

Go	Standard	Library	Cookbook
	

	

	

	

	

	

	

	

	

	

	

	

Over	120	specific	ways	to	make	full	use	of	the	standard	library
components	in	Golang
	

	

	

	

	

	

	

	

	

	

	

	

Radomír	Sohlich

	

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Go	Standard	Library	Cookbook
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted
in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of
brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for
any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot
guarantee	the	accuracy	of	this	information.

Commissioning	Editor:	Merint	Mathew
Acquisition	Editor:	Aiswarya	Narayanan
Content	Development	Editor:	Anugraha	Arunagiri
Technical	Editor:	Subhalaxmi	Nadar
Copy	Editor:	Safis	Editing
Project	Coordinator:	Ulhas	Kambali
Proofreader:	Safis	Editing
Indexer:	Rekha	Nair
Graphics:	Tania	Dutta
Production	Coordinator:		Arvindkumar	Gupta

First	published:	February	2018

Production	reference:	1230218

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78847-527-3

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks
and	Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.Pa
cktPub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the
eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,
sign	up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and
offers	on	Packt	books	and	eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Radomír	Sohlich	received	the	master’s	degree	in	Applied	Informatics	from
Faculty	of	Applied	Informatics	at	Tomas	Bata	University	in	Zlín.	After	that,
he	got	a	job	in	a	start-up	company	as	a	software	developer	and	worked	on
various	projects,	usually	based	on	the	Java	platform.	Currently,	he	continues	a
software	developer	career	as	a	contractor	for	a	large	international	company.

In	2015,	he	fell	in	love	with	Go	and	kept	exploring	the	endless	power	and
possibilities	of	the	language.	He	is	passionate	about	learning	new	approaches
and	technology	and	feels	the	same	about	sharing	the	knowledge	with	others.

I’d	like	to	thank	my	beloved	wife	and	kids	for	the	time	they	gave	me	for
creating	this	book.	The	next	big	thank	you	belongs	to	Mert	Serin,	who	agreed
to	review	the	book	and	give	a	feedback	on	the	content.

About	the	reviewer
Mert	Serin	was	born	in	Izmir	in	1993,	graduated	from	Hacettepe	University
in	2016,	and	has	worked	on	iOS	development	since	his	third	year	in
university.	He	is	currently	working	at	USIT	Inc.,	a	start-up	based	in	Atlanta,
GE,	as	a	full	stack	developer.

	

	

	

	

Packt	is	searching	for	authors	like
you
If	you’re	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.
com	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global
tech	community.	You	can	make	a	general	application,	apply	for	a	specific	hot
topic	that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents

Title	Page
Copyright	and	Credits

Go	Standard	Library	Cookbook
Packt	Upsell

Why	subscribe?
PacktPub.com

Contributors
About	the	author
About	the	reviewer
Packt	is	searching	for	authors	like	you

Preface
Who	this	book	is	for
What	this	book	covers
To	get	the	most	out	of	this	book

Download	the	example	code	files
Conventions	used

Sections
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…
See	also

Get	in	touch
Reviews

1.	 Interacting	with	the	Environment
Introduction
Retrieving	the	Golang	version

Getting	ready
How	to	do	it…
How	it	works…

Accessing	program	arguments
How	to	do	it…
How	it	works…
There’s	more…

Creating	a	program	interface	with	the	flag	package
How	to	do	it…
How	it	works…
There’s	more…

Getting	and	setting	environment	variables	with	default	values
How	to	do	it…
How	it	works…

Retrieving	the	current	working	directory

How	to	do	it…
How	it	works…

Getting	the	current	process	PID
How	to	do	it…
How	it	works…

Handling	operating	system	signals
How	to	do	it…
How	it	works…

Calling	an	external	process
Getting	ready
How	to	do	it…
How	it	works…
See	also

Retrieving	child	process	information
Getting	ready
How	to	do	it…
How	it	works…
See	also

Reading/writing	from	the	child	process
Getting	ready
How	to	do	it…
How	it	works…

Shutting	down	the	application	gracefully
How	to	do	it…
How	it	works…
See	also

File	configuration	with	functional	options
How	to	do	it…
How	it	works…

2.	 Strings	and	Things
Introduction
Finding	the	substring	in	a	string

How	to	do	it…
How	it	works…
See	also

Breaking	the	string	into	words
How	to	do	it…
How	it	works…
There’s	more…

Joining	the	string	slice	with	a	separator
How	to	do	it…
How	it	works…
There’s	more…

Concatenating	a	string	with	writer
How	to	do	it…
How	it	works…
There’s	more…

Aligning	text	with	tabwriter
How	to	do	it…
How	it	works…

Replacing	part	of	the	string
How	to	do	it…
How	it	works…
There’s	more…

Finding	the	substring	in	text	by	the	regex	pattern
How	to	do	it…
How	it	works…
See	also

Decoding	a	string	from	the	non-Unicode	charset
How	to	do	it…
How	it	works…

Controlling	case
How	to	do	it…
How	it	works…

Parsing	comma-separated	data
How	to	do	it…
How	it	works…

Managing	whitespace	in	a	string
How	to	do	it…
How	it	works…
See	also

Indenting	a	text	document
How	to	do	it…
How	it	works…
See	also

3.	 Dealing	with	Numbers
Introduction
Converting	strings	to	numbers

How	to	do	it…
How	it	works…

Comparing	floating-point	numbers
How	to	do	it…
How	it	works…

Rounding	floating-point	numbers
How	to	do	it…
How	it	works…

Floating-point	arithmetics
How	to	do	it…
How	it	works…
There’s	more…
See	also

Formatting	numbers
How	to	do	it…
How	it	works…
There’s	more…

Converting	between	binary,	octal,	decimal,	and	hexadecimal
How	to	do	it…
How	it	works…

Formatting	with	the	correct	plurals
Getting	ready
How	to	do	it…
How	it	works…
There’s	more…

Generating	random	numbers
How	to	do	it…
How	it	works…

Operating	complex	numbers
How	to	do	it…
How	it	works…

Converting	between	degrees	and	radians
How	to	do	it…
How	it	works…

Taking	logarithms
How	to	do	it…
How	it	works…

Generating	checksums
How	to	do	it…

How	it	works…

4.	 Once	Upon	a	Time
Introduction
Finding	today’s	date

How	to	do	it…
How	it	works…
See	also

Formatting	date	to	string
How	to	do	it…
How	it	works…
See	also

Parsing	the	string	into	date
How	to	do	it…
How	it	works…

Converting	dates	to	epoch	and	vice versa
How	to	do	it…
How	it	works…

Retrieving	time	units	from	the	date
How	to	do	it…
How	it	works…

Date	arithmetics
How	to	do	it…
How	it	works…

Finding	the	difference	between	two	dates
How	to	do	it…
How	it	works…

Converting	between	time	zones
How	to	do	it…
How	it	works…

Running	the	code	block	periodically
How	to	do	it…
How	it	works…

Waiting	a	certain	amount	of	time
How	to	do	it…
How	it	works…

Timeout	long-running	operations
How	to	do	it…
How	it	works…
There’s	more…

Serializing	the	time	and	date
How	to	do	it…
How	it	works…

5.	 In	and	Out
Introduction
Reading	standard	input

How	to	do	it…
How	it	works…

Writing	standard	output	and	error
How	to	do	it…
How	it	works…

Opening	a	file	by	name
How	to	do	it…
How	it	works…

Reading	the	file	into	a	string
How	to	do	it…
How	it	works…

Reading/writing	a	different	charset
How	to	do	it…
How	it	works…
See	also

Seeking	a	position	within	a	file
How	to	do	it…
How	it	works…

Reading	and	writing	binary	data
How	to	do	it…
How	it	works…

Writing	to	multiple	writers	at	once
How	to	do	it…
How	it	works…

Piping	between	writer	and	reader
How	to	do	it…
How	it	works…

Serializing	objects	to	binary	format
How	to	do	it…
How	it	works…

Reading	and	writing	ZIP	files
How	to	do	it…
How	it	works…

Parsing	a	large	XML	file	effectively
How	to	do	it…
How	it	works…

Extracting	data	from	an	incomplete	JSON	array
How	to	do	it…
How	it	works…

6.	 Discovering	the	Filesystem
Introduction
Getting	file	information

How	to	do	it…
How	it	works…

Creating	temporary	files
How	to	do	it…
How	it	works…

Writing	the	file
How	to	do	it…
How	it	works…

Writing	the	file	from	multiple	goroutines
How	to	do	it…
How	it	works…

Listing	a	directory
How	to	do	it…
How	it	works…

Changing	file	permissions
How	to	do	it…
How	it	works…

Creating	files	and	directories
How	to	do	it…
How	it	works…

Filtering	file	listings
How	to	do	it…
How	it	works…
See	also

Comparing	two	files
How	to	do	it…
How	it	works…

Resolving	the	user	home	directory
How	to	do	it…
How	it	works…

7.	 Connecting	the	Network
Introduction
Resolving	local	IP	addresses

How	to	do	it…
How	it	works…

Connecting	to	the	remote	server
How	to	do	it…
How	it	works…

Resolving	the	domain	by	IP	address	and	vice	versa
How	to	do	it…
How	it	works…

Connecting	to	the	HTTP	server
How	to	do	it…
How	it	works…
See	also

Parsing	and	building	a	URL
How	to	do	it…
How	it	works…

Creating	an	HTTP	request
How	to	do	it…
How	it	works…

Reading	and	writing	HTTP	headers
How	to	do	it…
How	it	works…

Handling	HTTP	redirects
How	to	do	it…
How	it	works…

Consuming	the	RESTful	API
How	to	do	it…
How	it	works…

Sending	a	simple	email
Getting	ready
How	to	do	it…
How	it	works…

Calling	the	JSON-RPC	service
How	to	do	it…
How	it	works…

8.	 Working	with	Databases
Introduction
Connecting	the	database

Getting	ready
How	to	do	it…
How	it	works…

Validating	the	connection
Getting	ready
How	to	do	it…
How	it	works…

Executing	statements
Getting	ready
How	to	do	it…
How	it	works…

Operations	with	prepared	statements
Getting	ready
How	to	do	it…
How	it	works…

Canceling	the	pending	query
Getting	ready
How	to	do	it…
How	it	works…

Reading	query	result	metadata
Getting	ready
How	to	do	it…
How	it	works…

Retrieving	data	from	a	query	result
Getting	ready
How	to	do	it…
How	it	works…

Parsing	the	query	result	into	a	map
Getting	ready
How	to	do	it…
How	it	works…

Handling	transactions
Getting	ready
How	to	do	it…
How	it	works…

Executing	stored	procedures	and	functions
Getting	ready
How	to	do	it…
How	it	works…

9.	 Come	to	the	Server	Side
Introduction
Creating	the	TCP	server

How	to	do	it…
How	it	works…

Creating	the	UDP	server
How	to	do	it…
How	it	works…

Handling	multiple	clients
How	to	do	it…
How	it	works…

Creating	the	HTTP	Server
How	to	do	it…
How	it	works…

Handling	HTTP	requests
How	to	do	it…
How	it	works…

Creating	HTTP	middleware	layer
How	to	do	it…
How	it	works…

Serving	static	files
How	to	do	it…
How	it	works…

Serving	content	generated	with	templates
How	to	do	it…
How	it	works…

Handling	redirects
How	to	do	it…
How	it	works…

Handling	cookies
How	to	do	it…
How	it	works…

Gracefully	shutdown	the	HTTP	server
How	to	do	it…
How	it	works…

Serving	secured	HTTP	content
Getting	ready
How	to	do	it…
How	it	works…

Resolving	form	variables
How	to	do	it…
How	it	works…

10.	 Fun	with	Concurrency
Introduction
Synchronizing	access	to	a	resource	with	Mutex

How	to	do	it…
How	it	works…

Creating	map	for	concurrent access
How	to	do	it…
How	it	works…

Running	a	code	block	only	once
How	to	do	it…
How	it	works…

Pooling	resources	across	multiple	goroutines
How	to	do	it…
How	it	works…

Synchronizing	goroutines	with	WaitGroup
How	to	do	it…
How	it	works…

Getting	the	fastest	result	from	multiple	sources
How	to	do	it…
How	it	works…

Propagating	errors	with	errgroup
How	to	do	it…
How	it	works…

11.	 Tips	and	Tricks
Introduction
Logging	customization

How	to	do	it…
How	it	works…

Testing	the	code
How	to	do	it…
How	it	works…
See	also

Benchmarking	the	code
How	to	do	it…
How	it	works…
See	also

Creating	subtests
How	to	do	it…
How	it	works…
See	also

Testing	the	HTTP	handler
How	to	do	it…
How	it	works…

Accessing	tags	via	reflection
How	to	do	it…
How	it	works…

Sorting	slices
How	to	do	it…
How	it	works…

Breaking	HTTP	handlers	into	groups
How	to	do	it…
How	it	works…

Utilizing	HTTP/2	server	push
Getting	ready
How	to	do	it…
How	it	works…

Other	Books	You	May	Enjoy
Leave	a	review	-	let	other	readers	know	what	you	think

Preface
Thanks	for	giving	this	book	a	chance!	This	book	is	a	guide	that	takes	you
through	the	possibilities	of	the	Go	standard	library,	which	has	a	lot	of	out-of-
the-box	functionality	and	solutions.	Note	that	the	solutions	covered	in	the
book	are	mainly	simple	demonstrations	of	how	the	standard	library
implementation	is	used	and	how	it	works.	These	recipes	are	meant	to	provide
a	starting	point	for	you	to	work	out	how	to	solve	your	specific	problem	rather
than	solve	the	problem	completely.

Who	this	book	is	for
This	book	is	for	those	who	want	to	strengthen	the	basics	and	reveal	hidden
parts	of	the	Go	standard	library.	The	book	expects	readers	to	have	the
elementary	knowledge	of	Go.	For	some	recipes,	a	basic	understanding	of
HTML,	operating	systems,	and	networking	will	be	helpful.

What	this	book	covers
Chapter	1,	Interacting	with	the	Environment,	explores	how	your	code	can
interact	with	the	operating	system	environment.	The	use	of	command-line
flags	and	arguments,	consuming	signals,	and	working	with	child	processes	are
also	covered.

Chapter	2,	Strings	and	Things,	goes	through	common	operations	on	strings,
from	simple	searching	for	substrings	to	formatting	text	to	tabs.

Chapter	3,	Dealing	with	Numbers,	sheds	light	on	basic	conversions	and	number
formatting	options.	Operations	with	large	numbers	and	the	correct	use	of
plurals	within	output	messages	are	covered.

Chapter	4,	Once	Upon	a	Time,	puts	the	time	package	under	the	magnifying	glass
and	covers	formatting,	arithmetics,	and	running	code	for	given	time	period	or
after	a	certain	delay.

Chapter	5,	In	and	Out,	covers	I/O	operations	that	utilize	standard	Go	interfaces.
Besides	the	basic	I/O,	the	chapter	also	covers	some	useful	serialization
formats	and	how	to	handle	them.

Chapter	6,	Discover	the	Filesystem,	discusses	working	with	the	filesystem,
including	listing	the	folders,	reading	and	changing	the	file	attributes,	and
comparing	files	side	by	side.

Chapter	7,	Connect	the	Network,	showcases	the	client-side	implementations	for
connecting	the	TCP	and	UDP	server,	along	with	the	use	of	SMTP,	HTTP,	and
JSON-RPC	.

Chapter	8,	Working	with	Databases,	focuses	on	common	database	tasks	such	as
data	selection	and	extraction,	transaction	handling	and	execution,	and	the
shortcomings	of	stored	procedures.

Chapter	9,	Come	to	the	Server	Side,	provides	a	view	on	networking	from	the
server’s	perspective.	TCP,	UDP,	and	HTTP	server	basics	are	presented.

Chapter	10,	Fun	with	Concurrency,	deals	with	mechanisms	of	synchronization
and	concurrent	access	to	resources.

Chapter	11,	Tips	and	Tricks,	comes	with	useful	tips	for	testing	and	improving	the
HTTP	server	implementation	and	shows	the	benefits	of	HTTP/2	push.

To	get	the	most	out	of	this	book
Although	the	Go	programming	platform	is	cross-platform,	the	recipes	in	the
book	usually	assumes	a	Unix-based	operating	system,	or	at	least	that	some
common	Unix	utilities	are	available	for	execution.	For	Windows	users,	the
Cygwin	or	GitBash	utilities	could	be	useful.	The	sample	code	works	best	with
this	setup:

Unix-based	environment
A	version	of	Go	equal	to	or	greater	than	1.9.2
An	internet	connection
Read,	write,	and	execute	permissions	on	a	folder	where	the	sample	code
will	be	created	and	executed

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	
www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtp
ub.com/support	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Go-Standard-Library-Cookbook.	In	case	there’s	an	update	to	the	code,	it	will	be
updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

	

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Go-Standard-Library-Cookbook
https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	”Verify	that	your	GOPATH	and	GOROOT	environmental
variables	are	set	properly.”

A	block	of	code	is	set	as	follows:
package	main

import	(

		"log"

		"runtime"

)

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

package	main

import	(

		"log"

		"runtime"

)

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see
onscreen.	For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like
this.

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting
ready,	How	to	do	it…,	How	it	works…,	There’s	more…,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	use	these	sections	as
follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe	and	describes	how	to	set	up
any	software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in
the	previous	section.

There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to
make	you	more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in
the	subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this
book,	please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we
would	be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/su
bmit-errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,
and	entering	the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location
address	or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link
to	the	material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you
have	expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a
book,	please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave
a	review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see
and	use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

https://www.packtpub.com/

Interacting	with	the	Environment
In	this	chapter,	the	following	recipes	are	covered:

Retrieving	the	Golang	version
Accessing	program	arguments
Creating	a	program	interface	with	the	flag	package
Getting	and	setting	environment	variables	with	default	values
Retrieving	the	current	working	directory
Getting	the	current	process	PID
Handling	operating	system	signals
Calling	an	external	process
Retrieving	child	process	information
Reading/writing	from	the	child	process
Shutting	down	the	application	gracefully
File	configuration	with	functional	options

Introduction
Every	program,	once	it	is	executed,	exists	in	the	environment	of	the	operating
system.	The	program	receives	input	and	provides	output	to	this	environment.
The	operating	system	also	needs	to	communicate	with	the	program	to	let	it
know	what’s	happening	outside.	And	finally,	the	program	needs	to	respond
with	appropriate	actions.	

This	chapter	will	walk	you	through	the	basics	of	the	discovery	of	the	system
environment,	the	program	parameterization	via	program	arguments,	and	the
concept	of	the	operating	system	signals.	You	will	also	learn	how	to	execute
and	communicate	with	the	child	process.

Retrieving	the	Golang	version
While	building	a	program,	it	is	a	good	practice	to	log	the	environment
settings,	build	version,	and	runtime	version,	especially	if	your	application	is
more	complex.	This	helps	you	to	analyze	the	problem,	in	case	something	goes
wrong.

Besides	the	build	version	and,	for	example,	the	environmental	variables,	the
Go	version	by	which	the	binary	was	compiled	could	be	included	in	the	log.
The	following	recipe	will	show	you	how	to	include	the	Go	runtime	version
into	such	program	information.

Getting	ready
Install	and	verify	the	Go	installation.	The	following	steps	could	help:

1.	 Download	and	install	Go	on	your	machine.
2.	 Verify	that	your	GOPATH	and	GOROOT	environmental	variables	are	set

properly.
3.	 Open	your	Terminal	and	execute	go	version.	If	you	get	output	with	a

version	name,	then	Go	is	installed	properly.
4.	 Create	a	repository	in	the	GOPATH/src	folder.

How	to	do	it…
The	following	steps	cover	the	solution:

1.	 Open	the	console	and	create	the	folder	chapter01/recipe01.
2.	 Navigate	to	the	directory.
3.	 Create	the	main.go	file	with	the	following	content:

								package	main

								import	(

										"log"

										"runtime"

)

								const	info	=	`

										Application	%s	starting.

										The	binary	was	build	by	GO:	%s`

								func	main()	{

										log.Printf(info,	"Example",	runtime.Version())

								}

4.	 Run	the	code	by	executing	the	go	run	main.go.
5.	 See	the	output	in	the	Terminal:

How	it	works…
The	runtime	package	contains	a	lot	of	useful	functions.	To	find	out	the	Go
runtime	version,	the	Version	function	could	be	used.	The	documentation	states
that	the	function	returns	the	hash	of	the	commit,	and	the	date	or	tag	at	the	time
of	the	binary	build.

The	Version	function,	in	fact,	returns	the	runtime/internal/sys	.The
Version	constant.	The	constant	itself	is	located	in
the	$GOROOT/src/runtime/internal/sys/zversion.go	file.

This	.go	file	is	generated	by	the	go	dist	tool	and	the	version	is	resolved	by
the	findgoversion	function	in	the	go/src/cmd/dist/build.go	file,	as	explained	next.

The	$GOROOT/VERSION	takes	priority.	If	the	file	is	empty	or	does	not	exist,
the	$GOROOT/VERSION.cache	file	is	used.	If	the	$GOROOT/VERSION.cache	is	also	not	found,
the	tool	tries	to	resolve	the	version	by	using	the	Git	information,	but	in	this
case,	you	need	to	initialize	the	Git	repository	for	the	Go	source.

Accessing	program	arguments
The	most	simple	way	to	parameterize	the	program	run	is	to	use	the	command-
line	arguments	as	program	parameters.	

Simply,	the	parameterized	program	call	could	look	like	this:	./parsecsv	user.csv
role.csv.	In	this	case,	parsecsv	is	the	name	of	the	executed	binary	and
user.csv	and	role.csv	are	the	arguments,	that	modify	the	program	call	(in	this
case	it	refers	to	files	to	be	parsed).

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter01/recipe02.
2.	 Navigate	to	the	directory.
3.	 Create	the	main.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"os"

)

								func	main()	{

										args	:=	os.Args

										//	This	call	will	print

										//	all	command	line	arguments.

										fmt.Println(args)

										//	The	first	argument,	zero	item	from	slice,

										//	is	the	name	of	the	called	binary.

										programName	:=	args[0]

										fmt.Printf("The	binary	name	is:	%s	\n",	programName)

										//	The	rest	of	the	arguments	could	be	obtained

										//	by	omitting	the	first	argument.

										otherArgs	:=	args[1:]

										fmt.Println(otherArgs)

										for	idx,	arg	:=	range	otherArgs	{

												fmt.Printf("Arg	%d	=	%s	\n",	idx,	arg)

										}

								}

4.	 Build	the	binary	by	executing	go	build	-o	test.
5.	 Execute	the	command	./test	arg1	arg2.	(Windows	users	can	run	test.exe

arg1	arg2).
6.	 See	the	output	in	the	Terminal:

How	it	works…
The	Go	standard	library	offers	a	few	ways	to	access	the	arguments	of	the
program	call.	The	most	generic	way	is	to	access	the	arguments	by
the	Args	variable	from	the	OS	package.

This	way	you	can	get	all	the	arguments	from	the	command	line	in	a	string
slice.	The	advantage	of	this	approach	is	that	the	number	of	arguments	is
dynamic	and	this	way	you	can,	for	example,	pass	the	names	of	the	files	to	be
processed	by	the	program.

The	preceding	example	just	echoes	all	the	arguments	that	are	passed	to	the
program.	Finally,	let’s	say	the	binary	is	called	test	and	the	program	run	is
executed	by	the	Terminal	command	./test	arg1	arg2.

In	detail,	the	os.Args[0]	will	return	./test.	The	os.Args[1:]	returns	the	rest	of	the
arguments	without	the	binary	name.	In	the	real	world,	it	is	better	to	not	rely
on	the	number	of	arguments	passed	to	the	program,	but	always	check	the
length	of	the	argument	array.	Otherwise,	naturally,	if	the	argument	on	a	given
index	is	not	within	the	range,	the	program	panics.

There’s	more…
If	the	arguments	are	defined	as	flags,	-flag	value,	additional	logic	is	needed	to
assign	the	value	to	the	flag.	In	this	case,	there	is	a	better	way	to	parse	these	by
using	the	flag	package.	This	approach	is	part	of	the	next	recipe.

Creating	a	program	interface	with
the	flag	package
The	previous	recipe	describes	how	to	access	the	program	arguments	by	a	very
generic	approach.

This	recipe	will	provide	a	way	of	defining	an	interface	via	the	program	flags.
This	approach	dominates	systems	based	on	GNU/Linux,	BSD,	and	macOS.	
The	example	of	the	program	call	could	be	ls	-l	which	will,	on	*NIX	systems,
list	the	files	in	a	current	directory.	

The	Go	package	for	flag	handling	does	not	support	flag	combining	like	ls	-ll,
where	there	are	multiple	flags	after	a	single	dash.	Each	flag	must	be	separate.
The	Go	flag	package	also	does	not	differentiate	between	long	options	and
short	ones.	Finally,	-flag	and	--flag	are	equivalent.	

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter01/recipe03.
2.	 Navigate	to	the	directory.
3.	 Create	the	main.go	file	with	the	following	content:

								package	main

								import	(

										"flag"

										"fmt"

										"log"

										"os"

										"strings"

)

								//	Custom	type	need	to	implement

								//	flag.Value	interface	to	be	able	to

								//	use	it	in	flag.Var	function.

								type	ArrayValue	[]string

								func	(s	*ArrayValue)	String()	string	{

										return	fmt.Sprintf("%v",	*s)

								}

								func	(a	*ArrayValue)	Set(s	string)	error	{

										*a	=	strings.Split(s,	",")

										return	nil

								}

								func	main()	{

	

										//	Extracting	flag	values	with	methods	returning	pointers

										retry	:=	flag.Int("retry",	-1,	"Defines	max	retry	count")

										//	Read	the	flag	using	the	XXXVar	function.

										//	In	this	case	the	variable	must	be	defined

										//	prior	to	the	flag.

										var	logPrefix	string

										flag.StringVar(&logPrefix,	"prefix",	"",	"Logger	prefix")

										var	arr	ArrayValue

										flag.Var(&arr,	"array",	"Input	array	to	iterate	through.")

										//	Execute	the	flag.Parse	function,	to

										//	read	the	flags	to	defined	variables.

										//	Without	this	call	the	flag

										//	variables	remain	empty.

										flag.Parse()

										//	Sample	logic	not	related	to	flags

										logger	:=	log.New(os.Stdout,	logPrefix,	log.Ldate)

										retryCount	:=	0

										for	retryCount	<	*retry	{

												logger.Println("Retrying	connection")

												logger.Printf("Sending	array	%v\n",	arr)

												retryCount++

										}

								}

4.	 Build	the	binary	by	executing	the	go	build	-o	util.
5.	 From	the	console,	execute	./util	-retry	2	-prefix=example	-array=1,2.

6.	 See	the	output	in	the	Terminal:

How	it	works…
For	the	flag	definition	in	code,	the	flag	package	defines	two	types	of
functions.

The	first	type	is	the	simple	name	of	the	flag	type	such	as	Int.	This	function
will	return	the	pointer	to	the	integer	variable	where	the	value	of	the	parsed
flag	is.

The	XXXVar	functions	are	the	second	type.	These	provide	the	same
functionality,	but	you	need	to	provide	the	pointer	to	the	variable.	The	parsed
flag	value	will	be	stored	in	the	given	variable.

The	Go	library	also	supports	a	custom	flag	type.	The	custom	type	must
implement	the	Value	interface	from	the	flag	package.

As	an	example,	let’s	say	the	flag	retry	defines	the	retry	limit	for	reconnecting
to	the	endpoint,	the	prefix	flag	defines	the	prefix	of	each	row	in	a	log,	and
the	array	is	the	array	flag	that	will	be	send	as	an	payload	to	server.	The
program	call	from	the	Terminal	will	look	like	./util	-retry	2	-prefix=example
array=1,2.

The	important	part	of	the	preceding	code	is	the	Parse()	function	which	parses
the	defined	flags	from	Args[1:].	The	function	must	be	called	after	all	flags	are
defined	and	before	the	values	are	accessed.

The	preceding	code	shows	how	to	parse	some	data	types	from	the	command-
line	flags.	Analogously,	the	other	built-in	types	are	parsed.	

The	last	flag,	array,	demonstrates	the	definition	of	the	custom	type	flag.	Note
that	the	ArrayType	implements	the	Value	interface	from	the	flag	package.

There’s	more…
The	flag	package	contains	more	functions	to	design	the	interface	with	flags.	It
is	worth	reading	the	documentation	for	FlagSet.

By	defining	the	new	FlagSet,	the	arguments	could	be	parsed	by	calling
the	myFlagset.Parse(os.Args[2:]).	This	way	you	can	have	flag	subsets	based	on,
for	example,	the	first	flag.

Getting	and	setting	environment
variables	with	default	values
The	previous	recipe,	Creating	a	program	interface	with	the	flag	package,
describes	how	to	use	flags	as	program	parameters.

The	other	typical	way	of	parameterization,	especially	for	larger	applications,
is	the	configuration	with	the	use	of	environment	variables.	Environment
variables	as	a	configuration	option	significantly	simplify	the	deployment	of
the	applications.	These	are	also	very	common	in	cloud	infrastructure.

Usually,	the	configuration	of	a	database	connection	for	a	local	and	for	an
automated	build	environment	is	different.

If	the	configuration	is	defined	by	the	environment	variables,	it	is	not
necessary	to	change	the	application	config	files	or	even	the	application	code.
The	exported	environment	variables	(for	example,	DBSTRING)	are	all	we	need.	It
is	also	very	practical	to	default	the	configuration	if	the	environmental	variable
is	not	in	place.	This	way,	the	life	of	the	application	developers	is	much	easier.

This	recipe	will	demonstrate	how	to	read,	set	and	unset	the	environment
variable.	It	will	also	show	you	how	to	implement	the	default	option	if	the
variable	is	not	set.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter01/recipe04.
2.	 Navigate	to	the	directory.

3.	 Create	the	get.go	file	with	the	following	content:

								package	main

								import	(

										"log"

										"os"

)

								func	main()	{

										connStr	:=	os.Getenv("DB_CONN")

										log.Printf("Connection	string:	%s\n",	connStr)

								}

4.	 Execute	the	code	by	calling	DB_CONN=db:/user@example	&&	go	run	get.go	in	the
Terminal.

5.	 See	the	output	in	the	Terminal:

6.	 Create	the	lookup.go	file	with	the	following	content:

								package	main

								import	(

										"log"

										"os"

)

								func	main()	{

										key	:=	"DB_CONN"

				

										connStr,	ex	:=	os.LookupEnv(key)

										if	!ex	{

												log.Printf("The	env	variable	%s	is	not	set.\n",	key)

										}

										fmt.Println(connStr)

								}

7.	 Execute	the	code	by	calling	unset	DB_CONN	&&	go	run	lookup.go	in	the

Terminal.
8.	 See	the	output	in	the	Terminal:

9.	 Create	the	main.go	file	with	the	following	content:

								package	main

								import	(

										"log"

										"os"

)

								func	main()	{

										key	:=	"DB_CONN"

										//	Set	the	environmental	variable.

										os.Setenv(key,	"postgres://as:as@example.com/pg?

																										sslmode=verify-full")

										val	:=	GetEnvDefault(key,	"postgres://as:as@localhost/pg?

																																					sslmode=verify-full")

										log.Println("The	value	is	:"	+	val)

										os.Unsetenv(key)

										val	=	GetEnvDefault(key,	"postgres://as:as@127.0.0.1/pg?

																																				sslmode=verify-full")

										log.Println("The	default	value	is	:"	+	val)

								}

	

								func	GetEnvDefault(key,	defVal	string)	string	{

										val,	ex	:=	os.LookupEnv(key)

										if	!ex	{

												return	defVal

										}

										return	val

								}

10.	 Run	the	code	by	executing	go	run	main.go.
11.	 See	the	output	in	the	Terminal:

How	it	works…
The	environment	variables	are	accessed	by	the	Getenv	and	Setenv	functions		in
the	os	package.	The	names	of	the	functions	are	self-explanatory	and	do	not
need	any	further	description.	

There	is	one	more	useful	function	in	the	os	package.	The	LookupEnv	function
provides	two	values	as	a	result;	the	value	of	the	variable,	and	the	boolean
value	which	defines	if	the	variable	was	set	or	not	in	the	environment.

The	disadvantage	of	the	os.Getenv	function	is	that	it	returns	an	empty	string,
even	in	cases	where	the	environment	variable	is	not	set.

This	handicap	could	be	overcome	by	the	os.LookupEnv	function,	which	returns
the	string	as	a	value	of	the	environment	variable	and	the	boolean	value	that
indicates	whether	the	variable	was	set	or	not.

	To	implement	the	retrieval	of	the	environment	variable	or	the	default	one,	use
the	os.LookupEnv	function.	Simply,	if	the	variable	is	not	set,	which	means	that
the	second	returned	value	is	false,	then	the	default	value	is	returned.	The	use
of	the	function	is	part	of	step	9.

Retrieving	the	current	working
directory
Another	useful	source	of	information	for	the	application	is	the	directory,
where	the	program	binary	is	located.	With	this	information,	the	program	can
access	the	assets	and	files	collocated	with	the	binary	file.

This	recipe	is	using	the	solution	for	Go	since	version	1.8.	This
one	is	the	preferred	one.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter01/recipe05.
2.	 Navigate	to	the	directory.
3.	 Create	the	main.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"os"

										"path/filepath"

)

								func	main()	{

										ex,	err	:=	os.Executable()

										if	err	!=	nil	{

												panic(err)

										}

										//	Path	to	executable	file

										fmt.Println(ex)

										//	Resolve	the	direcotry

										//	of	the	executable

										exPath	:=	filepath.Dir(ex)

										fmt.Println("Executable	path	:"	+	exPath)

	

										//	Use	EvalSymlinks	to	get

										//	the	real	path.

										realPath,	err	:=	filepath.EvalSymlinks(exPath)

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println("Symlink	evaluated:"	+	realPath)

								}

4.	 Build	the	binary	by	the	command	go	build	-o	binary.
5.	 Execute	the	binary	by	the	Terminal	call	./binary.
6.	 See	the	output.	It	should	display	the	absolute	path	on	your	machine:

How	it	works…
Since	Go	1.8,	the	Executable	function	from	the	os	package	is	the	preferred	way
of	resolving	the	path	of	the	executable.	The	Executable	function	returns	the
absolute	path	of	the	binary	that	is	executed	(unless	the	error	is	returned).

To	resolve	the	directory	from	the	binary	path,	the	Dir	from	the	filepath	package
is	applied.	The	only	pitfall	of	this	is	that	the	result	could	be	the	symlink	or	the
path	it	pointed	to.

To	overcome	this	unstable	behavior,	the	EvalSymlinks	from	the	filepath	package
could	be	applied	to	the	resultant	path.	With	this	hack,	the	returned	value
would	be	the	real	path	of	the	binary.

The	information	about	the	directory	where	the	binary	is	located	could	be
obtained	with	the	use	of	the	Executable	function	in	the	os	library.

Note	that	if	the	code	is	run	by	the	command	go	run,	the	actual	executable	is
located	in	a	temporary	directory.

Getting	the	current	process	PID
Getting	to	know	the	PID	of	the	running	process	is	useful.	The	PID	could	be
used	by	OS	utilities	to	find	out	the	information	about	the	process	itself.	It	is
also	valuable	to	know	the	PID	in	case	of	process	failure,	so	you	can	trace	the
process	behavior	across	the	system	in	system	logs,	such
as	/var/log/messages,	/var/log/syslog.

This	recipe	shows	you	how	to	use	the	os	package	to	obtain	a	PID	of	the
executed	program,	and	use	it	with	the	operating	system	utility	to	obtain	some
more	information.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter01/recipe06.
2.	 Navigate	to	the	directory.
3.	 Create	the	main.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"os"

										"os/exec"

										"strconv"

)

								func	main()	{

	

										pid	:=	os.Getpid()

										fmt.Printf("Process	PID:	%d	\n",	pid)

										prc	:=	exec.Command("ps",	"-p",	strconv.Itoa(pid),	"-v")

										out,	err	:=	prc.Output()

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println(string(out))

								}

4.	 Run	the	code	by	executing	the	go	run	main.go.

5.	 See	the	output	in	the	Terminal:

How	it	works…
The	function	Getpid	from	the	os	package	returns	the	PID	of	a	process.	The
sample	code	shows	how	to	get	more	information	on	the	process	from	the
operating	system	utility	ps.

It	could	be	useful	to	print	the	PID	at	the	start	of	the	application,	so	at	the	time
of	the	crash,	the	cause	could	also	be	investigated	by	the	retrieved	PID.

Handling	operating	system	signals
Signals	are	the	elementary	way	the	operating	systems	communicate	with	the
running	process.	Two	of	the	most	usual	signals	are	called	SIGINT	and	SIGTERM.
These	cause	the	program	to	terminate.

There	are	also	signals	such	as	SIGHUP.	SIGHUP	indicates	that	the	terminal	which
called	the	process	was	closed	and,	for	example,	the	program	could	decide	to
move	to	the	background.

Go	provides	a	way	of	handling	the	behavior	in	case	the	application	received
the	signal.	This	recipe	will	provide	an	example	of	implementing	the	handling.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter01/recipe07.
2.	 Navigate	to	the	directory.
3.	 Create	the	main.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"os"

										"os/signal"

										"syscall"

)

								func	main()	{

										//	Create	the	channel	where	the	received

										//	signal	would	be	sent.	The	Notify

										//	will	not	block	when	the	signal

										//	is	sent	and	the	channel	is	not	ready.

										//	So	it	is	better	to

										//	create	buffered	channel.

										sChan	:=	make(chan	os.Signal,	1)

										//	Notify	will	catch	the

										//	given	signals	and	send

										//	the	os.Signal	value

										//	through	the	sChan.

										//	If	no	signal	specified	in	

										//	argument,	all	signals	are	matched.

										signal.Notify(sChan,

												syscall.SIGHUP,

												syscall.SIGINT,

												syscall.SIGTERM,

												syscall.SIGQUIT)

										//	Create	channel	to	wait	till	the

										//	signal	is	handled.

										exitChan	:=	make(chan	int)

										go	func()	{

												signal	:=	<-sChan

												switch	signal	{

														case	syscall.SIGHUP:

																fmt.Println("The	calling	terminal	has	been	closed")

																exitChan	<-	0

														case	syscall.SIGINT:

																fmt.Println("The	process	has	been	interrupted	by	CTRL+C")

																exitChan	<-	1

														case	syscall.SIGTERM:

																fmt.Println("kill	SIGTERM	was	executed	for	process")

																exitChan	<-	1

														case	syscall.SIGQUIT:

																fmt.Println("kill	SIGQUIT	was	executed	for	process")

																exitChan	<-	1

												}

										}()

										code	:=	<-exitChan

										os.Exit(code)

								}

4.	 Run	the	code	by	executing	go	run	main.go.
5.	 Send	the	SIGINT	signal	to	the	application	by	pressing	CTRL	+	C.
6.	 See	the	output:

How	it	works…
In	an	application,	where	the	resources	are	acquired,	a	resource	leak	could
happen	in	the	case	of	an	instant	termination.	It	is	better	to	handle	the	signals
and	take	some	necessary	steps	to	release	the	resources.	The	preceding	code
shows	the	concept	of	how	to	do	that.

The	Notify	function	from	the	signal	package	would	be	the	one	that	helps	us	to
handle	the	received	signals.

If	no	signal	is	specified	as	an	argument	in	a	Notify	function,	the
function	will	catch	all	possible	signals.

Note	that	the	Notify	function	of	the	signal	package	is	communicating	with	the
goroutine	by	the	sChan	channel.	Notify	then	catches	the	defined	signals	and	sends
these	to	goroutine	to	be	handled.	Finally,	exitChan	is	used	to	resolve	the	exit
code	of	the	process.

The	important	information	is	that	the	Notify	function	will	not	block	the	signal
if	the	assigned	channel	is	not	ready.	This	way	the	signal	could	be	missed.	To
avoid	missing	the	signal,	it	is	better	to	create	the	buffered	channel.

Note	that	the	SIGKILL	and	SIGSTOP	signals	may	not	be	caught	by	the
Notify	function,	thus	it	is	not	possible	to	handle	these.

Calling	an	external	process
The	Go	binary	could	also	be	used	as	a	tool	for	various	utilities	and	with	use	of
go	run	as	a	replacement	for	the	bash	script.	For	these	purposes,	it	is	usual	that
the	command-line	utilities	are	called.

In	this	recipe,	the	basics	of	how	to	execute	and	handle	the	child	process
will	be	provided.

Getting	ready
Test	if	the	following	commands	work	in	your	Terminal:

1.	 Test	if	the	ls	(dir	for	Windows)	command	exists	in	your	$PATH.
2.	 You	should	be	able	to	execute	the	ls	(dir	in	Windows)	command	in	your

Terminal.

How	to	do	it…
The	following	steps	cover	the	solution:

1.	 Open	the	console	and	create	the	folder	chapter01/recipe08.
2.	 Navigate	to	the	directory.
3.	 Create	the	run.go	file	with	the	following	content:

								package	main

								import	(

										"bytes"

										"fmt"

										"os/exec"

)

								func	main()	{

										prc	:=	exec.Command("ls",	"-a")

										out	:=	bytes.NewBuffer([]byte{})

										prc.Stdout	=	out

										err	:=	prc.Run()

										if	err	!=	nil	{

												fmt.Println(err)

										}

										if	prc.ProcessState.Success()	{

												fmt.Println("Process	run	successfully	with	output:\n")

												fmt.Println(out.String())

										}

								}

4.	 Run	the	code	by	executing	go	run	run.go.

5.	 See	the	output	in	the	Terminal:

6.	 Create	the	start.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"os/exec"

)

								func	main()	{

										prc	:=	exec.Command("ls",	"-a")

										err	:=	prc.Start()

										if	err	!=	nil	{

												fmt.Println(err)

										}

										prc.Wait()

										if	prc.ProcessState.Success()	{

												fmt.Println("Process	run	successfully	with	output:\n")

												fmt.Println(out.String())

										}

								}

7.	 Run	the	code	by	executing	go	run	start.go.
8.	 See	the	output	in	Terminal:

How	it	works…
The	Go	standard	library	provides	a	simple	way	of	calling	the	external	process.
This	could	be	done	by	the	Command	function	of	the	os/exec	package.

The	simplest	way	is	to	create	the	Cmd	struct	and	call	the	Run	function.
The	Run	function	executes	the	process	and	waits	until	it	completes.	If	the
command	exited	with	an	error,	the	err	value	is	not	null.

This	is	more	suitable	for	calling	the	OS	utils	and	tools,	so	the	program	does
not	hang	too	long.

The	process	could	be	executed	asynchronously	too.	This	is	done	by	calling
the	Start	method	of	the	Cmd	structure.	In	this	case,	the	process	is	executed,	but
the	main	goroutine	does	not	wait	until	it	ends.	The	Wait	method	could	be	used	to
wait	until	the	process	ends.	After	the	Wait	method	finishes,	the	resources	of	the
process	are	released.

This	approach	is	more	suitable	for	executing	long-running	processes	and
services	that	the	program	depends	on.

See	also
This	recipe	describes	how	to	simply	execute	the	child	process.	There
are	Retrieve	child	process	information	and	Reading/writing	from	the	child
process	recipes	in	this	chapter	that	also	provide	the	steps	on	how	to	read	from
and	write	to	the	child	process,	and	get	useful	information	about	the	process.

Retrieving	child	process	information
The	recipe	Calling	an	external	process	describes	how	to	call	the	child
process,	synchronously	and	asynchronously.	Naturally,	to	handle	the	process
behavior	you	need	to	find	out	more	about	the	process.		This	recipe	shows	how
to	obtain	the	PID	and	elementary	information	about	the	child	process	after	it
terminates.

The	information	about	the	running	process	could	be	obtained	only	via
the	syscall	package	and	it	is	highly	platform-dependent.

Getting	ready
Test	if	the	sleep	(timeout	for	Windows)	command	exists	in	the	Terminal.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter01/recipe09.
2.	 Navigate	to	the	directory.
3.	 Create	the	main_running.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"os/exec"

										"runtime"

)

								func	main()	{

										var	cmd	string

										if	runtime.GOOS	==	"windows"	{

												cmd	=	"timeout"

										}	else	{

												cmd	=	"sleep"

										}

										proc	:=	exec.Command(cmd,	"1")

										proc.Start()

										//	No	process	state	is	returned

										//	till	the	process	finish.

										fmt.Printf("Process	state	for	running	process:	%v\n",

																					proc.ProcessState)

										//	The	PID	could	be	obtain

										//	event	for	the	running	process

										fmt.Printf("PID	of	running	process:	%d\n\n",	

																					proc.Process.Pid)

								}

4.	 Run	the	code	by	executing	go	run	main_running.go.
5.	 See	the	output	in	the	Terminal:

6.	 Create	the	main.go	file	with	the	following	content:

								func	main()	{

										var	cmd	string

										if	runtime.GOOS	==	"windows"	{

												cmd	=	"timeout"

										}	else	{

												cmd	=	"sleep"

										}

										proc	:=	exec.Command(cmd,	"1")

										proc.Start()

										//	Wait	function	will

										//	wait	till	the	process	ends.

										proc.Wait()

										//	After	the	process	terminates

										//	the	*os.ProcessState	contains

										//	simple	information

										//	about	the	process	run

										fmt.Printf("PID:	%d\n",	proc.ProcessState.Pid())

										fmt.Printf("Process	took:	%dms\n",	

																					proc.ProcessState.SystemTime()/time.Microsecond)

										fmt.Printf("Exited	sucessfuly	:	%t\n",

																					proc.ProcessState.Success())

								}

7.	 Run	the	code	by	executing	go	run	main.go.
8.	 See	the	output	in	the	Terminal:

How	it	works…
The	os/exec	standard	library	provides	the	way	to	execute	the	process.
Using	Command,	the	Cmd	structure	is	returned.	The	Cmd	provides	the	access	to
process	the	representation.	When	the	process	is	running,	you	can	only	find	out
the	PID.

There	is	only	a	little	information	that	you	can	retrieve	about	the	process.	But
by	retrieving	the	PID	of	the	process,	you	are	able	to	call	the	utilities	from	the
OS	to	get	more	information.

Remember	that	it	is	possible	to	obtain	the	PID	of	the	child
process,	even	if	it	is	running.	On	the	other	hand,	the	ProcessState
structure	of	the	os	package	is	available,	only	after	the	process
terminates.

See	also
There	are	Reading/writing	from	the	child	process	and	Calling	an	external
process	recipes	in	this	chapter	that	are	related	to	process	handling.

Reading/writing	from	the	child
process
Every	process,	that	is	executed,	has	the	standard	output,	input	and	error
output.	The	Go	standard	library	provides	the	way	to	read	and	write	to	these.

This	recipe	will	walk	through	the	approaches	on	how	to	read	the	output	and
write	to	the	input	of	the	child	process.

Getting	ready
Verify	if	the	following	commands	work	in	the	Terminal:

1.	 Test	if	the	ls	(dir	for	Windows)	command	exists	in	the	Terminal.
2.	 You	should	be	able	to	execute	the	ls	(dir	in	Windows)	command	in	your

Terminal.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter01/recipe10.
2.	 Navigate	to	the	directory.
3.	 Create	the	main_read_output.go	file	with	the	following	content:

							package	main

							import	(

									"fmt"

									"os/exec"

									"runtime"

)

							func	main()	{

									var	cmd	string

									if	runtime.GOOS	==	"windows"	{

											cmd	=	"dir"

									}	else	{

											cmd	=	"ls"

									}

									proc	:=	exec.Command(cmd)

									//	Output	will	run	the	process

									//	terminates	and	returns	the	standard

									//	output	in	a	byte	slice.

									buff,	err	:=	proc.Output()

									if	err	!=	nil	{

											panic(err)

									}

									//	The	output	of	child

									//	process	in	form

									//	of	byte	slice

									//	printed	as	string

									fmt.Println(string(buff))

							}

4.	 Run	the	code	by	executing	go	run	main_read_output.go.
5.	 See	the	output	in	the	Terminal:

6.	 Create	the	main_read_stdout.go	file	with	the	following	content:

								package	main

								import	(

										"bytes"

										"fmt"

										"os/exec"

										"runtime"

)

								func	main()	{

										var	cmd	string

										if	runtime.GOOS	==	"windows"	{

												cmd	=	"dir"

										}	else	{

												cmd	=	"ls"

										}

										proc	:=	exec.Command(cmd)

	

										buf	:=	bytes.NewBuffer([]byte{})

	

										//	The	buffer	which	implements

										//	io.Writer	interface	is	assigned	to

										//	Stdout	of	the	process

										proc.Stdout	=	buf

										//	To	avoid	race	conditions

										//	in	this	example.	We	wait	till

										//	the	process	exit.

										proc.Run()

										//	The	process	writes	the	output	to

										//	to	buffer	and	we	use	the	bytes

										//	to	print	the	output.

										fmt.Println(string(buf.Bytes()))

								}

7.	 Run	the	code	by	executing	go	run	main_read_stdout.go.
8.	 See	the	output	in	the	Terminal:

9.	 Create	the	main_read_read.go	file	with	the	following	content:

								package	main

								import	(

										"bufio"

										"context"

										"fmt"

										"os/exec"

										"time"

)

								func	main()	{

										cmd	:=	"ping"

										timeout	:=	2	*	time.Second

										//	The	command	line	tool

										//	"ping"	is	executed	for

										//	2	seconds

										ctx,	_	:=	context.WithTimeout(context.TODO(),	timeout)

										proc	:=	exec.CommandContext(ctx,	cmd,	"example.com")

										//	The	process	output	is	obtained

										//	in	form	of	io.ReadCloser.	The	underlying

										//	implementation	use	the	os.Pipe

										stdout,	_	:=	proc.StdoutPipe()

										defer	stdout.Close()

										//	Start	the	process

										proc.Start()

										//	For	more	comfortable	reading	the

										//	bufio.Scanner	is	used.

										//	The	read	call	is	blocking.

										s	:=	bufio.NewScanner(stdout)

										for	s.Scan()	{

												fmt.Println(s.Text())

										}

								}

10.	 Run	the	code	by	executing	go	run	main_read.go.
11.	 See	the	output	in	the	Terminal:

12.	 Create	the	sample.go	file	with	the	following	content:

								package	main

								import	(

										"bufio"

										"fmt"

										"os"

)

								func	main()	{

										sc	:=	bufio.NewScanner(os.Stdin)

										for	sc.Scan()	{

												fmt.Println(sc.Text())

										}

								}

13.	 Create	the	main.go	file	with	the	following	content:

								package	main

								import	(

										"bufio"

										"fmt"

										"io"

										"os/exec"

										"time"

)

								func	main()	{

										cmd	:=	[]string{"go",	"run",	"sample.go"}

										//	The	command	line	tool

										//	"ping"	is	executed	for

										//	2	seconds

										proc	:=	exec.Command(cmd[0],	cmd[1],	cmd[2])

										//	The	process	input	is	obtained

										//	in	form	of	io.WriteCloser.	The	underlying

										//	implementation	use	the	os.Pipe

										stdin,	_	:=	proc.StdinPipe()

										defer	stdin.Close()

										//	For	debugging	purposes	we	watch	the

										//	output	of	the	executed	process

										stdout,	_	:=	proc.StdoutPipe()

										defer	stdout.Close()

										go	func()	{

												s	:=	bufio.NewScanner(stdout)

												for	s.Scan()	{

														fmt.Println("Program	says:"	+	s.Text())

												}

										}()

										//	Start	the	process

										proc.Start()

										//	Now	the	following	lines

										//	are	written	to	child

										//	process	standard	input

										fmt.Println("Writing	input")

										io.WriteString(stdin,	"Hello\n")

										io.WriteString(stdin,	"Golang\n")

										io.WriteString(stdin,	"is	awesome\n")

										time.Sleep(time.Second	*	2)

										proc.Process.Kill()

								}

14.	 Run	the	code	by	executing	go	run	main.go.
15.	 See	the	output	in	the	Terminal:

How	it	works…
The	Cmd	structure	of	the	os/exec	package	provides	the	functions	to	access	the
output/input	of	the	process.	There	are	a	few	approaches	to	read	the	output	of
the	process.

One	of	the	simplest	ways	to	read	the	process	output	is	to	use	the	Output
or	CombinedOutput	method	of	the	Cmd	structure	(gets	Stderr	and	Stdout).	While
calling	this	function,	the	program	synchronously	waits	till	the	child	process
terminates	and	then	returns	the	output	to	a	byte	buffer.

Besides	the	Output	and	OutputCombined	methods,	the	Cmd	structure	provides	the
Stdout	property,	where	the	io.Writer	could	be	assigned.	The	assigned	writer	then
serves	as	a	destination	for	the	process	output.	It	could	be	a	file,	byte	buffer	or
any	type	implementing	the	io.Writer	interface.

The	last	approach	to	read	the	process	output	is	to	get	the	io.Reader	from	the	Cmd
structure	by	calling	the	StdoutPipe	method.	The	StdoutPipe	method	creates	the
pipe	between	the	Stdout,	where	the	process	writes	the	output,	and	provides
Reader	which	works	as	the	interface	for	the	program	to	read	the	process
output.	This	way	the	output	of	the	process	is	piped	to	the	retrieved	io.Reader	.	

Writing	to	a	process	stdin	works	the	same	way.	Of	all	the	options,	the	one	with
io.Writer	will	be	demonstrated.

As	could	be	seen,	there	are	a	few	ways	to	read	and	write	from	the	child
process.	The	use	of	stderr	and	stdin	is	almost	the	same	as	described	in	steps	6-
7.	Finally,	the	approach	of	how	to	access	the	input/output	could	be	divided
this	way:

Synchronous	(wait	until	the	process	ends	and	get	the	bytes):	The	Output
and	CombinedOutput	methods	of	Cmd	are	used.
IO:	The	output	or	input	are	provided	in	the	form	of	io.Writer/Reader.	The
XXXPipe	and	StdXXX	properties	are	the	right	ones	for	this	approach.

The	IO	type	is	more	flexible	and	could	also	be	used	asynchronously.

Shutting	down	the	application
gracefully
Servers	and	daemons	are	the	programs	that	run	for	a	long	time	(typically	days
or	even	weeks).	These	long-running	programs	usually	allocate	resources
(database	connections,	network	sock)	at	the	start	and	keep	these	resources	as
long	as	they	exist.	If	such	a	process	is	killed	and	the	shutdown	is	not	handled
properly,	a	resource	leak	could	happen.	To	avoid	that	behavior,	the	so-called
graceful	shutdown	should	be	implemented.

Graceful,	in	this	case,	means	that	the	application	catches	the	termination
signal,	if	possible,	and	tries	to	clean	up	and	release	the	allocated	resources
before	it	terminates.	This	recipe	will	show	you	how	to	implement	the	graceful
shutdown.

The	recipe,	Handling	operating	system	signals	describes	the	catching	of	OS
signals.	The	same	approach	will	be	used	for	implementing	the	graceful
shutdown.	Before	the	program	terminates,	it	will	clean	up	and	carry	out	some
other	activities.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter01/recipe11.
2.	 Navigate	to	the	directory.
3.	 Create	the	main.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"io"

										"log"

										"os"

										"os/signal"

										"syscall"

										"time"

)

								var	writer	*os.File

								func	main()	{

										//	The	file	is	opened	as

										//	a	log	file	to	write	into.

										//	This	way	we	represent	the	resources

										//	allocation.

										var	err	error

										writer,	err	=	os.OpenFile(fmt.Sprintf("test_%d.log",

																time.Now().Unix()),	os.O_RDWR|os.O_CREATE,	os.ModePerm)

										if	err	!=	nil	{

												panic(err)

										}

										//	The	code	is	running	in	a	goroutine

										//	independently.	So	in	case	the	program	is

										//	terminated	from	outside,	we	need	to

										//	let	the	goroutine	know	via	the	closeChan

										closeChan	:=	make(chan	bool)

										go	func()	{

												for	{

														time.Sleep(time.Second)

														select	{

																case	<-closeChan:

																		log.Println("Goroutine	closing")

																		return

																default:

																		log.Println("Writing	to	log")

																		io.WriteString(writer,	fmt.Sprintf("Logging	access

																																	%s\n",	time.Now().String()))

														}		

												}

										}()

										sigChan	:=	make(chan	os.Signal,	1)

										signal.Notify(sigChan,

												syscall.SIGTERM,

												syscall.SIGQUIT,

												syscall.SIGINT)

										//	This	is	blocking	read	from

										//	sigChan	where	the	Notify	function	sends

										//	the	signal.

										<-sigChan

										//	After	the	signal	is	received

										//	all	the	code	behind	the	read	from	channel	could	be

										//	considered	as	a	cleanup.

										//	CLEANUP	SECTION

										close(closeChan)

										releaseAllResources()

										fmt.Println("The	application	shut	down	gracefully")

								}

								func	releaseAllResources()	{

										io.WriteString(writer,	"Application	releasing	

																									all	resources\n")

										writer.Close()

								}

4.	 Run	the	code	by	executing	go	run	main.go.
5.	 Press	CTRL	+	C	to	send	a	SIGINT	signal.
6.	 Wait	until	the	Terminal	output	looks	like	this:

7.	 The	recipe11	folder	should	also	contain	a	file	called	test_XXXX.log,	which
contains	lines	like	this:

How	it	works…
The	reading	from	a	sigChan	is	blocking	so	the	program	keeps	running	until	the
Signal	is	sent	through	the	channel.	The	sigChan	is	the	channel	where	the	Notify
function	sends	the	signals.

The	main	code	of	the	program	runs	in	a	new	goroutine.	This	way,	the	work
continues	while	the	main	function	is	blocked	on	the	sigChan.	Once	the	signal
from	operation	system	is	sent	to	process,	the	sigChan	receives	the	signal	and	the
code	below	the	line	where	the	reading	from	the	sigChan	channel	is
executed.	This	code	section	could	be	considered	as	the	cleanup	section.

Note	that	the	step	7	terminal	output	contains	the	final	log,	Application	releasing
all	resources,	which	is	part	of	the	cleanup	section.

See	also
A	detailed	description	of	how	the	signal	catching	works	is	in	the
recipe	Handling	operating	system	signals.

File	configuration	with	functional
options
This	recipe	is	not	directly	related	to	the	Go	standard	library	but	includes	how
to	handle	an	optional	configuration	for	your	application.	The	recipe	will	use
the	functional	options	pattern	in	a	real	case	with	a	file	configuration.	

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter01/recipe12.
2.	 Navigate	to	the	directory.
3.	 Create	the	main.go	file	with	the	following	content:

								package	main

								import	(

										"encoding/json"

										"fmt"

										"os"

)

								type	Client	struct	{

										consulIP	string

										connString	string

								}

								func	(c	*Client)	String()	string	{

										return	fmt.Sprintf("ConsulIP:	%s	,	Connection	String:	%s",

																													c.consulIP,	c.connString)

								}

								var	defaultClient	=	Client{

										consulIP:	"localhost:9000",

										connString:	"postgres://localhost:5432",

								}

								//	ConfigFunc	works	as	a	type	to	be	used

								//	in	functional	options

								type	ConfigFunc	func(opt	*Client)

								//	FromFile	func	returns	the	ConfigFunc

								//	type.	So	this	way	it	could	read	the	configuration

								//	from	the	json.

								func	FromFile(path	string)	ConfigFunc	{

										return	func(opt	*Client)	{

												f,	err	:=	os.Open(path)

												if	err	!=	nil	{

														panic(err)

												}

												defer	f.Close()

												decoder	:=	json.NewDecoder(f)

												fop	:=	struct	{

														ConsulIP	string	`json:"consul_ip"`

												}{}

												err	=	decoder.Decode(&fop)

												if	err	!=	nil	{

														panic(err)

												}

												opt.consulIP	=	fop.ConsulIP

										}

								}

								//	FromEnv	reads	the	configuration

								//	from	the	environmental	variables

								//	and	combines	them	with	existing	ones.

								func	FromEnv()	ConfigFunc	{

										return	func(opt	*Client)	{

												connStr,	exist	:=	os.LookupEnv("CONN_DB")

												if	exist	{

														opt.connString	=	connStr

												}

										}

								}

	

								func	NewClient(opts	...ConfigFunc)	*Client	{

										client	:=	defaultClient

										for	_,	val	:=	range	opts	{

												val(&client)

										}

										return	&client

								}

								func	main()	{

										client	:=	NewClient(FromFile("config.json"),	FromEnv())

										fmt.Println(client.String())

								}

4.	 In	the	same	folder,	create	the	file	config.json	with	content:

								{

										"consul_ip":"127.0.0.1"

								}

5.	 Execute	the	code	by	the	command	CONN_DB=oracle://local:5921	go	run	main.go.
6.	 See	the	output:

How	it	works…
The	core	concept	of	the	functional	options	pattern	is	that	the	configuration
API	contains	the	functional	parameters.	In	this	case,	the	NewClient	function
accepts	a	various	number	of	ConfigFunc	arguments,	which	are	then	applied	one
by	one	on	the	defaultClient	struct.	This	way,	the	default	configuration	is
modified	with	huge	flexibility.	

See	the	FromFile	and	FromEnv	functions,	which	return	the	ConfigFunc,	that	is	in	fact,
accessing	the	file	or	environmental	variables.

Finally,	you	can	check	the	output	which	applied	both	the	configuration
options	and	resulting	Client	struct	that	contains	the	values	from	the	file	and
environmental	variables.

Strings	and	Things
The	recipes	in	this	chapter	are:

Finding	the	substring	in	a	string
Breaking	the	string	into	words
Joining	the	string	slice	with	a	separator
Concatenating	a	string	with	writer
Aligning	text	with	tabwriter
Replacing	part	of	the	string
Finding	the	substring	in	text	by	the	regex	pattern
Decoding	a	string	from	the	non-Unicode	charset
Controlling	case
Parsing	comma-separated	data
Managing	whitespace	in	a	string
Indenting	a	text	document

Introduction
Operations	on	strings	and	string-based	data	are	common	tasks	in	a
developer’s	life.	This	chapter	covers	how	to	handle	these	using	the	Go
standard	library.	It	is	no	surprise	that	with	the	standard	library	it	is	possible	to
do	a	great	deal.	

Check	whether	Go	is	properly	installed.	The	Getting
ready	section	from	the	Retrieving	the	Golang	version	recipe	of	C
hapter	1,	Interacting	with	the	Environment,	will	help	you.

Finding	the	substring	in	a	string
Finding	the	substring	in	a	string	is	one	of	the	most	common	tasks	for
developers.	Most	of	the	mainstream	languages	implement	this	in	a	standard
library.	Go	is	not	an	exception.	This	recipe	describes	the	way	Go	implements
this.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter02/recipe01.
2.	 Navigate	to	the	directory.
3.	 Create	the	contains.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"strings"

)

								const	refString	=	"Mary	had	a	little	lamb"

								func	main()	{

										lookFor	:=	"lamb"

										contain	:=	strings.Contains(refString,	lookFor)

										fmt.Printf("The	\"%s\"	contains	\"%s\":	%t	\n",	refString,

																					lookFor,	contain)

										lookFor	=	"wolf"

										contain	=	strings.Contains(refString,	lookFor)

										fmt.Printf("The	\"%s\"	contains	\"%s\":	%t	\n",	refString,

																					lookFor,	contain)

										startsWith	:=	"Mary"

										starts	:=	strings.HasPrefix(refString,	startsWith)

										fmt.Printf("The	\"%s\"	starts	with	\"%s\":	%t	\n",	refString,	

																					startsWith,	starts)

										endWith	:=	"lamb"

										ends	:=	strings.HasSuffix(refString,	endWith)

										fmt.Printf("The	\"%s\"	ends	with	\"%s\":	%t	\n",	refString,

																					endWith,	ends)

								}

4.	 Run	the	code	by	executing	go	run	contains.go.
5.	 See	the	output	in	the	Terminal:

How	it	works…
The	Go	library	strings	contain	functions	to	handle	the	string	operations.	This
time	the	function	Contains	could	be	used.	The	Contains	function	simply	checks
whether	the	string	has	a	given	substring.	In	fact,	the	function	Index	is	used	in
Contains	function.

To	check	whether	the	string	begins	with	the	substring,	the	HasPrefix	function	is
there.	To	check	whether	the	string	ends	with	the	substring,	the	function
HasSuffix	will	work.

In	fact,	the	Contains	function	is	implemented	by	use	of	the	Index	function	from
the	same	package.	As	you	can	guess,	the	actual	implementation	works	like
this:	if	the	index	of	the	given	substring	is	greater	than	-1,	the	Contains	function
returns	true.	

The	HasPrefix	and	HasSuffix	functions	work	in	a	different	way:	the	internal
implementation	just	checks	the	length	of	both	the	string	and	substring,	and	if
they	are	equal	or	the	string	is	longer,	the	required	part	of	the	string	is
compared.

See	also
This	recipe	describes	how	to	match	the	exact	substring.	The	Finding	the
substring	in	text	by	the	regex	pattern	recipe	will	help	to	find	out	how	to	use
regex	pattern	matching.

Breaking	the	string	into	words
Breaking	the	string	into	words	could	be	tricky.	First,	decide	what	the	word	is,
as	well	as	what	the	separator	is,	and	if	there	is	any	whitespace	or	any	other
characters.		After	these	decisions	have	been	made,	you	can	choose	the
appropriate	function	from	the	strings	package.	This	recipe	will	describe
common	cases.	

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter02/recipe02.
2.	 Navigate	to	the	directory.
3.	 Create	the	whitespace.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"strings"

)

								const	refString	=	"Mary	had	a	little	lamb"

	

								func	main()	{

										words	:=	strings.Fields(refString)

										for	idx,	word	:=	range	words	{

												fmt.Printf("Word	%d	is:	%s\n",	idx,	word)

										}

								}

4.	 Run	the	code	by	executing	go	run	whitespace.go.
5.	 See	the	output	in	the	Terminal:

6.	 Create	another	file	called	anyother.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"strings"

)

								const	refString	=	"Mary_had	a	little_lamb"

								func	main()	{

										words	:=	strings.Split(refString,	"_")

										for	idx,	word	:=	range	words	{

												fmt.Printf("Word	%d	is:	%s\n",	idx,	word)

										}

								}

7.	 Run	the	code	by	executing	go	run	anyother.go.
8.	 See	the	output	in	the	Terminal:

9.	 Create	another	file	called	specfunction.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"strings"

)

									const	refString	=	"Mary*had,a%little_lamb"

									func	main()	{

											//	The	splitFunc	is	called	for	each

											//	rune	in	a	string.	If	the	rune

											//	equals	any	of	character	in	a	"*%,_"

											//	the	refString	is	split.

											splitFunc	:=	func(r	rune)	bool	{

													return	strings.ContainsRune("*%,_",	r)

											}

											words	:=	strings.FieldsFunc(refString,	splitFunc)

											for	idx,	word	:=	range	words	{

													fmt.Printf("Word	%d	is:	%s\n",	idx,	word)

											}

								}

10.	 Run	the	code	by	executing	go	run	specfunction.go.
11.	 See	the	output	in	the	Terminal:

12.	 Create	another	file	called	regex.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"regexp"

)

								const	refString	=	"Mary*had,a%little_lamb"

								func	main()	{

										words	:=	regexp.MustCompile("[*,%_]{1}").Split(refString,	-1)

										for	idx,	word	:=	range	words	{

												fmt.Printf("Word	%d	is:	%s\n",	idx,	word)

										}

								}

13.	 Run	the	code	by	executing	go	run	regex.go.
14.	 See	the	output	in	the	Terminal:

How	it	works…
The	simplest	form	of	how	to	split	the	string	into	words	considers	any
whitespace	as	a	separator.	In	detail,	the	whitespace	is	defined	by
the	IsSpace	function	in	the	unicode	package:

'\t',	'\n',	'\v',	'\f',	'\r',	'	',	U+0085	(NEL),	U+00A0	(NBSP).	

The	Fields	function	of	the	strings	package	could	be	used	to	split	the	sentence
by	the	whitespace	chars	as	mentioned	earlier.	The	steps	1	–	5	cover	this	first
simple	case.

If	any	other	separator	is	needed,	the	Split	function	comes	into	play.	Splitting
by	another	separator	is	covered	in	steps	6	–	8.	Just	note	that	the	whitespace	in
the	string	is	omitted.

If	you	need	a	more	complex	function	to	decide	whether	to	split	the	string	at	a
given	point,	FieldsFunc	could	work	for	you.	One	of	the	function’s	argument	is
the	function	that	consumes	the	rune	of	the	given	string	and	returns	true	if	the
string	should	split	at	that	point.		This	option	is	covered	by	steps	9	–	11.

The	regular	expression	is	the	last	option	mentioned	in	the	example.	The	Regexp
structure	of	the	regexp	package	contains	the	Split	method,	which	works	as	you
would	expect.	It	splits	the	string	in	the	place	of	the	matching	group.	This
approach	is	used	in	steps	12	–	14.

There’s	more…
The	strings	package	also	provides	the	various	SplitXXX	functions	that	could	help
you	to	achieve	more	specific	tasks.

Joining	the	string	slice	with	a
separator
The	recipe,	Breaking	the	string	into	words,	led	us	through	the	task	of	splitting
the	single	string	into	substrings,	according	to	defined	rules.	This	recipe,	on	the
other	hand,	describes	how	to	concatenate	the	multiple	strings	into	a	single
string	with	a	given	string	as	the	separator.

A	real	use	case	could	be	the	problem	of	dynamically	building	a	SQL	select
statement	condition.	

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter02/recipe03.
2.	 Navigate	to	the	directory.
3.	 Create	the	join.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"strings"

)

								const	selectBase	=	"SELECT	*	FROM	user	WHERE	%s	"

								var	refStringSlice	=	[]string{

										"	FIRST_NAME	=	'Jack'	",

										"	INSURANCE_NO	=	333444555	",

										"	EFFECTIVE_FROM	=	SYSDATE	"}

								func	main()	{

										sentence	:=	strings.Join(refStringSlice,	"AND")

										fmt.Printf(selectBase+"\n",	sentence)

								}

4.	 Run	the	code	by	executing	go	run	join.go.
5.	 See	the	output	in	the	Terminal:

6.	 Create	the	join_manually.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"strings"

)

								const	selectBase	=	"SELECT	*	FROM	user	WHERE	"

								var	refStringSlice	=	[]string{

										"	FIRST_NAME	=	'Jack'	",

										"	INSURANCE_NO	=	333444555	",

										"	EFFECTIVE_FROM	=	SYSDATE	"}

								type	JoinFunc	func(piece	string)	string

								func	main()	{

										jF	:=	func(p	string)	string	{

												if	strings.Contains(p,	"INSURANCE")	{

														return	"OR"

												}

												return	"AND"

										}

										result	:=	JoinWithFunc(refStringSlice,	jF)

										fmt.Println(selectBase	+	result)

								}

	

									func	JoinWithFunc(refStringSlice	[]string,

																											joinFunc	JoinFunc)	string	{

											concatenate	:=	refStringSlice[0]

											for	_,	val	:=	range	refStringSlice[1:]	{

													concatenate	=	concatenate	+	joinFunc(val)	+	val

											}

											return	concatenate

								}

7.	 Run	the	code	by	executing	go	run	join.go.
8.	 See	the	output	in	the	Terminal:

How	it	works…
For	the	purpose	of	joining	the	string	slice	into	a	single	string,	the	Join	function
of	the	strings	package	is	there.	Simply,	you	need	to	provide	the	slice	with
strings	that	are	needed	to	be	joined.	This	way	you	can	comfortably	join	the
string	slices.	The	use	of	the	Join	function	is	shown	in	steps	1	–	5.

Naturally,	the	joining	could	be	implemented	manually	by	iterating	over	the
slice.	This	way	you	can	customize	the	separator	by	some	more	complex
logic.	The	steps	6	–	8	just	represent	how	the	manual	concatenation	could	be
used	with	more	complex	decision	logic,	based	on	the	string	that	is	currently
processed.

There’s	more…
The	Join	function	is	provided	by	the	bytes	package,	which	naturally	serves	to
join	the	slice	of	bytes.	

Concatenating	a	string	with	writer
Besides	the	built-in	+	operator,	there	are	more	ways	to	concatenate	the	string.	
This	recipe	will	describe	the	more	performant	way	of	concatenating	strings
with	the	bytes	package	and	the	built-in	copy	function.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter02/recipe04.
2.	 Navigate	to	the	directory.
3.	 Create	the	concat_buffer.go	file	with	the	following	content:

							package	main

							import	(

									"bytes"

									"fmt"

)

							func	main()	{

									strings	:=	[]string{"This	",	"is	",	"even	",

																													"more	",	"performant	"}

										buffer	:=	bytes.Buffer{}

										for	_,	val	:=	range	strings	{

												buffer.WriteString(val)

										}

											fmt.Println(buffer.String())

									}

4.	 Run	the	code	by	executing	go	run	concat_buffer.go.
5.	 See	the	output	in	the	Terminal:

6.	 Create	the	concat_copy.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

)

								func	main()	{

										strings	:=	[]string{"This	",	"is	",	"even	",

																														"more	",	"performant	"}

										bs	:=	make([]byte,	100)

										bl	:=	0

										for	_,	val	:=	range	strings	{

												bl	+=	copy(bs[bl:],	[]byte(val))

										}

										fmt.Println(string(bs[:]))

								}

7.	 	Run	the	code	by	executing	go	run	concat_copy.go.
8.	 	See	the	output	in	the	Terminal:

How	it	works…
The	steps	1	-	5	cover	the	use	of	the	bytes	package	Buffer	as	a	performance-
friendly	solution	to	string	concatenation.	The	Buffer	structure	implements	the
WriteString	method,	which	could	be	used	to	effectively	concatenate	the	strings
into	an	underlying	byte	slice.

There	is	no	need	to	use	this	improvement	in	all	situations,	just	think	about	this
in	cases	where	the	program	is	going	to	concatenate	a	big	number	of	strings
(for	example,	in-memory	CSV	exports	and	others).

The	built-in	copy	function	presented	in	steps	6	-	8	could	be	used	to	accomplish
the	string	concatenation.	This	method	requires	some	assumption	about	the
final	string	length,	or	it	could	be	done	on	the	fly.	However,	if	the	capacity	of
the	buffer,	where	the	result	is	written,	is	smaller	than	the	sum	of	the	already
written	part	and	the	string	to	be	appended,	the	buffer	must	be	expanded
(usually	by	the	allocation	of	a	new	slice	with	bigger	capacity).

There’s	more…
Just	for	comparison,	there	is	a	benchmark	code,	which	compares	the
performance	of	the	built-in	+	operator,	bytes.Buffer,	and	built-in	copy:

1.	 Create	a	bench	folder	and	file	bench_test.go	in	it	with	the	following	content:

								package	main

								import	(

										"bytes"

										"testing"

)

								const	testString	=	"test"

								func	BenchmarkConcat(b	*testing.B)	{

										var	str	string

										b.ResetTimer()

										for	n	:=	0;	n	<	b.N;	n++	{

												str	+=	testString

										}

										b.StopTimer()

								}

								func	BenchmarkBuffer(b	*testing.B)	{

										var	buffer	bytes.Buffer

										b.ResetTimer()

										for	n	:=	0;	n	<	b.N;	n++	{

												buffer.WriteString(testString)

										}

										b.StopTimer()

								}

								func	BenchmarkCopy(b	*testing.B)	{

										bs	:=	make([]byte,	b.N)

										bl	:=	0

	

										b.ResetTimer()

										for	n	:=	0;	n	<	b.N;	n++	{

												bl	+=	copy(bs[bl:],	testString)

										}

										b.StopTimer()

								}

2.	 See	the	results	of	the	benchmark	run:

Aligning	text	with	tabwriter
In	certain	cases,	the	output	(usually	data	output)	is	done	via	tabbed	text,
which	is	formatted	in	well-arranged	cells.	This	format	could	be	achieved	with
the	text/tabwriter	package.	The	package	provides	the	Writer	filter,	which
transforms	the	text	with	the	tab	characters	into	properly	formatted	output	text.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter02/recipe05.
2.	 Navigate	to	the	directory.
3.	 Create	the	tabwriter.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"os"

										"text/tabwriter"

)

								func	main()	{

										w	:=	tabwriter.NewWriter(os.Stdout,	15,	0,	1,	'	',

																																			tabwriter.AlignRight)

										fmt.Fprintln(w,	"username\tfirstname\tlastname\t")

										fmt.Fprintln(w,	"sohlich\tRadomir\tSohlich\t")

										fmt.Fprintln(w,	"novak\tJohn\tSmith\t")

										w.Flush()

								}

4.	 Run	the	code	by	executing	go	run	tabwriter.go.
5.	 See	the	output	in	the	Terminal:

How	it	works…
The	NewWriter	function	call	creates	the	Writer	filter	with	configured	parameters.
All	data	written	by	this	Writer	is	formatted	according	to	the	parameters.
os.Stdout	is	used	here	for	demonstration	purposes.

The	text/tabwriter	package	also	provides	a	few	more	configuration	options,
such	as	the	flag	parameter.		The	most	useful	is	tabwriter.AlignRight,	which
configures	the	writer	to	align	the	content	to	the	right	in	each	column.

Replacing	part	of	the	string
Another	very	common	task	related	to	string	processing	is	the	replacement	of
the	substring	in	a	string.	Go	standard	library	provide	the	Replace	function	and
Replacer	type	for	the	replacement	of	multiple	strings	at	once.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter02/recipe06.
2.	 Navigate	to	the	directory.
3.	 Create	the	replace.go	file	with	the	following	content:

								package	main

								import	(

									"fmt"

									"strings"

)

								const	refString	=	"Mary	had	a	little	lamb"

								const	refStringTwo	=	"lamb	lamb	lamb	lamb"

								func	main()	{

										out	:=	strings.Replace(refString,	"lamb",	"wolf",	-1)

										fmt.Println(out)

										out	=	strings.Replace(refStringTwo,	"lamb",	"wolf",	2)

										fmt.Println(out)

								}

4.	 Run	the	code	by	executing	go	run	replace.go.
5.	 See	the	output	in	the	Terminal:

6.	 Create	the	replacer.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"strings"

)

								const	refString	=	"Mary	had	a	little	lamb"

								func	main()	{

										replacer	:=	strings.NewReplacer("lamb",	"wolf",	"Mary",	"Jack")

										out	:=	replacer.Replace(refString)

										fmt.Println(out)

								}

7.	 Run	the	code	by	executing	go	run	replacer.go.
8.	 See	the	output	in	the	Terminal:

9.	 Create	the	regexp.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"regexp"

)

								const	refString	=	"Mary	had	a	little	lamb"

								func	main()	{

										regex	:=	regexp.MustCompile("l[a-z]+")

										out	:=	regex.ReplaceAllString(refString,	"replacement")

										fmt.Println(out)

								}

10.	 Run	the	code	by	executing	go	run	regexp.go.
11.	 See	the	output	in	the	Terminal:

How	it	works…
The	Replace	function	of	a	strings	package	is	widely	used	for	simple
replacement.	The	last	integer	argument	defines	how	many	replacements	will
be	done	(in	case	of	-1,	all	strings	are	replaced.	See	the	second	use	of	Replace,
where	only	the	first	two	occurrences	are	replaced.)	The	use	of	the	Replace
function	is	presented	in	steps	1	-	5.

Besides	the	Replace	function,	the	Replacer	structure	also	has	the	WriteString
method.	This	method	will	write	to	the	given	writer	with	all	replacements
defined	in	Replacer.		The	main	purpose	of	this	type	is	its	reusability.	It	can
replace	multiple	strings	at	once	and	it	is	safe	for	concurrent	use;	see	steps	6	-
8.

The	more	sophisticated	method	of	replacing	the	substring,	or	even	the
matched	pattern,	is	naturally	the	use	of	the	regular	expression.	The	Regex	type
pointer	method	ReplaceAllString	could	be	leveraged	for	this	purpose.	Steps	9	-
11	illustrate	the	use	of	the	regexp	package.

There’s	more…
If	more	complex	logic	for	the	replacement	is	needed,	the	regexp	package	is
probably	the	one	that	should	be	used.

Finding	the	substring	in	text	by	the
regex	pattern
There	are	always	tasks	such	as	validating	the	input,	searching	the	document
for	any	information,	or	even	cleaning	up	a	given	string	from	unwanted	escape
characters.	For	these	cases,	regular	expressions	are	usually	used.

The	Go	standard	library	contains	the	regexp	package,	which	covers	the
operations	with	regular	expressions.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter02/recipe07.
2.	 Navigate	to	the	directory.
3.	 Create	the	regexp.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"regexp"

)

								const	refString	=	`[{	\"email\":	\"email@example.com\"	\

																													"phone\":	555467890},

																												{	\"email\":	\"other@domain.com\"	\

																													"phone\":	555467890}]`

								func	main()	{

										//	This	pattern	is	simplified	for	brevity

										emailRegexp	:=	regexp.MustCompile("[a-zA-Z0-9]{1,}

																																													@[a-zA-Z0-9]{1,}\\.[a-z]{1,}")

										first	:=	emailRegexp.FindString(refString)

										fmt.Println("First:	")

										fmt.Println(first)

										all	:=	emailRegexp.FindAllString(refString,	-1)

										fmt.Println("All:	")

										for	_,	val	:=	range	all	{

												fmt.Println(val)

										}

								}

4.	 Run	the	code	by	executing	the	go	run	regexp.go.
5.	 See	the	output	in	the	Terminal:

How	it	works…
The	FindString	or	FindAllString	functions	are	the	simplest	ways	to	find	the
matching	pattern	in	the	given	string.	The	only	difference	is	that	the	FindString
method	of	Regexp	will	return	only	the	first	occurrence.	On	the	other	hand,	the
FindAllString,	as	the	name	suggests,	returns	a	slice	of	strings	with	all
occurrences.

The	Regexp	type	offers	a	rich	set	of	FindXXX	methods.	This	recipe	describes	only
the	String	variations	that	are	usually	most	useful.	Note	that	the	preceding	code
uses	the	MustCompile	function	of	the	regexp	package,	which	panics	if	the
compilation	of	the	regular	expression	fails.

See	also
Besides	this	complex	regular	expression	pattern	matching,	it	is	possible	to
match	the	substring	only.	This	approach	is	described	in	the	Finding	the
substring	in	a	string	recipe	of	this	chapter.

Decoding	a	string	from	the	non-
Unicode	charset
A	lesser-known	fact	is	that	all	content	in	.go	files	is	encoded	in	UTF-8.
Believe	it	or	not	the	Unicode	is	not,	the	only	charset	in	the	world.	For
example,	the	Windows-1250	encoding	is	widely	spread	across	Windows
users.

When	working	with	non-Unicode	strings,	you	need	to	transcode	the	content	to
Unicode.	This	recipe	demonstrates	how	to	decode	and	encode	the	non-
Unicode	strings.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter02/recipe08.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	win1250.txt	with	content	Gdańsk.	The	file	must	be	encoded	in

the	windows-1250	charset.	If	you	are	not	sure	how	to	do	that,	just	jump
to	step	6	and	after	you	complete	step	7,	which	will	create	the	windows-
1250	encoded	file,	you	can	rename	the	out.txt	file	and	go	back	to	step	4.

4.	 Create	the	decode.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"io/ioutil"

										"os"

										"strings"

										"golang.org/x/text/encoding/charmap"

)

								func	main()	{

										//	Open	windows-1250	file.

										f,	err	:=	os.Open("win1250.txt")

										if	err	!=	nil	{

												panic(err)

										}

										defer	f.Close()

										//	Read	all	in	raw	form.

										b,	err	:=	ioutil.ReadAll(f)

										if	err	!=	nil	{

												panic(err)

										}

										content	:=	string(b)

										fmt.Println("Without	decode:	"	+	content)

										//	Decode	to	unicode

										decoder	:=	charmap.Windows1250.NewDecoder()

										reader	:=	decoder.Reader(strings.NewReader(content))

										b,	err	=	ioutil.ReadAll(reader)

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println("Decoded:	"	+	string(b))

								}

5.	 Run	the	code	by	executing	go	run	decode.go.
6.	 See	the	output	in	the	Terminal:

7.	 Create	a	file	with	the	name	encode.go	with	the	following	content:

								package	main

								import	(

										"io"

										"os"

										"golang.org/x/text/encoding/charmap"

)

								func	main()	{

										f,	err	:=	os.OpenFile("out.txt",	os.O_CREATE|os.O_RDWR,

																																os.ModePerm|os.ModeAppend)

										if	err	!=	nil	{

												panic(err)

										}

										defer	f.Close()

										//	Decode	to	unicode

										encoder	:=	charmap.Windows1250.NewEncoder()

										writer	:=	encoder.Writer(f)

										io.WriteString(writer,	"Gdańsk")

								}

8.	 Run	the	code	by	executing	go	run	encode.go.
9.	 See	the	output	in	the	file	out.txt	in	Windows-1250	encoding	and	UTF-8

encoding.

How	it	works…
The	package	golang.org/x/text/encoding/charmap	contains	the	Charset	type	for
simple	encoding	and	decoding.	The	type	implements	the	NewDecoder	method
that	creates	the	Decoder	structure.

Steps	1	–	5	show	the	use	of	the	decoding	Reader.

The	encoding	works	analogically.	The	encoding	Writer	is	created	and	then
each	string	written	by	this	Writer	is	encoded	into	Windows-1250	encoding.

Note	that	the	Windows-1250	was	chosen	as	an	example.	The
package,	golang.org/x/text/encoding/charmap	contains	a	lot	of	other	charset
options.

Controlling	case
There	are	a	lot	of	practical	tasks	where	the	modification	of	case	is	the	most
common	approach.	Let’s	pick	a	few	of	these:

Case-insensitive	comparison
Beginning	the	sentence	with	an	automatic	first	capital	
Camel-case	to	snake-case	conversion

For	these	purposes,	the	strings	package	offers	functions	ToLower,	ToUpper,	ToTitle,
and	Title.	

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter02/recipe09.
2.	 Navigate	to	the	directory.
3.	 Create	the	case.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"strings"

										"unicode"

)

								const	email	=	"ExamPle@domain.com"

								const	name	=	"isaac	newton"

								const	upc	=	"upc"

								const	i	=	"i"

								const	snakeCase	=	"first_name"

								func	main()	{

										//	For	comparing	the	user	input

										//	sometimes	it	is	better	to

										//	compare	the	input	in	a	same

										//	case.

										input	:=	"Example@domain.com"

										input	=	strings.ToLower(input)

										emailToCompare	:=	strings.ToLower(email)

										matches	:=	input	==	emailToCompare

										fmt.Printf("Email	matches:	%t\n",	matches)

										upcCode	:=	strings.ToUpper(upc)

										fmt.Println("UPPER	case:	"	+	upcCode)

	

										//	This	digraph	has	different	upper	case	and

										//	title	case.

										str	:=	"dz"

										fmt.Printf("%s	in	upper:	%s	and	title:	%s	\n",	str,

																					strings.ToUpper(str),	strings.ToTitle(str))

										//	Use	of	XXXSpecial	function

										title	:=	strings.ToTitle(i)

										titleTurk	:=	strings.ToTitleSpecial(unicode.TurkishCase,	i)

										if	title	!=	titleTurk	{

												fmt.Printf("ToTitle	is	defferent:	%#U	vs.	%#U	\n",

																							title[0],	[]rune(titleTurk)[0])

										}

										//	In	some	cases	the	input

										//	needs	to	be	corrected	in	case.

										correctNameCase	:=	strings.Title(name)

										fmt.Println("Corrected	name:	"	+	correctNameCase)

										//	Converting	the	snake	case

										//	to	camel	case	with	use	of

										//	Title	and	ToLower	functions.

										firstNameCamel	:=	toCamelCase(snakeCase)

										fmt.Println("Camel	case:	"	+	firstNameCamel)

								}

								func	toCamelCase(input	string)	string	{

										titleSpace	:=	strings.Title(strings.Replace(input,	"_",	"	",	-1))

										camel	:=	strings.Replace(titleSpace,	"	",	"",	-1)

										return	strings.ToLower(camel[:1])	+	camel[1:]

								}

4.	 Run	the	code	by	executing	go	run	case.go.
5.	 See	the	output	in	the	Terminal:

How	it	works…
Note	that	the	title-case	mapping	in	Unicode	differs	from	the	uppercase
mapping.	The	difference	is	that	the	number	of	characters	requires	special
handling.	These	are	mainly	ligatures	and	digraphs	such	as	fl,	dz,	and	lj,	plus	a
number	of	polytonic	Greek	characters.	For	example,	U+01C7	(LJ)	maps	to
U+01C8	(Lj)	rather	than	to	U+01C9	(lj).

For	proper	case-insensitive	comparison,	the	EqualFold	function
from	the	strings	package	should	be	used.	This	function	uses	case
folding	to	normalize	the	strings	and	compare	them.

Parsing	comma-separated	data
There	are	multiple	table	data	formats.	CSV	(comma-separated	values)	is	one
of	the	most	basic	formats	largely	used	for	data	transport	and	export.	There	is
no	standard	that	defines	CSV,	but	the	format	itself	is	described	in	RFC	4180.

This	recipe	introduces	how	to	parse	CSV-formatted	data	comfortably.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter02/recipe10.
2.	 Navigate	to	the	directory.
3.	 Create	a	file	named	data.csv	with	the	following	content:

								"Name","Surname","Age"

								#	this	is	comment	in	data

								"John","Mnemonic",20

								Maria,Tone,21

4.	 Create	the	data.go	file	with	the	following	content:

								package	main

								import	(

										"encoding/csv"

										"fmt"

										"os"

)

								func	main()	{

										file,	err	:=	os.Open("data.csv")

										if	err	!=	nil	{

												panic(err)

										}

										defer	file.Close()

										reader	:=	csv.NewReader(file)

										reader.FieldsPerRecord	=	3

										reader.Comment	=	'#'

										for	{

												record,	e	:=	reader.Read()

												if	e	!=	nil	{

														fmt.Println(e)

														break

												}

												fmt.Println(record)

										}

								}

5.	 Run	the	code	by	executing	go	run	data.go.
6.	 See	the	output	in	the	Terminal:

7.	 Create	a	file	named	data_uncommon.csv	with	the	following	content:

							Name;Surname;Age

							"John";Mnemonic;20

							"Maria";Tone;21

8.	 Create	a	file	named	data_uncommon.go	with	the	following	content:

							package	main

							import	(

									"encoding/csv"

									"fmt"

									"os"

)

							func	main()	{

									file,	err	:=	os.Open("data_uncommon.csv")

									if	err	!=	nil	{

											panic(err)

									}

									defer	file.Close()

									reader	:=	csv.NewReader(file)

									reader.Comma	=	';'

									for	{

											record,	e	:=	reader.Read()

											if	e	!=	nil	{

													fmt.Println(e)

													break

											}

											fmt.Println(record)

									}

							}

9.	 Run	the	code	by	executing	go	run	data_uncommon.go.
10.	 See	the	output	in	the	Terminal:

How	it	works…
Instead	of	simply	scanning	the	input	line	by	line	and	using	strings.Split	and
other	methods	to	parse	the	CSV	format,	Go	offers	a	better	way.	The
NewReader	function	in	the	encoding/csv	package	returns	the	Reader	structure,	which
provides	the	API	to	read	the	CSV	file.	The	Reader	struct	keeps	variables	to
configure	the	read	parameters,	according	to	your	needs.

The	FieldsPerRecord	parameter	of	Reader	is	a	significant	setting.	This	way	the	cell
count	per	row	could	be	validated.	By	default,	when	set	to	0,	it	is	set	to	the
number	of	records	in	a	first	line.	If	a	positive	value	is	set,	the	number	of
records	must	match.	If	a	negative	value	is	set,	there	is	no	cell	count	validation.

Another	interesting	configuration	is	the	Comment	parameter,	which	allows	you	to
define	the	comment	characters	in	the	parsed	data.	In	the	example,	a	whole	line
is	ignored	this	way.

Go	1.10	now	disallows	the	use	of	nonsensical	comma	and
comment	settings.	This	means	null,	carriage	return,	newline,
invalid	runes,	and	the	Unicode	replacement	character.	Also,
setting	comma	and	comment	equal	to	each	other	is	forbidden.

Managing	whitespace	in	a	string
The	string	input	could	contain	too	much	whitespace,	too	little	whitespace,	or
unsuitable	whitespace	chars.	This	recipe	includes	tips	on	how	to	manage	these
and	format	the	string	to	your	needs.	

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter02/recipe11.
2.	 Navigate	to	the	directory.
3.	 Create	a	file	named	whitespace.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"math"

										"regexp"

										"strconv"

										"strings"

)

								func	main()	{

										stringToTrim	:=	"\t\t\n	Go	\tis\t	Awesome	\t\t"

										trimResult	:=	strings.TrimSpace(stringToTrim)

										fmt.Println(trimResult)

										stringWithSpaces	:=	"\t\t\n	Go	\tis\n	Awesome	\t\t"

										r	:=	regexp.MustCompile("\\s+")

										replace	:=	r.ReplaceAllString(stringWithSpaces,	"	")

										fmt.Println(replace)

										needSpace	:=	"need	space"

										fmt.Println(pad(needSpace,	14,	"CENTER"))

										fmt.Println(pad(needSpace,	14,	"LEFT"))

								}

								func	pad(input	string,	padLen	int,	align	string)	string	{

										inputLen	:=	len(input)

										if	inputLen	>=	padLen	{

												return	input

										}

										repeat	:=	padLen	-	inputLen

										var	output	string

										switch	align	{

												case	"RIGHT":

														output	=	fmt.Sprintf("%	"+strconv.Itoa(-padLen)+"s",	input)

												case	"LEFT":

														output	=	fmt.Sprintf("%	"+strconv.Itoa(padLen)+"s",	input)

												case	"CENTER":

														bothRepeat	:=	float64(repeat)	/	float64(2)

														left	:=	int(math.Floor(bothRepeat))	+	inputLen

														right	:=	int(math.Ceil(bothRepeat))

														output	=	fmt.Sprintf("%	"+strconv.Itoa(left)+"s%	

																																			"+strconv.Itoa(right)+"s",	input,	"")

										}

										return	output

								}

4.	 Run	the	code	by	executing	go	run	whitespace.go.
5.	 See	the	output:

How	it	works…
Trimming	the	string	before	it	is	handled	by	the	code	is	pretty	common
practice,	and	as	the	preceding	code	demonstrates,	it	is	easily	done	by	the
standard	Go	library.	The	strings	library	also	provides	more	variations	of	the
TrimXXX	function,	which	also	allows	the	trimming	of	other	chars	from	the
string.

To	trim	the	leading	and	ending	whitespace,	the	TrimSpace	function	of	the	strings
package	can	be	used.	This	typifies	the	following	part	of	a	code,	which	was
also	included	in	the	example	earlier:

stringToTrim	:=	"\t\t\n	Go	\tis\t	Awesome	\t\t"

stringToTrim	=	strings.TrimSpace(stringToTrim)

The	regex	package	is	suitable	for	replacing	multiple	spaces	and	tabs,	and	the
string	can	be	prepared	for	further	processing	this	way.	Note	that,	with	this
method,	the	break	lines	are	replaced	with	a	single	space.	

This	part	of	the	code	represents	the	use	of	the	regular	expression	to	replace	all
multiple	whitespaces	with	a	single	space:

r	:=	regexp.MustCompile("\\s+")

replace	:=	r.ReplaceAllString(stringToTrim,	"	")

Padding	is	not	an	explicit	function	for	the	strings	package,	but	it	can	be
achieved	by	the	Sprintf	function	of	the	fmt	package.	The	pad	function	in	code
uses	the	formatting	pattern	%	<+/-padding>s	and	some	simple	math	to	find	out
the	padding.	Finally,	the	minus	sign	before	the	padding	number	works	as	the
right	pad,	and	the	positive	number	as	the	left	pad.

See	also
For	more	tips	on	how	to	work	with	regex,	you	can	check	the	recipe,	Finding
the	substring	in	text	by	the	regex	pattern,	in	this	chapter.

Indenting	a	text	document
The	previous	recipe	depicts	how	to	do	string	padding	and	whitespace
trimming.	This	one	will	guide	you	through	the	indentation	and	unindentation
of	a	text	document.	Similar	principles	from	the	previous	recipes	will	be	used.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter02/recipe12.
2.	 Create	the	file	main.go	with	the	following	content:

									package	main

									import	(

											"fmt"

											"strconv"

											"strings"

											"unicode"

)

									func	main()	{

											text	:=	"Hi!	Go	is	awesome."

											text	=	Indent(text,	6)

											fmt.Println(text)

											text	=	Unindent(text,	3)

											fmt.Println(text)

											text	=	Unindent(text,	10)

											fmt.Println(text)

											text	=	IndentByRune(text,	10,	'.')

											fmt.Println(text)

									}

									//	Indent	indenting	the	input	by	given	indent	and	rune

									func	IndentByRune(input	string,	indent	int,	r	rune)	string	{

											return	strings.Repeat(string(r),	indent)	+	input

									}

									//	Indent	indenting	the	input	by	given	indent

									func	Indent(input	string,	indent	int)	string	{

											padding	:=	indent	+	len(input)

											return	fmt.Sprintf("%	"+strconv.Itoa(padding)+"s",	input)

									}

									//	Unindent	unindenting	the	input	string.	In	case	the

									//	input	is	indented	by	less	than	"indent"	spaces

									//	the	min	of	this	both	is	removed.

									func	Unindent(input	string,	indent	int)	string	{

											count	:=	0

											for	_,	val	:=	range	input	{

													if	unicode.IsSpace(val)	{

															count++

													}

													if	count	==	indent	||	!unicode.IsSpace(val)	{

															break

													}

											}

											return	input[count:]

									}

3.	 Run	the	code	by	executing	go	run	main.go	in	the	Terminal.

4.	 See	the	output:

How	it	works…
The	indentation	is	as	simple	as	padding.	In	this	case,	the	same	formatting
option	is	used.	The	more	readable	form	of	the	indent	implementation	could	use
the	Repeat	function	of	the	strings	package.	The	IndentByRune	function	in	the
preceding	code	applies	this	approach.

Unindenting,	in	this	case,	means	removing	the	given	count	of	leading	spaces.
The	implementation	of	Unindent	in	the	preceding	code	removes	the	minimum
number	of	leading	spaces	or	given	indentation.		

See	also
The	Managing	whitespace	in	a	string	recipe	also	works	with	spaces	in	a	more
generous	way.

Dealing	with	Numbers
The	recipes	in	this	chapter	are:

Converting	strings	to	numbers
Comparing	floating-point	numbers
Rounding	floating-point	numbers
Floating-point	arithmetics
Formatting	numbers
Converting	between	binary,	octal,	decimal,	and	hexadecimal
Formatting	with	the	correct	plurals
Generating	random	numbers
Operating	complex	numbers
Converting	between	degrees	and	radians
Taking	logarithms
Generating	checksums

Introduction
The	numbers	are	generally	the	inevitable	part	of	each	application—printing
the	formatted	numbers,	converting	base	representations,	and	so	on.	This
chapter	presents	a	lot	of	operations	that	you	can	commonly	deal	with.

Check	if	Go	is	properly	installed.	The	Getting	ready	section	from
the	Retrieving	Golang	version	recipe	of	Chapter	1,	Interacting
With	Environment,	will	help	you.

Converting	strings	to	numbers
This	recipe	will	show	you	how	to	convert	the	strings	containing	numbers	to	a
numeric	type	(integer	or	floating-point	value).

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter03/recipe01.
2.	 Navigate	to	the	directory.
3.	 Create	the	main.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"strconv"

)

								const	bin	=	"00001"

								const	hex	=	"2f"

								const	intString	=	"12"

								const	floatString	=	"12.3"

								func	main()	{

										//	Decimals

										res,	err	:=	strconv.Atoi(intString)

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Printf("Parsed	integer:	%d\n",	res)

										//	Parsing	hexadecimals

										res64,	err	:=	strconv.ParseInt(hex,	16,	32)

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Printf("Parsed	hexadecima:	%d\n",	res64)

										//	Parsing	binary	values

										resBin,	err	:=	strconv.ParseInt(bin,	2,	32)

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Printf("Parsed	bin:	%d\n",	resBin)

										//	Parsing	floating-points

										resFloat,	err	:=	strconv.ParseFloat(floatString,	32)

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Printf("Parsed	float:	%.5f\n",	resFloat)

								}

4.	 Execute	the	command	go	run	main.go	in	the	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	dominant	function	in	the	preceding	sample	code	is	the	ParseInt	function	of
package	strconv.	The	function	is	called	with	three	arguments:	input,	the	base	of
input,	and	bit	size.	The	base	determines	how	the	number	is	parsed.	Note	that
the	hexadecimal	has	the	base	(second	argument)	of	16	and	the	binary	has	the
base	of	2.	The	function	Atoi	of	package	strconv	is,	in	fact,	the	ParseInt	function
with	the	base	of	10.

The		ParseFloat	function	converts	the	string	to	a	floating-point	number.	The
second	argument	is	the	precision	of	bitSize.	bitSize	=	64	will	result
in	float64.	bitSize	=	32	will	result	in	float64,	but	it	is	convertible	to	float32
without	changing	its	value.	

Comparing	floating-point	numbers
Because	of	how	floating-point	numbers	are	represented,	there	can	be
inconsistencies	while	comparing	two	numbers	that	appear	to	be	identical.
Unlike	integers,	IEEE	floating-point	numbers	are	only	approximated.	The
need	to	convert	the	numbers	to	a	form	the	computer	can	store	in	binary	leads
to	minor	precision	or	round-off	deviations.	For	example,	a	value	of	1.3	could
be	represented	as	1.29999999999.	The	comparison	could	be	done	with	some
tolerance.	To	compare	numbers	with	arbitrary	precision,	the	big	package	is
here.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter03/recipe02.
2.	 Navigate	to	the	directory.
3.	 Create	the	tolerance.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"math"

)

								const	da	=	0.29999999999999998889776975374843459576368331909180

								const	db	=	0.3

	

								func	main()	{

										daStr	:=	fmt.Sprintf("%.10f",	da)

										dbStr	:=	fmt.Sprintf("%.10f",	db)

	

										fmt.Printf("Strings	%s	=	%s	equals:	%v	\n",	daStr,

																					dbStr,	dbStr	==	daStr)

										fmt.Printf("Number	equals:	%v	\n",	db	==	da)

										//	As	the	precision	of	float	representation

										//	is	limited.	For	the	float	comparison	it	is

										//	better	to	use	comparison	with	some	tolerance.

										fmt.Printf("Number	equals	with	TOLERANCE:	%v	\n",	

																					equals(da,	db))

								}

								const	TOLERANCE	=	1e-8

								//	Equals	compares	the	floating-point	numbers

								//	with	tolerance	1e-8

								func	equals(numA,	numB	float64)	bool	{

										delta	:=	math.Abs(numA	-	numB)

										if	delta	<	TOLERANCE	{

												return	true

										}

										return	false

								}

4.	 Execute	the	command	go	run	tolerance.go	in	the	Terminal.
5.	 You	will	see	the	following	output:

6.	 Create	the	file	big.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"math/big"

)

								var	da	float64	=	0.299999992

								var	db	float64	=	0.299999991

								var	prec	uint	=	32

								var	prec2	uint	=	16

								func	main()	{

										fmt.Printf("Comparing	float64	with	'=='	equals:	%v\n",	da	==	db)

										daB	:=	big.NewFloat(da).SetPrec(prec)

										dbB	:=	big.NewFloat(db).SetPrec(prec)

										fmt.Printf("A:	%v	\n",	daB)

										fmt.Printf("B:	%v	\n",	dbB)

										fmt.Printf("Comparing	big.Float	with	precision:	%d	:	%v\n",

																					prec,	daB.Cmp(dbB)	==	0)

										daB	=	big.NewFloat(da).SetPrec(prec2)

										dbB	=	big.NewFloat(db).SetPrec(prec2)

										fmt.Printf("A:	%v	\n",	daB)

										fmt.Printf("B:	%v	\n",	dbB)

										fmt.Printf("Comparing	big.Float	with	precision:	%d	:	%v\n",

																					prec2,	daB.Cmp(dbB)	==	0)

								}

7.	 Execute	the	code	by	running	go	run	big.go	in	the	Terminal.
8.	 You	will	see	the	following	output:

How	it	works…
The	first	approach	for	the	floating-point	numbers	comparison	without	the	use
of	any	built-in	package	(steps	1-5)	requires	the	use	of	a	so-called	EPSILON
constant.	This	is	the	value	chosen	to	be	a	sufficient	small	delta	(difference)
between	two	numbers	to	consider	the	values	as	equal.	The	delta	constant
could	be	on	the	order	of	1e-8,	which	is	usually	sufficient	precision.

The	second	option	is	more	complex,	but	also	more	useful	for	further	work
with	floating-point	numbers.	The	package	math/big	offers	the	Float	type	that
could	be	configured	for	a	given	precision.	The	advantage	of	this	package	is
that	the	precision	could	be	much	higher	than	the	precision	of	the	float64	type.
For	illustrative	purposes,	the	small	precision	values	were	used	to	show	the
rounding	and	comparison	in	the	given	precision.

Note	that	the	da	and	db	numbers	are	equal	when	using	the	precision	of	16-bits
and	not	equal	when	using	the	precision	of	32-bits.	The	maximal	configurable
precision	can	be	obtained	from	the	big.MaxPrec	constant.

Rounding	floating-point	numbers
The	rounding	of	a	floating-point	number	to	an	integer	or	to	a	particular
precision	has	to	be	done	properly.	The	most	common	error	is	to	cast	the
floating-point	type	float64	to	an	integer	type	and	consider	it	as	well-handled.

An	example	could	be	casting	the	number	3.9999	to	an	integer	and	expect	it	to
become	an	integer	of	value	4.	The	real	result	would	be	3.	At	the	time	of
writing	this	book,	the	current	version	of	Go	(1.9.2)	does	not	contain	the	Round
function.	However,	in	version	1.10,	the	Round	function	was	already
implemented	in	the	math	package.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter03/recipe03.
2.	 Navigate	to	the	directory.
3.	 Create	the	round.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"math"

)

								var	valA	float64	=	3.55554444

								func	main()	{

										//	Bad	assumption	on	rounding

										//	the	number	by	casting	it	to

										//	integer.

										intVal	:=	int(valA)

										fmt.Printf("Bad	rounding	by	casting	to	int:	%v\n",	intVal)

										fRound	:=	Round(valA)

										fmt.Printf("Rounding	by	custom	function:	%v\n",	fRound)

								}

								//	Round	returns	the	nearest	integer.

								func	Round(x	float64)	float64	{

										t	:=	math.Trunc(x)

										if	math.Abs(x-t)	>=	0.5	{

												return	t	+	math.Copysign(1,	x)

										}

										return	t

								}

4.	 Execute	the	code	by	running	go	run	round.go	in	the	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
Casting	the	float	to	integer	actually	just	truncates	the	float	value.	Let’s	say	the
value	2	is	represented	as	1.999999;	in	this	case,	the	output	would	be	1,	which
is	not	what	you	expected.

The	proper	way	of	rounding	the	float	number	is	to	use	the	function	that	would
also	consider	the	decimal	part.	The	commonly	used	method	of	rounding	is	to
half	away	from	zero	(also	known	as	commercial	rounding).	Put	simply,	if	the
number	contains	the	absolute	value	of	the	decimal	part	which	is	greater	or
equal	to	0.5,	the	number	is	rounded	up,	otherwise,	it	is	rounded	down.

In	the	function	Round,	the	function	Trunc	of	package	math	truncates	the	decimal
part	of	the	number.	Then,	the	decimal	part	of	the	number	is	extracted.	If	the
value	exceeds	the	limit	of	0.5	than	the	value	of	1	with	the	same	sign	as	the
integer	value	is	added.

Go	version	1.10	uses	a	faster	implementation	of	the	function
mentioned	in	the	example.	In	version	1.10,	you	can	just	call
the	math.Round	function	to	get	the	rounded	number.

Floating-point	arithmetics
As	described	in	previous	recipes,	the	representation	of	the	floating-point
numbers	also	complicates	the	arithmetic.	For	general	purposes,	the	operations
on	the	built-in	float64	are	sufficient.	In	case	more	precision	is	needed,	the
math/big	package	comes	into	play.	This	recipe	will	show	you	how	to	handle
this.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter03/recipe04.
2.	 Navigate	to	the	directory.
3.	 Create	the	main.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"math/big"

)

								const	PI	=	`3.1415926535897932384626433832795028841971693

																				993751058209749445923078164062862089986280348253

																				421170679821480865132823066470938446095505822317

																				253594081284811174502841027019385211055596446229

																				4895493038196`

								const	diameter	=	3.0

								const	precision	=	400

								func	main()	{

										pi,	_	:=	new(big.Float).SetPrec(precision).SetString(PI)

										d	:=	new(big.Float).SetPrec(precision).SetFloat64(diameter)

										circumference	:=	new(big.Float).Mul(pi,	d)

	

										pi64,	_	:=	pi.Float64()

										fmt.Printf("Circumference	big.Float	=	%.400f\n",

																					circumference)

										fmt.Printf("Circumference	float64	=	%.400f\n",	pi64*diameter)

										sum	:=	new(big.Float).Add(pi,	pi)

										fmt.Printf("Sum	=	%.400f\n",	sum)

										diff	:=	new(big.Float).Sub(pi,	pi)

										fmt.Printf("Diff	=	%.400f\n",	diff)

										quo	:=	new(big.Float).Quo(pi,	pi)

										fmt.Printf("Quocient	=	%.400f\n",	quo)

								}

4.	 Execute	the	code	by	running	go	run	main.go	in	the	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	big	package	provides	support	for	the	arithmetic	of	floating-point	numbers
with	high	precision.	The	previous	example	illustrates	the	basic	operations
over	the	numbers.	Note	that	the	code	compares	the	operation	with
the	float64	type	and	the	big.Float	type.

By	working	with	numbers	with	a	high	precision,	it	is	crucial	to	use
the	big.Float	type.	When	big.Float	is	converted	back	to	the	built-in	float64	type,
high	precision	is	lost.		

There’s	more…
The	big	package	contains	more	operations	of	the	Float	type.	See	the
documentation	(https://golang.org/pkg/math/big/#Float)	of	this	package	for	more
details.

https://golang.org/pkg/math/big/#Float

See	also
The	comparison	and	rounding	of	floating-point	numbers	is	mentioned	in
the	Comparing	floating-point	numbers	and	Rounding	floating-point	numbers
recipes.

Formatting	numbers
If	the	numbers	are	converted	to	the	string,	they	usually	need	to	be	reasonably
formatted.	The	formatting	of	a	number	means	the	number	is	printed	with	a
given	number,	made	up	of	digits	and	decimals.	The	representation	of	a	value
can	also	be	chosen.	A	closely	related	problem	with	this,	however,	is	the
localization	of	number	formatting.	For	example,	some	languages	use	comma-
separated	zeros.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter03/recipe05.
2.	 Navigate	to	the	directory.
3.	 Create	the	format.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

)

								var	integer	int64	=	32500

								var	floatNum	float64	=	22000.456

								func	main()	{

										//	Common	way	how	to	print	the	decimal

										//	number

										fmt.Printf("%d	\n",	integer)

										//	Always	show	the	sign

										fmt.Printf("%+d	\n",	integer)

										//	Print	in	other	base	X	-16,	o-8,	b	-2,	d	-	10

										fmt.Printf("%X	\n",	integer)

										fmt.Printf("%#X	\n",	integer)

										//	Padding	with	leading	zeros

										fmt.Printf("%010d	\n",	integer)

	

										//	Left	padding	with	spaces

										fmt.Printf("%	10d	\n",	integer)

										//	Right	padding

										fmt.Printf("%	-10d	\n",	integer)

										//	Print	floating

										//	point	number

										fmt.Printf("%f	\n",	floatNum)

										//	Floating-point	number

										//	with	limited	precision	=	5

										fmt.Printf("%.5f	\n",	floatNum)

	

										//	Floating-point	number

										//	in	scientific	notation

										fmt.Printf("%e	\n",	floatNum)

										//	Floating-point	number

										//	%e	for	large	exponents

										//	or	%f	otherwise

										fmt.Printf("%g	\n",	floatNum)

								}

4.	 Execute	the	code	by	running	go	run	format.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

6.	 Create	the	file	localized.go	with	the	following	content:

								package	main

								import	(

										"golang.org/x/text/language"

										"golang.org/x/text/message"

)

								const	num	=	100000.5678

								func	main()	{

										p	:=	message.NewPrinter(language.English)

										p.Printf("	%.2f	\n",	num)

										p	=	message.NewPrinter(language.German)

										p.Printf("	%.2f	\n",	num)

								}

7.	 Execute	the	code	by	running	go	run	localized.go	in	the	main	Terminal.
8.	 You	will	see	the	following	output:

How	it	works…
The	code	example	shows	the	most	commonly	used	options	for	integers	and
floating-point	numbers.

The	formatting	in	Go	is	derived	from	C’s	printf	function.	The	so-
called	verbs	are	used	to	define	the	formatting	of	a	number.	The
verb,	for	example,	could	be	%X,	which	in	fact	is	a	placeholder	for
the	value.

Besides	the	basic	formatting,	there	are	also	rules	in	formatting	that	are	related
to	the	local	manners.	With	formatting,	according	to	the	locale,	the	package
golang.org/x/text/message	could	help.	See	the	second	code	example	in	this	recipe.
This	way,	it	is	possible	to	localize	the	number	formatting.

There’s	more…
For	all	formatting	options,	see	the	fmt	package.	The	strconv	package	could	also
be	useful	in	case	you	are	looking	to	format	numbers	in	a	different	base.	The
following	recipe	describes	the	possibility	of	number	conversion,	but	as	a	side
effect,	the	options	of	how	to	format	numbers	in	a	different	base	are	presented.

Converting	between	binary,	octal,
decimal,	and	hexadecimal
In	some	cases,	the	integer	values	can	be	represented	by	other	than	decimal
representations.	The	conversion	between	these	representations	is	easily	done
with	the	use	of	the	strconv	package.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter03/recipe06.
2.	 Navigate	to	the	directory.
3.	 Create	the	convert.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"strconv"

)

								const	bin	=	"10111"

								const	hex	=	"1A"

								const	oct	=	"12"

								const	dec	=	"10"

								const	floatNum	=	16.123557

								func	main()	{

										//	Converts	binary	value	into	hex

										v,	_	:=	ConvertInt(bin,	2,	16)

										fmt.Printf("Binary	value	%s	converted	to	hex:	%s\n",	bin,	v)

										//	Converts	hex	value	into	dec

										v,	_	=	ConvertInt(hex,	16,	10)

										fmt.Printf("Hex	value	%s	converted	to	dec:	%s\n",	hex,	v)

										//	Converts	oct	value	into	hex

										v,	_	=	ConvertInt(oct,	8,	16)

										fmt.Printf("Oct	value	%s	converted	to	hex:	%s\n",	oct,	v)

										//	Converts	dec	value	into	oct

										v,	_	=	ConvertInt(dec,	10,	8)

										fmt.Printf("Dec	value	%s	converted	to	oct:	%s\n",	dec,	v)

										//...	analogically	any	other	conversion

										//	could	be	done.

								}

								//	ConvertInt	converts	the	given	string	value	of	base

								//	to	defined	toBase.

								func	ConvertInt(val	string,	base,	toBase	int)	(string,	error)	{

										i,	err	:=	strconv.ParseInt(val,	base,	64)

										if	err	!=	nil	{

												return	"",	err

										}

										return	strconv.FormatInt(i,	toBase),	nil

								}

4.	 Execute	the	code	by	running	go	run	convert.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	strconv	package	provides	the	functions	ParseInt	and	FormatInt	which	are	the,
let’s	say,	complementary	functions.	The	function	ParseInt	is	able	to	parse	the
integer	number	in	any	base	representation.	The	function	FormatInt,	on	the	other
hand,	can	format	the	integer	into	any	given	base.	

Finally,	it	is	possible	to	parse	the	string	representation	of	the	integer	to	the
built-in	int64	type	and	subsequently,	format	the	string	of	the	parsed	integer
into	the	given	base	representation.

Formatting	with	the	correct	plurals
When	displaying	messages	for	the	user,	the	interaction	is	more	pleasant	if	the
sentences	feel	more	human.	The	Go	package	golang.org/x/text,	which	is	the
extension	package,	contains	this	feature	for	formatting	plurals	in	the	correct
way.

Getting	ready
Execute	go	get	-x	golang.org/x/text	to	obtain	the	extension	package	in	case	you
don’t	have	it	already.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter03/recipe07.
2.	 Navigate	to	the	directory.
3.	 Create	the	plurals.go	file	with	the	following	content:

								package	main

								import	(

										"golang.org/x/text/feature/plural"

										"golang.org/x/text/language"

										"golang.org/x/text/message"

)

								func	main()	{

										message.Set(language.English,	"%d	items	to	do",

												plural.Selectf(1,	"%d",	"=0",	"no	items	to	do",

														plural.One,	"one	item	to	do",

														"<100",	"%[1]d	items	to	do",

														plural.Other,	"lot	of	items	to	do",

))

										message.Set(language.English,	"The	average	is	%.2f",

												plural.Selectf(1,	"%.2f",

														"<1",	"The	average	is	zero",

														"=1",	"The	average	is	one",

														plural.Other,	"The	average	is	%[1]f	",

))

										prt	:=	message.NewPrinter(language.English)

										prt.Printf("%d	items	to	do",	0)

										prt.Println()

										prt.Printf("%d	items	to	do",	1)

										prt.Println()

										prt.Printf("%d	items	to	do",	10)

										prt.Println()

										prt.Printf("%d	items	to	do",	1000)

										prt.Println()

										prt.Printf("The	average	is	%.2f",	0.8)

										prt.Println()

										prt.Printf("The	average	is	%.2f",	1.0)

										prt.Println()

										prt.Printf("The	average	is	%.2f",	10.0)

										prt.Println()

								}

4.	 Execute	the	code	by	running	go	run	plurals.go	in	the	main	Terminal.

5.	 You	will	see	the	following	output:

How	it	works…
The	package	golang.org/x/text/message	contains	the	function	NewPrinter	which
accepts	the	language	identification	and	creates	the	formatted	I/O,	the	same	as
the	fmt	package	does,	but	with	the	ability	to	translate	messages	based	on
gender	and	plural	forms.

The	Set	function	of	the	message	package	adds	the	translation	and	plurals
selection.	The	plural	form	itself	is	selected	based	on	rules	set	via
the	Selectf	function.	The	Selectf	function	produces	the	catalog.Message	type	with
rules	based	on	the	plural.Form	or	selector.

The	preceding	sample	code	uses	plural.One	and	plural.Other	forms,	and	=x,	<x
selectors.	These	are	matched	against	the	formatting	verb	%d	(other	verbs	can
also	be	used).	The	first	matching	case	is	chosen.

There’s	more…
For	more	information	about	the	selectors	and	forms,	see	the	documentation
for	the	golang.org/x/text/message	package.

Generating	random	numbers
This	recipe	shows	how	to	generate	random	numbers.	This	functionality	is
provided	by	the	math/rand	package.	The	random	numbers	generated	by	math/rand
are	considered	cryptographically	insecure	because	the	sequences	are
repeatable	with	given	seed.

To	generate	cryptographically	secure	numbers,	the	crypto/rand	package	should
be	used.	These	sequences	are	not	repeatable.

	

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter03/recipe08.
2.	 Navigate	to	the	directory.
3.	 Create	the	rand.go	file	with	the	following	content:

								package	main

								import	(

										crypto	"crypto/rand"

										"fmt"

										"math/big"

										"math/rand"

)

								func	main()	{

										sec1	:=	rand.New(rand.NewSource(10))

										sec2	:=	rand.New(rand.NewSource(10))

										for	i	:=	0;	i	<	5;	i++	{

												rnd1	:=	sec1.Int()

												rnd2	:=	sec2.Int()

												if	rnd1	!=	rnd2	{

														fmt.Println("Rand	generated	non-equal	sequence")

														break

												}	else	{

														fmt.Printf("Math/Rand1:	%d	,	Math/Rand2:	%d\n",	rnd1,	rnd2)

												}

										}

										for	i	:=	0;	i	<	5;	i++	{

												safeNum	:=	NewCryptoRand()

												safeNum2	:=	NewCryptoRand()

												if	safeNum	==	safeNum2	{

														fmt.Println("Crypto	generated	equal	numbers")

														break

												}	else	{

														fmt.Printf("Crypto/Rand1:	%d	,	Crypto/Rand2:	%d\n",

																									safeNum,	safeNum2)

												}

										}

								}

								func	NewCryptoRand()	int64	{

										safeNum,	err	:=	crypto.Int(crypto.Reader,	big.NewInt(100234))

										if	err	!=	nil	{

												panic(err)

										}

										return	safeNum.Int64()

								}

4.	 Execute	the	code	by	running	go	run	rand.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	previous	code	presents	two	possibilities	on	how	to	generate	random
numbers.	The	first	option	uses	the	math/rand	package,	which	is
cryptographically	insecure,	and	allows	us	to	generate	the	same	sequence	with
the	use	of	Source	with	the	same	seed	number.	This	approach	is	usually	used	in
tests.	The	reason	for	doing	so	is	for	the	reproducibility	of	the	sequence.

The	second	option,	the	cryptographically	secure	one,	is	the	use	of
the	crypto/rand	package.	The	API	uses	the	Reader	to	provide	the	instance	of	a
cryptographically	strong	pseudo-random	generator.	The	package	itself	has	the
default	Reader	which	is	usually	based	on	the	system-based	random	number
generator.

Operating	complex	numbers
Complex	numbers	are	usually	used	for	scientific	applications	and
calculations.	Go	implements	complex	numbers	as	the	primitive	type.	The
specific	operations	on	complex	numbers	are	part	of	the	math/cmplx	package.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter03/recipe09.
2.	 Navigate	to	the	directory.
3.	 Create	the	complex.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"math/cmplx"

)

								func	main()	{

										//	complex	numbers	are

										//	defined	as	real	and	imaginary

										//	part	defined	by	float64

										a	:=	complex(2,	3)

										fmt.Printf("Real	part:	%f	\n",	real(a))

										fmt.Printf("Complex	part:	%f	\n",	imag(a))

										b	:=	complex(6,	4)

										//	All	common

										//	operators	are	useful

										c	:=	a	-	b

										fmt.Printf("Difference	:	%v\n",	c)

										c	=	a	+	b

										fmt.Printf("Sum	:	%v\n",	c)

										c	=	a	*	b

										fmt.Printf("Product	:	%v\n",	c)

										c	=	a	/	b

										fmt.Printf("Product	:	%v\n",	c)

										conjugate	:=	cmplx.Conj(a)

										fmt.Println("Complex	number	a's	conjugate	:	",	conjugate)

										cos	:=	cmplx.Cos(b)

										fmt.Println("Cosine	of	b	:	",	cos)

								}

4.	 Execute	the	code	by	running	go	run	complex.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	basic	operators	are	implemented	for	the	primitive	type	complex.	The	other
operations	on	complex	numbers	are	provided	by	the	math/cmplx	package.	In
case	high	precision	operations	are	needed,	there	is	no	big	implementation.	

On	the	other	hand,	the	complex	number	could	be	implemented	as	real,	and	the
imaginary	part	expressed	by	the	big.Float	type.

Converting	between	degrees	and
radians
The	trigonometric	operations	and	geometric	manipulation	are	usually	done	in
radians;	it	is	always	useful	to	be	able	to	convert	these	into	degrees	and	vice
versa.	This	recipe	will	show	you	some	tips	on	how	to	handle	the	conversion
between	these	units.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter03/recipe10.
2.	 Navigate	to	the	directory.
3.	 Create	the	radians.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"math"

)

								type	Radian	float64

								func	(rad	Radian)	ToDegrees()	Degree	{

										return	Degree(float64(rad)	*	(180.0	/	math.Pi))

								}

								func	(rad	Radian)	Float64()	float64	{

										return	float64(rad)

								}

								type	Degree	float64

	

								func	(deg	Degree)	ToRadians()	Radian	{

										return	Radian(float64(deg)	*	(math.Pi	/	180.0))

								}

								func	(deg	Degree)	Float64()	float64	{

										return	float64(deg)

								}

								func	main()	{

										val	:=	radiansToDegrees(1)

										fmt.Printf("One	radian	is	:	%.4f	degrees\n",	val)

										val2	:=	degreesToRadians(val)

										fmt.Printf("%.4f	degrees	is	%.4f	rad\n",	val,	val2)

										//	Conversion	as	part

										//	of	type	methods

										val	=	Radian(1).ToDegrees().Float64()

										fmt.Printf("Degrees:	%.4f	degrees\n",	val)

										val	=	Degree(val).ToRadians().Float64()

										fmt.Printf("Rad:	%.4f	radians\n",	val)

								}

								func	degreesToRadians(deg	float64)	float64	{

										return	deg	*	(math.Pi	/	180.0)

								}

								func	radiansToDegrees(rad	float64)	float64	{

										return	rad	*	(180.0	/	math.Pi)

								}

4.	 Execute	the	code	by	running	go	run	radians.go	in	the	main	Terminal.

5.	 You	will	see	the	following	output:

How	it	works…
The	Go	standard	library	does	not	contain	any	package	with	a	function
converting	radians	to	degrees	and	vice	versa.	But	at	least	the	Pi	constant	is	a
part	of	the	math	package,	so	the	conversion	could	be	done	as	shown	in	the
sample	code.

The	preceding	code	also	presents	the	approach	of	defining	the	custom	type
with	additional	methods.	These	are	simplifying	the	conversion	of	values	by
handy	API.

Taking	logarithms
Logarithms	are	used	in	scientific	applications	as	well	as	in	data	visualizations
and	measurements.	The	built-in	math	package	contains	the	commonly	used
bases	of	the	logarithm.	Using	these,	you	are	able	to	get	all	bases.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter03/recipe11.
2.	 Navigate	to	the	directory.
3.	 Create	the	log.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"math"

)

								func	main()	{

										ln	:=	math.Log(math.E)

										fmt.Printf("Ln(E)	=	%.4f\n",	ln)

										log10	:=	math.Log10(-100)

										fmt.Printf("Log10(10)	=	%.4f\n",	log10)

										log2	:=	math.Log2(2)

										fmt.Printf("Log2(2)	=	%.4f\n",	log2)

										log_3_6	:=	Log(3,	6)

										fmt.Printf("Log3(6)	=	%.4f\n",	log_3_6)

								}

								//	Log	computes	the	logarithm	of

								//	base	>	1	and	x	greater	0

								func	Log(base,	x	float64)	float64	{

										return	math.Log(x)	/	math.Log(base)

								}

4.	 Execute	the	code	by	running	go	run	log.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	standard	package,	math,	contains	functions	for	all	commonly	used
logarithms,	and	so	you	can	easily	get	binary,	decimal,	and	natural	logarithms.
See	the	Log	function	which	counts	any	logarithm	of	y	with	base	x	through	the
helper-defined	formula:

The	internal	implementation	of	the	logarithm	in	standard	lib	is	naturally	based
on	approximation.	This	function	can	be	seen	in	the	$GOROOT/src/math/log.go	file.

Generating	checksums
The	hash,	or	so-called	checksum,	is	the	easiest	way	to	quickly	compare	any
content.	This	recipe	demonstrates	how	to	create	the	checksum	of	the	file
content.	For	demonstration	purposes,	the	MD5	hash	function	will	be	used.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter03/recipe12.
2.	 Navigate	to	the	directory.

3.	 Create	the	content.dat	file	with	the	following	content:

								This	is	content	to	check

4.	 Create	the	checksum.go	file	with	the	following	content:

								package	main

								import	(

										"crypto/md5"

										"fmt"

										"io"

										"os"

)

								var	content	=	"This	is	content	to	check"

	

								func	main()	{

										checksum	:=	MD5(content)

										checksum2	:=	FileMD5("content.dat")

										fmt.Printf("Checksum	1:	%s\n",	checksum)

										fmt.Printf("Checksum	2:	%s\n",	checksum2)

										if	checksum	==	checksum2	{

												fmt.Println("Content	matches!!!")

										}

								}

								//	MD5	creates	the	md5

								//	hash	for	given	content	encoded	in

								//	hex	string

								func	MD5(data	string)	string	{

										h	:=	md5.Sum([]byte(data))

										return	fmt.Sprintf("%x",	h)

								}

								//	FileMD5	creates	hex	encoded	md5	hash

								//	of	file	content

								func	FileMD5(path	string)	string	{

										h	:=	md5.New()

										f,	err	:=	os.Open(path)

										if	err	!=	nil	{

												panic(err)

										}

										defer	f.Close()

										_,	err	=	io.Copy(h,	f)

										if	err	!=	nil	{

												panic(err)

										}

										return	fmt.Sprintf("%x",	h.Sum(nil))

								}

5.	 Execute	the	code	by	running	go	run	checksum.go	in	the	main	Terminal.
6.	 You	will	see	the	following	output:

7.	 Create	the	sha_panic.go	file	with	the	following	content:

								package	main

								import	(

										"crypto"

)

								func	main()	{

										crypto.SHA1.New()

								}

8.	 Execute	the	code	by	running	go	run	sha_panic.go	in	the	main	Terminal.
9.	 You	will	see	the	following	output:

How	it	works…
The	crypto	package	contains	implementations	of	well-known	hash	functions.
The	MD5	hash	function	is	located	in	the	crypto/md5	package.	Each	hash	function
in	the	crypto	package	implements	the	Hash	interface.		Note	that	Hash	contains
the	Write		method.	With	the	Write	method,	it	can	be	utilized	as	a	Writer.	This	can
be	seen	in	the	FileMD5	function.	The	Sum	method	of	Hash	accepts	the	argument	of
byte	slice,	where	the	resulting	hash	should	be	placed.

Beware	of	this.	The	Sum	method	does	not	compute	the	hash	of	the
argument,	but	computes	the	hash	into	an	argument.

On	the	other	hand,	md5.Sum,	the	package	function,	can	be	used	to	produce	the
hash	directly.	In	this	case,	the	argument	of	the	Sum	function	is	the	one	from	the
hash	values	computed.

Naturally,	the	crypto	package	implements	the	SHA	variants	and	other	hash
functions	as	well.	These	are	usually	used	in	the	same	way.	The	hash	functions
can	be	accessed	through	the	crypto	package	constant	crypto.Hash	(for
example,	crypto.MD5.New()),	but	this	way,	the	package	with	the	given	function
must	be	linked	to	a	built	binary	as	well	(the	blank	import	could	be	used,	import
_	"crypto/md5"),	otherwise	the	call	for	New	will	panic.

The	hash	package	itself	contains	the	CRC	checksums	and	more.

Once	Upon	a	Time
The	recipes	in	this	chapter	are:

Finding	today’s	date
Formatting	date	to	string
Parsing	the	string	into	date
Converting	dates	to	epoch	and	vice	versa
Retrieving	time	units	from	the	date
Date	arithmetics
Finding	the	difference	between	two	dates
Converting	between	time	zones
Running	the	code	block	periodically
Waiting	a	certain	amount	of	time
Timeout	long-running	operations
Serializing	the	time	and	date

Introduction
This	chapter	is	all	about	time-related	tasks	and	operations.	Go
concentrates	all	these	in	the	standard	package	called	time.	With	this
package,	you	are	able	to	obtain	the	current	time	and	date,	format	the
date	to	the	string,	convert	time	zones,	create	timers,	and	create
tickers.	Keep	in	mind	that	there	are	always	many	ways	you	can
implement	and	design	functionality,	and	this	chapter	will	show	only
a	few	of	them.

Verify	whether	Go	is	installed	properly.	In	case	of	any	issues,	see
the	Retrieving	Golang	version	recipe	in	Chapter	1,	Interacting
With	the	Environment,	and	follow	the	steps	of	the	Getting
ready	section.

Finding	today’s	date
Obtaining	the	current	date	is	a	very	common	task	for	any	system	or
application.	Let’s	look	at	how	this	is	done	with	help	of	Go’s	standard	library.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter04/recipe01.
2.	 Navigate	to	the	directory.
3.	 Create	the	today.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"time"

)

								func	main()	{

										today	:=	time.Now()

										fmt.Println(today)

								}

4.	 Execute	the	code	by	running	go	run	today.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	built-in	package	time	contains	the	function	Now,	which	provides	the
instance	of	a	Time	initialized	to	the	current	local	time	and	date.

The	Time	type	is	an	instant	in	time	in	nanoseconds.	The	zero	value	of	Time
is	January	1,	year	1,	00:00:00.000000000	UTC.

The	pointer	to	the	Time	type	should	not	be	used.	If	only	the	value
(not	pointer	to	variable)	is	used,	the	Time	instance	is	considered
to	be	safe	for	use	across	multiple	goroutines.	The	only	exception
is	with	serialization.

See	also
For	more	information	on	the	Time	type,	see	the	time	package	documentation	at:	
https://golang.org/pkg/time.

https://golang.org/pkg/time

Formatting	date	to	string
In	case	the	textual	representation	of	a	time	value	is	needed,	usually,	certain
formatting	is	expected.	The	Time	type	of	the	time	package	provides	the	ability
to	create	the	string	output	in	the	given	format.	There	are	some	rules	on	how	to
do	this	and	we	will	cover	a	few	useful	ones.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter04/recipe02.
2.	 Navigate	to	the	directory.
3.	 Create	the	format.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"time"

)

								func	main()	{

										tTime	:=	time.Date(2017,	time.March,	5,	8,	5,	2,	0,	time.Local)

										//	The	formatting	is	done

										//	with	use	of	reference	value

										//	Jan	2	15:04:05	2006	MST

										fmt.Printf("tTime	is:	%s\n",	tTime.Format("2006/1/2"))

										fmt.Printf("The	time	is:	%s\n",	tTime.Format("15:04"))

										//The	predefined	formats	could

										//	be	used

										fmt.Printf("The	time	is:	%s\n",	tTime.Format(time.RFC1123))

										//	The	formatting	supports	space	padding

										//only	for	days	in	Go	version	1.9.2

										fmt.Printf("tTime	is:	%s\n",	tTime.Format("2006/1/_2"))

										//	The	zero	padding	is	done	by	adding	0

										fmt.Printf("tTime	is:	%s\n",	tTime.Format("2006/01/02"))

	

										//The	fraction	with	leading	zeros	use	0s

										fmt.Printf("tTime	is:	%s\n",	tTime.Format("15:04:05.00"))

										//The	fraction	without	leading	zeros	use	9s

										fmt.Printf("tTime	is:	%s\n",	tTime.Format("15:04:05.999"))

										//	Append	format	appends	the	formatted	time	to	given

										//	buffer

										fmt.Println(string(tTime.AppendFormat([]byte("The	time	

																													is	up:	"),	"03:04PM")))

								}

4.	 Execute	the	code	by	running	go	run	format.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	Time	type	of	the	time	package	provides	the	Format	method	for	formatting	the
output	string.

Go	uses	the	referential	time	value	Jan	2	15:04:05	2006	MST	to	define	the
formatting	layout.	See	the	code	example	for	padding	options.

The	memo	for	the	reference	date	is	that	when	given	in	number
form,	it	is	represented	as	1,2,3,4,5,6,-7.	The	-7	value	means	that
the	MST	time	zone	is	7	hours	behind	the	UTC.

The	time	package	includes	some	predefined	formats	(for
example,	time.Kitchen);	you	can	discover	these	in	the	documentation	for
package	constants.	(https://golang.org/pkg/time/#pkg-constants)

https://golang.org/pkg/time/#pkg-constants

See	also
For	all	predefined	formats	and	formatting	options,	see	the	documentation	for
the	time	package	at:	https://golang.org/pkg/time.

https://golang.org/pkg/time

Parsing	the	string	into	date
The	same	concept	as	the	one	used	in	date	formatting	is	also	used	by	date
parsing.	The	same	reference	date	and	layout	principles	can	be	used.	This
recipe	will	show	you	how	to	transform	the	string	input	into	a	Time	instance.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter04/recipe03.
2.	 Navigate	to	the	directory.
3.	 Create	the	parse.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"time"

)

								func	main()	{

										//	If	timezone	is	not	defined

										//	than	Parse	function	returns

										//	the	time	in	UTC	timezone.

										t,	err	:=	time.Parse("2/1/2006",	"31/7/2015")

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println(t)

										//	If	timezone	is	given	than	it	is	parsed

										//	in	given	timezone

										t,	err	=	time.Parse("2/1/2006	3:04	PM	MST",	

																														"31/7/2015	1:25	AM	DST")

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println(t)

										//	Note	that	the	ParseInLocation

										//	parses	the	time	in	given	location,	if	the

										//	string	does	not	contain	time	zone	definition

										t,	err	=	time.ParseInLocation("2/1/2006	3:04	PM	",	

																								"31/7/2015	1:25	AM	",	time.Local)

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println(t)

								}

4.	 Execute	the	code	by	running	go	run	parse.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	time	package	contains	the	Parse	function	for	parsing	the	string	with	time
information.

The	format	of	an	incoming	date	string	is	given	by	the	referential	date,
formatted	to	the	matching	format.	Remember	that	the	reference	time	is	Jan	2
15:04:05	2006	MST.

If	the	given	time	string	does	not	contain	the	information	about	the	timezone,
the	result	of	the	Parse	function	will	always	be	in	UTC.

If	the	timezone	information	is	provided,	then	the	time	is	always	the	time
instant	in	the	provided	timezone.	

The	ParseInLocation	function	accepts	the	third	argument,	which	is	the	location.
If	the	time	string	does	not	contain	any	timezone	information,	then	the	time	is
parsed	to	the	Time	instance	in	given	location.

Converting	dates	to	epoch	and
vice	versa
The	epoch	is	the	universal	system	to	describe	the	point	in	time.	The	beginning
of	epoch	time	is	defined	as	00:00:00	1	Jan	1970	UTC.	The	value	of	epoch	is	the
amount	of	seconds	since	the	timestamp,	minus	the	amount	of	leap	seconds
since	then.

The	time	package	and	Time	type	provide	you	with	the	ability	to	operate	and	find
out	the	UNIX	epoch	time.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter04/recipe04.
2.	 Navigate	to	the	directory.
3.	 Create	the	epoch.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"time"

)

								func	main()	{

										//	Set	the	epoch	from	int64

										t	:=	time.Unix(0,	0)

										fmt.Println(t)

										//	Get	the	epoch

										//	from	Time	instance

										epoch	:=	t.Unix()

										fmt.Println(epoch)

										//	Current	epoch	time

										apochNow	:=	time.Now().Unix()

										fmt.Printf("Epoch	time	in	seconds:	%d\n",	apochNow)

										apochNano	:=	time.Now().UnixNano()

										fmt.Printf("Epoch	time	in	nano-seconds:	%d\n",	apochNano)

								}

4.	 Execute	the	code	by	running	go	run	epoch.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	time	package	contains	the	Unix	function	which	accepts	two	int64
arguments,	and	the	seconds	and	nanoseconds	of	epoch	time.	This	way,	you
can	get	the	Time	instance	from	the	epoch	value.

To	obtain	the	epoch	value	from	the	Time	instance,	the	method	with	the	same
name	as	the	creation	of	Time	from	epoch,	Unix,	can	be	called.	There	is	one	more
method	called	UnixNano,	which	returns	the	count	of	milliseconds	instead	of
seconds.

Retrieving	time	units	from	the	date
The	Time	type	also	provides	the	API	to	retrieve	time	units	from	the	instance.
This	means	you	are	able	to	find	out	what	day	in	a	month	or	what	hour	in	a	day
the	instance	represents.		This	recipe	shows	how	to	obtain	such	units.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter04/recipe05.
2.	 Navigate	to	the	directory.
3.	 Create	the	units.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"time"

)

								func	main()	{

										t	:=	time.Date(2017,	11,	29,	21,	0,	0,	0,	time.Local)

										fmt.Printf("Extracting	units	from:	%v\n",	t)

										dOfMonth	:=	t.Day()

										weekDay	:=	t.Weekday()

										month	:=	t.Month()

										fmt.Printf("The	%dth	day	of	%v	is	%v\n",	dOfMonth,

																					month,	weekDay)

								}

4.	 Execute	the	code	by	running	go	run	units.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	Time	type	provides	methods	to	extract	time	units.	The	preceding	example
shows	the	extraction	of	a	weekday,	month,	and	the	day	of	a	month.	Similarly,
the	hour,	seconds,	and	other	units	can	be	extracted.

Naturally,	the	units	that	are	not	provided	by	the	API	directly	need	to	be
derived	from	the	existing	one.

Date	arithmetics
The	Time	type	of	the	time	package	also	allows	you	to	perform	basic	arithmetic
on	the	given	date	and	time.	This	way,	you	can	find	out	past	and	future	dates.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter04/recipe06.
2.	 Navigate	to	the	directory.
3.	 Create	the	arithmetics.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"time"

)

								func	main()	{

										l,	err	:=	time.LoadLocation("Europe/Vienna")

										if	err	!=	nil	{

												panic(err)

										}

										t	:=	time.Date(2017,	11,	30,	11,	10,	20,	0,	l)

										fmt.Printf("Default	date	is:	%v\n",	t)

										//	Add	3	days

										r1	:=	t.Add(72	*	time.Hour)

										fmt.Printf("Default	date	+3HRS	is:	%v\n",	r1)

										//	Subtract	3	days

										r1	=	t.Add(-72	*	time.Hour)

										fmt.Printf("Default	date	-3HRS	is:	%v\n",	r1)

										//	More	comfortable	api

										//	to	add	days/months/years

										r1	=	t.AddDate(1,	3,	2)

										fmt.Printf("Default	date	+1YR	+3MTH	+2D	is:	%v\n",	r1)

								}

4.	 Execute	the	code	by	running	go	run	arithmetics.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	Time	type	of	the	time	package	provides	two	essential	methods	to	operate	on
date	and	time.

The	first	method,	Add,	accepts	the	time.Duration	and	AddDate.	With	the	Add	method,
you	can	shift	the	time	toward	the	future	with	the	positive	sign	and	move	the
time	backward	just	by	adding	the	negative	sign.

The	second	method,	AddDate,	consumes	the	int64	arguments	as	the	year,	month,
and	day,	and	adds	the	bigger	time	amounts.

Beware	that	AddDate	normalizes	the	result,	the	same	as
the	time.Date	function.	Normalization	means	that	adding	the
month	to	Aug-31	will	result	in	Oct-1,	because	the	following
month	contains	only	30	days	(Sep-31	does	not	exist).

Finding	the	difference	between	two
dates
Finding	the	difference	between	two	dates	is	not	an	unusual	task.	For	this
operation,	the	Go	standard	package	time,	respectively	the	Time	type,	provides
supporting	methods.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter04/recipe07.
2.	 Navigate	to	the	directory.
3.	 Create	the	diff.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"time"

)

								func	main()	{

										l,	err	:=	time.LoadLocation("Europe/Vienna")

										if	err	!=	nil	{

												panic(err)

										}

										t	:=	time.Date(2000,	1,	1,	0,	0,	0,	0,	l)

										t2	:=	time.Date(2000,	1,	3,	0,	0,	0,	0,	l)

										fmt.Printf("First	Default	date	is	%v\n",	t)

										fmt.Printf("Second	Default	date	is	%v\n",	t2)

										dur	:=	t2.Sub(t)

										fmt.Printf("The	duration	between	t	and	t2	is	%v\n",	dur)

										dur	=	time.Since(t)

										fmt.Printf("The	duration	between	now	and	t	is	%v\n",	dur)

										dur	=	time.Until(t)

										fmt.Printf("The	duration	between	t	and	now	is	%v\n",	dur)

								}

4.	 Execute	the	code	by	running	go	run	diff.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	Sub	method	of	the	Time	instance	is	the	universal	one	to	find	out	the
difference	between	two	dates.	The	result	is	time.Duration,	which	represents	the
nanosecond	count	between	these	dates.

Note	that	if	the	difference	exceeds	the	limit	of	the
maximum/minimum	time.Duration,	then	the	maximum	or	minimum
is	returned.

The	functions	Since	and	Until	are	just	a	shorter	way	on	how	to	work	out	the
difference	between	now	and	the	given	date.	These	work	as	their	names
prompts.	The	Since	function	returns	the	same	result	as	time.Now().Sub(t);
similarly,	the	Until	returns	the	same	result	as	t.Sub(time.Now()).

The	Sub	method	naturally	also	counts	with	time	zones.	So,	the
difference	is	returned	with	respect	to	the	location	of	each	Time
instance.

Converting	between	time	zones
Dealing	with	time	zones	is	hard.	A	good	way	to	handle	the	different	time
zones	is	to	keep	one	timezone	as	referential	in	the	system	and	convert	the
others	if	needed.	This	recipe	shows	you	how	the	conversion	of	time	between
time	zones	is	done.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter04/recipe08.
2.	 Navigate	to	the	directory.
3.	 Create	the	timezones.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"time"

)

								func	main()	{

										eur,	err	:=	time.LoadLocation("Europe/Vienna")

										if	err	!=	nil	{

												panic(err)

										}

										t	:=	time.Date(2000,	1,	1,	0,	0,	0,	0,	eur)

										fmt.Printf("Original	Time:	%v\n",	t)

										phx,	err	:=	time.LoadLocation("America/Phoenix")

										if	err	!=	nil	{

												panic(err)

										}

										t2	:=	t.In(phx)

										fmt.Printf("Converted	Time:	%v\n",	t2)

								}

4.	 Execute	the	code	by	running	go	run	timezones.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	Time	type	provides	the	In	method	which	consumes	the	pointer
to	time.Location.	The	returned	Time	is	the	original	one	converted	to	the	given
time	zone.	Note	that	the	Time	instance	is	considered	to	be	immutable,	so	the
methods	changing	the	instance	result	in	a	new	Time	instance.

The	time	package	refers	to	the	IANA	Time	Zone	database	as	a
source	of	locations.	The	LoadLocation	function	looks	for	the
directory	or	ZIP	file	from	the	ZONEINFO	environment	variable.	If
not	found,	the	known	installation	locations	on	UNIX	systems	are
searched.	Finally,	it	looks	in	$GOROOT/lib/time/zoneinfo.zip.

Running	the	code	block	periodically
Besides	the	date	and	time	operations,	the	time	package	also	provides	support
for	periodic	and	delayed	code	execution.	Typically,	the	application	health
checks,	activity	checks,	or	any	periodic	job	can	be	implemented	this	way.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter04/recipe09.
2.	 Navigate	to	the	directory.
3.	 Create	the	ticker.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"os"

										"os/signal"

										"time"

)

							func	main()	{

									c	:=	make(chan	os.Signal,	1)

									signal.Notify(c)

									ticker	:=	time.NewTicker(time.Second)

									stop	:=	make(chan	bool)

									go	func()	{

											defer	func()	{	stop	<-	true	}()

											for	{

													select	{

															case	<-ticker.C:

																	fmt.Println("Tick")

															case	<-stop:

																	fmt.Println("Goroutine	closing")

																	return

													}

											}

									}()

									//	Block	until

									//	the	signal	is	received

									<-c

									ticker.Stop()

									//	Stop	the	goroutine

									stop	<-	true

									//	Wait	until	the

									<-stop

									fmt.Println("Application	stopped")

							}

4.	 Execute	the	code	by	running	go	run	ticker.go	in	the	main	Terminal.
5.	 Wait	a	few	seconds,	and	then	press	Ctrl	+	C	to	send	SIGINT	a	signal.
6.	 You	will	see	the	following	output:

How	it	works…
The	Ticker	holds	the	C	channel	which	delivers	the	periodical	ticks.	The
instance	is	created	with	a	given	interval	between	ticks.	The	interval	is	defined
by	the	time.Duration	value.		

The	code	which	is	intended	to	be	executed	periodically	is	executed	in	the
goroutine	in	an	infinite	loop.	The	reading	from	the	Ticker	channel	blocks	the
loop	until	the	tick	is	delivered.

Note	that	once	the	Ticker	is	stopped	by	calling	the	Stop	method,	the	C	channel	is
not	closed,	it	just	stops	delivering	the	ticks.	For	this	reason,	the	preceding
code	contains	the	select	construct	where	the	stop	channel	can	deliver	the	stop
signal.	This	way,	a	graceful	shutdown	can	be	done.

Waiting	a	certain	amount	of	time
The	previous	recipe	describes	how	to	execute	the	code	periodically.	This
recipe	will	show	you	how	to	execute	the	code	with	a	delay.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter04/recipe10.
2.	 Navigate	to	the	directory.
3.	 Create	the	delay.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"sync"

										"time"

)

								func	main()	{

										t	:=	time.NewTimer(3	*	time.Second)

	

										fmt.Printf("Start	waiting	at	%v\n",	

																					time.Now().Format(time.UnixDate))

										<-t.C

										fmt.Printf("Code	executed	at	%v\n",	

																					time.Now().Format(time.UnixDate))

										wg	:=	&sync.WaitGroup{}

										wg.Add(1)

										fmt.Printf("Start	waiting	for	AfterFunc	at	%v\n",	

																					time.Now().Format(time.UnixDate))

										time.AfterFunc(3*time.Second,	func()	{

										fmt.Printf("Code	executed	for	AfterFunc	at	%v\n",	

																					time.Now().Format(time.UnixDate))

										wg.Done()

								})

								wg.Wait()

								fmt.Printf("Waiting	on	time.After	at	%v\n",	

																			time.Now().Format(time.UnixDate))

								<-time.After(3	*	time.Second)

								fmt.Printf("Code	resumed	at	%v\n",	

																			time.Now().Format(time.UnixDate))

								}

4.	 Execute	the	code	by	running	go	run	delay.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
To	execute	the	code	with	some	delay	only	once,	the	Timer	from
the	time	package	can	be	used.	The	concept	of	how	this	works	is	the	same	as
described	in	the	previous	recipe,	Running	the	code	block	periodically.

The	Timer	contains	the	C	channel,	which	delivers	the	tick	after	a	given
time.	After	that,	no	other	ticks	are	delivered	through	the	channel.

The	same	functionality	delivers	the	AfterFunc	function	of	the	time	package.	It
just	simplifies	the	usage.	Note	that	there	is	no	channel	needed.	The	sample
code	uses	the	sync.WaitGroup	to	wait	until	the	given	function	is	executed.

The	time.After	is	the	last	option	in	the	preceding	example.	The	function	returns
a	channel	that	delivers	the	tick	after	a	given	period.	Note	the	difference
between	the	Timer	and	After	functions.	The	Timer	is	the	reusable	structure	(it
provides	the	Stop	and	Reset	methods).	On	the	other	hand,	the	After	function	can
only	be	used	once	as	it	does	not	provide	any	reset	option.

Timeout	long-running	operations
The	previous	recipe	describes	the	concept	of	executing	the	code	with	some
delay.	The	same	concept	can	be	used	to	implement	the	timeout	for	long
running	operations.	This	recipe	will	illustrate	how	this	can	be	done.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter04/recipe11.
2.	 Navigate	to	the	directory.
3.	 Create	the	timeout.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"time"

)

								func	main()	{

										to	:=	time.After(3	*	time.Second)

										list	:=	make([]string,	0)

										done	:=	make(chan	bool,	1)

										fmt.Println("Starting	to	insert	items")

										go	func()	{

												defer	fmt.Println("Exiting	goroutine")

												for	{

														select	{

																case	<-to:

																		fmt.Println("The	time	is	up")

																		done	<-	true

																		return

																default:

																		list	=	append(list,	time.Now().String())

														}

												}

										}()

										<-done

										fmt.Printf("Managed	to	insert	%d	items\n",	len(list))

								}

4.	 Execute	the	code	by	running	go	run	timeout.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	timeout	for	the	long-running	operation	in	the	previous	code	is
implemented	with	the	use	of	the	time.After	function,	which	provides	the
channel	delivering	the	tick	after	the	given	period.

The	operation	itself	is	wrapped	to	select	a	statement	which	chooses	between
the	time.After	channel	and	the	default	option,	which	executes	the	operation.

Note	that	you	need	to	allow	the	code	to	read	from	the	time.After	channel
periodically	to	find	out	whether	the	timeout	is	exceeded	or	not.	Otherwise,	if
the	default	code	branch	blocks	the	execution	entirely,	there	is	no	way	how	to
find	out	if	the	timeout	has	already	elapsed.	

There’s	more…
The	example	implementation	uses	the	time.After	function,	but
the	Timer	function	can	also	be	used	in	the	same	way.	The	built-in	libraries	also
use	the	context.WithTimeout	to	implement	timeout	functionality.

Serializing	the	time	and	date
When	serializing	the	date	and	time	information,	it	is	necessary	to	choose	the
proper	format.	This	recipe	will	illustrate	how	the	time	package	helps	to	choose
one	and	do	the	serialization	properly.

	

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter04/recipe12.
2.	 Navigate	to	the	directory.
3.	 Create	the	serialize.go	file	with	the	following	content:

								package	main

								import	(

										"encoding/json"

										"fmt"

										"time"

)

								func	main()	{

										eur,	err	:=	time.LoadLocation("Europe/Vienna")

										if	err	!=	nil	{

												panic(err)

										}

										t	:=	time.Date(2017,	11,	20,	11,	20,	10,	0,	eur)

										//	json.Marshaler	interface

										b,	err	:=	t.MarshalJSON()

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println("Serialized	as	RFC	3339:",	string(b))

										t2	:=	time.Time{}

										t2.UnmarshalJSON(b)

										fmt.Println("Deserialized	from	RFC	3339:",	t2)

										//	Serialize	as	epoch

										epoch	:=	t.Unix()

										fmt.Println("Serialized	as	Epoch:",	epoch)

										//	Deserialize	epoch

										jsonStr	:=	fmt.Sprintf("{	\"created\":%d	}",	epoch)

										data	:=	struct	{

												Created	int64	`json:"created"`

										}{}

										json.Unmarshal([]byte(jsonStr),	&data)

										deserialized	:=	time.Unix(data.Created,	0)

										fmt.Println("Deserialized	from	Epoch:",	deserialized)

								}

4.	 Execute	the	code	by	running	go	run	serialize.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

>

How	it	works…
The	Time	function	implements	the	interfaces	for	Binary,	Gob,	and	JSON
serialization.	The	JSON	format	is	considered	to	be	very	universal,	so	an
example	on	how	the	value	is	serialized	to	JSON	is	shown.	Note	that	the
Time	function	serializes	the	value	in	the	manner	of	RFC	3339	(https://www.ietf.org/r
fc/rfc3339.txt),	which	proposes	a	so-called	internet	date/time	format.	

Another	very	universal	way	to	serialize/keep	the	time	is	to	use	the	epoch	time.
The	epoch	time	is	independent	of	timezones	because	it	is	defined	by
seconds/nanoseconds	elapsed	since	an	absolute	point	in	time.	Finally,	it	is
represented	as	a	number	so	there	is	no	reason	to	serialize	and	deserialize	the
value.

https://www.ietf.org/rfc/rfc3339.txt

In	and	Out
This	chapter	contains	the	following	recipes:

Reading	standard	input
Writing	standard	output	and	error
Opening	a	file	by	name
Reading	the	file	into	a	string
Reading/writing	a	different	charset
Seeking	a	position	within	a	file
Reading	and	writing	binary	data
Writing	to	multiple	writers	at	once
Piping	between	writer	and	reader
Serializing	objects	to	binary	format
Reading	and	writing	ZIP	files
Parsing	a	large	XML	file	effectively
Extracting	data	from	an	incomplete	JSON	array

Introduction
This	chapter	will	go	through	typical	I/O	operations	and	related	tasks,	as	well
as	the	writing	and	reading	of	various	input	sources.	We	will	go	through	XML
processing,	unzipping	compressed	files,	and	using	the	random	access	file.

Check	if	Go	is	properly	installed.	The	Getting
ready	section	from	Retrieving	the	Golang	version	recipe	of	Chapte
r	1,	Interacting	with	the	Environment,	will	help	you.

Reading	standard	input
Every	process	owns	its	standard	input,	output,	and	error	file	descriptor.	The
stdin	serves	as	the	input	of	the	process.	This	recipe	describes	how	to	read	the
data	from	the	stdin.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter05/recipe01.
2.	 Navigate	to	the	directory.
3.	 Create	the	fmt.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

)

								func	main()	{

										var	name	string

										fmt.Println("What	is	your	name?")

										fmt.Scanf("%s\n",	&name)

										var	age	int

										fmt.Println("What	is	your	age?")

										fmt.Scanf("%d\n",	&age)

										fmt.Printf("Hello	%s,	your	age	is	%d\n",	name,	age)

							}

4.	 Execute	the	code	with	go	run	fmt.go.
5.	 Enter	the	input	John	and	press	Enter.
6.	 Enter	the	input	40	and	press	Enter.

7.	 You	will	see	the	following	output:

8.	 Create	the	file	scanner.go	with	the	following	content:

								package	main

								import	(

										"bufio"

										"fmt"

										"os"

)

								func	main()	{

										//	The	Scanner	is	able	to

										//	scan	input	by	lines

										sc	:=	bufio.NewScanner(os.Stdin)

										for	sc.Scan()	{

												txt	:=	sc.Text()

												fmt.Printf("Echo:	%s\n",	txt)

										}

								}

9.	 Execute	the	code	with	go	run	scanner.go.
10.	 Enter	the	input	Hello	and	press	Enter.
11.	 Press	CTRL	+	C	to	send	SIGINT.

12.	 See	the	output:

13.	 Create	the	file	reader.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"os"

)

								func	main()	{

									for	{

											data	:=	make([]byte,	8)

											n,	err	:=	os.Stdin.Read(data)

											if	err	==	nil	&&	n	>	0	{

													process(data)

											}	else	{

													break

											}

									}

							}

							func	process(data	[]byte)	{

									fmt.Printf("Received:	%X	%s\n",	data,	string(data))

							}

14.	 Execute	the	code	with	the	piped	input	echo	'Go	is	awesome!'	|	go	run
reader.go.

15.	 See	the	output:

How	it	works…
The	stdin	of	the	Go	process	could	be	retrieved	via	the	Stdin	of	the	os	package.
In	fact,	it	is	a	File	type	which	implements	the	Reader	interface.	Reading	from
the	Reader	is	then	very	easy.	The	preceding	code	shows	three	very	common
ways	of	how	to	read	from	the	Stdin.

The	first	option	illustrates	the	use	of	the	fmt	package,	which	provides	the
functions	Scan,	Scanf,	and	Scanln.	The	Scanf	function	reads	the	input	into	given
variable(s).	The	advantage	of	Scanf	is	that	you	can	determine	the	format	of	the
scanned	value.	The	Scan	function	just	reads	the	input	into	a	variable	(without
predefined	formatting)	and	Scanln,	as	its	name	suggests,	reads	the	input	ended
with	the	line	break.

The	Scanner,	which	is	the	second	option	shown	in	the	sample	code,	provides	a
convenient	way	of	scanning	larger	input.	The	Scanner	contains	the	function
Split	by	which	the	custom	split	function	could	be	defined.	For	example,	to
scan	the	words	from	stdin,	you	can	use	bufio.ScanWords	predefined	SplitFunc.

The	reading	via	the	Reader	API	is	the	last	presented	approach.	This	one
provides	you	with	more	control	of		how	the	input	is	read.

Writing	standard	output	and	error
As	the	previous	recipe	describes,	each	process	has	stdin,	a	stdout	and	stderr	file
descriptors.	The	standard	approach	is	the	use	of	stdout	as	a	process	output	and
stderr	as	process	error	output.	As	these	are	the	file	descriptors,	the	destination
where	the	data	is	written	could	be	anything,	from	the	console	to	the	socket.
This	recipe	will	show	you	how	to	write	the	stdout	and	stderr.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter05/recipe02.
2.	 Navigate	to	the	directory.
3.	 Create	the	stdouterr.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"io"

										"os"

)

									func	main()	{

											//	Simply	write	string

											io.WriteString(os.Stdout,

											"This	is	string	to	standard	output.\n")

											io.WriteString(os.Stderr,

											"This	is	string	to	standard	error	output.\n")

											//	Stdout/err	implements

											//	writer	interface

											buf	:=	[]byte{0xAF,	0xFF,	0xFE}

											for	i	:=	0;	i	<	200;	i++	{

													if	_,	e	:=	os.Stdout.Write(buf);	e	!=	nil	{

															panic(e)

													}

											}

											//	The	fmt	package

											//	could	be	used	too

											fmt.Fprintln(os.Stdout,	"\n")

									}

4.	 Execute	the	code	with	go	run	stdouterr.go.

5.	 See	the	output:

How	it	works…
As	with	the	Stdin	from	the	previous	recipe,	the	Stdout	and	Stderr	are	the
file	descriptors.	So	these	are	implementing	the	Writer	interface.

The	preceding	example	shows	a	few	ways	of	how	to	write	into	these	via
the	io.WriteString	function,	with	the	use	of	the	Writer	API	and	by	the	fmt
package	and	FprintXX	functions.

Opening	a	file	by	name
File	access	is	a	very	common	operation	used	to	store	or	read	the	data.	This
recipe	illustrates	how	to	open	a	file	by	its	name	and	path,	using	the	standard
library.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter05/recipe03.
2.	 Navigate	to	the	directory.
3.	 Create	the	directory	temp	and	create	the	file	file.txt	in	it.

4.	 Edit	the	file.txt	file	and	write	This	file	content	into	the	file.
5.	 Create	the	openfile.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"io"

										"io/ioutil"

										"os"

)

								func	main()	{

										f,	err	:=	os.Open("temp/file.txt")

										if	err	!=	nil	{

												panic(err)

										}

										c,	err	:=	ioutil.ReadAll(f)

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Printf("###	File	content	###\n%s\n",	string(c))

										f.Close()

										f,	err	=	os.OpenFile("temp/test.txt",	os.O_CREATE|os.O_RDWR,

																															os.ModePerm)

										if	err	!=	nil	{

												panic(err)

										}

										io.WriteString(f,	"Test	string")

										f.Close()

								}

6.	 The	file	structure	should	look	like	this:

7.	 Execute	the	code	with	go	run	openfile.go.
8.	 See	the	output	there	should	also	be	a	new	file,	test.txt,	in	the	temp	folder:

How	it	works…
The	os	package	offers	a	simple	way	of	opening	the	file.	The	function	Open
opens	the	file	by	the	path,	just	in	read-only	mode.	Another	function,	OpenFile,
is	the	more	powerful	one	and	consumes	the	path	to	the	file,	flags,	and
permissions.	

The	flag	constants	are	defined	in	the	os	package	and	you	can	combine	them
with	use	of	the	binary	OR	operator	|.		The	permissions	are	set	by	the	os
package	constants	(for	example,	os.ModePerm)	or	by	the	number	notation	such
as	0777	(permissions:	-rwxrwxrwx).

Reading	the	file	into	a	string
In	the	previous	recipes,	we	saw	the	reading	from	Stdin	and	the	opening	of	the
file.	In	this	recipe,	we	will	combine	these	two	a	little	bit	and	show	how	to
read	the	file	into	a	string.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter05/recipe04.
2.	 Navigate	to	the	directory.
3.	 Create	the	directory	temp	and	create	the	file	file.txt	in	it.
4.	 Edit	the	file.txt	file	and	write	multiple	lines	into	the	file.

5.	 Create	the	readfile.go	file	with	the	following	content:

								package	main

								import	"os"

								import	"bufio"

								import	"bytes"

								import	"fmt"

								import	"io/ioutil"

								func	main()	{

										fmt.Println("###	Read	as	reader	###")

										f,	err	:=	os.Open("temp/file.txt")

										if	err	!=	nil	{

												panic(err)

										}

										defer	f.Close()

										//	Read	the

										//	file	with	reader

										wr	:=	bytes.Buffer{}

										sc	:=	bufio.NewScanner(f)

										for	sc.Scan()	{

												wr.WriteString(sc.Text())

										}

										fmt.Println(wr.String())

										fmt.Println("###	ReadFile	###")

										//	for	smaller	files

										fContent,	err	:=	ioutil.ReadFile("temp/file.txt")

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println(string(fContent))

								}

6.	 Execute	the	code	with	go	run	readfile.go.
7.	 See	the	output:

How	it	works…
The	reading	from	the	file	is	simple	because	the	File	type	implements	both
the	Reader	and	Writer	interfaces.	This	way,	all	functions	and	approaches
applicable	to	the	Reader	interface	are	applicable	to	the	File	type.	The	preceding
example	shows	how	to	read	the	file	with	the	use	of	Scanner	and	write	the
content	to	the	bytes	buffer	(which	is	more	performant	than	string
concatenation).	This	way,	you	are	able	to	control	the	volume	of	content	read
from	a	file.

The	second	approach	with	ioutil.ReadFile	is	simpler	but	should	be	used
carefully,	because	it	reads	the	whole	file.	Keep	in	mind	that	the	file	could	be
huge	and	it	could	threaten	the	stability	of	the	application.

Reading/writing	a	different	charset
It	is	not	an	exception	that	the	input	from	various	sources	could	come	in
various	charsets.	Note	that	a	lot	of	systems	use	the	Windows	operating	system
but	there	are	others.	Go,	by	default,	expects	that	the	strings	used	in	the
program	are	UTF-8	based.	If	they	are	not,	then	decoding	from	the	given
charset	must	be	done	to	be	able	to	work	with	the	string.	This	recipe	will	show
the	reading	and	writing	of	the	file	in	a	charset	other	than	UTF-8.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter05/recipe05.
2.	 Navigate	to	the	directory.
3.	 Create	the	charset.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"io/ioutil"

										"os"

										"golang.org/x/text/encoding/charmap"

)

								func	main()	{

										//	Write	the	string

										//	encoded	to	Windows-1252

										encoder	:=	charmap.Windows1252.NewEncoder()

										s,	e	:=	encoder.String("This	is	sample	text	with	runes	Š")

										if	e	!=	nil	{

												panic(e)

										}

										ioutil.WriteFile("example.txt",	[]byte(s),	os.ModePerm)

										//	Decode	to	UTF-8

										f,	e	:=	os.Open("example.txt")

										if	e	!=	nil	{

												panic(e)

										}

										defer	f.Close()

										decoder	:=	charmap.Windows1252.NewDecoder()

										reader	:=	decoder.Reader(f)

										b,	err	:=	ioutil.ReadAll(reader)

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println(string(b))

								}

4.	 Execute	the	code	with	go	run	charset.go.
5.	 See	the	output:

How	it	works…
The	golang.org/x/text/encoding/charmap	package	contains	the	Charmap	type	pointer
constants	that	represent	the	widely	used	charsets.	The	Charmap	type	provides	the
methods	for	creating	the	encoder	and	decoder	for	the	given	charset.	The
Encoder	creates	the	encoding	Writer	which	encodes	the	written	bytes	into	the
chosen	charset.	Similarly,	the	Decoder	can	create	the	decoding	Reader,	which
decodes	all	read	data	from	the	chosen	charset.

See	also
Chapter	2,	String	and	Things,	also	contains	the	recipe	Decoding	a	string	from
the	non-Unicode	charset	for	encoding/decoding	a	string	into	another	charset.

Seeking	a	position	within	a	file
In	some	cases,	you	need	to	read	from	or	write	to	a	particular	location	in	a	file,
such	as	an	indexed	file.	The	recipe	will	show	you	how	to	use	the	position
seeking	in	the	context	of	flat	file	operations.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter05/recipe06.
2.	 Navigate	to	the	directory.

3.	 Create	the	file	flatfile.txt	with	the	following	content:

						123.Jun.......Wong......

						12..Novak.....Jurgen....

						10..Thomas....Sohlich...

4.	 Create	the	fileseek.go	file	with	the	following	content:

								package	main

								import	(

										"errors"

										"fmt"

										"os"

)

								const	lineLegth	=	25

								func	main()	{

										f,	e	:=	os.OpenFile("flatfile.txt",	os.O_RDWR|os.O_CREATE,

																														os.ModePerm)

										if	e	!=	nil	{

												panic(e)

										}

										defer	f.Close()

										fmt.Println(readRecords(2,	"last",	f))

										if	err	:=	writeRecord(2,	"first",	"Radomir",	f);	err	!=	nil	{

												panic(err)

										}

										fmt.Println(readRecords(2,	"first",	f))

										if	err	:=	writeRecord(10,	"first",	"Andrew",	f);	err	!=	nil	{

												panic(err)

										}

										fmt.Println(readRecords(10,	"first",	f))

										fmt.Println(readLine(2,	f))

								}

								func	readLine(line	int,	f	*os.File)	(string,	error)	{

										lineBuffer	:=	make([]byte,	24)

										f.Seek(int64(line*lineLegth),	0)

										_,	err	:=	f.Read(lineBuffer)

										return	string(lineBuffer),	err

								}

								func	writeRecord(line	int,	column,	dataStr	string,	f	*os.File)	

								error	{

										definedLen	:=	10

										position	:=	int64(line	*	lineLegth)

										switch	column	{

												case	"id":

														definedLen	=	4

												case	"first":

														position	+=	4

												case	"last":

														position	+=	14

											default:

													return	errors.New("Column	not	defined")

										}

										if	len([]byte(dataStr))	>	definedLen	{

												return	fmt.Errorf("Maximum	length	for	'%s'	is	%d",	

																														column,	definedLen)

										}

										data	:=	make([]byte,	definedLen)

										for	i	:=	range	data	{

												data[i]	=	'.'

										}

										copy(data,	[]byte(dataStr))

										_,	err	:=	f.WriteAt(data,	position)

										return	err

								}

								func	readRecords(line	int,	column	string,	f	*os.File)	

																								(string,	error)	{

										lineBuffer	:=	make([]byte,	24)

										f.ReadAt(lineBuffer,	int64(line*lineLegth))

										var	retVal	string

										switch	column	{

												case	"id":

														return	string(lineBuffer[:3]),	nil

												case	"first":

														return	string(lineBuffer[4:13]),	nil

												case	"last":

														return	string(lineBuffer[14:23]),	nil

										}

										return	retVal,	errors.New("Column	not	defined")

								}

5.	 Execute	the	code	with	go	run	fileseek.go.
6.	 See	the	output:

7.	 Display	the	file	in	hex	xxd	flatfile.txt.

How	it	works…
The	preceding	example	uses	the	flatfile	as	an	illustration	of	how	to	seek,	read
and	write	at	the	position	in	the	file.	In	general,	for	moving	the	position	of	the
current	pointer	in	the	File,	the	Seek	method	can	be	used.	It	takes	two	arguments
and	these	are,	position	and	how	to	count	the	position,	0	-	relative	to	file
origin,	1	-	relative	to	current	position,	2	-	relative	to	the	end	of	file.	This	way
you	are	able	to	move	the	cursor	within	the	file.	The	Seek	method	is	used	in	the
implementation	of	the	readLine	function	in	the	preceding	code.

The	flatfile	is	the	most	basic	form	of	how	to	store	the	data.	The
record	structure	has	a	fixed	length	and	the	same	for	the	record
parts.	The	structure	of	the	flat	file	in	the	example	is:	ID	-	4	chars,
FirstName	-	10	chars,	LastName	-	10	chars.	The	whole	record	is	24
chars	long,	ended	by	a	line	break	which	is	the	25th	character.

The	os.File	also	contains	the	ReadAt	and	WriteAt	methods.	These	methods
consume	that	the	bytes	to	be	written/read	and	the	offset	where	to	start.	These
simplify	the	writing	and	reading	to	a	certain	position	in	a	file.

Note	that	the	example	assumes	that	each	rune	is	only	one	byte,
which	does	not	have	to	be	true	for	special	characters,	and	so	on.

Reading	and	writing	binary	data
This	recipe	describes	how	to	write	and	read	any	type	in	the	binary	form.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter05/recipe07.
2.	 Navigate	to	the	directory.
3.	 Create	the	rwbinary.go	file	with	the	following	content:

								package	main

								import	(

										"bytes"

										"encoding/binary"

										"fmt"

)

								func	main()	{

										//	Writing	binary	values

										buf	:=	bytes.NewBuffer([]byte{})

										if	err	:=	binary.Write(buf,	binary.BigEndian,	1.004);	

										err	!=	nil	{

												panic(err)

										}

										if	err	:=	binary.Write(buf,	binary.BigEndian,

																			[]byte("Hello"));	err	!=	nil	{

												panic(err)

										}

										//	Reading	the	written	values

										var	num	float64

										if	err	:=	binary.Read(buf,	binary.BigEndian,	&num);	

										err	!=	nil	{

												panic(err)

										}

										fmt.Printf("float64:	%.3f\n",	num)

										greeting	:=	make([]byte,	5)

										if	err	:=	binary.Read(buf,	binary.BigEndian,	&greeting);

										err	!=	nil	{

												panic(err)

										}

										fmt.Printf("string:	%s\n",	string(greeting))

								}

4.	 Execute	the	code	by	go	run	rwbinary.go.
5.	 See	the	output:

How	it	works…
The	binary	data	could	be	written	with	the	use	of	the	encoding/binary	package.
The	function	Write	consumes	the	Writer	where	the	data	should	be	written,	the
byte	order	(BigEndian/LittleEndian)	and	finally,	the	value	to	be	written	into	Writer.

To	read	the	binary	data	analogically,	the	Read	function	could	be	used.	Note	that
there	is	no	magic	in	reading	the	data	from	the	binary	source.	You	need	to	be
sure	what	data	you	are	fetching	from	the	Reader.	If	not,	the	data	could	be
fetched	into	any	type	which	fits	the	size.

Writing	to	multiple	writers	at	once
When	you	need	to	write	the	same	output	into	more	than	one	target,	there	is	a
helping	hand	available	in	the	built-in	package.	This	recipe	shows	how	to
implement	writing	simultaneously	into	multiple	targets.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter05/recipe08.
2.	 Navigate	to	the	directory.
3.	 Create	the	multiwr.go	file	with	the	following	content:

								package	main

								import	"io"

								import	"bytes"

								import	"os"

								import	"fmt"

								func	main()	{

										buf	:=	bytes.NewBuffer([]byte{})

										f,	err	:=	os.OpenFile("sample.txt",	os.O_CREATE|os.O_RDWR,

																																os.ModePerm)

										if	err	!=	nil	{

												panic(err)

										}

										wr	:=	io.MultiWriter(buf,	f)

										_,	err	=	io.WriteString(wr,	"Hello,	Go	is	awesome!")

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println("Content	of	buffer:	"	+	buf.String())

								}

4.	 Execute	the	code	by	go	run	multiwr.go.

5.	 See	the	output:

6.	 Check	the	content	of	the	created	file:

						Hello,	Go	is	awesome!

How	it	works…
The	io	package	contains	the	MultiWriter	function	with	variadic	parameters	of	
Writers.		When	the	Write	method	on	the	Writer	is	called,	then	the	data	is	written
to	all	underlying	Writers.

Piping	between	writer	and	reader
The	pipes	between	processes	are	the	easy	way	to	use	the	output	of	the	first
process	as	the	input	of	other	processes.	The	same	concept	could	be	done	in
Go,	for	example,	to	pipe	data	from	one	socket	to	another	socket,	to	create	the
tunneled	connection.	This	recipe	will	show	you	how	to	create	the	pipe	with
use	of	the	Go	built-in	library.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter05/recipe09.
2.	 Navigate	to	the	directory.
3.	 Create	the	pipe.go	file	with	the	following	content:

								package	main

								import	(

										"io"

										"log"

										"os"

										"os/exec"

)

								func	main()	{

										pReader,	pWriter	:=	io.Pipe()

										cmd	:=	exec.Command("echo",	"Hello	Go!\nThis	is	example")

										cmd.Stdout	=	pWriter

										go	func()	{

												defer	pReader.Close()

												if	_,	err	:=	io.Copy(os.Stdout,	pReader);	err	!=	nil	{

														log.Fatal(err)

												}

										}()

										if	err	:=	cmd.Run();	err	!=	nil	{

												log.Fatal(err)

										}

								}

4.	 Execute	the	code	by	go	run	pipe.go.
5.	 See	the	output:

How	it	works…
The	io.Pipe	function	creates	the	in-memory	pipe	and	returns	both	ends	of	the
pipe,	the	PipeReader	on	one	side	and	PipeWriter	on	the	other	side.	Each	Write	to
PipeWriter	is	blocked	until	it	is	consumed	by	Read	on	the	other	end.

The	example	shows	the	piping	output	from	the	executed	command	to	the
standard	output	of	the	parent	program.	By	assigning	the	pWriter	to	cmd.Stdout,
the	standard	output	of	the	child	process	is	written	to	the	pipe,	and	the	io.Copy
in	goroutine	consumes	the	written	data,	by	copying	the	data	to	os.Stdout.

Serializing	objects	to	binary	format
Besides	the	well-known	JSON	and	XML,	Go	also	offers	the	binary
format,	gob.	This	recipe	goes	through	the	basic	concept	of	how	to	use	the	gob
package.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter05/recipe10.
2.	 Navigate	to	the	directory.
3.	 Create	the	gob.go	file	with	the	following	content:

								package	main

								import	(

										"bytes"

										"encoding/gob"

										"fmt"

)

								type	User	struct	{

										FirstName	string

										LastName	string

										Age	int

										Active	bool

								}

								func	(u	User)	String()	string	{

										return	fmt.Sprintf(`{"FirstName":%s,"LastName":%s,

																															"Age":%d,"Active":%v	}`,

										u.FirstName,	u.LastName,	u.Age,	u.Active)

								}

								type	SimpleUser	struct	{

										FirstName	string

										LastName	string

								}

								func	(u	SimpleUser)	String()	string	{

										return	fmt.Sprintf(`{"FirstName":%s,"LastName":%s}`,

										u.FirstName,	u.LastName)

								}

								func	main()	{

										var	buff	bytes.Buffer

										//	Encode	value

										enc	:=	gob.NewEncoder(&buff)

										user	:=	User{

												"Radomir",

												"Sohlich",

												30,

												true,

										}

										enc.Encode(user)

										fmt.Printf("%X\n",	buff.Bytes())

										//	Decode	value

										out	:=	User{}

										dec	:=	gob.NewDecoder(&buff)

										dec.Decode(&out)

										fmt.Println(out.String())

										enc.Encode(user)

										out2	:=	SimpleUser{}

										dec.Decode(&out2)

										fmt.Println(out2.String())

								}

4.	 Execute	the	code	by	go	run	gob.go.
5.	 See	the	output:

How	it	works…
The	gob	serialization	and	deserialization	need	the	Encoder	and	Decoder.	The
gob.NewEncoder	function	creates	the	Encoder	with	the	underlying	Writer.	Each	call
of	the	Encode	method	will	serialize	the	object	into	a	gob	format.	The	gob	format
itself	is	the	self-describing	binary	format.	This	means	each	serialized	struct	is
preceded	by	its	description.

To	decode	the	data	from	the	serialized	form,	the	Decoder	must	be	created	by
calling	the	gob.NewDecoder	with	the	underlying	Reader.	The	Decode	then	accepts	the
pointer	to	the	structure	where	the	data	should	be	deserialized.	

Note	that	the	gob	format	does	not	need	the	source	and
destination	type	to	match	exactly.	For	the	rules,	refer	to
the	encoding/gob	package.

Reading	and	writing	ZIP	files
ZIP	compression	is	a	widely	used	compression	format.	It	is	usual	to	use	the
ZIP	format	for	an	application	to	upload	a	file	set	or,	on	the	other	hand,	export
zipped	files	as	output.	This	recipe	will	show	you	how	to	handle	ZIP	files
programmatically	with	the	use	of	the	standard	library.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter05/recipe11.
2.	 Navigate	to	the	directory.
3.	 Create	the	zip.go	file	with	the	following	content:

								package	main

								import	(

										"archive/zip"

										"bytes"

										"fmt"

										"io"

										"io/ioutil"

										"log"

										"os"

)

								func	main()	{

										var	buff	bytes.Buffer

										//	Compress	content

										zipW	:=	zip.NewWriter(&buff)

										f,	err	:=	zipW.Create("newfile.txt")

										if	err	!=	nil	{

												panic(err)

										}

										_,	err	=	f.Write([]byte("This	is	my	file	content"))

										if	err	!=	nil	{

												panic(err)

										}

										err	=	zipW.Close()

										if	err	!=	nil	{

												panic(err)

										}

										//Write	output	to	file

										err	=	ioutil.WriteFile("data.zip",	buff.Bytes(),	os.ModePerm)

										if	err	!=	nil	{

												panic(err)

										}

										//	Decompress	the	content

										zipR,	err	:=	zip.OpenReader("data.zip")

										if	err	!=	nil	{

												panic(err)

										}

										for	_,	file	:=	range	zipR.File	{

												fmt.Println("File	"	+	file.Name	+	"	contains:")

												r,	err	:=	file.Open()

												if	err	!=	nil	{

														log.Fatal(err)

												}

												_,	err	=	io.Copy(os.Stdout,	r)

												if	err	!=	nil	{

														panic(err)

												}

												err	=	r.Close()

												if	err	!=	nil	{

														panic(err)

												}

												fmt.Println()

										}

								}

4.	 Execute	the	code	by	go	run	zip.go.
5.	 See	the	output:

How	it	works…
The	built-in	package	zip	contains	the	NewWriter	and	NewReader	functions	to	create
the	zip.Writer	to	compress,	and	the	zip.Reader	to	decompress	the	zipped	content.

Each	record	of	the	ZIP	file	is	created	with	the	Create	method	of	the	created
zip.Writer	.	The	returned	Writer	is	then	used	to	write	the	content	body.

To	decompress	the	files,	the	OpenReader	function	is	used	to	create	the
ReadCloser	of	the	records	in	the	zipped	file.	The	File	field	of	the	created
ReaderCloser	is	the	slice	of	zip.File	pointers.	The	content	of	the	file	is	obtained
by	calling	the	Open	method	and	by	reading	the	returned	ReadCloser.

The	folders	could	be	created	by	only	adding	slashes	to	the	name
of	the	file	in	the	Create	method.	An	example	could
be		folder/newfile.txt.

Parsing	a	large	XML	file	effectively
XML	is	a	very	common	format	for	data	exchange.	The	Go	library	contains
support	for	parsing	XML	files	the	same	way	as	the	JSON.	Usually,	the	struct
which	corresponds	to	the	XML	scheme	is	used	and	with	this	help,	the	XML
content	is	parsed	at	once.	The	problem	is	when	the	XML	file	is	too	large	to	fit
into	memory	and	so	you	need	to	parse	the	file	in	chunks.	This	recipe	will
reveal	how	to	handle	a	large	XML	file	and	parse	the	required	information.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter05/recipe11.
2.	 Navigate	to	the	directory.
3.	 Create	the	data.xml	file	with	the	following	XML	content:

								<?xml	version="1.0"?>

								<catalog>

										<book	id="bk101">

												<author>Gambardella,	Matthew</author>

												<title>XML	Developer's	Guide</title>

												<genre>Computer</genre>

												<price>44.95</price>

												<publish_date>2000-10-01</publish_date>

												<description>An	in-depth	look	at	creating	applications	

													with	XML.</description>

										</book>

										<book	id="bk112">

												<author>Galos,	Mike</author>

												<title>Visual	Studio	7:	A	Comprehensive	Guide</title>

												<genre>Computer</genre>

												<price>49.95</price>

												<publish_date>2001-04-16</publish_date>

												<description>Microsoft	Visual	Studio	7	is	explored

													in	depth,	looking	at	how	Visual	Basic,	Visual	C++,	C#,

													and	ASP+	are	integrated	into	a	comprehensive	development

													environment.</description>

										</book>

								</catalog>

4.	 Create	the	xml.go	file	with	the	following	content:

								package	main

								import	(

										"encoding/xml"

										"fmt"

										"os"

)

								type	Book	struct	{

										Title	string	`xml:"title"`

										Author	string	`xml:"author"`

								}

								func	main()	{

	

										f,	err	:=	os.Open("data.xml")

										if	err	!=	nil	{

												panic(err)

										}

										defer	f.Close()

										decoder	:=	xml.NewDecoder(f)

										//	Read	the	book	one	by	one

										books	:=	make([]Book,	0)

										for	{

												tok,	_	:=	decoder.Token()

												if	tok	==	nil	{

														break

												}

												switch	tp	:=	tok.(type)	{

														case	xml.StartElement:

																if	tp.Name.Local	==	"book"	{

																		//	Decode	the	element	to	struct

																		var	b	Book

																		decoder.DecodeElement(&b,	&tp)

																		books	=	append(books,	b)

																}

												}

										}

										fmt.Println(books)

								}

5.	 Execute	the	code	by	go	run	xml.go.
6.	 See	the	output:

How	it	works…
With	the	NewDecoder	function	of	the	xml	package,	the	Decoder	for	the	XML
content	is	created.	

By	calling	the	Token	method	on	the	Decoder,	the	xml.Token	is	received.	The
xml.Token	is	the	interface	which	holds	the	token	type.	The	behavior	of	the	code
can	be	defined,	based	on	the	type.	The	sample	code	tests	if	the	parsed
xml.StartElement	is	one	of	the	book	elements.	Then	it	partially	parses	the	data	into
a	Book	structure.	This	way,	the	position	of	the	pointer	in	the	underlying	Reader	in
the	Decoder	is	shifted	by	the	struct	data,	and	the	parsing	can	continue.

Extracting	data	from	an	incomplete
JSON	array
This	recipe	contains	a	very	specific	use	case,	where	your	program	consumes
the	JSON	from	an	unreliable	source	and	the	JSON	contains	an	array	of
objects	which	has	the	beginning	token	[but	the	number	of	items	in	the	array
is	very	large,	and	the	end	of	the	JSON	could	be	corrupted.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter05/recipe13.
2.	 Navigate	to	the	directory.

3.	 Create	the	json.go	file	with	the	following	content:

								package	main

								import	(

										"encoding/json"

										"fmt"

										"strings"

)

								const	js	=	`

										[

												{

														"name":"Axel",

														"lastname":"Fooley"

												},

												{

														"name":"Tim",

														"lastname":"Burton"

												},

												{

														"name":"Tim",

														"lastname":"Burton"

								`

								type	User	struct	{

										Name	string	`json:"name"`

										LastName	string	`json:"lastname"`

								}

								func	main()	{

										userSlice	:=	make([]User,	0)

										r	:=	strings.NewReader(js)

										dec	:=	json.NewDecoder(r)

										for	{

												tok,	err	:=	dec.Token()

												if	err	!=	nil	{

														break

												}

												if	tok	==	nil	{

														break

												}

												switch	tp	:=	tok.(type)	{

														case	json.Delim:

																str	:=	tp.String()

																if	str	==	"["	||	str	==	"{"	{

																		for	dec.More()	{

																				u	:=	User{}

																				err	:=	dec.Decode(&u)

																				if	err	==	nil	{

																						userSlice	=	append(userSlice,	u)

																				}	else	{

																						break

																				}

																		}

																}

														}

												}

												fmt.Println(userSlice)

										}

4.	 Execute	the	code	by	go	run	json.go.
5.	 See	the	output:

How	it	works…
Besides	the	Unmarshall	function,	the	json	package	also	contains	the	Decoder	API.
With	NewDecoder,	the	Decoder	could	be	created.	By	calling	the	Token	method	on	the
decoder,	the	underlying	Reader	is	read	and	returns	the	Token	interface.	This
could	hold	multiple	values.

One	of	these	is	the	Delim	type,	which	is	a	rune	containing	one	of	the	{,	[,],
}	characters.	Based	on	this,	the	beginning	of	the	JSON	array	is	detected.	With
the	More	method	on	the	decoder,	more	objects	to	decode	could	be	detected.

Discovering	the	Filesystem
This	chapter	contains	the	following	recipes:

Getting	file	information
Creating	temporary	files
Writing	the	file
Writing	the	file	from	multiple	goroutines
Listing	a	directory
Changing	file	permissions
Creating	files	and	directories
Filtering	file	listings
Comparing	two	files
Resolving	the	user	home	directory

Introduction
This	chapter	will	lead	you	through	the	typical	operations	in	files	and
directories.	We	will	also	touch	on	how	to	obtain	the	user	home	directory	and
create	the	temporary	files	for	it.

Check	whether	Go	is	properly	installed.	The	Getting
ready	section	from	the	Retrieving	Golang	version	recipe	of	Chapte
r	1,	Interacting	With	Environment	will	help	you.

Getting	file	information
If	you	need	to	discover	basic	information	about	the	accessed	file,	Go’s
standard	library	provides	a	way	on	how	you	can	do	this.	This	recipe	shows
how	you	can	access	this	information.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter06/recipe01.
2.	 Navigate	to	the	directory.
3.	 Create	the	sample	test.file	with	the	content	This	is	test	file.
4.	 Create	the	fileinfo.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"os"

)

								func	main()	{

										f,	err	:=	os.Open("test.file")

										if	err	!=	nil	{

												panic(err)

										}

										fi,	err	:=	f.Stat()

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Printf("File	name:	%v\n",	fi.Name())

										fmt.Printf("Is	Directory:	%t\n",	fi.IsDir())

										fmt.Printf("Size:	%d\n",	fi.Size())

										fmt.Printf("Mode:	%v\n",	fi.Mode())

								}

5.	 Execute	the	code	by	running	go	run	fileinfo.go	in	the	main	Terminal.
6.	 You	will	see	the	following	output:

How	it	works…
The	os.File	type	provides	access	to	the	FileInfo	type	via	the	Stat	method.	The
FileInfo	struct	contains	all	the	basic	information	about	the	file.

Creating	temporary	files
Temporary	files	are	commonly	used	while	running	test	cases	or	if	your
application	needs	to	have	a	place	to	store	short-term	content	such	as	user	data
uploads	and	currently	processed	data.	This	recipe	will	present	the	easiest	way
to	create	such	a	file	or	directory.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter06/recipe02.
2.	 Navigate	to	the	directory.
3.	 Create	the	tempfile.go	file	with	the	following	content:

								package	main

								import	"io/ioutil"

								import	"os"

								import	"fmt"

								func	main()	{

										tFile,	err	:=	ioutil.TempFile("",	"gostdcookbook")

										if	err	!=	nil	{

												panic(err)

										}

										//	The	called	is	responsible	for	handling

										//	the	clean	up.

										defer	os.Remove(tFile.Name())

										fmt.Println(tFile.Name())

										//	TempDir	returns

										//	the	path	in	string.

										tDir,	err	:=	ioutil.TempDir("",	"gostdcookbookdir")

										if	err	!=	nil	{

												panic(err)

										}

										defer	os.Remove(tDir)

										fmt.Println(tDir)

								}

4.	 Execute	the	code	by	running	go	run	tempfile.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	ioutil	package	contains	the	functions	TempFile	and	TempDir.	The	TempFile
function	consumes	the	directory	and	the	file	prefix.	The	os.File	with	the
underlying	temporary	file	is	returned.	Note	that	the	caller	is	responsible	for
cleaning	out	the	file.	The	previous	example	uses	the	os.Remove	function	to	do
that.

The	TempDir	function	works	the	same	way.	The	difference	is	that	the	string	with
the	path	to	the	directory	is	returned.

The	temp	file/dir	name	is	composed	of	the	prefix	and	the	random
suffix.	Multiple	programs	calling	the	TempFile/Dir	function	with
the	same	arguments	won’t	get	the	same	result.

Writing	the	file
Writing	a	file	is	an	essential	task	for	every	programmer;	Go	supports	multiple
ways	on	how	you	can	do	this.	This	recipe	will	show	a	few	of	them.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter06/recipe03.
2.	 Navigate	to	the	directory.
3.	 Create	the	writefile.go	file	with	the	following	content:

								package	main

								import	(

										"io"

										"os"

										"strings"

)

								func	main()	{

										f,	err	:=	os.Create("sample.file")

										if	err	!=	nil	{

												panic(err)

										}

										defer	f.Close()

										_,	err	=	f.WriteString("Go	is	awesome!\n")

										if	err	!=	nil	{

												panic(err)

										}

										_,	err	=	io.Copy(f,	strings.NewReader("Yeah!	Go	

																											is	great.\n"))

										if	err	!=	nil	{

												panic(err)

										}

								}

4.	 Execute	the	code	by	running	go	run	writefile.go	in	the	main	Terminal.
5.	 Check	the	content	of	the	created	sample.file:

How	it	works…
The	os.File	type	implements	the	Writer	interface,	so	writing	to	the	file	could	be
done	by	any	option	that	uses	the	Writer	interface.	The	preceding	example	uses
the		WriteString	method	of	the	os.File	type.	The	io.WriteString	method	can	also
be	used	in	general.

Writing	the	file	from	multiple
goroutines
This	recipe	will	show	you	how	to	safely	write	to	the	file	from	multiple
goroutines.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter06/recipe04.
2.	 Navigate	to	the	directory.
3.	 Create	the	syncwrite.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"io"

										"os"

										"sync"

)

								type	SyncWriter	struct	{

										m	sync.Mutex

										Writer	io.Writer

								}

								func	(w	*SyncWriter)	Write(b	[]byte)	(n	int,	err	error)	{

										w.m.Lock()

										defer	w.m.Unlock()

										return	w.Writer.Write(b)

								}

								var	data	=	[]string{

										"Hello!",

										"Ola!",

										"Ahoj!",

								}

								func	main()	{

										f,	err	:=	os.Create("sample.file")

										if	err	!=	nil	{

												panic(err)

										}

	

										wr	:=	&SyncWriter{sync.Mutex{},	f}

										wg	:=	sync.WaitGroup{}

										for	_,	val	:=	range	data	{

												wg.Add(1)

												go	func(greetings	string)	{

														fmt.Fprintln(wr,	greetings)

														wg.Done()

												}(val)

										}

										wg.Wait()

								}

4.	 Execute	the	code	by	running	go	run	syncwrite.go	in	the	main	Terminal.
5.	 Check	the	content	of	the	created	sample.file:

How	it	works…
Writing	concurrently	to	a	file	is	a	problem	that	can	end	up	with
inconsistent	file	content.	It	is	better	to	synchronize	the	writing	to	the	file	by
using	Mutex	or	any	other	synchronization	primitive.	This	way,	you	ensure	that
only	one	goroutine	at	a	time	will	be	able	to	write	to	the	file.	

The	preceding	code	creates	a	Writer	with	Mutex,	which	embeds	the	Writer
(os.File,	in	this	case),	and	for	each	Write	call,	internally	locks	the	Mutex	to
provide	exclusivity.	After	the	write	operation	is	complete,	the	Mutex	primitive
is	unlocked	naturally.

Listing	a	directory
This	recipe	will	show	you	how	to	list	directory	content.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter06/recipe05.
2.	 Navigate	to	the	directory.
3.	 Create	a	directory	named	folder.
4.	 Create	the	listdir.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"io/ioutil"

										"os"

										"path/filepath"

)

								func	main()	{

										fmt.Println("List	by	ReadDir")

										listDirByReadDir(".")

										fmt.Println()

										fmt.Println("List	by	Walk")

										listDirByWalk(".")

								}

								func	listDirByWalk(path	string)	{

										filepath.Walk(path,	func(wPath	string,	info	os.FileInfo,

																																			err	error)	error	{

										//	Walk	the	given	dir

										//	without	printing	out.

										if	wPath	==	path	{

												return	nil

										}

										//	If	given	path	is	folder

										//	stop	list	recursively	and	print	as	folder.

										if	info.IsDir()	{

												fmt.Printf("[%s]\n",	wPath)

												return	filepath.SkipDir

										}

										//	Print	file	name

										if	wPath	!=	path	{

												fmt.Println(wPath)

										}

										return	nil

								})

								}

								func	listDirByReadDir(path	string)	{

										lst,	err	:=	ioutil.ReadDir(path)

										if	err	!=	nil	{

												panic(err)

										}

										for	_,	val	:=	range	lst	{

												if	val.IsDir()	{

														fmt.Printf("[%s]\n",	val.Name())

												}	else	{

														fmt.Println(val.Name())

												}

										}

								}

5.	 Execute	the	code	by	running	go	run	listdir.go	in	the	main	Terminal.
6.	 You	will	see	the	following	output:

How	it	works…
The	folder	listing	the	example	above	uses	two	approaches.	The	first,	simpler
one	is	implemented	by	using	the	listDirByReadDir	function	and	utilizes	the
ReadDir	function	from	the	ioutil	package.	This	function	returns	the	slice	of
FileInfo	structs	that	represent	the	actual	directory	content.	Note	that	the	ReadDir
function	does	not	read	the	folders	recursively.	In	fact,	the	ReadDir	function
internally	uses	the	Readdir	method	of	the	File	type	in	the	os	package.

On	the	other	hand,	the	more	complicated	listDirByWalk	uses	the	filepath.Walk
function	which	consumes	the	path	to	be	walked	and	has	a	function	that
processes	each	file	or	folder	in	any	given	path.	The	main	difference	is	that	the
Walk	function	reads	the	directory	recursively.	The	core	part	of	this	approach	is
the	WalkFunc	type,	where	its	function	is	to	consume	the	results	of	the	listing.
Note	that	the	function	blocks	the	recursive	call	on	underlying	folders	by
returning	the	filepath.SkipDir	error.	The	Walk	function	also	processes	the	called
path	at	first,	so	you	need	to	handle	this	as	well	(in	this	case,	we	skip	the
printing	and	return	nil	because	we	need	to	process	this	folder	recursively).

Changing	file	permissions
This	recipe	illustrates	how	file	permissions	can	be	changed
programmatically.	

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter06/recipe06.
2.	 Navigate	to	the	directory.
3.	 Create	the	filechmod.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"os"

)

								func	main()	{

										f,	err	:=	os.Create("test.file")

										if	err	!=	nil	{

												panic(err)

										}

										defer	f.Close()

										//	Obtain	current	permissions

										fi,	err	:=	f.Stat()

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Printf("File	permissions	%v\n",	fi.Mode())

										//	Change	permissions

										err	=	f.Chmod(0777)

										if	err	!=	nil	{

												panic(err)

										}

										fi,	err	=	f.Stat()

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Printf("File	permissions	%v\n",	fi.Mode())

								}

4.	 Execute	the	code	by	running	go	run	filechmod.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	Chmod	method	of	the	File	type	in	the	os	package	can	be	used	to	change	file
permissions.	The	preceding	example	just	creates	the	file	and	changes	the
permissions	to	0777.

Just	note	that	the	fi.Mode()	is	called	twice	because	it	extracts	the	permissions
(os.FileMode)	for	the	current	state	of	the	file.

The	shortest	way	to	change	the	permissions	is	by	using	the	os.Chmod	function,
which	does	the	same,	but	you	do	not	need	to	obtain	the	File	type	in	the	code.

Creating	files	and	directories
This	recipe	describes	a	few	general	ways	you	can	create	files	and	directories
in	code.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter06/recipe07.
2.	 Navigate	to	the	directory.
3.	 Create	the	create.go	file	with	the	following	content:

								package	main

								import	(

										"os"

)

								func	main()	{

										f,	err	:=	os.Create("created.file")

										if	err	!=	nil	{

												panic(err)

										}

										f.Close()

										f,	err	=	os.OpenFile("created.byopen",	os.O_CREATE|os.O_APPEND,

																															os.ModePerm)

										if	err	!=	nil	{

												panic(err)

										}

										f.Close()

										err	=	os.Mkdir("createdDir",	0777)

										if	err	!=	nil	{

												panic(err)

										}

										err	=	os.MkdirAll("sampleDir/path1/path2",	0777)

										if	err	!=	nil	{

												panic(err)

										}

								}

4.	 Execute	the	code	by	running	go	run	create.go	in	the	main	Terminal.
5.	 List	the	content	of		the	chapter06/recipe07	directory:

How	it	works…
The	previous	example	represents	four	ways	you	can	create	a	file	or	directory.
The	os.Create	function	is	the	simplest	way	to	create	the	file.	By	using	this
function,	you	will	create	the	file	with	permissions	such	as	0666.

If	you	need	to	create	the	file	with	any	other	configuration	of	permissions,	then
the	OpenFile	function	of	the	os	package	is	the	one	to	be	used.

The	directories	can	be	created	by	using	the	Mkdir	function	of	the	os	package.
This	way,	a	directory	with	given	permissions	is	created.	The	second	option	is
to	use	the	MkdirAll	function.	This	function	also	creates	the	directory,	but	if	the
given	path	contains	non-exiting	directories,	then	all	directories	in	the	path	are
created	(it	works	the	same	as	the	-p	option	of	Unix’s	mkdir	utility).

Filtering	file	listings
This	recipe	shows	you	how	to	list	the	file	paths,	matching	a	given	pattern.	The
list	does	not	have	to	be	from	the	same	folder.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter06/recipe08.
2.	 Navigate	to	the	directory.
3.	 Create	the	filter.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"os"

										"path/filepath"

)

								func	main()	{

										for	i	:=	1;	i	<=	6;	i++	{

												_,	err	:=	os.Create(fmt.Sprintf("./test.file%d",	i))

												if	err	!=	nil	{

														fmt.Println(err)

												}

										}

										m,	err	:=	filepath.Glob("./test.file[1-3]")

										if	err	!=	nil	{

												panic(err)

										}

										for	_,	val	:=	range	m	{

												fmt.Println(val)

										}

	

										//	Cleanup

										for	i	:=	1;	i	<=	6;	i++	{

												err	:=	os.Remove(fmt.Sprintf("./test.file%d",	i))

												if	err	!=	nil	{

														fmt.Println(err)

												}

										}

								}

4.	 Execute	the	code	by	running	go	run	filter.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
To	get	the	filtered	file	list	which	corresponds	to	the	given	pattern,	the	Glob
function	from	the	filepath	package	can	be	used.	For	the	pattern	syntax,	see	the
documentation	of	the	filepath.Match	function
(https://golang.org/pkg/path/filepath/#Match).

Note	that	the	returning	result	of	filepath.Glob	is	the	slice	of	strings	with
matching	paths.

https://golang.org/pkg/path/filepath/#Match

See	also
The	Listing	a	directory	recipe	of	this	chapter,	which	shows	a	more	generic
approach	where	the	filepath.Walk	function	can	be	used	to	list	and	filter	the	path
too.

Comparing	two	files
This	recipe	gives	you	a	hint	on	how	to	compare	two	files.	The	recipe	will
show	you	how	to	quickly	determine	whether	the	files	are	identical.	The	recipe
will	also	present	you	with	a	way	to	find	differences	between	the	two.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter06/recipe09.
2.	 Navigate	to	the	directory.
3.	 Create	the	comparison.go	file	with	the	following	content:

								package	main

								import	(

										"bufio"

										"crypto/md5"

										"fmt"

										"io"

										"os"

)

								var	data	=	[]struct	{

										name	string

										cont	string

										perm	os.FileMode

								}{

										{"test1.file",	"Hello\nGolang	is	great",	0666},

										{"test2.file",	"Hello\nGolang	is	great",	0666},

										{"test3.file",	"Not	matching\nGolang	is	great\nLast	line",

											0666},

								}

								func	main()	{

										files	:=	[]*os.File{}

										for	_,	fData	:=	range	data	{

												f,	err	:=	os.Create(fData.name)

												if	err	!=	nil	{

														panic(err)

												}

												defer	f.Close()

												_,	err	=	io.WriteString(f,	fData.cont)

												if	err	!=	nil	{

														panic(err)

												}

												files	=	append(files,	f)

										}

										//	Compare	by	checksum

										checksums	:=	[]string{}

										for	_,	f	:=	range	files	{

												f.Seek(0,	0)	//	reset	to	beginning	of	file

												sum,	err	:=	getMD5SumString(f)

												if	err	!=	nil	{

														panic(err)

												}

												checksums	=	append(checksums,	sum)

										}

										fmt.Println("###	Comparing	by	checksum	###")

										compareCheckSum(checksums[0],	checksums[1])

										compareCheckSum(checksums[0],	checksums[2])

										fmt.Println("###	Comparing	line	by	line	###")

										files[0].Seek(0,	0)

										files[2].Seek(0,	0)

										compareFileByLine(files[0],	files[2])

										//	Cleanup

										for	_,	val	:=	range	data	{

												os.Remove(val.name)

										}

								}

								func	getMD5SumString(f	*os.File)	(string,	error)	{

										file1Sum	:=	md5.New()

										_,	err	:=	io.Copy(file1Sum,	f)

										if	err	!=	nil	{

												return	"",	err

										}

										return	fmt.Sprintf("%X",	file1Sum.Sum(nil)),	nil

								}

								func	compareCheckSum(sum1,	sum2	string)	{

										match	:=	"match"

										if	sum1	!=	sum2	{

												match	=	"	does	not	match"

										}

										fmt.Printf("Sum:	%s	and	Sum:	%s	%s\n",	sum1,	sum2,	match)

								}

								func	compareLines(line1,	line2	string)	{

										sign	:=	"o"

										if	line1	!=	line2	{

												sign	=	"x"

										}

										fmt.Printf("%s	|	%s	|	%s	\n",	sign,	line1,	line2)

								}

								func	compareFileByLine(f1,	f2	*os.File)	{

										sc1	:=	bufio.NewScanner(f1)

										sc2	:=	bufio.NewScanner(f2)

										for	{

												sc1Bool	:=	sc1.Scan()

												sc2Bool	:=	sc2.Scan()

												if	!sc1Bool	&&	!sc2Bool	{

														break

												}

												compareLines(sc1.Text(),	sc2.Text())

										}

								}

4.	 Execute	the	code	by	running	go	run	comparison.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	comparison	of	the	two	files	can	be	done	in	a	few	ways.	This	recipe
describes	the	two	basic	ones.	The	first	one	is	by	doing	a	comparison	of	the
whole	file	by	creating	the	checksum	of	the	file.	

The	Generating	checksum	recipe	of	Chapter	3,	Dealing	with	Numbers	shows
how	you	can	create	the	checksum	of	the	file.	This	way,
the	getMD5SumString	function	generates	the	checksum	string,	which	is	a
hexadecimal	representation	of	the	byte	result	of	MD5.	The	strings	are	then
compared.

The	second	approach	compares	the	files	line	by	line	(in	this	case,	the	string
content).	In	case	the	lines	are	not	matching,	the	x	sign	is	included.	This	is	the
same	way	you	can	compare	the	binary	content,	but	you	will	need	to	scan	the
file	by	blocks	of	bytes	(byte	slices).

Resolving	the	user	home	directory
It	could	be	beneficial	for	the	program	to	know	the	user’s	home	directory,	for
example,	in	case	you	need	to	store	a	custom	user	configuration	or	any	other
data	related	to	the	user.	This	recipe	will	describe	how	you	can	find	out	the
current	user’s	home	directory.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter06/recipe10.
2.	 Navigate	to	the	directory.
3.	 Create	the	home.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"log"

										"os/user"

)

								func	main()	{

										usr,	err	:=	user.Current()

										if	err	!=	nil	{

												log.Fatal(err)

										}

										fmt.Println("The	user	home	directory:	"	+	usr.HomeDir)

								}

4.	 Execute	the	code	by	running	go	run	home.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	os/user	package	contains	the		Current	function,	which	provides	the	os.User
type	pointer.	The	User	contains	the	HomeDir	property,	which	contains	the	path	of
the	current	user’s	home	directory.	

Note	that	this	won’t	work	for	the	cross-compiled	code	because
the	implementation	depends	on	the	native	code.

Connecting	the	Network
This	chapter	contains	the	following	recipes:

Resolving	local	IP	addresses
Connecting	to	the	remote	server
Resolving	the	domain	by	IP	address	and	vice	versa
Connecting	to	the	HTTP	server
Parsing	and	building	a	URL
Creating	an	HTTP	request
Reading	and	writing	HTTP	headers
Handling	HTTP	redirects
Consuming	the	RESTful	API
Sending	a	simple	email
Calling	the	JSON-RPC	service

Introduction
This	chapter	is	all	about	networking.	Most	of	the	recipes	in	this	chapter	are
focused	on	the	client	side.	We	will	go	through	how	to	resolve	basic
information	about	the	network	on	the	machine,	domain	names	and	IP
resolution,	and	connecting	through	TCP-related	protocols	such	as	HTTP	and
SMTP.	Finally,	we	will	make	a	remote	procedure	call	via	JSON-RCP	1.0	with
the	use	of	the	standard	library.

Check	whether	Go	is	properly	installed.	The	Getting
ready	section	from	the	Retrieving	Golang	version	recipe	from	Ch
apter	1,	Interacting	With	Environment,	will	help	you.	Verify	if	any
other	application	blocks	the	7070	port.

Resolving	local	IP	addresses
This	recipe	explains	how	to	retrieve	IP	addresses	from	available	local
interfaces.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter07/recipe01.
2.	 Navigate	to	the	directory.
3.	 Create	the	interfaces.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"net"

)

								func	main()	{

										//	Get	all	network	interfaces

										interfaces,	err	:=	net.Interfaces()

										if	err	!=	nil	{

												panic(err)

										}

										for	_,	interf	:=	range	interfaces	{

												//	Resolve	addresses

												//	for	each	interface

												addrs,	err	:=	interf.Addrs()

												if	err	!=	nil	{

														panic(err)

												}

												fmt.Println(interf.Name)

												for	_,	add	:=	range	addrs	{

														if	ip,	ok	:=	add.(*net.IPNet);	ok	{

																fmt.Printf("\t%v\n",	ip)

														}

												}

										}

								}

4.	 Execute	the	code	by	running	go	run	interfaces.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	net	package	contains	the	Interfaces	function,	which	lists	the	network
interfaces	as	a	slice	of	the	Interface	struct.	The	Interface	struct	has
the	Addrs	method,	which	lists	the	available	network	addresses.	This	way,	you
can	list	the	addresses	by	their	interfaces.

Another	option	is	to	use	the	InterfaceAddrs	function	of	the	net	package,	which
provides	the	slice	of	structs	that	implement	the	Addr	interface.	This	provides
you	with	methods	to	obtain	the	information	you	want.

Connecting	to	the	remote	server
TCP-based	protocols	are	the	most	significant	protocols	used	in
network	communication.	Just	as	a	reminder,	HTTP,	FTP,	SMTP,	and	other
protocols	are	part	of	this	group.	This	recipe	gives	you	an	insight	on	how	to
connect	to	the	TCP	server	in	general.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter07/recipe02.
2.	 Navigate	to	the	directory.
3.	 Create	the	tcpclient.go	file	with	the	following	content:

								package	main

								import	(

										"bufio"

										"context"

										"fmt"

										"io"

										"net"

										"net/http"

										"time"

)

	

								type	StringServer	string

								func	(s	StringServer)	ServeHTTP(rw	http.ResponseWriter,

																																								req	*http.Request)	{

										rw.Write([]byte(string(s)))

								}

								func	createServer(addr	string)	http.Server	{

										return	http.Server{

												Addr:	addr,

												Handler:	StringServer("HELLO	GOPHER!\n"),

										}

							}

							const	addr	=	"localhost:7070"

							func	main()	{

									s	:=	createServer(addr)

									go	s.ListenAndServe()

									//	Connect	with	plain	TCP

									conn,	err	:=	net.Dial("tcp",	addr)

									if	err	!=	nil	{

											panic(err)

									}

									defer	conn.Close()

									_,	err	=	io.WriteString(conn,	"GET	/	HTTP/1.1\r\nHost:

																																	localhost:7070\r\n\r\n")

									if	err	!=	nil	{

											panic(err)

									}

									scanner	:=	bufio.NewScanner(conn)

									conn.SetReadDeadline(time.Now().Add(time.Second))

									for	scanner.Scan()	{

											fmt.Println(scanner.Text())

									}

									ctx,	_	:=	context.WithTimeout(context.Background(),

																																							5*time.Second)

									s.Shutdown(ctx)

							}

4.	 Execute	the	code	by	running	go	run	tcpclient.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	net	package	contains	the	Dial	function,	which	consumes	the	network	type
and	address.	In	the	previous	example,	the	network	is	tcp	and	the	address	is
localhost:8080.

Once	the	Dial	function	is	successful,	the	Conn	type	is	returned,	which	serves	as
a	reference	to	the	opened	socket.	The	Conn	interface	also	defines	the	Read	and
Write	functions,	so	they	can	be	used	as	Writer	and	Reader	functions	for	writing
and	reading	from	the	socket.	Finally,	the	sample	code	uses	Scanner	to	obtain	the
response.	Note	that	the	Scanner,	in	this	case,	works	because	of	the	brake	lines.
Otherwise,	the	more	generic	Read	method	should	be	used.	In	the	example,	the
Read	deadline	is	set	via	the	SetReadDeadline	method.	The	important	thing	about
this	is	that	the	deadline	is	not	a	duration,	but	a	Time.	This	means	the	deadline	is
set	as	a	time	point	in	the	future.	If	you	are	reading	the	data	from	a	socket	in	a
loop	and	need	to	set	the	read	timeout	to	10	seconds,	each	iteration	should
contain	code	such	as	conn.SetReadDeadline(time.Now().Add(10*time.Second)).

Just	to	enlighten	the	whole	code	sample,	the	HTTP	server	from	the	HTTP
standard	package	is	used	as	a	counterpart	to	the	client.	This	part	is	covered	in
a	separate	recipe.

Resolving	the	domain	by	IP	address
and	vice	versa
This	recipe	will	introduce	you	to	how	you	can	translate	IP	addresses	into	host
addresses	and	vice	versa.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter07/recipe03.
2.	 Navigate	to	the	directory.
3.	 Create	the	lookup.go	file	with	the	following	content:

								package	main

	

								import	(

										"fmt"

										"net"

)

								func	main()	{

										//	Resolve	by	IP

										addrs,	err	:=	net.LookupAddr("127.0.0.1")

										if	err	!=	nil	{

												panic(err)

										}

										for	_,	addr	:=	range	addrs	{

												fmt.Println(addr)

										}

										//Resolve	by	address

										ips,	err	:=	net.LookupIP("localhost")

										if	err	!=	nil	{

												panic(err)

										}

										for	_,	ip	:=	range	ips	{

												fmt.Println(ip.String())

										}

								}

4.	 Execute	the	code	by	running	go	run	lookup.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	resolution	of	the	domain	name	from	the	IP	address	can	be	done	with
the	LookupAddr	function	from	the	net	package.	To	find	out	the	IP	address	from
the	domain	name,	the	LookupIP	function	is	applied.	

Connecting	to	the	HTTP	server
The	previous	recipe,	Connecting	to	the	remote	server,	gave	us	an	insight	into
how	to	connect	the	TCP	server	at	a	lower	level.	In	this	recipe,	communication
with	the	HTTP	server	at	a	higher	level	will	be	shown.

	

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter07/recipe04.
2.	 Navigate	to	the	directory.
3.	 Create	the	http.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"io/ioutil"

										"net/http"

										"net/url"

										"strings"

)

								type	StringServer	string

								func	(s	StringServer)	ServeHTTP(rw	http.ResponseWriter,

																																								req	*http.Request)	{

										req.ParseForm()

										fmt.Printf("Received	form	data:	%v\n",	req.Form)

										rw.Write([]byte(string(s)))

								}	

								func	createServer(addr	string)	http.Server	{

										return	http.Server{

												Addr:	addr,

												Handler:	StringServer("Hello	world"),

										}

								}

								const	addr	=	"localhost:7070"

								func	main()	{

										s	:=	createServer(addr)

										go	s.ListenAndServe()

										useRequest()

										simplePost()

								}

								func	simplePost()	{

										res,	err	:=	http.Post("http://localhost:7070",

																										"application/x-www-form-urlencoded",

																										strings.NewReader("name=Radek&surname=Sohlich"))

										if	err	!=	nil	{

												panic(err)

										}

										data,	err	:=	ioutil.ReadAll(res.Body)

										if	err	!=	nil	{

												panic(err)

										}

										res.Body.Close()

										fmt.Println("Response	from	server:"	+	string(data))

								}

								func	useRequest()	{

										hc	:=	http.Client{}

										form	:=	url.Values{}

										form.Add("name",	"Radek")

										form.Add("surname",	"Sohlich")

										req,	err	:=	http.NewRequest("POST",

																								"http://localhost:7070",

																								strings.NewReader(form.Encode()))

																								req.Header.Add("Content-Type",

																								"application/x-www-form-urlencoded")

										res,	err	:=	hc.Do(req)

										if	err	!=	nil	{

												panic(err)

										}

										data,	err	:=	ioutil.ReadAll(res.Body)

										if	err	!=	nil	{

												panic(err)

										}

										res.Body.Close()

										fmt.Println("Response	from	server:"	+	string(data))

								}

4.	 Execute	the	code	by	running	go	run	http.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
Connecting	to	the	HTTP	server	can	be	done	with	help	of	the	net/http	package.
Naturally,	there	are	more	ways	you	can	achieve	this,	but	the	code	above
illustrates	two	of	the	most	common	approaches.	The	first	option	implemented
the	simplePost	function,	and	illustrates	the	use	of	a	default	client.	The	POST
method	is	chosen	here	as	it	is	more	complex	than	GET.	The	Post	method
accepts	the	URL,	content	type,	and	body	in	the	form	of	Reader.	Invoking	the
Post	function	immediately	requests	the	server	and	returns	the	result.

Note	that	the	Post	method	is	just	wrapping	a	function	that	uses
the	http.DefaultClient	in	its	implementation.	The	net/http	package
also	contains	the	Get	function.

The	useRequest	function	implements	the	same	functionality,	but	with	the	use	of
a	more	customizable	API	and	its	own	instance	of	Client.	The	implementation
utilizes	the	NewRequest	function	to	create	the	request	based	on	these	given
arguments:	method,	URL,	and	request	body.	The	content	type	must	be	set
separately	to	the	Header	property.	The	request	is	executed	with	the	Do	method,
which	is	created	on	the	Client.

See	also
The	Creating	an	HTTP	request	recipe	that	will	help	you	assemble	a	request	in
detail.

Parsing	and	building	a	URL
In	many	cases,	it	is	better	to	manipulate	a	URL	with	the	use	of	handy	tools
than	trying	to	handle	it	as	a	simple	string.	Go	standard	libraries	naturally
contain	the	utilities	to	manipulate	a	URL.	This	recipe	will	go	through	some	of
these	major	functions.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter07/recipe05.
2.	 Navigate	to	the	directory.
3.	 Create	the	url.go	file	with	the	following	content:

								package	main

								import	(

										"encoding/json"

										"fmt"

										"net/url"

)

								func	main()	{

										u	:=	&url.URL{}

										u.Scheme	=	"http"

										u.Host	=	"localhost"

										u.Path	=	"index.html"

										u.RawQuery	=	"id=1&name=John"

										u.User	=	url.UserPassword("admin",	"1234")

										fmt.Printf("Assembled	URL:\n%v\n\n\n",	u)

										parsedURL,	err	:=	url.Parse(u.String())

										if	err	!=	nil	{

												panic(err)

										}

										jsonURL,	err	:=	json.Marshal(parsedURL)

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println("Parsed	URL:")

										fmt.Println(string(jsonURL))

								}

4.	 Execute	the	code	by	running	go	run	url.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	net/url	package	is	designed	to	help	you	with	the	manipulation	and	parsing
of	a	URL.	The	URL	struct	contains	the	necessary	fields	to	put	a	URL	together.
With	the	String	method	of	the	URL	struct,	the	transformation	to	a	simple	string
can	be	easily	done.

When	the	string	representation	is	available	and	additional	manipulation	is
needed,	the	Parse	function	of	net/url	can	be	utilized.	This	way,	the	string	can	be
transformed	to	a	URL	struct,	and	the	underlying	URL	can	be	modified.

Creating	an	HTTP	request
This	recipe	will	show	you	how	to	construct	a	HTTP	request	with	specific
parameters.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter07/recipe06.
2.	 Navigate	to	the	directory.

3.	 Create	the	request.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"io/ioutil"

										"net/http"

										"net/url"

										"strings"

)

								type	StringServer	string

								func	(s	StringServer)	ServeHTTP(rw	http.ResponseWriter,

																																								req	*http.Request)	{

										req.ParseForm()

										fmt.Printf("Received	form	data:	%v\n",	req.Form)

										fmt.Printf("Received	header:	%v\n",	req.Header)

										rw.Write([]byte(string(s)))

								}

								func	createServer(addr	string)	http.Server	{

										return	http.Server{

												Addr:	addr,

												Handler:	StringServer("Hello	world"),

										}

								}	

								const	addr	=	"localhost:7070"

								func	main()	{

										s	:=	createServer(addr)

										go	s.ListenAndServe()

										form	:=	url.Values{}

										form.Set("id",	"5")

										form.Set("name",	"Wolfgang")

										req,	err	:=	http.NewRequest(http.MethodPost,

																														"http://localhost:7070",

																														strings.NewReader(form.Encode()))

										if	err	!=	nil	{

												panic(err)

										}

										req.Header.Set("Content-Type",

																									"application/x-www-form-urlencoded")

										res,	err	:=	http.DefaultClient.Do(req)

										if	err	!=	nil	{

												panic(err)

										}

										data,	err	:=	ioutil.ReadAll(res.Body)

										if	err	!=	nil	{

												panic(err)

										}

										res.Body.Close()

										fmt.Println("Response	from	server:"	+	string(data))

								}

4.	 Execute	the	code	by	running	go	run	request.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	more	complex	way	to	construct	the	request	is	presented	in	the	sample
code.	With	the	NewRequest	method	of	the	net/http	package,	the	pointer	to
the	Request	struct	is	returned.	The	function	consumes	the	method’s	request,
URL,	and	body	of	the	request.	Notice	the	way	the	form	is	built.	Instead	of
using	the	plain	string,	the	url.Values	struct	is	used.	Finally,	the	Encode	method	is
called	to	encode	the	given	form	values.	The	headers	are	set	via	the	http.Header
property	of	the	request.

Reading	and	writing	HTTP	headers
The	previous	recipe	describes	how	you	can	create	a	HTTP	request	in	general.
This	recipe	will	go	into	detail	on	how	to	read	and	write	request	headers.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter07/recipe07.
2.	 Navigate	to	the	directory.
3.	 Create	the	headers.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"net/http"

)

								func	main()	{

										header	:=	http.Header{}

										//	Using	the	header	as	slice

										header.Set("Auth-X",	"abcdef1234")

										header.Add("Auth-X",	"defghijkl")

										fmt.Println(header)

										//	retrieving	slice	of	values	in	header

										resSlice	:=	header["Auth-X"]

										fmt.Println(resSlice)

										//	get	the	first	value

										resFirst	:=	header.Get("Auth-X")

										fmt.Println(resFirst)

										//	replace	all	existing	values	with

										//	this	one

										header.Set("Auth-X",	"newvalue")

										fmt.Println(header)

										//	Remove	header

										header.Del("Auth-X")

										fmt.Println(header)

								}

4.	 Execute	the	code	by	running	go	run	headers.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	headers	in	the	http	package	are,	in	fact,	represented	as	map[string][]string,
and	this	way,	the	Header	type	must	be	handled.	The	preceding	code	shows	how
to	set	and	read	the	header	values.	The	important	thing	about	the	header	is	that
the	value	of	the	header	key	is	the	string	slice.	So,	each	key	in	a	header	can
contain	multiple	values.

The	Set	method	of	the	Header	type	sets	the	one-item	slice	under	the	given	key.
On	the	other	hand,	the	Add	method	appends	the	values	to	the	slice.

Using	the	Get	method	will	retrieve	the	first	value	from	the	slice	under	the
given	key.	If	the	whole	slice	is	needed,	the	Header	needs	to	be	handled	as	a
map.	The	whole	header	key	can	be	removed	by	using	the	Del	method.

Both	the	server	and	client	use	the	Request	and	Header	type	of	http
package	so	that	handling	is	the	same	on	the	server	side	and	on
the	client	side.

Handling	HTTP	redirects
In	some	cases,	you	need	more	control	over	how	redirects	are	handled.	This
recipe	will	show	you	the	mechanism	which	the	Go	client	implements	so	that
you	have	more	control	over	handling	HTTP	redirects.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter07/recipe08.
2.	 Navigate	to	the	directory.
3.	 Create	the	redirects.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"net/http"

)

								const	addr	=	"localhost:7070"

								type	RedirecServer	struct	{

										redirectCount	int

								}

								func	(s	*RedirecServer)	ServeHTTP(rw	http.ResponseWriter,

																																										req	*http.Request)	{

										s.redirectCount++

										fmt.Println("Received	header:	"	+	

																						req.Header.Get("Known-redirects"))

										http.Redirect(rw,	req,	fmt.Sprintf("/redirect%d",

																								s.redirectCount),	http.StatusTemporaryRedirect)

								}

								func	main()	{

										s	:=	http.Server{

												Addr:	addr,

												Handler:	&RedirecServer{0},

										}

										go	s.ListenAndServe()

										client	:=	http.Client{}

										redirectCount	:=	0

										//	If	the	count	of	redirects	is	reached

										//	than	return	error.

										client.CheckRedirect	=	func(req	*http.Request,	

																																	via	[]*http.Request)	error	{

												fmt.Println("Redirected")

												if	redirectCount	>	2	{

														return	fmt.Errorf("Too	many	redirects")

												}

												req.Header.Set("Known-redirects",	fmt.Sprintf("%d",

																											redirectCount))

												redirectCount++

												for	_,	prReq	:=	range	via	{

														fmt.Printf("Previous	request:	%v\n",	prReq.URL)

												}

												return	nil

										}

										_,	err	:=	client.Get("http://"	+	addr)

										if	err	!=	nil	{

												panic(err)

										}

								}

4.	 Execute	the	code	by	running	go	run	redirects.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	Client	of	the	http	package	contains	the	CheckRedirect	field.	The	field	is	a
function	that	has	the	req	and	via	parameters.	req	is	the	upcoming	request	and
via	refers	to	the	previous	requests.	This	way,	you	can	modify	the	request	after
the	redirect.	In	the	previous	example,	the	Known-redirects	header	is	modified.

In	case	the	CheckRedirect	function	returns	the	error,	the	last	response	with	a
closed	body	accompanied	with	a	wrapped	error	is	returned.	In	case	the
http.ErrUseLastResponse	is	returned,	the	last	response	is	returned,	but	the	body	is
not	closed	so	it	is	possible	to	read	it.

By	default,	the	CheckRedirect	property	is	nil.	In	this	case,	it	has	a
limit	of	10	redirects.	After	this	count,	redirecting	is	stopped.

Consuming	the	RESTful	API
The	RESTful	API	is	the	most	common	way	applications	and	servers	provide
access	to	their	services.	This	recipe	will	show	you	how	it	can	be	consumed
with	the	help	of	a	HTTP	client	from	the	standard	library.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter07/recipe09.
2.	 Navigate	to	the	directory.
3.	 Create	the	rest.go	file	with	the	following	content:

								package	main

								import	(

										"encoding/json"

										"fmt"

										"io"

										"io/ioutil"

										"net/http"

										"strconv"

										"strings"

)

								const	addr	=	"localhost:7070"

								type	City	struct	{

										ID	string

										Name	string	`json:"name"`

										Location	string	`json:"location"`

								}

								func	(c	City)	toJson()	string	{

										return	fmt.Sprintf(`{"name":"%s","location":"%s"}`,

																													c.Name,	c.Location)

								}

								func	main()	{

										s	:=	createServer(addr)

										go	s.ListenAndServe()

										cities,	err	:=	getCities()

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Printf("Retrived	cities:	%v\n",	cities)

										city,	err	:=	saveCity(City{"",	"Paris",	"France"})

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Printf("Saved	city:	%v\n",	city)

								}

								func	saveCity(city	City)	(City,	error)	{

										r,	err	:=	http.Post("http://"+addr+"/cities",

																														"application/json",

																															strings.NewReader(city.toJson()))

										if	err	!=	nil	{

												return	City{},	err

										}

										defer	r.Body.Close()

										return	decodeCity(r.Body)

								}

								func	getCities()	([]City,	error)	{

										r,	err	:=	http.Get("http://"	+	addr	+	"/cities")

										if	err	!=	nil	{

												return	nil,	err

										}

										defer	r.Body.Close()

										return	decodeCities(r.Body)

								}

								func	decodeCity(r	io.Reader)	(City,	error)	{

										city	:=	City{}

										dec	:=	json.NewDecoder(r)

										err	:=	dec.Decode(&city)

										return	city,	err

								}

							func	decodeCities(r	io.Reader)	([]City,	error)	{

									cities	:=	[]City{}

									dec	:=	json.NewDecoder(r)

									err	:=	dec.Decode(&cities)

									return	cities,	err

							}

							func	createServer(addr	string)	http.Server	{

									cities	:=	[]City{City{"1",	"Prague",	"Czechia"},

																										City{"2",	"Bratislava",	"Slovakia"}}

									mux	:=	http.NewServeMux()

									mux.HandleFunc("/cities",	func(w	http.ResponseWriter,

																																								r	*http.Request)	{

											enc	:=	json.NewEncoder(w)

											if	r.Method	==	http.MethodGet	{

													enc.Encode(cities)

											}	else	if	r.Method	==	http.MethodPost	{

													data,	err	:=	ioutil.ReadAll(r.Body)

													if	err	!=	nil	{

															http.Error(w,	err.Error(),	500)

													}

													r.Body.Close()

													city	:=	City{}

													json.Unmarshal(data,	&city)

													city.ID	=	strconv.Itoa(len(cities)	+	1)

													cities	=	append(cities,	city)

													enc.Encode(city)

											}

									})

									return	http.Server{

											Addr:	addr,

											Handler:	mux,

									}

							}

4.	 Execute	the	code	by	running	go	run	rest.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
The	preceding	sample	code	shows	what	the	REST	API	could	look	like	and
how	it	could	be	consumed.	Note	that	the	decodeCity	and	decodeCities	functions
benefit	from	the	fact	that	the	Body	of	the	request	implements	the	Reader
interface.	The	deserialization	of	the	structures	is	done	via	json.Decoder.

Sending	a	simple	email
This	recipe	will	give	you	a	brief	description	on	how	to	use	the	standard
library	to	connect	to	the	SMTP	server	and	send	an	email.

Getting	ready
In	this	recipe,	we	will	use	a	Google	Gmail	account	to	send	the	email	message.
With	a	few	configurations,	this	recipe	will	be	useful	for	other	SMTP	servers
as	well.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter07/recipe10.
2.	 Navigate	to	the	directory.
3.	 Create	the	smtp.go	file	with	the	following	content:

								package	main

								import	(

										"crypto/tls"

										"fmt"

										"net/smtp"

)

								func	main()	{

										var	email	string

										fmt.Println("Enter	username	for	smtp:	")

										fmt.Scanln(&email)

										var	pass	string

										fmt.Println("Enter	password	for	smtp:	")

										fmt.Scanln(&pass)

										auth	:=	smtp.PlainAuth("",	email,	pass,	"smtp.gmail.com")

										c,	err	:=	smtp.Dial("smtp.gmail.com:587")

										if	err	!=	nil	{

												panic(err)

										}

										defer	c.Close()

										config	:=	&tls.Config{ServerName:	"smtp.gmail.com"}

										if	err	=	c.StartTLS(config);	err	!=	nil	{

												panic(err)

										}

										if	err	=	c.Auth(auth);	err	!=	nil	{

												panic(err)

										}

										if	err	=	c.Mail(email);	err	!=	nil	{

												panic(err)

										}

										if	err	=	c.Rcpt(email);	err	!=	nil	{

												panic(err)

										}

										w,	err	:=	c.Data()

										if	err	!=	nil	{

												panic(err)

										}

										msg	:=	[]byte("Hello	this	is	content")

										if	_,	err	:=	w.Write(msg);	err	!=	nil	{

												panic(err)

										}

										err	=	w.Close()

										if	err	!=	nil	{

												panic(err)

										}

										err	=	c.Quit()

										if	err	!=	nil	{

												panic(err)

										}

								}

4.	 Execute	the	code	by	running	go	run	smtp.go	in	the	main	Terminal.
5.	 Enter	the	account’s	email	(Google	account)	and	hit	Enter.
6.	 Enter	the	password	for	the	account	and	hit	Enter.
7.	 You	will	see	the	following	output	before	checking	your	email	box:

How	it	works…
The	smtp	package	provides	the	basic	functionality	to	interact	with	the	SMTP
server.	The	Dial	function	provides	the	client.	The	most	significant	methods	of
the	client	are	Mail,	which	sets	the	sender	mail,	Rcpt,	which	sets	the	recipients
mail,	and	Data,	which	provides	the	Writer,	where	the	content	of	the	mail	can	be
written.	Finally,	the	Quit	method	sends	QUIT	and	closes	the	connection	to	the
server.

The	previous	example	uses	a	secured	connection	to	the	SMTP	server	so	the
Auth	method	of	the	client	is	utilized	to	set	the	authentication,	and	the	StartTLS
method	is	called	to	start	a	secured	connection	to	the	server.

Note	that	the	Auth	structure	is	created	separately	with
the	PlainAuth	function	of	the	smtp	package.

Calling	the	JSON-RPC	service
This	recipe	will	illustrate	how	procedures	via	the	JSON-RPC	protocol	can	be
called	with	use	of	the	standard	library.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter07/recipe11.
2.	 Navigate	to	the	directory.
3.	 Create	the	jsonrpc.go	file	with	the	following	content:

								package	main

								import	(

										"log"

										"net"

										"net/rpc"

										"net/rpc/jsonrpc"

)

								type	Args	struct	{

										A,	B	int

								}

								type	Result	int

								type	RpcServer	struct{}

								func	(t	RpcServer)	Add(args	*Args,	result	*Result)	error	{

										log.Printf("Adding	%d	to	%d\n",	args.A,	args.B)

										*result	=	Result(args.A	+	args.B)

										return	nil

								}	

								const	addr	=	":7070"

	

								func	main()	{

										go	createServer(addr)

										client,	err	:=	jsonrpc.Dial("tcp",	addr)

										if	err	!=	nil	{

												panic(err)

										}

										defer	client.Close()

										args	:=	&Args{

												A:	2,

												B:	3,

										}

										var	result	Result

										err	=	client.Call("RpcServer.Add",	args,	&result)

										if	err	!=	nil	{

												log.Fatalf("error	in	RpcServer",	err)

										}

										log.Printf("%d+%d=%d\n",	args.A,	args.B,	result)

								}

								func	createServer(addr	string)	{

										server	:=	rpc.NewServer()

										err	:=	server.Register(RpcServer{})

										if	err	!=	nil	{

												panic(err)

										}

										l,	e	:=	net.Listen("tcp",	addr)

										if	e	!=	nil	{

												log.Fatalf("Couldn't	start	listening	on	%s	errors:	%s",

																							addr,	e)

										}

										for	{

												conn,	err	:=	l.Accept()

												if	err	!=	nil	{

														log.Fatal(err)

												}

												go	server.ServeCodec(jsonrpc.NewServerCodec(conn))

										}

								}

4.	 Execute	the	code	by	running	go	run	jsonrpc.go	in	the	main	Terminal.
5.	 You	will	see	the	following	output:

How	it	works…
Go’s	standard	library	implements	JSON-RPC	1.0	as	part	of	its	built-in
packages.	The	jsonrpc	package	implements	the	function	Dial,	which	produces
the	client	for	calling	remote	procedures.	The	client	itself	contains
the	Call	method,	which	accepts	the	procedure	call,	arguments,	and	the	pointer
where	the	result	is	stored.

The	createServer	will	create	a	sample	server	to	test	the	client	call.

The	HTTP	protocol	can	be	used	as	a	transport	layer	for	JSON-
RPC.	The	net/rpc	package	contains	the	DialHTTP	function,	which	is
able	to	create	the	client	and	call	the	remote	procedures.

Working	with	Databases
This	chapter	contains	the	following	recipes:

Connecting	the	database
Validating	the	connection
Executing	statements
Operating	with	prepared	statements
Canceling	the	pending	query
Reading	query	result	metadata
Retrieving	data	from	query	result
Parsing	query	result	into	map
Handling	transactions
Executing	stored	procedures	and	functions

Introduction
Each	database	server	has	its	own	specifics	and	also,	the	protocols	are
different.	Naturally,	the	communication	with	the	database	within	the	language
library	must	be	customized	to	work	with	the	specific	protocol.

The	Go	standard	library	provides	a	unified	API	for	communication	and
operations	on	the	database	server.	This	API	is	located	in	the	sql	package.	To
use	the	specific	database	server,	the	driver	must	be	imported.	This	driver
needs	to	be	sql	package-compliant.	This	way,	you	will	be	able	to	benefit	from
the	unified	approach.	In	this	chapter,	we	will	describe	the	basics	of	database
operations,	transaction	handling,	and	finally,	how	to	use	the	stored
procedures.	Note	that	we	are	going	to	illustrate	the	approach	on	the
PostgreSQL	database,	but	the	approaches	are	applicable	to	most	other
databases.

Connecting	the	database
The	essential	part	of	working	with	the	database	is	the	connection	to	the
database	itself.	The	Go	standard	package	covers	only	the	abstraction	on	how
the	interaction	with	the	database	works,	and	a	third-party	driver	must	be	used.

In	this	recipe,	we	will	show	how	to	connect	to	the	PostgreSQL	database.
However,	the	approach	is	applicable	to	all	other	databases	whose	driver
implements	the	standard	API.	

Getting	ready
Verify	if	Go	is	properly	installed	by	calling	the	go	version	command	in	your
Terminal.	If	the	command	fails,	do	the	following:

Pull	the	PostgreSQL	driver	by	go	get	-u	github.com/lib/pq
Install	the	PostgreSQL	database	server	(optionally	use	a	Docker	image
instead	of	installing	to	your	host	system)
We	will	use	default	user	postgres	with	password	postgres
Create	a	database	named	example

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter08/recipe01.
2.	 Navigate	to	the	directory.
3.	 Create	the	connect.go	file	with	the	following	content:

							package	main

							import	(

									"database/sql"

									"fmt"

									_	"github.com/lib/pq"

)

							func	main()	{

									connStr	:=	"postgres://postgres:postgres@

																					localhost:5432/example?sslmode=disable"

									db,	err	:=	sql.Open("postgres",	connStr)

									if	err	!=	nil	{

											panic(err)

									}

									defer	db.Close()

									err	=	db.Ping()

									if	err	!=	nil	{

											panic(err)

									}

									fmt.Println("Ping	OK")

							}

4.	 Execute	the	code	by	go	run	connect.go.
5.	 See	the	output:

How	it	works…
The	standard	lib	package,	database/sql,	provides	the	Open	function	to	initialize
the	connection	to	the	database	with	the	driver	name	and	connection	details
(connection	URL	in	this	case).	Note	that	the	Open	function	does	not	create	the
connection	immediately,	and	may	only	validate	the	parameters	passed	to	the
function.

The	connection	to	the	database	could	be	verified	by	the	Ping	method,	which	is
available	in	the	returned	DB	struct	pointer.

The	driver	itself	is	initialized	in	the	init	function	of	the	driver	package.	The
driver	registers	itself	with	the	driver	name	by	the	Register	function	of
the	sql	package.	The	github.com/lib/pq	driver	registers	itself	as	postgres.

Validating	the	connection
The	connections	to	the	database	in	the	driver	implementation	may	be	pooled,
and	it	is	possible	that	the	connection	pulled	out	of	the	pool	is	broken.	This
recipe	will	show	how	to	verify	if	the	connection	is	alive.

Getting	ready
Verify	if	Go	is	properly	installed	by	calling	the	go	version	command	in	your
Terminal.	If	the	command	fails,	follow	the	Getting	ready	section	in	the	first
recipe	of	this	chapter.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter08/recipe02.
2.	 Navigate	to	the	directory.
3.	 Create	the	verify.go	file	with	the	following	content:

								package	main

	

								import	(

										"context"

										"database/sql"

										"fmt"

										"time"

										_	"github.com/lib/pq"

)

								func	main()	{

										connStr	:=	"postgres://postgres:postgres@

																						localhost:5432/example?sslmode=disable"

										db,	err	:=	sql.Open("postgres",	connStr)

										if	err	!=	nil	{

												panic(err)

										}

										defer	db.Close()

										err	=	db.Ping()

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println("Ping	OK.")

										ctx,	_	:=	context.WithTimeout(context.Background(),

																																								time.Nanosecond)

										err	=	db.PingContext(ctx)

										if	err	!=	nil	{

												fmt.Println("Error:	"	+	err.Error())

										}

										//	Verify	the	connection	is

										conn,	err	:=	db.Conn(context.Background())

										if	err	!=	nil	{

												panic(err)

										}

										defer	conn.Close()

										err	=	conn.PingContext(context.Background())

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println("Connection	Ping	OK.")

								}

4.	 Execute	the	code	by	go	run	verify.go.
5.	 See	the	output:

How	it	works…
As	mentioned	in	the	previous	recipe,	Connecting	the	database,	the	Open
function	may	just	verify	the	connection	details,	but	it	is	not	mandatory	to
connect	the	database	immediately.	The	actual	connection	to	the	database	is
usually	lazy	loaded	and	it	is	created	by	the	first	execution	of	statement	against
the	database.

The	pointer	to	the	DB	structure	provides	the	Ping	method,	which	usually	does	an
idempotent	call	to	the	database.	The	variation	to	the	Ping	method	is	PingContext,
which	just	adds	the	ability	to	cancel	or	time	out	the	database	call.	Note	that	if
the	Ping	function	fails,	the	connection	is	removed	from	the	database	pool.

The	pointer	to	the	DB		struct	also	provides	the	method	Conn	to	retrieve	the
connection	from	the	database	pool.	By	using	the	connection,	you	are	actually
guaranteed	that	the	same	database	session	is	used.	In	the	same	way	the	pointer
to	the	DB	struct	contains	the	PingContext	method,	the	Conn	pointer	provides
the	PingContext	method	to	check	if	the	connection	is	still	alive.

Executing	statements
In	previous	recipes,	we	have	gone	through	how	to	connect	and	validate	the
connection	to	the	database.	This	recipe	will	describe	how	to	execute
statements	against	the	database.

Getting	ready
Verify	if	Go	is	properly	installed	by	calling	the	go	version	command	in	your
Terminal.	If	the	command	fails,	follow	the	Getting	ready	section	in	the	first
recipe	of	this	chapter.	

Set	up	the	PostgreSQL	server,	as	mentioned	in	the	first	recipe	of	this	chapter.

How	to	do	it…
1.	 Run	the	following	SQL	script	against	your	sample	database:

								DROP	TABLE	IF	EXISTS	post;

								CREATE	TABLE	post	(

										ID	serial,

										TITLE	varchar(40),

										CONTENT	varchar(255),

										CONSTRAINT	pk_post	PRIMARY	KEY(ID)

);

								SELECT	*	FROM	post;

2.	 Open	the	console	and	create	the	folder	chapter08/recipe03.
3.	 Navigate	to	the	directory.
4.	 Create	the	statement.go	file	with	the	following	content:

								package	main

								import	(

										"database/sql"

										"fmt"

										_	"github.com/lib/pq"

)

								const	sel	=	"SELECT	*	FROM	post;"

								const	trunc	=	"TRUNCATE	TABLE	post;"

								const	ins	=	"INSERT	INTO	post(ID,TITLE,CONTENT)

																					VALUES	(1,'Title	1','Content	1'),

																					(2,'Title	2','Content	2')	"

								func	main()	{

										db	:=	createConnection()

										defer	db.Close()

										_,	err	:=	db.Exec(trunc)

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Println("Table	truncated.")

										r,	err	:=	db.Exec(ins)

										if	err	!=	nil	{

												panic(err)

										}

										affected,	err	:=	r.RowsAffected()

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Printf("Inserted	rows	count:	%d\n",

																					affected)

										rs,	err	:=	db.Query(sel)

										if	err	!=	nil	{

												panic(err)

										}

										count	:=	0

										for	rs.Next()	{

												count++

										}

										fmt.Printf("Total	of	%d	was	selected.\n",	count)

								}

								func	createConnection()	*sql.DB	{

										connStr	:=	"postgres://postgres:postgres@

																						localhost:5432/example?sslmode=disable"

										db,	err	:=	sql.Open("postgres",	connStr)

										if	err	!=	nil	{

												panic(err)

										}

										err	=	db.Ping()

										if	err	!=	nil	{

												panic(err)

										}

										return	db

								}

5.	 Execute	the	code	by	go	run	statement.go.
6.	 See	the	output:

How	it	works…
Generally,	there	are	two	types	of	statements	that	we	can	execute	against	the
database.	With	the	first	type	of	statements	we	do	not	expect	any	rows	as	a
result	and	finally,	we	get	no	output	or	just	a	number	of	affected	rows.	This
type	of	statement	is	executed	by	the	Exec	method	on	the	DB	struct	pointer.	In	the
preceding	sample	code,	we	have	the	TRUNCATE	and	INSERT	statements.	But	this
way,	the	DDL	and	DCL	statements	could	be	executed	too.

There	are	four	main	categories	of	statements:

DDL	(Data	Definition	Language):	This	language	allows
you	to	create	and	modify	the	database	scheme
DML	(Data	Modeling	Language):	This	language	helps
you	to	modify	the	data
DCL	(Data	Control	Language):	This	language	defines	the
access	control	over	the	objects
TCL	(Transaction	Control	Language):	This	language
controls	the	transaction.

The	second	type	is	the	statement	where	we	are	expecting	the	result	in	the
form	of	rows;	these	are	usually	called	queries.	This	type	of	statement	is
usually	executed	by	the	Query	or	QueryContext	method.	

Operations	with	prepared
statements
Prepared	statements	bring	security,	efficiency,	and	convenience.	Naturally,	it
is	possible	to	use	them	with	the	Go	standard	library;	this	recipe	will	show
how.

Getting	ready
Verify	if	Go	is	properly	installed	by	calling	the	go	version	command	in	your
Terminal.	If	the	command	fails,	follow	the	Getting	ready	section	in	the	first
recipe	of	this	chapter.	

Set	up	the	PostgreSQL	server,	as	mentioned	in	the	first	recipe	of	this	chapter.

How	to	do	it…
1.	 Run	the	following	SQL	script	against	your	sample	database:

								DROP	TABLE	IF	EXISTS	post;

								CREATE	TABLE	post	(

										ID	serial,

										TITLE	varchar(40),

										CONTENT	varchar(255),

										CONSTRAINT	pk_post	PRIMARY	KEY(ID)

);

								SELECT	*	FROM	post;

2.	 Open	the	console	and	create	the	folder	chapter08/recipe04.
3.	 Navigate	to	the	directory.
4.	 Create	the	prepared.go	file	with	the	following	content:

								package	main

								import	(

										"database/sql"

										"fmt"

										_	"github.com/lib/pq"

)

								const	trunc	=	"TRUNCATE	TABLE	post;"

								const	ins	=	"INSERT	INTO	post(ID,TITLE,CONTENT)

																					VALUES	($1,$2,$3)"

								var	testTable	=	[]struct	{

										ID	int

										Title	string

										Content	string

								}{

										{1,	"Title	One",	"Content	of	title	one"},

										{2,	"Title	Two",	"Content	of	title	two"},

										{3,	"Title	Three",	"Content	of	title	three"},

								}

								func	main()	{

										db	:=	createConnection()

										defer	db.Close()

										//	Truncate	table

										_,	err	:=	db.Exec(trunc)

										if	err	!=	nil	{

												panic(err)

										}

										stm,	err	:=	db.Prepare(ins)

										if	err	!=	nil	{

												panic(err)

										}

										inserted	:=	int64(0)

										for	_,	val	:=	range	testTable	{

												fmt.Printf("Inserting	record	ID:	%d\n",	val.ID)

												//	Execute	the	prepared	statement

												r,	err	:=	stm.Exec(val.ID,	val.Title,	val.Content)

												if	err	!=	nil	{

														fmt.Printf("Cannot	insert	record	ID	:	%d\n",

																									val.ID)

												}

												if	affected,	err	:=	r.RowsAffected();	err	==	nil	{

														inserted	=	inserted	+	affected

												}

										}

										fmt.Printf("Result:	Inserted	%d	rows.\n",	inserted)

								}

								func	createConnection()	*sql.DB	{

										connStr	:=	"postgres://postgres:postgres@

																						localhost:5432/example?sslmode=disable"

										db,	err	:=	sql.Open("postgres",	connStr)

										if	err	!=	nil	{

												panic(err)

										}

										err	=	db.Ping()

										if	err	!=	nil	{

												panic(err)

										}

										return	db

								}

5.	 Execute	the	code	by	go	run	prepared.go.

	

6.	 See	the	output:

How	it	works…
To	create	the	prepared	statement,	the	Prepare	method	of	the	pointer	to	the	DB
struct	needs	to	be	called.	After	this,	the	Exec	or	Query	method	on	the	Stmt	pointer
is	called	with	given	parameters	for	the	statement.

The	prepared	statement	is	created	within	the	scope	of	the	DB	pointer,	but	on	the
specific	connection	from	the	connection	pool.	The	statement	remembers
which	connection	has	been	used,	and	when	it	is	invoked,	it	tries	to	use	the
same	connection.	If	the	connection	is	busy	or	was	closed,	then	it	recreates	the
prepared	statement	and	calls	the	statement	on	a	new	connection.

The	situation	changes	if	you	use	the	prepared	statement	within	an	opened
transaction	*Tx,	in	this	case,	the	prepared	statement	is	bound	to	one	connection
which	is	related	to	the	transaction.

Note	that	prepared	statements	prepared	within	the	transaction	cannot	be	used
with	the	DB	pointer,	and	vice	versa.

In	general,	the	prepared	statement	works	the	way	the	statement
is	created	on	the	database	side.	The	database	returns	the
identifier	of	the	prepared	statement.	The	prepared	statement	is
executed	during	the	following	call,	and	only	the	parameters	for
the	statement	are	provided.

Canceling	the	pending	query
In	some	cases,	you	need	to	prune	long	running	statements	to	limit	the
consumption	of	resources,	or	just	if	the	result	is	not	relevant,	or	if	the
statement	is	running	too	long.	Since	Go	1.8,	the	canceling	of	queries	is
possible.	This	recipe	explains	how	to	use	this	feature.

Getting	ready
Verify	if	Go	is	properly	installed	by	calling	the	go	version	command	in	your
Terminal.	If	the	command	fails,	follow	the	Getting	ready	section	in	the	first
recipe	of	this	chapter.	

Set	up	the	PostgreSQL	server,	as	mentioned	in	the	first	recipe	of	this	chapter.

How	to	do	it…
1.	 Run	the	following	SQL	script	against	your	sample	database:

								DROP	TABLE	IF	EXISTS	post;

								CREATE	TABLE	post	(

										ID	serial,

										TITLE	varchar(40),

										CONTENT	varchar(255),

										CONSTRAINT	pk_post	PRIMARY	KEY(ID)

);

								SELECT	*	FROM	post;

								INSERT	INTO	post(ID,TITLE,CONTENT)	VALUES

																								(1,'Title	One','Content	One'),

																								(2,'Title	Two','Content	Two');

2.	 Open	the	console	and	create	the	folder	chapter08/recipe05.
3.	 Navigate	to	the	directory.

	

4.	 Create	the	cancelable.go	file	with	the	following	content:

								package	main

								import	(

										"context"

										"database/sql"

										"fmt"

										"time"

										_	"github.com/lib/pq"

)

								const	sel	=	"SELECT	*	FROM	post	p	CROSS	JOIN

											(SELECT	1	FROM	generate_series(1,1000000))	tbl"

								func	main()	{

										db	:=	createConnection()

										defer	db.Close()

										ctx,	canc	:=	context.WithTimeout(context.Background(),

																																											20*time.Microsecond)

										rows,	err	:=	db.QueryContext(ctx,	sel)

										canc()	//cancel	the	query

										if	err	!=	nil	{

												fmt.Println(err)

												return

										}

										defer	rows.Close()

										count	:=	0

										for	rows.Next()	{

												if	rows.Err()	!=	nil	{

														fmt.Println(rows.Err())

														continue

												}

												count++

										}

										fmt.Printf("%d	rows	returned\n",	count)

								}

								func	createConnection()	*sql.DB	{

										connStr	:=	"postgres://postgres:postgres@

																						localhost:5432/example?sslmode=disable"

										db,	err	:=	sql.Open("postgres",	connStr)

										if	err	!=	nil	{

												panic(err)

										}

										err	=	db.Ping()

										if	err	!=	nil	{

												panic(err)

										}

										return	db

								}

5.	 Execute	the	code	by	go	run	cancelable.go.
6.	 See	the	output:

How	it	works…
The	database/sql	package	provides	the	possibility	of	canceling	the	pending
statement.	All	the	methods	named	XXXContext	of	DB	struct	pointer	are	the	ones
that	consume	the	context,	and	it	is	possible	to	cancel	the	pending	statement.

The	canceling	of	the	statement	is	possible	only	if	the	driver	supports
the	Context	variant.	If	it	doesn’t,	the	variant	without	the	Context	is	executed.

With	the	Context	variant	and	context.WithTimeout,	you	can	create	a	timeout	of	the
statement	call.		

Note	that	the	sample	code	execution	ends	with	the	error	pq:	canceling	statement
due	to	user	request,	which	corresponds	with	that	of	CancelFunc,	which	was	called
right	after	the	query	was	executed.

Reading	query	result	metadata
Besides	the	data	itself,	the	result	of	a	query	contains	metadata	related	to	the
result	set.	This	contains	information	about	the	column	names,	types,	and	other
information	about	the	data.	This	recipe	will	explain	how	to	retrieve	the	data.

Getting	ready
Verify	if	Go	is	properly	installed	by	calling	the	go	version	command	in	your
Terminal.	If	the	command	fails,	follow	the	Getting	ready	section	in	the	first
recipe	of	this	chapter.	

Set	up	the	PostgreSQL	server,	as	mentioned	in	the	first	recipe	of	this	chapter.

How	to	do	it…
1.	 Run	the	following	SQL	script	against	your	sample	database:

								DROP	TABLE	IF	EXISTS	post;

								CREATE	TABLE	post	(

										ID	serial,

										TITLE	varchar(40),

										CONTENT	varchar(255),

										CONSTRAINT	pk_post	PRIMARY	KEY(ID)

);

								SELECT	*	FROM	post;

								INSERT	INTO	post(ID,TITLE,CONTENT)	VALUES

																								(1,'Title	One','Content	One'),

																								(2,'Title	Two','Content	Two');

2.	 Open	the	console	and	create	the	folder	chapter08/recipe06.
3.	 Navigate	to	the	directory.

	

4.	 Create	the	metadata.go	file	with	the	following	content:

								package	main

								import	(

										"database/sql"

										"fmt"

										_	"github.com/lib/pq"

)

								const	sel	=	"SELECT	*	FROM	post	p"

								func	main()	{

										db	:=	createConnection()

										defer	db.Close()

										rs,	err	:=	db.Query(sel)

										if	err	!=	nil	{

												panic(err)

										}

										defer	rs.Close()

										columns,	err	:=	rs.Columns()

										if	err	!=	nil	{

												panic(err)

										}

										fmt.Printf("Selected	columns:	%v\n",	columns)

										colTypes,	err	:=	rs.ColumnTypes()

										if	err	!=	nil	{

												panic(err)

										}

										for	_,	col	:=	range	colTypes	{

												fmt.Println()

												fmt.Printf("%+v\n",	col)

										}

								}

								func	createConnection()	*sql.DB	{

										connStr	:=	"postgres://postgres:postgres@

																						localhost:5432/example?sslmode=disable"

										db,	err	:=	sql.Open("postgres",	connStr)

										if	err	!=	nil	{

												panic(err)

										}

										err	=	db.Ping()

										if	err	!=	nil	{

												panic(err)

										}

										return	db

								}

5.	 Execute	the	code	by	go	run	metadata.go.
6.	 See	the	output:

How	it	works…
The	Query	and	QueryContext	methods	of	the	pointer	to	the	DB	struct	result	in
the	Rows	struct	pointer.	The	Rows	pointer	provides	the	methods	Columns	and
ColumnTypes,	which	contain	the	information	about	the	structure	of	the	returned
result	set.

The	Columns	method	returns	just	the	slice	of	strings	with	column	names.

The	ColumnTypes	method	returns	the	slice	of	ColumnType	pointers,	which	contains
more	rich	information	about	the	returned	result	set.	The	preceding	code	prints
out	the	detailed	information	of	what	information	the	ColumnType	pointer
exposes.	

Retrieving	data	from	a	query	result
While	working	with	the	database,	the	basic	part	is	the	extraction	of	data
through	executed	query.	This	recipe	will	illustrate	how	it	is	done	when	using
the	standard	library	database/sql	package.

Getting	ready
Verify	if	Go	is	properly	installed	by	calling	the	go	version	command	in	your
Terminal.	If	the	command	fails,	follow	the	Getting	ready	section	in	the	first
recipe	of	this	chapter.	

Set	up	the	PostgreSQL	server,	as	mentioned	in	the	first	recipe	of	this	chapter.

How	to	do	it…
1.	 Run	the	following	SQL	script	against	your	sample	database:

							DROP	TABLE	IF	EXISTS	post;

							CREATE	TABLE	post	(

									ID	serial,

									TITLE	varchar(40),

									CONTENT	varchar(255),

									CONSTRAINT	pk_post	PRIMARY	KEY(ID)

);

							SELECT	*	FROM	post;

							INSERT	INTO	post(ID,TITLE,CONTENT)	VALUES

																							(1,'Title	One','Content	One'),

																							(2,NULL,'Content	Two');

2.	 Open	the	console	and	create	the	folder	chapter08/recipe07.
3.	 Navigate	to	the	directory.
4.	 Create	the	data.go	file	with	the	following	content:

								package	main

								import	(

										"database/sql"

										"fmt"

										_	"github.com/lib/pq"

)

								const	sel	=	`SELECT	title,content	FROM	post;

								SELECT	1234	NUM;	`

	

								const	selOne	=	"SELECT	title,content	FROM	post

																								WHERE	ID	=	$1;"

								type	Post	struct	{

										Name	sql.NullString

										Text	sql.NullString

								}

								func	main()	{

										db	:=	createConnection()

										defer	db.Close()

										rs,	err	:=	db.Query(sel)

										if	err	!=	nil	{

												panic(err)

										}

										defer	rs.Close()

										posts	:=	[]Post{}

										for	rs.Next()	{

												if	rs.Err()	!=	nil	{

														panic(rs.Err())

												}

												p	:=	Post{}

												if	err	:=	rs.Scan(&p.Name,	&p.Text);	err	!=	nil	{

														panic(err)

												}

												posts	=	append(posts,	p)

										}

										var	num	int

										if	rs.NextResultSet()	{

												for	rs.Next()	{

														if	rs.Err()	!=	nil	{

																panic(rs.Err())

														}

														rs.Scan(&num)

												}

										}

										fmt.Printf("Retrieved	posts:	%+v\n",	posts)

										fmt.Printf("Retrieved	number:	%d\n",	num)

										row	:=	db.QueryRow(selOne,	100)

										or	:=	Post{}

										if	err	:=	row.Scan(&or.Name,	&or.Text);	err	!=	nil	{

												fmt.Printf("Error:	%s\n",	err.Error())

												return

										}

										fmt.Printf("Retrieved	one	post:	%+v\n",	or)

								}

								func	createConnection()	*sql.DB	{

										connStr	:=	"postgres://postgres:postgres@

																						localhost:5432/example?sslmode=disable"

										db,	err	:=	sql.Open("postgres",	connStr)

										if	err	!=	nil	{

												panic(err)

										}

										err	=	db.Ping()

										if	err	!=	nil	{

												panic(err)

										}

										return	db

								}

5.	 Execute	the	code	by	go	run	data.go.
6.	 See	the	output:

How	it	works…
The	pointer	to	Rows	coming	from	the	Query	method	of	the	pointer	to	the	DB	struct
provides	the	methods	to	read	and	extract	the	data	from	the	result	set.	

Note	that	first	the	Next	method	should	be	called	to	shift	the	cursor	to	the	next
result	row.	The	Next	method	returns	true	if	there	is	any	other	row,	or	false	if
not.

After	the	new	row	is	fetched	by	Next,	the	Scan	method	could	be	called	to	extract
the	data	into	a	variable.	The	number	of	variables	must	match	the	number	of
columns	in	SELECT,	otherwise,	the	Scan	method	is	not	able	to	extract	the	data.

The	important	part	of	the	code	is	that,	after	each	Next	method,	the	Err	method
should	be	called	to	find	out	if	there	was	an	error	during	the	reading	of	the	next
row.

The	preceding	example	intentionally	uses	the	NULL	value	for	the	second	record.
The	NULL	database	values	could	not	be	extracted	to	not	nullable	types,	string,	in
this	case,	the	NullString	type	must	be	used.

For	completeness,	the	sample	code	covers	the	QueryRow	method,	which	slightly
differs	from	the	Query	method.	This	one	returns	a	pointer	to	the	Row	struct	which
provides	only	the	Scan	method.	Note,	the	fact	that	there	are	no	rows	could	only
be	detected	after	the	Scan	method	is	called.

Parsing	the	query	result	into	a	map
Sometimes	the	result	of	the	query	or	the	structure	of	the	table	is	not	clear,	and
the	result	needs	to	be	extracted	to	some	flexible	structure.	This	brings	us	to
this	recipe,	where	the	extraction	of	values	mapped	to	column	names	will	be
presented.

Getting	ready
Verify	if	Go	is	properly	installed	by	calling	the	go	version	command	in	your
Terminal.	If	the	command	fails,	follow	the	Getting	ready	section	in	the	first
recipe	of	this	chapter.	

Set	up	the	PostgreSQL	server,	as	mentioned	in	the	first	recipe	of	this	chapter.

How	to	do	it…
1.	 Run	the	following	SQL	script	against	your	sample	database:

								DROP	TABLE	IF	EXISTS	post;

								CREATE	TABLE	post	(

										ID	serial,

										TITLE	varchar(40),

										CONTENT	varchar(255),

										CONSTRAINT	pk_post	PRIMARY	KEY(ID)

);

								SELECT	*	FROM	post;

								INSERT	INTO	post(ID,TITLE,CONTENT)	VALUES	

																								(1,NULL,'Content	One'),

																								(2,'Title	Two','Content	Two');

2.	 Open	the	console	and	create	the	folder	chapter08/recipe08.
3.	 Navigate	to	the	directory.
4.	 Create	the	querymap.go	file	with	the	following	content:

								package	main

								import	(

										"database/sql"

										"fmt"

										_	"github.com/lib/pq"

)

								const	selOne	=	"SELECT	id,title,content	FROM	post

																								WHERE	ID	=	$1;"

								func	main()	{

										db	:=	createConnection()

										defer	db.Close()

										rows,	err	:=	db.Query(selOne,	1)

										if	err	!=	nil	{

												panic(err)

										}

										cols,	_	:=	rows.Columns()

										for	rows.Next()	{

												m	:=	parseWithRawBytes(rows,	cols)

												fmt.Println(m)

												m	=	parseToMap(rows,	cols)

												fmt.Println(m)

										}

								}

								func	parseWithRawBytes(rows	*sql.Rows,	cols	[]string)

																															map[string]interface{}	{

										vals	:=	make([]sql.RawBytes,	len(cols))

										scanArgs	:=	make([]interface{},	len(vals))

										for	i	:=	range	vals	{

												scanArgs[i]	=	&vals[i]

										}

										if	err	:=	rows.Scan(scanArgs...);	err	!=	nil	{

												panic(err)

										}

										m	:=	make(map[string]interface{})

										for	i,	col	:=	range	vals	{

												if	col	==	nil	{

														m[cols[i]]	=	nil

												}	else	{

														m[cols[i]]	=	string(col)

												}

										}

										return	m

								}

								func	parseToMap(rows	*sql.Rows,	cols	[]string)

																								map[string]interface{}	{

										values	:=	make([]interface{},	len(cols))

										pointers	:=	make([]interface{},	len(cols))

										for	i	:=	range	values	{

												pointers[i]	=	&values[i]

										}

										if	err	:=	rows.Scan(pointers...);	err	!=	nil	{

												panic(err)

										}

										m	:=	make(map[string]interface{})

										for	i,	colName	:=	range	cols	{

												if	values[i]	==	nil	{

														m[colName]	=	nil

												}	else	{

														m[colName]	=	values[i]

												}

										}

										return	m

								}

								func	createConnection()	*sql.DB	{

										connStr	:=	"postgres://postgres:postgres@

																						localhost:5432/example?sslmode=disable"

										db,	err	:=	sql.Open("postgres",	connStr)

										if	err	!=	nil	{

												panic(err)

										}

										err	=	db.Ping()

										if	err	!=	nil	{

												panic(err)

										}

										return	db

								}

5.	 Execute	the	code	by	go	run	querymap.go.
6.	 See	the	output:

How	it	works…
Note	that	the	preceding	code	represents	two	approaches.	The	parseWithRawBytes
function	uses	the	preferred	approach,	but	it	is	highly	dependent	on	the	driver
implementation.	It	works	the	way	that	the	slice	of	RawBytes,	with	the	same
length	as	the	number	of	the	columns	in	the	result,	is	created.	Because	the	Scan
function	requires	pointers	to	values,	we	need	to	create	the	slice	of	pointers	to
the	slice	of	RawBytes	(slice	of	byte	slices),	then	it	can	be	passed	to	the	Scan
function.

After	it	is	successfully	extracted,	we	just	remap	the	values.	In	the	example
code,	we	cast	it	to	the	string	because	the	driver	uses	the	string	type	to	store	the
values	if	the	RawBytes	is	the	target.	Beware	that	the	form	of	stored	values
depends	on	driver	implementation.

The	second	approach,	parseToMap,	is	usable	in	the	case	that	the	first	one	does
not	work.	It	uses	almost	the	same	approach,	but	the	slice	of	values	is	defined
as	the	slice	of	empty	interfaces.	This	approach	relies	on	the	driver.	The	driver
should	determine	the	default	type	to	assign	to	the	value	pointer.

Handling	transactions
Transaction	control	comes	under	the	common	things	that	need	to	be	kept	in
mind	while	working	with	the	database.	This	recipe	will	show	you	how	to
handle	the	transaction	with	the	help	of	the	sql	package.

Getting	ready
Verify	if	Go	is	properly	installed	by	calling	the	go	version	command	in	your
Terminal.	If	the	command	fails,	follow	the	Getting	ready	section	in	the	first
recipe	of	this	chapter.	

Set	up	the	PostgreSQL	server,	as	mentioned	in	the	first	recipe	of	this	chapter.

How	to	do	it…
1.	 Run	the	following	SQL	script	against	your	sample	database:

								DROP	TABLE	IF	EXISTS	post;

								CREATE	TABLE	post	(

										ID	serial,

										TITLE	varchar(40),

										CONTENT	varchar(255),

										CONSTRAINT	pk_post	PRIMARY	KEY(ID)

);

								SELECT	*	FROM	post;

								INSERT	INTO	post(ID,TITLE,CONTENT)	VALUES

																								(1,'Title	One','Content	One'),

																								(2,NULL,'Content	Two');

2.	 Open	the	console	and	create	the	folder	chapter08/recipe09.
3.	 Navigate	to	the	directory.
4.	 Create	the	transaction.go	file	with	the	following	content:

								package	main

								import	(

										"database/sql"

										"fmt"

										_	"github.com/lib/pq"

)

								const	selOne	=	"SELECT	id,title,content	FROM	post

																								WHERE	ID	=	$1;"

								const	insert	=	"INSERT	INTO	post(ID,TITLE,CONTENT)

																VALUES	(4,'Transaction	Title','Transaction	Content');"

								type	Post	struct	{

										ID	int

										Title	string

										Content	string

								}

								func	main()	{

										db	:=	createConnection()

										defer	db.Close()

										tx,	err	:=	db.Begin()

										if	err	!=	nil	{

												panic(err)

										}

										_,	err	=	tx.Exec(insert)

										if	err	!=	nil	{

												panic(err)

										}

										p	:=	Post{}

										//	Query	in	other	session/transaction

										if	err	:=	db.QueryRow(selOne,	4).Scan(&p.ID,

																&p.Title,	&p.Content);	err	!=	nil	{

												fmt.Println("Got	error	for	db.Query:"	+	err.Error())

										}

										fmt.Println(p)

										//	Query	within	transaction

										if	err	:=	tx.QueryRow(selOne,	4).Scan(&p.ID,

																	&p.Title,	&p.Content);	err	!=	nil	{

												fmt.Println("Got	error	for	db.Query:"	+	err.Error())

										}

										fmt.Println(p)

										//	After	commit	or	rollback	the

										//	transaction	need	to	recreated.

										tx.Rollback()

								}

								func	createConnection()	*sql.DB	{

										connStr	:=	"postgres://postgres:postgres@

																						localhost:5432/example?sslmode=disable"

										db,	err	:=	sql.Open("postgres",	connStr)

										if	err	!=	nil	{

												panic(err)

										}

										err	=	db.Ping()

										if	err	!=	nil	{

												panic(err)

										}

										return	db

								}

5.	 Execute	the	code	by	go	run	transaction.go.
6.	 See	the	output:

How	it	works…
The	transaction	handling,	as	the	preceding	code	illustrates,	is	very	simple.
The	method,	Begin,	of	the	DB	struct	pointer	creates	the	transaction	with	a	default
isolation	level	(depends	on	driver).	The	transaction,	by	its	nature,	is	kept	on
the	single	connection	and	is	represented	by	the	returned	pointer	to	the	Tx
struct.

The	pointer,	Tx,	implements	all	the	methods	available	to	the	DB	struct	pointer;
the	exception	is	that	all	the	operations	are	done	within	the	transaction	(if	the
database	is	able	to	process	the	statement	in	the	transaction).		The	transaction
is	ended	by	calling	the	Rollback	or	Commit	method	on	the	Tx	struct	pointer.	After
this	call,	the	transaction	is	finished	and	other	operations	will	end	by	the
error	ErrTxDone.

There	is	one	more	useful	method	on	the	DB	struct	pointer	called	BeginTx,	which
creates	the	transaction	Tx	struct	pointer	but	is	also	enhanced	with	given
context.	If	the	context	is	canceled,	the	transaction	will	be	rolled	back		(a
further	Commit	call	will	result	in	the	error).	The	BeginTx	also	consumes	the
pointer	to	TxOptions,	which	is	optional	and	could	define	the	isolation	level.

Executing	stored	procedures	and
functions
Dealing	with	stored	procedures	and	functions	is	always	more	complex	than
usual	statements,	especially	if	the	procedures	contain	custom	types.	The
standard	library	provides	the	API	to	deal	with	these,	but	the	final	word	of	how
much	the	stored	procedure	calls	are	supported	is	in	the	driver	implementation.
This	recipe	will	show	a	very	simple	function/procedure	call.

Getting	ready
Verify	if	Go	is	properly	installed	by	calling	the	go	version	command	in	your
Terminal.	If	the	command	fails,	follow	the	Getting	ready	section	in	the	first
recipe	of	this	chapter.	

Set	up	the	PostgreSQL	server,	as	mentioned	in	the	first	recipe	of	this	chapter.

How	to	do	it…
1.	 Run	the	following	SQL	script	against	your	sample	database:

								CREATE	OR	REPLACE	FUNCTION	format_name

								(firstname	Text,lastname	Text,age	INT)	RETURNS	

								VARCHAR	AS	$$

								BEGIN

										RETURN	trim(firstname)	||'	'||trim(lastname)	||'	('||age||')';

								END;

								$$	LANGUAGE	plpgsql;

2.	 Open	the	console	and	create	the	folder	chapter08/recipe10.
3.	 Navigate	to	the	directory.
4.	 Create	the	procedure.go	file	with	the	following	content:

								package	main

								import	(

										"database/sql"

										"fmt"

										_	"github.com/go-sql-driver/mysql"

										_	"github.com/lib/pq"

)

								const	call	=	"select	*	from	format_name($1,$2,$3)"

								const	callMySQL	=	"CALL	simpleproc(?)"

								type	Result	struct	{

										Name	string

										Category	int

								}

								func	main()	{

										db	:=	createConnection()

										defer	db.Close()

										r	:=	Result{}

										if	err	:=	db.QueryRow(call,	"John",	"Doe",

																				32).Scan(&r.Name);	err	!=	nil	{

												panic(err)

										}

										fmt.Printf("Result	is:	%+v\n",	r)

								}

								func	createConnection()	*sql.DB	{

										connStr	:=	"postgres://postgres:postgres@localhost:5432

																						/example?sslmode=disable"

										db,	err	:=	sql.Open("postgres",	connStr)

										if	err	!=	nil	{

												panic(err)

										}

										err	=	db.Ping()

										if	err	!=	nil	{

												panic(err)

										}

										return	db

								}

5.	 Execute	the	code	by	go	run	procedure.go.
6.	 See	the	output:

How	it	works…
The	calling	of	stored	procedures	is	highly	dependent	on	the	driver	and	the
database.	Note	that	retrieving	result	on	PostgreSQL	database	is	very	similar	to
querying	tables.	The	Query	or	QueryRow	method	of	the	DB	struct	pointer	is	called,
and	the	resulted	rows	or	row	pointer	can	be	parsed	to	obtain	the	values.

The	MySQL	driver	uses	the	CALL	statement,	if	the	stored
procedure	needs	to	be	called.

The	general	problem	for	almost	all	drivers	ia	the	OUTPUT	parameters	of	stored
procedures.	Go	1.9	added	support	for	such	parameters,	but	the	majority	of
drivers	of	commonly-used	databases	do	not	implement	this	yet.	The	solution,
then,	could	be	the	usage	of	the	driver	with	a	nonstandard	API.

The	way	the	OUTPUT	params	are	supposed	to	work	is	that	the
procedure	call	will	use	the	type	NamedArg	parameter	from	the	Named
function	of	the	database/sql	package.	The	Value	field	of	the	NamedArg
struct	should	be	of	type	Out	which	contains	the	Dest	field,	where
the	actual	value	of	the	OUTPUT	parameter	should	be	placed.

Come	to	the	Server	Side
This	chapter	contains	the	following	recipes:

Creating	the	TCP	server
Creating	the	UDP	server
Handling	multiple	clients
Creating	the	HTTP	server
Handling	HTTP	requests
Creating	HTTP	middleware	layer
Serving	static	files
Serving	content	generated	with	templates
Handling	redirects
Handling	cookies
Gracefully	shutdown	the	HTTP	server
Serving	secured	HTTP	content
Resolving	form	variables

Introduction
This	chapter	covers	topics	from	implementing	simple	TCP	and	UDP	servers
to	spinning	the	HTTP	server.	The	recipes	will	lead	you	from	the	HTTP
request	handling,	serving	the	static	content,	to	providing	the	secured	HTTP
content.

Check	if	Go	is	properly	installed.	The	Getting	ready	section	in
the	Retrieving	Golang	version	recipe	of	Chapter	1,	Interacting
With	Environment,	will	help	you.	

Make	sure	the	ports	8080	and	7070	are	not	used	by	another
application.

Creating	the	TCP	server
In	the	chapter	Connect	the	Network,	the	client	side	of	the	TCP	connection	is
presented.	In	this	recipe,	the	server	side	will	be	described.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter09/recipe01.
2.	 Navigate	to	the	directory.
3.	 Create	the	servertcp.go	file	with	the	following	content:

								package	main

								import	(

										"bufio"

										"fmt"

										"io"

										"net"

)

	

								func	main()	{

										l,	err	:=	net.Listen("tcp",	":8080")

										if	err	!=	nil	{

												panic(err)

										}

										for	{

												fmt.Println("Waiting	for	client...")

												conn,	err	:=	l.Accept()

												if	err	!=	nil	{

														panic(err)

												}

												msg,	err	:=	bufio.NewReader(conn).ReadString('\n')

												if	err	!=	nil	{

														panic(err)

												}

												_,	err	=	io.WriteString(conn,	"Received:	"+string(msg))

												if	err	!=	nil	{

														fmt.Println(err)

												}

												conn.Close()

										}

								}

4.	 Execute	the	code	by	go	run	servertcp.go:

5.	 Open	another	Terminal	and	execute	nc	localhost	8080.
6.	 Write	any	text,	for	example,	Hello.
7.	 See	the	output:

How	it	works…
The	TCP	server	could	be	created	using	the	net	package.	The	net	package
contains	the	Listen	function	that	creates	the	TCPListener,	which	can	Accept	the
client	connections.	The	Accept	method	calls	on	the	TCPListener	blocks	until	the
client	connection	is	received.	If	the	client	connection	comes,	the	Accept	method
returns	the	TCPConn	connection.	The	TCPConn	is	a	connection	to	the	client	that
serves	to	read	and	write	data.

The	TCPConn	implements	the	Reader	and	Writer	interfaces.	All	the	approaches	to
write	and	read	the	data	could	be	used.	Note	that	there	is	a	delimiter	character
for	reading	the	data,	otherwise,	the	EOF	is	received	if	the	client	forcibly
closes	the	connection.

Note	that	this	implementation	handles	only	one	client	at	a	time.

Creating	the	UDP	server
The	User	Datagram	Protocol	(UDP)	is	one	of	the	essential	protocols	of	the
internet.	This	recipe	will	show	you	how	to	listen	for	the	UDP	packets	and
read	the	content.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter09/recipe02.
2.	 Navigate	to	the	directory.
3.	 Create	the	serverudp.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"log"

										"net"

)

								func	main()	{

										pc,	err	:=	net.ListenPacket("udp",	":7070")

										if	err	!=	nil	{

												log.Fatal(err)

										}

										defer	pc.Close()

										buffer	:=	make([]byte,	2048)

										fmt.Println("Waiting	for	client...")

										for	{

												_,	addr,	err	:=	pc.ReadFrom(buffer)

												if	err	==	nil	{

														rcvMsq	:=	string(buffer)

														fmt.Println("Received:	"	+	rcvMsq)

														if	_,	err	:=	pc.WriteTo([]byte("Received:	"+rcvMsq),	addr);

														err	!=	nil	{

																fmt.Println("error	on	write:	"	+	err.Error())

														}

												}	else	{

														fmt.Println("error:	"	+	err.Error())

												}

										}

								}

4.	 Start	the	server	by	go	run	serverudp.go:

5.	 Open	another	Terminal	and	execute	nc	-u	localhost	7070.
6.	 Write	any	message	to	the	Terminal,	for	example,	Hello,	and	hit	Enter.
7.	 See	the	output:

How	it	works…
As	with	the	TCP	server,	the	UDP	server	can	be	created	with	the	help	of	the	net
package.	With	the	use	of	the	ListenPacket	function,	the	PacketConn	is	created.	

The	PacketConn	does	not	implement	the	Reader	and	Writer	interface	as	the	TCPConn.
For	reading	the	received	packet,	the	ReadFrom	method	should	be	used.	The
ReadFrom	method	blocks	until	the	packet	is	received.	After	this,	the	Addr	of	the
client	is	returned	(remember	the	UDP	is	not	connection-based).	To	respond	to
the	client,	the	WriteTo	method	of	PacketConn	could	be	used;	this	consumes	the
message	and	the	Addr,	which	is	the	client	Addr,	in	this	case.

Handling	multiple	clients
The	previous	recipes	show	how	to	create	UDP	and	TCP	servers.	The	sample
codes	are	not	ready	to	handle	multiple	clients	simultaneously.	In	this	recipe,
we	will	cover	how	to	handle	more	clients	at	any	given	time.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter09/recipe03.
2.	 Navigate	to	the	directory.
3.	 Create	the	multipletcp.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"log"

										"net"

)

								func	main()	{

										pc,	err	:=	net.ListenPacket("udp",	":7070")

										if	err	!=	nil	{

												log.Fatal(err)

										}

										defer	pc.Close()

										buffer	:=	make([]byte,	2048)

										fmt.Println("Waiting	for	client...")

										for	{

												_,	addr,	err	:=	pc.ReadFrom(buffer)

												if	err	==	nil	{

														rcvMsq	:=	string(buffer)

														fmt.Println("Received:	"	+	rcvMsq)

														if	_,	err	:=	pc.WriteTo([]byte("Received:	"+rcvMsq),	addr);

														err	!=	nil	{

																fmt.Println("error	on	write:	"	+	err.Error())

														}

												}	else	{

														fmt.Println("error:	"	+	err.Error())

												}

										}

								}

4.	 Execute	the	code	by	go	run	multipletcp.go.
5.	 Open	two	another	Terminals	and	execute	the	nc	localhost	8080.
6.	 Write	something	to	both	opened	Terminals	and	see	the	output.	The

following	two	images	are	the	connected	clients.

Terminal	1	connected	to	localhost:8080:

Terminal	2	connected	to	localhost:8080:

The	output	in	the	Terminal	where	the	server	is	running:

How	it	works…
The	TCP	server	implementation	works	the	same	as	the	previous
recipe,	Creating	the	TCP	server,	from	this	chapter.	The	implementation	is
enhanced,	with	the	ability	to	handle	multiple	clients	simultaneously.	Note	that
we	are	now	handling	the	accepted	connection	in	the	separate	goroutine.	This
means	the	server	can	continue	to	accept	the	client	connections	with	the	Accept
method.	

Because	the	UDP	protocol	is	not	stateful	and	does	not	keep	any
connection,	the	handling	of	multiple	clients	is	moved	to
application	logic	and	you	need	to	identify	the	clients	and	packet
sequence.	Only	the	writing	response	to	a	client	could	be
parallelized	with	the	use	of	goroutines.

Creating	the	HTTP	Server
The	creation	of	the	HTTP	server	in	Go	is	very	easy,	and	the	standard	library
provides	more	ways	of	how	to	do	that.	Let’s	look	at	the	very	basic	one.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter09/recipe04.
2.	 Navigate	to	the	directory.
3.	 Create	the	httpserver.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"net/http"

)

	

								type	SimpleHTTP	struct{}

								func	(s	SimpleHTTP)	ServeHTTP(rw	http.ResponseWriter,

																												r	*http.Request)	{

										fmt.Fprintln(rw,	"Hello	world")

								}

								func	main()	{

										fmt.Println("Starting	HTTP	server	on	port	8080")

										//	Eventually	you	can	use

										//	http.ListenAndServe(":8080",	SimpleHTTP{})

										s	:=	&http.Server{Addr:	":8080",	Handler:	SimpleHTTP{}}

										s.ListenAndServe()

								}

4.	 Execute	the	code	by	go	run	httpserver.go.
5.	 See	the	output:

6.	 Access	the	URL	http://localhost:8080	in	a	browser	or	use	curl.	The	Hello
world	content	should	be	displayed:

How	it	works…
The	net/http	package	contains	a	few	ways	of	creating	the	HTTP	server.	The
most	simple	one	is	to	implement	the	Handler	interface	from	the	net/http
package.	The	Handler	interface	requires	the	type	to	implement	the	ServeHTTP
method.	This	method	handles	the	request	and	response.

The	server	itself	is	created	in	the	form	of	the	Server	struct	from	the	net/http
package.	The	Server	struct	requires	the	Handler	and	Addr	fields.	By	calling	the
method,	ListenAndServe,		the	server	starts	serving	the	content	on	the	given
address.

If	the	Serve	method	of	the	Server	is	used,	then	the	Listener	must	be	provided.

The	net/http	package	provides	also	the	default	server	which	could	be	used	if
the	ListenAndServe	is	called	as	a	function	from	the	net/http	package.	It	consumes
the	Handler	and	Addr,	the	same	as	the	Server	struct.	Internally,	the	Server	is
created.

Handling	HTTP	requests
The	applications	usually	use	the	URL	paths	and	HTTP	methods	to	define	the
behavior	of	the	application.	This	recipe	will	illustrate	how	to	leverage	the
standard	library	for	handling	different	URLs	and	methods.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter09/recipe05.
2.	 Navigate	to	the	directory.
3.	 Create	the	handle.go	file	with	the	following	content:

								package	main

								import	(

										"fmt"

										"net/http"

)

								func	main()	{

										mux	:=	http.NewServeMux()

										mux.HandleFunc("/user",	func(w	http.ResponseWriter,	

																									r	*http.Request)	{

												if	r.Method	==	http.MethodGet	{

														fmt.Fprintln(w,	"User	GET")

												}

												if	r.Method	==	http.MethodPost	{

														fmt.Fprintln(w,	"User	POST")

												}

										})

										//	separate	handler

										itemMux	:=	http.NewServeMux()

										itemMux.HandleFunc("/items/clothes",	func(w	http.ResponseWriter,

																													r	*http.Request)	{

												fmt.Fprintln(w,	"Clothes")

										})

										mux.Handle("/items/",	itemMux)

										//	Admin	handlers

										adminMux	:=	http.NewServeMux()

										adminMux.HandleFunc("/ports",	func(w	http.ResponseWriter,

																														r	*http.Request)	{

												fmt.Fprintln(w,	"Ports")

										})

										mux.Handle("/admin/",	http.StripPrefix("/admin",

																																adminMux))

										//	Default	server

										http.ListenAndServe(":8080",	mux)

								}

4.	 Execute	the	code	by	go	run	handle.go.
5.	 Check	the	following	URLs	in	the	browser	or	via	curl:

http://localhost:8080/user

http://localhost:8080/items/clothes

http://localhost:8080/admin/ports

6.	 See	the	output:

How	it	works…
The	net/http	package	contains	the	ServeMux	struct,	which	implements	the	Handler
interface	to	be	used	in	a	Server	struct,	but	also	contains	the	mechanism	of	how
to	define	the	handling	of	different	paths.	The	ServeMux	pointer	contains	the
methods	HandleFunc	and	Handle,	which	accept	the	path,	and	the	HandlerFunc
function	handles	the	request	for	the	given	path,	or	another	handler	does	the
same.	

See	the	preceding	example	for	how	these	could	be	used.	The	Handler	interface
and	HandlerFunc	require	implementing	the	function	with	request	and	response
arguments.	This	way	you	get	access	to	these	two	structures.	The	request	itself
gives	access	to	Headers,	the	HTTP	method,	and	other	request	parameters.

Creating	HTTP	middleware	layer
Modern	applications	with	web	UI	or	REST	API	usually	use	the	middleware
mechanism	to	log	the	activity,	or	guard	the	security	of	the	given	interface.	In
this	recipe,	the	implementation	of	such	a	middleware	layer	will	be	presented.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter09/recipe06.
2.	 Navigate	to	the	directory.
3.	 Create	the	middleware.go	file	with	the	following	content:

								package	main

								import	(

										"io"

										"net/http"

)

								func	main()	{

										//	Secured	API

										mux	:=	http.NewServeMux()

										mux.HandleFunc("/api/users",	Secure(func(w	http.ResponseWriter,

																									r	*http.Request)	{

												io.WriteString(w,		`[{"id":"1","login":"ffghi"},

																											{"id":"2","login":"ffghj"}]`)

										}))

										http.ListenAndServe(":8080",	mux)

								}

								func	Secure(h	http.HandlerFunc)	http.HandlerFunc	{

										return	func(w	http.ResponseWriter,	r	*http.Request)	{

												sec	:=	r.Header.Get("X-Auth")

												if	sec	!=	"authenticated"	{

														w.WriteHeader(http.StatusUnauthorized)

														return

												}

												h(w,	r)	//	use	the	handler

										}

								}

4.	 Execute	the	code	by	go	run	middleware.go.
5.	 Check	the	URL	http://localhost:8080/api/users	with	use	of	curl	by

executing	these	two	commands	(the	first	without	and	the	second	with	the
X-Auth	header):

curl	-X	GET	-I	http://localhost:8080/api/users

curl	-X	GET	-H	"X-Auth:	authenticated"	-I	http://localhost:8080/api/users

6.	 See	the	output:

7.	 Test	the	URL	http://localhost:8080/api/profile	using	the	X-User	header.
8.	 See	the	output:

How	it	works…
The	implementation	of	middleware	in	the	preceding	example	leverages	the
functions	as	first-class	citizens	feature	of	Golang.	The	original	HandlerFunc	is
wrapped	into	a	HandlerFunc	which	checks	the	X-Auth	header.	The	Secure	function
is	then	used	to	secure	the	HandlerFunc,	used	in	the	HandleFunc	methods	of	ServeMux.

Note	that	this	is	just	a	simple	example,	but	this	way	you	can	implement	more
sophisticated	solutions.	For	example,	the	user	identity	could	be	extracted	from
the	Header	token	and	subsequently,	the	new	type	of	handler	could	be	defined	as
type	AuthHandler	func(u	*User,w	http.ResponseWriter,	r	*http.Request).	The
function	WithUser	then	creates	the	HandlerFunc	for	the	ServeMux.

Serving	static	files
Almost	any	web	application	needs	to	serve	static	files.	The	serving	of
JavaScript	files,	static	HTML	pages,	or	CSS	style	sheets	could	be	easily
achieved	with	the	use	of	the	standard	library.	This	recipe	will	show	how.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter09/recipe07.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	welcome.txt	with	the	following	content:

								Hi,	Go	is	awesome!

4.	 Create	the	folder	html,	navigate	to	it	and	create	the	file	page.html	with	the
following	content:

								<html>

										<body>

												Hi,	I'm	HTML	body	for	index.html!

										</body>

								</html>

5.	 Create	the	static.go	file	with	the	following	content:

								package	main

								import	(

										"net/http"

)

								func	main()	{

										fileSrv	:=	http.FileServer(http.Dir("html"))

										fileSrv	=	http.StripPrefix("/html",	fileSrv)

										http.HandleFunc("/welcome",	serveWelcome)

										http.Handle("/html/",	fileSrv)

										http.ListenAndServe(":8080",	nil)

								}

								func	serveWelcome(w	http.ResponseWriter,	r	*http.Request)	{

										http.ServeFile(w,	r,	"welcome.txt")

								}

6.	 Execute	the	code	by	go	run	static.go.
7.	 Check	the	following	URLs	with	the	browser	or	the	curl	utility:

http://localhost:8080/html/page.html

http://localhost:8080/welcome

8.	 See	the	output:

How	it	works…
The	net/http	package	provides	the	functions	ServeFile	and	FileServer,	which	are
designed	to	serve	the	static	files.	The	ServeFile	function	just	consumes	the
ResponseWriter	and	Request	with	the	given	file	path	argument	and	writes	the
content	of	the	file	to	the	response.

The	FileServer	function	creates	the	whole	Handler	which	consumes	the	FileSystem
argument.	The	preceding	example	uses	the	Dir	type,	which	implements	the
FileSystem	interface.	The	FileSystem	interface	requires	implementing	the
Open	method,	which	consumes	string	and	returns	the	actual	File	for	the	given
path.

Serving	content	generated	with
templates
For	some	purposes,	it	is	not	necessary	to	create	highly	dynamic	web	UI	with
all	the	JavaScript,	and	the	static	content	with	generated	content	could	be
sufficient.	The	Go	standard	library	provides	a	way	of	constructing
dynamically	generated	content.	This	recipe	gives	a	lead	into	the	Go	standard
library	templating.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter09/recipe08.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	template.tpl	with	the	following	content:

								<html>

										<body>

												Hi,	I'm	HTML	body	for	index.html!

										</body>

								</html>

4.	 Create	the	file	dynamic.go	with	the	following	content:

								package	main

								import	"net/http"

								import	"html/template"

								func	main()	{

										tpl,	err	:=	template.ParseFiles("template.tpl")

										if	err	!=	nil	{

												panic(err)

										}

										http.HandleFunc("/",func(w	http.ResponseWriter,	r	*http.Request){

												err	:=	tpl.Execute(w,	"John	Doe")

												if	err	!=	nil	{

														panic(err)

												}

										})

										http.ListenAndServe(":8080",	nil)

								}

5.	 Execute	the	code	by	go	run	dynamic.go.
6.	 Check	the	URL	http://localhost:8080	and	see	the	output:

How	it	works…
The	Go	standard	library	also	contains	the	package	for	templating	the	content.
The	packages	html/template	and	text/template	provide	the	functions	to	parse	the
templates	and	use	them	to	create	the	output.	The	parsing	is	done	with
the	ParseXXX	functions	or	the	methods	of	the	newly-created	Template	struct
pointer.	The	preceding	example	uses	the	ParseFiles	function	of	the	html/template
package.

The	templates	themselves	are	text-based	documents	or	pieces	of	text	which
contain	dynamic	variables.	The	use	of	the	template	is	based	on	merging	the
template	text	with	the	structure	that	contains	the	values	for	the	variables
present	in	the	template.	For	merging	the	template	with	such	structures,	the
Execute	and	ExecuteTemplate	methods	are	there.		Note	that	these		consume	the
writer	interface,	where	the	output	is	written;	the	ResponseWriter	is	used	in	this
case.

The	template	syntax	and	features	are	explained	well	in	the
documentation.		

Handling	redirects
Redirects	are	the	usual	way	of	telling	the	client	that	the	content	was	moved,	or
there	is	a	needs	to	look	somewhere	else	to	accomplish	the	request.	This	recipe
describes	the	way	to	implement	redirects	with	the	standard	library.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter09/recipe09.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	redirect.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"log"

										"net/http"

)

								func	main()	{

										log.Println("Server	is	starting...")

										http.Handle("/secured/handle",

															http.RedirectHandler("/login",	

																						http.StatusTemporaryRedirect))

										http.HandleFunc("/secured/hadlefunc",	

															func(w	http.ResponseWriter,	r	*http.Request)	{

												http.Redirect(w,	r,	"/login",	http.StatusTemporaryRedirect)

										})

										http.HandleFunc("/login",	func(w	http.ResponseWriter,

																										r	*http.Request)	{

												fmt.Fprintf(w,	"Welcome	user!	Please	login!\n")

										})

										if	err	:=	http.ListenAndServe(":8080",	nil);	err	!=	nil	{

												panic(err)

										}

								}

4.	 Execute	the	code	by	go	run	redirect.go.
5.	 Use	curl	-v	-L	http://localhost:8080/s

ecured/handle	to	see	if	redirect	works:

How	it	works…
The	net/http	package	contains	a	simple	way	of	executing	the	redirect.	The
RedirectHandler	could	be	utilized.	The	function	consumes	the	URL	where	the
request	will	be	redirected	and	the	status	code	which	will	be	sent	to	client.	The
function	itself	sends	results	to	the	Handler,	which	could	be	used	in	the	Handle
method	of	ServeMux	(the	example	uses	the	default	one	directly	from	the
package).

The	second	approach	is	the	use	of	the	Redirect	function,	which	does	the
redirect	for	you.	The	function	consumes	ResponseWriter,	the	request	pointer	and
the	same	as	RequestHandler,	the	URL	and	status	code,	which	will	be	sent	to	the
client.

The	redirect	could	be	also	done	with	the	help	of	manually	setting
the	Location	header	and	writing	the	proper	status	code.	The	Go
library	only	makes	this	easy	to	use	for	the	developer.

Handling	cookies
Cookies	provide	a	way	of	easily	storing	data	on	the	client	side.	This	recipe
illustrates	how	to	set,	retrieve	and	remove	the	cookies	with	the	help	of	the
standard	library.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter09/recipe10.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	cookies.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"log"

										"net/http"

										"time"

)

								const	cookieName	=	"X-Cookie"

								func	main()	{

										log.Println("Server	is	starting...")

										http.HandleFunc("/set",	func(w	http.ResponseWriter,

																										r	*http.Request)	{

												c	:=	&http.Cookie{

														Name:	cookieName,

														Value:	"Go	is	awesome.",

														Expires:	time.Now().Add(time.Hour),

														Domain:	"localhost",

												}

												http.SetCookie(w,	c)

												fmt.Fprintln(w,	"Cookie	is	set!")

										})

										http.HandleFunc("/get",	func(w	http.ResponseWriter,

																										r	*http.Request)	{

												val,	err	:=	r.Cookie(cookieName)

												if	err	!=	nil	{

														fmt.Fprintln(w,	"Cookie	err:	"+err.Error())

														return

												}

												fmt.Fprintf(w,	"Cookie	is:	%s	\n",	val.Value)

												fmt.Fprintf(w,	"Other	cookies")

												for	_,	v	:=	range	r.Cookies()	{

														fmt.Fprintf(w,	"%s	=>	%s	\n",	v.Name,	v.Value)

												}

										})

										http.HandleFunc("/remove",	func(w	http.ResponseWriter,

																										r	*http.Request)	{

												val,	err	:=	r.Cookie(cookieName)

												if	err	!=	nil	{

														fmt.Fprintln(w,	"Cookie	err:	"+err.Error())

														return

												}

												val.MaxAge	=	-1

												http.SetCookie(w,	val)

												fmt.Fprintln(w,	"Cookie	is	removed!")

										})

										if	err	:=	http.ListenAndServe(":8080",	nil);	err	!=	nil	{

												panic(err)

										}

								}

4.	 Execute	the	code	by	go	run	cookies.go.
5.	 Access	the	URLs	in	the	following	sequence	and	see:

The	response	in	a	browser	directed	to	the	URL
http://localhost:8080/set:

The	response	in	a	browser	directed	to	the
URL	http://localhost:8080/get	(the	response	contains	the	available
cookies):

The	response	in	a	browser	directed	to	the
URL	http://localhost:8080/remove	(this	will	remove	the	cookie):

The	response	in	a	browser	directed	to	the
URL	http://localhost:8080/get	(proof	that	the	cookie	X-Cookie	was
removed):

How	it	works…
The	net/http	package	also	provides	the	functions	and	mechanisms	to	operate
on	cookies.	The	sample	code	presents	how	to	set/get	and	remove	the	cookies.
The	SetCookie	function	accepts	the	Cookie	struct	pointer	that	represents	the
cookies,	and	naturally	the	ResponseWriter.	The	Name,	Value,	Domain,	and	expiration
are	set	directly	in	the	Cookie	struct.	Behind	the	scenes,	the	SetCookie	function
writes	the	header	to	set	the	cookies.

The	cookie	values	could	be	retrieved	from	the	Request	struct.	The	method	Cookie
with	the	name	parameter	returns	the	pointer	to	the	Cookie,	if	the	cookie	exists
in	the	request.

To	list	all	cookies	within	the	request,	the	method	Cookies	could	be	called.	This
method	returns	the	slice	of	the	Cookie	structs	pointers.

To	let	the	client	know	that	the	cookie	should	be	removed,	the	Cookie	with	the
given	name	could	be	retrieved	and	the	MaxAge	field	should	be	set	to	a	negative
value.	Note	that	this	is	not	a	Go	feature,	but	the	way	the	client	should	work.	

Gracefully	shutdown	the	HTTP
server
In	Chapter	1,	Interacting	with	the	Environment,	the	mechanism	of	how	to
implement	graceful	shutdown	was	presented.	In	this	recipe,	we	will	describe
how	to	shut	down	the	HTTP	server	and	give	it	time	to	handle	the	existing
clients.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter09/recipe11.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	gracefully.go	with	the	following	content:

								package	main

								import	(

										"context"

										"fmt"

										"log"

										"net/http"

										"os"

										"os/signal"

										"time"

)

								func	main()	{

										mux	:=	http.NewServeMux()

										mux.HandleFunc("/",func(w	http.ResponseWriter,	r	*http.Request){

												fmt.Fprintln(w,	"Hello	world!")

										})

										srv	:=	&http.Server{Addr:	":8080",	Handler:	mux}

										go	func()	{

												if	err	:=	srv.ListenAndServe();	err	!=	nil	{

														log.Printf("Server	error:	%s\n",	err)

												}

										}()

										log.Println("Server	listening	on	:	"	+	srv.Addr)

										stopChan	:=	make(chan	os.Signal)

										signal.Notify(stopChan,	os.Interrupt)

										<-stopChan	//	wait	for	SIGINT

										log.Println("Shutting	down	server...")

										ctx,	cancel	:=	context.WithTimeout(

												context.Background(),

												5*time.Second)

										srv.Shutdown(ctx)

										<-ctx.Done()

										cancel()

										log.Println("Server	gracefully	stopped")

								}

4.	 Execute	the	code	by	go	run	gracefully.go.
5.	 Wait	until	the	server	starts	listening:

6.	 Connect	with	the	browser	to	http://localhost:8080;	this	will	cause	the
browser	to	wait	for	a	response	for	10	seconds.

7.	 Within	the	interval	of	10	seconds,	press	Ctrl	+	C	to	send	the	SIGINT	signal.
8.	 Try	to	connect	again	from	another	tab	(the	server	should	refuse	other

connections).

	

9.	 See	the	output	in	the	Terminal:

How	it	works…
The	Server	from	the	net/http	package	provides	the	method	to	gracefully
shutdown	the	connection.	The	preceding	code	starts	the	HTTP	server	in	a
separate	goroutine	and	keeps	the	reference	to	the	Server	struct	in	a	variable.	

By	calling	the	Shutdown	method,	the	Server	starts	refusing	new	connections	and
closes	opened	listeners	and	idle	connections.	Then	it	waits	indefinitely	for	the
already	pending	connections,	till	these	become	idle.	After	all	the	connections
are	closed,	the	server	shuts	down.	Note	that	the	Shutdown	method	consumes	the
Context.	If	the	provided	Context	expires	prior	to	the	shutdown,	then	the	error
from	Context	is	returned	and	the	Shutdown	does	not	block	anymore.

Serving	secured	HTTP	content
This	recipe	describes	the	simplest	way	of	creating	the	HTTP	server,	which
serves	the	content	via	the	TLS/SSL	layer.

Getting	ready
Prepare	the	private	key	and	self-signed	X-509	certificate.	For	this	purpose,	the
OpenSSL	utility	could	be	used.	By	executing	the	command	openssl	genrsa	-out
server.key	2048,	the	private	key	derived	with	the	use	of	an	RSA	algorithm	is
generated	to	the	file	server.key.	Based	on	this	private	key,	the	X-509	certificate
could	be	generated	by	calling	openssl	req	-new	-x509	-sha256	-key	server.key	-out
server.crt	-days	365.	The	server.crt	file	is	created.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter09/recipe12.
2.	 Navigate	to	the	directory.
3.	 Place	the	created	server.key	and	server.crt	files	in	it.
4.	 Create	the	file	servetls.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"net/http"

)

								type	SimpleHTTP	struct{}

										func	(s	SimpleHTTP)	ServeHTTP(rw	http.ResponseWriter,

																														r	*http.Request)	{

												fmt.Fprintln(rw,	"Hello	world")

										}

										func	main()	{

												fmt.Println("Starting	HTTP	server	on	port	8080")

												//	Eventually	you	can	use

												//	http.ListenAndServe(":8080",	SimpleHTTP{})

												s	:=	&http.Server{Addr:	":8080",	Handler:	SimpleHTTP{}}

												if	err	:=	s.ListenAndServeTLS("server.crt",	"server.key");

												err	!=	nil	{

														panic(err)

												}

										}

5.	 Execute	the	server	by	go	run	servetls.go.
6.	 Access	the	URL	https://localhost:8080	(the	HTTPS	protocol	is	used).	If

using	the	curl	utility,	the	--insecure	flag	must	be	used,	as	our	certificate	is
self-signed	and	not	trusted:

How	it	works…
Besides	the	ListenAndServe	function,	within	the	net/http	package,	the	TLS
variant	for	serving	HTTP	via	SSL/TLS,	exists.	With	the	use	of
the	ListenAndServeTLS	method	of	the	Server,	the	secured	HTTP	is	served.
The	ListenAndServeTLS	consumes	the	path	to	the	private	key	and	X-509
certificate.	Naturally,	the	function	ListenAndServeTLS,	directly	from	net/http
package,	could	be	used.

Resolving	form	variables
The	HTTP	POST	form	is	a	very	common	way	of	passing	the	information	to	the
server,	in	a	structured	way.	This	recipe	shows	how	to	parse	and	access	these
on	the	server	side.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter09/recipe12.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	form.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"net/http"

)

								type	StringServer	string

								func	(s	StringServer)	ServeHTTP(rw	http.ResponseWriter,

																														req	*http.Request)	{

										fmt.Printf("Prior	ParseForm:	%v\n",	req.Form)

										req.ParseForm()

										fmt.Printf("Post	ParseForm:	%v\n",	req.Form)

										fmt.Println("Param1	is	:	"	+	req.Form.Get("param1"))

										rw.Write([]byte(string(s)))

								}

								func	createServer(addr	string)	http.Server	{

										return	http.Server{

												Addr:	addr,

												Handler:	StringServer("Hello	world"),

										}

								}

								func	main()	{

										s	:=	createServer(":8080")

										fmt.Println("Server	is	starting...")

										if	err	:=	s.ListenAndServe();	err	!=	nil	{

												panic(err)

										}

								}

4.	 Execute	the	code	by	go	run	form.go.
5.	 Open	the	second	Terminal	and	execute	the	POST	using	curl:

						curl	-X	POST	-H	"Content-Type:	app

lication/x-www-form-urlencoded"	-d	"param1=data1¶m2=data2"	"localhost:8080?

param1=overriden¶m3=data3"

6.	 See	the	output	in	the	first	Terminal,	where	the	server	is	running:

How	it	works…
The	Request	struct	of	the	net/http	package	contains	the	Form	field	which	contains
the	POST	form	variables	and	URL	query	variables	merged.	The	important	step
in	the	preceding	code	is	the	call	of	the	ParseForm	method	on	the	Request	pointer.
This	method	call	causes	the	parsing	of	the	POST	form	values	and	query	values
into	a	Form	variable.	Note	that	if	the	Get	method	on	the	Form	field	is	used,	the
POST	value	of	the	parameter	is	prioritized.	The	Form	and	PostForm	fields	are,	in
fact,	of	type	url.Values.

If	only	the	parameters	from	the	POST	form	need	to	be	accessed,	the	PostForm
field	of	the	Request	is	provided.	This	one	keeps	only	those	that	were	part	of	the
POST	body.

Fun	with	Concurrency
This	chapter	contains	the	following	recipes:

Synchronizing	access	to	a	resource	with	Mutex
Creating	a	map	for	concurrent	access
Running	a	code	block	only	once
Pooling	resources	across	multiple	goroutines
Synchronizing	goroutines	with	WaitGroup
Getting	the	fastest	result	from	multiple	sources
Propagating	errors	with	errgroup

Introduction
The	programming	of	concurrent	behavior	is	always	hard.	Go	has	pretty	good
mechanisms	for	managing	the	concurrency	in	the	form	of	channels.	Besides
the	channels	as	a	synchronization	mechanism,	the	Go	standard	library
provides	the	package	to	handle	the	concurrent	parts	of	the	more	traditional
core	way.	This	chapter	describes	how	to	leverage	the	sync	package	for
implementing	common	synchronization	tasks.	The	final	recipe	will	show	the
simplification	of	error	propagation	for	a	group	of	goroutines.

Check	if	Go	is	properly	installed.	The	Getting	ready	section	in
the	Retrieving	Golang	version	recipe	of	Chapter	1,	Interacting
with	the	Environment,	will	help	you.

Make	sure	the	ports	8080	and	7070	are	not	used	by	another
application.

Synchronizing	access	to	a	resource
with	Mutex
In	case	the	code	uses	the	concurrent	access	to	any	resource	which	is
considered	to	be	unsafe	for	concurrent	use,	it	is	necessary	to	implement	a
synchronization	mechanism	to	secure	the	access.	Besides	the	channel	usage,
Mutex	could	be	leveraged	for	this	purpose.	This	recipe	will	show	you	how.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter10/recipe01.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	mutex.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"sync"

)

								var	names	=	[]string{"Alan",	"Joe",	"Jack",	"Ben",

																													"Ellen",	"Lisa",	"Carl",	"Steve",

																													"Anton",	"Yo"}

								type	SyncList	struct	{

										m	sync.Mutex

										slice	[]interface{}

								}

								func	NewSyncList(cap	int)	*SyncList	{

										return	&SyncList{

												sync.Mutex{},

												make([]interface{},	cap),

										}

								}

								func	(l	*SyncList)	Load(i	int)	interface{}	{

										l.m.Lock()

										defer	l.m.Unlock()

										return	l.slice[i]

								}

								func	(l	*SyncList)	Append(val	interface{})	{

										l.m.Lock()

										defer	l.m.Unlock()

										l.slice	=	append(l.slice,	val)

								}

								func	(l	*SyncList)	Store(i	int,	val	interface{})	{

										l.m.Lock()

										defer	l.m.Unlock()

										l.slice[i]	=	val

								}

								func	main()	{

										l	:=	NewSyncList(0)

										wg	:=	&sync.WaitGroup{}

										wg.Add(10)

										for	i	:=	0;	i	<	10;	i++	{

												go	func(idx	int)	{

														l.Append(names[idx])

														wg.Done()

												}(i)

										}

										wg.Wait()

										for	i	:=	0;	i	<	10;	i++	{

												fmt.Printf("Val:	%v	stored	at	idx:	%d\n",	l.Load(i),	i)

										}

								}

4.	 Execute	the	code	by	go	run	mutex.go.

	

5.	 See	the	output:

How	it	works…
The	synchronization	primitive	Mutex	is	provided	by	the	package	sync.	The	Mutex
works	as	a	lock	above	the	secured	section	or	resource.	Once	the	goroutine	calls
Lock	on	the	Mutex	and	the	Mutex	is	in	the	unlocked	state,	the	Mutex	becomes	locked
and	the	goroutine	gets	exclusive	access	to	the	critical	section.	In	case	the	Mutex
is	in	the	locked	state,	the	goroutine	calls	the	Lock	method.	This	goroutine	is
blocked	and	needs	to	wait	until	the	Mutex	gets	unlocked	again.	

Note	that	in	the	example,	we	use	the	Mutex	to	synchronize	access	on	a	slice
primitive,	which	is	considered	to	be	unsafe	for	the	concurrent	use.

The	important	fact	is	that	the	Mutex	cannot	be	copied	after	its	first	use.

Creating	map	for	concurrent	access
The	map	primitive	in	Golang	should	be	considered	as	unsafe	for	concurrent
access.	In	the	previous	recipe,	we	described	how	to	synchronize	access	to	the
resource	with	Mutex,	which	could	also	be	leveraged	with	access	to	the	map
primitive.	But	the	Go	standard	library	also	provides	the	map	structure
designed	for	concurrent	access.	This	recipe	will	illustrate	how	to	work	with	it.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter10/recipe02.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	map.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"sync"

)

								var	names	=	[]string{"Alan",	"Joe",	"Jack",	"Ben",

																													"Ellen",	"Lisa",	"Carl",	"Steve",

																													"Anton",	"Yo"}

								func	main()	{

										m	:=	sync.Map{}

										wg	:=	&sync.WaitGroup{}

										wg.Add(10)

										for	i	:=	0;	i	<	10;	i++	{

												go	func(idx	int)	{

														m.Store(fmt.Sprintf("%d",	idx),	names[idx])

														wg.Done()

												}(i)

										}

										wg.Wait()

										v,	ok	:=	m.Load("1")

										if	ok	{

												fmt.Printf("For	Load	key:	1	got	%v\n",	v)

										}

										v,	ok	=	m.LoadOrStore("11",	"Tim")

										if	!ok	{

												fmt.Printf("Key	11	missing	stored	val:	%v\n",	v)

										}

										m.Range(func(k,	v	interface{})	bool	{

												key,	_	:=	k.(string)

												t,	_	:=	v.(string)

												fmt.Printf("For	index	%v	got	%v\n",	key,	t)

												return	true

										})

								}

4.	 Execute	the	code	by	go	run	map.go.
5.	 See	the	output:

How	it	works…
The	package	sync,	contains	the	structure	Map	that	is	designed	to	be	used
concurrently	from	multiple	Go	routines.	The	Map	struct,	with	its	methods,
mimics	the	behavior	of	the	map	primitive.	The	Store	method	is	the	equivalent
of	the	m[key]	=	val	statement.	The	Load	method	is	equal	to	val,	ok	:=	m[key]	and
the		Range	method	provides	the	ability	to	iterate	through	the	map.	Note	that	the
Range	function	works	with	the	current	state	of	Map,	so	if	the	values	are	changed
during	the	running	Range	method,	the	changes	are	reflected,	but	only	if	the	key
wasn’t	already	visited.	The	Range	function	visits	its	keys	only	once.

Running	a	code	block	only	once
In	situations	when	multiple	goroutines	run	the	same	code	and	there	is	a	code
block	that	initializes,	for	example,	shared	resource,	the	Go	standard	library
offers	the	solution,	which	will	be	described	further.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter10/recipe03.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	once.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"sync"

)

								var	names	=	[]interface{}{"Alan",	"Joe",	"Jack",	"Ben",

																																		"Ellen",	"Lisa",	"Carl",	"Steve",

																																		"Anton",	"Yo"}

								type	Source	struct	{

										m	*sync.Mutex

										o	*sync.Once

										data	[]interface{}

								}

								func	(s	*Source)	Pop()	(interface{},	error)	{

										s.m.Lock()

										defer	s.m.Unlock()

										s.o.Do(func()	{

												s.data	=	names

												fmt.Println("Data	has	been	loaded.")

										})

										if	len(s.data)	>	0	{

												res	:=	s.data[0]

												s.data	=	s.data[1:]

												return	res,	nil

										}

										return	nil,	fmt.Errorf("No	data	available")

								}

								func	main()	{

										s	:=	&Source{&sync.Mutex{},	&sync.Once{},	nil}

										wg	:=	&sync.WaitGroup{}

										wg.Add(10)

										for	i	:=	0;	i	<	10;	i++	{

												go	func(idx	int)	{

														//	This	code	block	is	done	only	once

														if	val,	err	:=	s.Pop();	err	==	nil	{

																fmt.Printf("Pop	%d	returned:	%s\n",	idx,	val)

														}

														wg.Done()

												}(i)

										}

										wg.Wait()

								}

4.	 Execute	the	code	by	go	run	once.go.
5.	 See	the	output:

How	it	works…
The	sample	code	illustrates	the	lazy	loading	of	the	data	while	accessing	the
container	structure.	As	the	data	should	be	loaded	only	once,	the	Once	struct
from	the	sync	package	is	used	in	the	method	Pop.	The	Once	implements	only
one	method	called	Do	which	consumes	the	func	with	no	arguments	and	the
function	is	executed	only	once	per	Once	instance,	during	the	execution.

The	Do	method	calls	blocks	until	the	first	run	is	done.	This	fact	corresponds
with	the	fact	that	Once	is	intended	to	be	used	for	initialization.

Pooling	resources	across	multiple
goroutines
Resource	pooling	is	the	traditional	way	to	improve	performance	and	save
resources.	Usually,	it	is	worth	pooling	the	resources	with	expensive
initialization.	The	Go	standard	library	provides	the	skeleton	structure	for	a
resource	pool,	which	is	considered	to	be	safe	for	multiple	goroutines	access.
This	recipe	describes	how	to	use	it.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter10/recipe04.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	pool.go	with	the	following	content:

								package	main

								import	"sync"

								import	"fmt"

								import	"time"

								type	Worker	struct	{

										id	string

								}

								func	(w	*Worker)	String()	string	{

										return	w.id

								}

								var	globalCounter	=	0

								var	pool	=	sync.Pool{

										New:	func()	interface{}	{

												res	:=	&Worker{fmt.Sprintf("%d",	globalCounter)}

												globalCounter++

												return	res

										},

								}

								func	main()	{

										wg	:=	&sync.WaitGroup{}

										wg.Add(10)

										for	i	:=	0;	i	<	10;	i++	{

												go	func(idx	int)	{

														//	This	code	block	is	done	only	once

														w	:=	pool.Get().(*Worker)

														fmt.Println("Got	worker	ID:	"	+	w.String())

														time.Sleep(time.Second)

														pool.Put(w)

														wg.Done()

												}(i)

										}

										wg.Wait()

								}

4.	 Execute	the	code	by	go	run	pool.go.
5.	 See	the	output:

How	it	works…
The	sync	package	contains	the	struct	for	pooling	the	resources.	The	Pool	struct
has	the	Get	and	Put	method	to	retrieve	and	put	the	resource	back	to	the	pool.
The	Pool	struct	is	considered	to	be	safe	for	concurrent	access.

While	creating	the	Pool	struct,	the	New	field	needs	to	be	set.	The	New	field	is	a
no-argument	function	that	should	return	the	pointer	to	the	pooled	item.	This
function	is	then	called	in	case	the	new	object	in	the	pool	needs	to	be
initialized.

Note	from	the	logs	of	the	preceding	example,	that	the	Worker	is	reused	while
returned	to	the	pool.	The	important	fact	is	that	there	shouldn’t	be	any
assumption	related	to	the	retrieved	items	by	Get	and	returned	items	to	Put
method	(like	I’ve	put	three	objects	to	pool	just	now,	so	there	will	be	at	least
three	available).	This	is	mainly	caused	by	the	fact	that	that	the	idle	items	in	a
Pool	could	be	automatically	removed	at	any	time.

The	pooling	of	resources	is	usually	worth	it	if	the	resource
initialization	is	expensive.	Still,	the	management	of	resources
brings	some	additional	cost.

Synchronizing	goroutines	with
WaitGroup
While	working	with	concurrently	running	code	branches,	it	is	no	exception
that	at	some	point	the	program	needs	to	wait	for	concurrently	running	parts	of
the	code.	This	recipe	gives	insight	into	how	to	use	the	WaitGroup	to	wait	for
running	goroutines.	

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter10/recipe05.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	syncgroup.go	with	the	following	content:

								package	main

								import	"sync"

								import	"fmt"

								func	main()	{

										wg	:=	&sync.WaitGroup{}

										for	i	:=	0;	i	<	10;	i++	{

												wg.Add(1)

												go	func(idx	int)	{

														//	Do	some	work

														defer	wg.Done()

														fmt.Printf("Exiting	%d\n",	idx)

												}(i)

										}

										wg.Wait()

										fmt.Println("All	done.")

								}

4.	 Execute	the	code	by	go	run	syncgroup.go.
5.	 See	the	output:

How	it	works…
With	help	of	the		WaitGroup	struct	from	the	sync	package,	the	program	run	is	able
to	wait	until	some	finite	number	of	goroutines	finish.	The	WaitGroup	struct
implements	the	method	Add	to	add	the	number	of	goroutines	to	wait	for.	Then
after	the	goroutine	finishes,		the	Done	method	should	be	called	to	decrement	the
number	of	goroutines	to	wait	for.	The	method	Wait	is	called	as	a	block	until	the
given	number	of	Done	calls	has	been	done	(usually	at	the	end	of	a	goroutine).
The	WaitGroup	should	be	used	the	same	way	as	all	synchronization	primitives
within	the	sync	package.	After	the	creation	of	the	object,	the	struct	should	not
be	copied.

Getting	the	fastest	result	from
multiple	sources
In	some	cases,	for	example,	while	integrating	information	retrieval	from
multiple	sources,	you	only	need	the	first	result,	the	fastest	one,	and	the	other
results	are	irrelevant	after	that.	An	example	from	the	real	world	could	be
extracting	the	currency	rate	to	count	the	price.	You	have	multiple	third-party
services	and	because	you	need	to	show	the	prices	as	fast	as	possible,	you	need
only	the	first	rate	received	from	any	service.	This	recipe	will	show	the	pattern
for	how	to	achieve	such	behavior.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter10/recipe06.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	first.go	with	following	content:

								package	main

								import	(

										"context"

										"fmt"

										"sync"

										"time"

)

								type	SearchSrc	struct	{

										ID	string

										Delay	int

								}

								func	(s	*SearchSrc)	Search(ctx	context.Context)	<-chan	string	{

										out	:=	make(chan	string)

										go	func()	{

												time.Sleep(time.Duration(s.Delay)	*	time.Second)

												select	{

														case	out	<-	"Result	"	+	s.ID:

														case	<-ctx.Done():

														fmt.Println("Search	received	Done()")

												}

												close(out)

												fmt.Println("Search	finished	for	ID:	"	+	s.ID)

										}()

										return	out

								}

								func	main()	{

										ctx,	cancel	:=	context.WithCancel(context.Background())

										src1	:=	&SearchSrc{"1",	2}

										src2	:=	&SearchSrc{"2",	6}

										r1	:=	src1.Search(ctx)

										r2	:=	src2.Search(ctx)

										out	:=	merge(ctx,	r1,	r2)

										for	firstResult	:=	range	out	{

												cancel()

												fmt.Println("First	result	is:	"	+	firstResult)

										}

								}

								func	merge(ctx	context.Context,	results	...<-chan	string)

																			<-chan	string	{

										wg	:=	sync.WaitGroup{}

										out	:=	make(chan	string)

										output	:=	func(c	<-chan	string)	{

												defer	wg.Done()

												select	{

														case	<-ctx.Done():

																fmt.Println("Received	ctx.Done()")

														case	res	:=	<-c:

														out	<-	res

												}

										}

										wg.Add(len(results))

										for	_,	c	:=	range	results	{

												go	output(c)

										}

										go	func()	{

												wg.Wait()

												close(out)

										}()

										return	out

								}

4.	 Execute	the	code	by	go	run	first.go.
5.	 See	the	output:

How	it	works…
The	preceding	code	proposes	the	solution	on	executing	multiple	tasks	that
output	some	results,	and	we	need	only	the	first	fastest	one.	The	solution	uses
the	Context	with	the	cancel	function	to	call	cancel	once	the	first	result	is
obtained.	The	SearchSrc	structure	provides	the	Search	method	that	results	in	a	
channel	where	the	result	is	written.	Note	that	the	Search	method	simulates	the
delay	with	the	time.Sleep	function.	The	merge	function,	for	each	channel	from
the	Search	method,	triggers	the	goroutine	that	writes	to	the	final	output	channel
that	is	read	in	the	main	method.	While	the	first	result	is	received	from	the
output	channel	produced	from	the	merge	function,	the	CancelFunc	stored	in	the
variable	cancel	is	called	to	cancel	the	rest	of	the	processing.	

Be	aware	that	the	Search	method	still	needs	to	end,	even	if	its
result	would	not	be	processed;	so	this	needs	to	be	handled	to
avoid	the	goroutine	and	channel	leak.

Propagating	errors	with	errgroup
This	recipe	will	show	how	to	easily	use	the	errgroup	extension	package	to
detect	the	error	within	the	group	of	goroutines	that	run	subtasks,	within	a
common	task.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter10/recipe07.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	lines.go	with	the	following	content:

								package	main

								import	(

										"bufio"

										"context"

										"fmt"

										"log"

										"strings"

										"golang.org/x/sync/errgroup"

)

								const	data	=	`line	one

								line	two	with	more	words

								error:	This	is	erroneous	line`

								func	main()	{

										log.Printf("Application	%s	starting.",	"Error	Detection")

										scanner	:=	bufio.NewScanner(strings.NewReader(data))

										scanner.Split(bufio.ScanLines)

										//	For	each	line	fire	a	goroutine

										g,	_	:=	errgroup.WithContext(context.Background())

										for	scanner.Scan()	{

												row	:=	scanner.Text()

												g.Go(func()	error	{

														return	func(s	string)	error	{

																if	strings.Contains(s,	"error:")	{

																		return	fmt.Errorf(s)

																}

																return	nil

														}(row)

												})

										}

										//	Wait	until	the	goroutines	finish

										if	err	:=	g.Wait();	err	!=	nil	{

												fmt.Println("Error	while	waiting:	"	+	err.Error())

										}

								}

4.	 Execute	the	code	by	go	run	lines.go.
5.	 See	the	output:

How	it	works…
The	golang.org/x/sync/errgroup	package	helps	to	simplify	the	error	propagation
and	cancellation	by	context	for	goroutine	groups.	The	Group	contains	the	Go
method	which	consumes	the	no-arg	function	returning	the	error.	This	function
should	contain	the	task	which	should	be	done	by	the	executed	goroutine.	The
Wait	method	of	the	Group	from	errgroup	waits	until	all	executed	tasks	from	the
Go	method	are	complete,	and	if	any	of	them	are	returned	err,	then	the	first
non-nil	error	is	returned.	This	way,	it	is	possible	to	simply	propagate	the	error
from	the	group	of	running	goroutines.

Note	that	the	Group	is	also	created	with	the	use	of	context.	The
Context	serves	as	the	mechanism	to	cancel	other	tasks,	if	the	error
occurs.	After	the	goroutine	function	returns	the	error	,	the	inner
implementation	cancels	the	context	and	so	could	be	the	running
task.

Tips	and	Tricks
This	chapter	will	cover	the	following	recipes:

Logging	customization
Testing	the	code
Benchmarking	the	code
Creating	subtests
Testing	the	HTTP	handler
Accessing	tags	via	reflection
Sorting	slices
Breaking	HTTP	handlers	into	groups
Utilizing	HTTP/2	server	push

Introduction
This	last	chapter	adds	some	additional	recipes	related	to	testing,	designing
your	application	interface,	and	leveraging	the	packages,	sort	and	reflect.

Check	if	Go	is	properly	installed.	The	Getting	ready	section	in
the	Retrieving	Golang	version	recipe	of		Chapter	1,	Interacting
with	the	Environment	will	help	you.

Make	sure	the	port	8080		is	not	used	by	another	application.

Logging	customization
Besides	the	logging	with	the	default	logger	from	the	log	package,	the	standard
library	also	provides	a	way	to	create	the	custom	logger,	according	to	the	needs
of	the	application	or	package.	This	recipe	will	give	a	brief	insight	on	how	to
create	one.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter11/recipe01.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	logging.go	with	the	following		content:

								package	main

								import	(

										"log"

										"os"

)

								func	main()	{

										custLogger	:=	log.New(os.Stdout,	"custom1:	",

																																log.Ldate|log.Ltime)

										custLogger.Println("Hello	I'm	customized")

										custLoggerEnh	:=	log.New(os.Stdout,	"custom2:	",

																																			log.Ldate|log.Lshortfile)

										custLoggerEnh.Println("Hello	I'm	customized	logger	2")

								}

4.	 Execute	the	code	by	go	run	logging.go.
5.	 See	the	output:

How	it	works…
The	log	package	provides	the	New	function	which	simplifies	the	creation	of	a
customized	logger.	The	New	function	consumes	the	Writer,	which	could	be	any
object	implementing	the	Writer	interface,	the	prefix	in	the	form	of	the	string,
and	the	form	of	the	logged	message	that	is	composed	of	flags.	The	last
argument	is	the	most	interesting	because	with	it,	you	are	able	to	enhance	the
log	message	with	dynamic	fields,	such	as	date	and	filename.

Note	that	the	preceding	example	uses,	for	the	first	logger,	the	custLogger,	the
flags	configuring	the	message	to	display	the	date	and	time	in	front	of	the	log
message.	The	second	one,	named	the	custLoggerEnh,	uses	the	flag,	Ldate	and
Lshortfile,	to	show	the	filename	and	date.

Testing	the	code
Testing	and	benchmarking	naturally	belong	to	software	development.	Go,	as	a
modern	language	with	its	built-in	libraries,	supports	these	from	scratch.	In
this	recipe,	the	basics	of	testing	will	be	described.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter11/recipe02.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	sample_test.go	with	the	following	content:

								package	main

								import	(

										"strconv"

										"testing"

)

								func	TestSampleOne(t	*testing.T)	{

										expected	:=	"11"

										result	:=	strconv.Itoa(10)

										compare(expected,	result,	t)

								}

								func	TestSampleTwo(t	*testing.T)	{

										expected	:=	"11"

										result	:=	strconv.Itoa(10)

										compareWithHelper(expected,	result,	t)

								}

								func	TestSampleThree(t	*testing.T)	{

										expected	:=	"10"

										result	:=	strconv.Itoa(10)

										compare(expected,	result,	t)

								}

								func	compareWithHelper(expected,	result	string,	t	*testing.T)	{

										t.Helper()

										if	expected	!=	result	{

												t.Fatalf("Expected	result	%v	does	not	match	result	%v",

																					expected,	result)

										}

								}

								func	compare(expected,	result	string,	t	*testing.T)	{

										if	expected	!=	result	{

												t.Fatalf("Fail:	Expected	result	%v	does	not	match	result	%v",

																					expected,	result)

										}

										t.Logf("OK:	Expected	result	%v	=	%v",

																	expected,	result)

								}

4.	 Execute	the	test	by	go	test	-v.
5.	 See	the	output	in	the	Terminal:

How	it	works…
The	testing	package	of	the	standard	library	provides	support	for	the	code
testing	needs.	The	test	function	needs	to	fulfill	the	name	pattern,	TestXXX.	By
default,	the	test	tool	looks	for	the	file	named	xxx_test.go.	Note	that	each	test
function	takes	the	T	pointer	argument,	which	provides	the	useful	methods	for
test	control.	By	the	T	struct	pointer,	the	status	of	the	test	could	be	set.	For
instance,	the	methods	Fail	and	FailNow,	cause	the	test	to	fail.	With	the	help	of
the	T	struct	pointer,	the	test	could	be	skipped	by	calling	Skip,	Skipf,	or	SkipNow.

The	interesting	method	of	the	T	pointer	is	the	method	Helper.	By	calling	the
method	Helper,	the	current	function	is	marked	as	the	helper	function,	and	if	the
FailNow	(Fatal)	is	called	within	this	function,	then	the	test	output	points	to	the
code	line	where	the	function	is	called	within	the	test,	as	can	be	seen	in	the
preceding	sample	code.

Note	that	the	Log	method,	(and	its	variants),	are	not	visible	if	the
test	tool	is	not	run	in	verbose	mode	(with	-v	flag),	or	if	the
particular	test	failed	(this	applies	only	for	the	T	tests).	Try	to	run
this	sample	code	without	the	-v	flag.

See	also
The	following	recipe	covers	the	basics	of	benchmarking	
For	a	more	detailed	description	of	the	testing	package,	see	the	rich
documentation	of	the	testing	package	at	https://golang.org/pkg/testing

https://golang.org/pkg/testing

Benchmarking	the	code
The	previous	recipe	walks	through	the	testing	part	of	the	testing	package,	and
in	this	recipe,	the	basics	of	the	benchmarking	will	be	covered.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter11/recipe03.
2.	 Navigate	to	the	directory.

	

3.	 Create	the	file	sample_test.go	with	the	following	content:

								package	main

								import	(

										"log"

										"testing"

)

								func	BenchmarkSampleOne(b	*testing.B)	{

										logger	:=	log.New(devNull{},	"test",	log.Llongfile)

										b.ResetTimer()

										b.StartTimer()

										for	i	:=	0;	i	<	b.N;	i++	{

												logger.Println("This	si	awesome")

										}

										b.StopTimer()

								}

								type	devNull	struct{}

	

								func	(d	devNull)	Write(b	[]byte)	(int,	error)	{

										return	0,	nil

								}

4.	 Execute	the	benchmark	by	go	test	-bench=.
5.	 See	the	output	in	the	Terminal:

How	it	works…
Besides	the	pure	test	support,	the	testing	package	also	provides	the
mechanisms	for	measuring	the	code	performance.	For	this	purpose,	the	B
struct	pointer	as	the	argument	is	used,	and	the	benchmarking	functions	in	the
test	file	are	named	as	BenchmarkXXXX.	

The	essential	part	of	the	benchmark	function	is	the	manipulation	with	the
timer	and	usage	of	the	loop	iteration	counter	N.

As	you	can	see,	the	timer	is	manipulated	with	the
methods,	Reset/Start/StopTimer.	By	these,	the	result	of	the	benchmark	is
influenced.	Note	that	the	timer	starts	running	with	the	beginning	of	the
benchmark	function	and	the	ResetTimer	function	just	restarts	it.

The	N	field	of	B	is	the	iteration	count	within	the	measurement	loop.	The	N	value
is	set	to	a	value	high	enough	to	reliably	measure	the	result	of	the	benchmark.
The	result	in	the	benchmark	log	then	displays	the	value	of	iterations	and
measured	time	per	one	iteration.

See	also
The	subsequent	recipe	shows	how	the	subtests	within	the	tests	can	be
created	
For	more	options	and	information	on	benchmarking,	take	a	look	into	the
package	documentation	here:	https://golang.org/pkg/testing

https://golang.org/pkg/testing

Creating	subtests
In	some	cases,	it	is	useful	to	create	a	set	of	tests	that	could	have	a	similar
setup	or	clean-up	code.	This	could	be	done	without	having	a	separate	function
for	each	test.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter11/recipe04.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	sample_test.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"strconv"

										"testing"

)

								var	testData	=	[]int{10,	11,	017}

								func	TestSampleOne(t	*testing.T)	{

										expected	:=	"10"

										for	_,	val	:=	range	testData	{

												tc	:=	val

												t.Run(fmt.Sprintf("input	=	%d",	tc),	func(t	*testing.T)	{

														if	expected	!=	strconv.Itoa(tc)	{

																t.Fail()

														}

												})

										}

								}

4.	 Execute	the	tests	by	go	test	-v.
5.	 See	the	output	in	the	Terminal:

How	it	works…
The	T	struct	of	the	testing	package	also	provides	the	Run	method	that	could	be
used	to	run	the	nested	tests.	The	Run	method	requires	the	name	of	the	subtest
and	the	test	function	that	will	be	executed.	This	approach	could	be	beneficial
while	using,	for	example,	the	table	driven	tests.	The	code	sample	just	uses	a
simple	slice	of	int	values	as	an	input.

The	benchmarking	struct	B,	also	contains	the	same	method,	Run,
which	can	provide	a	way	of	creating	the	subsequent	steps	of
complex	benchmarking.

See	also
There	is	still	much	more	to	find	out	in	the	package	documentation,	https://golang.
org/pkg/testing.

https://golang.org/pkg/testing

Testing	the	HTTP	handler
The	testing	of	the	HTTP	server	could	be	complicated.	The	Go	standard	library
simplifies	this	with	a	handy	package,	net/http/httptest.	This	recipe	describes
how	to	utilize	this	package	to	test	the	HTTP	handlers.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter11/recipe05.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	sample_test.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"io/ioutil"

										"net/http"

										"net/http/httptest"

										"testing"

										"time"

)

								const	cookieName	=	"X-Cookie"

								func	HandlerUnderTest(w	http.ResponseWriter,	r	*http.Request)	{

										http.SetCookie(w,	&http.Cookie{

												Domain:	"localhost",

												Expires:	time.Now().Add(3	*	time.Hour),

												Name:	cookieName,

										})

										r.ParseForm()

										username	:=	r.FormValue("username")

										fmt.Fprintf(w,	"Hello	%s!",	username)

								}

								func	TestHttpRequest(t	*testing.T)	{

										req	:=	httptest.NewRequest("GET",

																										"http://unknown.io?username=John",	nil)

										w	:=	httptest.NewRecorder()

										HandlerUnderTest(w,	req)

										var	res	*http.Cookie

										for	_,	c	:=	range	w.Result().Cookies()	{

												if	c.Name	==	cookieName	{

														res	=	c

												}

										}

				

										if	res	==	nil	{

												t.Fatal("Cannot	find	"	+	cookieName)

										}

										content,	err	:=	ioutil.ReadAll(w.Result().Body)

										if	err	!=	nil	{

												t.Fatal("Cannot	read	response	body")

										}

										if	string(content)	!=	"Hello	John!"	{

												t.Fatal("Content	not	matching	expected	value")

										}

								}

4.	 Execute	the	test	by	go	test.

5.	 See	the	output	in	the	Terminal:

How	it	works…
For	the	testing	of	the	Handler	or	HandlerFunc,	the	net/http/httptest	could	be
leveraged.	This	package	provides	the	struct	ResponseRecorder	that	is	able	to
record	the	content	of	the	response	and	provide	it	back	for	asserting	the	values.
For	assembling	the	request,	the	NewRequest	function	of	the	net/http	package	is
used.	

The	net/http/httptest	package	also	contains	the	version	of	the
HTTP	server	which	starts	listening	on	the	systems	chosen	port
on	the	localhost.	This	implementation	is	intended	to	be	used	for
end-to-end	testing.

Accessing	tags	via	reflection
The	Go	language	allows	the	tagging	of	structured	fields	with	additional
information.	This	information	is	usually	used	as	additional	information	for
encoders,	or	any	kind	of	additional	processing	of	struct.	This	recipe	will	show
you	how	to	access	these.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter11/recipe06.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	structtags.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"reflect"

)

								type	Person	struct	{

										Name	string	`json:"p_name"	bson:"pName"`

										Age	int	`json:"p_age"	bson:"pAge"`

								}

								func	main()	{

										f	:=	&Person{"Tom",	30}

										describe(f)

								}

								func	describe(f	interface{})	{

										val	:=	reflect.TypeOf(f).Elem()

										for	i	:=	0;	i	<	val.NumField();	i++	{

												typeF	:=	val.Field(i)

												fieldName	:=	typeF.Name

												jsonTag	:=	typeF.Tag.Get("json")

												bsonTag	:=	typeF.Tag.Get("bson")

												fmt.Printf("Field	:	%s	jsonTag:	%s	bsonTag:	%s\n",

																							fieldName,	jsonTag,	bsonTag)

										}

								}

4.	 Execute	the	code	by	go	run	structtags.go.
5.	 See	the	output	in	the	Terminal:

How	it	works…
The	struct	tags	could	be	extracted	with	the	use	of	the	reflect	package.	By
calling	the	TypeOf,	we	get	the	pointer	Type	for	Person,	subsequently,	by	calling
the	Elem	we	get	the	Type	of	the	value	which	the	pointer	points	to.	

The	resulting	Type	gives	us	access	to	the	struct	type	Person	and	its	fields.	By
iterating	over	the	fields	and	retrieving	the	fields,	by	calling	the	Field	method,
we	obtain	the	StructField.	The	StructField	type	contains	the	Tag	field	which
provides	access	to	the	struct	tags.	The	Get	method	on	the	StructTag	field	then
returns	the	specific	tag.

Sorting	slices
The	sorting	of	data	is	a	very	common	task.	The	Go	standard	library	simplifies
the	sorting	by	the	sort	package.	This	recipe	gives	a	brief	look	at	how	to	use	it.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter11/recipe07.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	sort.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"sort"

)

								type	Gopher	struct	{

										Name	string

										Age	int

								}

								var	data	=	[]Gopher{

										{"Daniel",	25},

										{"Tom",	19},

										{"Murthy",	33},

								}

								type	Gophers	[]Gopher

								func	(g	Gophers)	Len()	int	{

										return	len(g)

								}

								func	(g	Gophers)	Less(i,	j	int)	bool	{

										return	g[i].Age	>	g[j].Age

								}

								func	(g	Gophers)	Swap(i,	j	int)	{

										tmp	:=	g[j]

										g[j]	=	g[i]

										g[i]	=	tmp

								}

								func	main()	{

										sort.Slice(data,	func(i,	j	int)	bool	{

												return	sort.StringsAreSorted([]string{data[i].Name,	

																																						data[j].Name})

										})

										fmt.Printf("Sorted	by	name:	%v\n",	data)

										gophers	:=	Gophers(data)

										sort.Sort(gophers)

										fmt.Printf("Sorted	by	age:	%v\n",	data)

								}

4.	 Execute	the	code	by	go	run	sort.go.
5.	 See	the	output	in	the	Terminal:

How	it	works…
The	sample	code	shows	both	ways	of	how	to	comfortably	sort	a	slice	with	the
help	of	the	sort	package.	The	first	approach	is	more	ad	hoc	and	it	uses	the
Slice	function	of	the	sort	package.	The	Slice	function	consumes	the	slice	to	be
sorted	and	the	so-called	less	function,	which	defines	whether	the	element	i
should	be	sorted	before	element	j.	

The	second	approach	requires	more	code	and	planning	ahead.	It	leverages	the
Interface	interface	of	the	sort	package.	The	interface	acts	as	a	representative	of
the	data	and	requires	it	to	implement	essential	methods	on	sorted	data:
Len	(defines	the	amount	of	data),	Less	(less	function),	Swap	(method	called	to
swap	the	elements).	If	the	data	value	implements	this	interface,	then	the	Sort
function	of	the	sort	package	could	be	used.

The	primitive	type	slices	float64,	int,	and	string	are	covered	in	the	sort
package.	So,	the	existing	implementation	could	be	used.	For	example,	to	sort
a	slice	of	strings,	the	Strings	function	could	be	called.

Breaking	HTTP	handlers	into
groups
This	recipe	gives	advice	on	how	the	HTTP	handlers	could	be	separated	into
modules.	

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter11/recipe08.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	handlegroups.go	with	the	following	content:

								package	main

								import	(

										"fmt"

										"log"

										"net/http"

)

									func	main()	{

											log.Println("Staring	server...")

											//	Adding	to	mani	Mux

											mainMux	:=	http.NewServeMux()

											mainMux.Handle("/api/",

											http.StripPrefix("/api",	restModule()))

											mainMux.Handle("/ui/",

											http.StripPrefix("/ui",	uiModule()))

											if	err	:=	http.ListenAndServe(":8080",	mainMux);	err	!=	nil	{

													panic(err)

											}

									}

									func	restModule()	http.Handler	{

											//	Separate	Mux	for	all	REST

											restApi	:=	http.NewServeMux()

											restApi.HandleFunc("/users",	func(w	http.ResponseWriter,

																														r	*http.Request)	{

													w.Header().Set("Content-Type",	"application/json")

													fmt.Fprint(w,	`[{"id":1,"name":"John"}]`)

											})

											return	restApi

									}

									func	uiModule()	http.Handler	{

											//	Separate	Mux	for	all	UI

											ui	:=	http.NewServeMux()

											ui.HandleFunc("/users",	func(w	http.ResponseWriter,	

																									r	*http.Request)	{

													w.Header().Set("Content-Type",	"text/html")

													fmt.Fprint(w,	`<html><body>Hello	from	UI!</body></html>`)

											})

											return	ui

									}

4.	 Execute	the	code	by	go	run	handlegroups.go.
5.	 See	the	output:

6.	 Access	the	browser	URL	http://localhost:8080/api/users,	the	output	should
look	like	this:

7.	 In	the	same	way,	you	can	test	http://localhost:8080/ui/users:

How	it	works…
For	separating	the	handlers	into	modules,	the	code	uses	the	ServeMux	for	each
module,	(rest	and	ui).	The	handling	of	URLs	for	the	given	module	is	defined
relatively.	This	means	if	the	final	URL	for	the	Handler	should	be	/api/users,	then
the	defined	path	within	the	module	would	be	/users.	The	module	itself	would
be	set	to	/api/	URL.

The	module	is	plugged	into	the	main	ServeMux	pointer	named	mainMux	by
leveraging	the	StripPrefix	function,	which	removes	the	module	prefix.	For
instance,	the	REST	module	created	by	the	restModule	function,	is	plugged	into
the	main	ServeMux	by	StripPrefix("/api",restModule()).	The	handled	URL	within
the	module	will	then	be	/users,	instead	of	/api/users.

Utilizing	HTTP/2	server	push
The	HTTP/2	specification	provides	the	server	with	the	ability	to	push	the
resources,	prior	to	being	requested.	This	recipe	shows	you	how	to	implement
the	server	push.

Getting	ready
Prepare	the	private	key	and	self-signed	X-509	certificate.	For	this	purpose,
the	openssl	utility	could	be	used.	By	executing	the	command	openssl	genrsa	-
out	server.key	2048,	the	private	key	derived	with	the	use	of	the	RSA	algorithm	is
generated	to	file,	server.key.	Based	on	this	private	key,	the	X-509	certificate
could	be	generated	by	calling	openssl	req	-new	-x509	-sha256	-key	server.key	-out
server.crt	-days	365.	The	server.crt	file	is	created.

How	to	do	it…
1.	 Open	the	console	and	create	the	folder	chapter11/recipe09.
2.	 Navigate	to	the	directory.
3.	 Create	the	file	push.go	with	the	following	content:

								package	main

								import	(

										"io"

										"log"

										"net/http"

)

								func	main()	{

										log.Println("Staring	server...")

										//	Adding	to	mani	Mux

										http.HandleFunc("/",func(w	http.ResponseWriter,	r	*http.Request){

												if	p,	ok	:=	w.(http.Pusher);	ok	{

														if	err	:=	p.Push("/app.css",	nil);	err	!=	nil	{

																log.Printf("Push	err	:	%v",	err)

														}

												}

												io.WriteString(w,

														`<html>

																	<head>

																			<link	rel="stylesheet"	type="text/css"	href="app.css">

																	</head>

																	<body>

																			<p>Hello</p>

																	</body>

															</html>`

)

											})

											http.HandleFunc("/app.css",	func(w	http.ResponseWriter,

																											r	*http.Request)	{

													io.WriteString(w,

															`p	{

																	text-align:	center;

																	color:	red;

															}`)

											})

											if	err	:=	http.ListenAndServeTLS(":8080",	"server.crt",

																																												"server.key",	nil);

											err	!=	nil	{

													panic(err)

											}

									}

4.	 Start	the	server	by	go	run	push.go.
5.	 Open	the	browser	and	open	the	developer’s	tool	in

URL	https://localhost:8080	(see	the	Push	as	initiator	for	app.css):

How	it	works…
First,	note	that	the	HTTP/2	requires	the	secured	connection.	The	server	push
is	very	simple	to	implement.	Since	Go	1.8,	the	HTTP	package	provides	the
Pusher	interface,	which	could	be	used	to	Push	the	assets	before	they	are
required.	If	the	client,	usually	browser,	supports	the	HTTP/2	protocol	and	the
handshake	with	the	server	is	successful,	the	ResponseWriter	in	Handler	or
HandlerFunc	could	be	cast	to	Pusher.	The	Pusher	provides	only	the		Push	method.
The	Push	method	consumes	the	target	(which	could	be	the	absolute	path	or
absolute	URL)	to	resource	and	PushOptions,	which	can	provide	the	additional
options	(by	default	the	nil	could	be	used).

In	the	preceding	example,	look	at	the	output	of	the	developer’s	tool	in	the
browser.	The	pushed	resource	has	the	Initiator	column	with	the	value,	Push.

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Building	Microservices	with	Go

Nic	Jackson

ISBN:	9781786468666

Plan	a	microservice	architecture	and	design	a	microservice
Write	a	microservice	with	a	RESTful	API	and	a	database
Understand	the	common	idioms	and	common	patterns	in	microservices
architecture
Leverage	tools	and	automation	that	helps	microservices	become
horizontally	scalable
Get	a	grounding	in	containerization	with	Docker	and	Docker-Compose,
which	will	greatly	accelerate	your	development	lifecycle
Manage	and	secure	Microservices	at	scale	with	monitoring,	logging,
service	discovery,	and	automation
Test	microservices	and	integrate	API	tests	in	Go

https://www.packtpub.com/application-development/building-microservices-go
https://www.packtpub.com/networking-and-servers/go-systems-programming

Go	Systems	Programming

Mihalis	Tsoukalos

ISBN:	9781787125643

Explore	the	Go	language	from	the	standpoint	of	a	developer	conversant
with	Unix,	Linux,	and	so	on
Understand	Goroutines,	the	lightweight	threads	used	for	systems	and
concurrent	applications
Learn	how	to	translate	Unix	and	Linux	systems	code	in	C	to	Golang
code
How	to	write	fast	and	lightweight	server	code
Dive	into	concurrency	with	Go
Write	low-level	networking	code

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on
the	site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,
please	leave	us	an	honest	review	on	this	book’s	Amazon	page.	This	is	vital	so
that	other	potential	readers	can	see	and	use	your	unbiased	opinion	to	make
purchasing	decisions,	we	can	understand	what	our	customers	think	about	our
products,	and	our	authors	can	see	your	feedback	on	the	title	that	they	have
worked	with	Packt	to	create.	It	will	only	take	a	few	minutes	of	your	time,	but
is	valuable	to	other	potential	customers,	our	authors,	and	Packt.	Thank	you!

	Title Page
	Copyright and Credits
	Go Standard Library Cookbook

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Get in touch
	Reviews

	Interacting with the Environment
	Introduction
	Retrieving the Golang version
	Getting ready
	How to do it...
	How it works...

	Accessing program arguments
	How to do it...
	How it works...
	There's more…

	Creating a program interface with the flag package
	How to do it...
	How it works…
	There's more…

	Getting and setting environment variables with default values
	How to do it…
	How it works…

	Retrieving the current working directory
	How to do it...
	How it works…

	Getting the current process PID
	How to do it…
	How it works…

	Handling operating system signals
	How to do it…
	How it works…

	Calling an external process
	Getting ready
	How to do it…
	How it works…
	See also

	Retrieving child process information
	Getting ready
	How to do it…
	How it works…
	See also

	Reading/writing from the child process
	Getting ready
	How to do it…
	How it works…

	Shutting down the application gracefully
	How to do it…
	How it works…
	See also

	File configuration with functional options
	How to do it...
	How it works...

	Strings and Things
	Introduction
	Finding the substring in a string
	How to do it...
	How it works...
	See also

	Breaking the string into words
	How to do it...
	How it works...
	There's more...

	Joining the string slice with a separator
	How to do it...
	How it works...
	There's more...

	Concatenating a string with writer
	How to do it...
	How it works...
	There's more...

	Aligning text with tabwriter
	How to do it...
	How it works...

	Replacing part of the string
	How to do it...
	How it works...
	There's more...

	Finding the substring in text by the regex pattern
	How to do it...
	How it works...
	See also

	Decoding a string from the non-Unicode charset
	How to do it...
	How it works...

	Controlling case
	How to do it...
	How it works...

	Parsing comma-separated data
	How to do it...
	How it works...

	Managing whitespace in a string
	How to do it...
	How it works...
	See also

	Indenting a text document
	How to do it...
	How it works...
	See also

	Dealing with Numbers
	Introduction
	Converting strings to numbers
	How to do it...
	How it works...

	Comparing floating-point numbers
	How to do it...
	How it works...

	Rounding floating-point numbers
	How to do it...
	How it works...

	Floating-point arithmetics
	How to do it...
	How it works...
	There's more...
	See also

	Formatting numbers
	How to do it...
	How it works...
	There's more...

	Converting between binary, octal, decimal, and hexadecimal
	How to do it...
	How it works...

	Formatting with the correct plurals
	Getting ready
	How to do it...
	How it works...
	There's more...

	Generating random numbers
	How to do it...
	How it works...

	Operating complex numbers
	How to do it...
	How it works...

	Converting between degrees and radians
	How to do it...
	How it works...

	Taking logarithms
	How to do it...
	How it works...

	Generating checksums
	How to do it...
	How it works...

	Once Upon a Time
	Introduction
	Finding today's date
	How to do it...
	How it works...
	See also

	Formatting date to string
	How to do it...
	How it works...
	See also

	Parsing the string into date
	How to do it...
	How it works...

	Converting dates to epoch and vice versa
	How to do it...
	How it works...

	Retrieving time units from the date
	How to do it...
	How it works...

	Date arithmetics
	How to do it...
	How it works...

	Finding the difference between two dates
	How to do it...
	How it works...

	Converting between time zones
	How to do it...
	How it works...

	Running the code block periodically
	How to do it...
	How it works...

	Waiting a certain amount of time
	How to do it...
	How it works...

	Timeout long-running operations
	How to do it...
	How it works...
	There's more...

	Serializing the time and date
	How to do it...
	How it works...

	In and Out
	Introduction
	Reading standard input
	How to do it...
	How it works...

	Writing standard output and error
	How to do it...
	How it works...

	Opening a file by name
	How to do it...
	How it works...

	Reading the file into a string
	How to do it...
	How it works...

	Reading/writing a different charset
	How to do it...
	How it works...
	See also

	Seeking a position within a file
	How to do it...
	How it works...

	Reading and writing binary data
	How to do it...
	How it works...

	Writing to multiple writers at once
	How to do it...
	How it works...

	Piping between writer and reader
	How to do it...
	How it works...

	Serializing objects to binary format
	How to do it...
	How it works...

	Reading and writing ZIP files
	How to do it...
	How it works...

	Parsing a large XML file effectively
	How to do it...
	How it works...

	Extracting data from an incomplete JSON array
	How to do it...
	How it works...

	Discovering the Filesystem
	Introduction
	Getting file information
	How to do it...
	How it works...

	Creating temporary files
	How to do it...
	How it works...

	Writing the file
	How to do it...
	How it works...

	Writing the file from multiple goroutines
	How to do it...
	How it works...

	Listing a directory
	How to do it...
	How it works...

	Changing file permissions
	How to do it...
	How it works...

	Creating files and directories
	How to do it...
	How it works...

	Filtering file listings
	How to do it...
	How it works...
	See also

	Comparing two files
	How to do it...
	How it works...

	Resolving the user home directory
	How to do it...
	How it works...

	Connecting the Network
	Introduction
	Resolving local IP addresses
	How to do it...
	How it works...

	Connecting to the remote server
	How to do it...
	How it works...

	Resolving the domain by IP address and vice versa
	How to do it...
	How it works...

	Connecting to the HTTP server
	How to do it...
	How it works...
	See also

	Parsing and building a URL
	How to do it...
	How it works...

	Creating an HTTP request
	How to do it...
	How it works...

	Reading and writing HTTP headers
	How to do it...
	How it works...

	Handling HTTP redirects
	How to do it...
	How it works...

	Consuming the RESTful API
	How to do it...
	How it works...

	Sending a simple email
	Getting ready
	How to do it...
	How it works...

	Calling the JSON-RPC service
	How to do it...
	How it works...

	Working with Databases
	Introduction
	Connecting the database
	Getting ready
	How to do it...
	How it works...

	Validating the connection
	Getting ready
	How to do it...
	How it works...

	Executing statements
	Getting ready
	How to do it...
	How it works...

	Operations with prepared statements
	Getting ready
	How to do it...
	How it works...

	Canceling the pending query
	Getting ready
	How to do it...
	How it works...

	Reading query result metadata
	Getting ready
	How to do it...
	How it works...

	Retrieving data from a query result
	Getting ready
	How to do it...
	How it works...

	Parsing the query result into a map
	Getting ready
	How to do it...
	How it works...

	Handling transactions
	Getting ready
	How to do it...
	How it works...

	Executing stored procedures and functions
	Getting ready
	How to do it...
	How it works...

	Come to the Server Side
	Introduction
	Creating the TCP server
	How to do it...
	How it works...

	Creating the UDP server
	How to do it...
	How it works...

	Handling multiple clients
	How to do it...
	How it works...

	Creating the HTTP Server
	How to do it...
	How it works...

	Handling HTTP requests
	How to do it...
	How it works...

	Creating HTTP middleware layer
	How to do it...
	How it works...

	Serving static files
	How to do it...
	How it works...

	Serving content generated with templates
	How to do it...
	How it works...

	Handling redirects
	How to do it...
	How it works...

	Handling cookies
	How to do it...
	How it works...

	Gracefully shutdown the HTTP server
	How to do it...
	How it works...

	Serving secured HTTP content
	Getting ready
	How to do it...
	How it works...

	Resolving form variables
	How to do it...
	How it works...

	Fun with Concurrency
	Introduction
	Synchronizing access to a resource with Mutex
	How to do it...
	How it works...

	Creating map for concurrent access
	How to do it...
	How it works...

	Running a code block only once
	How to do it...
	How it works...

	Pooling resources across multiple goroutines
	How to do it...
	How it works...

	Synchronizing goroutines with WaitGroup
	How to do it...
	How it works...

	Getting the fastest result from multiple sources
	How to do it...
	How it works...

	Propagating errors with errgroup
	How to do it...
	How it works...

	Tips and Tricks
	Introduction
	Logging customization
	How to do it...
	How it works...

	Testing the code
	How to do it...
	How it works...
	See also

	Benchmarking the code
	How to do it...
	How it works...
	See also

	Creating subtests
	How to do it...
	How it works...
	See also

	Testing the HTTP handler
	How to do it...
	How it works...

	Accessing tags via reflection
	How to do it...
	How it works...

	Sorting slices
	How to do it...
	How it works...

	Breaking HTTP handlers into groups
	How to do it...
	How it works...

	Utilizing HTTP/2 server push
	Getting ready
	How to do it...
	How it works...

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

