }

Once we have the first object on the careTaker object, we can ask for it
using careTaker.Memento(0). Index 0 on the Memento(int) method retrieves the first
item on the slice (remember that slices start with 0). No error should be returned because
we have already added a value to the caretaker object.

Then, after retrieving the first memento, we checked that the description matches the one
that we passed at the beginning of the test:

 mem, err = careTaker.Memento(-1)
 if err == nil {
 t.Fatal("An error is expected when asking for a negative number but no
error was found")
 }
}

The last step on this test involves using a negative number to retrieve some value. In this
case, an error must be returned that shows that no negative numbers can be used. It is also
possible to return the first index when you pass negative numbers but here we will return
an error.

The last function to check is the ExtractAndStoreState method. This function must take
a Memento and extract all its state information to set it in the Originator object:

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[219]

func TestOriginator_ExtractAndStoreState(t *testing.T) {
 originator := originator{state:State{"Idle"}}
 idleMemento := originator.NewMemento()

 originator.ExtractAndStoreState(idleMemento)
 if originator.state.Description != "Idle" {
 t.Error("Unexpected state found")
 }
}

This test is simple. We create a default originator variable with an Idle state. Then, we
retrieve a new Memento object to use it later. We change the state of the originator
variable to the Working state to ensure that the new state will be written.

Finally, we have to call the ExtractAndStoreState method with the idleMemento
variable. This should restore the state of the originator to the idleMemento state's value,
something that we checked in the last if statement.

Now it's time to run the tests:

 go test -v .
 === RUN TestCareTaker_Add
 --- FAIL: TestCareTaker_Add (0.00s)
 memento_test.go:13: Expected state was not found
 memento_test.go:20: No new elements were added on the list
 === RUN TestCareTaker_Memento
 --- FAIL: TestCareTaker_Memento (0.00s)
 memento_test.go:33: Not implemented yet
 === RUN TestOriginator_ExtractAndStoreState
 --- FAIL: TestOriginator_ExtractAndStoreState (0.00s)
 memento_test.go:54: Unexpected state found
 FAIL
 exit status 1
 FAIL

Because the three tests fail, we can continue with the implementation.

Implementing the Memento pattern
The Memento pattern's implementation is usually very simple if you don't get too crazy.
The three actors (memento, originator, and care taker) have a very defined role in the
pattern and their implementation is very straightforward:

type originator struct {
 state State

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[220]

}

func (o *originator) NewMemento() memento {
 return memento{state: o.state}
}

func (o *originator) ExtractAndStoreState(m memento) {
 o.state = m.state
}

The Originator object needs to return a new values of Memento types when calling the
NewMemento method. It also needs to store the value of a memento object in the state field of
the struct as needed for the ExtractAndStoreState method:

type careTaker struct {
 mementoList []memento
}

func (c *careTaker) Push(m memento) {
 c.mementoList = append(c.mementoList, m)
}

func (c *careTaker) Memento(i int) (memento, error) {
 if len(c.mementoList) < i || i < 0 {
 return memento{}, fmt.Errorf("Index not found\n")
 }
 return c.mementoList[i], nil
}

The careTaker type is also straightforward. When we call the Add method, we overwrite
the mementoList field by calling the append method with the value passed in the
argument. This creates a new list with the new value included.

When calling the Memento method, we have to do a couple of checks beforehand. In this
case, we check that the index is not outside of the range of the slice and that the index is not
a negative number in the if statement, in which case we return an error. If everything goes
fine, it just returns the specified memento object and no errors.

A note about method and function naming conventions.
You could find some people that like to give slightly more descriptive
names to methods such as Memento. An example would be to use a name
such as MementoOrError method, clearly showing that you return two
objects when calling this function or even GetMementoOrError method.
This could be a very explicit approach for naming and it's not necessarily
bad, but you won't find it very common in Go's source code.

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[221]

Time to check the test results:
 go test -v .
 === RUN TestCareTaker_Add
 --- PASS: TestCareTaker_Add (0.00s)
 === RUN TestCareTaker_Memento
 --- PASS: TestCareTaker_Memento (0.00s)
 === RUN TestOriginator_ExtractAndStoreState
 --- PASS: TestOriginator_ExtractAndStoreState (0.00s)
 PASS
 ok

That was enough to reach 100% of coverage. While this is far from being a perfect metric, at
least we know that we are reaching every corner of our source code and that we haven't
cheated in our tests to achieve it.

Another example using the Command and
Facade patterns
The previous example is good and simple enough to understand the functionality of the
Memento pattern. However, it is more commonly used in conjunction with the Command
pattern and a simple Facade pattern.

The idea is to use a Command pattern to encapsulate a set of different types of states (those
that implement a Command interface) and provide a small facade to automate the insertion
in the caretaker object.

We are going to develop a small example of a hypothetical audio mixer. We are going to use
the same Memento pattern to save two types of states: Volume and Mute. The Volume state
is going to be a byte type and the Mute state a Boolean type. We will use two completely
different types to show the flexibility of this approach (and its drawbacks).

As a side note, we can also ship each Command interface with their own serialization
methods on the interface. This way, we can give the ability to the caretaker to store states in
some kind of storage without really knowing what's storing.

Our Command interface is going to have one method to return the value of its implementer.
It's very simple, every command in our audio mixer that we want to undo will have to
implement this interface:

type Command interface {
 GetValue() interface{}
}

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[222]

There is something interesting in this interface. The GetValue method returns an interface
to a value. This also means that the return type of this method is… well… untyped? Not
really, but it returns an interface that can be a representation of any type and we will need
to typecast it later if we want to use its specific type. Now we have to define the Volume
and Mute types and implement the Command interface:

type Volume byte

func (v Volume) GetValue() interface{} {
 return v
}

type Mute bool

func (m Mute) GetValue() interface{} {
 return m
}

They are both quite easy implementations. However, the Mute type will return a bool type
on the GetValue() method and Volume will return a byte type.

As in the previous example, we'll need a Memento type that will hold a Command. In other
words, it will store a pointer to a Mute or a Volume type:

type Memento struct {
 memento Command
}

The originator type works as in the previous example but uses the Command keyword
instead of the state keyword:

type originator struct {
 Command Command
}

func (o *originator) NewMemento() Memento {
 return Memento{memento: o.Command}
}

func (o *originator) ExtractAndStoreCommand(m Memento) {
 o.Command = m.memento
}

And the caretaker object is almost the same, but this time we'll use a stack instead of a
simple list and we will store a command instead of a state:

type careTaker struct {

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[223]

 mementoList []Memento
}

func (c *careTaker) Add(m Memento) {
 c.mementoList = append(c.mementoList, m)
}

func (c *careTaker) Pop() Memento {
 if len(c.mementoStack) > 0 {
 tempMemento := c.mementoStack[len(c.mementoStack)-1]
 c.mementoStack = c.mementoStack[0:len(c.mementoStack)-1]
 return tempMemento
 }

 return Memento{}
}

However, our Memento list is replaced with a Pop method. It also returns a memento object
but it will return them acting as a stack (last to enter, first to go out). So, we take the last
element on the stack and store it in the tempMemento variable. Then we replace the stack
with a new version that doesn't contain the last element on the next line. Finally, we return
the tempMemento variable.

Until now, everything looks almost like in the previous example. We also talked about
automating some tasks by using the Facade pattern, so let's do it. This is going to be called
the MementoFacade type and will have the SaveSettings and RestoreSettings
methods. The SaveSettings method takes a Command, stores it in an inner originator, and
saves it in an inner careTaker field. The RestoreSettings method makes the opposite
flow-restores an index of the careTaker and returns the Command inside the Memento
object:

type MementoFacade struct {
 originator originator
 careTaker careTaker
}

func (m *MementoFacade) SaveSettings(s Command) {
 m.originator.Command = s
 m.careTaker.Add(m.originator.NewMemento())
}

func (m *MementoFacade) RestoreSettings(i int) Command {
 m.originator.ExtractAndStoreCommand(m.careTaker.Memento(i))
 return m.originator.Command
}

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[224]

Our Facade pattern will hold the contents of the originator and the care taker and will
provide those two easy-to-use methods to save and restore settings.

So, how do we use this?

func main(){
 m := MementoFacade{}

 m.SaveSettings(Volume(4))
 m.SaveSettings(Mute(false))

First, we get a variable with a Facade pattern. Zero-value initialization will give us zero-
valued originator and caretaker objects. They don't have any unexpected field so
everything will initialize correctly (if any of them had a pointer, for example, it would be
initialized to nil as mentioned in the Zero initialization section of Chapter 1, Ready…
Steady… Go!).

We create a Volume value with Volume(4) and, yes, we have used parentheses. The
Volume type does not have any inner field like structs so we cannot use curly braces to set
its value. The way to set it is to use parentheses (or create a pointer to the type Volume and
then set the value of the pointed space). We also save a value of the type Mute using the
Facade pattern.

We don't know what Command type is returned here, so we need to make a type assertion.
We will make a small function to help us with this that checks the type and prints an
appropriate value:

func assertAndPrint(c Command){
 switch cast := c.(type) {
 case Volume:
 fmt.Printf("Volume:\t%d\n", cast)
 case Mute:
 fmt.Printf("Mute:\t%t\n", cast)
 }
}

The assertAndPrint method takes a Command type and casts it to the two possible types-
Volume or Mute. In each case, it prints a message to the console with a personalized
message. Now we can continue and finish the main function, which will look like this:

func main() {
 m := MementoFacade{}

 m.SaveSettings(Volume(4))
 m.SaveSettings(Mute(false))

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[225]

 assertAndPrint(m.RestoreSettings(0))
 assertAndPrint(m.RestoreSettings(1))
}

The part highlighted in bold shows the new changes within the main function. We took the
index 0 from the careTaker object and passed it to the new function and the same with the
index 1. Running this small program, we should get the Volume and Mute values on the
console:

 $ go run memento_command.go
 Mute: false
 Volume: 4

Great! In this small example, we have combined three different design patterns to keep
getting comfortable using various patterns. Keep in mind that we could have abstracted the
creation of Volume and Mute states to a Factory pattern too so this is not where would stop.

Last words on the Memento pattern
With the Memento pattern, we have learned a powerful way to create undoable operations
that are very useful when writing UI applications but also when you have to develop
transactional operations. In any case, the situation is the same: you need a Memento, an
Originator, and a caretaker actor.

A transaction operation is a set of atomic operations that must all be done
or fail. In other words, if you have a transaction composed of five
operations and just one of them fails, the transaction cannot be completed
and every modification done by the other four must be undone.

Interpreter design pattern
Now we are going to dig into a quite complex pattern. The Interpreter pattern is, in fact,
widely used to solve business cases where it's useful to have a language to perform
common operations. Let's see what we mean by language.

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[226]

Description
The most famous interpreter we can talk about is probably SQL. It's defined as a special-
purpose programming language for managing data held in relational databases. SQL is
quite complex and big but, all in all, is a set of words and operators that allow us to perform
operations such as insert, select, or delete.

Another typical example is musical notation. It's a language itself and the interpreter is the
musician who knows the connection between a note and its representation on the
instrument they are playing.

In computer science, it can be useful to design a small language for a variety of reasons:
repetitive tasks, higher-level languages for non-developers, or Interface Definition
Languages (IDL) such as Protocol buffers or Apache Thrift.

Objectives
Designing a new language, big or small, can be a time consuming task so it's very important
to have the objectives clear before investing time and resources on writing an interpreter of
it:

Provide syntax for very common operations in some scope (such as playing
notes).
Have a intermediate language to translate actions between two systems. For
example, the apps that generate the Gcode needed to print with 3D printers.
Ease the use of some operations in an easier-to-use syntax.

SQL allows the use of relational databases in a very easy-to-use syntax (that can become
incredibly complex too) but the idea is to not need to write your own functions to make
insertions and searches.

Example – a polish notation calculator
A very typical example of an interpreter is to create a reverse polish notation calculator. For
those who don't know what polish notation is, it's a mathematical notation to make
operations where you write your operation first (sum) and then the values (3 4), so + 3 4 is
equivalent to the more common 3 + 4 and its result would be 7. So, for a reverse polish
notation, you put first the values and then the operation, so 3 4 + would also be 7.

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[227]

Acceptance criteria for the calculator
For our calculator, the acceptance criteria we should pass to consider it done are as follows:

Create a language that allows making common arithmetic operations (sums,1.
subtractions, multiplications, and divisions). The syntax is sum for sums, mul for
multiplications, sub for subtractions, and div for divisions.
It must be done using reverse polish notation.2.
The user must be able to write as many operations in a row as they want.3.
The operations must be performed from left to right.4.

So the 3 4 sum 2 sub notation is the same than (3 + 4) – 2 and result would be 5.

Unit test of some operations
In this case, we will only have a public method called Calculate that takes an operation
with its values defined as a string and will return a value or an error:

func Calculate(o string) (int, error) {
 return 0, fmt.Errorf("Not implemented yet")
}

So, we will send a string like "3 4 +" to the Calculate method and it should return 7, nil.
Two tests more will check the correct implementation:

func TestCalculate(t *testing.T) {
 tempOperation = "3 4 sum 2 sub"
 res, err = Calculate(tempOperation)
 if err != nil {
 t.Error(err)
 }

 if res != 5 {
 t.Errorf("Expected result not found: %d != %d\n", 5, res)
 }

First, we are going to make the operation we have used as an example. The 3 4 sum 2
sub notation is part of our language and we use it in the Calculate function. If an error is
returned, the test fails. Finally, the result must be equal to 5 and we check it on the last
lines. The next test checks the rest of the operators on slightly more complex operations:

 tempOperation := "5 3 sub 8 mul 4 sum 5 div"
 res, err := Calculate(tempOperation)

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[228]

 if err != nil {
 t.Error(err)
 }

 if res != 4 {
 t.Errorf("Expected result not found: %d != %d\n", 4, res)
 }
}

Here, we repeated the preceding process with a longer operation, the (((5 – 3) * 8) + 4) / 5
notation which is equal to 4. From left to right, it would be as follows:

 (((5 - 3) * 8) + 4) / 5
 ((2 * 8) + 4) / 5
 (16 + 4) / 5
 20 / 5
 4

The test must fail, of course!

 $ go test -v .
 interpreter_test.go:9: Not implemented yet
 interpreter_test.go:13: Expected result not found: 4 != 0
 interpreter_test.go:19: Not implemented yet
 interpreter_test.go:23: Expected result not found: 5 != 0
 exit status 1
 FAIL

Implementation
Implementation is going to be longer than testing this time. To start, we will define our
possible operators in constants:

const (
 SUM = "sum"
 SUB = "sub"
 MUL = "mul"
 DIV = "div"
)

Interpreter patterns are usually implemented using an abstract syntax tree, something that
is commonly achieved using a stack. We have created stacks before during the book so this
should be already familiar to readers:

type polishNotationStack []int

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[229]

func (p *polishNotationStack) Push(s int) {
 *p = append(*p, s)
}

func (p *polishNotationStack) Pop() int {
 length := len(*p)

 if length > 0 {
 temp := (*p)[length-1]
 *p = (*p)[:length-1]
 return temp
 }

 return 0
}

We have two methods–the Push method to add elements to the top of the stack and the Pop
method to remove elements and return them. In case you are thinking that the line *p =
(*p)[:length-1] is a bit cryptic, we'll explain it.

The value stored in the direction of p will be overridden with the actual value in the
direction of p (*p) but taking only the elements from the beginning to the penultimate
element of the array (:length-1).

So, now we will go step by step with the Calculate function, creating more functions as
far as we need them:

func Calculate(o string) (int, error) {
 stack := polishNotationStack{}
 operators := strings.Split(o, " ")

The first two things we need to do are to create the stack and to get all different symbols
from the incoming operation (in this case, we aren't checking that it isn't empty). We split
the incoming string operations by the space to get a nice slice of symbols (values and
operators).

Next, we will iterate over every symbol by using range but we need a function to know
whether the incoming symbol is a value or an operator:

func isOperator(o string) bool {
 if o == SUM || o == SUB || o == MUL || o == DIV {
 return true
 }

 return false
}

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[230]

If the incoming symbol is any of the ones defined in our constants, the incoming symbol is
an operator:

func Calculate(o string) (int, error) {
 stack := polishNotationStack{}
 operators := strings.Split(o, " ")

for _, operatorString := range operators {
 if isOperator(operatorString) {
 right := stack.Pop()
 left := stack.Pop()
 }
 else
 {
 //Is a value
 }
}

If it is an operator, we consider that we have already passed two values so what we have to
do is to take those two values from the stack. The first value taken would be the rightmost
and the second the leftmost (remember that in subtractions and divisions, the order of the
operands is important). Then, we need some function to get the operation we want to
perform:

func getOperationFunc(o string) func(a, b int) int {
 switch o {
 case SUM:
 return func(a, b int) int {
 return a + b
 }
 case SUB:
 return func(a, b int) int {
 return a - b
 }
 case MUL:
 return func(a, b int) int {
 return a * b
 }
 case DIV:
 return func(a, b int) int {
 return a / b
 }
 }
 return nil
}

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[231]

The getOperationFunc functions returns a two-argument function that returns an integer.
We check the incoming operator and we return an anonymous function that performs the
specified operation. So, now our for range continues like this:

func Calculate(o string) (int, error) {
 stack := polishNotationStack{}
 operators := strings.Split(o, " ")

for _, operatorString := range operators {
 if isOperator(operatorString) {
 right := stack.Pop()
 left := stack.Pop()
 mathFunc := getOperationFunc(operatorString) res :=
mathFunc(left, right) stack.Push(res)
 } else {
 //Is a value
 }
}

The mathFunc variable is returned by the function. We use it immediately to perform the
operation on the left and right values taken from the stack and we store its result in a new
variable called res. Finally, we need to push this new value to the stack to keep operating
with it later.

Now, here is the implementation when the incoming symbol is a value:

func Calculate(o string) (int, error) {
 stack := polishNotationStack{}
 operators := strings.Split(o, " ")

for _, operatorString := range operators {
 if isOperator(operatorString) {
 right := stack.Pop()
 left := stack.Pop()
 mathFunc := getOperationFunc(operatorString)
 res := mathFunc(left, right)
 stack.Push(res)
 } else {
 val, err := strconv.Atoi(operatorString)
 if err != nil {
 return 0, err
 }
 stack.Push(val)
 }
 }

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[232]

What we need to do every time we get a symbol is to push it to the stack. We have to parse
the string symbol to a usable int type. This is commonly done with the strconv package
by using its Atoi function. The Atoi function takes a string and returns an integer from it
or an error. If everything goes well, the value is pushed into the stack.

At the end of the range statement, just one value must be stored on it, so we just need to
return it and the function is done:

func Calculate(o string) (int, error) {
 stack := polishNotationStack{}
 operators := strings.Split(o, " ")

for _, operatorString := range operators {
 if isOperator(operatorString) {
 right := stack.Pop()
 left := stack.Pop()
 mathFunc := getOperationFunc(operatorString)
 res := mathFunc(left, right)
 stack.Push(res)
 } else {
 val, err := strconv.Atoi(operatorString)
 if err != nil {
 return 0, err
 }

 stack.Push(val)
 }
 }
 return int(stack.Pop()), nil}

Time to run the tests again:

 $ go test -v .
 ok

Great! We have just created a reverse polish notation interpreter in a very simple and easy
way (we still lack the parser, but that's another story).

Complexity with the Interpreter design pattern
In this example, we haven't used any interfaces. This is not exactly how the Interpreter
design pattern is defined in more object-oriented languages. However, this example is the
simplest example possible to understand the objectives of the language and the next level is
inevitably much more complex and not intended for beginner users.

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[233]

With a more complex example, we will have to define a type containing more types of itself,
a value, or nothing. With a parser, you create this abstract syntax tree to interpret it later.

The same example, done by using interfaces, would be as in the following description
section.

Interpreter pattern again – now using interfaces
The main interface we are going to use is called the Interpreter interface. This interface
has a Read() method that every symbol (value or operator) must implement:

type Interpreter interface {
 Read() int
}

We will implement only the sum and the subtraction from the operators and a type called
Value for the numbers:

type value int

func (v *value) Read() int {
 return int(*v)
}

The Value is a type int that, when implementing the Read method, just returns its value:

type operationSum struct {
 Left Interpreter
 Right Interpreter
}

func (a *operationSum) Read() int {
 return a.Left.Read() + a.Right.Read()
}

The operationSum struct has the Left and Right fields and its Read method returns the
sum of each of their Read methods. The operationSubtract struct is the same but
subtracting:

type operationSubtract struct {
 Left Interpreter
 Right Interpreter
}

func (s *operationSubtract) Read() int {

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[234]

 return s.Left.Read() - s.Right.Read()
}

We also need a Factory pattern to create operators; we will call it the operatorFactory
method. The difference now is that it not only accepts the symbol but also the Left and
Right values taken from the stack:

func operatorFactory(o string, left, right Interpreter) Interpreter {
 switch o {
 case SUM:
 return &operationSum{
 Left: left,
 Right: right,
 }
 case SUB:
 return &operationSubtract{
 Left: left,
 Right: right,
 }
 }

 return nil
}

As we have just mentioned, we also need a stack. We can reuse the one from the previous
example by changing its type:

type polishNotationStack []Interpreter

func (p *polishNotationStack) Push(s Interpreter) {
 *p = append(*p, s)
}

func (p *polishNotationStack) Pop() Interpreter {
 length := len(*p)

 if length > 0 {
 temp := (*p)[length-1]
 *p = (*p)[:length-1]
 return temp
 }

 return nil
}

Now the stack works with Interpreter pointers instead of int but its functionality is the
same. Finally, our main method also looks similar to our previous example:

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[235]

func main() {
 stack := polishNotationStack{}
 operators := strings.Split("3 4 sum 2 sub", " ")

 for _, operatorString := range operators {
 if operatorString == SUM || operatorString == SUB {
 right := stack.Pop()
 left := stack.Pop()
 mathFunc := operatorFactory(operatorString, left, right)
 res := value(mathFunc.Read())
 stack.Push(&res)
 } else {
 val, err := strconv.Atoi(operatorString)
 if err != nil {
 panic(err)
 }

 temp := value(val)
 stack.Push(&temp)
 }
 }

 println(int(stack.Pop().Read()))
}

Like before, we check whether the symbol is operator or value first. When it's a value, it
pushes it into the stack.

When the symbol is an operator, we also take the right and left values from the stack, we
call the Factory pattern using the current operator and the left and right values that we just
took from the stack. Once we have the operator type, we just need to call its Read method to
push the returned value to the stack too.

Finally, just one example must be left on the stack, so we print it:

 $ go run interpreter.go
 5

The power of the Interpreter pattern
This pattern is extremely powerful but it must also be used carefully. To create a language,
it generates a strong coupling between its users and the functionality it provides. One can
fall into the error of trying to create a too flexible language that is incredibly complex to use
and maintain. Also, one can create a fairly small and useful language that doesn't interpret
correctly sometimes and it could be a pain for its users.

Behavioral Patterns - Template, Memento, and Interpreter Design Patterns

[236]

In our example, we have omitted quite a lot of error-checking to focus on the
implementation of the Interpreter. However, you'll need quite a lot of error checking and
verbose output on errors to help the user correct its syntax errors. So, have fun writing your
language but be nice to your users.

Summary
This chapter has dealt with three extremely powerful patterns that require a lot of practice
before using them in production code. It's a very good idea to make some exercises with
them by simulating typical production problems:

Create a simple REST server that reuses most of the error-checking and
connection functionality to provide an easy-to-use interface to practice the
Template pattern
Make a small library that can write to different databases but only in the case that
all writes were OK, or delete the newly created writes to practice Memento for
example
Write your own language, to make simple things such as answering simple
questions like bots usually do so you can practice a bit of the Interpreter pattern

The idea is to practice coding and reread any section until you get comfortable with each
pattern.

7
Behavioral Patterns - Visitor,

State, Mediator, and Observer
Design Patterns

This is the last chapter about Behavioral patterns and it also closes this book's section about
common, well known design patterns in Go language.

In this chapter, we are going to look at three more design patterns. Visitor pattern is very
useful when you want to abstract away some functionality from a set of objects.

State is used commonly to build Finite State Machines (FSM) and, in this section, we will
develop a small guess the number game.

Finally, the Observer pattern is commonly used in event-driven architectures and is gaining
a lot of traction again, especially in the microservices world.

After this chapter, we'll need to feel very comfortable with common design patterns before
digging in concurrency and the advantages (and complexity), it brings to design patterns.

Visitor design pattern
In the next design pattern, we are going to delegate some logic of an object's type to an
external type called the visitor that will visit our object to perform operations on it.

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[238]

Description
In the Visitor design pattern, we are trying to separate the logic needed to work with a
specific object outside of the object itself. So we could have many different visitors that do
some things to specific types.

For example, imagine that we have a log writer that writes to console. We could make the
logger “visitable” so that you can prepend any text to each log. We could write a Visitor
pattern that prepends the date, the time, and the hostname to a field stored in the object.

Objectives
With Behavioral design patterns we are mainly dealing with algorithms. Visitor patterns are
not an exception. The objectives that we are trying to achieve are as follows:

To separate the algorithm of some type from its implementation within some
other type
To improve the flexibility of some types by using them with little or no logic at all
so all new functionality can be added without altering the object structure
To fix a structure or behavior that would break the open/closed principle in a
type

You might be thinking what the open/closed principle is. In computer science, the
open/closed principle states that: entities should be open for extension but closed for modification.
This simple state has lots of implications that allows building more maintainable software
and less prone to errors. And the Visitor pattern helps us to delegate some commonly
changing algorithm from a type that we need it to be “stable” to an external type that can
change often without affecting our original one.

A log appender
We are going to develop a simple log appender as an example of the Visitor pattern.
Following the approach we have had in previous chapters, we will start with an extremely
simple example to clearly understand how the Visitor design pattern works before jumping
to a more complex one. We have already developed similar examples modifying texts too,
but in slightly different ways.

For this particular example, we will create a Visitor that appends different information to
the types it “visits”.

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[239]

Acceptance criteria
To effectively use the Visitor design pattern, we must have two roles–a visitor and a
visitable. The Visitor is the type that will act within a Visitable type. So a Visitable
interface implementation has an algorithm detached to the Visitor type:

We need two message loggers: MessageA and MessageB that will print a1.
message with an A: or a B: respectively before the message.
We need a Visitor able to modify the message to be printed. It will append the2.
text “Visited A” or “Visited B” to them, respectively.

Unit tests
As we mentioned before, we will need a role for the Visitor and the Visitable
interfaces. They will be interfaces. We also need the MessageA and MessageB structs:

package visitor

import (
 "io"
 "os"
 "fmt"
)

type MessageA struct {
 Msg string
 Output io.Writer
}

type MessageB struct {
 Msg string
 Output io.Writer
}

type Visitor interface {
 VisitA(*MessageA)
 VisitB(*MessageB)
}

type Visitable interface {
 Accept(Visitor)
}

type MessageVisitor struct {}

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[240]

The types MessageA and MessageB structs both have an Msg field to store the text that they
will print. The output io.Writer will implement the os.Stdout interface by default or a
new io.Writer interface, like the one we will use to check that the contents are correct.

The Visitor interface has a Visit method, one for each of Visitable interface's
MessageA and MessageB type. The Visitable interface has a method
called Accept(Visitor) that will execute the decoupled algorithm.

Like in previous examples, we will create a type that implements the io.Writer package
so that we can use it in tests:

package visitor

import "testing"

type TestHelper struct {
 Received string
}

func (t *TestHelper) Write(p []byte) (int, error) {
 t.Received = string(p)
 return len(p), nil
}

The TestHelper struct implements the io.Writer interface. Its functionality is quite
simple; it stores the written bytes on the Received field. Later we can check the contents of
Received to test against our expected value.

We will write just one test that will check the overall correctness of the code. Within this
test, we will write two sub tests: one for MessageA and one for MessageB types:

func Test_Overall(t *testing.T) {
 testHelper := &TestHelper{}
 visitor := &MessageVisitor{}
 ...
}

We will use a TestHelper struct and a MessageVisitor struct on each test for each
message type. First, we will test the MessageA type:

func Test_Overall(t *testing.T) {
 testHelper := &TestHelper{}
 visitor := &MessageVisitor{}

 t.Run("MessageA test", func(t *testing.T){
 msg := MessageA{

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[241]

 Msg: "Hello World",
 Output: testHelper,
 }

 msg.Accept(visitor)
 msg.Print()

 expected := "A: Hello World (Visited A)"
 if testHelper.Received != expected {
 t.Errorf("Expected result was incorrect. %s != %s",
 testHelper.Received, expected)
 }
 })
 ...
}

This is the full first test. We created MessageA struct, giving it a value Hello World for the
Msg field and the pointer to TestHelper, which we created at the beginning of the test.
Then, we execute its Accept method. Inside the Accept(Visitor) method on
the MessageA struct, the VisitA(*MessageA) method is executed to alter the contents of
the Msg field (that's why we passed the pointer to VisitA method, without a pointer the
contents won't be persisted).

To test if the Visitor type has done its job within the Accept method, we must call the
Print() method on the MessageA type later. This way, the MessageA struct must write the
contents of Msg to the provided io.Writer interface (our TestHelper).

The last part of the test is the check. According to the description of acceptance criteria 2, the
output text of MessageA type must be prefixed with the text A:, the stored message and the
text "(Visited)" just at the end. So, for the MessageA type, the expected text must be "A:
Hello World (Visited)", this is the check that we did in the if section.

The MessageB type has a very similar implementation:

 t.Run("MessageB test", func(t *testing.T){
 msg := MessageB {
 Msg: "Hello World",
 Output: testHelper,
 }

 msg.Accept(visitor)
 msg.Print()

 expected := "B: Hello World (Visited B)"
 if testHelper.Received != expected {
 t.Errorf("Expected result was incorrect. %s != %s",

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[242]

 testHelper.Received, expected)
 }
 })
}

In fact, we have just changed the type from MessageA to MessageB and the expected text
now is "B: Hello World (Visited B)". The Msg field is also "Hello World" and we
also used the TestHelper type.

We still lack the correct implementations of the interfaces to compile the code and run the
tests. The MessageA and MessageB structs have to implement the Accept(Visitor)
method:

func (m *MessageA) Accept(v Visitor) {
 //Do nothing
}

func (m *MessageB) Accept(v Visitor) {
 //Do nothing
}

We need the implementations of the VisitA(*MessageA) and VisitB(*MessageB)
methods that are declared on the Visitor interface. The MessageVisitor interface is the
type that must implement them:

func (mf *MessageVisitor) VisitA(m *MessageA){
 //Do nothing
}
func (mf *MessageVisitor) VisitB(m *MessageB){
 //Do nothing
}

Finally, we will create a Print() method for each message type. This is the method that we
will use to test the contents of the Msg field on each type:

func (m *MessageA) Print(){
 //Do nothing
}

func (m *MessageB) Print(){
 //Do nothing
}

Now we can run the tests to really check if they are failing yet:

 go test -v .
 === RUN Test_Overall

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[243]

 === RUN Test_Overall/MessageA_test
 === RUN Test_Overall/MessageB_test
 --- FAIL: Test_Overall (0.00s)
 --- FAIL: Test_Overall/MessageA_test (0.00s)
 visitor_test.go:30: Expected result was incorrect. != A: Hello
World (Visited A)
 --- FAIL: Test_Overall/MessageB_test (0.00s)
 visitor_test.go:46: Expected result was incorrect. != B: Hello
World (Visited B)
 FAIL
 exit status 1
 FAIL

The outputs of the tests are clear. The expected messages were incorrect because the
contents were empty. It's time to create the implementations.

Implementation of Visitor pattern
We will start completing the implementation of the VisitA(*MessageA) and
VisitB(*MessageB) methods:

func (mf *MessageVisitor) VisitA(m *MessageA){
 m.Msg = fmt.Sprintf("%s %s", m.Msg, "(Visited A)")
}
func (mf *MessageVisitor) VisitB(m *MessageB){
 m.Msg = fmt.Sprintf("%s %s", m.Msg, "(Visited B)")
}

Its functionality is quite straightforward–the fmt.Sprintf method returns a formatted
string with the actual contents of m.Msg, a white space, and the message, Visited. This
string will be stored on the Msg field, overriding the previous contents.

Now we will develop the Accept method for each message type that must execute the
corresponding Visitor:

func (m *MessageA) Accept(v Visitor) {
 v.VisitA(m)
}

func (m *MessageB) Accept(v Visitor) {
 v.VisitB(m)
}

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[244]

This small code has some implications on it. In both cases, we are using a Visitor, which
in our example is exactly the same as the MessageVisitor interface, but they could be
completely different. The key is to understand that the Visitor pattern executes an algorithm
in its Visit method that deals with the Visitable object. What could the Visitor be
doing? In this example, it alters the Visitable object, but it could be simply fetching
information from it. For example, we could have a Person type with lots of fields: name,
surname, age, address, city, postal code, and so on. We could write a Visitor to fetch just the
name and surname from a person as a unique string, a visitor to fetch the address info for a
different section of an app, and so on.

Finally, there is the Print() method, which will help us to test the types. We mentioned
before that it must print to the Stdout call by default:

func (m *MessageA) Print() {
 if m.Output == nil {
 m.Output = os.Stdout
 }

 fmt.Fprintf(m.Output, "A: %s", m.Msg)
}

func (m *MessageB) Print() {
 if m.Output == nil {
 m.Output = os.Stdout
 }
 fmt.Fprintf(m.Output, "B: %s", m.Msg)
}

It first checks the content of the Output field to assign the output of the os.Stdout call in
case it is null. In our tests, we are storing a pointer there to our TestHelper type so this line
is never executed in our test. Finally, each message type prints to the Output field, the full
message stored in the Msg field. This is done by using the Fprintf method, which takes an
io.Writer package as the first argument and the text to format as the next arguments.

Our implementation is now complete and we can run the tests again to see if they all pass
now:

 go test -v .
 === RUN Test_Overall
 === RUN Test_Overall/MessageA_test
 === RUN Test_Overall/MessageB_test
 --- PASS: Test_Overall (0.00s)
 --- PASS: Test_Overall/MessageA_test (0.00s)
 --- PASS: Test_Overall/MessageB_test (0.00s)
 PASS

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[245]

 ok

Everything is OK! The Visitor pattern has done its job flawlessly and the message contents
were altered after calling their Visit methods. The very important thing here is that we can
add more functionality to both the structs, MessageA and MessageB, without altering their
types. We can just create a new Visitor type that does everything on the Visitable, for
example, we can create a Visitor to add a method that prints the contents of the Msg field:

type MsgFieldVisitorPrinter struct {}

func (mf *MsgFieldVisitorPrinter) VisitA(m *MessageA){
 fmt.Printf(m.Msg)
}
func (mf *MsgFieldVisitorPrinter) VisitB(m *MessageB){
 fmt.Printf(m.Msg)
}

We have just added some functionality to both types without altering their contents! That's
the power of the Visitor design pattern.

Another example
We will develop a second example, this one a bit more complex. In this case, we will
emulate an online shop with a few products. The products will have plain types, with just
fields and we will make a couple of visitors to deal with them in the group.

First of all, we will develop the interfaces. The ProductInfoRetriever type has a method
to get the price and the name of the product. The Visitor interface, like before, has a
Visit method that accepts the ProductInfoRetriever type. Finally, Visitable
interface is exactly the same; it has an Accept method that takes a Visitor type as an
argument:

type ProductInfoRetriever interface {
 GetPrice() float32
 GetName() string
}

type Visitor interface {
 Visit(ProductInfoRetriever)
}

type Visitable interface {
 Accept(Visitor)
}

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[246]

All the products of the online shop must implement the ProductInfoRetriever type.
Also, most products will have some commons fields, such as name or price (the ones
defined in the ProductInfoRetriever interface). We created the Product type,
implemented the ProductInfoRetriever and the Visitable interfaces, and embedded it
on each product:

type Product struct {
 Price float32
 Name string
}

func (p *Product) GetPrice() float32 {
 return p.Price
}

func (p *Product) Accept(v Visitor) {
 v.Visit(p)
}

func (p *Product) GetName() string {
 return p.Name
}

Now we have a very generic Product type that can store the information about almost any
product of the shop. For example, we could have a Rice and a Pasta product:

type Rice struct {
 Product
}

type Pasta struct {
 Product
}

Each has the Product type embedded. Now we need to create a couple of Visitors
interfaces, one that sums the price of all products and one that prints the name of each
product:

type PriceVisitor struct {
 Sum float32
}

func (pv *PriceVisitor) Visit(p ProductInfoRetriever) {
 pv.Sum += p.GetPrice()
}

type NamePrinter struct {

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[247]

 ProductList string
}

func (n *NamePrinter) Visit(p ProductInfoRetriever) {
 n.Names = fmt.Sprintf("%s\n%s", p.GetName(), n.ProductList)
}

The PriceVisitor struct takes the value of the Price variable of the
ProductInfoRetriever type, passed as an argument, and adds it to the Sum field. The
NamePrinter struct stores the name of the ProductInfoRetriever type, passed as an
argument, and appends it to a new line on the ProductList field.

Time for the main function:

func main() {
 products := make([]Visitable, 2)
 products[0] = &Rice{
 Product: Product{
 Price: 32.0,
 Name: "Some rice",
 },
 }
 products[1] = &Pasta{
 Product: Product{
 Price: 40.0,
 Name: "Some pasta",
 },
 }

 //Print the sum of prices
 priceVisitor := &PriceVisitor{}

 for _, p := range products {
 p.Accept(priceVisitor)
 }

 fmt.Printf("Total: %f\n", priceVisitor.Sum)

 //Print the products list
 nameVisitor := &NamePrinter{}

 for _, p := range products {
 p.Accept(nameVisitor)
 }

 fmt.Printf("\nProduct list:\n-------------\n%s",
nameVisitor.ProductList)

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[248]

}

We create a slice of two Visitable objects: a Rice and a Pasta type with some arbitrary
names. Then we iterate for each of them using a PriceVisitor instance as an argument.
We print the total price after the range for. Finally, we repeat this operation with the
NamePrinter and print the resulting ProductList. The output of this main function is as
follows:

 go run visitor.go
 Total: 72.000000
 Product list:

 Some pasta
 Some rice

Ok, this is a nice example of the Visitor pattern but… what if there are special
considerations about a product? For example, what if we need to sum 20 to the total price of
a fridge type? OK, let's write the Fridge structure:

type Fridge struct {
 Product
}

The idea here is to just override the GetPrice() method to return the product's price plus
20:

type Fridge struct {
 Product
}

func (f *Fridge) GetPrice() float32 {
 return f.Product.Price + 20
}

Unfortunately, this isn't enough for our example. The Fridge structure is not of a
 Visitable type. The Product struct is of a Visitable type and the Fridge struct has a
Product struct embedded but, as we mentioned in earlier chapters, a type that embeds a
second type cannot be considered of that latter type, even when it has all its fields and
methods. The solution is to also implement the Accept(Visitor) method so that it can be
considered as a Visitable:

type Fridge struct {
 Product
}

func (f *Fridge) GetPrice() float32 {

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[249]

 return f.Product.Price + 20
}

func (f *Fridge) Accept(v Visitor) {
 v.Visit(f)
}

Let's rewrite the main function to add this new Fridge product to the slice:

func main() {
 products := make([]Visitable, 3)
 products[0] = &Rice{
 Product: Product{
 Price: 32.0,
 Name: "Some rice",
 },
 }
 products[1] = &Pasta{
 Product: Product{
 Price: 40.0,
 Name: "Some pasta",
 },
 }
 products[2] = &Fridge{
 Product: Product{
 Price: 50,
 Name: "A fridge",
 },
 }
 ...
}

Everything else continues the same. Running this new main function produces the
following output:

 $ go run visitor.go
 Total: 142.000000
 Product list:

 A fridge
 Some pasta
 Some rice

As expected, the total price is higher now, outputting the sum of the rice (32), the pasta (40),
and the fridge (50 of the product plus 20 of the transport, so 70). We could be adding
visitors forever to this products, but the idea is clear–we decoupled some algorithms
outside of the types to the visitors.

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[250]

Visitors to the rescue!
We have seen a powerful abstraction to add new algorithms to some types. However,
because of the lack of overloading in Go, this pattern could be limiting in some aspects (we
have seen it in the first example, where we had to create the VisitA and VisitB
implementations). In the second example, we haven't dealt with this limitation because we
have used an interface to the Visit method of the Visitor struct, but we just used one
type of visitor (ProductInfoRetriever) and we would have the same problem if we
implemented a Visit method for a second type, which is one of the objectives of the
original Gang of Four design patterns.

State design pattern
State patterns are directly related to FSMs. An FSM, in very simple terms, is something that
has one or more states and travels between them to execute some behaviors. Let's see how
the State pattern helps us to define FSM.

Description
A light switch is a common example of an FSM. It has two states–on and off. One state can
transit to the other and vice versa. The way that the State pattern works is similar. We have
a State interface and an implementation of each state we want to achieve. There is also
usually a context that holds cross-information between the states.

With FSM, we can achieve very complex behaviors by splitting their scope between states.
This way we can model pipelines of execution based on any kind of inputs or create event-
driven software that responds to particular events in specified ways.

Objectives
The main objectives of the State pattern is to develop FSM are as follows:

To have a type that alters its own behavior when some internal things have
changed
Model complex graphs and pipelines can be upgraded easily by adding more
states and rerouting their output states

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[251]

A small guess the number game
We are going to develop a very simple game that uses FSM. This game is a number
guessing game. The idea is simple–we will have to guess some number between 0 and 10
and we have just a few attempts or we'll lose.

We will leave the player to choose the level of difficulty by asking how many tries the user
has before losing. Then, we will ask the player for the correct number and keep asking if
they don't guess it or if the number of tries reaches zero.

Acceptance criteria
For this simple game, we have five acceptance criteria that basically describe the mechanics
of the game:

The game will ask the player how many tries they will have before losing the1.
game.
The number to guess must be between 0 and 10.2.
Every time a player enters a number to guess, the number of retries drops by one.3.
If the number of retries reaches zero and the number is still incorrect, the game4.
finishes and the player has lost.
If the player guesses the number, the player wins.5.

Implementation of State pattern
The idea of unit tests is quite straightforward in a State pattern so we will spend more time
explaining in detail the mechanism to use it, which is a bit more complex than usual.

First of all, we need the interface to represent the different states and a game context to store
the information between states. For this game, the context needs to store the number of
retries, if the user has won or not, the secret number to guess, and the current state. The
state will have an executeState method that accepts one of these contexts and returns
true if the game has finished, or false if not:

type GameState interface {
 executeState(*GameContext) bool
}

type GameContext struct {
 SecretNumber int

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[252]

 Retries int
 Won bool
 Next GameState
}

As described in acceptance criteria 1, the player must be able to introduce the number of
retries they want. This will be achieved by a state called StartState. Also, the
StartState struct must prepare the game, setting the context to its initial value before the
player:

type StartState struct{}
func(s *StartState) executeState(c *GameContext) bool {
 c.Next = &AskState{}

 rand.Seed(time.Now().UnixNano())
 c.SecretNumber = rand.Intn(10)

 fmt.Println("Introduce a number a number of retries to set the
difficulty:")
 fmt.Fscanf(os.Stdin, "%d\n", &c.Retries)

 return true
}

First of all, the StartState struct implements the GameState structure because it has the
executeState(*Context) method of Boolean type on its structure. At the beginning of
this state, it sets the only state possible after executing this one–the AskState state. The
AskState struct is not declared yet, but it will be the state where we ask the player for a
number to guess.

In the next two lines, we use the Rand package of Go to generate a random number. In the
first line, we feed the random generator with the int64 type number returned by the
current moment, so we ensure a random feed in each execution (if you put a constant
number here, the randomizer will also generate the same number too). The
rand.Intn(int) method returns an integer number between zero and the specified
number, so here we cover acceptance criteria 2.

Next, a message asking for a number of retries to set precedes the fmt.Fscanf method, a
powerful function where you can pass it an io.Reader (the standard input of the console),
a format (number), and an interface to store the contents of the reader, in this case, the
Retries field of the context.

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[253]

Finally, we return true to tell the engine that the game must continue. Let's see
the AskState struct, which we have used at the beginning of the function:

type AskState struct {}
func (a *AskState) executeState(c *GameContext) bool{
 fmt.Printf("Introduce a number between 0 and 10, you have %d tries
left\n", c.Retries)

 var n int
 fmt.Fscanf(os.Stdin, "%d", &n)
 c.Retries = c.Retries - 1

 if n == c.SecretNumber {
 c.Won = true
 c.Next = &FinishState{}
 }

 if c.Retries == 0 {
 c.Next = &FinishState{}
 }

 return true
}

The AskState structure also implements the GameState state, as you have probably
guessed already. This states starts with a message for the player, asking them to insert a
new number. In the next three lines, we create a local variable to store the contents of the
number that the player will introduce. We used the fmt.Fscanf method again, as we did
in StartState struct to capture the player's input and store it in the variable n. Then, we
have one retry less in our counter, so we have to subtract one to the number of retries
represented in the Retries field.

Then, there are two checks: one that checks if the user has entered the correct number, in
which case the context field Won is set to true and the next state is set to the FinishState
struct (not declared yet).

The second check is controlling that the number of retries has not reached zero, in which
case it won't let the player ask again for a number and it will send the player to the
FinishState struct directly. After all, we have to tell the game engine again that the game
must continue by returning true in the executeState method.

Finally, we define the FinishState struct. It controls the exit status of the game, checking
the contents of the Won field in the context object:

type FinishState struct{}

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[254]

func(f *FinishState) executeState(c *GameContext) bool {
 if c.Won {
 println("Congrats, you won")
 }
 else {
 println("You lose")
 }
 return false
}

The TheFinishState struct also implements the GameState state by having
executeState method in its structure. The idea here is very simple–if the player has won
(this field is set previously in the AskState struct), the FinishState structure will print
the message Congrats, you won. If the player has not won (remember that the zero value
of the Boolean variable is false), the FinishState prints the message You lose.

In this case, the game can be considered finished, so we return false to say that the game
must not continue.

We just need the main method to play our game:

func main() {
 start := StartState{}
 game := GameContext{
 Next:&start,
 }
 for game.Next.executeState(&game) {}
}

Well, yes, it can't be simpler. The game must begin with the start method, although it
could be abstracted more outside in case that the game needs more initialization in the
future, but in our case it is fine. Then, we create a context where we set the Next state as a
pointer to the start variable. So the first state that will be executed in the game will be the
StartState state.

The last line of the main function has a lot of things just there. We create a loop, without any
statement inside it. As with any loop, it keeps looping after the condition is not satisfied.
The condition we are using is the returned value of the GameStates structure, true as soon
as the game is not finished.

So, the idea is simple: we execute the state in the context, passing a pointer to the context to
it. Each state returns true until the game has finished and the FinishState struct will
return false. So our for loop will keep looping, waiting for a false condition sent by
the FinishState structure to end the application.

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[255]

Let's play once:

 go run state.go
 Introduce a number a number of retries to set the difficulty:
 5
 Introduce a number between 0 and 10, you have 5 tries left
 8
 Introduce a number between 0 and 10, you have 4 tries left
 2
 Introduce a number between 0 and 10, you have 3 tries left
 1
 Introduce a number between 0 and 10, you have 2 tries left
 3
 Introduce a number between 0 and 10, you have 1 tries left
 4
 You lose

We lost! We set the number of retries to 5. Then we kept inserting numbers, trying to guess
the secret number. We entered 8, 2, 1, 3, and 4, but it wasn't any of them. I don't even know
what the correct number was; let's fix this!

Go to the definition of the FinishState struct and change the line where it says You lose,
and replace it with the following:

fmt.Printf("You lose. The correct number was: %d\n", c.SecretNumber)

Now it will show the correct number. Let's play again:

 go run state.go
 Introduce a number a number of retries to set the difficulty:
 3
 Introduce a number between 0 and 10, you have 3 tries left
 6
 Introduce a number between 0 and 10, you have 2 tries left
 2
 Introduce a number between 0 and 10, you have 1 tries left
 1
 You lose. The correct number was: 9

This time we make it a little harder by setting only three tries… and we lost again. I entered
6, 2, and 1, but the correct number was 9. Last try:

 go run state.go
 Introduce a number a number of retries to set the difficulty:
 5
 Introduce a number between 0 and 10, you have 5 tries left
 3
 Introduce a number between 0 and 10, you have 4 tries left

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[256]

 4
 Introduce a number between 0 and 10, you have 3 tries left
 5
 Introduce a number between 0 and 10, you have 2 tries left
 6
 Congrats, you won

Great! This time we lowered the difficulty, allowing up to five tries and we won! we even
had one more try left, but we guessed the number in the fourth try after entering 3, 4, 5. The
correct number was 6, which was my fourth try.

A state to win and a state to lose
Have you realized that we could have a winning and a lose state instead of printing the
messages directly in the FinishState struct? This way we could, for example, check some
hypothetical scoreboard in the win section to see if we have set a record. Let's refactor our
game. First we need a WinState and a LoseState struct:

type WinState struct{}

func (w *WinState) executeState(c *GameContext) bool {
 println("Congrats, you won")

 return false
}

type LoseState struct{}

func (l *LoseState) executeState(c *GameContext) bool {
 fmt.Printf("You lose. The correct number was: %d\n", c.SecretNumber)
 return false
}

These two new states have nothing new. They contain the same messages that were
previously in the FinishState state that, by the way, must be modified to use these new
states:

func (f *FinishState) executeState(c *GameContext) bool {
 if c.Won {
 c.Next = &WinState{}
 } else {
 c.Next = &LoseState{}
 }
 return true
}

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[257]

Now, the finish state doesn't print anything and, instead, delegates this to the next state in
the chain–the WinState structure, if the user has won and the LoseState struct, if not.
Remember that the game doesn't finish on the FinishState struct now, and we must
return true instead of false to notify to the engine that it must keep executing states in the
chain.

The game built using the State pattern
You must be thinking now that you can extend this game forever with new states, and it's
true. The power of the State pattern is not only the capacity to create a complex FSM, but
also the flexibility to improve it as much as you want by adding new states and modifying
some old states to point to the new ones without affecting the rest of the FSM.

Mediator design pattern
Let's continue with the Mediator pattern. As its name implies, it's a pattern that will be in
between two types to exchange information. But, why will we want this behavior at all?
Let's look at this in detail.

Description
One of the key objectives of any design pattern is to avoid tight coupling between objects.
This can be done in many ways, as we have seen already.

But one particularly effective method when the application grows a lot is the Mediator
pattern. The Mediator pattern is the perfect example of a pattern that is commonly used by
every programmer without thinking very much about it.

Mediator pattern will act as the type in charge of exchanging communication between two
objects. This way, the communicating objects don't need to know each other and can change
more freely. The pattern that maintains which objects give what information is the
Mediator.

Objectives
As previously described, the main objectives of the Mediator pattern are about loose
coupling and encapsulation. The objectives are:

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[258]

To provide loose coupling between two objects that must communicate between
them
To reduce the amount of dependencies of a particular type to the minimum by
passing these needs to the Mediator pattern

A calculator
For the Mediator pattern, we are going to develop an extremely simple arithmetic
calculator. You're probably thinking that a calculator is so simple that it does not need any
pattern. But we will see that this is not exactly true.

Our calculator will only do two very simple operations: sum and subtract.

Acceptance criteria
It sounds quite funny to talk about acceptance criteria to define a calculator, but let's do it
anyway:

Define an operation called Sum that takes a number and adds it to another1.
number.
Define an operation called Subtract that takes a number and substracts it to2.
another number.

Well, I don't know about you, but I really need a rest after this complex criteria. So why are
we defining this so much? Patience, you will have the answer soon.

Implementation
We have to jump directly to the implementation because we cannot test that the sum will be
correct (well, we can, but we will be testing if Go is correctly written!). We could test that
we pass the acceptance criteria, but it's a bit of an overkill for our example.

So let's start by implementing the necessary types:

package main

type One struct{}
type Two struct{}
type Three struct{}
type Four struct{}

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[259]

type Five struct{}
type Six struct{}
type Seven struct{}
type Eight struct{}
type Nine struct{}
type Zero struct{}

Well… this look quite awkward. We already have numeric types in Go to perform these
operations, we don't need a type for each number!

But let's continue for a second with this insane approach. Let's implement the One struct:

type One struct{}

func (o *One) OnePlus(n interface{}) interface{} {
 switch n.(type) {
 case One:
 return &Two{}
 case Two:
 return &Three{}
 case Three:
 return &Four{}
 case Four:
 return &Five{}
 case Five:
 return &Six{}
 case Six:
 return &Seven{}
 case Seven:
 return &Eight{}
 case Eight:
 return &Nine{}
 case Nine:
 return [2]interface{}{&One{}, &Zero{}}
 default:
 return fmt.Errorf("Number not found")
 }
}

OK , I'll stop here. What is wrong with this implementation? This is completely crazy! It's
overkill to make every operation possible between numbers to make sums! Especially when
we have more than one digit.

Well, believe it or not, this is how a lot of software is commonly designed today. A small
app where an object uses two or three objects grows, and it ends up using dozens of them. It
becomes an absolute hell to simply add or remove a type from the application because it is
hidden in some of this craziness.

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[260]

So what can we do in this calculator? Use a Mediator type that frees all the cases:

func Sum(a, b interface{}) interface{}{
 switch a := a.(type) {
 case One:
 switch b.(type) {
 case One:
 return &Two{}
 case Two:
 return &Three{}
 default:
 return fmt.Errorf("Number not found")
 }
 case Two:
 switch b.(type) {
 case One:
 return &Three{}
 case Two:
 return &Four{}
 default:
 return fmt.Errorf("Number not found")

 }
 case int:
 switch b := b.(type) {
 case One:
 return &Three{}
 case Two:
 return &Four{}
 case int:
 return a + b
 default:
 return fmt.Errorf("Number not found")

 }
 default:
 return fmt.Errorf("Number not found")
 }
}

We have just developed a couple of numbers to keep things short. The Sum function acts as
a mediator between two numbers. First it checks the type of the first number named a.
Then, for each type of the first number, it checks the type of the second number named b
and returns the resulting type.

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[261]

While the solution still looks very crazy now, the only one that knows about all possible
numbers in the calculator is the Sum function. But take a closer look and you'll see that we
have added a type case for the int type. We have cases One, Two , and int. Inside
the int case, we also have another int case for the b number. What do we do here? If both
types are of the int case, we can return the sum of them.

Do you think that this will work? Let's write a simple main function:

func main(){
 fmt.Printf("%#v\n", Sum(One{}, Two{}))
 fmt.Printf("%d\n", Sum(1,2))
}

We print the sum of type One and type Two. By using the "%#v" format, we ask to print
information about the type. The second line in the function uses int types, and we also
print the result. This in the console produces the following output:

$go run mediator.go
&main.Three{}
7

Not very impressive, right? But let's think for a second. By using the Mediator pattern, we
have been able to refactor the initial calculator, where we have to define every operation on
every type to a Mediator pattern, the Sum function.

The nice thing is that, thanks to the Mediator pattern, we have been able to start using
integers as values for our calculator. We have just defined the simplest example by adding
two integers, but we could have done the same with an integer and the type:

 case One:
 switch b := b.(type) {
 case One:
 return &Two{}
 case Two:
 return &Three{}
 case int:
 return b+1
 default:
 return fmt.Errorf("Number not found")
 }

With this small modification, we can now use type One with an int as number b. If we keep
working on this Mediator pattern, we could achieve a lot of flexibility between types,
without having to implement every possible operation between them, generating a tight
coupling.

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[262]

We'll add a new Sum method in the main function to see this in action:

func main(){
 fmt.Printf("%#v\n", Sum(One{}, Two{}))
 fmt.Printf("%d\n", Sum(1,2))
 fmt.Printf("%d\n", Sum(One{},2))
}
$go run mediator.go&main.Three{}33

Nice. The Mediator pattern is in charge of knowing about the possible types and returns the
most convenient type for our case, which is an integer. Now we could keep growing this
Sum function until we completely get rid of using the numeric types we have defined.

Uncoupling two types with the Mediator
We have carried out a disruptive example to try to think outside the box and reason deeply
about the Mediator pattern. Tight coupling between entities in an app can become really
complex to deal with in the future and allow more difficult refactoring if needed.

Just remember that the Mediator pattern is there to act as a managing type between two
types that don't know about each other so that you can take one of the types without
affecting the other and replace a type in a more easy and convenient way.

Observer design pattern
We will finish the common Gang of Four design patterns with my favorite: the Observer
pattern, also known as publish/subscriber or publish/listener. With the State pattern, we
defined our first event-driven architecture, but with the Observer pattern we will really
reach a new level of abstraction.

Description
The idea behind the Observer pattern is simple–to subscribe to some event that will trigger
some behavior on many subscribed types. Why is this so interesting? Because we uncouple
an event from its possible handlers.

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[263]

For example, imagine a login button. We could code that when the user clicks the button,
the button color changes, an action is executed, and a form check is performed in the
background. But with the Observer pattern, the type that changes the color will subscribe to
the event of the clicking of the button. The type that checks the form and the type that
performs an action will subscribe to this event too.

Objectives
The Observer pattern is especially useful to achieve many actions that are triggered on one
event. It is also especially useful when you don't know how many actions are performed
after an event in advance or there is a possibility that the number of actions is going to grow
in the near future. To resume, do the following:

Provide an event-driven architecture where one event can trigger one or more
actions
Uncouple the actions that are performed from the event that triggers them
Provide more than one event that triggers the same action

The notifier
We will develop the simplest possible application to fully understand the roots of the
Observer pattern. We are going to make a Publisher struct, which is the one that triggers
an event so it must accept new observers and remove them if necessary. When the
Publisher struct is triggered, it must notify all its observers of the new event with the data
associated.

Acceptance criteria
The requirements must tell us to have some type that triggers some method in one or more
actions:

We must have a publisher with a NotifyObservers method that accepts a1.
message as an argument and triggers a Notify method on every observer
subscribed.
We must have a method to add new subscribers to the publisher.2.
We must have a method to remove new subscribers from the publisher.3.

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[264]

Unit tests
Maybe you have realized that our requirements defined almost exclusively the Publisher
type. This is because the action performed by the observer is irrelevant for the Observer
pattern. It should simply execute an action, in this case the Notify method, that one or
many types will implement. So let's define this only interface for this pattern:

type Observer interface {
 Notify(string)
}

The Observer interface has a Notify method that accepts a string type that will contain
the message to spread. It does not need to return anything, but we could return an error if
we want to check if all observers have been reached when calling the publish method of
the Publisher structure.

To test all the acceptance criteria, we just need a structure called Publisher with three
methods:

type Publisher struct {
 ObserversList []Observer
}

func (s *Publisher) AddObserver(o Observer) {}

func (s *Publisher) RemoveObserver(o Observer) {}

func (s *Publisher) NotifyObservers(m string) {}

The Publisher structure stores the list of subscribed observers in a slice field called
ObserversList. Then it has the three methods mentioned on the acceptance criteria-the
AddObserver method to subscribe a new observer to the publisher, the RemoveObserver
method to unsubscribe an observer, and the NotifyObservers method with a string that
acts as the message we want to spread between all observers.

With these three methods, we have to set up a root test to configure the Publisher and
three subtests to test each method. We also need to define a test type structure that
implements the Observer interface. This structure is going to be called TestObserver:

type TestObserver struct {
 ID int
 Message string
}
func (p *TestObserver) Notify(m string) {
 fmt.Printf("Observer %d: message '%s' received \n", p.ID, m)

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[265]

 p.Message = m
}

The TestObserver structure implements the Observer pattern by defining a
Notify(string) method in its structure. In this case, it prints the received message
together with its own observer ID. Then, it stores the message in its Message field. This
allows us to check later if the content of the Message field is as expected. Remember that it
could also be done by passing the testing.T pointer and the expected message and
checking within the TestObserver structure.

Now we can set up the Publisher structure to execute the three tests. We will create three
instances of the TestObserver structure:

func TestSubject(t *testing.T) {
 testObserver1 := &TestObserver{1, ""}
 testObserver2 := &TestObserver{2, ""}
 testObserver3 := &TestObserver{3, ""}
 publisher := Publisher{}

We have given a different ID to each observer so that we can see later that each of them has
printed the expected message. Then, we have added the observers by calling the
AddObserver method on the Publisher structure.

Let's write an AddObserver test, it must add a new observer to the ObserversList field of
the Publisher structure:

 t.Run("AddObserver", func(t *testing.T) {
 publisher.AddObserver(testObserver1)
 publisher.AddObserver(testObserver2)
 publisher.AddObserver(testObserver3)

 if len(publisher.ObserversList) != 3 {
 t.Fail()
 }
 })

We have added three observers to the Publisher structure, so the length of the slice must
be 3. If it's not 3, the test will fail.

The RemoveObserver test will take the observer with ID 2 and remove it from the list:

 t.Run("RemoveObserver", func(t *testing.T) {
 publisher.RemoveObserver(testObserver2)

 if len(publisher.ObserversList) != 2 {
 t.Errorf("The size of the observer list is not the " +

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[266]

 "expected. 3 != %d\n", len(publisher.ObserversList))
 }
 for _, observer := range publisher.ObserversList {
 testObserver, ok := observer.(TestObserver)
 if !ok {
 t.Fail()
 }
 if testObserver.ID == 2 {
 t.Fail()
 }
 }
 })

After removing the second observer, the length of the Publisher structure must be 2 now.
We also check that none of the observers left have the ID 2 because it must be removed.

The last method to test is the Notify method. When using the Notify method, all instances
of TestObserver structure must change their Message field from empty to the passed
message (Hello World! in this case). First we will check that all the Message fields are, in
fact, empty before calling the NotifyObservers test:

t.Run("Notify", func(t *testing.T) {
 for _, observer := range publisher.ObserversList {
 printObserver, ok := observer.(*TestObserver)
 if !ok {
 t.Fail()
 break
 }

 if printObserver.Message != "" {
 t.Errorf("The observer's Message field weren't " + " empty: %s\n",
printObserver.Message)
 }
 }

Using a for statement, we are iterating over the ObserversList field to slice in the
publisher instance. We need to make a type casting from a pointer to an observer, to a
pointer to the TestObserver structure, and check that the casting has been done correctly.
Then, we check that the Message field is actually empty.

The next step is to create a message to send–in this case, it will be "Hello World!" and
then pass this message to the NotifyObservers method to notify every observer on the list
(currently observers 1 and 3 only):

 ...
 message := "Hello World!"

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[267]

 publisher.NotifyObservers(message)

 for _, observer := range publisher.ObserversList {
 printObserver, ok := observer.(*TestObserver)
 if !ok {
 t.Fail()
 break
 }

 if printObserver.Message != message {
 t.Errorf("Expected message on observer %d was " +
 "not expected: '%s' != '%s'\n", printObserver.ID,
 printObserver.Message, message)
 }
 }
 })
}

After calling the NotifyObservers method, each TestObserver tests in the
ObserversList field must have the message "Hello World!" stored in their Message
field. Again, we use a for loop to iterate over every observer of the ObserversList field
and we typecast each to a TestObserver test (remember that TestObserver structure
doesn't have any field as it's an interface). We could avoid type casting by adding a new
Message() method to Observer instance and implementing it in the TestObserver
structure to return the contents of the Message field. Both methods are equally valid. Once
we have type casted to a TestObserver method called printObserver variable as a local
variable, we check that each instance in the ObserversList structure has the string
"Hello World!" stored in their Message field.

Time to run the tests that must fail all to check their effectiveness in the later
implementation:

go test -v
=== RUN TestSubject
=== RUN TestSubject/AddObserver
=== RUN TestSubject/RemoveObserver
=== RUN TestSubject/Notify
--- FAIL: TestSubject (0.00s)
 --- FAIL: TestSubject/AddObserver (0.00s)
 --- FAIL: TestSubject/RemoveObserver (0.00s)
 observer_test.go:40: The size of the observer list is not the
expected. 3 != 0
 --- PASS: TestSubject/Notify (0.00s)
FAIL
exit status 1
FAIL

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[268]

Something isn't working as expected. How is the Notify method passing the tests if we
haven't implemented the function yet? Take a look at the test of the Notify method again.
The test iterates over the ObserversList structure and each Fail call is inside this for
loop. If the list is empty, it won't iterate, so it won't execute any Fail call.

Let's fix this issue by adding a small non-empty list check at the beginning of the Notify
test:

 if len(publisher.ObserversList) == 0 {
 t.Errorf("The list is empty. Nothing to test\n")
 }

And we will rerun the tests to see if the TestSubject/Notify method is already failing:

 go test -v
 === RUN TestSubject
 === RUN TestSubject/AddObserver
 === RUN TestSubject/RemoveObserver
 === RUN TestSubject/Notify
 --- FAIL: TestSubject (0.00s)
 --- FAIL: TestSubject/AddObserver (0.00s)
 --- FAIL: TestSubject/RemoveObserver (0.00s)
 observer_test.go:40: The size of the observer list is not the
expected. 3 != 0
 --- FAIL: TestSubject/Notify (0.00s)
 observer_test.go:58: The list is empty. Nothing to test
 FAIL
 exit status 1
 FAIL

Nice, all of them are failing and now we have some guarantee on our tests. We can proceed
to the implementation.

Implementation
Our implementation is just to define the AddObserver, the RemoveObserver, and the
NotifyObservers methods:

func (s *Publisher) AddObserver(o Observer) {
 s.ObserversList = append(s.ObserversList, o)
}

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[269]

The AddObserver method adds the Observer instance to the ObserversList structure by
appending the pointer to the current list of pointers. This one was very easy. The
AddObserver test must be passing now (but not the rest or we could have done something
wrong):

 go test -v
 === RUN TestSubject
 === RUN TestSubject/AddObserver
 === RUN TestSubject/RemoveObserver
 === RUN TestSubject/Notify
 --- FAIL: TestSubject (0.00s)
 --- PASS: TestSubject/AddObserver (0.00s)
 --- FAIL: TestSubject/RemoveObserver (0.00s)
 observer_test.go:40: The size of the observer list is not the
expected. 3 != 3
 --- FAIL: TestSubject/Notify (0.00s)
 observer_test.go:87: Expected message on observer 1 was not
expected: 'default' != 'Hello World!'
 observer_test.go:87: Expected message on observer 2 was not
expected: 'default' != 'Hello World!'
 observer_test.go:87: Expected message on observer 3 was not
expected: 'default' != 'Hello World!'
 FAIL
 exit status 1
 FAIL

Excellent. Just the AddObserver method has passed the test, so we can now continue to
the RemoveObserver method:

func (s *Publisher) RemoveObserver(o Observer) {
 var indexToRemove int

 for i, observer := range s.ObserversList {
 if observer == o {
 indexToRemove = i
 break
 }
 }

 s.ObserversList = append(s.ObserversList[:indexToRemove],
s.ObserversList[indexToRemove+1:]...)
}

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[270]

The RemoveObserver method will iterate for each element in the ObserversList
structure, comparing the Observer object's o variable with the ones stored in the list. If it
finds a match, it saves the index in the local variable, indexToRemove, and stops the
iteration. The way to remove indexes on a slice in Go is a bit tricky:

First, we need to use slice indexing to return a new slice containing every object1.
from the beginning of the slice to the index we want to remove (not included).
Then, we get another slice from the index we want to remove (not included) to2.
the last object in the slice
Finally, we join the previous two new slices into a new one (the append function)3.

For example, in a list from 1 to 10 in which we want to remove the number 5, we have to
create a new slice, joining a slice from 1 to 4 and a slice from 6 to 10.

This index removal is done with the append function again because we are actually
appending two lists together. Just take a closer look at the three dots at the end of the
second argument of the append function. The append function adds an element (the second
argument) to a slice (the first), but we want to append an entire list. This can be achieved
using the three dots, which translate to something like keep adding elements until you finish the
second array.

Ok, let's run this test now:

go test -v
=== RUN TestSubject
=== RUN TestSubject/AddObserver
=== RUN TestSubject/RemoveObserver
=== RUN TestSubject/Notify
--- FAIL: TestSubject (0.00s)
 --- PASS: TestSubject/AddObserver (0.00s)
 --- PASS: TestSubject/RemoveObserver (0.00s)
 --- FAIL: TestSubject/Notify (0.00s)
 observer_test.go:87: Expected message on observer 1 was not
expected: 'default' != 'Hello World!'
 observer_test.go:87: Expected message on observer 3 was not
expected: 'default' != 'Hello World!'
FAIL
exit status 1
FAIL

We continue in the good path. The RemoveObserver test has been fixed without fixing
anything else. Now we have to finish our implementation by defining the
NotifyObservers method:

func (s *Publisher) NotifyObservers(m string) {

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[271]

 fmt.Printf("Publisher received message '%s' to notify observers\n", m)
 for _, observer := range s.ObserversList {
 observer.Notify(m)
 }
}

The NotifyObservers method is quite simple because it prints a message to the console to
announce that a particular message is going to be passed to the Observers. After this, we
use a for loop to iterate over ObserversList structure and execute each Notify(string)
method by passing the argument m. After executing this, all observers must have the
message Hello World! stored in their Message field. Let's see if this is true by running the
tests:

go test -v
=== RUN TestSubject
=== RUN TestSubject/AddObserver
=== RUN TestSubject/RemoveObserver
=== RUN TestSubject/Notify
Publisher received message 'Hello World!' to notify observers
Observer 1: message 'Hello World!' received
Observer 3: message 'Hello World!' received
--- PASS: TestSubject (0.00s)
 --- PASS: TestSubject/AddObserver (0.00s)
 --- PASS: TestSubject/RemoveObserver (0.00s)
 --- PASS: TestSubject/Notify (0.00s)
PASS
ok

Excellent! We can also see the outputs of the Publisher and Observer types on the
console. The Publisher structure prints the following message:

hey! I have received the message 'Hello World!' and I'm going to pass the
same message to the observers

After this, all observers print their respective messages as follows:

hey, I'm observer 1 and I have received the message 'Hello World!'

And the same for the third observer.

Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns

[272]

Summary
We have unlocked the power of event-driven architectures with the State pattern and the
Observer pattern. Now you can really execute asynchronous algorithms and operations in
your application that respond to events in your system.

The Observer pattern is commonly used in UI's. Android programming is filled with
Observer patterns so that the Android SDK can delegate the actions to be performed by the
programmers creating an app.

8
Introduction to Gos

Concurrency
We have just finished with the Gang Of Four design patterns that are commonly used in
object oriented programming languages. They have been used extensively for the last few
decades (even before they were explicitly defined in a book).

In this chapter, we are going to see concurrency in the Go language. We will, learn that with
multiple cores and multiple processes, applications can help us to achieve better
performance and endless possibilities. We will look at how to use some of the already
known patterns in concurrently safe ways.

A little bit of history and theory
When we talk about Go's concurrency, it's impossible not to talk about history. In the last
decades, we saw an improvement in the speed of CPUs until we reached the hardware
limits imposed by current hardware materials, design, and architectures. When we reached
this point, we started to play with the first multicore computers, the first double CPU
motherboards, and then single CPUs with more than one core in their heart.

Unfortunately, the languages we are using are still the ones created when we had single
core CPUs, such as Java or C++. While being terrific systems languages, they lack a proper
concurrency support by design. You can develop concurrent apps in both of the languages
used in your project by using third party tools or by developing your own (not a very easy
task).

Introduction to Gos Concurrency

[274]

Go's concurrency was designed with these caveats in mind. The creators wanted garbage
collected and procedural language that is familiar for newcomers, but which, at the same
time, can be used to write concurrent applications easily and without affecting the core of
the language.

We have experienced this in the early chapters. We have developed more than 20 design
patterns without a word about concurrency. This clearly shows that the concurrent features
of the Go language are completely separated from the core language while being part of it, a
perfect example of abstraction and encapsulation.

There are many concurrency models in computer science, the most famous being the actor
model present in languages such as Erlang or Scala. Go, on the other side, uses
Communicating Sequential Processes (CSP), which has a different approach to
concurrency.

Concurrency versus parallelism
Many people have misunderstood the differences between both, even thinking that they are
the same. There is a popular speech by Rob Pike, one of the creators of Go, Concurrency is
not parallelism, which I really agree with. As a quick summary of the talk, we can extract the
following:

Concurrency is about dealing with many things at once
Parallelism is about doing many things at the same time

Concurrency enables parallelism by designing a correct structure of concurrency work.

For example, we can think of the mechanism of a bike. When we pedal, we usually push
down the pedal to produce force (and this push, raises our opposite leg on the opposite
pedal). We cannot push with both legs at the same time because the cranks don't allow us to
do it. But this design allows the construction of a parallel bike, commonly called a tandem
bike. A tandem bike is a bike that two people can ride at the same time; they both pedal
and apply force to the bike.

In the bike example, concurrency is the design of a bike that, with two legs (Goroutines),
you can produce power to move the bike by yourself. The design is concurrent and correct.
If we use a tandem bike and two people (two cores), the solution is concurrent, correct, and
parallel. But the key thing is that with a concurrent design, we don't have to worry about
parallelism; we can think about it as an extra feature if our concurrent design is correct. In
fact, we can use the tandem bike with only one person, but the concurrent design of the
legs, pedals, chain, wheels of a bike is still correct.

Introduction to Gos Concurrency

[275]

With concurrency, on the left side, we have a design and a structure that is executed
sequentially by the same CPU core. Once we have this design and structure, parallelism can
be achieved by simply repeating this structure on a different thread.

This is how Go eases the reasoning about concurrent and parallel programs by simply not
worrying too much about parallel execution and focusing much more on concurrent design
and structure. Breaking a big task into smaller tasks that can be run concurrently usually
provides much better performance in a single-core computer, but, if this design can also be
run in parallel, we could achieve an even higher throughput (or not, depending on the
design).

In fact, we can set the number of cores in use in a Go app by setting the environment
variable GOMAXPROCS to the number of cores we want. This is not only useful when using
schedulers, such as Apache Mesos, but it gives us more control about how a Go app works
and performs.

So, to recap, it is very important to keep in mind that concurrency is about structure and
parallelism is about execution. We must think about making our programs concurrent in a
better way, by breaking them down into smaller pieces of work, and Go's scheduler will try
to make them parallel if it's possible and allowed.

Introduction to Gos Concurrency

[276]

CSP versus actor-based concurrency
The most common and, perhaps, intuitive way to think about concurrency is close to the
way the actor model works.

In the actor model, if Actor 1 wants to communicate with Actor 2, then Actor 1 must know
Actor 2 first; for example, it must have its process ID, maybe from the creation step, and put
a message on its inbox queue. After placing the message, Actor 1 can continue its tasks
without getting blocked if Actor 2 cannot process the message immediately.

CSP, on the other side, introduces a new entity into the equation-channels. Channels are the
way to communicate between processes because they are completely anonymous (unlike
actors, where we need to know their process IDs). In the case of CSP, we don't have a
process ID to use to communicate. Instead, we have to create a channel to the processes to
allow incoming and outgoing communication. In this case, what we know that the receiver
is the channel it uses to receive data:

In this diagram, we can see that the processes are anonymous, but we have a channel with
ID 1, that is, Channel 1, which connects them together. This abstraction does not tell us how
many processes are on each side of the channel; it simply connects them and allows
communication between processes by using the channel.

The key here is that channels isolate both extremes so that process A can send data through
a channel that will be handled by potentially one or more processes that' are transparent to
A. It also works the same in reverse; process B can receive data from many channels one at a
time.

Introduction to Gos Concurrency

[277]

Goroutines
In Go, we achieve concurrency by working with Goroutines. They are like processes that
run applications in a computer concurrently; in fact, the main loop of Go could be
considered a Goroutine, too. Goroutines are used in places where we would use actors.
They execute some logic and die (or keep looping if necessary).

But Goroutines are not threads. We can launch thousands of concurrent Goroutines, even
millions. They are incredibly cheap, with a small growth stack. We will use Goroutines to
execute code that we want to work concurrently. For example, three calls to three services to
compose a response can be designed concurrently with three Goroutines to do the service
calls potentially in parallel and a fourth Goroutine to receive them and compose the
response. What's the point here? That if we have a computer with four cores, we could
potentially run this service call in parallel, but if we use a one-core computer, the design
will still be correct and the calls will be executed concurrently in only one core. By
designing concurrent applications, we don't need to worry about parallel execution.

Returning to the bike analogy, we were pushing the pedals of the bike with our two legs.
That's two Goroutines concurrently pushing the pedals. When we use the tandem, we had a
total of four Goroutines, possibly working in parallel. But we also have two hands to handle
the front and rear brakes. That's a total of eight Goroutines for our two threads bike.
Actually, we don't pedal when we brake and we don't brake when we pedal; that's a correct
concurrent design. Our nervous system transports the information about when to stop
pedaling and when to start braking. In Go, our nervous system is composed of channels; we
will see them after playing a bit with Goroutines first.

Our first Goroutine
Enough of the explanations now. Let's get our hands dirty. For our first Goroutine, we will
print the message Hello World! in a Goroutine. Let's start with what we've been doing up
until now:

package main

func main() {
 helloWorld()
}

func helloWorld(){
 println("Hello World!")
}

Introduction to Gos Concurrency

[278]

Running this small snippet of code will simply output Hello World! in the console:

$ go run main.go
Hello World!

Not impressive at all. To run it in a new Goroutine, we just need to add the keyword go at
the beginning of the call to the function:

package main

func main() {
 go helloWorld()
}

func helloWorld(){
 println("Hello World!")
}

With this simple word, we are telling Go to start a new Goroutine running the contents of
the helloWorld function.

So, let's run it:

$ go run main.go
$

What? It printed nothing! Why is that? Things get complicated when you start to deal with
concurrent applications. The problem is that the main function finishes before the
helloWorld function gets executed. Let's analyse it step by step. The main function starts
and schedules a new Goroutine that will execute the helloWorld function, but the function
isn't executed when the function finishes–it is still in the scheduling process.

So, our main problem is that the main function has to wait for the Goroutine to be executed
before finishing. So let's pause for a second to give some room to the Goroutine:

package main
import "time"

func main() {
 go helloWorld()

 time.Sleep(time.Second)
}

func helloWorld(){
 println("Hello World!")
}

Introduction to Gos Concurrency

[279]

The time.Sleep function effectively sleeps the main Goroutine for one second before
continuing (and exiting). If we run this now, we must get the message:

$ go run main.go
Hello World!

I suppose you must have noticed by now the small gap of time where the program is
freezing before finishing. This is the function for sleeping. If you are doing a lot of tasks,
you might want to raise the waiting time to whatever you want. Just remember that in any
application the main function cannot finish before the rest of the Goroutines.

Anonymous functions launched as new
Goroutines
We have defined the helloWorld function so that it can be launched with a different
Goroutine. This is not strictly necessary because you can launch snippets of code directly in
the function's scope:

package main
import "time"

func main() {
 go func() {
 println("Hello World")
 }()
 time.Sleep(time.Second)
}

This is also valid. We have used an anonymous function and we have launched it in a new
Goroutine using the go keyword. Take a closer look at the closing braces of the function-
they are followed by opening and closing parenthesis, indicating the execution of the
function.

We can also pass data to anonymous functions:

package main
import "time"

func main() {
 go func(msg string) {
 println(msg)
 }("Hello World")
 time.Sleep(time.Second)
}

Introduction to Gos Concurrency

[280]

This is also valid. We had defined an anonymous function that received a string, which then
printed the received string. When we called the function in a different Goroutine, we passed
the message we wanted to print. In this sense, the following example would also be valid:

package main
import "time"

func main() {
 messagePrinter := func(msg string) {
 println(msg)
 }

 go messagePrinter("Hello World")
 go messagePrinter("Hello goroutine")
 time.Sleep(time.Second)
}

In this case, we have defined a function within the scope of our main function and stored it
in a variable called messagePrinter. Now we can concurrently print as many messages as
we want by using the messagePrinter(string) signature:

$ go run main.go
Hello World
Hello goroutine

We have just scratched the surface of concurrent programming in Go, but we can already
see that it can be quite powerful. But we definitely have to do something with that sleeping
period. WaitGroups can help us with this problem.

WaitGroups
WaitGroup comes in the synchronization package (the sync package) to help us
synchronize many concurrent Goroutines. It works very easily–every time we have to wait
for one Goroutine to finish, we add 1 to the group, and once all of them are added, we ask
the group to wait. When the Goroutine finishes, it says Done and the WaitGroup will take
one from the group:

package main

import (
 "sync"
 "fmt"
)

func main() {

Introduction to Gos Concurrency

[281]

 var wait sync.WaitGroup
 wait.Add(1)

 go func(){
 fmt.Println("Hello World!")
 wait.Done()
 }()
 wait.Wait()
}

This is the simplest possible example of a WaitGroup. First, we created a variable to hold it
called the wait variable. Next, before launching the new Goroutine, we say to the
WaitGroup hey, you'll have to wait for one thing to finish by using the
wait.Add(1) method. Now we can launch the 1 that the WaitGroup has to wait for, which
in this case is the previous Goroutine that prints Hello World and says Done (by using the
wait.Done() method) at the end of the Goroutine. Finally, we indicate to the WaitGroup
to wait. We have to remember that the function wait.Wait() was probably executed
before the Goroutine.

Let's run the code again:

$ go run main.go
Hello World!

Now it just waits the necessary time and not one millisecond more before exiting the
application. Remember that when we use the Add(value) method, we add entities to the
WaitGroup, and when we use the Done() method, we subtract one.

Actually, the Add function takes a delta value, so the following code is equivalent to the
previous:

package main

import (
 "sync"
 "fmt"
)

func main() {
 var wait sync.WaitGroup
 wait.Add(1)

 go func(){
 fmt.Println("Hello World!")
 wait.Add(-1)
 }()

Introduction to Gos Concurrency

[282]

 wait.Wait()
}

In this case, we added 1 before launching the Goroutine and we added -1 (subtracted 1) at
the end of it. If we know in advance how many Goroutines we are going to launch, we can
also call the Add method just once:

package main
import (
 "fmt"
 "sync"
)

func main() {
 var wait sync.WaitGroup

 goRoutines := 5
 wait.Add(goRoutines)

 for i := 0; i < goRoutines; i++ {
 go func(goRoutineID int) {
 fmt.Printf("ID:%d: Hello goroutines!\n", goRoutineID)
 wait.Done()
 }(i)
 }
 wait.Wait()
}

In this example, we are going to create five Goroutines (as stated in the goroutines
variable). We know it in advance, so we simply add them all to the WaitGroup. We are then
going to launch the same amount of goroutine variables by using a for loop. Every time
one Goroutine finishes, it calls the Done() method of the WaitGroup that is effectively
waiting at the end of the main loop.

Again, in this case, the code reaches the end of the main function before all Goroutines are
launched (if any), and the WaitGroup makes the execution of the main flow wait until all
Done messages are called. Let's run this small program:

$ go run main.go

ID:4: Hello goroutines!
ID:0: Hello goroutines!
ID:1: Hello goroutines!
ID:2: Hello goroutines!
ID:3: Hello goroutines!

Introduction to Gos Concurrency

[283]

We haven't mentioned it before, but we have passed the iteration index to each Goroutine
as the parameter GoroutineID to print it with the message Hello goroutines! You
might also have noticed that the Goroutines aren't executed in order. Of course! We are
dealing with a scheduler that doesn't guarantee the order of execution of the Goroutines.
This is something to keep in mind when programming concurrent applications. In fact, if
we execute it again, we won't necessarily get the same order of output:

$ go run main.go
ID:4: Hello goroutines!
ID:2: Hello goroutines!
ID:1: Hello goroutines!
ID:3: Hello goroutines!
ID:0: Hello goroutines!

Callbacks
Now that we know how to use WaitGroups, we can also introduce the concept of callbacks.
If you have ever worked with languages like JavaScript that use them extensively, this
section will be familiar to you. A callback is an anonymous function that will be executed
within the context of a different function.

For example, we want to write a function to convert a string to uppercase, as well as making
it asynchronous. How do we write this function so that we can work with callbacks? There's
a little trick-we can have have a function that takes a string and returns a string:

func toUpperSync(word string) string {
 //Code will go here
}

So take the returning type of this function (a string) and put it as the second parameter in an
anonymous function, as shown here:

func toUpperSync(word string, f func(string)) {
 //Code will go here
}

Now, the toUpperSync function returns nothing, but also takes a function that, by
coincidence, also takes a string. We can execute this function with the result we will usually
return.

func toUpperSync(word string, f func(string)) {
 f(strings.ToUpper(word))
}

Introduction to Gos Concurrency

[284]

We execute the f function with the result of calling the strings.ToUpper method with the
provided word (which returns the word parameter in uppercase). Let's write the main
function too:

package main

import (
 "fmt"
 "strings"
)

func main() {
 toUpperSync("Hello Callbacks!", func(v string) {
 fmt.Printf("Callback: %s\n", v) })
}

func toUpperSync(word string, f func(string)) {
 f(strings.ToUpper(word))
}

In our main code, we have defined our callback. As you can see, we passed the test Hello
Callbacks! to convert it to uppercase. Next we pass the callback to be executed with the
result of passing our string to uppercase. In this case, we simply print the text in the console
with the text Callback in front of it. When we execute this code, we get the following
result:

$ go run main.go
Callback: HELLO CALLBACKS!

Strictly speaking, this is a synchronous callback. To make it asynchronous we have to
introduce some concurrent handling:

package main
import (
 "fmt"
 "strings"
 "sync"
)

var wait sync.WaitGroup

func main() {
 wait.Add(1)

 toUpperAsync("Hello Callbacks!", func(v string) {
 fmt.Printf("Callback: %s\n", v)
 wait.Done()

Introduction to Gos Concurrency

[285]

 })

 println("Waiting async response...")
 wait.Wait()
}

func toUpperAsync(word string, f func(string)) {
 go func(){
 f(strings.ToUpper(word))
 }()
}

This is the same code executed asynchronously. We use WaitGroups to handle concurrency
(we will see later that channels can also be used for this). Now, our function toUpperAsync
is, as its name implies, asynchronous. We launched the callback in a different Goroutine by
using the keyword go when calling the callback. We write a small message to show the
ordering nature of the concurrent execution more precisely. We wait until the callback
signals that it's finished and we can exit the program safely. When we execute this, we get
the following result:

$ go run main.go

Waiting async response...
Callback: HELLO CALLBACKS!

As you can see, the program reaches the end of the main function before executing the
callback in the toUpperAsync function. This pattern brings many possibilities, but leaves
us open to one big problem called callback hell.

Callback hell
The term callback hell is commonly used to refer to when many callbacks have been
stacked within each other. This makes them difficult to reason with and handle when they
grow too much. For example, using the same code as before, we could stack another
asynchronous call with the contents that we previously printed to the console:

func main() {
 wait.Add(1)

 toUpperAsync("Hello Callbacks!", func(v string) {
 toUpperAsync(fmt.Sprintf("Callback: %s\n", v), func(v string) {
 fmt.Printf("Callback within %s", v)
 wait.Done()
 })
 })

Introduction to Gos Concurrency

[286]

 println("Waiting async response...")
 wait.Wait()
}

(We have omitted imports, the package name, and the toUpperAsync function as they have
not changed.) Now we have the toUpperAsync function within a toUpperAsync function,
and we could embed many more if we want. In this case, we again pass the text that we
previously printed on the console to use it in the following callback. The inner callback
finally prints it on the console, giving the following output:

$ go run main.go
Waiting async response...
Callback within CALLBACK: HELLO CALLBACKS!

In this case, we can assume that the outer callback will be executed before the inner one.
That's why we don't need to add one more to the WaitGroup.

The point here is that we must be careful when using callbacks. In very complex systems,
too many callbacks are hard to reason with and hard to deal with. But with care and
rationality, they are powerful tools.

Mutexes
If you are working with concurrent applications, you have to deal with more than one
resource potentially accessing some memory location. This is usually called race condition.

In simpler terms, a race condition is similar to that moment where two people try to get the
last piece of pizza at exactly the same time–their hands collide. Replace the pizza with a
variable and their hands with Goroutines and we'll have a perfect analogy.

There is one character at the dinner table to solve this issues–a father or mother. They have
kept the pizza on a different table and we have to ask for permission to stand up before
getting our slice of pizza. It doesn't matter if all the kids ask at the same time–they will only
allow one kid to stand.

Well, a mutex is like our parents. They'll control who can access the pizza–I mean, a
variable–and they won't allow anyone else to access it.

To use a mutex, we have to actively lock it; if it's already locked (another Goroutine is using
it), we'll have to wait until it's unlocked again. Once we get access to the mutex, we can lock
it again, do whatever modifications are needed, and unlock it again. We'll look at this using
an example.

Introduction to Gos Concurrency

[287]

An example with mutexes – concurrent counter
Mutexes are widely used in concurrent programming. Maybe not so much in Go because it
has a more idiomatic way of concurrent programming in its use of channels, but it's worth
seeing how they work for the situations where channels simply don't fit so well.

For our example, we are going to develop a small concurrent counter. This counter will add
one to an integer field in a Counter type. This should be done in a concurrent-safe way.

Our Counter structure is defined like this:

type Counter struct {
 sync.Mutex
 value int
}

The Counter structure has a field of int type that stores the current value of the count. It
also embeds the Mutex type from the sync package. Embedding this field will allow us to
lock and unlock the entire structure without actively calling a specific field.

Our main function launches 10 Goroutines that try to add one to the field value of Counter
structure. All of this is done concurrently:

package main

import (
 "sync"
 "time"
)

func main() {
 counter := Counter{}

 for i := 0; i < 10; i++ {
 go func(i int) {
 counter.Lock()
 counter.value++
 defer counter.Unlock()
 }(i)
 }
 time.Sleep(time.Second)

 counter.Lock()
 defer counter.Unlock()

 println(counter.value)
}

Introduction to Gos Concurrency

[288]

We have created a type called Counter. Using a for loop, we have launched a total of 10
Goroutines, as we saw in the Anonymous functions launched as new Goroutines section. But
inside every Goroutine, we are locking the counter so that no more Goroutines can access it,
adding one to the field value, and unlocking it again so others can access it.

Finally, we'll print the value held by the counter. It must be 10 because we have launched 10
Goroutines.

But how can we know that this program is thread safe? Well, Go comes with a very handy
built-in feature called the “race detector”.

Presenting the race detector
We already know what a race condition is. To recap, it is used when two processes try to
access the same resource at the same time with one or more writing operations (both
processes writing or one process writing while the other reads) involved at that precise
moment.

Go has a very handy tool to help diagnose race conditions, that you can run in your tests or
your main application directly. So let's reuse the example we just wrote for the mutexes
section and run it with the race detector. This is as simple as adding the -race command-
line flag to the command execution of our program:

$ go run -race main.go
10

Well, not very impressive is it? But in fact it is telling us that it has not detected a potential
race condition in the code of this program. Let's make the detector of -race flag warn us of
a possible race condition by not locking counter before we modify it:

for i := 0; i < 10; i++ {
 go func(i int) {
 //counter.Lock()
 counter.value++
 //counter.Unlock()
 }(i)
}

Inside the for loop, comment the Lock and Unlock calls before and after adding 1 to the
field value. This will introduce a race condition. Let's run the same program again with the
race flag activated:

 $ go run -race main.go
 ==================

Introduction to Gos Concurrency

[289]

 WARNING: DATA RACE
 Read at 0x00c42007a068 by goroutine 6:
 main.main.func1()
 [some_path]/concurrency/locks/main.go:19 +0x44
 Previous write at 0x00c42007a068 by goroutine 5:
 main.main.func1()
 [some_path]/concurrency/locks/main.go:19 +0x60
 Goroutine 6 (running) created at:
 main.main()
 [some_path]/concurrency/locks/main.go:21 +0xb6
 Goroutine 5 (finished) created at:
 main.main()
 [some_path]/concurrency/locks/main.go:21 +0xb6
 ==================
 10
 Found 1 data race(s)
 exit status 66

I have reduced the output a bit to see things more clearly. We can see a big, uppercase
message reading WARNING: DATA RACE. But this output is very easy to reason with. First, it
is telling us that some memory position represented by line 19 on our main.go file is
reading some variable. But there is also a write operation in line 19 of the same file!

This is because a “++” operation requires a read of the current value and a write to add one
to it. That's why the race condition is in the same line, because every time it's executed it
reads and writes the field in the Counter structure.

But let's keep in mind that the race detector works at runtime. It doesn't analyze our code
statically! What does it mean? It means that we can have a potential race condition in our
design that the race detector will not detect. For example:

package main

import "sync"

type Counter struct {
 sync.Mutex
 value int
}

func main() {
 counter := Counter{}

 for i := 0; i < 1; i++ {
 go func(i int) {
 counter.value++
 }(i)

Introduction to Gos Concurrency

[290]

 }
}

We will leave the code as shown in the preceding example. We will take all locks and
unlocks from the code and launch a single Goroutine to update the value field:

$ go run -race main.go
$

No warnings, so the code is correct. Well, we know, by design, it's not. We can raise the
number of Goroutines executed to two and see what happens:

for i := 0; i < 2; i++ {
 go func(i int) {
 counter.value++
 }(i)
}

Let's execute the program again:

 $ go run -race main.go
 WARNING: DATA RACE
 Read at 0x00c42007a008 by goroutine 6:
 main.main.func1()
 [some_path]concurrency/race_detector/main.go:15 +0x44
 Previous write at 0x00c42007a008 by goroutine 5:
 main.main.func1()
 [some_path]/concurrency/race_detector/main.go:15 +0x60
 Goroutine 6 (running) created at:
 main.main()
 [some_path]/concurrency/race_detector/main.go:16 +0xad
 Goroutine 5 (finished) created at:
 main.main()
 [some_path]/concurrency/race_detector/main.go:16 +0xad
 ==================
 Found 1 data race(s)
 exit status 66

Now yes, the race condition is detected. But what if we reduce the number of processors in
use to just one? Will we have a race condition too?

$ GOMAXPROCS=1 go run -race main.go
$

It seems that no race condition has been detected. This is because the scheduler executed
one Goroutine first and then the other, so, finally, the race condition didn't occur. But with a
higher number of Goroutines it will also warn us about a race condition, even using only
one core.

Introduction to Gos Concurrency

[291]

So, the race detector can help us to detect race conditions that are happening in our code,
but it won't protect us from a bad design that is not immediately executing race conditions.
A very useful feature that can save us from lots of headaches.

Channels
Channels are the second primitive in the language that allows us to write concurrent
applications. We have talked a bit about channels in the Communicating sequential processes
section.

Channels are the way we communicate between processes. We could be sharing a memory
location and using mutexes to control the processes' access. But channels provide us with a
more natural way to handle concurrent applications that also produces better concurrent
designs in our programs.

Our first channel
Working with many Goroutines seems pretty difficult if we can't create some
synchronization between them. The order of execution could be irrelevant as soon as they
are synchronized. Channels are the second key feature to write concurrent applications in
Go.

A TV channel in real life is something that connects an emission (from a studio) to millions
of TVs (the receivers). Channels in Go work in a similar fashion. One or more Goroutines
can work as emitters, and one or more Goroutine can act as receivers.

One more thing channels, by default, block the execution of Goroutines until something is
received. It is as if our favourite TV show delays the emission until we turn the TV on so we
don't miss anything.

How is this done in Go?

package main

import "fmt"

func main() {
 channel := make(chan string)
 go func() {
 channel <- "Hello World!"
 }()

Introduction to Gos Concurrency

[292]

 message := <-channel
 fmt.Println(message)
}

To create channels in Go, we use the same syntax that we use to create slices. The make
keyword is used to create a channel, and we have to pass the keyword chan and the type
that the channel will transport, in this case, strings. With this, we have a blocking channel
with the name channel. Next, we launch a Goroutines that sends the message Hello
World! to the channel. This is indicated by the intuitive arrow that shows the flow–the
Hello World! text going to (<-) a channel. This works like an assignment in a variable, so
we can only pass something to a channel by first writing the channel, then the arrow, and
finally the value to pass. We cannot write "Hello World!" -> channel.

As we mentioned earlier, this channel is blocking the execution of Gorountines until a
message is received. In this case, the execution of the main function is stopped until the
message from the launched Goroutines reaches the other end of the channel in the line
message := <-channel. In this case, the arrow points in the same direction, but it's
placed before the channel, indicating that the data is being extracted from the channel and
assigned to a new variable called message (using the new assignment “:=” operator).

In this case, we don't need to use a WaitGroup to synchronize the main function with the
created Goroutines, as the default nature of channels is to block until data is received. But
does it work the other way around? If there is no receiver when the Goroutine sends the
message, does it continue? Let's edit this example to see this:

package main

import (
 "fmt"
 "time"
)

func main() {
 channel := make(chan string)

 var waitGroup sync.WaitGroup

 waitGroup.Add(1)
 go func() {
 channel <- "Hello World!"
 println("Finishing goroutine")
 waitGroup.Done()
 }()

 time.Sleep(time.Second)

Introduction to Gos Concurrency

[293]

 message := <-channel
 fmt.Println(message)
 waitGroup.Wait()
}

We are going to use the Sleep function again. In this case, we print a message when the
Goroutine is finished. The big difference is in the main function. Now we wait one second
before we listen to the channel for data:

$ go run main.go

Finishing goroutine
Hello World!

The output can differ because, again, there are no guarantees in the order of execution, but
now we can see that no message is printed until one second has passed. After the initial
delay, we start listening to the channel, take the data, and print it. So the emitter also has to
wait for a cue from the other side of the channel to continue its execution.

To recap, channels are ways to communicate between Goroutines by sending data through
one end and receiving it at the other (like a pipe). In their default state, an emitter Goroutine
will block its execution until a receiver Goroutine takes the data. The same goes for a
receiver Goroutine, which will block until some emitter sends data through the channel. So
you can have passive listeners (waiting for data) or passive emitters (waiting for listeners).

Buffered channels
A buffered channel works in a similar way to default unbuffered channels. You also pass
and take values from them by using the arrows, but, unlike unbuffered channels, senders
don't need to wait until some Goroutine picks the data that they are sending:

package main

import (
 "fmt"
 "time"
)

func main() {
 channel := make(chan string, 1)

 go func() {
 channel <- "Hello World!"
 println("Finishing goroutine")
 }()

Introduction to Gos Concurrency

[294]

 time.Sleep(time.Second)

 message := <-channel
 fmt.Println(message)
}

This example is like the first example we used for channels, but now we have set the
capacity of the channel to one in the make statement. With this, we tell the compiler that this
channel has a capacity of one string before getting blocked. So the first string doesn't block
the emitter, but the second would. Let's run this example:

$ go run main.go

Finishing goroutine
Hello World!

Now we can run this small program as many times as we want–the output will always be in
the same order. This time, we have launched the concurrent function and waited for one
second. Previously, the anonymous function wouldn't continue until the second has passed
and someone can pick the sent data. In this case, with a buffered channel, the data is held in
the channel and frees the Goroutine to continue its execution. In this case, the Goroutine is
always finishing before the wait time passes.

This new channel has a size of one, so a second message would block the Goroutine
execution:

package main

import (
 "fmt"
 "time"
)

func main() {
 channel := make(chan string, 1)

 go func() {
 channel <- "Hello World! 1"
 channel <- "Hello World! 2"
 println("Finishing goroutine")
 }()

 time.Sleep(time.Second)

 message := <-channel
 fmt.Println(message)
}

Introduction to Gos Concurrency

[295]

Here, we add a second Hello world! 2 message, and we provide it with an index. In this
case, the output of this program could be like the following:

$ go run main.go

Hello World! 1

Indicating that we have just taken one message from the channel buffer, we have printed it,
and the main function finished before the launched Goroutine could finish. The Goroutine
got blocked when sending the second message and couldn't continue until the other end
took the first message. Then it prints it so quickly that it doesn't have time to print the
message to show the ending of the Goroutine. If you keep executing the program on the
console, sooner or later the scheduler will finish the Goroutine execution before the main
thread.

Directional channels
One cool feature about Go channels is that, when we use them as parameters, we can
restrict their directionality so that they can be used only to send or to receive. The compiler
will complain if a channel is used in the restricted direction. This feature applies a new level
of static typing to Go apps and makes code more understandable and more readable.

We'll take a simple example with channels:

package main

import (
 "fmt"
 "time"
)

func main() {
 channel := make(chan string, 1)

 go func(ch chan<- string) {
 ch <- "Hello World!"
 println("Finishing goroutine")
 }(channel)

 time.Sleep(time.Second)

 message := <-channel
 fmt.Println(message)
}

Introduction to Gos Concurrency

[296]

The line where we launch the new Goroutine go func(ch chan<- string) states that
the channel passed to this function can only be used as an input channel, and you can't
listen to it.

We can also pass a channel that will be used as a receiver channel only:

func receivingCh(ch <-chan string) {
 msg := <-ch
 println(msg)
}

As you can see, the arrow is on the opposite side of the keyword chan, indicating an
extracting operation from the channel. Keep in mind that the channel arrow always points
left, to indicate a receiving channel, it must go on the left, and to indicate an inserting
channel, it must go on the right.

If we try to send a value through this receive only channel, the compiler will complain about
it:

func receivingCh(ch <-chan string) {
 msg := <-ch
 println(msg)
 ch <- "hello"
}

This function has a receive only channel that we will try to use to send the message hello
through. Let's see what the compiler says:

$ go run main.go

./main.go:20: invalid operation: ch <- "hello2" (send to receive-only type
<-chan string)

It doesn't like it and asks us to correct it. Now the code is even more readable and safe, and
we have just placed an arrow in front or behind the chan argument.

The select statement
The select statement is also a key feature in Go. It is used to handle more than one channel
input within a Goroutine. In fact, it opens lots of possibilities, and we will use it extensively
in the following chapters.

Introduction to Gos Concurrency

[297]

In the select structure, we ask the program to choose between one or more channels to
receive their data. We can save this data in a variable and make something with it before
finishing the select. The select structure is just executed once; it doesn't matter if it is
listening to more channels, it will be executed only once and the code will continue
executing. If we want it to handle the same channels more than once, we have to put it in a
for loop.

We will make a small app that will send the message hello and the message goodbye to
the same Goroutine, which will print them and exit if it doesn't receive anything else in five
seconds.

First, we will make a generic function that sends a string over a channel:

func sendString(ch chan<- string, s string) {
 ch <- s
}

Introduction to Gos Concurrency

[298]

Now we can send a string over a channel by simply calling the sendString method. It's
time for the receiver. The receiver will take messages from both channels–the one that sends
hello messages and the one that sends goodbye messages. You can also see this in the
previous diagram:

func receiver(helloCh, goodbyeCh <-chan string, quitCh chan<- bool) {
 for {
 select {
 case msg := <-helloCh:
 println(msg)
 case msg := <-goodbyeCh:
 println(msg)
 case <-time.After(time.Second * 2):
 println("Nothing received in 2 seconds. Exiting")
 quitCh <- true
 break
 }
 }
}

Let's start with the arguments. This function takes three channels–two receiving channels
and one to send something through it. Then, it starts an infinite loop with the for keyword.
This way we can keep listening to both channels forever.

Inside the scope of select block, we have to use a case for each channel we want to handle
(have you realized how similar it is to the switch statement?). Let's see the three cases step
by step:

The first case takes the incoming data from the helloCh argument and saves it in
a variable called msg. Then it prints the contents of this variable.
The second case takes the incoming data from the goodbyeCh argument and
saves it in a variable called msg too. Then it also prints the content of this
variable.
The third case is quite interesting. It calls the time function. After that, if we
check its signature, it accepts a time and duration value and returns a receiving
channel. This receiving channel will receive a time, the value of time after the
specified duration has passed. In our example, we use the channel it returns as a
timeout. Because the select is restarted after each handle, the timer is restarted
too. This is a very simple way to set a timer to a Goroutine waiting for the
response of one or many channels.

Everything is ready for the main function:

package main

Introduction to Gos Concurrency

[299]

import "time"

func main() {
 helloCh := make(chan string, 1)
 goodbyeCh := make(chan string, 1)
 quitCh := make(chan bool)
 go receiver(helloCh, goodbyeCh, quitCh)

 go sendString(helloCh, "hello!")

 time.Sleep(time.Second)

 go sendString(goodbyeCh, "goodbye!")
 <-quitCh
}

Again, step by step, we created the three channels that we'll need in this exercise. Then, we
launched our receiver function in a different Goroutine. This Goroutine is handled by
Go's scheduler and our program continues. We launched a new Goroutine to send the
message hello to the helloCh arguments. Again, this is going to occur eventually when
the Go's scheduler decides.

Our program continues again and waits for a second. In this break, Go's scheduler will have
time to execute the receiver and the first message (if it hasn't done so yet), so the hello!
message will appear on the console during the break.

A new message is sent over the goodbye channel with the goodbye! text in a new
Goroutine, and our program continues again to a line where we wait for an incoming
message in the quitCh argument.

We have launched three Goroutines already–the receiver that it is still running, the first
message that had finished when the message was handled by the select statement, and
the second message was been printed almost immediately and had finished too. So just the
receiver is running at this moment, and if it doesn't receive any other message in the
following two seconds, it will handle the incoming message from the time structure. After
channel type, print a message to say that it is quitting, send a true to the quitCh, and
break the infinite loop where it was looping.

Let's run this small app:

$ go run main.go

hello!
goodbye!
Nothing received in 2 seconds. Exiting

Introduction to Gos Concurrency

[300]

The result may not be very impressive, but the concept is clear. We can handle many
incoming channels in the same Goroutine by using the select statement.

Ranging over channels too!
The last feature about channels that we will see is ranging over channels. We are talking
about the range keyword. We have used it extensively to range over lists, and we can use it
to range over a channel too:

package main

import "time"

func main() {
 ch := make(chan int)

 go func() {
 ch <- 1
 time.Sleep(time.Second)

 ch <- 2

 close(ch)
 }()
 for v := range ch {
 println(v)
 }
}

In this case, we have created an unbuffered channel, but it would work with a buffered one
too. We launched a function in a new Goroutine that sends the number “1” over a channel,
waits a second, sends the number “2”, and closes the channel.

The last step is to range over the channel. The syntax is quite similar to a list range. We store
the incoming data from the channel in the variable v and we print this variable to the
console. The range keeps iterating until the channel is closed, taking data from the channel.

Can you guess the output of this little program?

$ go run main.go

1
2

Introduction to Gos Concurrency

[301]

Again, not very impressive. It prints the number “1”, then waits a second, prints the number
“2”, and exits the application.

According to the design of this concurrent app, the range was iterates over possible
incoming data from the channel until the concurrent Goroutine closes this channel.
At that moment, the range finishes and the app can exit.

Range is very useful in taking data from a channel, and it's commonly used in fan-in
patterns where many different Goroutines send data to the same channel.

Using it all – concurrent singleton
Now that we know how to create Goroutines and channels, we'll put all our knowledge in a
single package. Think back to the first few chapter, when we explained the singleton
pattern-it was some structure or variable that could only exist once in our code. All access to
this structure should be done using the pattern described, but, in fact, it wasn't concurrent
safe.

Now we will write with concurrency in mind. We will write a concurrent counter, like the
one we wrote in the mutexes section, but this time we will solve it with channels.

Unit test
To restrict concurrent access to the singleton instance, just one Goroutine will be able to
access it. We'll access it using channels–the first one to add one, the second one to get the
current count, and the third one to stop the Goroutine.

We will add one 10,000 times using 10,000 different Goroutines launched from two different
singleton instances. Then, we'll introduce a loop to check the count of the singleton
until it is 5,000, but we'll write how much the count is before starting the loop.

Once the count has reached 5,000, the loop will exit and quit the running Goroutine-the test
code looks like this:

package channel_singleton
import (
 "testing"

Introduction to Gos Concurrency

[302]

 "time"
 "fmt"
)

func TestStartInstance(t *testing.T) {
 singleton := GetInstance()
 singleton2 := GetInstance()

 n := 5000

 for i := 0; i < n; i++ {
 go singleton.AddOne()
 go singleton2.AddOne()
 }

 fmt.Printf("Before loop, current count is %d\n", singleton.GetCount())

 var val int
 for val != n*2 {
 val = singleton.GetCount()
 time.Sleep(10 * time.Millisecond)
 }
 singleton.Stop()
}

Here, we can see the full test we'll use. After creating two instances of the singleton, we
have created a for loop that launches the AddOne method 5,000 times from each instance.
This is not happening yet; they are being scheduled and will be executed eventually. We are
printing the count of the singleton instance to clearly see this eventuality; depending on
the computer, it will print some number greater than 0 and lower than 10,000.

The last step before stopping the Goroutine that is holding the count is to enter a loop that
checks the value of the count and waits 10 milliseconds if the value is not the expected
value (10,000). Once it reaches this value, the loop will exit and we can stop the singleton
instance.

We'll jump directly to the implementation as the requirement is quite simple.

Implementation
First of all, we'll create the Goroutine that will hold the count:

var addCh chan bool = make(chan bool)
var getCountCh chan chan int = make(chan chan int)
var quitCh chan bool = make(chan bool)

Introduction to Gos Concurrency

[303]

func init() {
 var count int

 go func(addCh <-chan bool, getCountCh <-chan chan int, quitCh <-chan
bool) {
 for {
 select {
 case <-addCh:
 count++
 case ch := <-getCountCh:
 ch <- count
 case <-quitCh:
 return
 }
 }
 }(addCh, getCountCh, quitCh)
}

We created three channels, as we mentioned earlier:

The addCh channel is used to communicate with the action of adding one to the
count, and receives a bool type just to signal “add one” (we don't need to send
the number, although we could).
The getCountCh channel will return a channel that will receive the current value
of the count. Take a moment to reason about the getCountCh channel-it's a
channel that receives a channel that receives integer types. It sounds a bit
complicated, but it will make more sense when we finish the example, don't
worry.
The quitCh channel will communicate to the Goroutine that it should end its
infinite loop and finish itself too.

Now we have the channels that we need to perform the actions we want. Next, we launch
the Goroutine passing the channels as arguments. As you can see, we are restricting the
direction of the channels to provide more type safety. Inside this Goroutine, we create an
infinite for loop. This loop won't stop until a break is executed within it.

Finally, the select statement, if you remember, was a way to receive data from different
channels at the same time. We have three cases, so we listen to the three incoming channels
that entered as arguments:

The addCh case will add one to the count. Remember that only one case can be
executed on each iteration so that no Goroutine could be accessing the current
count until we finish adding one.

Introduction to Gos Concurrency

[304]

The getCountCh channel receives a channel that receives an integer, so we
capture this new channel and send the current value through it to the other end.
The quitCh channel breaks the for loop, so the Goroutine ends.

One last thing. The init() function in any package will get executed on program
execution, so we don't need to worry about executing this function specifically from our
code.

Now, we'll create the type that the tests are expecting. We will see that all the magic and
logic is hidden from the end user in this type (as we have seen in the code of the test):

type singleton struct {}

var instance singleton
func GetInstance() *singleton {
 return &instance
}

The singleton type works similar to the way it worked in Chapter 2, Creational Patterns –
Singleton, Builder, Factory, Prototype, and Abstract Factory, but this time it won't hold the
count value. We created a local value for it called instance, and we return the pointer to
this instance when we call the GetInstance() method. It is not strictly necessary to do it
this way, but we don't need to allocate a new instance of the singleton type every time we
want to access the count variable.

First, the AddOne() method will have to add one to the current count. How? By sending
true to the addCh channel. That's simple:

func (s *singleton) AddOne() {
 addCh <- true
}

This small snippet will trigger the addCh case in our Goroutine in turn. The addCh case
simply executes count++ and finishes, letting select channel control flow that is executed
on init function above to execute the next instruction:

func (s *singleton) GetCount() int {
 resCh := make(chan int)
 defer close(resCh)
 getCountCh <- resCh
 return <-resCh
}

Introduction to Gos Concurrency

[305]

The GetCount method creates a channel every time it's called and defers the action of
closing it at the end of the function. This channel is unbuffered as we have seen previously
in this chapter. An unbuffered channel blocks the execution until it receives some data. So
we send this channel to getCountCh which is a channel too and, effectively, expects a chan
int type to send the current count value back through it. The GetCount() method will not
return until the value of count variable arrives to the resCh channel.

You might be thinking, why aren't we using the same channel in both directions to receive
the value of the count? This way we will avoid an allocation. Well, if we use the same
channel inside the GetCount() method, we will have two listeners in this channel–one in
select statement, at the beginning of the file on the init function, and one there, so it
could resolve to any of them when sending the value back:

func (s *singleton) Stop() {
 quitCh <- true
 close(addCh)
 close(getCountCh)
 close(quitCh)
}

Finally, we have to stop the Goroutine at some moment. The Stop method sends the value
to the singleton type Goroutine so that the quitCh case is triggered and the for loop is
broken. The next step is to close all channels so that no more data can be sent through them.
This is very convenient when you know that you won't be using some of your channels
anymore.

Time to execute the tests and take a look:

$ go test -v .

=== RUN TestStartInstance
Before loop, current count is 4911
--- PASS: TestStartInstance (0.03s)
PASS
ok

Very little code output, but everything has worked as expected. In the test, we printed the
value of the count before entering the loop that iterates until it reaches the value 10,000. As
we saw previously, the Go scheduler will try to run the content of the Goroutines using as
many OS threads as you configured by using the GOMAXPROCS configuration. In my
computer, it is set to 4 because my computer has four cores. But the point is that we can see
that a lot of things can happen after launching a Goroutine (or 10,000) and the next
execution line.

Introduction to Gos Concurrency

[306]

But what about its use of mutexes?

type singleton struct {
 count int
 sync.RWMutex
}

var instance singleton

func GetInstance() *singleton {
 return &instance
}

func (s *singleton) AddOne() {
 s.Lock()
 defer s.Unlock()
 s.count++
}

func (s *singleton) GetCount()int {
 s.RLock()
 defer s.RUnlock()
 return s.count
}

In this case, the code is much leaner. As we saw previously, we can embed the mutex
within the singleton structure. The count is also held in the count field and the
AddOne() and GetCount() methods lock and unlock the value to be concurrently safe.

One more thing. In this singleton instance, we are using the RWMutex type instead of the
already known sync.Mutex type. The main difference here is that the RWMutex type has
two types of locks–a read lock and a write lock. The read lock, executed by calling the
RLock method, only waits if a write lock is currently active. At the same time, it only blocks
a write lock, so that many read actions can be done in parallel. It makes a lot of sense; we
don't want to block a Goroutine that wants to read a value just because another Goroutine is
also reading the value-it won't change. The sync.RWMutex type helps us to achieve this
logic in our code.

Introduction to Gos Concurrency

[307]

Summary
We have seen how to write a concurrent Singleton using mutexes and channels. While the
channels example was more complex, it also shows the core power of Go's concurrency, as
you can achieve complex levels of event-driven architectures by simply using channels.

Just keep in mind that, if you haven't written concurrent code in the past, it can take some
time to start thinking concurrently in a comfortable way. But it's nothing that practice
cannot solve.

We have seen the importance of designing concurrent apps to achieve parallelism in our
programs. We have dealt with most of Go's primitives to write concurrent applications, and
now we can write common concurrent design patterns.

9
Concurrency Patterns - Barrier,

Future, and Pipeline Design
Patterns

Now that we are familiar with the concepts of concurrency and parallelism, and we have
understood how to achieve them by using Go's concurrency primitives, we can see some
patterns regarding concurrent work and parallel execution. In this chapter we'll see the
following patterns:

Barrier is a very common pattern, especially when we have to wait for more than
one response from different Goroutines before letting the program continue
Future pattern allows us to write an algorithm that will be executed eventually in
time (or not) by the same Goroutine or a different one
Pipeline is a powerful pattern to build complex synchronous flows of Goroutines
that are connected with each other according to some logic

Take a quick look at the description of the three patterns. They all describe some sort of
logic to synchronize execution in time. It's very important to keep in mind that we are now
developing concurrent structures with all the tools and patterns we have seen in the
previous chapters. With Creational patterns we were dealing with creating objects. With
the Structural patterns we were learning how to build idiomatic structures and in
Behavioral patterns we were managing mostly with algorithms. Now, with Concurrency
patterns, we will mostly manage the timing execution and order execution of applications
that has more than one flow.

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[309]

Barrier concurrency pattern
We are going to start with the Barrier pattern. Its purpose is simple–put up a barrier so that
nobody passes until we have all the results we need, something quite common in
concurrent applications.

Description
Imagine the situation where we have a microservices application where one service needs
to compose its response by merging the responses of another three microservices. This is
where the Barrier pattern can help us.

Our Barrier pattern could be a service that will block its response until it has been
composed with the results returned by one or more different Goroutines (or services). And
what kind of primitive do we have that has a blocking nature? Well, we can use a lock, but
it's more idiomatic in Go to use an unbuffered channel.

Objectives
As its name implies, the Barrier pattern tries to stop an execution so it doesn't finish before
it's ready to finish. The Barrier pattern's objectives are as follows:

Compose the value of a type with the data coming from one or more Goroutines.
Control the correctness of any of those incoming data pipes so that no
inconsistent data is returned. We don't want a partially filled result because one
of the pipes has returned an error.

An HTTP GET aggregator
For our example, we are going to write a very typical situation in a microservices
application-an app that performs two HTTP GET calls and joins them in a single response
that will be printed on the console.

Our small app must perform each request in a different Goroutine and print the result on
the console if both responses are correct. If any of them returns an error, then we print just
the error.

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[310]

The design must be concurrent, allowing us to take advantage of our multicore CPUs to
make the calls in parallel:

In the preceding diagram, the solid lines represent calls and the dashed lines represent
channels. The balloons are Goroutines, so we have two Goroutines launched by the main
function (which could also be considered a Goroutine). These two functions will
communicate back to the main function by using a common channel that they received
when they were created on the makeRequest calls.

Acceptance criteria
Our main objective in this app is to get a merged response of two different calls, so we can
describe our acceptance criteria like this:

Print on the console the merged result of the two calls to
http://httpbin.org/headers and http://httpbin.org/User-Agent URLs.
These are a couple of public endpoints that respond with data from the incoming
connections. They are very popular for testing purposes. You will need an
internet connection to do this exercise.
If any of the calls fails, it must not print any result-just the error message (or error
messages if both calls failed).
The output must be printed as a composed result when both calls have finished.
It means that we cannot print the result of one call and then the other.

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[311]

Unit test – integration
To write unit or integration tests for concurrent designs can sometimes be tricky, but this
won't stop us from writing our awesome unit tests. We will have a single barrier method
that accepts a set of endpoints defined as a string type. The barrier will make a GET
request to each endpoint and compose the result before printing it out. In this case, we will
write three integration tests to simplify our code so we don't need to generate mock
responses:

package barrier

import (
 "bytes"
 "io"
 "os"
 "strings"
 "testing"
)

func TestBarrier(t *testing.T) {
 t.Run("Correct endpoints", func(t *testing.T) {
 endpoints := []string{"http://httpbin.org/headers",
"http://httpbin.org/User-Agent"
 }
 })

 t.Run("One endpoint incorrect", func(t *testing.T) {
 endpoints := []string{"http://malformed-url",
"http://httpbin.org/User-Agent"}
 })

 t.Run("Very short timeout", func(t *testing.T) {
 endpoints := []string{"http://httpbin.org/headers",
"http://httpbin.org/User-Agent"}
 })
}

We have a single test that will execute three subtests:

The first test makes two calls to the correct endpoints
The second test will have an incorrect endpoint, so it must return an error
The last test will return the maximum timeout time so that we can force a timeout
error

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[312]

We will have a function called barrier that will accept an undetermined number of
endpoints in the form of strings. Its signature could be like this:

func barrier(endpoints ...string) {}

As you can see, the barrier function doesn't return any value because its result will be
printed on the console. Previously, we have written an implementation of an io.Writer
interface to emulate the writing on the operating system's stdout library. Just to change
things a bit, we will capture the stdout library instead of emulating one. The process to
capture the stdout library isn't difficult once you understand concurrency primitives in
Go:

func captureBarrierOutput(endpoints ...string) string {
 reader, writer, _ := os.Pipe()

 os.Stdout = writer
 out := make(chan string)
 go func() {
 var buf bytes.Buffer
 io.Copy(&buf, reader)
 out <- buf.String()
 }()

 barrier(endpoints...)

 writer.Close()
 temp := <-out

 return temp
}

Don't feel daunted by this code; it's really simple. First we created a pipe; we have done this
before in Chapter 3, Structural Patterns – Adapter, Bridge, and Composite Design Patterns,
when we talked about the Adapter design pattern. To recall, a pipe allows us to connect an
io.Writer interface to an io.Reader interface so that the reader input is the Writer
output. We define the os.Stdout as the writer. Then, to capture stdout output, we will
need a different Goroutine that listens while we write to the console. As you know, if we
write, we don't capture, and if we capture, we are not writing. The keyword here is while;
it is a good rule of thumb that if you find this word in some definition, you'll probably need
a concurrent structure. So we use the go keyword to launch a different Goroutine that
copies reader input to a bytes buffer before sending the contents of the buffer through a
channel (that we should have previously created).

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[313]

At this point, we have a listening Goroutine, but we haven't printed anything yet, so we call
our (not yet written) function barrier with the provided endpoints. Next, we have to close
the writer to signal the Goroutine that no more input is going to come to it. Our channel
called out blocks execution until some value is received (the one sent by our launched
Goroutine). The last step is to return the contents captured from the console.

OK, so we have a function called captureBarrierOutput that will capture the outputs in
stdout and return them as a string. We can write our tests now:

t.Run("Correct endpoints", func(t *testing.T) {
 endpoints := []string{"http://httpbin.org/headers",
"http://httpbin.org/User-Agent"
 }

 result := captureBarrierOutput(endpoints...)
 if !strings.Contains(result, "Accept-Encoding") || strings.Contains
(result, "User-Agent")
 {
 t.Fail()
 }
 t.Log(result)
})

All the tests are very easy to implement. All in all, it is the captureBarrierOutput
function that calls the barrier function. So we pass the endpoints and check the returned
result. Our composed response directed to http://httpbin.org must contain the text
Accept-Encoding and User-Agent in the responses of each endpoint. If we don't find those
texts, the test will fail. For debugging purposes, we log the response in case we want to
check it with the -v flag on the go test:

t.Run("One endpoint incorrect", func(t *testing.T) {
 endpoints := []string
 {
 "http://malformed-url", "http://httpbin.org/User-Agent"}

 result := captureBarrierOutput(endpoints...)
 if !strings.Contains(result, "ERROR") {
 t.Fail()
 }
 t.Log(result)
})

This time we used an incorrect endpoint URL, so the response must return the error
prefixed with the word ERROR that we will write ourselves in the barrier function.

http://httpbin.org
http://httpbin.org

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[314]

The last function will reduce the timeout of the HTTP GET client to a minimum of 1 ms, so
we force a timeout:

t.Run("Very short timeout", func(t *testing.T) {
 endpoints := []string
 {
 "http://httpbin.org/headers", "http://httpbin.org/User-Agent"}
 timeoutMilliseconds = 1
 result := captureBarrierOutput(endpoints...)
 if !strings.Contains(result, "Timeout") {
 t.Fail()
 }
 t.Log(result)
 })

The timeoutMilliseconds variable will be a package variable that we will have to define
later during implementation.

Implementation
We needed to define a package variable called timeoutMilliseconds. Let's start from
there:

package barrier

import (
 "fmt"
 "io/ioutil"
 "net/http"
 "time"
)

var timeoutMilliseconds int = 5000

The initial timeout delay is 5 seconds (5,000 milliseconds) and we will need those packages
in our code.

OK, so we need a function that launches a Goroutine for each endpoint URL. Do you
remember how we achieve the communication between Goroutines? Exactly–channels! So
we will need a channel to handle responses and a channel to handle errors.

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[315]

But we can simplify it a bit more. We will receive two correct responses, two errors, or a
response and an error; in any case, there are always two responses, so we can join errors
and responses in a merged type:

type barrierResp struct {
 Err error
 Resp string
}

So, each Goroutine will send back a value of the barrierResp type. This value will have a
value for Err or a value for the Resp field.

The procedure is simple: we create a channel of size 2, the one that will receive responses of
the barrierResp type, we launch both requests and wait for two responses, and then
check to see if there is any error:

func barrier(endpoints ...string) {
 requestNumber := len(endpoints)

 in := make(chan barrierResp, requestNumber)
 defer close(in)

 responses := make([]barrierResp, requestNumber)

 for _, endpoint := range endpoints {
 go makeRequest(in, endpoint)
 }

 var hasError bool
 for i := 0; i < requestNumber; i++ {
 resp := <-in
 if resp.Err != nil {
 fmt.Println("ERROR: ", resp.Err)
 hasError = true
 }
 responses[i] = resp
 }

 if !hasError {
 for _, resp := range responses {
 fmt.Println(resp.Resp)
 }
 }
}

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[316]

Following the previous description, we created a buffered channel called in, making it the
size of the incoming endpoints, and we deferred channel closing. Then, we launched a
function called makeRequest with each endpoint and the response channel.

Now we will loop twice, once for each endpoint. In the loop, we block the execution
waiting for data from the in channel. If we find an error, we print it prefixed with the word
ERROR as we expect in our tests, and set hasErrorvar to true. After two responses, if we
don't find any error (hasError== false) we print every response and the channel will be
closed.

We still lack the makeRequest function:

func makeRequest(out chan<- barrierResp, url string) {
 res := barrierResp{}
 client := http.Client{
 Timeout: time.Duration(time.Duration(timeoutMilliseconds) *
time.Millisecond),
 }

 resp, err := client.Get(url)
 if err != nil {
 res.Err = err
 out <- res
 return
 }

 byt, err := ioutil.ReadAll(resp.Body)
 if err != nil {
 res.Err = err
 out <- res
 return
 }

 res.Resp = string(byt)
 out <- res
}

The makeRequest function is a very straightforward functions that accepts a channel to
output barrierResp values to and a URL to request. We create an http.Client and set
its timeout field to the value of the timeoutMilliseconds package variable. This is how
we can change the timeout delay before the in function tests. Then, we simply make the
GET call, take the response, parse it to a byte slice, and send it through the out channel.

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[317]

We do all this by filling a variable called res of the barrierResp type. If we find an error
while performing a GET request or parsing the body of the result, we fill the res.Err field,
send it to the out channel (which has the opposite side connected to the original
Goroutine), and exit the function (so we don't send two values through the out channel by
mistake).

Time to run the tests. Remember that you need an Internet connection, or the first two tests
will fail. We will first try the test that has two endpoints that are correct:

 go test -run=TestBarrier/Correct_endpoints -v .
 === RUN TestBarrier
 === RUN TestBarrier/Correct_endpoints
 --- PASS: TestBarrier (0.54s)
 --- PASS: TestBarrier/Correct_endpoints (0.54s)
 barrier_test.go:20: {
 "headers": {
 "Accept-Encoding": "gzip", "Host": "httpbin.org","User-
Agent": "Go-http-client/1.1"
 }
 }
 {
 "User-Agent": "Go-http-client/1.1"
 }
 ok

Perfect. We have a JSON response with a key, headers, and another JSON response with a
key User-Agent. In our integration tests, we were looking for the strings, User-Agent and
Accept-Encoding, which are present, so the test has passed successfully.

Now we will run the test that has an incorrect endpoint:

 go test -run=TestBarrier/One_endpoint_incorrect -v .
 === RUN TestBarrier
 === RUN TestBarrier/One_endpoint_incorrect
 --- PASS: TestBarrier (0.27s)
 --- PASS: TestBarrier/One_endpoint_incorrect (0.27s)
 barrier_test.go:31: ERROR: Get http://malformed-url: dial tcp:
lookup malformed-url: no such host
 ok

We can see that we have had an error where http://malformed-url has returned a no such
host error. A request to this URL must return a text with the word ERROR: prefixed, as we
stated during the acceptance criteria, that's why this test is correct (we don't have a false
positive).

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[318]

In testing, it's very important to understand the concepts of “false positive”
and “false negative” tests. A false positive test is roughly described as a
test that passes a condition when it shouldn't (result: all passed) while the
false negative is just the reverse (result: test failed). For example, we could
be testing that a string is returned when doing the requests but, the
returned string could be completely empty! This will lead to a false
negative, a test that doesn't fail even when we are checking a behavior that
is incorrect on purpose (a request to http://malformed-url).

The last test reduced the timeout time to 1 ms:

go test -run=TestBarrier/Very_short_timeout -v .
=== RUN TestBarrier
=== RUN TestBarrier/Very_short_timeout
--- PASS: TestBarrier (0.00s)
 --- PASS: TestBarrier/Very_short_timeout (0.00s)
 barrier_test.go:43: ERROR: Get http://httpbin.org/User-Agent:
net/http: request canceled while waiting for connection (Client.Timeout
exceeded while awaiting headers)
 ERROR: Get http://httpbin.org/headers: net/http: request canceled
while waiting for connection (Client.Timeout exceeded while awaiting
headers)
ok

Again, the test passed successfully and we have got two timeout errors. The URLs were
correct, but we didn't have a response in less than one millisecond, so the client has
returned a timeout error.

Waiting for responses with the Barrier design
pattern
The Barrier pattern opens the door of microservices programming with its composable
nature. It could be considered a Structural pattern, as you can imagine.

The Barrier pattern is not only useful to make network requests; we could also use it to split
some task into multiple Goroutines. For example, an expensive operation could be split into
a few smaller operations distributed in different Goroutines to maximize parallelism and
achieve better performance.

http://malformed-url.com

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[319]

Future design pattern
The Future design pattern (also called Promise) is a quick and easy way to achieve
concurrent structures for asynchronous programming. We will take advantage of first class
functions in Go to develop Futures.

Description
In short, we will define each possible behavior of an action before executing them in
different Goroutines. Node.js uses this approach, providing event-driven programming by
default. The idea here is to achieve a fire-and-forget that handles all possible results in an
action.

To understand it better, we can talk about a type that has embedded the behavior in case an
execution goes well or in case it fails.

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[320]

In the preceding diagram, the main function launches a Future within a new Goroutine. It
won't wait for anything, nor will it receive any progress of the Future. It really fires and
forgets it.

The interesting thing here is that we can launch a new Future within a Future and embed as
many Futures as we want in the same Goroutine (or new ones). The idea is to take
advantage of the result of one Future to launch the next. For example:

Here, we have the same Future. In this case, if the Execute function returned a correct
result, the Success function is executed, and only in this case we execute a new Goroutine
with another Future inside (or even without a Goroutine).

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[321]

This is a kind of lazy programming, where a Future could be calling to itself indefinitely or
just until some rule is satisfied. The idea is to define the behavior in advance and let the
future resolve the possible solutions.

Objectives
With the Future pattern, we can launch many new Goroutines, each with an action and its
own handlers. This enables us to do the following:

Delegate the action handler to a different Goroutine
Stack many asynchronous calls between them (an asynchronous call that calls
another asynchronous call in its results)

A simple asynchronous requester
We are going to develop a very simple example to try to understand how a Future works.
In this example, we will have a method that returns a string or an error, but we want to
execute it concurrently. We have learned ways to do this already. Using a channel, we can
launch a new Goroutine and handle the incoming result from the channel.

But in this case, we will have to handle the result (string or error), and we don't want this.
Instead, we will define what to do in case of success and what to do in case of error and fire-
and-forget the Goroutine.

Acceptance criteria
We don't have functional requirements for this task. Instead, we will have technical
requirements for it:

Delegate the function execution to a different Goroutine
The function will return a string (maybe) or an error
The handlers must be already defined before executing the function
The design must be reusable

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[322]

Unit tests
So, as we mentioned, we will use first class functions to achieve this behavior, and we will
need three specific types of function:

type SuccessFunc func(string): The SuccessFunc function will be
executed if everything went well. Its string argument will be the result of the
operation, so this function will be called by our Goroutine.
type FailFunc func(error): The FailFunc function handles the opposite
result, that is, when something goes wrong, and, as you can see, it will return an
error.
type ExecuteStringFunc func() (string, error): Finally,
the ExecuteStringFunc function is a type that defines the operation we want to
perform. Maybe it will return a string or an error. Don't worry if this all seems
confusing; it will be clearer later.

So, we create the future object, we define a success behavior, we define a fail behavior, and
we pass an ExecuteStringFunc type to be executed. In the implementation file, we'll need
a new type:

type MaybeString struct {}

We will also create two tests in the _test.go file:

package future

import (
 "errors"
 "testing"
 "sync"
)

func TestStringOrError_Execute(t *testing.T) {
 future := &MaybeString{}
 t.Run("Success result", func(t *testing.T) {
 ...
 })
 t.Run("Error result", func(t *testing.T) {
 ...
 })
}

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[323]

We will define functions by chaining them, as you would usually see in Node.js. Code like
this is compact and not particularly difficult to follow:

t.Run("Success result", func(t *testing.T) {
 future.Success(func(s string) {
 t.Log(s)
 }).Fail(func(e error) {
 t.Fail()
 })
 future.Execute(func() (string, error) {
 return "Hello World!", nil
 })
})

The future.Success function must be defined in the MaybeString structure to accept a
SuccessFunc function that will be executed if everything goes correctly and return the
same pointer to the future object (so we can keep chaining). The Fail function must also
be defined in the MaybeString structure and must accept a FailFunc function to later
return the pointer. We return the pointer in both cases so we can define the Fail and the
Success or vice versa.

Finally, we use the Execute method to pass an ExecuteStringFunc type (a function that
accepts nothing and returns a string or an error). In this case, we return a string and nil, so
we expect that the SuccessFunc function will be executed and we log the result to the
console. In case that fail function is executed, the test has failed because the FailFunc
function shouldn't be executed for a returned nil error.

But we still lack something here. We said that the function must be executed
asynchronously in a different Goroutine, so we have to synchronize this test somehow so
that it doesn't finish too soon. Again, we can use a channel or a sync.WaitGroup:

t.Run("Success result", func(t *testing.T) {
 var wg sync.WaitGroup wg.Add(1)
 future.Success(func(s string) {
 t.Log(s)

 wg.Done()
 }).Fail(func(e error) {
 t.Fail()
 wg.Done()
 })

 future.Execute(func() (string, error) {
 return "Hello World!", nil
 })
 wg.Wait()

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[324]

 })

We have seen WaitGroups before in the previous channel. This WaitGroup is configured to
wait for one signal (wg.Add(1)). The Success and Fail methods will trigger the Done()
method of the WaitGroup to allow execution to continue and finish testing (that is why
the Wait() method is at the end). Remember that each Done() method will subtract one
from the WaitGroup, and we have added only one, so our Wait() method will only block
until one Done() method is executed.

Using what we know of making a Success result unit test, it's easy to make a Failed result
unit test by swapping the t.Fail() method call from the error to success so that the test
fails if a call to success is done:

t.Run("Failed result", func(t *testing.T) {
 var wg sync.WaitGroup
 wg.Add(1)
 future.Success(func(s string) {
 t.Fail()
 wg.Done()
 }).Fail(func(e error) {
 t.Log(e.Error())
 wg.Done()
 })
 future.Execute(func() (string, error) {
 return "", errors.New("Error ocurred")
 })
 wg.Wait()
})

If you are using an IDE like me, your Success, Fail, and Execute method calls must be in
red. This is because we lack our method's declaration in the implementation file:

package future

type SuccessFunc func(string)
type FailFunc func(error)
type ExecuteStringFunc func() (string, error)

type MaybeString struct {
 ...
}

func (s *MaybeString) Success(f SuccessFunc) *MaybeString {
 return nil
}

func (s *MaybeString) Fail(f FailFunc) *MaybeString {

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[325]

 return nil
}

func (s *MaybeString) Execute(f ExecuteStringFunc) {
 ...
}

Our test seems ready to execute. Let's try it out:

 go test -v .
 === RUN TestStringOrError_Execute
 === RUN TestStringOrError_Execute/Success_result
 fatal error: all goroutines are asleep - deadlock!
 goroutine 1 [chan receive]:
 testing.(*T).Run(0xc4200780c0, 0x5122e9, 0x19, 0x51d750, 0xc420041d30)
 /usr/lib/go/src/testing/testing.go:647 +0x316
 testing.RunTests.func1(0xc4200780c0)
 /usr/lib/go/src/testing/testing.go:793 +0x6d
 testing.tRunner(0xc4200780c0, 0xc420041e20)
 /usr/lib/go/src/testing/testing.go:610 +0x81
 testing.RunTests(0x51d758, 0x5931e0, 0x1, 0x1, 0x50feb4)
 /usr/lib/go/src/testing/testing.go:799 +0x2f5
 testing.(*M).Run(0xc420041ee8, 0xc420014550)
 /usr/lib/go/src/testing/testing.go:743 +0x85
 main.main()
 go-design-patterns/future/_test/_testmain.go:54 +0xc6
 ...continue

Well… the tests have failed, yes… but not in a controllable way. Why is this? We don't have
any implementation yet, so no Success or Fail functions are being executed either. Our
WaitGroup is waiting forever for a call to the Done() method that will never arrive, so it
can't continue and finish the test. That's the meaning of All Goroutines are asleep – deadlock!.
In our specific example, it would mean Nobody is going to call Done(), so we are dead!.

Thanks to the Go compiler and the runtime executor, we can detect
deadlocks easily. Imagine if Go runtime couldn't detect deadlocks–we
would be effectively stuck in a blank screen without knowing what was
wrong.

So how can we solve this? Well, an easy way would be with a timeout that calls the Done()
method after waiting a while for completion. For this code, it's safe to wait for 1 second
because it's not doing long-running operations.

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[326]

We will declare a timeout function within our test file that waits for a second, then prints
a message, sets the test as failed, and lets the WaitGroup continue by calling its Done()
method:

func timeout(t *testing.T, wg *sync.WaitGroup) {
 time.Sleep(time.Second)
 t.Log("Timeout!")

 t.Fail()
 wg.Done()
}

The final look of each subtest is similar to our previous example of the "Success result":

t.Run("Success result", func(t *testing.T) {
 var wg sync.WaitGroup
 wg.Add(1)

 //Timeout!
 go timeout(t, wg)
 // ...
})

Let's see what happens when we execute our tests again:

 go test -v .
 === RUN TestStringOrError_Execute
 === RUN TestStringOrError_Execute/Success_result
 === RUN TestStringOrError_Execute/Failed_result
 --- FAIL: TestStringOrError_Execute (2.00s)
 --- FAIL: TestStringOrError_Execute/Success_result (1.00s)
 future_test.go:64: Timeout!
 --- FAIL: TestStringOrError_Execute/Failed_result (1.00s)
 future_test.go:64: Timeout!
 FAIL
 exit status 1
 FAIL

Our tests failed, but in a controlled way. Look at the end of the FAIL lines–notice how the
elapsed time is 1 second because it has been triggered by the timeout, as we can see in the
logging messages.

It's time to pass to the implementation.

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[327]

Implementation
According to our tests, the implementation must take a SuccessFunc, a FailFunc, and
an ExecuteStringFunc function in a chained fashion within the MaybeString type and
launches the ExecuteStringFunc function asynchronously to call SuccessFunc
or FailFunc functions according to the returned result of the ExecuteStringFunc
function.

The chain is implemented by storing the functions within the type and returning the pointer
to the type. We are talking about our previously declared type methods, of course:

type MaybeString struct {
 successFunc SuccessFunc
 failFunc FailFunc
}

func (s *MaybeString) Success(f SuccessFunc) *MaybeString {
 s.successFunc = f
 return s
}

func (s *MaybeString) Fail(f FailFunc) *MaybeString {
 s.failFunc = f
 return s
}

We needed two fields to store the SuccessFunc and FailFunc functions, which are named
the successFunc and failFunc fields respectively. This way, calls to the Success and
Fail methods simply store their incoming functions to our new fields. They are simply
setters that also return the pointer to the specific MaybeString value. These type methods
take a pointer to the MaybeString structure, so don't forget to put “*” on MaybeString
after the func declaration.

Execute takes the ExecuteStringFunc method and executes it asynchronously. This seems
quite simple with a Goroutine, right?

func (s *MaybeString) Execute(f ExecuteStringFunc) {
 go func(s *MaybeString) {
 str, err := f()
 if err != nil {
 s.failFunc(err)
 } else {
 s.successFunc(str)
 }
 }(s)

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[328]

}

Looks quite simple because it is simple! We launch the Goroutine that executes the f
method (an ExecuteStringFunc) and takes its result–maybe a string and maybe an error.
If an error is present, we call the field failFunc in our MaybeString structure. If no error
is present, we call the successFunc field. We use a Goroutine to delegate a function
execution and error handling so our Goroutine doesn't have to do it.

Let's run unit tests now:

 go test -v .
 === RUN TestStringOrError_Execute
 === RUN TestStringOrError_Execute/Success_result
 === RUN TestStringOrError_Execute/Failed_result
 --- PASS: TestStringOrError_Execute (0.00s)
 --- PASS: TestStringOrError_Execute/Success_result (0.00s)
 future_test.go:21: Hello World!
 --- PASS: TestStringOrError_Execute/Failed_result (0.00s)
 future_test.go:49: Error ocurred
 PASS
 ok

Great! Look how the execution time is now nearly zero, so our timeouts have not been
executed (actually, they were executed, but the tests already finished and their result was
already stated).

What's more, now we can use our MaybeString type to asynchronously execute any type
of function that accepts nothing and returns a string or an error. A function that accepts
nothing seems a bit useless, right? But we can use closures to introduce a context into this
type of function.

Let's write a setContext function that takes a string as an argument and returns
an ExecuteStringFunc method that returns the previous argument with the suffix
Closure!:

func setContext(msg string) ExecuteStringFunc {
 msg = fmt.Sprintf("%d Closure!\n", msg)
 return func() (string, error){
 return msg, nil
 }
}

So, we can write a new test that uses this closure:

t.Run("Closure Success result", func(t *testing.T) {
 var wg sync.WaitGroup

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[329]

 wg.Add(1)
 //Timeout!
 go timeout(t, &wg)

 future.Success(func(s string) {
 t.Log(s)
 wg.Done()
 }).Fail(func(e error) {
 t.Fail()
 wg.Done()
 })
 future.Execute(setContext("Hello"))
 wg.Wait()
 })

The setContext function returns an ExecuteStringFunc method it can pass directly to
the Execute function. We call the setContext function with an arbitrary text that we
know will be returned.

Let's execute our tests again. Now everything has to go well!

 go test -v .
 === RUN TestStringOrError_Execute
 === RUN TestStringOrError_Execute/Success_result
 === RUN TestStringOrError_Execute/Failed_result
 === RUN TestStringOrError_Execute/Closure_Success_result
 --- PASS: TestStringOrError_Execute (0.00s)
 --- PASS: TestStringOrError_Execute/Success_result (0.00s)
 future_test.go:21: Hello World!
 --- PASS: TestStringOrError_Execute/Failed_result (0.00s)
 future_test.go:49: Error ocurred
 --- PASS: TestStringOrError_Execute/Closure_Success_result (0.00s)
 future_test.go:69: Hello Closure!
 PASS
 ok

It gave us an OK too. Closure test shows the behavior that we explained before. By taking a
message "Hello" and appending it with something else ("Closure!"), we can change the
context of the text we want to return. Now scale this to a HTTP GET call, a call to a database,
or anything you can imagine. It will just need to end by returning a string or an error.
Remember, however, that everything within the setContext function but outside of the
anonymous function that we are returning is not concurrent, and will be executed
asynchronously before calling execute, so we must try to put as much logic as possible
within the anonymous function.

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[330]

Putting the Future together
We have seen a good way to achieve asynchronous programming by using a function type
system. However, we could have done it without functions by setting an interface with
Success, Fail, and Execute methods and the types that satisfy them, and using the
Template pattern to execute them asynchronously, as we have previously seen in this
chapter. It is up to you!

Pipeline design pattern
The third and final pattern we will see in this chapter is the Pipeline pattern. You will use
this pattern heavily in your concurrent structures, and we can consider it one of the most
useful too.

Description
We already know what a pipeline is. Every time that we write any function that performs
some logic, we are writing a pipeline: If this then that, or else something else. Pipelines pattern
can be made more complex by using a few functions that call to each other. They can even
get looped in their out execution.

The Pipeline pattern in Go works in a similar fashion, but each step in the Pipeline will be in
a different Goroutine and communication, and synchronizing will be done using channels.

Objectives
When creating a Pipeline, we are mainly looking for the following benefits:

We can create a concurrent structure of a multistep algorithm
We can exploit the parallelism of multicore machines by decomposing an
algorithm in different Goroutines

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[331]

However, just because we decompose an algorithm in different Goroutines doesn't
necessarily mean that it will execute the fastest. We are constantly talking about CPUs, so
ideally the algorithm must be CPU-intensive to take advantage of a concurrent structure.
The overhead of creating Goroutines and channels could make an algorithm smaller.

A concurrent multi-operation
We are going to do some math for our example. We are going to generate a list of numbers
starting with 1 and ending at some arbitrary number N. Then we will take each number,
power it to 2, and sum the resulting numbers to a unique result. So, if N=3, our list will be
[1,2,3]. After powering them to 2, our list becomes [1,4,9]. If we sum the resulting list, the
resulting value is 14.

Acceptance criteria
Functionally speaking, our Pipeline pattern needs to raise to the power of 2 every number
and then sum them all. It will be divided into a number generator and two operations, so:

Generate a list from 1 to N where N can be any integer number.1.
Take each number of this generated list and raise it to the power of 2.2.
Sum each resulting number into a final result and return it.3.

Beginning with tests
We will create only one function that will manage everything. We will call this function
LaunchPipeline to simplify things. It will take an integer as an argument, which will be
our N number, the number of items in our list. The declaration in the implementation file
looks like this:

package pipelines

func LaunchPipeline(amount int) int {
 return 0
}

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[332]

In our test file, we will create a table of tests by using a slice of slices:

package pipelines

import "testing"

func TestLaunchPipeline(t *testing.T) {
 tableTest := [][]int{
 {3, 14},
 {5, 55},
 }
 // ...
}

Our table is a slice of slices of integer types. On each slice, the first integer represents the list
size and the second position represents the item within the list. It is, effectively, a matrix.
When passing 3, it must return 14. When passing 5, it must return 55. Then we have to
iterate over the table and pass the first index of each array to the LaunchPipeline
function:

 // ...

 var res int
 for _, test := range tableTest {
 res = LaunchPipeline(test[0])
 if res != test[1] {
 t.Fatal()
 }

 t.Logf("%d == %d\n", res, test[1])
 }
}

Using range, we get every row in the matrix . Each row is contained in a temporary
variable called test. test[0] represents N and test[1] the expected result. We compare
the expected result with the returning value of the LaunchPipeline function. If they aren't
the same, the test fails:

 go test -v .
 === RUN TestLaunchPipeline
 --- FAIL: TestLaunchPipeline (0.00s)
 pipeline_test.go:15:
 FAIL
 exit status 1
 FAIL

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[333]

Implementation
The key for our implementation is to separate every operation in a different Goroutine and
connect them with channels. The LaunchPipeline function is the one that orchestrates
them all, as shown in the following diagram:

The operation consist of three steps: generate a list of numbers, raise them to the power of 2,
and add the resulting numbers.

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[334]

Each step in this Pipeline pattern will have the following structure:

func functionName(in <-chan int) (<-chan int){
 out := make(chan bool, 100)

 go func(){
 for v := range in {
 // Do something with v and send it to channel out
}

close(out)
 }()

 return out
}

This function represents a common step. Let's dissect it in the same order that the Go
scheduler will probably take to execute it:

The functionName function will commonly receive a channel to take values1.
from (in <-chan int). We call it the in function, as in the word incoming. We
can't send values through it within the scope of this function; that's why the
arrow points out of the keyword chan.
The functionName function returns a channel (<-chan in) that the function2.
caller will only be allowed to take values from (again, represented by the arrow
pointing out of the keyword chan). This also means that any value that goes
through that channel must be generated within the scope of the function.
In the first line of the function, we create a channel called out that will be the3.
return of the function (point 2 in this list).
Then, we will launch a new Goroutine. Its scope will enter into play after4.
returning this function, so let's continue.
We return the previously created out channel.5.
Eventually, after finishing the execution of the function and returning the channel6.
out, the Goroutine executes. It will take values from the in channel until it's
closed. So the caller of this function is responsible for closing this channel,
otherwise the Goroutine will never end!
When the in channel is closed, the for loop finishes and we close the out7.
channel. Any Goroutine making use of this channel will not receive any new
values since the last that was sent.

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[335]

The only step that doesn't completely fit this approach is the first step that receives a
number, representing the upper threshold on the list instead of a channel of incoming
values. So, if we code this operation for each step in our pipeline, the final diagram looks
more like this:

Although the idea is exactly the same, now we can see that it's the function
LaunchPipeline that is the one that is going to be receiving channels and sending them
back to the next step in the Pipeline. Using this diagram, we can clearly see the flow of the
pipeline creation by following the numbers of the arrows. A solid arrow represents a
function call and a dashed arrow a channel.

Let's look a little more closely at the code.

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[336]

The list generator
The first step in the operation is list generation. The list starts at 1 and we will receive an
integer representing the higher threshold. We have to pass each number in the list to the
next step:

func generator(max int) <-chan int {
 outChInt := make(chan int, 100)

 go func() {
 for i := 1; i <= max; i++ {
 outChInt <- i
 }

 close(outChInt)
 }()
 return outChInt
}

As we mentioned earlier, this is the pattern that we will follow in each step: create a
channel, launch the Goroutine that will send the data through the channel, and immediately
return the channel. This Goroutine will iterate from 1 to the max argument, which is the
higher threshold for our list, and send each number through the channel. After sending
every number, the channel is closed so that no more data can be sent through it, but the
data already buffered can be retrieved.

Raising numbers to the power of 2
The second step will take every incoming number from the first step's channel (that is taken
from the arguments) and raise it to the power of 2. Every result must be sent to the third
step using a new channel:

func power(in <-chan int) <-chan int {
 out := make(chan int, 100)

 go func() {
 for v := range in {
 out <- v * v
 }
 close(out)
 }()
 return out
}

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[337]

We use the same pattern again: create a channel and launch the Goroutine while we return
the created channel.

The for-range loop keeps taking values from a channel indefinitely
until the channel is closed.

Final reduce operation
The third and final step receives every number from the second step and keeps adding
them to a local value until the connection channel is closed:

func sum(in <-chan int) <-chan int {
 out := make(chan int, 100)
 go func() {
 var sum int

 for v := range in {
 sum += v
 }

 out <- sum
 close(out)
 }()

 return out
}

The function sum also takes a channel as an argument (the one returned from step 2). It also
follows the same pattern of creating a channel, launching the Goroutine, and returning a
channel. Goroutine keeps adding values to a variable called sum until the in channel is
closed. When the in channel is closed, the value of sum is sent to the out channel, and it's
immediately closed.

Launching the Pipeline pattern
Finally, we can implement the LaunchPipeline function:

func LaunchPipeline(amount int) int {
 firstCh := generator(amount)
 secondCh := power(firstCh)
 thirdCh := sum(secondCh)

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[338]

 result := <-thirdCh

 return result
}

The function generator first returns the channel that is passed to the power function. The
power function returns the second channel that is passed to the sum function. The function
sum finally returns the first channel that will receive a unique value, the result. Let's try to
test this now:

 go test -v .
 === RUN TestLaunchPipeline
 --- PASS: TestLaunchPipeline (0.00s)
 pipeline_test.go:18: 14 == 14
 pipeline_test.go:18: 55 == 55
 PASS
 ok

Awesome! It's worth mentioning that the LaunchPipeline function doesn't need to
allocate every channel, and can be rewritten like this:

func LaunchPipeline(amount int) int {
 return <-sum(power(generator(amount)))
}

The result of the generator function is passed directly to the power function and the result
of power to sum functions.

Final words on the Pipeline pattern
With the Pipeline pattern, we can create really complex concurrent workflows in a very
easy way. In our case, we created a linear workflow, but it could also have conditionals,
pools, and fan-in and fan-out behavior. We will see some of these in the following chapter.

Summary
Concurrency design patterns are a step forward in difficulty, and take some time to grasp.
Our biggest mistake as concurrent programmers is thinking in terms of parallelism (How
can I make this parallel? or How can I run this in a new thread?) instead of in terms of
concurrent structures.

Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns

[339]

Pure functions (functions that will always produce the same output (given the same input)
without affecting anything outside their scope) help in this design.

Concurrent programming requires practice and more practice. Go makes it easy once you
understand the basic primitives. Diagrams can help you to understand the possible flow of
data, but the best way of understanding it all is simply to practice.

In the following chapter, we will see how to use a pool of pipeline workers to do some work
instead of having a unique pipeline. Also, we will learn how to create the
publish/subscriber pattern in a concurrent structure and see how different the same pattern
can be when we build by using concurrency.

10
Concurrency Patterns -

Workers Pool and
Publish/Subscriber Design

Patterns
We have reached the final chapter of the book, where we will discuss a couple of patterns
with concurrent structures. We will explain every step in detail so you can follow the
examples carefully.

The idea is to learn about patterns to design concurrent applications in idiomatic Go. We
are using channels and Goroutines heavily, instead of locks or sharing variables.

We will look at one way to develop a pool of workers. This is useful to control the
number of Goroutines in an execution.
The second example is a rewrite of the Observer pattern, which we saw on
Chapter 7, Behavioral Patterns – Visitor, State, Mediator, and Observer Design
Patterns, written with a concurrent structure. With this example we'll dig a bit
more into the concurrent structures and look at how they can differ from a
common approach.

Workers pool
One problem we may face with some of the previous approaches to concurrency is their
unbounded context. We cannot let an app create an unlimited amount of Goroutines.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[341]

Goroutines are light, but the work they perform could be very heavy. A workers pool helps
us to solve this problem.

Description
With a pool of workers, we want to bound the amount of Goroutines available so that we
have a deeper control of the pool of resources. This is easy to achieve by creating a channel
for each worker and having workers with either an idle or busy status. The task can seem
daunting, but it's not at all.

Objectives
Creating a Worker pool is all about resource control: CPU, RAM, time, connections, and so
on. The workers pool design pattern helps us to do the following:

Control access to shared resources using quotas
Create a limited amount of Goroutines per app
Provide more parallelism capabilities to other concurrent structures

A pool of pipelines
In the previous chapter, we saw how to work with a pipeline. Now we will launch a
bounded number of them so that the Go scheduler can try to process requests in parallel.
The idea here is to control the number of Goroutines, stop them gracefully when the app
has finished, and maximize parallelism using a concurrent structure without race
conditions.

The pipeline we will use is similar to the one we used in the previous chapter, where we
were generating numbers, raising them to the power of 2, and summing the final results. In
this case, we are going to pass strings to which we will append and prefix data.

Acceptance criteria
In business terms, we want something that tells us that, worker has processed a request, a
predefined ending, and incoming data parsed to uppercase:

When making a request with a string value (any), it must be uppercase.1.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[342]

Once the string is uppercase, a predefined text must be appended to it. This text2.
should not be uppercase.
With the previous result, the worker ID must be prefixed to the final string.3.
The resulting string must be passed to a predefined handler.4.

We haven't talked about how to do it technically, just what the business wants. With the
entire description, we'll at least have workers, requests, and handlers.

Implementation
The very beginning is a request type. According to the description, it must hold the string
that will enter the pipeline as well as the handler function:

 // workers_pipeline.go file
 type Request struct {
 Data interface{}
 Handler RequestHandler
 }

Where is the string? We have a Data field of type interface{} so we can use it to pass a
string. By using an interface, we can reuse this type for a string, an int, or a struct data
type. The receiver is the one who must know how to deal with the incoming interface.

The Handler field has the type Request handler, which we haven't defined yet:

type RequestHandler func(interface{})

A request handler is any function that accepts an interface as its first argument, and returns
nothing. Again, we see the interface{}, where we would usually see a string. This is one
of the receivers we mentioned previously, which we'll need to cast the incoming result.

So, when sending a request, we must fill it with some value in the Data field and
implement a handler; for example:

func NewStringRequest(s string, id int, wg *sync.WaitGroup) Request {
 myRequest := Request{
 Data: "Hello", Handler: func(i interface{})
 {
 defer wg.Done()
 s, ok := i.(string)
 if !ok{
 log.Fatal("Invalid casting to string")
 }
 fmt.Println(s)

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[343]

 }
 }
}

The handler is defined by using a closure. We again check the type if the interface (and we
defer the call to the Done() method at the end). In case of an improper interface, we simply
print its contents and return. If the casting is OK, we also print them, but here is where we
will usually do something with the result of the operation; we have to use type casting to
retrieve the contents of the interface{} (which is a string). This must be done in every
step in the pipeline, although it will introduce a bit of overhead.

Now we need a type that can handle Request types. Possible implementations are virtually
infinite, so it is better to define an interface first:

 // worker.go file
 type WorkerLauncher interface {
 LaunchWorker(in chan Request)
 }

The WorkerLauncher interface must implement only the LaunchWorker(chan Request)
method. Any type that implements this interface will have to receive a channel of Request
type to satisfy it. This channel of the Request type is the single entrance point to the
pipeline.

The dispatcher
Now, to launch workers in parallel and handle all the possible incoming channels, we'll
need something like a dispatcher:

 // dispatcher.go file
 type Dispatcher interface {
 LaunchWorker(w WorkerLauncher)
 MakeRequest(Request)
 Stop()
 }

A Dispatcher interface can launch an injected WorkerLaunchers type in its own
LaunchWorker method. The Dispatcher interface must use the LaunchWorker method of
any of the WorkerLauncher types to initialize a pipeline. This way we can reuse the
Dispatcher interface to launch many types of WorkerLaunchers.

When using MakeRequest(Request), the Dispatcher interface exposes a nice method to
inject a new Request into the workers pool.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[344]

Finally, the user must call stop when all Goroutines must be finished. We must handle
graceful shutdown in our apps, and we want to avoid Goroutine leaks.

We have enough interfaces, so let's start with the dispatcher which is a bit less complicated:

 type dispatcher struct {
 inCh chan Request
 }

Our dispatcher structure stores a channel of Request type in one of its fields. This is
going to be the single point of entrance for requests in any pipeline. We said that it must
implement three methods, as follows:

 func (d *dispatcher) LaunchWorker(id int, w WorkerLauncher) {
 w.LaunchWorker(d.inCh)
 }

 func (d *dispatcher) Stop(){
 close(d.inCh)
 }

 func (d *dispatcher) MakeRequest(r Request) {
 d.inCh <- r
 }

In this example, the Dispatcher interface doesn't need to do anything special to itself
before launching a worker, so the LaunchWorker method on the Dispatcher simply
executes the LaunchWorker method of the incoming WorkerLauncher,which also has a
LaunchWorker method to initiate itself. We have previously defined that a
WorkerLauncher type needs at least an ID and a channel for incoming requests, so that's
what we are passing through.

It may seem unnecessary to implement the LaunchWorker method in the Dispatcher
interface. In different scenarios, it could be interesting to save running worker IDs in the
dispatcher to control which ones are up or down; the idea is to hide launching
implementation details. In this case, the Dispatcher interface is merely acting as a Facade
design pattern hiding some implementation details from the user.

The second method is Stop. It closes the incoming requests channel, provoking a chain
reaction. We saw in the pipeline example that, when closing the incoming channel, each for-
range loop within the Goroutines breaks and the Goroutine is also finished. In this case,
when closing a shared channel, it will provoke the same reaction, but in every listening
Goroutine, so all pipelines will be stopped. Cool, huh?

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[345]

Request implementation is very simple; we just pass the request in the argument to the
channel of incoming requests. The Goroutine will block there forever until the opposite end
of the channel retrieves the request. Forever? That seems like a lot if something happens.
We can introduce a timeout, as follows:

 func (d *dispatcher) MakeRequest(r Request) {
 select {
 case d.inCh <- r:
 case <-time.After(time.Second * 5):
 return
 }
 }

If you remember from previous chapters, we can use select to control which operation is
performed over a channel. Like a switch case, just one operation can be executed. In this
case, we have two different operations: sending and receiving.

The first case is a sending operation–try to send this, and it will block there until someone
takes the value in the opposite side of the channel. Not a huge improvement, then. The
second case is a receiving operation; it will be triggered after 5 seconds if the upper request
can't be sent successfully, and the function will return. It would be very convenient to
return an error here, but to make things simple, we will leave it empty

Finally, in the dispatcher, for convenience, we will define a Dispatcher creator:

 func NewDispatcher(b int) Dispatcher {
 return &dispatcher{
 inCh:make(chan Request, b),
 }
 }

By using this function instead of creating the dispatcher manually, we can simply avoid
small mistakes, such as forgetting to initialize the channel field. As you can see, the b
argument refers to the buffer size in the channel.

The pipeline
So, our dispatcher is done and we need to develop the pipeline described in the acceptance
criteria. First, we need a type to implement the WorkerLauncher type:

 // worker.go file
 type PreffixSuffixWorker struct {
 id int
 prefixS string
 suffixS string

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[346]

 }

 func (w *PreffixSuffixWorker) LaunchWorker(i int, in chan Request) {}

The PreffixSuffixWorker variable stores an ID, a string to prefix, and another string to
suffix the incoming data of the Request type. So, the values to prefix and append will be
static in these fields, and we will take them from there.

We will implement the LaunchWorker method later and begin with each step in the
pipeline. According to first acceptance criteria, the incoming string must be uppercase. So, the
uppercase method will be the first step in our pipeline:

 func (w *PreffixSuffixWorker) uppercase(in <-chan Request) <-chan
Request {
 out := make(chan Request)

 go func() {
 for msg := range in {
 s, ok := msg.Data.(string)
 if !ok {
 msg.handler(nil)
 continue
 }
 msg.Data = strings.ToUpper(s)
 out <- msg
 }

 close(out)
 }()

 return out
 }

Good. As in the previous chapter, a step in the pipeline accepts a channel of incoming data
and returns a channel of the same type. It has a very similar approach to the examples we
developed in the previous chapter. This time, though, we aren't using package functions,
and uppercase is part of the PreffixSuffixWorker type and the incoming data is a
struct instead of an int.

The msg variable is a Request type and it will have a handler function and data in the form
of an interface. The Data field should be a string, so we type cast it before using it. When
type casting a value, we will receive the same value with the requested type and a true or
false flag (represented by the ok variable). If the ok variable is false, the cast could not
be done and we won't throw the value down the pipeline. We stop this Request here by
sending a nil to the handler (which will also provoke a type-casting error).

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[347]

Once we have a nice string in the s variable, we can uppercase it and store it again in the
Data field to send down the pipeline to the next step. Be aware that the value will be sent as
an interface again, so the next step will need to cast it again. This is the downside of using
this approach.

With the first step done, let's continue with the second. According to the second acceptance
criteria now, a predefined text must be appended. This text is the one stored in the suffixS
field:

func (w *PreffixSuffixWorker) append(in <-chan Request) <-chan Request {
 out := make(chan Request)
 go func() {
 for msg := range in {
 uppercaseString, ok := msg.Data.(string)
 if !ok {
 msg.handler(nil)
 continue
 }
 msg.Data = fmt.Sprintf("%s%s", uppercaseString, w.suffixS)
 out <- msg
 }
 close(out)
 }()
 return out
}

The append function has the same structure as the uppercase function. It receives and
returns a channel of incoming requests, and launches a new Goroutine that iterates over the
incoming channel until it is closed. We need to type cast the incoming value, as mentioned
previously.

In this step in the pipeline the incoming string is uppercase (after doing a type assertion). To
append any text to it, we just need to use the fmt.Sprintf() function, as we have done
many times before, which formats a new string with the provided data. In this case, we pass
the value of the suffixS field as the second value, to append it to the end of the string.

Just the last step in the pipeline is missing, the prefix operation:

 func (w *PreffixSuffixWorker) prefix(in <-chan Request) {
 go func() {
 for msg := range in {
 uppercasedStringWithSuffix, ok := msg.Data.(string)
 if !ok {
 msg.handler(nil)
 continue
 }

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[348]

 msg.handler(fmt.Sprintf("%s%s", w.prefixS,
uppercasedStringWithSuffix))
 }
 }()
 }

What's calling your attention in this function? Yes, it doesn't return any channel now. We
could have done this entire pipeline in two ways. I suppose you have realized that we have
used a Future handler function to execute with the final result in the pipeline. A second
approach would be to pass a channel to return the data back to its origin. In some cases, a
Future would be enough, while in others it could be more convenient to pass a channel so
that it can be connected to a different pipeline (for example).

In any case, the structure of a step in a pipeline must be very familiar to you already. We
cast the value, check the result of the casting, and send nil to the handler if anything went
wrong. But, in case everything was OK, the last thing to do is to format the text again to
place the prefixS field at the beginning of the text, to send the resulting string back to the
origin by calling the request's handler.

Now, with our worker almost finished, we can implement the LaunchWorker method:

 func (w *PreffixSuffixWorker) LaunchWorker(in chan Request) {
 w.prefix(w.append(w.uppercase(in)))
 }

That's all for workers! We simply pass the returning channels to the next steps in the
Pipeline, as we did in the previous chapter. Remember that the pipeline is executed from
inside to outside of the calls. So, what's the order of execution of any incoming data to the
pipeline?

The data enters the pipeline through the Goroutine launched in the uppercase1.
method.
Then, it goes to the Goroutine launched in append.2.
Finally, in enters the Goroutine launched in prefix method, which doesn't3.
return anything but executes the handler after prefixing the incoming string with
more data.

Now we have a full pipeline and a dispatcher of pipelines. The dispatcher will launch as
many instances of the pipelines as we want to route the incoming requests to any available
worker.

If none of the workers takes the request within 5 seconds, the request is lost.

Let's use this library in a small app.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[349]

An app using the workers pool
We will launch three workers of our defined pipeline. We use the NewDispatcher function
to create the dispatcher and the channel that will receive all requests. This channel has a
fixed buffer, which will be able to store up to 100 incoming messages before blocking:

 // workers_pipeline.go
 func main() {
 bufferSize := 100
 var dispatcher Dispatcher = NewDispatcher(bufferSize)

Then, we will launch the workers by calling the LaunchWorker method in the Dispatcher
interface three times with an already filled WorkerLauncher type:

 workers := 3
 for i := 0; i < workers; i++ {
 var w WorkerLauncher = &PreffixSuffixWorker{
 prefixS: fmt.Sprintf("WorkerID: %d -> ", i),
 suffixS: " World",
 id:i,
 }
 dispatcher.LaunchWorker(w)
 }

Each WorkerLauncher type is an instance of PreffixSuffixWorker. The prefix will be a
small text showing the worker ID and the suffix text world.

At this point, we have three workers with three Goroutines, each running concurrently and
waiting for messages to arrive:

 requests := 10

 var wg sync.WaitGroup
 wg.Add(requests)

We will make 10 requests. We also need a WaitGroup to properly synchronize the app so
that it doesn't exit too early. You can find yourself using WaitGroups quite a lot when
dealing with concurrent applications. For 10 requests, we'll need to wait for 10 calls to the
Done() method, so we call the Add() method with a delta of 10. It's called delta because you
can also pass a -5 later to leave it in five requests. In some situations, it can be useful:

 for i := 0; i < requests; i++ {
 req := NewStringRequest("(Msg_id: %d) -> Hello", i, &wg)
 dispatcher.MakeRequest(req)
 }

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[350]

 dispatcher.Stop()

 wg.Wait()
}

To make requests, we will iterate a for loop. First, we create a Request using the function
NewStringRequest that we wrote at the beginning of the Implementation section. In this
value, the Data field will be the text we'll pass down the pipeline, and it will be the text that
is “in the middle” of the appending and suffixing operation. In this case, we will send the
message number and the word hello.

Once we have a request, we call the MakeRequest method with it. After all requests have
been done, we stop the dispatcher that, as explained previously, will provoke a chain
reaction that will stop all Goroutines in the pipeline.

Finally, we wait for the group so that all calls to the Done() method are received, which
signals that all operations have been finished. It's time to try it out:

 go run *
 WorkerID: 1 -> (MSG_ID: 0) -> HELLO World
 WorkerID: 0 -> (MSG_ID: 3) -> HELLO World
 WorkerID: 0 -> (MSG_ID: 4) -> HELLO World
 WorkerID: 0 -> (MSG_ID: 5) -> HELLO World
 WorkerID: 2 -> (MSG_ID: 2) -> HELLO World
 WorkerID: 1 -> (MSG_ID: 1) -> HELLO World
 WorkerID: 0 -> (MSG_ID: 6) -> HELLO World
 WorkerID: 2 -> (MSG_ID: 9) -> HELLO World
 WorkerID: 0 -> (MSG_ID: 7) -> HELLO World
 WorkerID: 0 -> (MSG_ID: 8) -> HELLO World

Let's analyze the first message:

This would be zero, so the message sent is (Msg_id: 0) -> Hello.1.
Then, the text is uppercased, so now we have (MSG_ID: 0) -> HELLO.2.
After uppercasing an append operation with the text world (note the space at the3.
beginning of the text) is done. This will give us the text (MSG_ID: 0) -> HELLO
World.
Finally, the text WorkerID: 1 (in this case, the first worker took the task, but it4.
could be any of them) is appended to the text from step 3 to give us the full
returned message, WorkerID: 1 -> (MSG_ID: 0) -> HELLO World.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[351]

No tests?
Concurrent applications are difficult to test, especially if you are doing networking
operations. It can be difficult, and code can change a lot just to test it. In any case, it is not
justifiable to not perform tests. In this case, it is not especially difficult to test our small app.
Create a test and copy/paste the contents of the main function there:

//workers_pipeline.go file
package main

import "testing"

func Test_Dispatcher(t *testing.T){
 //pasted code from main function
 bufferSize := 100
 var dispatcher Dispatcher = NewDispatcher(bufferSize)
 workers := 3
 for i := 0; i < workers; i++
 {
 var w WorkerLauncher = &PreffixSuffixWorker{
 prefixS: fmt.Sprintf("WorkerID: %d -> ", i), suffixS: " World",
id: i,}
 dispatcher.LaunchWorker(w)
 }
 //Simulate Requests
 requests := 10
 var wg
 sync.WaitGroup
 wg.Add(requests)
}

Now we have to rewrite our handler to test that the returned contents are the ones we are
expecting. Go to the for loop to modify the function that we are passing as a handler on
each Request:

for i := 0; i < requests; i++ {
 req := Request{
 Data: fmt.Sprintf("(Msg_id: %d) -> Hello", i),
 handler: func(i interface{})
 {
 s, ok := i.(string)
 defer wg.Done()
 if !ok
 {
 t.Fail()
 }
 ok, err := regexp.Match(`WorkerID\: \d* -\> \(MSG_ID: \d*\) ->

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[352]

[A-Z]*\sWorld`, []byte(s))
 if !ok || err != nil {
 t.Fail()
 }
 },
 }
 dispatcher.MakeRequest(req)
}

We are going to use regular expressions to test the business. If you are not familiar with
regular expressions, they are a quite powerful feature that help you to match content within
a string. If you remember in our exercises when we were using the strings package.
Contains is the function to find a text inside a string. We can also do it with regular
expressions.

The problem is that regular expressions are quite expensive and consume a lot of resources.

We are using the Match function of the regexp package to provide a template to match.
Our template is WorkerID\: \d* -> \(MSG_ID: \d\) -> [A-Z]*\sWorld (without
quotes). Specifically, it describes the following:

A string that has the content WorkerID: \d* -> (MSG_ID: \d*", here "\d*
indicates any digit written zero or more times, so it will match WorkerID: 10
-> (MSG_ID: 1" and "WorkerID: 1 -> (MSG_ID: 10.
"\) -> [A-Z]*\sWorld" (parentheses must be escaped using backslashes). “*”
means any uppercase character written zero or more times, so "\s" is a white
space and it must finish with the text World, so) -> HELLO World" will match,
but) -> Hello World" won't, because "Hello must be all uppercase.

Running this test gives us the following output:

 go test -v .
 === RUN Test_Dispatcher
 --- PASS: Test_Dispatcher (0.00s)
 PASS
 ok

Not bad, but we aren't testing that code is being executed concurrently, so this is more a
business test than a unit test. Concurrency testing would force us to write the code in a
completely different manner to check that it is creating the proper amount of Goroutines
and the pipeline is following the expected workflow. This is not bad, but it's quite complex,
and outside of the context of this book.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[353]

Wrapping up the Worker pool
With the workers pool, we have our first complex concurrent application that can be used in
real-world production systems. It also has room to improve, but it is a very good design
pattern to build concurrent bounded apps.

It is key that we always have the number of Goroutines that are being launched under
control. While it's easy to launch thousands to achieve more parallelism in an app, we must
be very careful that they don't have code that can hang them in an infinite loop, too.

With the workers pool, we can now fragment a simple operation in many parallel tasks.
Think about it; this could achieve the same result with one simple call to fmt.Printf, but
we have done a pipeline with it; then, we launched few instances of this pipeline and
finally, distributed the workload between all those pipes.

Concurrent Publish/Subscriber design
pattern
In this section, we will implement the Observer design pattern that we showed previously
on Behavioral patterns, but with a concurrent structure and thread safety.

Description
If you remember from the previous explanation, the Observer pattern maintains a list of
observers or subscribers that want to be notified of a particular event. In this case, each
subscriber is going to run in a different Goroutine as well as the publisher. We will have
new problems with building this structure:

Now, the access to the list of subscribers must be serialized. If we are reading the
list with one Goroutine, we cannot be removing a subscriber from it or we will
have a race.
When a subscriber is removed, the subscriber's Goroutine must be closed too, or
it will keep iterating forever and we will run into Goroutine leaks.
When stopping the publisher, all subscribers must stop their Goroutines, too.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[354]

Objectives
The objectives of this publish/subscriber are the same as the ones we wrote on the Observer
pattern. The difference here is the way we will develop it. The idea is to make a concurrent
structure to achieve the same functionality, which is as follows:

Providing an event-driven architecture where one event can trigger one or more
actions
Uncoupling the actions that are performed from the event that triggers them
Providing more than one source event that triggers the same action

The idea is to uncouple senders from receivers, hiding from the sender the identity of the
receivers that will process its event, and hiding the receivers from the number of senders
that can communicate with them.

In particular, if I develop a click in a button in some application, it could do something
(such as log us in somewhere). Weeks later, we might decide to make it show a popup, too.
If, every time we want to add some functionality to this button, we have to change the code
where it handles the click action, that function will become huge and not very portable to
other projects. If we use a publisher and one observer for every action, the click function
only needs to publish one single event using a publisher, and we will just write subscribers
to this event every time we want to improve the functionality. This is especially important
in applications with user interfaces where many things to do in a single UI action can slow
the responsiveness of an interface, completely destroying the user experience.

By using a concurrent structure to develop the Observer pattern, a UI cannot feel all the
tasks that are being executed in the background if a concurrent structure is defined and the
device allows us to execute parallel tasks.

Example – a concurrent notifier
We will develop a notifier similar to the one we developed in Chapter 7, Behavioral Patterns
– Visitor, State, Mediator, and Observer Design Patterns. This is to focus on the concurrent
nature of the structure instead of detailing too many things that have already been
explained. We have developed an observer already, so we are familiar with the concept.

This particular notifier will work by passing around interface{} values, like in the
workers pool example. This way, we can use it for more than a single type by introducing
some overhead when casting on the receiver.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[355]

We will work with two interfaces now. First, a Subscriber interface:

 type Subscriber interface {
 Notify(interface{}) error
 Close()
 }

Like in the previous example, it must have a Notify method in the Subscriber interface
of new events. This is the Notify method that accepts an interface{} value and returns
an error. The Close() method, however, is new, and it must trigger whatever actions are
needed to stop the Goroutine where the subscriber is listening for new events.

The second and final interface is the Publisher interface:

 type Publisher interface {
 start()
 AddSubscriberCh() chan<- Subscriber
 RemoveSubscriberCh() chan<- Subscriber
 PublishingCh() chan<- interface{}
 Stop()
 }

The Publisher interface has the same actions we already know for a publisher but to work
with channels. The AddSubscriberCh and RemoveSubscriberCh methods accepts a
Subscriber interface (any type that satisfies the Subscriber interface). It must have a
method to publish messages and a Stop method to stop them all (publisher and subscriber
Goroutines)

Acceptance criteria
Requirements between this example and the one in the Chapter 7, Behavioral patterns –
Visitor, State, Mediator, and Observer Design Patterns must not change. The objective in both
examples is the same so the requirements must also be the same. In this case, our
requirements are technical, so we actually need to add some more acceptance criteria:

We must have a publisher with a PublishingCh method that returns a channel1.
to send messages through and triggers a Notify method on every observer
subscribed.
We must have a method to add new subscribers to the publisher.2.
We must have a method to remove new subscribers from the publisher.3.
We must have a method to stop a subscriber.4.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[356]

We must have a method to stop a Publisher interface that will also stop all5.
subscribers.
All inter Goroutine communication must be synchronized so that no Goroutine is6.
locked waiting for a response. In such cases, an error is returned after the
specified timeout period has passed.

Well, these criteria seem quite daunting. We have left out some requirements that would
add even more complexity, such as removing non-responding subscribers or checks to
monitor that the publisher Goroutine is always on.

Unit test
We have mentioned previously that testing concurrent applications can be difficult. With
the correct mechanism, it still can be done, so let's see how much we can test without big
headaches.

Testing subscriber
Starting with subscribers, which seem to have a more encapsulated functionality, the first
subscriber must print incoming messages from the publisher to an io.Writer interface. We
have mentioned that the subscriber has an interface with two methods,
Notify(interface{}) error and the Close() method:

 // writer_sub.go file
 package main

 import "errors"

 type writerSubscriber struct {
 id int
 Writer io.Writer
 }

 func (s *writerSubscriber) Notify(msg interface{}) error {
 return erorrs.NeW("Not implemented yet")
 }
 func (s *writerSubscriber) Close() {}

OK. This is going to be our writer_sub.go file. Create the corresponding test file, called
the writer_sub_test.go file:

 package main

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[357]

 func TestStdoutPrinter(t *testing.T) {

Now, the first problem we have is that the functionality prints to the stdout, so there's no
return value to check. We can solve it in three ways:

Capturing the stdout method.
Injecting an io.Writer interface to print to it. This is the preferred solution, as it
makes the code more manageable.
Redirecting the stdout method to a different file.

We'll take the second approach. Redirection is also a possibility. The os.Stdout is a pointer
to an os.File type, so it involves replacing this file with one we control, and reading from
it:

 func TestWriter(t *testing.T) {
 sub := NewWriterSubscriber(0, nil)

The NewWriterSubscriber subscriber isn't defined yet. It must help in the creation of this
particular subscriber, returning a type that satisfies the Subscriber interface, so let's
quickly declare it on the writer_sub.go file:

 func NewWriterSubscriber(id int, out io.Writer) Subscriber {
 return &writerSubscriber{}
 }

Ideally, it must accept an ID and an io.Writer interface as the destination for its writes. In
this case, we need a custom io.Writer interface for our test, so we'll create a mockWriter
on the writer_sub_test.go file for it:

 type mockWriter struct {
 testingFunc func(string)
 }

 func (m *mockWriter) Write(p []byte) (n int, err error) {
 m.testingFunc(string(p))
 return len(p), nil
 }

The mockWriter structure will accept a testingFunc as one of its fields. This
testingFunc field accepts a string that represents the bytes written to the mockWriter
structure. To implement an io.Writer interface, we need to define a Write([]byte)
(int, error) method. In our definition, we pass the contents of p as a string (remember
that we always need to return the bytes read and an error, or not, on every Write method).
This approach delegates the definition of testingFunc to the scope of the test.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[358]

We are going to call the Notify method on the Subcriber interface, which must write on
the io.Writer interface like the mockWriter structure. So, we'll define the testingFunc
of a mockWriter structure before calling the Notify method:

 // writer_sub_test.go file
 func TestPublisher(t *testing.T) {
 msg := "Hello"

 var wg sync.WaitGroup
 wg.Add(1)

 stdoutPrinter := sub.(*writerSubscriber)
 stdoutPrinter.Writer = &mockWriter{
 testingFunc: func(res string) {
 if !strings.Contains(res, msg) {
 t.Fatal(fmt.Errorf("Incorrect string: %s", res))
 }
 wg.Done()
 },
 }

We will send the Hello message. This also means that whatever the Subscriber interface
does, it must eventually print the Hello message on the provided io.Writer interface.

So if, eventually, we receive a string on the testing function, we'll need to synchronize with
the Subscriber interface to avoid race conditions on tests. That's why we use so much
WaitGroup. It's a very handy and easy-to-use type to handle this scenario. One Notify
method call will need to wait for one call to the Done() method, so we call the Add(1)
method (with one unit).

Ideally, the NewWriterSubscriber function must return an interface, so we need to type
assert it to the type we are working with during the test, in this case, the stdoutPrinter
method. I have omitted error checking when doing the casting on purpose, just to make
things easier. Once we have a writerSubscriber type, we can access its Write field to
replace it with the mockWriter structure. We could have directly passed an io.Writer
interface on the NewWriterSubscriber function, but we wouldn't cover the scenario
where a nil object is passed and it sets the os.Stdout instance to a default value.

So, the testing function will eventually receive a string containing what was written by the
subscriber. We just need to check if the received string, the one that the Subscriber
interface will receive, prints the word Hello at some point and nothing better that
strings.Contains function for it. Everything is defined under the scope of the testing
function, so we can use the value of the t object to also signal that the test has failed.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[359]

Once we have done the checking, we must call to the Done() method to signal that we have
already tested the expected result:

err := sub.Notify(msg)
if err != nil {
 t.Fatal(err)
 }

 wg.Wait()
 sub.Close()
}

We must actually call the Notify and Wait methods for the call to the Done method to
check that everything was correct.

Did you realize that we have defined the behavior on tests more or less in
reverse? This is very common in concurrent apps. It can be confusing
sometimes, as it becomes difficult to know what a function could be doing
if we can't follow calls linearly, but you get used to it quite quickly.
Instead of thinking “it does this, then this, then that,” it's more like “this
will be called when executing that.” This is also because the order of
execution in a concurrent application is unknown until some point, unless
we use synchronization primitives (such as WaitGroups and channels) to
pause execution at certain moments.

Let's execute the test for this type now:

 go test -cover -v -run=TestWriter .
 === RUN TestWriter
 --- FAIL: TestWriter (0.00s)
 writer_sub_test.go:40: Not implemented yet
 FAIL
 coverage: 6.7% of statements
 exit status 1
 FAIL

It has exited fast but it has failed. Actually, the call to the Done() method has not been
executed, so it would be nice to change the last part of our test to this instead:

err := sub.Notify(msg)
if err != nil {
 wg.Done()
 t.Error(err)
 }
 wg.Wait()
 sub.Close()

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[360]

 }

Now, it doesn't stop execution because we are calling the Error function instead of the
Fatal function, but we call the Done() method and the test ends where we prefer it to end,
after the Wait() method is called. You can try to run the tests again, but the output will be
the same.

Testing publisher
We have already seen a Publisher interface and the type that will satisfy which was the
publisher type. The only thing we know for sure is that it will need some way to store
subscribers, so it will at least have a Subscribers slice:

 // publisher.go type
 type publisher struct {
 subscribers []Subscriber
 }

To test the publisher type, we will also need a mock for the Subscriber interface:

 // publisher_test.go
 type mockSubscriber struct {
 notifyTestingFunc func(msg interface{})
 closeTestingFunc func()
 }

 func (m *mockSubscriber) Close() {
 m.closeTestingFunc()
 }

 func (m *mockSubscriber) Notify(msg interface{}) error {
 m.notifyTestingFunc(msg)
 return nil
 }

The mockSubscriber type must implement the Subscriber interface, so it must have a
Close() and a Notify(interface{}) error method. We can embed an existing type
that implements it, such as, the writerSubscriber, and override just the method that is
interesting for us, but we will need to define both, so we won't embed anything.

So, we need to override the Notify and Close methods in this case to call the testing
functions stored on the fields of the mockSubscriber type:

 func TestPublisher(t *testing.T) {
 msg := "Hello"

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[361]

 p := NewPublisher()

First of all, we will be sending messages through channels directly, this could lead to
potential unwanted deadlocks so the first thing to define is a panic handler for cases such
as, sending to close channels or no Goroutines listening on a channel. The message we will
send to subscribers is Hello. So, each subscriber that has been received using the channel
returned by the AddSubscriberCh method must receive this message. We will also use a
New function to create Publishers, called NewPublisher. Change the publisher.go file
now to write it:

 // publisher.go file
 func NewPublisher() Publisher {
 return &publisher{}
 }

Now we'll define the mockSubscriber to add it to the publisher list of known subscribers.
Back to the publisher_test.go file:

 var wg sync.WaitGroup

 sub := &mockSubscriber{
 notifyTestingFunc: func(msg interface{}) {
 defer wg.Done()

 s, ok := msg.(string)
 if !ok {
 t.Fatal(errors.New("Could not assert result"))
 }

 if s != msg {
 t.Fail()
 }
 },
 closeTestingFunc: func() {
 wg.Done()
 },
 }

As usual, we start with a WaitGroup. First, testing the function in our subscriber defers a
call to the Done() method at the end of its execution. Then it needs to type cast msg variable
because it's coming as an interface. Remember that this way, we can use the Publisher
interface with many types by introducing the overhead of the type assertion. This is done
on line s, ok := msg.(string).

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[362]

Once we have type cast msg to a string, s, we just need to check if the value received in the
subscriber is the same as the value we sent, or fail the test if not:

 p.AddSubscriberCh() <- sub
 wg.Add(1)

 p.PublishingCh() <- msg
 wg.Wait()

We add the mockSubscriber type using the AddSubscriberCh method. We publish our
message just after getting ready, by adding one to the WaitGroup, and just before setting
the WaitGroup to wait so that the test doesn't continue until the mockSubscriber type
calls the Done() method.

Also, we need to check if the number of the Subscriber interface has grown after calling
the AddSubscriberCh method, so we'll need to get the concrete instance of publisher on
the test:

 pubCon := p.(*publisher)
 if len(pubCon.subscribers) != 1 {
 t.Error("Unexpected number of subscribers")
 }

Type assertion is our friend today! Once we have the concrete type, we can access the
underlying slice of subscribers for the Publisher interface. The number of subscribers
must be 1 after calling the AddSubscriberCh method once, or the test will fail. The next
step is to check just the opposite–when we remove a Subscriber interface, it must be taken
from this list:

 wg.Add(1)
 p.RemoveSubscriberCh() <- sub
 wg.Wait()

 //Number of subscribers is restored to zero
 if len(pubCon.subscribers) != 0 {
 t.Error("Expected no subscribers")
 }

 p.Stop()
}

The final step in our test is to stop the publisher so no more messages can be sent and all the
Goroutines are stopped.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[363]

The test is finished, but we can't run tests until the publisher type has all the methods
implemented; this must be the final result:

 type publisher struct {
 subscribers []Subscriber
 addSubCh chan Subscriber
 removeSubCh chan Subscriber
 in chan interface{}
 stop chan struct{}
 }

 func (p *publisher) AddSubscriberCh() chan<- Subscriber {
 return nil
 }

 func (p *publisher) RemoveSubscriberCh() chan<- Subscriber {
 return nil
 }

 func (p *publisher) PublishingCh() chan<- interface{} {
 return nil
 }

 func (p *publisher) Stop(){}

With this empty implementation, nothing good can happen when running the tests:

go test -cover -v -run=TestPublisher .
atal error: all goroutines are asleep - deadlock!
goroutine 1 [chan receive]:
 testing.(*T).Run(0xc0420780c0, 0x5244c6, 0xd, 0x5335a0, 0xc042037d20)
 /usr/local/go/src/testing/testing.go:647 +0x31d
 testing.RunTests.func1(0xc0420780c0)
 /usr/local/go/src/testing/testing.go:793 +0x74
 testing.tRunner(0xc0420780c0, 0xc042037e10)
 /usr/local/go/src/testing/testing.go:610 +0x88
 testing.RunTests(0x5335b8, 0x5ada40, 0x2, 0x2, 0x40d7e9)
 /usr/local/go/src/testing/testing.go:799 +0x2fc
 testing.(*M).Run(0xc042037ed8, 0xc04200a4f0)
 /usr/local/go/src/testing/testing.go:743 +0x8c
 main.main()
 go-design-patterns/concurrency_3/pubsub/_test/_testmain.go:56
+0xcd
goroutine 5 [chan send (nil chan)]:
 go-design-patterns/concurrency_3/pubsub.TestPublisher(0xc042078180)
 go-design-patterns/concurrency_3/pubsub/publisher_test.go:55
+0x372
 testing.tRunner(0xc042078180, 0x5335a0)

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[364]

 /usr/local/go/src/testing/testing.go:610 +0x88
 created by testing.(*T).Run
 /usr/local/go/src/testing/testing.go:646 +0x2f3
 exit status 2
 FAIL go-design-patterns/concurrency_3/pubsub 1.587s

Yes it has failed but, it's not a controlled fail at all. This was done on purpose to show a
couple of things to be careful of in Go. First of all, the error produced in this test is a fatal
error, which usually points to a bug in the code. This is important because while a
panic error can be recovered, you cannot do the same with a fatal error.

In this case, the error is telling us the problem: goroutine 5 [chan send (nil chan)],
a nil channel so it's actually a bug in our code. How can we solve this? Well, this is also
interesting.

The fact that we have a nil channel is caused by the code we wrote to compile unit tests
but this particular error won't be raised once the appropriate code is written (because we'll
never return a nil channel in this case). We could return a channel that is never use we cause
a fatal error with a deadlock, which wouldn't be any progress at all either.

An idiomatic way to solve it would be to return a channel and an error so that you can have
an error package with a type implementing the Error interface that returns a specific error
such as NoGoroutinesListening or ChannelNotCreated. We have already seen many of
this implementations so we'll leave these as an exercise to the reader and we will move
forward to maintain focus on the concurrent nature of the chapter.

Nothing surprising there, so we can move to the implementation phase.

Implementation
To recall, the writerSubscriber must receive messages that it will write on a type that
satisfies the io.Writer interface.

So, where do we start? Well, each subscriber will run its own Goroutine, and we have seen
that the best method to communicate with a Goroutine is a channel. So, we will need a field
with a channel in the Subscriber type. We can use the same approach as in pipelines to
end with the NewWriterSubscriber function and the writerSubscriber type:

 type writerSubscriber struct {
 in chan interface{}
 id int
 Writer io.Writer
 }

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[365]

 func NewWriterSubscriber(id int, out io.Writer) Subscriber {
 if out == nil {
 out = os.Stdout
 }

 s := &writerSubscriber{
 id: id,
 in: make(chan interface{}),
 Writer: out,
 }

 go func(){
 for msg := range s.in {
 fmt.Fprintf(s.Writer, "(W%d): %v\n", s.id, msg)
 }
 }()

 return s
 }

In the first step, if no writer is specified (the out argument is nil), the default io.Writer
interface is stdout. Then, we create a new pointer to the writerSubscriber type with the
ID passed in the first argument, the value of out (os.Stdout, or whatever came in the
argument if it wasn't nil), and a channel called in to maintain the same naming as in
previous examples.

Then we launch a new Goroutine; this is the launching mechanism we mentioned. Like in
the pipelines, the subscriber will iterate over the in channel every time a new message is
received and it will format its contents to a string, which also contains the ID of the current
subscriber.

As we learned previously, if the in channel is closed, the for range loop will stop and
that particular Goroutine will finish, so the only thing we need to do in the Close method is
to actually close the in channel:

 func (s *writerSubscriber) Close() {
 close(s.in)
 }

OK, only the Notify method is left; the Notify method is a convenient method to manage
a particular behavior when communicating, and we will use a pattern that is common in
many calls:

 func (s *writerSubscriber) Notify(msg interface{}) (err error) {
 defer func(){
 if rec := recover(); rec != nil {

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[366]

 err = fmt.Errorf("%#v", rec)
 }
 }()

 select {
 case s.in <- msg:
 case <-time.After(time.Second):
 err = fmt.Errorf("Timeout\n")
 }

 return
 }

When communicating with a channel, there are two behavior that we must usually control:
one is waiting time and the other is when the channel is closed. The deferred function
actually works for any panicking error that can occur within the function. If the Goroutine
panics, it will still execute the deferred function with the recover() method. The
recover() method returns an interface of whatever the error was, so in our case, we set the
returning variable error to the formatted value returned by recover (which is an interface).
The "%#v" parameter gives us most of the information about any type when formatted to a
string. The returned error will be ugly, but it will contain most of the information we can
extract about the error. For a closed channel, for example, it will return “send on a closed
channel”. Well, this seems clear enough.

The second rule is about waiting time. When we send a value over a channel, we will be
blocked until another Goroutine takes the value from it (it will happen the same with a
filled buffered channel). We don't want to get blocked forever, so we set a timeout period of
one second by using a select handler. In short, with select we are saying: either you take the
value in less than 1 second or I will discard it and return an error.

We have the Close, Notify, and NewWriterSubscriber methods, so we can try our test
again:

go test -run=TestWriter -v .
=== RUN TestWriter
--- PASS: TestWriter (0.00s)
PASS
ok

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[367]

Much better now. The Writer has taken the mock writer we wrote on the test and has
written to it the value we pass to the Notify method. At the same time, close has probably
closed the channel effectively, because the Notify method is returning an error after calling
the Close method. One thing to mention is that we can't check if a channel is closed or not
without interacting with it; that's why we had to defer the execution of a closure that will
check the contents of the recover() function in the Notify method.

Implementing the publisher
OK, the publisher will need also a launching mechanism, but the main problems to deal
with are race conditions accessing the subscriber list. We can solve this issue with a Mutex
object from the sync package but we have already seen how to use this so we will use
channels instead.

When using channels, we will need a channel for each action that can be considered
dangerous–add a subscriber, remove a subscriber, retrieve the list of subscribers to Notify
method them of a message, and a channel to stop all the subscribers. We also need a
channel for incoming messages:

 type publisher struct {
 subscribers []Subscriber
 addSubCh chan Subscriber
 removeSubCh chan Subscriber
 in chan interface{}
 stop chan struct{}
 }

Names are self-descriptive but, in short, subscribers maintain the list of subscribers; this is
the slice that needs multiplexed access. The addSubCh instance is the channel to
communicate with when you want to add a new subscriber; that's why it's a channel of
subscribers. The same explanation applies to the removeSubCh channel, but this channel is
to remove the subscriber. The in channel will handle incoming messages that must be
broadcast to all subscribers. Finally, the stop channel must be called when we want to kill
all Goroutines.

OK, let's start with the AddSubscriberCh, RemoveSubscriber and PublishingCh
methods, which must return the channel to add and remove subscribers and the channel to
send messages to all of them:

 func (p *publisher) AddSubscriber() {
 return p.addSubCh
 }

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[368]

 func (p *publisher) RemoveSubscriberCh() {
 return p.removeSubCh
 }

 func (p *publisher) PublishMessage(){
 return p.in
 }

The Stop() function the stop channel by closing it. This will effectively spread the signal
to every listening Goroutine:

func (p *publisher) Stop(){
 close(p.stop)
}

The Stop method, the function to stop the publisher and the subscribers, also pushes to its
respective channel, called stop.

You may be wondering why we don't simply leave the channels available so that users
push directly to this channel instead of using the proxying function. Well, the idea is that
the user that integrates the library in their app doesn't have to deal with the complexity of
the concurrent structure associated with the library, so they can focus on their business
while maximizing performance as much as possible.

Handling channels without race conditions
Until now, we have forwarded data to the channels on the publisher but we haven't actually
handled any of that data. The launcher mechanism that is going to launch a different
Goroutine will handle them all.

We will create a launch method that we will execute by using the go keyword instead of
embedding the whole function inside the NewPublisher function:

func (p *publisher) start() {
 for {
 select {
 case msg := <-p.in:
 for _, ch := range p.subscribers {
 sub.Notify(msg)
 }

Launch is a private method and we haven't tested it. Remember that private methods are
usually called from public methods (the ones we have tested). Generally, if a private
method is not called from a public method, it can't be called at all!

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[369]

The first thing we notice with this method is that it is an infinite for loop that will repeat a
select operation between many channels but only one of them can be executed each time.
The first of these operations is the one that receives a new message to publish to
subscribers. The case msg := <- p.in: code handles this incoming operation.

In this case, we are iterating over all subscribers and executing their Notify method. You
may be wondering why we don't add the go keyword in front so that the Notify method is
executed as a different Goroutine and therefore iterates much faster. Well, this because we
aren't demultiplexing the actions of receiving a message and of closing the message. So, if
we launch the subscriber in a new Goroutine and it is closed while the message is processed
in the Notify method, we'll have a race condition where a message will try to be sent
within the Notify method to a closed channel. In fact, we are considering this scenario
when we develop the Notify method but, still, we won't control the number of Goroutines
launched if we call the Notify method in a new Goroutine each time. For simplicity, we
just call the Notify method, but it is a nice exercise to control the number of Goroutines
waiting for a return in a Notify method execution. By buffering the in channel in each
subscriber, we can also achieve a good solution:

 case sub := <-p.addSubCh:
 p.subscribers = append(p.subscribers, sub)

The next operation is what to do when a value arrives to the channel to add subscribers. In
this case it's simple: we update it, appending the new value to it. While this case is
executed, not other calls can be executed in this selection:

 case sub := <-p.removeSubCh:
 for i, candidate := range p.subscribers {
 if candidate == sub {
 p.subscribers = append(p.subscribers[:i],
p.subscribers[i+1:]...)
 candidate.Close()
 break
 }
 }

When a value arrives at the remove channel, the operation is a bit more complex because
we have to search for the subscriber in the slice. We use a O(N) approach for it, iterating
from the beginning until we find it, but the search algorithm could be greatly improved.
Once we find the corresponding Subscriber interface, we remove it from the subscribers
slice and stop it. One thing to mention is that on tests, we are accessing the length of the
subscribers slice directly without demultiplexing the operation. This is clearly a race
condition, but generally, it isn't reflected when running the race detector.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[370]

The solution will be to develop a method just to multiplex calls to get the length of the slice,
but it won't belong to the public interface. Again, for simplicity, we'll leave it like this, or
this example may become too complex to handle:

 case <-p.stop:
 for _, sub := range p.subscribers {
 sub.Close()
 }

 close(p.addSubCh)
 close(p.in)
 close(p.removeSubCh)

 return
 }
 }
}

The last operation to demultiplex is the stop operation, which must stop all Goroutines in
the publisher and subscribers. Then we have to iterate through every Subscriber stored in
the subscribers field to execute their Close() method, so their Goroutines are closed, too.
Finally, if we return this Goroutine, it will finish, too.

OK, time to execute all tests and see how is it going:

go test -race .
ok

Not so bad. All tests have passed successfully and we have our Observer pattern ready.
While the example can still be improved, it is a great example of how we must handle an
Observer pattern using channels in Go. As an exercise, we encourage you to try the same
example using mutexes instead of channels to control access. It's a bit easier, and will also
give you an insight of how to work with mutexes.

A few words on the concurrent Observer pattern
This example has demonstrated how to take advantage of multi-core CPUs to build a
concurrent message publisher by implementing the Observer pattern. While the example
was long, we have tried to show a common pattern when developing concurrent apps in
Go.

Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

[371]

Summary
We have seen few approaches to develop concurrent structures that can be run in parallel.
We have tried to show a few ways to solve the same problem, one without concurrency
primitives and one with them. We have seen how different the publish/subscriber example
written with a concurrent structure can be compared to the classic one.

We have also seen how to build a concurrent operation using a pipeline and we have
parallelize it by using a worker pool, a very common Go pattern to maximize parallelism.

Both examples were simple enough to grasp, while digging as much as possible in to the
nature of the Go language instead of in the problem itself.

Index

A
Abstract Factory design pattern
 about 74, 83
 description 75
 objectives 75
 vehicle factory, example 75
actor-based concurrency
 versus Communicating Sequential Processes

(CSP) 276
actors 214
Adapter design pattern
 about 99
 acceptance criteria 100
 description 99
 examples 103, 106, 107
 implementing 102
 incompatible interface, using 100
 objective 100
 Printer Adapter, unit testing 100, 102
 requisites 100
 source code 108
anonymous function 21
Apache Mesos 275
app
 with workers pool 349, 350
arithmetic library 39
arrays
 about 24
 zero-initialization 25

B
Barrier concurrency pattern
 about 309
 acceptance criteria 310
 advantages 318
 description 309

 HTTP GET aggregator 309
 implementation 314, 318
 integration test, writing 311, 314
 objectives 309
BasicAuthMiddleware middleware 140
binary Go folder 11
buffered channels 293, 295
Builder design pattern
 about 56
 description 57
 objectives 57
 vehicle manufacturing, example 57
 wrapping up 65

C
callback hell 285
callbacks 283, 285
chain of responsibility design pattern
 about 179
 closure 188, 189, 190
 description 179
 implementation 186, 187, 188, 191
 multi-logger chain 180
 objectives 180
 unit testing 181, 182, 186
channels
 about 291
 buffered channels 293, 295
 creating 291, 292, 293
 directional channels 295, 296
 ranging over 300, 301
 select statement 296, 298
closures 22
Command design pattern
 about 191
 acceptance criteria 193
 chain of responsibility design pattern, using 197,

[373]

199

 description 191
 example 193
 examples 195, 197
 implementation 193, 195
 objectives 192
 wrapping up 199
common channel 310
Communicating Sequential Processes (CSP)
 about 274
 versus actor-based concurrency 276
Composite design pattern
 about 91
 acceptance criteria 93
 Binary Trees compositions 97
 compositions, creating 93, 96
 description 92
 features 99
 objective 92
 requisites 93
 used, for solving swimmer and fish problem 93
 versus inheritance 98
concurrency
 history 273
 versus parallelism 274
concurrent multi-operation
 building 331
 LaunchPipeline function, implementing 337
 lists, generating 336
 numbers, raising to power of 2 336
 reduce operation 337
concurrent publish/subscriber design pattern
 about 353
 acceptance criteria 355
 channels, handling 368, 369, 370
 conclusion 370
 concurrent notifier example 354
 description 353
 implementation 364, 365
 objectives 354
 publisher, implementing 367, 368
 publisher, testing 360, 361, 363, 364
 subscriber, testing 356, 357, 360
 unit tests, writing 356
concurrent singleton

 implementation 302, 303, 306
 testing 301, 302
 writing 301
Concurrent Versions System (CVS) 27
ConsoleStrategy type 166
constants 16
Creational design patterns 56
customized shirts shop example
 about 84
 acceptance criteria 84
 implementation 88
 unit test 85

D
Decorator design pattern
 about 130
 acceptance criteria 131
 description 130
 example 131, 138, 139, 141, 142
 Go's structural typing 144
 implementation 136, 138
 objectives 131
 unit testing 132, 133, 134
 versus Proxy design pattern 145
Delve 14
direct composition 93
directional channels 295, 296

E
embedding composition 93
encoding package 43, 45
End User License Agreement (EULA) 11
Erlang 274
errors
 creating 22
 handling 22
 returning 22
ETCD project
 about 41
 URL 41

F
Facade design pattern
 about 145
 acceptance criteria 146

[374]

 description 145
 example 146
 implementing 151, 153
 library, creating 153
 objectives 146
 unit testing 147, 148, 150
Factory method pattern
 about 66, 74
 description 66
 objectives 66
 payment methods for shop, example 67
FileStrategy type 166
Finite State Machines (FSM) 191, 237
First In First Out (FIFO) 122
flow control
 about 18
 if/else statement 18
 switch statement 19
Flyweight design pattern
 about 154
 acceptance criteria 155
 description 154
 example 155
 implementation 158, 159, 160, 162
 objectives 154
 structs 155, 157, 158
 unit testing 155, 157, 158
 versus Singleton design pattern 162
functions
 about 20
 anonymous function 21
 closures 22
 composition 20
 errors, creating 22
 errors, handling 22
 errors, returning 22
 returned types, naming 24
 with undetermined parameters 23
Future design pattern
 about 319
 acceptance criteria 321
 asynchronous requester, developing 321
 description 319
 implementation 327, 328, 329
 objectives 321

 Template pattern, using 330
 unit test, writing 322, 323, 324, 326

G
Gcode 226
GitHub
 Go open source projects, contributing 48
Go get tool 41
Go-plus 14
Go
 advanced installation, on Linux 10
 history 9
 installing 9
 installing, on Linux 10
 installing, on Mac OS X 11
 installing, on Windows 11
 structural typing 144
 URL 10, 12
 workspace, setting 12
godoc tool 47
gofmt tool 46
goimport tool 47
golang webpage 10
golint tool
 about 45
 URL 45
GOPATH 9, 12
Goroutines
 about 277
 anonymous functions, launching 279, 280
 Hello World program, creating 277, 279
 WaitGroups 280, 281

H
Hello World example
 creating 13
HTTP Basic Authentication 140
HTTP REST API 146

I
if/else statement 18
Inferred types 16
inheritance
 versus Composite design pattern 98
Integrated Development Environment (IDE) 14

[375]

Intellij Gogland 14
Interface Definition Languages (IDL) 226
interfaces
 about 32
 contract, signing 32, 34
International Organization for Standardization

(ISO) 147
Interpreter design pattern
 about 225
 acceptance criteria, for calculator 227
 advantages 235
 complexity 232
 example 226
 implementation 228, 229, 231, 232
 Interpreter interface, using 233, 234, 235
 objectives 226
 unit testing 227, 228

J
JavaScript Object Notation (JSON) 42
JSON data
 encoding package 43, 45
 managing 42, 43

L
libraries
 about 38, 39
 naming conventions 41
Linux
 Go, installing 10
LiteIDE 14

M
Mac OS X
 Go, installing 11
maps 24, 26
Mediator design pattern
 about 257
 acceptance criteria 258
 calculator, creating 258
 description 257
 implementation 258, 259, 261, 262
 objectives 257
 types, uncoupling 262
Memento design pattern

 about 214
 acceptance criteria 215
 Care Taker 214
 description 214
 example 221, 224, 225
 example, with strings 215
 implementing 219, 221
 Memento 214
 objectives 214
 Originator 214
 requisites 215
 summarizing 225
 unit testing 215, 217, 219
minimal-mesos-go-framework 12
mutexes
 about 286
 concurrent counter example 287, 288
 race detector, using 288, 289, 291

O
Observer design pattern
 about 262
 acceptance criteria 263
 description 262
 implementation 268, 271
 notifier 263
 objectives 263
 unit tests, performing 264, 265, 266, 268
OpenCV 167
OpenWeatherMap API
 URL 147, 152
operators 17

P
parallelism
 versus concurrency 274
payment methods for shop example
 about 67
 acceptance criteria 67
 Debit card method, upgrading to new platform 72
 implementation 70
 unit test 67
Pipeline design pattern
 about 330
 acceptance criteria 331

[376]

 concurrent multi-operation 331
 description 330
 implementation 333
 objectives 330
 testing 331, 332
 usage 338
pointers
 about 29
 advantages 29
Promise 319
Prototype design pattern
 about 83, 90
 customized shirts shop, example 84
 description 84
 objective 84
Proxy design pattern
 about 121
 acceptance criteria 122
 around actions 130
 description 121
 example 122
 implementation 127, 130
 objectives 122
 unit testing 122, 123, 126, 127
 versus Decorator design pattern 145

R
race condition 286
race detector
 using 288, 289, 291
reminder keyword 214

S
Scala 274
Secure Shell (SSH) 51
select statement 296, 298
Singleton design pattern
 about 50, 56
 counter, example 51
 description 51
 objectives 51
 versus Flyweight design pattern 162
slices 24, 25
State design pattern
 about 250

 acceptance criteria 251
 description 250
 game state, defining 256
 game, building 257
 implementation 251, 252, 254, 256
 number game, creating 251
 objectives 250
Stock Keeping Unit (SKU) 84
Strategy design pattern
 about 164
 acceptance criteria 166
 advantages 179
 description 165
 images, rendering 165
 implementation 167, 169, 172
 library issues, solving 172, 174, 175, 177, 179
 objectives 165
 text, rendering 165
structural typing 144
structure (structs) 29, 30, 32
switch statement 19

T
tandem bike 274
Template design pattern
 about 201
 acceptance criteria 203
 anonymous function, using 206, 209
 description 202
 example 202
 implementing 205, 206
 modifications, avoiding on interface 209, 211
 objectives 202
 requisites 203
 source code 212, 213
 summarizing 213
 unit testing 203, 205
Terminal program 13
Test Driven Development (TDD) 34, 37, 38
testing
 about 34
 package, using 35, 36
tools
 about 45
 godoc tool 47

 gofmt tool 46
 goimport tool 47
 golint tool 45
transaction operation 225
types 15

U
unique counter example
 about 51
 acceptance criteria 52
 implementation 55
 requisites 52
 unit tests, writing 52

V
variables 16
vehicle factory example
 about 75
 acceptance criteria 76
 implementation 82
 unit test 76
vehicle manufacturing example
 about 57
 acceptance criteria 58
 manufacturing, implementation 62
 requisites 58
 unit test, for vehicle builder 58
visibility 26
Visitor design pattern

 about 237
 acceptance criteria 239
 advantages 250
 description 238
 example 245, 246, 249
 implementation 243, 245
 log appender 238
 objectives 238
 unit tests, performing 239, 240, 242, 243

W
WaitGroups 280, 281
Windows
 Go, installing 11
workers pool
 acceptance criteria 341
 description 341
 Dispatcher interface, implementing 343, 344,

345

 implementation 342, 343
 objectives 341
 pipeline 341
 pipeline, developing 345, 346, 347, 348
 testing 351, 352
 usage 353
 used, with app 349, 350

Z
zero-initialization 25, 27, 28

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Ready... Steady... Go!
	A little bit of history
	Installing Go
	Linux
	Go Linux advanced installation

	Windows
	Mac OS X
	Setting the workspace – Linux and Apple OS X

	Starting with Hello World
	Integrated Development Environment – IDE
	Types
	Variables and constants
	Operators
	Flow control
	The if… else statement
	The switch statement
	The for…range statement

	Functions
	What does a function look like?
	What is an anonymous function?
	Closures
	Creating errors, handling errors and returning errors.
	Function with undetermined number of parameters
	Naming returned types

	Arrays, slices, and maps
	Arrays
	Zero-initialization

	Slices
	Maps

	Visibility
	Zero-initialization
	Pointers and structures
	What is a pointer? Why are they good?
	Structs

	Interfaces
	Interfaces – signing a contract

	Testing and TDD
	The testing package
	What is TDD?

	Libraries
	The Go get tool
	Managing JSON data
	The encoding package

	Go tools
	The golint tool
	The gofmt tool
	The godoc tool
	The goimport tool

	Contributing to Go open source projects in GitHub
	Summary

	Chapter 2: Creational Patterns -Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns
	Singleton design pattern – having a unique instance of a type in the entire program
	Description
	Objectives
	Example – a unique counter
	Requirements and acceptance criteria
	Writing unit tests first
	Implementation
	A few words about the Singleton design pattern

	Builder design pattern – reusing an algorithm to create many implementations of an interface
	Description
	Objectives
	Example – vehicle manufacturing
	Requirements and acceptance criteria
	Unit test for the vehicle builder
	Implementation
	Wrapping up the Builder design pattern

	Factory method – delegating the creation of different types of payments
	Description
	Objectives
	The example – a factory of payment methods for a shop
	Acceptance criteria
	First unit test
	Implementation
	Upgrading the Debitcard method to a new platform
	What we learned about the Factory method

	Abstract Factory – a factory of factories
	Description
	The objectives
	The vehicle factory example, again?
	Acceptance criteria
	Unit test
	Implementation
	A few lines about the Abstract Factory method

	Prototype design pattern
	Description
	Objective
	Example
	Acceptance criteria
	Unit test
	Implementation
	What we learned about the Prototype design pattern

	Summary

	Chapter 3: Structural Patterns - Composite, Adapter, and Bridge Design Patterns
	Composite design pattern
	Description
	Objectives
	The swimmer and the fish
	Requirements and acceptance criteria
	Creating compositions
	Binary Tree compositions
	Composite pattern versus inheritance
	Final words on the Composite pattern

	Adapter design pattern
	Description
	Objectives
	Using an incompatible interface with an Adapter object
	Requirements and acceptance criteria
	Unit testing our Printer adapter
	Implementation
	Examples of the Adapter pattern in Go's source code
	What the Go source code tells us about the Adapter pattern

	Bridge design pattern
	Description
	Objectives
	Two printers and two ways of printing for each
	Requirements and acceptance criteria
	Unit testing the Bridge pattern
	Implementation
	Reuse everything with the Bridge pattern

	Summary

	Chapter 4: Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns
	Proxy design pattern
	Description
	Objectives
	Example
	Acceptance criteria
	Unit test
	Implementation
	Proxying around actions

	Decorator design pattern
	Description
	Objectives
	Example
	Acceptance criteria
	Unit test
	Implementation
	A real-life example – server middleware
	Starting with the common interface, http.Handler

	A few words about Go's structural typing
	Summarizing the Decorator design pattern – Proxy versus Decorator

	Facade design pattern
	Description
	Objectives
	Example
	Acceptance criteria
	Unit test
	Implementation
	Library created with the Facade pattern

	Flyweight design pattern
	Description
	Objectives
	Example
	Acceptance criteria
	Basic structs and tests
	Implementation
	What's the difference between Singleton and Flyweight then?

	Summary

	Chapter 5: Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns
	Strategy design pattern
	Description
	Objectives
	Rendering images or text
	Acceptance criteria
	Implementation
	Solving small issues in our library
	Final words on the Strategy pattern

	Chain of responsibility design pattern
	Description
	Objectives
	A multi-logger chain
	Unit test
	Implementation
	What about a closure?
	Putting it together

	Command design pattern
	Description
	Objectives
	A simple queue
	Acceptance criteria
	Implementation
	More examples
	Chain of responsibility of commands
	Rounding-up the Command pattern up

	Summary

	Chapter 6: Behavioral Patterns - Template, Memento, and Interpreter Design Patterns
	Template design pattern
	Description
	Objectives
	Example – a simple algorithm with a deferred step
	Requirements and acceptance criteria
	Unit tests for the simple algorithm
	Implementing the Template pattern
	Anonymous functions
	How to avoid modifications on the interface
	Looking for the Template pattern in Go's source code
	Summarizing the Template design pattern

	Memento design pattern
	Description
	Objectives
	A simple example with strings
	Requirements and acceptance criteria
	Unit test
	Implementing the Memento pattern
	Another example using the Command and Facade patterns
	Last words on the Memento pattern

	Interpreter design pattern
	Description
	Objectives
	Example – a polish notation calculator
	Acceptance criteria for the calculator
	Unit test of some operations
	Implementation
	Complexity with the Interpreter design pattern
	Interpreter pattern again – now using interfaces
	The power of the Interpreter pattern

	Summary

	Chapter 7: Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns
	Visitor design pattern
	Description
	Objectives
	A log appender
	Acceptance criteria
	Unit tests
	Implementation of Visitor pattern
	Another example
	Visitors to the rescue!

	State design pattern
	Description
	Objectives
	A small guess the number game
	Acceptance criteria
	Implementation of State pattern
	A state to win and a state to lose
	The game built using the State pattern

	Mediator design pattern
	Description
	Objectives
	A calculator
	Acceptance criteria
	Implementation
	Uncoupling two types with the Mediator

	Observer design pattern
	Description
	Objectives
	The notifier
	Acceptance criteria
	Unit tests
	Implementation
	Summary

	Chapter 8: Introduction to Gos Concurrency
	A little bit of history and theory
	Concurrency versus parallelism
	CSP versus actor-based concurrency

	Goroutines
	Our first Goroutine
	Anonymous functions launched as new Goroutines
	WaitGroups

	Callbacks
	Callback hell

	Mutexes
	An example with mutexes – concurrent counter
	Presenting the race detector

	Channels
	Our first channel
	Buffered channels
	Directional channels
	The select statement
	Ranging over channels too!

	Using it all – concurrent singleton
	Unit test
	Implementation

	Summary

	Chapter 9: Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns
	Barrier concurrency pattern
	Description
	Objectives
	An HTTP GET aggregator
	Acceptance criteria
	Unit test – integration
	Implementation
	Waiting for responses with the Barrier design pattern

	Future design pattern
	Description
	Objectives
	A simple asynchronous requester
	Acceptance criteria
	Unit tests
	Implementation
	Putting the Future together

	Pipeline design pattern
	Description
	Objectives
	A concurrent multi-operation
	Acceptance criteria
	Beginning with tests
	Implementation
	The list generator
	Raising numbers to the power of 2
	Final reduce operation
	Launching the Pipeline pattern

	Final words on the Pipeline pattern

	Summary

	Chapter 10: Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns
	Workers pool
	Description
	Objectives
	A pool of pipelines
	Acceptance criteria
	Implementation
	The dispatcher
	The pipeline

	An app using the workers pool
	No tests?
	Wrapping up the Worker pool

	Concurrent Publish/Subscriber design pattern
	Description
	Objectives
	Example – a concurrent notifier
	Acceptance criteria
	Unit test
	Testing subscriber
	Testing publisher

	Implementation
	Implementing the publisher
	Handling channels without race conditions

	A few words on the concurrent Observer pattern

	Summary

	Index

