

Go Systems Programming

Master Linux and Unix system level programming with Go

Mihalis Tsoukalos

BIRMINGHAM - MUMBAI

Go Systems Programming
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2017

Production reference: 1220917

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78712-564-3

www.packtpub.com

http://www.packtpub.com

Credits

Author
Mihalis Tsoukalos

Copy Editor
Tom Jacob

Reviewer
Chris "mac" McEniry

Proofreader
Safis Editing

Acquisition Editor
Frank Pohlmann

Indexer
Tejal Daruwale Soni

Project Editor
Radhika Atitkar

Graphics
Kirk D'Penha

Content Development Editor
Monika Sangwan

Production Coordinator
Arvindkumar Gupta

Technical Editor
Anupam Tiwari

About the Author
Mihalis Tsoukalos is a Unix administrator, programmer, DBA, and mathematician, who
enjoys writing technical books and articles and learning new things. He has written more
than 250 technical articles for many magazines including Sys Admin, MacTech, Linux User
and Developer, USENIX ;login:, Linux Format, and Linux Journal. His research interests include
databases, operating systems, Statistics, and machine learning.

You can reach him at http://www.mtsoukalos.eu/ and @mactsouk.

Mihalis is also a photographer (http://www.highiso.net/).

He is also the technical editor for MongoDB in Action, Second Edition, published by Manning.

I would like to thank all the magazines that I have written articles for because they gave me
the opportunity to improve my technical writing skills and finally write my first book!
I would also like to thank Agisilaos Ziotopoulos for telling me during a Skype call that
after writing so many magazine articles, I should write a book!
Lastly, I would like to thank the people at Packt Publishing for helping me write this book,
including Frank Pohlmann, my technical reviewer; Chris McEniry, for his really good
comments; and especially my editor, Radhika Atitkar for answering all my questions and
encouraging me during the whole process.
For all potential writers everywhere: if you wish to become a writer, start writing!

http://www.mtsoukalos.eu/
http://www.highiso.net/

About the Reviewer
Chris "mac" McEniry has been a practicing systems administrator and engineer for over
twenty years. He regularly presents, writes tools, and works on improving how we
maintain systems.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy.

Get in touch with us at service@packtpub.com for more details. At www.PacktPub.com,
you can also read a collection of free technical articles, sign up for a range of free
newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787125645.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787125645

Table of Contents
Preface 1

Chapter 1: Getting Started with Go and Unix Systems Programming 9

The structure of the book 10
What is systems programming? 10

Learning systems programming 12
About Go 13

Getting ready for Go 14
Two useful Go tools 15

Advantages and disadvantages of Go 19
The various states of a Unix process 20
Exercises 22
Summary 22

Chapter 2: Writing Programs in Go 23

Compiling Go code 23
Checking the size of the executable file 26

Go environment variables 27
Using command-line arguments 29

Finding the sum of the command-line arguments 30
User input and output 33

Getting user input 33
Printing output 35

Go functions 35
Naming the return values of a Go function 36
Anonymous functions 36
Illustrating Go functions 36
The defer keyword 39
Using pointer variables in functions 42

Go data structures 43
Arrays 43
Slices 45
Maps 48

Converting an array into a map 50
Structures 51

Interfaces 53

[ii]

Creating random numbers 56
Exercises 58
Summary 59

Chapter 3: Advanced Go Features 60

Error handling in Go 60
Functions can return error variables 61
About error logging 63
The addCLA.go program revisited 65

Pattern matching and regular expressions 66
Printing all the values from a given column of a line 68
Creating summaries 69
Finding the number of occurrences 71
Find and replace 73

Reflection 74
Calling C code from Go 76
Unsafe code 77

Comparing Go to other programming languages 78
Analysing software 80

Using the strace(1) command-line utility 80
The DTrace utility 83

Disabling System Integrity Protection on macOS 86
Unreachable code 86
Avoiding common Go mistakes 88
Exercises 88
Summary 89

Chapter 4: Go Packages, Algorithms, and Data Structures 90

About algorithms 91
The Big O notation 91

Sorting algorithms 92
The sort.Slice() function 92

Linked lists in Go 94
Trees in Go 98
Developing a hash table in Go 100
About Go packages 104

Using standard Go packages 104
Creating your own packages 105

Private variables and functions 107
The init() function 107

Using your own Go packages 108

[iii]

Using external Go packages 109
The go clean command 112

Garbage collection 112
Your environment 114
Go gets updated frequently! 116
Exercises 116
Summary 117

Chapter 5: Files and Directories 118

Useful Go packages 119
Command-line arguments revisited! 119

The flag package 119
Dealing with directories 122

About symbolic links 123
Implementing the pwd(1) command 124
Developing the which(1) utility in Go 126

Printing the permission bits of a file or directory 129
Dealing with files in Go 130

Deleting a file 130
Renaming and moving files 132

Developing find(1) in Go 134
Traversing a directory tree 135

Visiting directories only! 136
The first version of find(1) 137

Adding some command-line options 139
Excluding filenames from the find output 142
Excluding a file extension from the find output 144

Using regular expressions 145
Creating a copy of a directory structure 146

Exercises 151
Summary 151

Chapter 6: File Input and Output 152

About file input and output 153
Byte slices 153
About binary files 155

Useful I/O packages in Go 156
The io package 157
The bufio package 158

File I/O operations 160
Writing to files using fmt.Fprintf() 160

[iv]

About io.Writer and io.Reader 161
Finding out the third column of a line 163

Copying files in Go 166
There is more than one way to copy a file! 166
Copying text files 166
Using io.Copy 166
Reading a file all at once! 168
An even better file copy program 170
Benchmarking file copying operations 173

Developing wc(1) in Go 178
Counting words 178
The wc.go code! 178

Comparing the performance of wc.go and wc(1) 183
Reading a text file character by character 184

Doing some file editing! 186
Interprocess communication 188
Sparse files in Go 188
Reading and writing data records 191
File locking in Go 194
A simplified Go version of the dd utility 197
Exercises 200
Summary 200

Chapter 7: Working with System Files 201

Which files are considered system files? 202
Logging in Go 202
Putting data at the end of a file 202

Altering existing data 204
About log files 206

About logging 207
Logging facilities 207
Logging levels 207
The syslog Go package 208
Processing log files 210
File permissions revisited 214

Changing file permissions 216
Finding other kinds of information about files 218

More pattern matching examples 221
A simple pattern matching example 221
An advanced example of pattern matching 224
Renaming multiple files using regular expressions 227

[v]

Searching files revisited 229
Finding the user ID of a user 229
Finding all the groups a user belongs to 231
Finding files that belong or do not belong to a given user 233
Finding files based on their permissions 236

Date and time operations 238
Playing with dates and times 238
Reformatting the times in a log file 240

Rotating log files 242
Creating good random passwords 245
Another Go update 247
Exercises 247
Summary 248

Chapter 8: Processes and Signals 249

About Unix processes and signals 250
Process management 250

About Unix signals 251
Unix signals in Go 252
The kill(1) command 252

A simple signal handler in Go 253
Handling three different signals! 255
Catching every signal that can be handled 257
Rotating log files revisited! 259

Improving file copying 262
Plotting data 266
Unix pipes in Go 273

Reading from standard input 274
Sending data to standard output 276
Implementing cat(1) in Go 277
The plotIP.go utility revisited 278

Unix sockets in Go 286
RPC in Go 287
Programming a Unix shell in Go 288
Yet another minor Go update 290
Exercises 290
Summary 291

Chapter 9: Goroutines – Basic Features 292

About goroutines 293

[vi]

Concurrency and parallelism 293
The sync Go packages 294

A simple example 294
Creating multiple goroutines 295

Waiting for goroutines to finish their jobs 297
Creating a dynamic number of goroutines 299

About channels 301
Writing to a channel 301
Reading from a channel 303
Explaining h1s.go 304

Pipelines 305
A better version of wc.go 307

Calculating totals 310
Doing some benchmarking 314

Exercises 316
Summary 316

Chapter 10: Goroutines – Advanced Features 317

The Go scheduler 318
The sync Go package 318
The select keyword 318
Signal channels 321
Buffered channels 324
About timeouts 326

An alternative way to implement timeouts 328
Channels of channels 330
Nil channels 332
Shared memory 333

Using sync.Mutex 335
Using sync.RWMutex 339

The dWC.go utility revisited 342
Using a buffered channel 342
Using shared memory 345
More benchmarking 348

Detecting race conditions 349
About GOMAXPROCS 352
Exercises 354
Summary 354

Chapter 11: Writing Web Applications in Go 355

What is a web application? 356

[vii]

About the net/http Go package 356
Developing web clients 356

Fetching a single URL 356
Setting a timeout 358

Developing better web clients 360
A small web server 363

The http.ServeMux type 366
Using http.ServeMux 366

The html/template package 370
About JSON 375

Saving JSON data 376
Parsing JSON data 378
Using Marshal() and Unmarshal() 380

Using MongoDB 382
Basic MongoDB administration 382
Using the MongoDB Go driver 385
Creating a Go application that displays MongoDB data 388
Creating an application that displays MySQL data 392

A handy command-line utility 395
Exercises 399
Summary 400

Chapter 12: Network Programming 401

About network programming 402
About TCP/IP 402
About TCP 402

The TCP handshake! 403
About UDP and IP 403
About Wireshark and tshark 404
About the netcat utility 406

The net Go standard package 406
Unix sockets revisited 407

A Unix socket server 407
A Unix socket client 409

Performing DNS lookups 411
Using an IP address as input 412
Using a host name as input 413
Getting NS records for a domain 415

Developing a simple TCP server 416
Developing a simple TCP client 419

[viii]

Using other functions for the TCP server 421
Using alternative functions for the TCP client 423

Developing a simple UDP server 424
Developing a simple UDP client 426
A concurrent TCP server 428
Remote procedure call (RPC) 430

An RPC server 431
An RPC client 434

Exercises 436
Summary 437

Index 438

Preface
Go Systems Programming is a book that will help you develop systems software using Go,
which is a systems programming language that started as an internal Google project before
becoming popular. What makes Go really popular is that it keeps the developer happy by
being easy to write, easy to read, easy to understand, and by having a compiler that is there
to help you. This book does not cover every possible aspect and feature of the Go
programming language—only the ones that are related to systems programming. Should
you wish to learn more about the Go programming language, you should wait from my
next book, Mastering Go, which will be ready in 2018!

The book you are about to read is an honest book in the sense that it will present working
Go code without overlooking its potential faults, its restrictions, and its logical gaffes, which
will allow you to improve it on your own and create a better version of it in the future.
What you will not be able to improve is the fundamental information that will be presented,
which is the basis of the way Unix systems work. I will consider the book to be successful if
it helps you understand what systems programming is about, why it is important, and how
you can start developing systems software in Go. I will be equally happy if Go becomes
your favorite programming language!

What this book covers
Chapter 1, Getting started with Go and Unix Systems Programming, starts by defining what
systems programming is before talking about the advantages and the disadvantages of Go,
the features of Go version 1.8, two handy Go tools named gofmt and godoc, as well as the
various states of Unix processes.

Chapter 2, Writing Programs in Go, helps you learn how to compile Go code and how to use
the environment variables that Go supports, and understand how Go reads the command
line arguments of a program. Then, we will talk about getting user input and output, which
are fundamental tasks, show you how to define functions in Go, where the defer keyword
is mentioned for the first time in this book and continue by discussing the data structures
that Go offers using handy code examples. In the remaining sections of the chapter, we will
discuss Go interfaces and random number generation. I am sure that you are going to enjoy
this chapter!

Preface

[2]

Chapter 3, Advanced Go Features, goes deeper and starts talking about some advanced Go
features, including error handling, which is critical when developing systems software and
error logging. Then it introduces you to pattern matching and regular expressions, Go
Reflection, and talks about unsafe code. After that, it compares Go to other programming
languages and presents two utilities, named dtrace(1) and strace(1), that allow you to
see what happens behind the scenes when you execute a program. Lastly, it talks about how
you can use the go tool to detect unreachable code and how to avoid some common Go
mistakes.

Chapter 4, Go Packages, Algorithms, and Data Structures, talks about algorithms and sorting
in Go and about the sort.Slice() function, which requires Go version 1.8 or newer. Then
it shows Go implementations of a linked list, a binary tree and a hash table. After that, it
discusses Go packages and teaches you how to create and use your own Go packages. The
last part of the chapter discusses Garbage collection in Go.

Chapter 5, Files and Directories, is the first chapter of this book that deals with a systems
programming topic, which is the handling of files, symbolic links, and directories. In this
chapter, you will find Go implementations of the core functionality of Unix tools such as
which(1), pwd(1), and find(1), but first you will learn how to use the flag package in
order to parse the command-line arguments and options of a Go program. Additionally,
you will learn how to delete, rename, and move files as well as how to traverse directory
structures the Go way. The last part of this chapter implements a utility that creates a copy
of all the directories of a directory structure!

Chapter 6, File Input and Output, shows you how to read the contents of a file, how to
change them, and how to write your own data to files! In this chapter, you will learn about
the io package, the io.Writer and io.Reader interfaces, and the bufio package that is
used for buffered input and output. You will also create Go versions of the cp(1), wc(1),
and dd(1) utilities. Lastly, you will learn about sparse files, how to create sparse files in Go,
how to read and write records from files, and how to lock files in Go.

Chapter 7, Working with System Files, teaches you how to deal with Unix system files, which
includes writing data to Unix log files, appending data to existing files, and altering the
data of text files. In this chapter, you will also learn about the log and log/syslog standard
Go packages, about Unix file permissions, and take your pattern matching and regular
expressions knowledge even further using practical examples. You will also learn about
finding the user ID of a user as well as the Unix groups a user belongs to. Lastly, you will
discover how to work with dates and times in Go using the time package and how to create
and rotate log files on your own.

Preface

[3]

Chapter 8, Processes and Signals, begins by discussing the handling of Unix signals in Go
with the help of the os/signal package by presenting three Go programs. Then it shows a
Go program that can rotate its log files using signals and signal handling and another Go
program that uses signals to present the progress of a file copy operation. This chapter will
also teach you how to plot data in Go and how to implement Unix pipes in Go. Then it will
implement the cat(1) utility in Go before briefly presenting the Go code of a Unix socket
client. The last section of the chapter quickly discusses how you can program a Unix shell in
Go.

Chapter 9, Goroutines – Basic Features, discusses a very important Go topic, which is
goroutines, by talking about how you can create goroutines and how you can synchronize
them and wait for them to finish before ending a program. Then it talks about channels and
pipelines, which help goroutines communicate and exchange data in a safe way. The last
part of the chapter presents a version of the wc(1) utility that is implemented using
goroutines. However, as goroutines is a big subject, the next chapter will continue talking
about them.

Chapter 10, Goroutines – Advanced Features, talks about more advanced topics related to
goroutines and channels, including buffered channels, signal channels, nil channels,
channels of channels, timeouts, and the select keyword. Then it discusses issues related to
shared memory and mutexes before presenting two more Go versions of the wc(1) utility
that use channels and shared memory. Lastly, this chapter will talk about race conditions
and the GOMAXPROCS environment variable.

Chapter 11, Writing Web Applications in Go, talks about developing web applications and
web servers and clients in Go. Additionally, it talks about communicating with MongoDB
and MySQL databases using Go code. Then, it illustrates how to use the html/template
package, which is part of the Go standard library and allows you to generate HTML output
using Go HTML template files. Lastly, it talks about reading and writing JSON data before
presenting a utility that reads a number of web pages and returns the number of times a
given keyword was found in those web pages.

Chapter 12, Network Programming, discusses topics related to TCP/IP and its protocols using
the net Go standard package. It shows you how to create TCP and UDP clients and servers,
how to perform various types of DNS lookups, and how to use Wireshark to inspect
network traffic. Additionally, it talks about developing RPC clients and servers in Go as
well as developing a Unix socket server and a Unix socket client.

As you will see, at the end of each chapter there are some exercises for you to do in order to
gain more information about important Go packages and write your own Go programs.
Please, try to do all the exercises of this book.

Preface

[4]

What you need for this book
This book requires a computer running a Unix variant with a relatively recent Go version,
which includes any machine running Mac OS X, macOS, or Linux.

Apple used to call its operating system as Mac OS X followed by the version number;
however, after Mac OS X 10.11 (El Capitan), Apple changed that, and Mac OS X 10.12 is
now called macOS 10.12 (Sierra) – in this book, the terms Mac OS X and macOS are used
interchangeably. Additionally, there is a big chance that by the time you read this book, the
latest version of macOS will be macOS 10.13 (High Sierra). You can learn more about the
various versions of macOS by visiting https://en.wikipedia.org/wiki/MacOS.

All of the Go code in this book has been tested with Go 1.8.x running on a iMac using
macOS 10.12 Sierra and with Go version 1.3.3 running on a Debian Linux machine. Most of
the code can run on both Go versions without any code changes. However, when newer Go
features are used, the code will fail to compile with Go 1.3.3—the book states the Go
programs that will not compile with Go version 1.3.3 or require Go version 1.8 or newer.

Please note that at the time of writing this text, the latest Go version is 1.9. Given the way
Go works, you will be able to compile all the Go code of this book in newer Go versions
without any changes.

Who this book is for
This book is for Unix users, power Unix users, Unix system administrators, and Unix
system developers that use Go on one or more Unix variants and want to start developing
systems software using the Go programming language.

Although this book might not be the best choice for people that do not feel comfortable with
the Unix operating system or for people who have no previous programming experience,
amateur programmers will find lots of practical information about Unix that might inspire
them to start developing their own system utilities.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "This is
because the main() function is where the program execution begins."

https://en.wikipedia.org/wiki/MacOS

Preface

[5]

A block of code is set as follows:

package main

import "fmt"
import "os"

func main() {
 arguments := os.Args
 for i := 0; i < len(arguments); i++ {
 fmt.Println(arguments[i])
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

package main

import "fmt"
import "os"

func main() {
 arguments := os.Args
 for i := 0; i < len(arguments); i++ {
 fmt.Println(arguments[i])
 }
}

Any command-line input or output is written as follows:

$ go run hw.go
Hello World!

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly to you.
You can download the code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[7]

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Go-Systems-Programming. We also have other code
bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from
https://www.packtpub.com/sites/default/files/downloads/GoSystemsProgramming_Col

orImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

https://github.com/PacktPublishing/Go-Systems-Programming
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/GoSystemsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/GoSystemsProgramming_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Preface

[8]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1
Getting Started with Go and
Unix Systems Programming

An operating system is the kind of software that allows you to communicate with the
hardware, which means that you cannot use your hardware without an operating system.
Unix is an operating system with many variants that have many things in common
including their programming interface.

The Unix operating system was mainly programmed in C and not entirely in the assembly
language, which makes it portable to other computer architectures without having to
rewrite everything from scratch. It is important to understand that even if you are
developing a Go program on a Unix machine, at the end of the day, your code will be
translated to C functions and system calls because this is the only way to directly
communicate with the Unix kernel. The main benefits you get from writing Go code instead
of C code are smaller programs with less silly bugs. You will learn more about this in
Chapter 3, Advanced Go Features.

As this book will use Go, you will need to have a version of Go installed on your Unix
machine. The good news is that there is a port of the Go programming language for almost
all modern Unix systems including macOS, Linux, and FreeBSD. There is also a Windows
port of Go, but this book will not deal with Microsoft Windows.

Although there is a good chance that your Unix variant has a package for Go, you can also
get Go from https://golang.org/dl/.

https://golang.org/dl/

Getting Started with Go and Unix Systems Programming

[10]

In this chapter, you will learn the following topics:

Systems programming
The advantages and disadvantages of Go
The states of a Unix process
Two Go tools: gofmt and godoc
The features of the latest Go version (1.8)

The structure of the book
This book has three parts. The first part, which includes this chapter, is about Go and the Go
features that can be handy when developing systems software—this does not mean that you
should use all of them when developing your programs. The second part is all about
programming with files, directories, and processes, which is the most common type of
systems software. The third part explores goroutines, web applications, and network
programming in Go, which is the most advanced type of systems software. The good thing
is that you do not need to read the third part of the book right away.

What is systems programming?
Systems programming is a special area of programming on Unix machines. Note that
systems programming is not limited to Unix machines—it is just that this book deals with
the Unix operating system only. Most commands that have to do with system
administration tasks, such as disk formatting, network interface configuration, module
loading, and kernel performance tracking, are implemented using the techniques of systems
programming. Additionally, the /etc directory, which can be found on all Unix systems,
contains plain text files that deal with the configuration of a Unix machine and its services
and are also manipulated using systems software.

You can group the various areas of systems software and related system calls in the
following sets:

File I/O: This area deals with file reading and writing operations, which is the
most important task of an operating system. File input and output must be fast
and efficient, and above all, reliable.
Advanced file I/O: Apart from the basic input and output system calls, there are
also more advanced ways to read or write to a file including asynchronous I/O
and non-blocking I/O.

Getting Started with Go and Unix Systems Programming

[11]

System files and configuration: This group of system software includes
functions that allow you to handle system files, such as /etc/passwd, and get
system specific information, such as system time and DNS configuration.
Files and directories: This cluster includes functions and system calls that allow
the programmer to create and delete directories and get information such as the
owner and the permissions of a file or a directory.
Process control: This group of software allows you to create and interact with
Unix processes.
Threads: When a process has multiple threads, it can perform multiple tasks.
However, threads must be created, terminated, and synchronized, which is the
purpose of this collection of functions and system calls.
Server processes: This set includes techniques that allow you to develop server
processes, which are processes that get executed in the background without the
need for an active terminal. Go is not that good at writing server processes in the
traditional Unix way—but let me explain this a little more. Unix servers such as
Apache use fork(2) to create one or more child processes (this process is called
forking and refers to cloning the parent process into a child process) and
continue executing the same executable from the same point, and most
importantly, sharing memory. Although Go does not offer an equivalent to the
fork(2) function, this is not an issue because you can use goroutines to cover
most of the uses of fork(2).
Interprocess communication: This set of functions allows processes that run on
the same Unix machine to communicate with each other using features such as
pipes, FIFOs, message queues, semaphores, and shared memory.
Signal processing: Signals offer processes a way of handling asynchronous
events, which can be very handy. Almost all server processes have extra code that
allows them to handle Unix signals using the system calls of this group.
Network programming: This is the art of developing applications that work over
computer networks with the help of TCP/IP and is not systems programming per
se. However, most TCP/IP servers and clients are dealing with system resources,
users, files, and directories. So, most of the time, you cannot create network
applications without doing some kind of systems programming.

The challenging thing with systems programming is that you cannot afford to have an
incomplete program; you can either have a fully working, secure program that can be used
on a production system or nothing at all. This mainly happens because you cannot trust end
users and hackers. The key difficulty in systems programming is the fact that an erroneous
system call can make your Unix machine misbehave or, even worse, crash!

Getting Started with Go and Unix Systems Programming

[12]

Most security issues on Unix systems usually come from wrongly implemented systems
software because bugs in systems software can compromise the security of an entire system.
The worst part is that this can happen many years after using a certain piece of software.

When writing systems software, you should take good care of both error
messages and warnings because they are the friends that help you
understand what is going on and why your program did not behave as
expected. Putting it simply, there is a big difference between the File not
found and Not enough permissions to read file error messages.

Back when Unix was first introduced, the only way to write systems software was using C;
nowadays, you can program systems software using programming languages including Go,
which will be the subject of this book.

You should understand that the two main benefits you get from using a programming
language other than C for developing systems software are as follows:

Using a modern programming language along with its tools
Simplicity, as you usually have to write, debug, and maintain less code

Apart from Go, other good candidates for developing system tools are Python, Perl, Rust,
and Ruby.

Learning systems programming
The only way you can learn systems programming is by developing your own utilities
using this book as a reference and a tutorial. At first, you will make a large amount of
ridiculous mistakes, but as you get better, you will make a smaller amount of much more
clever and hard to debug mistakes! However, it is fine to try new things when learning. In
fact, it is necessary to try new things and fail because this means that you are really learning
something new. Just make sure that you do not use a production web server for learning
systems programming.

If you have difficulties finding out what to develop, you can start by creating your own
versions of some of the existing Unix command line utilities such as ls(1), mkdir(1),
ln(1), wc(1), and which(1). You do not have to create a fully featured version of each
one of them with support for all command-line options; what is important is to develop a
stable and secure version that implements the main functionality and works without
problems.

Getting Started with Go and Unix Systems Programming

[13]

The best book that can teach you Unix systems programming in C is
Advanced Unix Programming in the Unix Environment by W. Richard Stevens.
Its third edition is available now, but all its editions are useful and contain
a plethora of valuable details.

About Go
Go is a modern generic purpose open source programming language that was officially
announced at the end of 2009. It began as an internal Google project and has been inspired
by many other programming languages including C, Pascal, Alef, and Oberon. Its spiritual
fathers are Robert Griesemer, Ken Thomson, and Rob Pike, who designed Go as a language for
professional programmers who want to build reliable and robust software. Apart from its
syntax and standard functions, Go comes with a pretty rich standard library.

At the time of writing this book, the latest stable Go version is 1.8, which includes some
handy new features including the following—feel free to skip this if you have not used Go
before:

New conversion rules exist that allow you to easily convert between types that
are almost equal provided that some criteria are met. You can fix the import
paths of the golang.org/x/net/name form to just the name of the Go source
file using the go tool command without having to open the source files
yourselves.
The operation of the tool is stricter in some cases and looser in cases that used to
generate false positives.
There is now a default value for GOPATH Environment Variables when
GOPATH is undefined. For Unix systems, the default value is $HOME/go.
There are various improvements to the Go runtime that speed up Go.
There is a sort.slice() function that allows you to sort a slice by providing a
comparator callback instead of implementing sort.Interface.
There is now a Shutdown method to http.Server.
There exist various small changes to the database/sql package that give the
developer more control over queries.
You can create bugs using the go bug command.

Getting Started with Go and Unix Systems Programming

[14]

Getting ready for Go
You can easily find your version of Go using this command:

$ go version
go version go1.7.5 darwin/amd64

The previous output is from a macOS machine hence the darwin string. A Linux machine
would give the following kind of output:

$ go version
go version go1.3.3 linux/amd64

You will learn more about go tool, which you will use all the time, in the next chapters.

As I can imagine, you must be impatient to see some Go code; so here is the Go version of
the famous Hello World program:

package main

import "fmt"

// This is a demonstrative comment!
func main() {
 fmt.Println("Hello World!")
}

If you are familiar with C or C++, you will find Go code pretty easy to understand. Each file
that contains Go code begins with a package declaration followed by the needed import
declarations. The package declaration shows the package that this file belongs to. Note that
semicolons are not required for successfully terminating a Go statement unless you want to
put two or more Go statements in the same line.

In Chapter 2, Writing Programs in Go, you will find out how to compile and execute Go
code. For now, it is enough to remember that Go source files are stored using the .go file
extension—your task is to choose a descriptive filename.

When searching for Go-related information, use Golang or golang as the
keyword for the Go programming language because the word Go can be
found almost everywhere in the English language and it will not help your
search!

Getting Started with Go and Unix Systems Programming

[15]

Two useful Go tools
The Go distribution comes with a plethora of tools that can make your life as a programmer
easier. The two most useful of them are gofmt and godoc.

Note that go tool itself can also invoke various tools—you can see a list
of them by executing go tool.

The gofmt utility formats Go programs in a given way, which is really important when
different people are going to work with the same code for a big project. You can find more
information about gofmt at https://golang.org/cmd/gofmt/.

The following is a poorly formatted version of the hw.go program that is hard to read and
understand:

$ cat unglyHW.go
package main
import
 "fmt"
// This is a demonstrative comment!
 func main() {
 fmt.Println("Hello World!")
}

Processing the previous code, which is saved as unglyHW.go with gofmt, generates the
following easy to read and comprehend output:

$ gofmt unglyHW.go
package main
import "fmt"
// This is a demonstrative comment!
func main() {
 fmt.Println("Hello World!")
}

Remembering that the gofmt utility does not automatically save the generated output is
important, which means that you should either use the -w option followed by a valid
filename or redirect the output of gofmt to a new file.

The godoc utility allows you to see the documentation of existing Go packages and
functions. You can find more information about godoc at
http://godoc.org/golang.org/x/tools/cmd/godoc.

https://golang.org/cmd/gofmt/
http://godoc.org/golang.org/x/tools/cmd/godoc

Getting Started with Go and Unix Systems Programming

[16]

You are going to use godoc a lot as it is a great tool for learning the details
of Go functions.

The following screenshot shows the output of the godoc command generated on a Terminal
when asked for information about the Println() function of the fmt package:

The output of the godoc command

Getting Started with Go and Unix Systems Programming

[17]

Another handy feature of godoc is that it can start its own web server and allow you to see
its documentation using a web browser:

$ godoc -http=:8080

The following screenshot shows the kind of output you get on a web browser after visiting
http://localhost:8080/pkg/ while the previous command is running. You can use any
port number you want, provided that it is not already in use:

Using the godoc utility from your web browser

Getting Started with Go and Unix Systems Programming

[18]

The most important tool for a programmer is the editor they use for writing the source
code. When I am on a Mac, I typically use the TextMate editor, but when I am on a different
Unix machine, I prefer vi. Choosing an editor is not an easy task because you are going to
spend a lot of time with it. However, any text editor will do the job as long as it does not put
any control characters inside the source code files. The following screenshot shows the
TextMate editor in action:

The TextMate editor showing the look of a some Go code

Getting Started with Go and Unix Systems Programming

[19]

Advantages and disadvantages of Go
Go is not perfect but it has some very interesting features. The list of the Go strong features
includes the following:

Go code is easy to read and easy to understand.
Go wants happy developers because a happy developer writes better code!
The Go compiler prints practical warning and error messages that help you solve
the actual problem. Putting it simply, the Go compiler is there to help you, not to
make your life difficult!
Go code is portable.
Go is a modern programming language.
Go has support for procedural, concurrent, and distributed programming.
Go supports Garbage Collection (GC) so you do not have to deal with memory
allocation and deallocation. However, GC might slow down your programs a
little.
Go does not have a preprocessor and does high-speed compilation.
Consequently, Go can be used as a scripting language.
Go can build web applications. Building a web application in C is simply not very
efficient unless you use a nonstandard external library. Additionally, Go provides
programmers with a simple web server for testing purposes.
The standard Go library offers many packages that simplify the work of the
programmer. Additionally, the methods found in the standard Go library are
tested and debugged in advance, which means that most of the time they contain
no bugs.
Go uses static linking by default, which means that the produced binary files can
be easily transferred to other machines with the same OS. Consequently, the
developer does not need to worry about libraries, dependencies, and different
library versions.
You will not need a GUI for developing, debugging, and testing Go applications
as Go can be used from the command line.
Go supports Unicode. This means that you do not need any extra code to print
characters from multiple human languages.
Go keeps concepts orthogonal because a few orthogonal features work better
than many overlapping ones.

Getting Started with Go and Unix Systems Programming

[20]

The list of Go disadvantages includes the following:

Well, Go is not C, which means that you or your team should learn a new
programming language to develop systems software.
Go does not have direct support for object-oriented programming, which can be a
problem for programmers that are used to writing code in an object-oriented
manner. Nevertheless, you can use composition in Go to mimic inheritance.
Back when Unix was first introduced, C was the only programming language for
writing systems software. Nowadays, you can also use Rust, C++, and Swift for
writing systems software, which means that not everybody will be using Go.
C is still faster than any other programming language for systems programming
mainly because Unix is written in C.

Despite the advantages or the disadvantages of a programming language,
you have the final word on whether you like it or not. The important thing
is that you choose a programming language that you like and can do the
job you want! Personally, I do not like C++ despite the fact that it is a very
capable programming language and I have written an FTP client in C++!
Additionally, I never liked Java. There is no right or wrong thing in
personal tastes so do not feel guilty about your choices.

The various states of a Unix process
Strictly speaking, a process is an execution environment that contains instructions, user-
data and system-data parts, and other kinds of resources that are obtained during runtime.
A program is a file that contains instructions and data, which are used for initializing the
instruction and user-data parts of a process.

Back when the Unix operating system was first introduced, computers had single CPUs
without multiple cores and a small amount of RAM. However, Unix was a multiuser and
multitasking operating system. In order to actually be a multiuser and do multitasking, it
had to be able to run each individual process sporadically, which means that a process
should have multiple states. The following figure shows the possible states of a process as
well as the right path to go from one state to another:

Getting Started with Go and Unix Systems Programming

[21]

The states of a Unix process

There are three categories of processes: user processes, Kernel processes, and Daemon
processes:

User processes run in user space and usually have no special access rights
Kernel processes are being executed in kernel space only and can fully access all
kernel data structures
Daemon processes are programs that can be found in the user space and run in
the background without the need for a Terminal

Realizing that you cannot control the state of a process is really important, as this is the job
of the scheduler of the operating system that runs in the kernel. Putting it simply, you
cannot tell when the state of a process is going to change or when the process is going to go
into the running state, so your code cannot count on any such assumptions!

The C way for creating new processes involves the calling of the fork()
system call. The return value of fork() allows the programmer to
differentiate between the parent and child processes. However, Go does
not support a similar functionality.

Getting Started with Go and Unix Systems Programming

[22]

Exercises
Visit the Go website: https://golang.org/.1.
Install Go on your system and find out its version.2.
Type the code of the Hello World program on your own and save it to a file.3.
If you are on a Mac, download TextMate from http://macromates.com/.4.
If you are on a Mac, download the TextWrangler editor from5.
http://www.barebones.com/products/TextWrangler/ and try it.
Try to learn vi or Emacs on your own if you are not already familiar with another6.
Unix text editor.
Look at any Go code you can find and try to make small changes to it.7.

Summary
In this chapter, you learned how to get Go on your computer, the features of the latest Go
version, the advantages and disadvantages of Go, and the gofmt and godoc Go tools, as
well as some important things about the Unix operating system.

The next chapter will not only tell you how to compile your Go code but it will also discuss
other important Go topics such as reading and using command-line arguments,
environment variables, writing functions, data structures, interfaces, getting user input, and
printing output.

https://golang.org/
http://macromates.com/
http://www.barebones.com/products/TextWrangler/

2
Writing Programs in Go

This chapter will talk about many essential, interesting, and handy Go topics that will help
you be more productive. I think it would be a good idea to start this chapter by compiling
and running the Go code of the hw.go program from the previous chapter. Then, you will
learn how to deal with the environment variables that can be used by Go, how to process
the command-line arguments of a Go program, and how to print the output on the screen
and get input from the user. Finally, you will see how to define functions in Go, learn about
the extremely important defer keyword, look at the data structures that come with Go, and
learn what Go interfaces are before checking out code that generates random numbers.

Therefore, in this chapter, you will become familiar with many Go concepts, including the
following:

Compiling your Go programs
Go environment variables
Using the command-line arguments given to a Go program
Getting user input and printing the output on your screen
Go functions and the defer keyword
Go data structures and interfaces
Creating random numbers

Compiling Go code
Go does not care about the name of the source file of an autonomous program as long as the
package name is main and there is a main() function in it. This is because the main()
function is where the program execution begins. This also means that you cannot have
multiple main() functions in the files of a single project.

Writing Programs in Go

[24]

There exist two ways to run a Go program:

The first one, go run, just executes the Go code without generating any new
files, only some temporary ones that are deleted afterward
The second way, go build, compiles the code, generates an executable file, and
waits for you to run the executable file

This book is written on an Apple Mac OS Sierra system using the Homebrew (https:/ ​/
brew.​sh/​) version of Go. However, you should have no difficulties compiling and running
the presented Go code on most Linux and FreeBSD systems, provided that you have a
relatively recent version of Go.

So, the first way is as follows:

$ go run hw.go
Hello World!

The aforementioned way allows Go to be used as a scripting language. The following is the
second way:

$ go build hw.go
$ file hw
hw: Mach-O 64-bit executable x86_64

The generated executable file is named after the name of the Go source file, which is much
better than a.out, which is the default filename of the executable files generated by the C
compiler.

If there is an error in your code, such as a misspelled Go package name when calling a Go
function, you will get the following kind of error message:

$ go run hw.go
command-line-arguments
./hw.go:3: imported and not used: "fmt"
./hw.go:7: undefined: mt in mt.Println

If you accidentally misspell the main() function, you will get the following error message
because the execution of an autonomous Go program begins from the main() function:

$ go run hw.go
command-line-arguments
runtime.main_main f: relocation target main.main not defined
runtime.main_main f: undefined: "main.main"

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/

Writing Programs in Go

[25]

Lastly, I want to show you an error message that will give you a good idea about a
formatting rule of Go:

$ cat hw.gocat
package main
import "fmt"
func main()
{
 fmt.Println("Hello World!")
}
$ go run hw.go
command-line-arguments
./hw.go:6: syntax error: unexpected semicolon or newline before {

The previous error message shows us that Go prefers putting curly braces in a certain way,
which is not the case with most programming languages such as Perl, C, and C++. This
might look frustrating at first, but it saves you from one extra line of code and makes your
programs more readable. Note that the preceding code uses the Allman formatting style,
which Go does not accept.

The official explanation for this error is that Go requires the use of semicolons as statement
terminators in many contexts, and the compiler automatically inserts the required
semicolons when it thinks they are necessary, which in this case is at the end of a non-blank
line. Therefore, putting the opening brace ({) on its own line will make the Go compiler to
put a semicolon at the end of the previous line, which produces the error message.

If you think that the gofmt tool can save you from similar errors, you will be disappointed:

$ gofmt hw.go
hw.go:6:1: expected declaration, found '{'

The Go compiler has another rule, as you can see in the following output:

$ go run afile.go
command-line-arguments
./afile.go:4: imported and not used: "net"

This means that you should not import packages without actually using them in your
programs. Although this could have been a harmless warning message, your Go program
will not get compiled. Bear in mind that similar warnings and error messages are a good
indication that you are missing something, and you should try to correct them. You will
create a higher quality of code if you treat warnings and errors the same.

Writing Programs in Go

[26]

Checking the size of the executable file
So, after successfully compiling hw.go, you might want to check the size of the generated
executable file:

$ ls -l hw
-rwxr-xr-x 1 mtsouk staff 1628192 Feb 9 22:29 hw
$ file hw
hw: Mach-O 64-bit executable x86_64

Compiling the same Go program on a Linux machine will create the following file:

$ go versiongo
go version go1.3.3 linux/amd64
$ go build hw.go
$ ls -l hw
-rwxr-xr-x 1 mtsouk mtsouk 1823712 Feb 18 17:35 hw
$ file hw
hw: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked,
not stripped

To get a better sense of how big the Go executable is, consider that the
executable for the same program written in C is about 8432 bytes!

So, you might ask why such a huge executable file for such a small program? The main
reason is that Go executable files are statically build, which means that they require no
external libraries to run. The use of the strip(1) command can make the generated
executable files a little smaller, but do not expect miracles:

$ strip hw
$ ls -l hw
-rwxr-xr-x 1 mtsouk staff 1540096 Feb 18 17:41 hw

Writing Programs in Go

[27]

The previous process has nothing to do with Go itself because strip(1) is a Unix
command that removes or modifies the symbol table of files and therefore reduces their
size. Go can perform the work of the strip(1) command on its own and create smaller
executable files, but this method does not always work:

$ ls -l hw
-rwxr-xr-x 1 mtsouk mtsouk 1823712 Feb 18 17:35 hw
$ CGO_ENABLED=0 go build -ldflags "-s" -a hw.go
$ ls -l hw
-rwxr-xr-x 1 mtsouk mtsouk 1328032 Feb 18 17:44 hw
$ file hw
hw: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked,
stripped

The preceding output is from a Linux machine; when the same compilation command is
used on a macOS machine, it will make no difference to the size of the executable file.

Go environment variables
The go tool can use many Unix shell environment variables dedicated to Go, including
GOROOT, GOHOME, GOBIN, and GOPATH. The most important Go environment variable is
GOPATH, which specifies the location of your workspace. Usually, this is the only
environment variable that you will need to define when developing Go code; it is to do with
the way the files of a project will be organized. This means that each project will be
organized into three main directories, named src, pkg, and bin. However, many people,
including me, prefer not to use GOPATH and manually organize their project files.

So, if you are a big fan of shell variables, you can put all these kinds of definitions in either
.bashrc or .profile, which means that these environment variables will be active every
time you log in to your Unix machine. If you are not using the Bash shell, which is the
default Linux and macOS shell, then you might need to use another start up file. Check out
the documentation of your favorite Unix shell to find out which file to use.

Writing Programs in Go

[28]

The upcoming screenshot shows part of the output of the following command, which
displays all the environment variables used by Go:

$ go help environment

The output of the "go help environment" command

Writing Programs in Go

[29]

You can find additional information about a particular environment variable by executing
the next command and replacing NAME with the environment variable that interests you:

$ go env NAME

All these environment variables have nothing to do with the actual Go code or the
execution of the program, but they might affect the development environment; therefore, if
you happen to see any strange behavior while trying to compile a Go program, check the
environment variables you are using.

Using command-line arguments
Command-line arguments allow your programs to get input, such as the names of the files
you want to process, without having to write a different version of the program. Hence, you
cannot create any useful systems software if you're unable to process the command-line
arguments passed to it.

So here is a naïve Go program, named cla.go, that prints all its command-line arguments,
including the name of the executable file:

package main

import "fmt"
import "os"

func main() {
 arguments := os.Args
 for i := 0; i < len(arguments); i++ {
 fmt.Println(arguments[i])
 }
}

As you can see, Go needs an extra package named os in order to read the command-line
arguments of a program that are stored in the os.Args array. In case you do not like
having multiple import statements, you can rewrite the two import statements as follows,
which I find much easier to read:

import (
 "fmt"
 "os"
)

Writing Programs in Go

[30]

The gofmt utility puts package names in alphabetical order when you are
importing all your packages using a single import block.

The Go code of cla.go is simple as it stores all the command-line arguments in an array
and uses a for loop for printing them. As you will see in forthcoming chapters, the os
package can do many more things. If you are familiar with C, you should know that in C,
command-line arguments are automatically passed to programs, and you do not need to
include any extra header files in order to read them. Go uses a different approach that gives
you more control but requires slightly more code.

Executing cla.go after building it first will create the following kind of output:

$./cla 1 2 three
./cla
1
2
three

Finding the sum of the command-line arguments
Now, let us try something different and tricky: you are going to try to find the summary of
the command-line arguments given to your Go program. Therefore, you are going to
consider the command-line arguments as numbers. Although the main idea remains the
same, the implementation is totally different because you will have to convert your
command-line arguments into numbers. The name of the Go program will be addCLA.go,
and it can be split into two parts.

The first part is the preamble of the program:

package main

import (
 "fmt"
 "os"
 "strconv"
)

You need the fmt package for printing your output and the os package for reading the
command-line arguments. As command-line arguments are stored as strings, you will also
need the srtconv package for converting them into integers.

Writing Programs in Go

[31]

The second part is the implementation of the main() function:

func main() {
 arguments := os.Args
 sum := 0
 for i := 1; i < len(arguments); i++ {
 temp, _ := strconv.Atoi(arguments[i])
 sum = sum + temp
 }
 fmt.Println("Sum:", sum)
}

The strconv.Atoi() function returns two values: the first one is an integer number,
provided that the conversion was successful, and the second one is an error variable.

Note that most Go functions return an error variable, which should always
be examined, especially on production software.

If you do not use the strconv.Atoi() function, then you will have two problems:

The first one is that the program will try to perform additions, which are
mathematical operations, using strings
The second one is that you will not be able to tell whether a command-line
argument is a valid integer number or not, which can be done by examining the
return value of strconv.Atoi()

So, strconv.Atoi() not only does the desired job, but it also tells us whether a given
argument is a valid integer or not, which is equally important because it allows us to
process inappropriate arguments differently.

The other crucial Go code found in addCLA.go is the one that ignores the value of the error
variable from the strconv.Atoi() function using pattern matching. The _ character
means "match everything" in Go pattern matching terms, but do not save it in any variable.

Go has support for four different sizes of signed and unsigned integers,
named int8, int16, int32, int64, uint8, uint16, uint32, and uint64,
respectively. However, Go also has int and uint, which are the most
efficient signed and unsigned integers for your current platform.
Therefore, when in doubt, use either int or uint.

Writing Programs in Go

[32]

Executing addCLA.go with the right kind of command-line arguments creates the following
output:

$ go run addCLA.go 1 2 -1 -3
Sum: -1
$ go run addCLA.go
Sum: 0

The good thing is that addCLA.go does not crash if it gets no arguments, without you
taking care of it. Nevertheless, it would be more interesting to see how the program handles
erroneous input because you can never assume that you are going to get the right type of
input:

$ go run addCLA.go !
Sum: 0
$ go run addCLA.go ! -@
Sum: 0
$ go run addCLA.go ! -@ 1 2
Sum: 3

As you can see, if the program gets the wrong type of input, it does not crash and does not
include the erroneous input in its calculations. What is a major issue here is that addCLA.go
does not print any warning message to let the user know that some of their input was
ignored. This kind of dangerous code creates unstable executables that might generate
security issues when given the wrong kind of input. So, the general advice here is that you
should never expect or rely on the Go compiler, or any other compiler or program, to take
care of such things because this is your job.

Chapter 3, Advanced Go Features, will talk about error handling in Go in more detail and
will present a better and safer version of the previous program. For now, we should all be
happy that we can prove that our program does not crash with any kind of input.

Although this is not a perfect situation, it is not that bad if you know that
your program does not work as expected for some given kinds of input.
The bad thing is when the developer has no idea that there exist certain
kinds of input that can make a program fail, because you cannot correct
what you do not believe or recognize is wrong.

Although processing command-line arguments looks easy, it might get pretty complex if
your command-line utility supports a large number of options and parameters. Chapter 5,
Files and Directories, will talk more about processing command-line options, arguments, and
parameters using the flag standard Go package.

Writing Programs in Go

[33]

User input and output
According to the Unix philosophy, when a program finishes its job successfully, it generates
no output. However, for a number of reasons, not all programs finish successfully and they
need to inform the user about their issues by printing appropriate messages. Additionally,
some system tools need to get input from the user in order to decide how to handle a
situation that might come up.

The hero of Go user input and output is the fmt package, and this section is going to show
you how to perform these two tasks by starting with the simplest one.

The best place to learn more about the fmt package is its documentation
page, which can be found at https:/ ​/​golang. ​org/ ​pkg/​fmt/ ​.

Getting user input
Apart from using command-line arguments to get user input, which is the preferred
approach in systems programming, there exist ways to ask the user for input.

Two such examples are the rm(1) and mv(1) commands when used with the -i option:

$ touch aFile
$ rm -i aFile
remove aFile? y
$ touch aFile
$ touch ../aFile
$ mv -i ../aFile .
overwrite ./aFile? (y/n [n]) y

So, this section will show you how to mimic the previous behavior in your Go code by
making your program understand the -i parameter without actually implementing the
functionality of either rm(1) or mv(1).

The simplest function for getting user input is called fmt.Scanln() and reads an entire
line. Other functions for getting user input include fmt.Scan(), fmt.Scanf(),
fmt.Sscanf(), fmt.Sscanln(), and fmt.Sscan().

However, there exists a more advanced way to get input from the user in Go; it involves the
use of the bufio package. Nevertheless, using the bufio package to get a simple response
from a user is a bit of an overkill.

https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/

Writing Programs in Go

[34]

The Go code of parameter.go is as follows:

package main

import (
 "fmt"
 "os"
 "strings"
)

func main() {
 arguments := os.Args
 minusI := false
 for i := 0; i < len(arguments); i++ {
 if strings.Compare(arguments[i], "-i") == 0 {
 minusI = true
 break
 }
 }

 if minusI {
 fmt.Println("Got the -i parameter!")
 fmt.Print("y/n: ")
 var answer string
 fmt.Scanln(&answer)
 fmt.Println("You entered:", answer)
 } else {
 fmt.Println("The -i parameter is not set")
 }
}

The presented code is not particularly clever. It just visits all command-line arguments
using a for loop and checks whether the current argument is equal to the -i string. Once it
finds a match with the help of the strings.Compare() function, it changes the value of
the minusI variable from false to true. Then, as it does not need to look any further, it exits
the for loop using a break statement. In case the -i parameter is given, the block with the
if statement asks the user to enter y or n using the fmt.Scanln() function.

Note that the fmt.Scanln() function uses a pointer to the answer variable. Since Go
passes its variables by value, we have to use a pointer reference here in order to save the
user input to the answer variable. Generally speaking, functions that read data from the
user tend to work this way.

Writing Programs in Go

[35]

Executing parameter.go creates the following kind of output:

$ go run parameter.go
The -i parameter is not set
$ go run parameter.go -i
Got the -i parameter!
y/n: y
You entered: y

Printing output
The simplest way to print something in Go is using the fmt.Println() and
fmt.Printf() functions. The fmt.Printf() function has many similarities with the C
printf(3) function. You can also use the fmt.Print() function instead of
fmt.Println().

The main difference between fmt.Print() and fmt.Println() is that the latter
automatically prints a newline character each time you call it. The biggest difference
between fmt.Println() and fmt.Printf() is that the latter requires a format specifier
for everything it will print, just like the C printf(3) function. This means that you have
better control over what you are doing, but you have to write more code. Go calls these
specifiers verbs, and you can find out more about supported verbs at https:/ ​/​golang. ​org/
pkg/​fmt/​.

Go functions
Functions are an important element of every programming language because they allow
you to break big programs into smaller and more manageable parts, but they must be as
independent of each other as possible and must do one job and only one job. So, if you find
yourself writing functions that do multiple things, you may want to consider writing
multiple functions instead. However, Go will not refuse to compile functions that are long,
complicated, or do multiple things.

A safe indication that you need to create a new function is when you find yourself using the
same Go code multiple times in your program. Similarly, a safe indication that you need to
put some of your functions in a module is when you find yourself using the same functions
all the time in most of your programs.

https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/

Writing Programs in Go

[36]

The single most popular Go function is main(), which can be found in every autonomous
Go program. If you look at the definition of the main() function, you'll soon realize that
function declarations in Go start with the func keyword.

As a rule of thumb, you must try to write functions that are less than 20-30
lines of Go code. A good side effect of having smaller functions is that they
can be optimized more easily because you can clearly find out where the
bottleneck is.

Naming the return values of a Go function
Unlike C, Go allows you to name the return values of a Go function. Additionally, when
such a function has a return statement without any arguments, the function automatically
returns the current value of each named return value. Note that such functions return their
values in the order they were declared in the definition of the function.

Naming return values is a very handy Go feature that can save you from
various types of bugs, so use it.

My personal advice is this: name the return values of your functions unless there is a very
good reason not to do so.

Anonymous functions
Anonymous functions can be defined in line, without the need for a name, and they are
usually used for implementing things that require a small amount of code. In Go, a function
can return an anonymous function or take an anonymous function as one of its arguments.
Additionally, anonymous functions can be attached to Go variables.

It is considered a good practice for anonymous functions to have a small
implementation and local usage. If an anonymous function does not have
local utilization, then you might need to consider making it a regular
function.

When an anonymous function is suitable for a job, then it is extremely convenient and
makes your life easier; just do not use too many anonymous functions in your programs
without a good reason.

Writing Programs in Go

[37]

Illustrating Go functions
This subsection will present examples of the previous types of functions using the Go code
of the functions.go program. The first part of the program contains the expected
preamble and the implementation of the unnamedMinMax() function:

package main

import (
 "fmt"
)

func unnamedMinMax(x, y int) (int, int) {
 if x > y {
 min := y
 max := x
 return min, max
 } else {
 min := x
 max := y
 return min, max
 }
}

The unnamedMinMax() function is a regular function that gets two integer numbers as
input, named x and y, respectively. It returns two integer numbers as output using a
return statement.

The next part of functions.go defines another function but this time with named returned
values, which are called min and max:

func minMax(x, y int) (min, max int) {
 if x > y {
 min = y
 max = x
 } else {
 min = x
 max = y
 }
 return min, max
}

Writing Programs in Go

[38]

The next function is an improved version of minMax() because you do not have to
explicitly define the return variables of the return statement:

func namedMinMax(x, y int) (min, max int) {
 if x > y {
 min = y
 max = x
 } else {
 min = x
 max = y
 }
 return
}

However, you can easily discover which values will be returned by looking at the definition
of the namedMinMax() function. The namedMinMax() function will return the current
values of min and max, in that order.

The next function shows how to sort two integers without having to use a temporary
variable:

func sort(x, y int) (int, int) {
 if x > y {
 return x, y
 } else {
 return y, x
 }
}

The previous code also shows how handy it is that Go functions can return more than one
value. The last part of functions.go contains the main() function; this could be explained
in two parts.

The first part is to do with anonymous functions:

 func main() {
 y := 4
 square := func(s int) int {
 return s * s
 }
 fmt.Println("The square of", y, "is", square(y))

 square = func(s int) int {
 return s + s
 }
 fmt.Println("The square of", y, "is", square(y))

Writing Programs in Go

[39]

Here, you define two anonymous functions: the first one calculates the square of the given
integer whereas the second doubles the given integer number. What is important here is
that both of them are assigned to the same variable, which is a totally wrong and is a
dangerous practice. Therefore, improper use of anonymous functions can create nasty bugs,
so take extra care and do not assign the same variable to different anonymous functions.

Note that even if a function is assigned to a variable, it is still considered an anonymous
function.

The second part of main() uses some of the defined functions:

 fmt.Println(minMax(15, 6))
 fmt.Println(namedMinMax(15, 6))
 min, max := namedMinMax(12, -1)
 fmt.Println(min, max)
}

What is interesting here is that you can get the two returned values of the namedMinMax()
function using two variables, all in one statement.

Executing functions.go generates the following output:

$ go run functions.go
The square of 4 is 16
The square of 4 is 8
6 15
6 15
-1 12

The next section shows more examples of anonymous functions combined with the defer
keyword.

The defer keyword
The defer keyword defers the execution of a function until the surrounding function
returns, and is widely used in file I/O operations. This is because it saves you from having
to remember when to close an open file.

The file with the Go code that illustrates the use of defer is called defer.go and has four
main parts.

Writing Programs in Go

[40]

The first part is the expected preamble as well as the definition of the a1() function:

package main

import (
 "fmt"
)

func a1() {
 for i := 0; i < 3; i++ {
 defer fmt.Print(i, " ")
 }
}

In the previous example, the defer keyword is used with a simple fmt.Print()
statement.

The second part is the definition of the a2() function:

func a2() {
 for i := 0; i < 3; i++ {
 defer func() { fmt.Print(i, " ") }()
 }
}

After the defer keyword, there is an anonymous function that is not attached to a variable,
which means that after the termination of the for loop, the anonymous function will
automatically disappear. The presented anonymous function takes no arguments but uses
the i local variable in the fmt.Print() statement.

The next part defines the a3() function and has the following Go code:

func a3() {
 for i := 0; i < 3; i++ {
 defer func(n int) { fmt.Print(n, " ") }(i)
 }
}

This time, the anonymous function requires an integer parameter that is named n and takes
its value from the i variable.

Writing Programs in Go

[41]

The last part of defer.go is the implementation of the main() function:

func main() {
 a1()
 fmt.Println()
 a2()
 fmt.Println()
 a3()
 fmt.Println()
}

Executing defer.go will print the following, which might surprise you at first:

$ go run defer.go
2 1 0
3 3 3
2 1 0

So, now it is time to explain the output of defer.go by examining the way a1(), a2(), and
a3() execute their code. The first line of output verifies that deferred functions are executed
in Last In First Out (LIFO) order after the return of the surrounding function. The for loop
in a1() defers a single function call that uses the current value of the i variable. As a result,
all numbers are printed in reverse order because the last used value of i is 2. The a2()
function is a tricky one because due to defer, the function body is evaluated after the for
loop ends while it is still referencing the local i variable, which at that time was equal to 3
for all evaluations of the body. As a result, a2() prints the number 3 three times. Put
simply, you have three function calls that use the last value of a variable because this is
what is passed to the function. However, this is not the case with the a3() function because
the current value of i is passed as an argument to the deferred function, due to the (i)
code at the end of the a3() function definition. So, each time the deferred function is
executed, it has a different i value to process.

As using defer can be complicated, you should write your own examples
and try to guess their output before executing the actual Go code to make
sure that your program behaves as expected. Try to be able to tell when
the function arguments are evaluated and when the function body is
actually executed.

You will see the defer keyword in action again in Chapter 6, File Input and Output.

Writing Programs in Go

[42]

Using pointer variables in functions
Pointers are memory addresses that offer improved speed in exchange for difficult-to-
debug code and nasty bugs. C programmers know more about this. The use of pointer
variables in Go functions is illustrated inside the pointers.go file, which can be divided
into two main parts. The first part contains the definition of two functions and one new
structure named complex:

func withPointer(x *int) {
 *x = *x * *x
}

type complex struct {
 x, y int
}

func newComplex(x, y int) *complex {
 return &complex{x, y}
}

The second part illustrates the use of the previous definitions in the main() function:

func main() {
 x := -2
 withPointer(&x)
 fmt.Println(x)

 w := newComplex(4, -5)
 fmt.Println(*w)
 fmt.Println(w)
}

As the withPointer() function uses a pointer variable, you do not need to return any
values because any changes to the variable you pass to the function are automatically stored
in the passed variable. Note that you need to put & in front of the variable name to pass it as
a pointer instead of as a value. The complex structure has two members, named x and y,
which are both integer variables.

On the other hand, the newComplex() function returns a pointer to a complex structure,
previously defined in pointers.go, which needs to be stored in a variable. In order to
print the contents of a complex variable returned by the newComplex() function, you will
need to put a * character in front of it.

Writing Programs in Go

[43]

Executing pointers.go generates the following output:

$ go run pointers.go
4
{4 -5}
&{4 -5}

I do not recommend the use of pointers to amateur programmers outside
of what is required by the libraries you use because they might cause
problems. However, as you get more experienced, you might want to
experiment with pointers and decide whether you want to use them or not
depending on the problem you are trying to solve.

Go data structures
Go comes with many handy data structures that can help you store your own data,
including arrays, slices, and maps. The most important task that you should be able to
perform on any data structure is accessing all of its elements in some way. The second
important task is having direct access to a specific element once you know its index or key.
The last two equally important tasks are inserting elements and deleting elements from data
structures. Once you know how to perform these four tasks, you will have complete control
over the data structure.

Arrays
Arrays are the most popular data structure due to their speed and are supported by almost
all programming languages. You can declare an array in Go as follows:

myArray := [4]int{1, 2, 4, -4}

Should you wish to declare an array with two or three dimensions, you can use the
following notation:

twoD := [3][3]int{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
threeD := [2][2][2]int{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}

Writing Programs in Go

[44]

The index of the first element of each dimension of an array is 0, the index of the second
element of each dimension is 1, and so on. Accessing, assigning, or printing a single element
from one of the previous three arrays can also be done easily:

myArray[0]
twoD[1][2] = 15
threeD[0][1][1] = -1

The most common way to access all the elements of an array is by finding its size using the
len() function and then using a for loop. However, there exist cooler ways to visit all the
elements of an array that involve the use of the range keyword inside a for loop and allow
you to bypass the use of the len() function, which is pretty handy when you have to deal
with arrays with two or more dimensions.

All of the code in this subsection is saved as arrays.go, and you should watch it on your
own. Running arrays.go creates the following output:

$ go run arrays.go
1 2 4 -4
0 2 -2 6 7 8
1 2 3 4 5 15 7 8 9
[[1 2] [3 -1]] [[5 6] [7 8]]

Now let's try to break things by trying to access some strange array elements, such as an
element with an index number that does not exist or an element with a negative index
number, using the following Go program that is named breakMe.go:

package main

import "fmt"

func main() {
 myArray := [4]int{1, 2, 4, -4}
 threeD := [2][2][2]int{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}
 fmt.Println("myArray[-1]:", myArray[-1])
 fmt.Println("myArray[10]:", myArray[10])
 fmt.Println("threeD[-1][20][0]:", threeD[-1][20][0])
}

Writing Programs in Go

[45]

Executing breakMe.go will generate the following output:

$ go run breakMe.go
command-line-arguments
./breakMe.go:8: invalid array index -1 (index must be non-negative)
./breakMe.go:9: invalid array index 10 (out of bounds for 4-element array)
./breakMe.go:10: invalid array index -1 (index must be non-negative)
./breakMe.go:10: invalid array index 20 (out of bounds for 2-element array)

Go considers compiler issues that can be detected as compiler errors because this helps the
development workflow, which is the reason for printing all the out of bounds array access
errors of breakMe.go.

Trying to break things is an extremely educational process that you should
attempt all the time. Put simply, knowing when something does not work
is equally useful to knowing when it works.

Despite their simplicity, Go arrays have many and severe shortcomings:

First, once you define an array, you cannot change its size, which means that Go
arrays are not dynamic. Put simply, if you want to include an additional element
to an existing array that has no space, you will need to create a bigger array and
copy all the elements from the old array to the new one.
Second, when you pass an array to a function, you actually pass a copy of the
array, which means that any changes you make to an array inside a function will
be lost after the function finishes.
Last, passing a large array to a function can be pretty slow, mostly because Go
has to create a second copy of the array. The solution to all these problems is to
use slices instead.

Slices
You'll not find the concept of slice in many programming languages, despite the fact that it
is both smart and handy. A slice has many similarities with an array, and it allows you to
overcome the shortcomings of an array.

Writing Programs in Go

[46]

Slices have a capacity and length property, which are not always the same. The length of a
slice is the same as the length of an array with the same number of elements and can be
found using the len() function. The capacity of a slice is the current room that has been
allocated for this particular slice and can be found with the cap() function. As slices are
dynamic in size, if a slice runs out of room, Go automatically doubles its current length to
make room for more elements.

As slices are passed by reference to functions, any modifications you make to a slice inside a
function will not be lost after the function ends. Additionally, passing a big slice to a
function is significantly faster than passing the same array because Go will not have to
make a copy of the slice; it will just pass the memory address of the slice variable.

The code of this subsection is saved in slices.go, and it can be separated into three main
parts.

The first part is the preamble as well as the definition of two functions that get slice as
input:

package main

import (
 "fmt"
)

func change(x []int) {
 x[3] = -2
}

func printSlice(x []int) {
 for _, number := range x {

 fmt.Printf("%d ", number)
 }
 fmt.Println()
}

Note that when you use range over a slice, you get a pair of values in its iteration. The first
one is the index number and the second one is the value of the element. When you are only
interested in the stored element, you can ignore the index number as it happens with the
printSlice() function.

The change() function just changes the fourth element of the input slice, whereas
printSlice() is a utility function that prints the contents of its slice input variable. Here,
you can also see the use of the fmt.Printf() function for printing an integer number.

Writing Programs in Go

[47]

The second part creates a new slice named aSlice and makes a change to it with the help
of the change() function you saw in the first part:

func main() {
 aSlice := []int{-1, 4, 5, 0, 7, 9}
 fmt.Printf("Before change: ")
 printSlice(aSlice)
 change(aSlice)
 fmt.Printf("After change: ")
 printSlice(aSlice)

Although the way you define a populated slice has some similarities with the way you
define an array, the biggest difference is that you do not have to declare the number of
elements your slice will have.

The last part illustrates the capacity property of a Go slice as well as the make() function:

 fmt.Printf("Before. Cap: %d, length: %d\n", cap(aSlice), len(aSlice))
 aSlice = append(aSlice, -100)
 fmt.Printf("After. Cap: %d, length: %d\n", cap(aSlice), len(aSlice))
 printSlice(aSlice)
 anotherSlice := make([]int, 4)
 fmt.Printf("A new slice with 4 elements: ")
 printSlice(anotherSlice)
}

The make() function automatically initializes the elements of a slice to the zero value for
that type, which can be verified by the output of the printSlice (anotherSlice)
statement. Note that you need to specify the number of elements of a slice when you create
it with the make() function.

Executing slices.go generates the following output:

$ go run slices.go
Before change: -1 4 5 0 7 9
After change: -1 4 5 -2 7 9
Before. Cap: 6, length: 6
After. Cap: 12, length: 7
-1 4 5 -2 7 9 -100
A new slice with 4 elements: 0 0 0 0

As you can see from the third line of the output, the capacity and the length of a slice were
the same at the time of its definition. However, after adding a new element to the slice using
append(), its length goes from 6 to 7 but its capacity doubles and goes from 6 to 12. The
main advantage you get from doubling the capacity of a slice is better performance because
Go will not have to allocate memory space all the time.

Writing Programs in Go

[48]

You can create a slice from the elements of an existing array, and you can
copy an existing slice to another one using the copy() function. Both
operations have some tricky points, and you should experiment with
them.

Chapter 6, File Input and Output, will talk about a special type of slice, named byte slice,
that can be used in file I/O operations.

Maps
The Map data type in Go is equivalent to the well-known hash table found in other
programming languages. The main advantage of maps is that they can use almost any data
type as their index, which in this case is called a key. For a data type to be used as a key, it
must be comparable.

So, let's take a look at an example Go program, named maps.go, which we will use for
illustrative purposes. The first part of maps.go contains the preamble Go code you would
expect:

package main

import (
 "fmt"
)

func main() {

Then, you can define a new empty map that has strings as its keys and integer numbers as
values, as follows:

 aMap := make(map[string]int)

Post this, you can add new key and value pairs to the aMap map, as follows:

 aMap["Mon"] = 0
 aMap["Tue"] = 1
 aMap["Wed"] = 2
 aMap["Thu"] = 3
 aMap["Fri"] = 4
 aMap["Sat"] = 5
 aMap["Sun"] = 6

Writing Programs in Go

[49]

Then, you can get the value of an existing key:

 fmt.Printf("Sunday is the %dth day of the week.\n", aMap["Sun"])

However, the single most important operation you can perform on an existing map is
illustrated in the following Go code:

 _, ok := aMap["Tuesday"]
 if ok {
 fmt.Printf("The Tuesday key exists!\n")
 } else {
 fmt.Printf("The Tuesday key does not exist!\n")
 }

What the aforementioned Go code does is use the error-handling capabilities of Go in order
to verify that a key of a map already exists before you try to get its value. This is the proper
and safe way of trying to get the value of a map key because asking for a value for which
there is no key will result in returning zero. This gives you no way of determining whether
the result was zero because the key you requested was not there or because the element
with the corresponding key actually had the zero value.

The following Go code shows how you can iterate over all the keys of an existing map:

 count := 0
 for key, _ := range aMap {
 count++
 fmt.Printf("%s ", key)
 }
 fmt.Printf("\n")
 fmt.Printf("The aMap has %d elements\n", count)

If you have no interest in visiting the keys and the values of a map and you just want to
count its pairs, then you can use the next, much simpler variation of the previous for loop:

 count = 0
 delete(aMap, "Fri")
 for _, _ = range aMap {
 count++
 }
 fmt.Printf("The aMap has now %d elements\n", count)

Writing Programs in Go

[50]

The last part of the main() function contains the following Go code that illustrates an
alternative way of defining and initializing a map at the same time:

 anotherMap := map[string]int{
 "One": 1,
 "Two": 2,
 "Three": 3,
 "Four": 4,
 }
 anotherMap["Five"] = 5
 count = 0
 for _, _ = range anotherMap {
 count++
 }
 fmt.Printf("anotherMap has %d elements\n", count)
}

However, apart from the different initialization, all the other map operations work exactly
the same. Executing maps.go generates the following output:

$ go run maps.go
Sunday is the 6th day of the week.
The Tuesday key does not exist!
Wed Thu Fri Sat Sun Mon Tue
The aMap has 7 elements
The aMap has now 6 elements
anotherMap has 5 elements

Maps are a very handy data structure, and there is a big chance that you are going to need
them when developing systems software.

Converting an array into a map
This subsection will perform a practical operation, which is converting an array into a map
without knowing the size of array in advance. The Go code of array2map.go can be
divided into three main parts. The first part is the standard Go code that includes the
required packages and the beginning of the main() function:

package main

import (
 "fmt"
 "strconv"
)

func main() {

Writing Programs in Go

[51]

The second part, which implements the core functionality, is as follows:

anArray := [4]int{1, -2, 14, 0}
aMap := make(map[string]int)

length := len(anArray)
for i := 0; i < length; i++ {
 fmt.Printf("%s ", strconv.Itoa(i))
 aMap[strconv.Itoa(i)] = anArray[i]
}

You first define the array variable and the map variable you will use. The for loop is used
for visiting all the array elements and adding them to map. The strconv.Itoa() function
converts the index number of array into a string.

Bear in mind that if you know that all the keys of a map will be
consecutive positive integer numbers, you might consider using an array
or a slice instead of a map. In fact, even if the keys are not consecutive,
arrays and slices are cheaper data structures than maps, so you might end
up with a sparse matrix.

The last part, which is just for printing the contents of the generated map, uses the expected
range form of the for loop:

for key, value := range aMap {
 fmt.Printf("%s: %d\n", key, value)
 }
}

As you can easily guess, developing the inverse operation is not always possible because
map is a richer data structure than array. However, the price you pay for a more powerful
data structure is time because array operations are usually faster.

Structures
Although arrays, slices, and maps are all very useful, they cannot hold multiple values in
the same place. When you need to group various types of variables and create a new handy
type, you can use a structure--the various elements of a structure are called fields.

Writing Programs in Go

[52]

The code of this subsection is saved as dataStructures.go and can be divided into three
parts. The first part contains the preamble and the definition of a new structure named
message:

package main

import (
 "fmt"
 "reflect"
)

func main() {

 type message struct {
 X int
 Y int
 Label string
 }

The message structure has three fields, named X, Y, and Label. Note that structures are
usually defined at the beginning of a program and outside the main() function.

The second part uses the message structure to define two new message variables, named p1
and p2. Then, it uses reflection to get information about the p1 and p2 variables of the
message structure:

 p1 := message{23, 12, "A Message"}
 p2 := message{}
 p2.Label = "Message 2"

 s1 := reflect.ValueOf(&p1).Elem()
 s2 := reflect.ValueOf(&p2).Elem()
 fmt.Println("S2= ", s2)

The last part shows how to print all the fields of a structure without knowing their names
using a for loop and the Type() function:

 typeOfT := s1.Type()
 fmt.Println("P1=", p1)
 fmt.Println("P2=", p2)

 for i := 0; i < s1.NumField(); i++ {
 f := s1.Field(i)

 fmt.Printf("%d: %s ", i, typeOfT.Field(i).Name)
 fmt.Printf("%s = %v\n", f.Type(), f.Interface())
 }

Writing Programs in Go

[53]

}

Running dataStructures.go will generate the following kind of output:

$ go run dataStructures.go
S2= {0 0 Message 2}
P1= {23 12 A Message}
P2= {0 0 Message 2}
0: X int = 23
1: Y int = 12
2: Label string = A Message

If the name of a field of a struct definition begins with a lowercase letter (x instead of X),
the previous program will fail with the following error message:

panic: reflect.Value.Interface: cannot return value obtained from
unexported field or method

This happens because lowercase fields do not get exported; therefore, they cannot be used
by the reflect.Value.Interface() method. You will learn more about reflection in
the next chapter.

Interfaces
Interfaces are an advanced Go feature, which means that you might not want to use them in
your programs if you are not feeling very comfortable with Go. However, interfaces can be
very practical when developing big Go programs, which is the main reason for talking
about interfaces in this book.

But first, I will talk about methods, which are functions with a special receiver argument.
You declare methods as ordinary functions with an additional parameter that appears just
before the function name. This particular parameter connects the function to the type of that
extra parameter. As a result, that parameter is called the receiver of the method. You will
see such functions in a while.

Writing Programs in Go

[54]

Put simply, interfaces are abstract types that define a set of functions that need to be
implemented so that a type can be considered an instance of the interface. When this
happens, we say that the type satisfies this interface. So, an interface is two things--a set of
methods and a type--and it is used for defining the behavior of a type.

Let's describe the main advantage of interfaces with an example. Imagine
that you have a type named ATYPE and an interface for the ATYPE type.
Any function that accepts an ATYPE variable can accept any other
variable that implements the interface of ATYPE.

The Go code of interfaces.go can be divided into three parts. The first part is as follows:

package main

import (
 "fmt"
)

type coordinates interface {
 xaxis() int
 yaxis() int
}

type point2D struct {
 X int
 Y int
}

In this part, you define an interface called coordinates and a new structure called point2D.
The interface has two functions, named xaxis() and yaxis(). The definition of the
coordinates interface says that if you want to convert to the coordinates interface, you will
have to implement these two functions.

It is important to notice that the interface does not state any other specific
types apart from the interface itself. On the other hand, the two functions
of the interface should state the types of their return values.

The second part has the following Go code:

func (s point2D) xaxis() int {
 return s.X
}

func (s point2D) yaxis() int {
 return s.Y

Writing Programs in Go

[55]

}

func findCoordinates(a coordinates) {
 fmt.Println("X:", a.xaxis(), "Y:", a.yaxis())
}

type coordinate int

func (s coordinate) xaxis() int {
 return int(s)
}

func (s coordinate) yaxis() int {
 return 0
}

In the second part, you first implement the two functions of the coordinates interface for the
point2D type. Then you develop a function named findCoordinates() that accepts a
variable that implements the coordinates interface. The findCoordinates() function just
prints the two coordinates of a point using a simple fmt.Println() function call. Then,
you define a new type named coordinate that is used for points that belong to the x-axis.
Last, you implement the coordinates interface for the coordinate type.

At the time of writing the code for interfaces.go, I believed that the coordinates and
coordinate names were fine. After writing the previous paragraph, I realized that the
coordinate type could have been renamed to xpoint for better readability. I left the
names coordinates and coordinate to point out that everybody makes mistakes and
that the variable and type names you are using must be chosen wisely.

The last part has the following Go code:

func main() {

 x := point2D{X: -1, Y: 12}
 fmt.Println(x)
 findCoordinates(x)

 y := coordinate(10)
 findCoordinates(y)
}

Writing Programs in Go

[56]

In this part, you first create a point2D variable and print its coordinates using the
findCoordinates() function, then you create a coordinate variable named y that holds a
single coordinate value. Lastly, you print the y variable using the same
findCoordinates() function used for printing a point2D variable.

Although Go is not an object-oriented programming language, I will use some object-
oriented terminology here. So, in object-oriented terminology, this means that both
point2D and coordinate types are coordinate objects. However, none of them are only a
coordinate object.

Executing interfaces.go creates the following output:

$ go run interfaces.go
{-1 12}
X: -1 Y: 12
X: 10 Y: 0

I believe that Go interfaces are not necessary when developing systems software, but they
are a handy Go feature that can make the development of a systems application more
readable and simpler, so do not hesitate to use them.

Creating random numbers
As a practical programming example, this section will talk about creating random numbers
in Go. Random numbers have many uses, including the generation of good passwords as
well as the creation of files with random data that can be used for testing other applications.
However, bear in mind that usually programming languages generate pseudorandom
numbers that approximate the properties of a true random number generator.

Go uses the math/rand package for generating random numbers and needs a seed to start
producing random numbers. The seed is used for initializing the entire process and is
extremely important because if you always start with the same seed, you will always get the
same sequence of random numbers.

The random.go program has three main parts. The first part is the preamble of the
program:

package main

import (
 "fmt"
 "math/rand"
 "os"

Writing Programs in Go

[57]

 "strconv"
 "time"
)

The second part is the definition of the random() function that returns a random number
each time it is called, using the rand.Intn() Go function:

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

The two parameters of the random() function define the lower and upper limits of the
generated random number. The last part of random.go is the implementation of the
main() function that is mainly used for calling the random() function:

func main() {
 MIN := 0
 MAX := 0
 TOTAL := 0
 if len(os.Args) > 3 {
 MIN, _ = strconv.Atoi(os.Args[1])
 MAX, _ = strconv.Atoi(os.Args[2])
 TOTAL, _ = strconv.Atoi(os.Args[3])
 } else {
 fmt.Println("Usage:", os.Args[0], "MIX MAX TOTAL")
 os.Exit(-1)
 }

 rand.Seed(time.Now().Unix())
 for i := 0; i < TOTAL; i++ {
 myrand := random(MIN, MAX)
 fmt.Print(myrand)
 fmt.Print(" ")
 }
 fmt.Println()
}

A big part of the main() function involves dealing with the reading of command-line
arguments as integer numbers and printing a descriptive error message in case you did not
get the correct number of command-line arguments. This is the standard practice that we
will follow in this book. The random.go program uses the Unix epoch time as the seed for
the random number generator by calling the time.Now().Unix() function. The important
thing to remember is that you do not have to call rand.Seed() multiple times. Lastly,
random.go does not examine the error variable returned by strconv.Atoi() to save book
space, not because it is not necessary.

Writing Programs in Go

[58]

Executing random.go generates the following kind of output:

$ go run random.go 12 32 20
29 27 20 23 22 28 13 16 22 26 12 29 22 30 15 19 26 24 20 29

Should you wish to generate more secure random numbers in Go, you should use the
crypto/rand package, which implements a cryptographically secure pseudorandom
number generator. You can find more information about the crypto/rand package by
visiting its documentation page at https:/ ​/​golang. ​org/ ​pkg/ ​crypto/ ​rand/ ​.

If you are really into random numbers, then the definitive reference to the theory of random
numbers is the second volume of The Art of Computer Programming by Donald Knuth.

Exercises
Browse the Go documentation site: https:/ ​/​golang. ​org/​doc/ ​.1.
Write a Go program that keeps reading integers until you give the number 0 as2.
input, then it prints the minimum and maximum integer in the input.
Write the same Go program as before, but this time, you will get your input using3.
command-line arguments. Which version do you think is better? Why?
Write a Go program that supports two command-line options (-i and -k) in4.
random order using if statements. Now change your program to support three
command-line arguments. As you will see, the complexity of the latter program is
just too much to handle using if statements.
If the indices of a map were natural numbers, are there any cases that it would be5.
wise and efficient to use a map instead of an array?
Try to put the functionality of array2map.go into a separate function.6.
Try to develop your own random number generator in Go that will still use the7.
current time as a seed but not the math/rand package.
Learn how to create a slice from an existing array. What happens when you make8.
changes to the slice?
Use the copy() function to make a copy of an existing slice. What happens when9.
the destination slice is smaller than the source slice? What happens when the
destination slice is bigger than the source slice?
Try to write an interface for supporting points in 3D space. Then, use this10.
interface to support points that reside on the x-axis.

https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/doc/
https://golang.org/doc/
https://golang.org/doc/
https://golang.org/doc/
https://golang.org/doc/
https://golang.org/doc/
https://golang.org/doc/
https://golang.org/doc/
https://golang.org/doc/
https://golang.org/doc/

Writing Programs in Go

[59]

Summary
You learned many things in this chapter, including getting user input and processing
command-line arguments. You familiarized yourself with the basic Go structures and you
created a Go program that generates random numbers. Try to do the offered exercises and
do not get discouraged if you fail in some of them.

The next chapter will talk about many advanced Go features, including error handling,
pattern matching, regular expressions, reflection, unsafe code, calling C code from Go, and
the strace(1) command-line utility. I will compare Go with other programming
languages and give you practical advice in order to avoid some common Go pitfalls.

3
Advanced Go Features

In the previous chapter, you learned how to compile Go code, how to get input from the
user and print the output on the screen, how to create your own Go functions, the data
structures that Go supports, and how to process command-line arguments.

This chapter will discuss many fascinating things, so you better prepare yourselves for lots
of interesting and practical Go code that will help you perform many different yet really
important tasks, starting with error handling and ending with how to avoid some common
Go mistakes. If you are familiar with Go, you can skip what you already know, but please
do not skip the proposed exercises.

So, this chapter will talk about some advanced Go features, including:

Error handling
Error logging
Pattern matching and regular expressions
Reflection
How to use the strace(1) and dtrace(1) tools to watch the system calls of Go
executable files
How to detect unreachable Go code
How to avoid various common Go mistakes

Error handling in Go
Errors happen all the time, so it is our job to both catch and handle them, especially when
writing code that deals with sensitive system information and files. The good news is that
Go has a special data type called error that helps signify erroneous states; if an error
variable has a nil value, then there is no error situation.

Advanced Go Features

[61]

As you saw in the addCLA.go program that was developed in the previous chapter, you
can ignore the error variable that is returned by most Go functions using the _ character:

temp, _ := strconv.Atoi(arguments[i])

However, this is not considered good practice and should be avoided, especially on systems
software and other kinds of critical software, such as server processes.

As you will see in Chapter 6, File Input and Output, even End of File (EOF) is a type of error
that is returned when there is nothing left to read from a file. As EOF is defined in the io
package, you can handle it as follows:

if err == io.EOF {

 // Do something
}

However, the most important task to learn is how to develop functions that return error
variables and how to handle them, which is explained next.

Functions can return error variables
Go functions can return error variables, which means that an error condition can be
handled inside a function, outside of a function, or both inside and outside the function; the
latter situation does not happen very often. So, this subsection will develop a function that
returns error messages. The relevant Go code can be found in funErr.go and will be
presented in three parts.

The first part contains the following Go code:

package main

import (
 "errors"
 "fmt"
 "log"
)

func division(x, y int) (int, error, error) {
 if y == 0 {
 return 0, nil, errors.New("Cannot divide by zero!")
 }
 if x%y != 0 {
 remainder := errors.New("There is a remainder!")

Advanced Go Features

[62]

 return x / y, remainder, nil
 } else {
 return x / y, nil, nil
 }

}

Apart from the expected preamble, the preceding code defines a new function named
division(), which returns an integer and two error variables. If you remember from
your Math classes, when you divide two integer numbers, the division operation is not
always perfect, which means that you might get a remainder that is not zero. The
errors.New() function from the errors Go package that you see in funErr.go creates a
new error variable, using the provided string as the error message.

The second part of funErr.go has the following Go code:

func main() {
 result, rem, err := division(2, 2)
 if err != nil {
 log.Fatal(err)
 } else {
 fmt.Println("The result is", result)
 }

 if rem != nil {
 fmt.Println(rem)
 }

It is a very common Go practice to compare an error variable with nil to quickly find out
whether there is an error condition or not.

The last part of funErr.go is as follows:

 result, rem, err = division(12, 5)
 if err != nil {
 log.Fatal(err)
 } else {
 fmt.Println("The result is", result)
 }

 if rem != nil {
 fmt.Println(rem)
 }

 result, rem, err = division(2, 0)
 if err != nil {
 log.Fatal(err)

Advanced Go Features

[63]

 } else {
 fmt.Println("The result is", result)
 }

 if rem != nil {
 fmt.Println(rem)
 }
}

This part showcases two erroneous conditions. The first one is an integer division that has a
remainder, whereas the second one is an invalid division because you cannot divide a
number by zero. As the name log.Fatal() implies, this logging function should be used
for critical errors only because when called, it automatically terminates your program.
However, as you will see in the next subsection, there exist other, more gentle, ways to log
your error messages.

Executing funErr.go generates the next output:

$ go run funErr.go
The result is 1
The result is 2
There is a remainder!
2017/03/07 07:39:19 Cannot divide by zero!
exit status 1

The last line is automatically generated by the log.Fatal() function, just before
terminating the program. It is important to understand that any Go code after the call to
log.Fatal() will not be executed.

About error logging
Go offers functions that can help you log your error messages in various ways. You already
saw log.Fatal() in funErr.go, which is a somewhat cruel way to deal with simple
errors. Put simply, you should have a very good reason to use log.Fatal() in your code.
Generally speaking, log.Fatal() should be used instead of the os.Exit() function
because it allows you to print an error message and exit your program using just one
function call.

Go offers additional error logging functions in the log standard package that behave more
gently depending on the situation, which includes log.Printf(), log.Print(),
log.Println(), log.Fatalf(), log.Fatalln(), log.Panic(), log.Panicln(), and
log.Panicf(). Please note that logging functions can be handy for debugging purposes so
do not underestimate their power.

Advanced Go Features

[64]

The logging.go program illustrates two of the mentioned logging functions using the
following Go code:

package main

import (
 "log"
)

func main() {
 x := 1
 log.Printf("log.Print() function: %d", x)
 x = x + 1
 log.Printf("log.Print() function: %d", x)
 x = x + 1
 log.Panicf("log.Panicf() function: %d", x)
 x = x + 1
 log.Printf("log.Print() function: %d", x)
}

As you can see, logging.go does not need the fmt package because it has its own
functions for printing the output. Executing logging.go will produce the following
output:

$ go run logging.go
2017/03/10 16:51:56 log.Print() function: 1
2017/03/10 16:51:56 log.Print() function: 2
2017/03/10 16:51:56 log.Panicf() function: 3
panic: log.Panicf() function: 3
goroutine 1 [running]:
log.Panicf(0x10b78d0, 0x19, 0xc42003df48, 0x1, 0x1)
 /usr/local/Cellar/go/1.8/libexec/src/log/log.go:329 +0xda
main.main()
 /Users/mtsouk/ch3/code/logging.go:14 +0x1af
exit status 2

Although the log.Printf() function works in the same way as fmt.Printf(), it
automatically prints the date and time the log message was printed, just like the
log.Fatal() function did in funErr.go. Additionally, the log.Panicf() function works
in a similar way to log.Fatal()--they both terminate the current program. However,
log.Panicf() prints some additional information, useful for debugging purposes.

Go also offers the log/syslog package that is a simple interface to the system log service
running on your Unix machine. Chapter 7, Working with System Files, will talk more about
the log/syslog package.

Advanced Go Features

[65]

The addCLA.go program revisited
This subsection will present an improved version of the addCLA.go program we developed
in the previous chapter, to make it able to handle any kind of user input. The new program
will be called addCLAImproved.go, but instead of presenting its full Go code, you will only
see the differences between addCLAImproved.go and addCLA.go using the diff(1)
command-line utility:

$ diff addCLAImproved.go addCLA.go
13,18c13,14
< temp, err := strconv.Atoi(arguments[i])
< if err == nil {
< sum = sum + temp
< } else {
< fmt.Println("Ignoring", arguments[i])
< }

> temp, _ := strconv.Atoi(arguments[i])
> sum = sum + temp

What this output basically tells us is that the last two lines of code, which can be found in
addCLA.go and begin with the > character, were replaced by the lines of code that begin
with the < character in addCLAImproved.go. The remaining code of both files is exactly the
same.

The diff(1) utility compares text files line by line and is a handy way of
spotting code differences between different versions of the same file.

Executing addCLAImproved.go will generate the following kind of output:

$ go run addCLAImproved.go
Sum: 0
$ go run addCLAImproved.go 1 2 -3
Sum: 0
$ go run addCLAImproved.go 1 a 2 b 3.2 @
Ignoring a
Ignoring b
Ignoring 3.2
Ignoring @
Sum: 3

So, the new and improved version works as expected, behaves reliably, and allows us to
differentiate between valid and invalid input.

Advanced Go Features

[66]

Pattern matching and regular expressions
Pattern matching, which plays a key role in Go, is a technique for searching a string for a
set of characters based on a specific search pattern that is based on regular expressions. If
pattern matching is successful, it allows you to extract the desired data from the string or
replace or delete it. Grammar is a set of production rules for strings in a formal language.
The production rules describe how to create strings from the alphabet of the language that
are valid according to the syntax of the language. Grammar does not describe the meaning
of a string or what can be done with it in whatever context, only its form. What is important
is to realize that grammar is at the heart of regular expressions because without it, you
cannot define or use a regular expression.

Regular expressions and pattern matching are not a panacea, so you
should not try to solve every problem using regular expressions since they
are not suitable for every kind of problem you may come up against.
Furthermore, they might introduce unnecessary complexity to your
software.

The Go package responsible for the pattern matching capabilities of Go is called regexp,
which you can see in action in regExp.go. The code of regExp.go will be presented in
four parts.

The first part is the expected preamble:

package main

import (
 "fmt"
 "regexp"
)

The second part is as follows:

func main() {
match, _ := regexp.MatchString("Mihalis", "Mihalis Tsoukalos")
 fmt.Println(match)
 match, _ = regexp.MatchString("Tsoukalos", "Mihalis tsoukalos")
 fmt.Println(match)

Both calls to regexp.MatchString() try to find a static string, which is the first
parameter, in a given string, which is the second parameter.

Advanced Go Features

[67]

The third part contains a single, yet crucial, line of Go code:

 parse, err := regexp.Compile("[Mm]ihalis")

The regexp.Compile() function reads the provided regular expression and tries to parse
it. If the parsing of the regular expressing is successful, then regexp.Compile() returns a
value of the regexp.Regexp variable type that you can use afterward. The [Mm] expression
in the regexp.Compile() function means that what you are looking for can begin with an
uppercase M or a lowercase m. Both [and] are special characters that are not part of the
regular expression. So, the provided grammar is naive and only matches the words
Mihalis and mihalis.

The last part uses the previous regular expression that is stored in the parse variable:

 if err != nil {
 fmt.Printf("Error compiling RE: %s\n", err)
 } else {
 fmt.Println(parse.MatchString("Mihalis Tsoukalos"))
 fmt.Println(parse.MatchString("mihalis Tsoukalos"))
 fmt.Println(parse.MatchString("M ihalis Tsoukalos"))
 fmt.Println(parse.ReplaceAllString("mihalis Mihalis", "MIHALIS"))
 }
}

Running regExp.go generates the next output:

$ go run regExp.go
true
false
true
true
false
MIHALIS MIHALIS

So, the first call to regexp.MatchString() was a match, but the second was not because
pattern matching is case-sensitive and Tsoukalos does not match tsoukalos. The
parse.ReplaceAllString() function at the end searches the string that is given as an
input ("mihalis Mihalis") and replaces each match with the string that is given as its
second parameter ("MIHALIS").

The rest of this section will present various examples using static text because you do not
know how to read text files yet. However, as the static text will be stored in an array and
processed line by line, the presented code can be easily modified to support getting your
input from external text files.

Advanced Go Features

[68]

Printing all the values from a given column of a
line
This is a very common scenario, as you often will need to get all the data from a given
column of a structured text file in order to analyze it afterward. The code of
readColumn.go, which prints values in the third column, will be presented in two parts.

The first part is as follows:

package main

import (
 "fmt"
 "strings"
)

func main() {
 var s [3]string
 s[0] = "1 2 3"
 s[1] = "11 12 13 14 15 16"
 s[2] = "-1 2 -3 -4 -5 6"

Here, you import the required Go packages and define a string with three lines using an
array with three elements.

The second part contains the following Go code:

 column := 2

 for i := 0; i < len(s); i++ {
 data := strings.Fields(s[i])
 if len(data) >= column {
 fmt.Println((data[column-1]))
 }
 }
}

Advanced Go Features

[69]

First, you define the column that interests you. Then, you start iterating over the strings
stored in the array. This is similar to reading a text file line by line. The Go code inside the
for loop splits the fields of the input line, stores them in the data array, verifies that the
value from the desired column is present, and prints it on your screen. All of the hard work
is done by the handy strings.Fields() function that splits a string based on whitespace
characters, as defined in unicode.IsSpace(), and returns a slice of strings. Although
readColumn.go does not use the regexp.Compile() function, the logic behind its
implementation with the use of strings.Fields() is still based on the principles of
regular expressions.

An important thing to remember is that you should never trust your data.
Put simply, always verify that the data you expect to grab is there.

Executing readColumn.go will generate the following kind of output:

$ go run readColumn.go
2
12
2

Chapter 6, File Input and Output, will show an improved version of readColumn.go that
you can use as a starting point in case you want to modify the rest of the examples shown.

Creating summaries
In this section, we will develop a program that adds all the values of a given column of text
with multiple lines. To make things even more interesting, the column number will be
given as a parameter in the program. The main difference between the program of this
subsection and readColumn.go from the previous subsection is that you will need to
convert each value into an integer number.

The name of the program that will be developed is summary.go and can be divided into
three parts.

Advanced Go Features

[70]

The first part is this:

package main

import (
 "fmt"
 "os"
 "strconv"
 "strings"
)

func main() {
 var s [3]string
 s[0] = "1 b 3"
 s[1] = "11 a 1 14 1 1"
 s[2] = "-1 2 -3 -4 -5"

The second part has the following Go code:

 arguments := os.Args
 column, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println("Error reading argument")
 os.Exit(-1)
 }
 if column == 0 {
 fmt.Println("Invalid column")
 os.Exit(1)
 }

The previous code reads the index of the column that interests you. If you want to make
summary.go even better, you can check for negative values in the column variable and
print the appropriate error message.

The last part of summary.go is as follows:

 sum := 0
 for i := 0; i < len(s); i++ {
 data := strings.Fields(s[i])
 if len(data) >= column {
 temp, err := strconv.Atoi(data[column-1])
 if err == nil {
 sum = sum + temp
 } else {
 fmt.Printf("Invalid argument: %s\n", data[column-1])
 }
 } else {
 fmt.Println("Invalid column!")

Advanced Go Features

[71]

 }
 }
 fmt.Printf("Sum: %d\n", sum)
}

As you can see, most of the Go code in summary.go is about dealing with exceptions and
potential errors. The core functionality of summary.go is implemented in a few lines of Go
code.

Executing summary.go will give you the following output:

$ go run summary.go 0
Invalid column
exit status 1
$ go run summary.go 2
Invalid argument: b
Invalid argument: a
Sum: 2
$ go run summary.go 1
Sum: 11

Finding the number of occurrences
A very common programming problem is finding out the number of times an IP address
appears in a log file. So, the example in this subsection will show you how to do this using a
handy map structure. The occurrences.go program will be presented in three parts.

The first part is as follows:

package main

import (
 "fmt"
 "strings"
)

func main() {

 var s [3]string
 s[0] = "1 b 3 1 a a b"
 s[1] = "11 a 1 1 1 1 a a"
 s[2] = "-1 b 1 -4 a 1"

Advanced Go Features

[72]

The second part is as follows:

 counts := make(map[string]int)

 for i := 0; i < len(s); i++ {
 data := strings.Fields(s[i])
 for _, word := range data {
 _, ok := counts[word]
 if ok {
 counts[word] = counts[word] + 1
 } else {
 counts[word] = 1
 }
 }
 }

Here, we use the knowledge from the previous chapter to create a map named counts and
populate it with the desired data using two for loops.

The last part is pretty small as it just prints the contents of the counts map:

 for key, _ := range counts {

 fmt.Printf("%s -> %d \n", key, counts[key])
 }
}

Executing occurrences.go and using the sort(1) command-line utility to sort the output
of occurrences.go will generate the following kind of output:

$ go run occurrences.go | sort -n -r -t\ -k3,3
1 -> 8
a -> 6
b -> 3
3 -> 1
11 -> 1
-4 -> 1
-1 -> 1

As you can see, traditional Unix tools are still useful.

Advanced Go Features

[73]

Find and replace
The example in this subsection will search the provided text for two variations of a given
string and replace it with another string. The program will be named findReplace.go and
will actually use Go regular expressions. The main reason for using the
regexp.Compile() function, in this case, is that it greatly simplifies things and allows you
to access your text only once.

The first part of the findReplace.go program is as follows:

package main

import (
 "fmt"
 "os"
 "regexp"
)

The next part is as follows:

func main() {

 var s [3]string
 s[0] = "1 b 3"
 s[1] = "11 a B 14 1 1"
 s[2] = "b 2 -3 B -5"

 parse, err := regexp.Compile("[bB]")

 if err != nil {
 fmt.Printf("Error compiling RE: %s\n", err)
 os.Exit(-1)
 }

The previous Go code will find every occurrence of an uppercase B or a lowercase b ([bB]).
Note that there is also regexp.MustCompile() that works like regexp.Compile().
However, regexp.MustCompile() does not return an error variable; it just panics if the
given expression is erroneous and cannot be parsed. As a result, regexp.Compile() is a
better choice.

Advanced Go Features

[74]

The last part is as follows:

 for i := 0; i < len(s); i++ {
 temp := parse.ReplaceAllString(s[i], "C")
 fmt.Println(temp)
 }
}

Here you replace each match with an uppercase C using parse.ReplaceAllString().

Executing findReplace.go generates the expected output:

$ go run findReplace.go
1 C 3
11 a C 14 1 1
C 2 -3 C -5

The awk(1) and sed(1) command-line tools can do most of the previous
tasks more easily, but sed(1) and awk(1) are not general-purpose
programming languages.

Reflection
Reflection is an advanced Go feature that allows you to dynamically learn the type of an
arbitrary object as well as information about its structure. You should recall that the
dataStructures.go program from Chapter 2, Writing Programs in Go, used reflection to
find out the fields of a data structure as well as the type of each fields. All of this happened
with the help of the reflect Go package and the reflect.TypeOf() function that returns
a Type variable.

Reflection is illustrated in the reflection.go Go program that will be presented in four
parts.

The first one is the preamble of the Go program and has the following code:

package main

import (
 "fmt"
 "reflect"
)

Advanced Go Features

[75]

The second part is as follows:

func main() {

 type t1 int
 type t2 int

 x1 := t1(1)
 x2 := t2(1)
 x3 := 1

Here, you create two new types, named t1 and t2, that are both int and three variables,
named x1, x2, and x3.

The third part has the following Go code:

 st1 := reflect.ValueOf(&x1).Elem()
 st2 := reflect.ValueOf(&x2).Elem()
 st3 := reflect.ValueOf(&x3).Elem()

 typeOfX1 := st1.Type()
 typeOfX2 := st2.Type()
 typeOfX3 := st3.Type()

 fmt.Printf("X1 Type: %s\n", typeOfX1)
 fmt.Printf("X2 Type: %s\n", typeOfX2)
 fmt.Printf("X3 Type: %s\n", typeOfX3)

Here, you find the type of the x1, x2, and x3 variables using reflect.ValueOf() and
Type().

The last part of reflection.go deals with a struct variable:

 type aStructure struct {
 X uint
 Y float64
 Text string
 }

 x4 := aStructure{123, 3.14, "A Structure"}
 st4 := reflect.ValueOf(&x4).Elem()
 typeOfX4 := st4.Type()

 fmt.Printf("X4 Type: %s\n", typeOfX4)
 fmt.Printf("The fields of %s are:\n", typeOfX4)

 for i := 0; i < st4.NumField(); i++ {
 fmt.Printf("%d: Field name: %s ", i, typeOfX4.Field(i).Name)

Advanced Go Features

[76]

 fmt.Printf("Type: %s ", st4.Field(i).Type())
 fmt.Printf("and Value: %v\n", st4.Field(i).Interface())
 }
}

There exist some laws that govern reflection in Go, but talking about them
is beyond the scope of this book. What you should remember is that your
programs can examine their own structure using reflection, which is a
very powerful capability.

Executing reflection.go prints the following output:

$ go run reflection.go
X1 Type: main.t1
X2 Type: main.t2
X3 Type: int
X4 Type: main.aStructure
The fields of main.aStructure are:
0: Field name: X Type: uint and Value: 123
1: Field name: Y Type: float64 and Value: 3.14
2: Field name: Text Type: string and Value: A Structure

The first two lines of the output show that Go does not consider the types t1 and t2 as
equal, even though both t1 and t2 are aliases of the int type.

Old habits die hard!

Despite the fact that Go tries to be a safe programming language, sometimes it is forced to
forget about safety and allows the programmer to do whatever he/she wants.

Calling C code from Go
Go allows you to call C code because there are times when the only way to perform some
tasks, such as communicating with a hardware device or a database server, is by using C.
Nevertheless, if you find yourself using this capability many times in the same project, you
might need to reconsider your approach and your choice of programming language.

Talking more about this capability in Go is beyond the scope of this book. What you should
remember is that most likely, you will never need to call C code from your Go program.
Nevertheless, should you wish to explore this Go feature, you can start by visiting the
documentation of the cgo tool at https://golang.org/cmd/cgo/ as well as by looking at
the code found at https:/ ​/ ​github. ​com/ ​golang/ ​go/ ​blob/ ​master/ ​misc/ ​cgo/ ​gmp/ ​gmp. ​go.

https://golang.org/cmd/cgo/
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go

Advanced Go Features

[77]

Unsafe code
Unsafe code is Go code that bypasses the type safety and memory security of Go and
requires the use of the unsafe package. You will most likely never need to use unsafe code
in your Go programs but if for some strange reason you ever need to, it will probably have
to do with pointers.

Using unsafe code can be dangerous for your programs, so only use it
when it is absolutely necessary. If you are not completely sure that you
need it, then do not use it.

The example code in this subsection is saved as unsafe.go and will be presented in two
parts.

The first part is as follows:

package main

import (
 "fmt"
 "unsafe"
)

func main() {
 var value int64 = 5

 var p1 = &value
 var p2 = (*int32)(unsafe.Pointer(p1))

You first create a new int64 variable that is named value. Then, you create a pointer to it
named p1. Next, you create another pointer that points to p1. However, the p2 pointer that
points to p1 is a pointer to an int32 integer, despite the fact that p1 points to an int64
variable. Although this is not permitted by Go rules, the unsafe.Pointer() function
makes this possible.

The second part is as follows:

 fmt.Println("*p1: ", *p1)
 fmt.Println("*p2: ", *p2)
 *p1 = 312121321321213212
 fmt.Println(value)
 fmt.Println("*p2: ", *p2)
 *p1 = 31212132
 fmt.Println(value)

Advanced Go Features

[78]

 fmt.Println("*p2: ", *p2)
}

Executing unsafe.go will create the following output:

$ go run unsafe.go
*p1: 5
*p2: 5
312121321321213212
*p2: 606940444
31212132
*p2: 31212132

The output shows how dangerous an unsafe pointer can be. When the value of the value
variable fits into an int32 memory space (5 and 31212132), then p2 works fine and shows
the correct result. However, when the value variable holds a value
(312121321321213212) that does not fit into an int32 memory space, then p2 shows an
erroneous result (606940444), without giving you a warning or an error message.

Comparing Go to other programming
languages
Go is not perfect, but neither are the rest of the programming languages. This section will
briefly discuss other programming languages and compare them to Go in order to give you
a better understanding of the choices you have. So, the list of programming languages that
can be compared to Go includes:

C: C is the most popular programming language for developing systems software
because the portable part of each Unix operating system is written in C.
However, it has some critical drawbacks, including the fact that C pointers,
which are great and fast, can lead to difficult-to-detect bugs and memory leaks.
Additionally, C does not offer garbage collection; back when C was created,
garbage collection was a luxury that had the ability slow down computers.
However, nowadays computers are pretty fast and garbage collection does not
slow things down anymore. Moreover, C programs require more code for
developing a given task than other systems programming languages. Lastly, C is
an old programming language that does not support modern programming
paradigms, such as object-oriented and functional programming.

Advanced Go Features

[79]

C++: As previously mention, I do not like C++ anymore. If you think that you
should use C++, then you may want to consider using C instead. However, the
main advantage of C++ over Go is that if needed, C++ can be used as if it were C.
However, neither C nor C++ have good support for concurrent programming.
Rust: Rust is a new systems programming language that tries to avoid unpleasant
bugs caused by unsafe code. Currently, the syntax of Rust is changing too fast,
but this will end in the near feature. If for some reason you do not like Go, you
should try Rust.
Swift: In its current status, Swift is more suitable for developing systems
software for macOS systems. However, I am sure that in the near feature, Swift
will be more popular on Linux machines, so you should keep an eye on it.
Python: Python is a scripting language, which is its main disadvantage. This is
because usually, you do not want to make the source of your systems software
available to everyone.
Perl: What was said about Python can be also said about Perl. However, both
programming languages have a plethora of modules that will make your life a lot
easier and your code a lot smaller.

If you ask my opinion, I think that Go is a modern, portable, mature, and safe programming
language for writing systems software. You should try Go before looking for any
alternatives. However, if you are a Go programmer and want to try something else, I
suggest that you pick Rust or Swift. Yet, if you need to write reliable concurrent programs,
Go should be your first choice.

If you cannot choose between Go and Rust, then just try C. Learning the
basics of systems programming is more important than the programming
language you select.

Despite their disadvantages, bear in mind that all scripting programming languages are
perfect for writing prototypes and have the advantage that they allow you to create
graphical interfaces for your software. Still, delivering systems software in a scripting
language is rarely accepted, unless there is a really good reason to do so.

Advanced Go Features

[80]

Analysing software
There are times that a program fails for some unknown reason or does not perform well,
and you want to find out why without having to rewrite your code and add a plethora of
debugging statements. So, this section will talk about strace(1) and dtrace(1) , which
allow you to see what is going on behind the scenes when you execute a program on a Unix
machine. Although both tools can work with the go run command, you will get less
unrelated output if you first create an executable file using go build and use this file. This
mainly occurs because go run makes temporary files before actually running your Go
code, and you want to debug the actual program, not the compiler used to build the
program.

Remember that although dtrace(1) is more powerful than strace(1) and has its own
programming language, strace(1) is more versatile for watching the system calls a
program makes.

Using the strace(1) command-line utility
The strace(1) command-line utility allows you to trace system calls and signals. As
strace(1) is not available on Mac machines, this section will use a Linux machine to
showcase strace(1). However, as you will see in a later, macOS machines have the
dtrace(1) command-line utility that can do many more things.

The number after the name of a program refers to the section of the
manual its page belongs to. Although most of the names can be found
only once, which means that putting the section number is not necessary,
there are names that can be located in multiple sections because they have
multiple meanings, such as crontab(1) and crontab(5). Therefore, if
you try to retrieve such a page without specifically stating the section
number, you will get the entry in the section of the manual that has the
smallest section number.

Advanced Go Features

[81]

To get a good sense of the output generated by strace(1), look at the following figure
where strace(1) is used to examine the executable of addCLAImproved.go:

Using the strace(1) command on a Linux machine

Advanced Go Features

[82]

The really interesting part of the strace(1) output is the following line, which cannot be
seen in the preceding figure:

$ strace ./addCLAImproved 1 2 2>&1 | grep write
write(1, "Sum: 3\n", 7Sum: 3

We used the grep(1) command-line utility to extract the lines that contain the C system
call that interests us, which in this case is write(2). This is because we already know that
write(2) is used for printing output. So, you learned that in this case, a single write(2) C
system call is used for printing all of the output on the screen; its first parameter is the file
descriptor, and its second parameter is the text you want to print.

Note that you might want to use strace(1) with the -f option in order to also trace any
child processes that might get created during the execution of a program.

Bear in mind that there exist two more variations of write(2), named
pwrite(2) and writev(2), which offer the same core functionality as
write(2) but in a slightly different way.

The following variation of the previous command requires more calls to write(2) because
it generates more output:

$ strace ./addCLAImproved 1 a b 2>&1 | grep write
write(1, "Ignoring a\n", 11Ignoring a
write(1, "Ignoring b\n", 11Ignoring b
write(1, "Sum: 1\n", 7Sum: 1

Unix uses file descriptors, which are positive integer values, as an internal
representation for accessing all its files. By default, all Unix systems
support three special and standard filenames: /dev/stdin,
/dev/stdout, and /dev/stderr. They can also be accessed using file
descriptors 0, 1, and 2, respectively. These three file descriptors are also
called standard input, standard output, and standard error, respectively.
Additionally, the file descriptor 0 can be accessed as /dev/fd/0 on a Mac
machine and as /dev/pts/0 on a Debian Linux machine because
everything in Unix is a file.

Advanced Go Features

[83]

So, the reason for needing to put 2>&1 at the end of the command is to redirect all of the
output, from standard error (file descriptor 2) to standard output (file descriptor 1), in order
to be able to search it using the grep(1) command, which searches standard output only.
Note that there exist many variations of grep(1), including zegrep(1), fgrep(1), and
fgrep(1), that might work faster when they have to deal with large or huge text files.

What you can see here is that even if you are writing in Go, the generated executable uses C
system calls and functions because apart from using machine language, C is the only way to
communicate with the Unix kernel.

The DTrace utility
Although debugging utilities, such as strace(1) and truss(1), which work on FreeBSD,
can trace system calls produced by a process, they can be slow and therefore not
appropriate for solving performance problems on busy Unix systems. Another tool named
dtrace(1), which uses the DTrace facility, allows you to see what happens behind the
scenes on a system-wide basis without the need to modify or recompile anything. It also
allows you to work on production systems and watch running programs or server
processes dynamically without introducing a big overhead.

This subsection will use the dtruss(1) command-line utility, which is just a dtrace(1)
script, that shows the system calls of a process. The output that dtruss(1) generates when
examining the addCLAImproved.go executable on a macOS machine looks similar to the
one that you can see in the following screenshot:

Advanced Go Features

[84]

Using the dtruss(1) command on a macOS machine

Advanced Go Features

[85]

Once again, the following part of the output verifies that at the end of the day, everything
on Unix machines is translated into C system calls and functions because this is the only
way to communicate with the Unix kernel. You can display all the calls to the write(2)
system call as follows:

$ sudo dtruss -c ./addCLAImproved 2000 2>&1 | grep write

However, this time you are going to get lots of output because the macOS executable uses
write(2) multiple times instead of just once to print the same output.

Starting to realize that not all Unix systems work the same way, despite
their numerous similarities, is marvelous. But this also means that you
should not make any assumptions about the way a Unix system works
behind the scenes.

What is really interesting is the last part of the output of the following command:

$ sudo dtruss -c ./addCLAImproved 2000
CALL COUNT
__pthread_sigmask 1
exit 1
getpid 1
ioctl 1
issetugid 1
read 1
thread_selfid 1
ulock_wake 1
bsdthread_register 2
close 2
csops 2
open 2
select 2
sysctl 3
mmap 7
mprotect 8
stat64 41
write 83

The reason you get this output is the -c option that tells dtruss(1) to count all system
calls and print a summary of them, which in this case shows that write(2) has been called
83 times and stat64(2) 41 times.

Advanced Go Features

[86]

The dtrace(1) utility is much more powerful than strace(1) and has
its own programming language but is more difficult to learn. Additionally,
even though there is a Linux version of dtrace(1), strace(1) is more
mature on Linux systems and does the job of tracing system calls in a
simpler way.

You can learn more about the dtrace(1) utility by reading DTrace: Dynamic Tracing in
Oracle Solaris, Mac OS X, and FreeBSD by Brendan Gregg and Jim Mauro and by visiting
http://dtrace.org/.

Disabling System Integrity Protection on macOS
There is a big chance that you will have trouble running dtrace(1) and dtruss(1) on
your Mac OS X machine the first time you try them and get the following error message:

$ sudo dtruss ./addCLAImproved 1 2 2>&1 | grep -i write
dtrace: error on enabled probe ID 2132 (ID 156: syscall::write:return):
invalid kernel access in action #12 at DIF offset 92

In this case you might need to disable the DTrace restrictions but still keep System Integrity
Protection active for everything else. You can learn more about System Integrity Protection
by visiting https://support.apple.com/en-us/HT204899.

Unreachable code
Unreachable code is code that can never be executed and is a logical kind of error. As the
Go compiler itself cannot catch such logical errors, you will need to use the go tool vet
command to help.

You should not confuse unreachable code with code that never gets
executed intentionally, such as the code of a function that is not needed
and is therefore not called in a program.

The example code in this section is saved as cannotReach.go and can be divided into two
parts.

http://dtrace.org/
https://support.apple.com/en-us/HT204899

Advanced Go Features

[87]

The first part has the following Go code:

package main

import (
 "fmt"
)

func x() int {

 return -1
 fmt.Println("Exiting x()")
 return -1
}

func y() int {
 return -1
 fmt.Println("Exiting y()")
 return -1
}

The second part is as follows:

func main() {
 fmt.Println(x())
 fmt.Println("Exiting program...")
}

As you can see, the unreachable code is in the first part. Both x() and y() functions have
unreachable code because their return statements were put at the wrong place. However,
we are not done yet because we will have to let the go tool vet tool discover the
unreachable code. The process is simple and includes the execution of the following
command:

$ go tool vet cannotReach.go
cannotReach.go:9: unreachable code
cannotReach.go:14: unreachable code

Additionally, you can see that go tool vet detects unreachable code even if the
surrounding function is not going to be executed at all, as happens with y().

Advanced Go Features

[88]

Avoiding common Go mistakes
This section will briefly talk about some common Go mistakes so that you can avoid them
in your programs:

If you have an error in a Go function, either log it or return it; do not do both
unless you have a really good reason to do so.
Go interfaces define behaviors, not data and data structures.
Use the io.Reader and io.Writer interfaces because they make your code
more extensible.
Make sure that you pass a pointer to a variable to a function only when needed.
The rest of the time, just pass the value of the variable.
Error variables are not strings; they are error values.
If you are afraid of making mistakes, you will most likely end up doing nothing
useful. So experiment as much as you can.

The following are general pieces of advice that can be applied in every programming
language:

Test your Go code and functions in small and autonomous Go programs to make
sure that they behave the way you think they should
If you do not really know a Go feature, test it before using it for the first time,
especially if you are developing a systems utility
Do not test systems software on production machines
When you deploy your systems software on a production machine, do it when
the production machine is not busy and make sure that you have a backup plan

Exercises
Find and visit the documentation page of the log package.1.
Use strace(1) to examine hw.go from the previous chapter.2.
If you are on a Mac, try to examine the hw.go executable using dtruss(1).3.
Write a program that gets input from the user and examine its executable file4.
using either strace(1) or dtruss(1).

Advanced Go Features

[89]

Visit the website of Rust at https://www.rust-lang.org/.5.
Visit the website of Swift at https://swift.org/.6.
Visit the documentation page of the io package at https://golang.org/pkg/io/.7.
Use the diff(1) command-line utility on your own in order to learn how to8.
interpret its output better.
Visit and read the main page of write(2).9.
Visit the main page of grep(1).10.
Play with reflection on your own by examining your own structures.11.
Write an improved version of occurrences.go that will only display12.
frequencies that are above a known numeric threshold, which will be given as a
command-line argument.

Summary
This chapter taught you some advanced Go features, including error handling, pattern
matching and regular expressions, reflection, and unsafe code. Also, it talked about the
strace(1) and dtrace(1) tools.

The next chapter will cover many interesting things, including the use of the new
sort.slice() Go function, which is available in the latest Go version (1.8), as well as the
big O notation, sorting algorithms, Go packages, and garbage collection.

https://www.rust-lang.org/
https://swift.org/
https://golang.org/pkg/io/

4
Go Packages, Algorithms, and

Data Structures
The main topics of this chapter will be Go packages, algorithms, and data structures. If you
combine all of these, you will end up with a complete program because Go programs come
in packages that contain algorithms that deal with data structures. These packages include
both the ones that come with Go and the ones that you create on your own in order to
manipulate your data.

Hence, in this chapter, you will learn about the following:

The Big O notation
Two sorting algorithms
The sort.Slice() function
Linked lists
Trees
Creating your own hash table data structure in Go
Go packages
Garbage collection (GC) in Go

Go Packages, Algorithms, and Data Structures

[91]

About algorithms
Knowing about algorithms and the way they work will definitely help you when you have
to manipulate lots of data. Additionally, if you choose to use the wrong algorithm for a
given job, you might slow down the entire process and make your software unusable.

Traditional Unix command-line utilities such as awk(1), sed(1), vi(1), tar(1), and
cp(1) are great examples of how good algorithms can help, and these utilities can work
with files that are much bigger than the memory of a machine. This was extremely
important in the early Unix days because the total amount of RAM on a Unix machine then
was about 64K or even less!

The Big O notation
The Big O notation is used for describing the complexity of an algorithm, which is directly
related to its performance. The efficiency of an algorithm is judged by its computation
complexity, which mainly has to do with the number of times the algorithm needs to access
its input data to do its job. Usually, you would want to know about the worst-case scenario
and the average situation.

So, an O(n) algorithm, where n is the size of the input, is considered better than an O(n2)
algorithm, which is better than an O(n3) algorithm. However, the worst algorithms are the
ones with an O(n!) running time because this makes them almost unusable for inputs with
more than 300 elements. Note that the Big O notation is more about estimating and not
about giving an exact value. Therefore, it is largely used as a comparative value and not an
absolute value.

Also, most Go lookup operations in built-in types, such as finding the value of a map key or
accessing an array element, have a constant time, which is represented by O(1). This means
that built-in types are generally faster than custom types and that you should usually prefer
them unless you want full control over what is going on behind the scenes. Additionally,
not all data structures are created equal. Generally speaking, array operations are faster
than map operations, whereas maps are more versatile than arrays!

Go Packages, Algorithms, and Data Structures

[92]

Sorting algorithms
The most common category of algorithm has to deal with sorting data, that is, placing it in a
given order. The two most famous sorting algorithms are the following:

Quicksort: This is considered one of the fastest sorting algorithms. The average
time that quicksort takes to sort its data is O (n log n), but this can grow up to
O(n2) in the worst-case scenario, which mainly has to do with the way the data is
presented for processing.
Bubble sort: This algorithm is pretty easy to implement with an O(n2) average
complexity. If you want to start learning about sorting, start with bubble sort
before looking into the more difficult to develop algorithms.

Although every algorithm has its disadvantages, if you do not have lots of
data, the algorithm is not really important as long as it does the job.

What you should remember is, the way Go implements sorting internally cannot be
controlled by the developer and it can change in the future; so, if you want to have full
control over sorting, you should write your own implementation.

The sort.Slice() function
This section will illustrate the use of the sort.Slice() function that first came with Go
version 1.8. The use of the function will be illustrated in sortSlice.go, which will be
presented in three parts.

The first part is the expected preamble of the program and the definition of a new structure
type, given as follows:

package main

import (
 "fmt"
 "sort"
)

type aStructure struct {
 person string
 height int
 weight int
}

Go Packages, Algorithms, and Data Structures

[93]

As you might expect, you have to import the sort package to be able to use its Slice()
function.

The second part contains the definition of a slice, which has four elements:

func main() {

 mySlice := make([]aStructure, 0)
 a := aStructure{"Mihalis", 180, 90}

 mySlice = append(mySlice, a)
 a = aStructure{"Dimitris", 180, 95}
 mySlice = append(mySlice, a)
 a = aStructure{"Marietta", 155, 45}
 mySlice = append(mySlice, a)
 a = aStructure{"Bill", 134, 40}
 mySlice = append(mySlice, a)

Therefore, in the first part, you declared a slice of structure that will be sorted in two ways
in the rest of the program, which contains the following code:

 fmt.Println("0:", mySlice)
 sort.Slice(mySlice, func(i, j int) bool {
 return mySlice[i].weight <mySlice[j].weight
 })
 fmt.Println("<:", mySlice)
 sort.Slice(mySlice, func(i, j int) bool {
 return mySlice[i].weight >mySlice[j].weight
 })
 fmt.Println(">:", mySlice)
}

This code contains all the magic—you only have to define the way you want to sort your
slice and the rest is done by Go. The sort.Slice() function takes the anonymous
sorting function as one of its arguments; the other argument is the name of the slice
variable you want to sort. Note that the sorted slice is saved in the slice variable.

Executing sortSlice.go will generate the following output:

$ go run sortSlice.go
0: [{Mihalis 180 90} {Dimitris 180 95} {Marietta 155 45} {Bill 134 40}]
<: [{Bill 134 40} {Marietta 155 45} {Mihalis 180 90} {Dimitris 180 95}]
>: [{Dimitris 180 95} {Mihalis 180 90} {Marietta 155 45} {Bill 134 40}]

Go Packages, Algorithms, and Data Structures

[94]

As you can see, you can easily sort in ascending or descending order by just changing a
single character in the Go code!

Also, if your Go version does not support sort.Slice(), you will get an error message
similar to the following:

$ go version
go version go1.3.3 linux/amd64
$ go run sortSlice.go
command-line-arguments
./sortSlice.go:27: undefined: sort.Slice
./sortSlice.go:31: undefined: sort.Slice

Linked lists in Go
A linked list is a structure with a finite set of elements where each element uses at least two
memory locations—one for storing the data and the other for a pointer that links the current
element to the next one in the sequence of elements that make the linked list. The biggest
advantages of linked lists are that they are easy to understand and implement, and generic
enough to be used in many different situations and model many different kinds of data.

The first element of a linked list is called the head, whereas the last element of a list is often
called the tail. The first thing you should do when defining a linked list is to keep the head
of the list in a separate variable because the head is the only thing that you need to access
the entire linked list.

Note that if you lose the pointer to the first node of a single linked list,
there is no possible way to find it again.

Go Packages, Algorithms, and Data Structures

[95]

The following figure shows the graphical representation of a linked list and a doubly linked
list. Doubly linked lists are more flexible, but require more housekeeping:

The graphical representation of a linked list and a doubly linked list

So, in this section, we will present a simple implementation of a linked list in Go saved in
linkedList.go.

When creating your own data structures, the single most important
element is the definition of the node, which is usually implemented using
a structure.

The code of linkedList.go will be presented in four parts.

The first part is as follows:

package main

import (
 "fmt"
)

The second part contains the following Go code:

type Node struct {
 Value int
 Next *Node
}

func addNode(t *Node, v int) int {

Go Packages, Algorithms, and Data Structures

[96]

 if root == nil {
 t = &Node{v, nil}
 root = t
 return 0
 }

 if v == t.Value {
 fmt.Println("Node already exists:", v)
 return -1
 }

 if t.Next == nil {
 t.Next = &Node{v, nil}
 return -2
 }

 return addNode(t.Next, v)

}

Here, you define the structure that will hold each element of the list and a function that
allows you to add a new node to the list. In order to avoid duplicate entries, you should
check whether a value already exists in the list or not. Note that addNode() is a recursive
function because it calls itself and that this approach might be a little slower and require
more memory than iterating.

The third part of the code is the traverse() function:

func traverse(t *Node) {
 if t == nil {
 fmt.Println("-> Empty list!")
 return
 }

 for t != nil {

 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
}

The for loop implements the iterative approach for visiting all the nodes in a linked list.

Go Packages, Algorithms, and Data Structures

[97]

The last part is as follows:

var root = new(Node)
func main() {
 fmt.Println(root)
 root = nil
 traverse(root)
 addNode(root, 1)
 addNode(root, 1)
 traverse(root)
 addNode(root, 10)
 addNode(root, 5)
 addNode(root, 0)
 addNode(root, 0)
 traverse(root)
 addNode(root, 100)
 traverse(root)
}

For the first time in this book, you see the use of a global variable that is not a constant.
Global variables can be accessed and changed from anywhere in a program, which makes
their use both practical and dangerous for that reason. The reason for using a global
variable, which is named root, to hold the root of the linked list is to show whether the
linked list is empty or not. This happens because integer values in Go are initialized as 0; so
new(Node) is in fact {0 <nil>}, which makes it impossible to tell whether the head of the
list is nil or not without passing an extra variable to each function that manipulates the
linked list.

Executing linkedList.go will generate the following output:

$ go run linkedList.go
&{0 <nil>}
-> Empty list!
Node already exists: 1
1 ->
Node already exists: 0
1 -> 10 -> 5 -> 0 ->
1 -> 10 -> 5 -> 0 -> 100 ->

Go Packages, Algorithms, and Data Structures

[98]

Trees in Go
A graph is a finite and nonempty set of vertices and edges. A directed graph is a graph
whose edges have a direction associated with them. A directed acyclic graph is a directed
graph with no cycles in it. A tree is a directed acyclic graph that satisfies three more
principles: firstly, it has a root node—the entry point to the tree; secondly, every vertex,
except the root, has one and only one entry point; and thirdly, there is a path that connects
the root with each vertex and belongs to the tree.

As a result, the root is the first node of the tree. Each node can be connected to one or more
nodes depending on the tree type. If each node leads to one and only one other node, then
the tree is a linked list!

The most commonly used type of tree is called a binary tree because each node can have up
to two children. The following figure shows a graphical representation of a binary tree's
data structure:

A binary tree

Go Packages, Algorithms, and Data Structures

[99]

The presented code will only show you how to create a binary tree and how to traverse it in
order to print all of its elements as proof that Go can be used for creating a tree data
structure. Therefore, it will not implement the full functionality of a binary tree, which also
includes deleting a tree node and balancing a tree.

The code of tree.go will be presented in three parts.

The first part is the expected preamble as well as the definition of the node, as given here:

package main

import (
 "fmt"
 "math/rand"
 "time"
)
type Tree struct {
 Left *Tree
 Value int
 Right *Tree
}

The second part contains functions that allow you to traverse a tree in order to print all of
its elements, create a tree with randomly generated numbers, and insert a node into it:

func traverse(t *Tree) {
 if t == nil {
 return
 }
 traverse(t.Left)
 fmt.Print(t.Value, " ")
 traverse(t.Right)
}

func create(n int) *Tree {
 var t *Tree
 rand.Seed(time.Now().Unix())
 for i := 0; i< 2*n; i++ {
 temp := rand.Intn(n)
 t = insert(t, temp)
 }
 return t
}

func insert(t *Tree, v int) *Tree {
 if t == nil {
 return&Tree{nil, v, nil}

Go Packages, Algorithms, and Data Structures

[100]

 }
 if v == t.Value {
 return t
 }
 if v <t.Value {
 t.Left = insert(t.Left, v)
 return t
 }
 t.Right = insert(t.Right, v)
 return t
}

The second if statement of insert() checks whether a value already exists in the tree, in
order to not add it again. The third if statement identifies whether the new element will be
on the left or right-hand side of the current node.

The last part is the implementation of the main() function:

func main() {
 tree := create(30)
 traverse(tree)
 fmt.Println()
 fmt.Println("The value of the root of the tree is", tree.Value)
}

Executing tree.go will generate the following output:

$ go run tree.go
0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29
The value of the root of the tree is 16

Please note that as the values of the nodes of the tree are generated
randomly, the output of the program will be different each time you run it.
If you want to get the same elements all the time, then use a constant for
the seed value in the create() function.

Developing a hash table in Go
Strictly speaking, a hash table is a data structure that stores one or more key and value
pairs and uses the hashFunction of the key to compute an index into an array of buckets
or slots, from which the correct value can be retrieved. Ideally, the hashFunction should
assign each key to a unique bucket, provided that you have the required number of buckets.

Go Packages, Algorithms, and Data Structures

[101]

A good hashFunction must be able to produce a uniform distribution of hash values
because it is inefficient to have unused buckets or big differences in the cardinalities of the
buckets. Additionally, the hashFunction should work consistently and output the same
hash value for identical keys because otherwise it would be impossible to find the
information you want! If you think that hash tables are not that useful, handy, or clever,
you should consider the following: when a hash table has n keys and k buckets, its search
speed goes from O (n) for a linear search to O (n/k)! Although the improvement might look
small, you should realize that for a hash array with only 20 slots, the search time would be
reduced by 20 times! This makes hash tables good for applications such as dictionaries or
any other analogous application where you have to search lots of data. Although using lots
of buckets increases the complexity and the memory usage of your program, there are times
when it is worth it.

The following figure shows the graphical representation of a simple hash table with 10
buckets. It is not difficult to understand that the hashFunction is the modulo operator:

A simple hash table

Go Packages, Algorithms, and Data Structures

[102]

Although the presented version of a hash table uses numbers because they are a little easier
to implement and understand, you can use any data type you want as long as you can find
an appropriate hashFunction to process your input. The source code of hash.go will be
presented in three parts.

The first one is the following:

package main

import (
 "fmt"
)

type Node struct {
 Value int
 Next *Node
}

type HashTablestruct {
 Table map[int]*Node

 Size int
}

The Node struct definition is taken from the implementation of the linked list you saw
earlier. The reason for using a map for the Table variable instead of a slice is that the index
of a slice can only be a natural number, whereas the key of a map can be anything.

The second part contains the following Go code:

func hashFunction(i, size int) int {
 return (i % size)
}

func insert(hash *HashTable, value int) int {
 index := hashFunction(value, hash.Size)
 element := Node{Value: value, Next: hash.Table[index]}
 hash.Table[index] = &element
 return index
}

func traverse(hash *HashTable) {
 for k := range hash.Table {
 if hash.Table[k] != nil {
 t := hash.Table[k]
 for t != nil {

Go Packages, Algorithms, and Data Structures

[103]

 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
 }
 }
}

Note here that the traverse() function is using the Go code from linkedList.go in
order to traverse the elements of each bucket in the hash table. Additionally, note that the
insert function does not check whether or not a value already exists in the hash table in
order to save book space, but this is not usually the case. Also, for reasons of speed and
simplicity, new elements are inserted at the beginning of each list.

The last part contains the implementation of the main() function:

func main() {
 table := make(map[int]*Node, 10)
 hash := &HashTable{Table: table, Size: 10}
 fmt.Println("Number of spaces:", hash.Size)
 for i := 0; i< 95; i++ {
 insert(hash, i)
 }
 traverse(hash)
}

Executing hash.go will generate the following output, which proves that the hash table is
working as expected:

$ go run hash.go
Number of spaces: 10
89 -> 79 -> 69 -> 59 -> 49 -> 39 -> 29 -> 19 -> 9 ->
86 -> 76 -> 66 -> 56 -> 46 -> 36 -> 26 -> 16 -> 6 ->
92 -> 82 -> 72 -> 62 -> 52 -> 42 -> 32 -> 22 -> 12 -> 2 ->
94 -> 84 -> 74 -> 64 -> 54 -> 44 -> 34 -> 24 -> 14 -> 4 ->
85 -> 75 -> 65 -> 55 -> 45 -> 35 -> 25 -> 15 -> 5 ->
87 -> 77 -> 67 -> 57 -> 47 -> 37 -> 27 -> 17 -> 7 ->
88 -> 78 -> 68 -> 58 -> 48 -> 38 -> 28 -> 18 -> 8 ->
90 -> 80 -> 70 -> 60 -> 50 -> 40 -> 30 -> 20 -> 10 -> 0 ->
91 -> 81 -> 71 -> 61 -> 51 -> 41 -> 31 -> 21 -> 11 -> 1 ->
93 -> 83 -> 73 -> 63 -> 53 -> 43 -> 33 -> 23 -> 13 -> 3 ->

Go Packages, Algorithms, and Data Structures

[104]

If you execute hash.go multiple times, you will see that the order the lines are printed in
will vary. This happens because the output of range hash.Table found in the
traverse() function cannot be predicted, which happens because Go has an unspecified
return order for hashes.

About Go packages
Packages are for grouping related functions and constants so that you can transfer them
easily and use them in your own Go programs. As a result, apart from the main package,
packages are not autonomous programs.

There exist many useful Go packages that come with each Go distribution including the
following:

The net package: This supports portable TCP and UDP connections
The http package: This is a part of the net package and offers HTTP server and
client implementations
The math package: This provides mathematical functions and constants
The io package: This deals with primitive input and output operations
The os package: This gives you a portable interface to the operating system
functionality
The time package: This allows you to work with times and dates

For the full list of standard Go packages refer to https://golang.org/pkg/. I strongly
advise you to look into all the packages that come with Go before you start developing your
own functions and packages because there is a realistic chance that the functionality you are
looking for is already available in a standard Go package.

Using standard Go packages
You probably already know how to use the standard Go packages. However, what you may
not be aware of is the fact that some packages have a structure. So, for example, the net
package has several sub directories, named http, mail, rpc, smtp, textproto, and url,
which should be imported as net/http, net/mail, net/rpc, net/smtp, net/textproto,
and net/url, respectively. Go groups packages when this makes sense, but these packages
could have also been isolated packages if they were grouped for distribution instead of
functionality.

https://golang.org/pkg/

Go Packages, Algorithms, and Data Structures

[105]

You can find information about a Go standard package with the help of
the godoc utility. So, if you are looking for information about the net
package, you should execute godoc net.

Creating your own packages
Packages make the design, implementation, and maintenance of large software systems
easier and simpler. Moreover, they allow multiple programmers to work on the same
project without any overlapping. So, if you find yourselves using the same functions all the
time, you should seriously consider including them in your own Go packages.

The source code of a Go package, which can contain multiple files, can be found within a
single directory, which is named after the package with the exception of the main package,
which can have any name.

The Go code of the aSimplePackage.go file, which will be developed in this section, will
be presented in two parts.

The first part is the following:

package aSimplePackage

import (
 "fmt"
)

There is nothing special here; you just have to define the name of the package and include
the necessary import statements because a package can depend on other packages.

The second part contains the following Go code:

const Pi = "3.14159"

func Add(x, y int) int {
 return x + y
}

func Println(x int) {
 fmt.Println(x)
}

So, the aSimplePackage package offers two functions and one constant.

Go Packages, Algorithms, and Data Structures

[106]

After you finish writing the code of aSimplePackage.go, you should execute the
following commands in order to be able to use the package in other Go programs or
packages:

$ mkdir ~/go
$ mkdir ~/go/src
$ mkdir ~/go/src/aSimplePackage
$ export GOPATH=~/go
$ vi ~/go/src/aSimplePackage/aSimplePackage.go
$ go install aSimplePackage

You should perform all these actions for every Go package you create,
apart from the first two mkdir commands, which should only be executed
once.

As you can see, each package needs its own directory inside ~/go/src. After executing the
aforementioned commands, the go tool will automatically generate an ar(1) archive of
the Go package you have just compiled in the pkg directory:

$ ls -lR ~/go
total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:35 pkg
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:35 src
/Users/mtsouk/go/pkg:
total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:35 darwin_amd64
/Users/mtsouk/go/pkg/darwin_amd64:
total 8
-rw-r--r-- 1 mtsouk staff 2918 Apr 4 22:35 aSimplePackage.a
/Users/mtsouk/go/src:
total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:35 aSimplePackage
/Users/mtsouk/go/src/aSimplePackage:
total 8
-rw-r--r-- 1 mtsouk staff 148 Apr 4 22:30 aSimplePackage.go

Although you are now ready to use the aSimplePackage package, you cannot see the
functionality of the package without having an autonomous program.

Go Packages, Algorithms, and Data Structures

[107]

Private variables and functions
Private variables and functions are different from public ones in that they can be used and
called only internally in a package. Controlling which functions and variables are public or
not is also known as encapsulation.

Go follows a simple rule which states that functions, variables, types, and so on that begin
with an uppercase letter are public, whereas functions, variables, types, and so on that
begin with a lowercase letter are private. However, this rule does not affect package names.

You should understand now why the fmt.Printf() function is named as
it is, instead of fmt.printf().

To illustrate this, we will make some changes to the aSimplePackage.go module and add
one private variable and one private function. The name of the new separate package will
be anotherPackage.go. You can see the changes made to it using the diff(1) command-
line utility:

$ diff aSimplePackage.go anotherPackage.go
1c1
<packageaSimplePackage

>packageanotherPackage
7a8
>const version = "1.1"
15a17,20
>
>func Version() {
> fmt.Println("The version of the package is", version)
> }

The init() function
Every Go package can have a function named init() that is automatically executed at the
beginning of the execution. So, let's add the following init() function to the code of the
anotherPackage.go package:

func init() {
 fmt.Println("The init function of anotherPackage")
}

Go Packages, Algorithms, and Data Structures

[108]

The current implementation of the init() function is naïve and does nothing special.
However, there are times when you want to perform important initializations before you
start using a package such as opening database and network connections—in these
relatively rare cases the init() function is invaluable.

Using your own Go packages
This subsection will show you how to use the aSimplePackage and anotherPackage
packages in your own Go programs by presenting two small Go programs named
usePackage.go and privateFail.go.

In order to use the aSimplePackage package that resides under the GOPATH directory from
another Go program, you will need to write the following Go code:

package main

import (
 "aSimplePackage"
 "fmt"
)

func main() {
 temp := aSimplePackage.Add(5, 10)
 fmt.Println(temp)

 fmt.Println(aSimplePackage.Pi)
}

First of all, if aSimplePackage is not already compiled and located at the expected
location, the compilation process will fail with an error message similar to the following:

$ go run usePackage.go
usePackage.go:4:2: cannot find package "aSimplePackage" in any of:
 /usr/local/Cellar/go/1.8/libexec/src/aSimplePackage (from $GOROOT)
 /Users/mtsouk/go/src/aSimplePackage (from $GOPATH)

However, if aSimplePackage is available, usePackage.go will be executed just fine:

$ go run usePackage.go
15
3.14159

Go Packages, Algorithms, and Data Structures

[109]

Now, let's see the Go code of the other small program that uses anotherPackage:

package main

import (
 "anotherPackage"
 "fmt"
)

func main() {
 anotherPackage.Version()
 fmt.Println(anotherPackage.version)
 fmt.Println(anotherPackage.Pi)
}

If you try to call a private function or use a private variable from anotherPackage, your
Go program privateFail.go will fail to run with the following error message:

$ go run privateFail.go
command-line-arguments
./privateFail.go:10: cannot refer to unexported name anotherPackage.version
./privateFail.go:10: undefined: anotherPackage.version

I really like showing error messages because most books try to hide them
as if they were not there. When I was learning Go, it took me about 3
hours of debugging until I found that the reason for an error message I
could not explain was the name of a variable!

However, if you remove the call to the private variable from privateFail.go, the
program will be executed without errors. Additionally, you will see that the init()
function actually gets executed automatically:

$ go run privateFail.go
The init function of anotherPackage
The version of the package is 1.1
3.14159

Using external Go packages
Sometimes packages are available on the internet and you would prefer to use them by
specifying their internet address. One such example is the Go MySQL driver that can be
found at github.com/go-sql-driver/mysql.

Go Packages, Algorithms, and Data Structures

[110]

Look at the following Go code, which is saved as useMySQL.go:

package main

import (
 "fmt"
 _ "github.com/go-sql-driver/mysql"
)

func main() {
 fmt.Println("Using the MySQL Go driver!")
}

The use of _ as the package identifier will make the compiler ignore the fact that the
package is not being used—the only sensible reason for bypassing the compiler is when you
have an init function in your unused package that you want to be executed. The other
sensible reason is for illustrating a Go concept!

If you try to execute useMySQL.go, the compilation process will fail:

$ go run useMySQL.go
useMySQL.go:5:2: cannot find package "github.com/go-sql-driver/mysql" in
any of:
 /usr/local/Cellar/go/1.8/libexec/src/github.com/go-sql-driver/mysql
(from $GOROOT)
 /Users/mtsouk/go/src/github.com/go-sql-driver/mysql (from $GOPATH)

In order to compile useMySQL.go, you should first perform the following steps:

$ go get github.com/go-sql-driver/mysql
$ go run useMySQL.go
Using the MySQL Go driver!

After successfully downloading the required package, the contents of the ~/go directory
verify that the desired Go package has been downloaded:

$ ls -lR ~/go
total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:35 pkg
drwxr-xr-x 5 mtsouk staff 170 Apr 6 21:32 src
/Users/mtsouk/go/pkg:
total 0
drwxr-xr-x 5 mtsouk staff 170 Apr 6 21:32 darwin_amd64
/Users/mtsouk/go/pkg/darwin_amd64:
total 24
-rw-r--r-- 1 mtsouk staff 2918 Apr 4 23:07 aSimplePackage.a
-rw-r--r-- 1 mtsouk staff 6102 Apr 4 22:50 anotherPackage.a

Go Packages, Algorithms, and Data Structures

[111]

drwxr-xr-x 3 mtsouk staff 102 Apr 6 21:32 github.com
/Users/mtsouk/go/pkg/darwin_amd64/github.com:
total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 6 21:32 go-sql-driver
/Users/mtsouk/go/pkg/darwin_amd64/github.com/go-sql-driver:
total 728
-rw-r--r-- 1 mtsouk staff 372694 Apr 6 21:32 mysql.a
/Users/mtsouk/go/src:
total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:35 aSimplePackage
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:50 anotherPackage
drwxr-xr-x 3 mtsouk staff 102 Apr 6 21:32 github.com
/Users/mtsouk/go/src/aSimplePackage:
total 8
-rw-r--r-- 1 mtsouk staff 148 Apr 4 22:30 aSimplePackage.go
/Users/mtsouk/go/src/anotherPackage:
total 8
-rw-r--r--@ 1 mtsouk staff 313 Apr 4 22:50 anotherPackage.go
/Users/mtsouk/go/src/github.com:
total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 6 21:32 go-sql-driver
/Users/mtsouk/go/src/github.com/go-sql-driver:
total 0
drwxr-xr-x 35 mtsouk staff 1190 Apr 6 21:32 mysql
/Users/mtsouk/go/src/github.com/go-sql-driver/mysql:
total 584
-rw-r--r-- 1 mtsouk staff 2066 Apr 6 21:32 AUTHORS
-rw-r--r-- 1 mtsouk staff 5581 Apr 6 21:32 CHANGELOG.md
-rw-r--r-- 1 mtsouk staff 1091 Apr 6 21:32 CONTRIBUTING.md
-rw-r--r-- 1 mtsouk staff 16726 Apr 6 21:32 LICENSE
-rw-r--r-- 1 mtsouk staff 18610 Apr 6 21:32 README.md
-rw-r--r-- 1 mtsouk staff 470 Apr 6 21:32 appengine.go
-rw-r--r-- 1 mtsouk staff 4965 Apr 6 21:32 benchmark_test.go
-rw-r--r-- 1 mtsouk staff 3339 Apr 6 21:32 buffer.go
-rw-r--r-- 1 mtsouk staff 8405 Apr 6 21:32 collations.go
-rw-r--r-- 1 mtsouk staff 8525 Apr 6 21:32 connection.go
-rw-r--r-- 1 mtsouk staff 1831 Apr 6 21:32 connection_test.go
-rw-r--r-- 1 mtsouk staff 3111 Apr 6 21:32 const.go
-rw-r--r-- 1 mtsouk staff 5036 Apr 6 21:32 driver.go
-rw-r--r-- 1 mtsouk staff 4246 Apr 6 21:32 driver_go18_test.go
-rw-r--r-- 1 mtsouk staff 47090 Apr 6 21:32 driver_test.go
-rw-r--r-- 1 mtsouk staff 13046 Apr 6 21:32 dsn.go
-rw-r--r-- 1 mtsouk staff 7872 Apr 6 21:32 dsn_test.go
-rw-r--r-- 1 mtsouk staff 3798 Apr 6 21:32 errors.go
-rw-r--r-- 1 mtsouk staff 989 Apr 6 21:32 errors_test.go
-rw-r--r-- 1 mtsouk staff 4571 Apr 6 21:32 infile.go
-rw-r--r-- 1 mtsouk staff 31362 Apr 6 21:32 packets.go
-rw-r--r-- 1 mtsouk staff 6453 Apr 6 21:32 packets_test.go

Go Packages, Algorithms, and Data Structures

[112]

-rw-r--r-- 1 mtsouk staff 600 Apr 6 21:32 result.go
-rw-r--r-- 1 mtsouk staff 3698 Apr 6 21:32 rows.go
-rw-r--r-- 1 mtsouk staff 3609 Apr 6 21:32 statement.go
-rw-r--r-- 1 mtsouk staff 729 Apr 6 21:32 transaction.go
-rw-r--r-- 1 mtsouk staff 17924 Apr 6 21:32 utils.go
-rw-r--r-- 1 mtsouk staff 5784 Apr 6 21:32 utils_test.go

The go clean command
There will be times when you are developing a big Go program that uses lots of
nonstandard Go packages and you want to start the compilation process from the
beginning. Go allows you to clean up the files of a package in order to recreate it later. The
following command cleans up a package without affecting the code of the package:

$ go clean -x -i aSimplePackage
cd /Users/mtsouk/go/src/aSimplePackage
rm -f aSimplePackage.test aSimplePackage.test.exe
rm -f /Users/mtsouk/go/pkg/darwin_amd64/aSimplePackage.a

Similarly, you can also clean up a package that you have downloaded from the internet,
which also requires the use of its full path:

$ go clean -x -i github.com/go-sql-driver/mysql
cd /Users/mtsouk/go/src/github.com/go-sql-driver/mysql
rm -f mysql.test mysql.test.exe appengine appengine.exe
rm -f /Users/mtsouk/go/pkg/darwin_amd64/github.com/go-sql-driver/mysql.a

Please note that the go clean command is also particularly useful when
you want to transfer your projects to another machine without including
unnecessary files.

Garbage collection
In this section, we will briefly talk about how Go deals with GC, which tries to free unused
memory efficiently. The Go code of garbageCol.go can be presented in two parts.

The first part is as follows:

package main

import (
 "fmt"
 "runtime"

Go Packages, Algorithms, and Data Structures

[113]

 "time"
)

func printStats(mem runtime.MemStats) {
 runtime.ReadMemStats(&mem)
 fmt.Println("mem.Alloc:", mem.Alloc)
 fmt.Println("mem.TotalAlloc:", mem.TotalAlloc)
 fmt.Println("mem.HeapAlloc:", mem.HeapAlloc)
 fmt.Println("mem.NumGC:", mem.NumGC)
 fmt.Println("-----")
}

Every time you want to read the latest memory statistics, you should make a call to the
runtime.ReadMemStats() function.

The second part, which contains the implementation of the main() function, has the
following Go code:

func main() {
 var memruntime.MemStats
 printStats(mem)

 for i := 0; i< 10; i++ {
 s := make([]byte, 100000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 }
 printStats(mem)

 for i := 0; i< 10; i++ {
 s := make([]byte, 100000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 time.Sleep(5 * time.Second)
 }
 printStats(mem)

}

Here, you try to obtain large amounts of memory in order to trigger the use of the garbage
collector.

Go Packages, Algorithms, and Data Structures

[114]

Executing garbageCol.go generates the following output:

$ go run garbageCol.go
mem.Alloc: 53944
mem.TotalAlloc: 53944
mem.HeapAlloc: 53944
mem.NumGC: 0

mem.Alloc: 100071680
mem.TotalAlloc: 1000146400
mem.HeapAlloc: 100071680
mem.NumGC: 10

mem.Alloc: 66152
mem.TotalAlloc: 2000230496
mem.HeapAlloc: 66152
mem.NumGC: 20

So, the output presents information about properties related to the memory used by the
garbageCol.go program. If you want to get an even more detailed output, you can
execute garbageCol.go, as shown here:

$ GODEBUG=gctrace=1 go run garbageCol.go

This version of the command will give you information in the following format:

gc 11 @0.101s 0%: 0.003+0.083+0.020 ms clock, 0.030+0.059/0.033/0.006+0.16
mscpu, 95->95->0 MB, 96 MB goal, 8 P

The 95->95->0 MB part contains information about the various heap sizes that also show
how well or how badly the garbage collector is doing. The first value is the heap size when
the GC starts, whereas the middle value shows the heap size when the GC ends. The third
value is the size of the live heap.

Your environment
In this section, we will show how to find out things about your environment using the
runtime package—this can be useful when you have to take certain actions depending on
the OS and the Go version you are using.

Go Packages, Algorithms, and Data Structures

[115]

The use of the runtime package for finding out about your environment is straightforward
and is illustrated in runTime.go:

package main

import (
 "fmt"
 "runtime"
)

func main() {
 fmt.Print("You are using ", runtime.Compiler, " ")
 fmt.Println("on a", runtime.GOARCH, "machine")
 fmt.Println("with Go version", runtime.Version())
 fmt.Println("Number of Goroutines:", runtime.NumGoroutine())
}

As long as you know what you want to call from the runtime package, you can get the
information you desire. The last fmt.Println() command here displays information
about goroutines—you will learn more about goroutines in Chapter 9, Goroutines – Basic
Features.

Executing runTime.go on a macOS machine generates the following output:

$ go run runTime.go
You are using gc on a amd64 machine
with Go version go1.8
Number of Goroutines: 1

Executing runTime.go on a Linux machine that uses an older Go version gives the
following:

$ go run runTime.go
You are using gc on a amd64 machine
with Go version go1.3.3
Number of Goroutines: 4

Go Packages, Algorithms, and Data Structures

[116]

Go gets updated frequently!
As I came to the end of writing this chapter, Go was updated a little. So, I decided to
include this information in this book in order to give a better sense of how often Go gets
updated:

$ date
Sat Apr 8 09:16:46 EEST 2017
$ go version
go version go1.8.1 darwin/amd64

Exercises
Visit the documentation of the runtime package.1.
Create your own structure, make a slice and use the sort.Slice() to sort the2.
elements of the slice you created.
Implement the quicksort algorithm in Go and sort some randomly-generated3.
numeric data.
Implement a doubly linked list.4.
The implementation of tree.go is far from complete! Try to implement a5.
function that checks whether a value can be found in the tree and another
function that allows you to delete a tree node.
Similarly, the implementation of the linkedList.go file is also incomplete. Try6.
to implement a function for deleting a node and another one for inserting a node
somewhere inside the linked list.
Once again, the hash table implementation of hash.go is incomplete as it allows7.
duplicate entries. So, implement a function that searches the hash table for a key
before inserting it.

Go Packages, Algorithms, and Data Structures

[117]

Summary
In this chapter, you learned many things related to algorithms and data structures. You also
learned how to use existing Go packages and how to develop your own Go packages. This
chapter also talked about garbage collection in Go and how to find information about your
environment.

In the next chapter, we will start talking about systems programming and present even
more Go code. More precisely, Chapter 5, Files and Directories, will talk about how to work
with files and directories in Go, how to painlessly traverse directory structures, and how to
process command-line arguments using the flag package. But more importantly, we will
start developing Go versions of various Unix command-line utilities.

5
Files and Directories

In the previous chapter, we talked about many important topics including developing and
using Go packages, Go data structures, algorithms, and GC. However, until now, we have
not developed any actual system utility. This will change very soon because starting from
this really important chapter, we will begin developing real system utilities in Go by
learning how to use Go, to work with the various types of files and directories of a
filesystem.

You should always have in mind that Unix considers everything a file including symbolic
links, directories, network devices, network sockets, entire hard drives, printers, and plain
text files. The purpose of this chapter is to illustrate how the Go standard library allows us
to understand if a path exists or not, as well as how to search directory structures to detect
the kind of files we want. Additionally, this chapter will prove, using Go code as evidence,
that many traditional Unix command-line utilities that work with files and directories do
not have a difficult implementation.

In this chapter, you will learn the following topics:

The Go packages that will help you manipulate directories and file
Processing command-line arguments and options easily using the flag package
Developing a version of the which(1) command-line utility in Go
Developing a version of the pwd(1) command-line utility in Go
Deleting and renaming files and directories
Traversing directory trees easily
Writing a version of the find(1) utility in Go
Duplicating a directory structure in another place

Files and Directories

[119]

Useful Go packages
The single most important package that allows you to manipulate files and directories as
entities is the os package, which we will use extensively in this chapter. If you consider files
as boxes with contents, the os package allows you to move them, put them into the
wastebasket, change their names, visit them, and decide which ones you want to use,
whereas the io package, which will be presented in the next chapter, allows you to
manipulate the contents of a box without worrying too much about the box itself!

The flag package, which you will see in a while, lets you define and process your own
flags and manipulate the command-line arguments of a Go program.

The filepath package is extremely handy as it includes the filepath.Walk() function
that allows you to traverse entire directory structures in an easy way.

Command-line arguments revisited!
As we saw in Chapter 2, Writing Programs in Go, you cannot work efficiently with multiple
command-line arguments and options using if statements. The solution to this problem is
to use the flag package, which will be explained here.

Remembering that the flag package is a standard Go package and that
you do not have to search for the functionality of a flag elsewhere is
extremely important.

The flag package
The flag package does the dirty work of parsing command-line arguments and options for
us; so, there is no need for writing complicated and perplexing Go code. Additionally, it
supports various types of parameters, including strings, integers, and Boolean, which saves
you time as you do not have to perform any data type conversions.

Files and Directories

[120]

The usingFlag.go program illustrates the use of the flag Go package and will be
presented in three parts. The first part has the following Go code:

package main

import (
 "flag"
 "fmt"
)

The second part, which has the most important Go code of the program, is as follows:

func main() {
 minusO := flag.Bool("o", false, "o")
 minusC := flag.Bool("c", false, "c")
 minusK := flag.Int("k", 0, "an int")

 flag.Parse()

In this part, you can see how you can define the flags that interest you. Here, you defined -
o, -c, and -k. Although the first two are Boolean flags, the -k flag requires an integer value,
which can be given as -k=123.

The last part comes with the following Go code:

 fmt.Println("-o:", *minusO)
 fmt.Println("-c:", *minusC)
 fmt.Println("-K:", *minusK)

 for index, val := range flag.Args() {
 fmt.Println(index, ":", val)
 }
}

In this part, you can see how you can read the value of an option, which also allows you to
tell whether an option has been set or not. Additionally, flag.Args() allows you to access
the unused command-line arguments of the program.

Files and Directories

[121]

The use and the output of usingFlag.go are showcased in the following output:

$ go run usingFlag.go
-o: false
-c: false
-K: 0
$ go run usingFlag.go -o a b
-o: true
-c: false
-K: 0
0 : a
1 : b

However, if you forget to type the value of a command-line option (-k) or the provided
value is of the wrong type, you will get the following messages and the program will
terminate:

$./usingFlag -k
flag needs an argument: -k
Usage of ./usingFlag:
 -c c
 -k int
 an int
 -o o

$./usingFlag -k=abc
invalid value "abc" for flag -k: strconv.ParseInt: parsing "abc": invalid
syntax
Usage of ./usingFlag:
 -c c
 -k int
 an int
 -o o

If you do not want your program to exit when there is a parse error, you can use the
ErrorHandling type provided by the flag package, which allows you to change the way
flag.Parse() behaves on errors with the help of the NewFlagSet() function. However,
in systems programming, you usually want your utility to exit when there is an error in one
or more command-line options.

Files and Directories

[122]

Dealing with directories
Directories allow you to create a structure and store your files in a way that is easy for you
to organize and search for them. In reality, directories are entries on a filesystem that
contain lists of other files and directories. This happens with the help of inodes, which are
data structures that hold information about files and directories.

As you can see in the following figure, directories are implemented as lists of names
assigned to inodes. As a result, a directory contains an entry for itself, its parent directory,
and each of its children, which among other things can be regular files or other directories:

What you should remember is that an inode holds metadata about a file,
not the actual data of a file.

A graphical representation of inodes

Files and Directories

[123]

About symbolic links
Symbolic links are pointers to files or directories, which are resolved at the time of access.
Symbolic links, which are also called soft links, are not equal to the file or the directory they
are pointing to and are allowed to point to nowhere, which can sometimes complicate
things.

The following Go code, saved in symbLink.go and presented in two parts, allows you to
check whether a path or file is a symbolic link or not. The first part is as follows:

package main

import (
 "fmt"
 "os"
 "path/filepath"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide an argument!")
 os.Exit(1)
 }
 filename := arguments[1]

Nothing special is happening here—you just need to make sure that you get one command-
line argument in order to have something to test. The second part is the following Go code:

 fileinfo, err := os.Lstat(fil /etcename)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

 if fileinfo.Mode()&os.ModeSymlink != 0 {
 fmt.Println(filename, "is a symbolic link")
 realpath, err := filepath.EvalSymlinks(filename)
 if err == nil {
 fmt.Println("Path:", realpath)
 }
 }

}

Files and Directories

[124]

The aforementioned code of symbLink.go is more cryptic than usual because it uses lower-
level functions. The technique for finding out whether a path is a real path or not involves
the use of the os.Lstat() function that gives you information about a file or directory and
the use of the Mode() function on the return value of the os.Lstat() call in order to
compare the outcome with the os.ModeSymlink constant, which is the symbolic link bit.

Additionally, there exists the filepath.EvalSymlinks() function that allows you to
evaluate any symbolic links that exist and return the true path of a file or directory, which is
also used in symbLink.go. This might make you think that we are using lots of Go code for
such a simple task, which is partially true, but when you are developing systems software,
you are obliged to consider all possibilities and be cautious.

Executing symbLink.go, which only takes one command-line argument, generates the
following output:

$ go run symbLink.go /etc
/etc is a symbolic link
Path: /private/etc

You will also see some of the aforementioned Go code as a part of bigger programs in the
rest of this chapter.

Implementing the pwd(1) command
When I start thinking about how to implement a program, so many ideas come to my mind
that sometimes it becomes too difficult to decide what to do! The key here is to do
something instead of waiting because as you write code, you will be able to tell whether the
approach you are taking is good or not, and whether you should try another approach or
not.

The pwd(1) command-line utility is pretty simplistic, yet it does a pretty good job. If you
write lots of shell scripts, you should already know about pwd(1) because it is pretty handy
when you want to get the full path of a file or a directory that resides in the same directory
as the script that is being executed.

Files and Directories

[125]

The Go code of pwd.go will be presented in two parts and will only support the -P
command-line option, which resolves all symbolic links and prints the physical current
working directory. The first part of pwd.go is as follows:

package main

import (
 "fmt"
 "os"
 "path/filepath"
)

func main() {
 arguments := os.Args

 pwd, err := os.Getwd()
 if err == nil {
 fmt.Println(pwd)
 } else {
 fmt.Println("Error:", err)
 }

The second part is as follows:

 if len(arguments) == 1 {
 return
 }

 if arguments[1] != "-P" {
 return
 }

 fileinfo, err := os.Lstat(pwd)
 if fileinfo.Mode()&os.ModeSymlink != 0 {
 realpath, err := filepath.EvalSymlinks(pwd)
 if err == nil {
 fmt.Println(realpath)
 }
 }
}

Note that if the current directory can be described by multiple paths, which can happen if
you are using symbolic links, os.Getwd() can return any one of them. Additionally, you
need to reuse some of the Go code found in symbLink.go to discover the physical current
working directory in case the -P option is given and you are dealing with a directory that is
a symbolic link. Also, the reason for not using the flag package in pwd.go is that I find the
code much simpler the way it is.

Files and Directories

[126]

Executing pwd.go will generate the following output:

$ go run pwd.go
/Users/mtsouk/Desktop/goBook/ch/ch5/code

On macOS machines, the /tmp directory is a symbolic link, which can help us verify that
pwd.go works as expected:

$ go run pwd.go
/tmp
$ go run pwd.go -P
/tmp
/private/tmp

Developing the which(1) utility in Go
The which(1) utility searches the value of the PATH environment variable in order to find
out if an executable file can be found in one of the directories of the PATH variable. The
following output shows the way the which(1) utility works:

$ echo $PATH
/home/mtsouk/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games
$ which ls
/home/mtsouk/bin/ls
code$ which -a ls
/home/mtsouk/bin/ls
/bin/ls

Our implementation of the Unix utility will support the two command-line options
supported by the macOS version of which(1), which are -a and -s with the help of the
flag package—the Linux version of which(1) does not support the -s option. The -a
option lists all the instances of the executable instead of just the first one while the -s
returns 0 if the executable was found and 1 otherwise—this is not the same as printing 0 or
1 using the fmt package.

In order to check the return value of a Unix command-line utility in the shell, you should do
the following:

$ which -s ls
$ echo $?
0

Files and Directories

[127]

Note that go run prints out nonzero exit codes.

The Go code for which(1) will be saved in which.go and will be presented in four parts.
The first part of which.go has the following Go code:

package main

import (
 "flag"
 "fmt"
 "os"
 "strings"
)

The strings package is needed in order to split the contents of the PATH variable after you
read it. The second part of which.go deals with the use of the flag package:

func main() {
 minusA := flag.Bool("a", false, "a")
 minusS := flag.Bool("s", false, "s")

 flag.Parse()
 flags := flag.Args()
 if len(flags) == 0 {
 fmt.Println("Please provide an argument!")
 os.Exit(1)
 }
 file := flags[0]
 fountIt := false

One very important part of which.go is the part that reads the PATH shell environment
variable in order to split it and use it, which is presented in the third part here:

 path := os.Getenv("PATH")
 pathSlice := strings.Split(path, ":")
 for _, directory := range pathSlice {
 fullPath := directory + "/" + file

The last statement here constructs the full path of the file we are searching for, as if it
existed in each separate directory of the PATH variable because if you have the full path of a
file, you do not have to search for it!

Files and Directories

[128]

The last part of which.go is as follows:

 fileInfo, err := os.Stat(fullPath)
 if err == nil {
 mode := fileInfo.Mode()
 if mode.IsRegular() {
 if mode&0111 != 0 {
 fountIt = true
 if *minusS == true {
 os.Exit(0)
 }
 if *minusA == true {

 fmt.Println(fullPath)
 } else {
 fmt.Println(fullPath)
 os.Exit(0)
 }
 }
 }
 }
 }
 if fountIt == false {
 os.Exit(1)
 }
}

Here, the call to os.Stat() tells whether the file we are looking for actually exists or not. In
case of success, the mode.IsRegular() function checks whether the file is a regular file or
not because we are not looking for directories or symbolic links. However, we are not done
yet! The which.go program performs a test to find out whether the file that was found is
indeed an executable file—if it is not an executable file, it will not get printed. So, the if
mode&0111 != 0 statement verifies that the file is actually an executable file using a binary
operation.

Next, if the -s flag is set to *minusS == true, then the -a flag does not really matter
because the program will terminate as soon as it finds a match.

As you can see, there are lots of tests involved in which.go, which is not rare for systems
software. Nevertheless, you should always examine all possibilities in order to avoid
surprises later. The good thing is that most of these tests will be used later on in the Go
implementation of the find(1) utility—it is good practice to test some features by writing
small programs before putting them all together into bigger programs because by doing so,
you learn the technique better and you can detect silly bugs more easily.

Files and Directories

[129]

Executing which.go will produce the following output:

$ go run which.go ls
/home/mtsouk/bin/ls
$ go run which.go -s ls
$ echo $?
0
$ go run which.go -s ls123123
exit status 1
$ echo $?
1
$ go run which.go -a ls
/home/mtsouk/bin/ls
/bin/ls

Printing the permission bits of a file or directory
With the help of the ls(1) command, you can find out the permissions of a file:

$ ls -l /bin/ls
-rwxr-xr-x 1 root wheel 38624 Mar 23 01:57 /bin/ls

In this subsection, we will look at how to print the permissions of a file or directory using
Go—the Go code will be saved in permissions.go and will be presented in two parts. The
first part is as follows:

package main

import (
 "fmt"
 "os"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide an argument!")
 os.Exit(1)
 }

 file := arguments[1]

Files and Directories

[130]

The second part contains the important Go code:

 info, err := os.Stat(file)
 if err != nil {
 fmt.Println("Error:", err)
 os.Exit(1)
 }
 mode := info.Mode()
 fmt.Print(file, ": ", mode, "\n")
}

Once again, most of the Go code is for dealing with the command-line argument and
making sure that you have one! The Go code that does the actual job is mainly the call to the
os.Stat() function, which returns a FileInfo structure that describes the file or directory
examined by os.Stat(). From the FileInfo structure, you can discover the permissions
of a file by calling the Mode() function.

Executing permissions.go produces the following output:

$ go run permissions.go /bin/ls
/bin/ls: -rwxr-xr-x
$ go run permissions.go /usr
/usr: drwxr-xr-x
$ go run permissions.go /us
Error: stat /us: no such file or directory
exit status 1

Dealing with files in Go
An extremely important task of an operating system is working with files because all data is
stored in files. In this section, we will show you how to delete and rename files, and in the
next section, Developing find(1) in Go, we will teach you how to search directory structures in
order to find the files you want.

Deleting a file
In this section, we will illustrate how to delete files and directories using the os.Remove()
Go function.

Files and Directories

[131]

When testing programs that delete files and directories be extra careful
and use common sense!

The rm.go file is a Go implementation of the rm(1) tool that illustrates how you can delete
files in Go. Although the core functionality of rm(1) is there, the options of rm(1) are
missing—it would be a good exercise to try to implement some of them. Just pay extra
attention when implementing the -f and -R options.

The Go code of rm.go is as follows:

package main
import (
 "fmt"
 "os"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide an argument!")
 os.Exit(1)
 }

 file := arguments[1]
 err := os.Remove(file)
 if err != nil {
 fmt.Println(err)
 return
 }
}

If rm.go is executed without any problems, it will create no output according to the Unix
philosophy. So, what is interesting here is watching the error messages you can get when
the file you are trying to delete does not exist—both when you do not have the necessary
permissions to delete it and when a directory is not empty:

$ go run rm.go 123
remove 123: no such file or directory
$ ls -l /tmp/AlTest1.err
-rw-r--r-- 1 root wheel 1278 Apr 17 20:13 /tmp/AlTest1.err
$ go run rm.go /tmp/AlTest1.err
remove /tmp/AlTest1.err: permission denied
$ go run rm.go test
remove test: directory not empty

Files and Directories

[132]

Renaming and moving files
In this subsection, we will show you how to rename and move a file using Go code—the Go
code will be saved as rename.go. Although the same code can be used for renaming or
moving directories, rename.go is only allowed to work with files.

When performing things that cannot be easily undone, such as overwriting a file, you
should be extra careful and maybe inform the user that the destination file already exists in
order to avoid unpleasant surprises. Although the default operation of the traditional
mv(1) utility will automatically overwrite the destination file if it exists, I do not think that
this is very safe. Therefore, rename.go will not overwrite destination files by default.

When developing systems software, you have to deal with all the details
or the details will reveal themselves as bugs when least expected!
Extensive testing will allow you to find the details you missed and correct
them.

The code of rename.go will be presented in four parts. The first part includes the expected
preamble as well as the Go code for dealing with the setup of the flag package:

package main

import (
 "flag"
 "fmt"
 "os"
 "path/filepath"
)

func main() {
 minusOverwrite := flag.Bool("overwrite", false, "overwrite")

 flag.Parse()
 flags := flag.Args()

 if len(flags) < 2 {
 fmt.Println("Please provide two arguments!")
 os.Exit(1)
 }

The second part has the following Go code:

 source := flags[0]
 destination := flags[1]
 fileInfo, err := os.Stat(source)
 if err == nil {

Files and Directories

[133]

 mode := fileInfo.Mode()
 if mode.IsRegular() == false {
 fmt.Println("Sorry, we only support regular files as
source!")
 os.Exit(1)
 }
 } else {
 fmt.Println("Error reading:", source)
 os.Exit(1)
 }

This part makes sure the source file exists, is a regular file, and is not a directory or
something else like a network socket or a pipe. Once again, the trick with os.Stat() you
saw in which.go is used here.

The third part of rename.go is as follows:

 newDestination := destination
 destInfo, err := os.Stat(destination)
 if err == nil {
 mode := destInfo.Mode()
 if mode.IsDir() {
 justTheName := filepath.Base(source)
 newDestination = destination + "/" + justTheName
 }
 }

There is another tricky point here; you will need to consider the case where the source is a
plain file and the destination is a directory, which is implemented with the help of the
newDestination variable.

Another special case that you should consider is when the source file is given in a format
that contains an absolute or relative path in it like ./aDir/aFile. In this case, when the
destination is a directory, you should get the basename of the path, which is what follows
the last / character and in this case is aFile, and add it to the destination directory in order
to correctly construct the newDestination variable. This happens with the help of the
filepath.Base() function, which returns the last element of a path.

Finally, the last part of rename.go has the following Go code:

 destination = newDestination
 destInfo, err = os.Stat(destination)
 if err == nil {
 if *minusOverwrite == false {
 fmt.Println("Destination file already exists!")
 os.Exit(1)

Files and Directories

[134]

 }
 }

 err = os.Rename(source, destination)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
}

The most important Go code of rename.go has to do with recognizing whether the
destination file exists or not. Once again, this is implemented with the support of the
os.Stat() function. If os.Stat() returns an error message, this means that the
destination file does not exist; so, you are free to call os.Rename(). If os.Stat() returns
nil, this means that the os.Stat() call was successful and that the destination file exists.
In this case, you should check the value of the overwrite flag to see if you are allowed to
overwrite the destination file or not.

When everything is OK, you are free to call os.Rename() and perform the desired task!

If rename.go is executed correctly, it will create no output. However, if there are problems,
rename.go will generate some output:

$ touch newFILE
$./rename newFILE regExpFind.go
Destination file already exists!
$./rename -overwrite newFILE regExpFind.go
$

Developing find(1) in Go
This section will teach you the necessary things that you need to know in order to develop a
simplified version of the find(1) command-line utility in Go. The developed version will
not support all the command-line options supported by find(1), but it will have enough
options to be truly useful.

What you will see in the following subsections is the entire process in small steps. So, the
first subsection will show you the Go way for visiting all files and directories in a given
directory tree.

Files and Directories

[135]

Traversing a directory tree
The most important task that find(1) needs to support is being able to visit all files and
sub directories starting from a given directory. So, this section will implement this task in
Go. The Go code of traverse.go will be presented in three parts. The first part is the
expected preamble:

package main

import (
 "fmt"
 "os"
 "path/filepath"
)

The second part is about implementing a function named walkFunction() that will be
used as an argument to a Go function named filepath.Walk():

func walkFunction(path string, info os.FileInfo, err error) error {
 _, err = os.Stat(path)
 if err != nil {
 return err
 }

 fmt.Println(path)
 return nil
}

Once again, the os.Stat() function is used because a successful os.Stat() function call
means that we are dealing with something (file, directory, pipe, and so on) that actually
exists!

Do not forget that between the time filepath.Walk() is called and the
time walkFunction() is called and executed, many things can happen in
an active and busy filesystem, which is the main reason for calling
os.Stat().

The last part of the code is as follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Not enough arguments!")
 os.Exit(1)
 }

Files and Directories

[136]

 Path := arguments[1]
 err := filepath.Walk(Path, walkFunction)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
}

All the dirty jobs here are automatically done by the filepath.Walk() function with the
help of the walkFunction() function that was defined previously. The filepath.Walk()
function takes two parameters—the path of a directory and the walk function it will use.

Executing traverse.go will generate the following kind of output:

$ go run traverse.go ~/code/C/cUNL
/home/mtsouk/code/C/cUNL
/home/mtsouk/code/C/cUNL/gpp
/home/mtsouk/code/C/cUNL/gpp.c
/home/mtsouk/code/C/cUNL/sizeofint
/home/mtsouk/code/C/cUNL/sizeofint.c
/home/mtsouk/code/C/cUNL/speed
/home/mtsouk/code/C/cUNL/speed.c
/home/mtsouk/code/C/cUNL/swap
/home/mtsouk/code/C/cUNL/swap.c

As you can see, the code of traverse.go is pretty naïve, as among other things, it cannot
differentiate between directories, files, and symbolic links. However, it does the pretty
tedious job of visiting every file and directory under a given directory tree, which is the
basic functionality of the find(1) utility.

Visiting directories only!
Although it is good to be able to visit everything, there are times when you want to visit
only directories and not files. So, in this subsection, we will modify traverse.go in order
to still visit everything but only print the directory names. The name of the new program
will be traverseDir.go. The only part of traverse.go that needs to change is the
definition of the walkFunction():

func walkFunction(path string, info os.FileInfo, err error) error {
 fileInfo, err := os.Stat(path)
 if err != nil {
 return err
 }

 mode := fileInfo.Mode()

Files and Directories

[137]

 if mode.IsDir() {
 fmt.Println(path)
 }
 return nil
}

As you can see, here you need to use the information returned by the os.Stat() function
call in order to check whether you are dealing with a directory or not. If you have a
directory, then you print its path and you are done.

Executing traverseDir.go will generate the following output:

$ go run traverseDir.go ~/code
/home/mtsouk/code
/home/mtsouk/code/C
/home/mtsouk/code/C/cUNL
/home/mtsouk/code/C/example
/home/mtsouk/code/C/sysProg
/home/mtsouk/code/C/system
/home/mtsouk/code/Haskell
/home/mtsouk/code/aLink
/home/mtsouk/code/perl
/home/mtsouk/code/python

The first version of find(1)
The Go code in this section is saved as find.go and will be presented in three parts. As you
will see, find.go uses a large amount of the code found in traverse.go, which is the
main benefit you get when you are developing a program step by step.

The first part of find.go is the expected preamble:

package main

import (
 "flag"
 "fmt"
 "os"
 "path/filepath"
)

As we already know that we will improve find.go in the near future, the flag package is
used here even if this is the first version of find.go and it does not have any flags!

Files and Directories

[138]

The second part of the Go code contains the implementation of the walkFunction():

func walkFunction(path string, info os.FileInfo, err error) error {

 fileInfo, err := os.Stat(path)
 if err != nil {
 return err
 }

 mode := fileInfo.Mode()
 if mode.IsDir() || mode.IsRegular() {
 fmt.Println(path)
 }
 return nil
}

From the implementation of the walkFunction() you can easily understand that find.go
only prints regular files and directories, and nothing else. Is this a problem? Not, if this is
what you want. Generally speaking, this is not good. Nevertheless, having a first version of
something that works despite some restrictions is a good starting point! The next version,
which will be named improvedFind.go, will improve find.go by adding various
command-line options to it.

The last part of find.go contains the code that implements the main() function:

func main() {
 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 {
 fmt.Println("Not enough arguments!")
 os.Exit(1)
 }

 Path := flags[0]

 err := filepath.Walk(Path, walkFunction)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
}

Files and Directories

[139]

Executing find.go will create the following output:

$ go run find.go ~/code/C/cUNL
/home/mtsouk/code/C/cUNL
/home/mtsouk/code/C/cUNL/gpp
/home/mtsouk/code/C/cUNL/gpp.c
/home/mtsouk/code/C/cUNL/sizeofint
/home/mtsouk/code/C/cUNL/sizeofint.c
/home/mtsouk/code/C/cUNL/speed
/home/mtsouk/code/C/cUNL/speed.c
/home/mtsouk/code/C/cUNL/swap
/home/mtsouk/code/C/cUNL/swap.c

Adding some command-line options
This subsection will try to improve the Go version of find(1) that you created earlier.
Keep in mind that this is the process used for developing real programs because you do not
implement every possible command-line option in the first version of a program.

The Go code of the new version is going to be saved as improvedFind.go. Among other
things, the new version will be able to ignore symbolic links—symbolic links will only be
printed when improvedFind.go is used with the appropriate command-line option. To do
this, we will use some of the Go code of symbLink.go.

The improvedFind.go program is a real system tool that you can use on
your own Unix machines.

The supported flags will be the following:

-s: This is for printing socket files
-p: This is for printing pipes
-sl: This is for printing symbolic links
-d: This is for printing directories
-f: This is for printing files

As you will see, most of the new Go code is for supporting the flags added to the program.
Additionally, by default, improvedFind.go prints every type of file or directory, and you
are allowed to combine any of the preceding flags in order to print the types of files you
want.

Files and Directories

[140]

Apart from the various changes in the implementation of the main() function in order to
support all these flags, most of the remaining changes will take place in the code of the
walkFunction() function. Additionally, the walkFunction() function will be defined
inside the main() function, which happens in order to avoid the use of global variables.

The first part of improvedFind.go is as follows:

package main

import (
 "flag"
 "fmt"
 "os"
 "path/filepath"
)

func main() {

 minusS := flag.Bool("s", false, "Sockets")
 minusP := flag.Bool("p", false, "Pipes")
 minusSL := flag.Bool("sl", false, "Symbolic Links")
 minusD := flag.Bool("d", false, "Directories")
 minusF := flag.Bool("f", false, "Files")

 flag.Parse()
 flags := flag.Args()

 printAll := false
 if *minusS && *minusP && *minusSL && *minusD && *minusF {
 printAll = true
 }

 if !(*minusS || *minusP || *minusSL || *minusD || *minusF) {
 printAll = true
 }

 if len(flags) == 0 {
 fmt.Println("Not enough arguments!")
 os.Exit(1)
 }

 Path := flags[0]

So, if all the flags are unset, the program will print everything, which is handled by the first
if statement. Similarly, if all the flags are set, the program will also print everything. So, a
new Boolean variable named printAll is needed.

Files and Directories

[141]

The second part of improvedFind.go has the following Go code, which is mainly the
definition of the walkFunction variable, which in reality is a function:

 walkFunction := func(path string, info os.FileInfo, err error) error {
 fileInfo, err := os.Stat(path)
 if err != nil {
 return err
 }

 if printAll {
 fmt.Println(path)
 return nil
 }

 mode := fileInfo.Mode()
 if mode.IsRegular() && *minusF {
 fmt.Println(path)
 return nil
 }

 if mode.IsDir() && *minusD {
 fmt.Println(path)
 return nil
 }

 fileInfo, _ = os.Lstat(path)

 if fileInfo.Mode()&os.ModeSymlink != 0 {
 if *minusSL {
 fmt.Println(path)
 return nil
 }
 }

 if fileInfo.Mode()&os.ModeNamedPipe != 0 {
 if *minusP {
 fmt.Println(path)
 return nil
 }
 }

 if fileInfo.Mode()&os.ModeSocket != 0 {
 if *minusS {
 fmt.Println(path)
 return nil
 }
 }

Files and Directories

[142]

 return nil
 }

Here, the good thing is that once you find a match and print a file, you do not have to visit
the rest of the if statements, which is the main reason for putting the minusF check first
and the minusD check second. The call to os.Lstat() is used to find out whether we are
dealing with a symbolic link or not. This happens because os.Stat() follows symbolic
links and returns information about the file the link references, whereas os.Lstat() does
not do so—the same occurs with stat(2) and lstat(2).

You should be pretty familiar with the last part of improvedFind.go:

 err := filepath.Walk(Path, walkFunction)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
}

Executing improvedFind.go generates the following output, which is an enriched version
of the output of find.go:

$ go run improvedFind.go -d ~/code/C
/home/mtsouk/code/C
/home/mtsouk/code/C/cUNL
/home/mtsouk/code/C/example
/home/mtsouk/code/C/sysProg
/home/mtsouk/code/C/system
$ go run improvedFind.go -sl ~/code
/home/mtsouk/code/aLink

Excluding filenames from the find output
There are times when you do not need to display everything from the output of find(1).
So, in this subsection, you will learn a technique that allows you to manually exclude files
from the output of improvedFind.go based on their filenames.

Note that this version of the program will not support regular expressions
and will only exclude filenames that are an exact match.

Files and Directories

[143]

So, the improved version of improvedFind.go will be named excludeFind.go. The
output of the diff(1) utility can reveal the code differences between improvedFind.go
and excludeFind.go:

$ diff excludeFind.go improvedFind.go
10,19d9
< func excludeNames(name string, exclude string) bool {`
< if exclude == "" {
< return false
< }
< if filepath.Base(name) == exclude {
< return true
< }
< return false
< }
<
27d16
< minusX := flag.String("x", "", "Files")
54,57d42
< if excludeNames(path, *minusX) {
< return nil
< }
<

The most significant change is the introduction of a new Go function, named
excludeNames(), that deals with filename exclusion and the addition of the -x flag, which
is used for setting the filename you want to exclude from the output. All the job is done by
the file path. The Base() function finds the last part of a path, even if the path is not a file
but a directory, and compares it against the value of the -x flag.

Note that a more appropriate name for the excludeNames() function could have been
isExcluded() or something similar because the -x option accepts a single value.

Executing excludeFind.go with and without the -x flag will prove that the new Go code
actually works:

$ go run excludeFind.go -x=dT.py ~/code/python
/home/mtsouk/code/python
/home/mtsouk/code/python/dataFile.txt
/home/mtsouk/code/python/python
$ go run excludeFind.go ~/code/python
/home/mtsouk/code/python
/home/mtsouk/code/python/dT.py
/home/mtsouk/code/python/dataFile.txt
/home/mtsouk/code/python/python

Files and Directories

[144]

Excluding a file extension from the find output
A file extension is the part of a filename after the last dot (.) character. So, the file extension
of the image.png file is png, which applies to both files and directories.

Once again, you will need a separate command-line option followed by the file extension
you want to exclude in order to implement this functionality—the new flag will be named -
ext. This version of the find(1) utility will be based on the code of excludeFind.go and
will be named finalFind.go. Some of you might say that a more appropriate name for
this option would have been -xext and you would be right about that!

Once again, the diff(1) utility will help us spot the code differences between
excludeFind.go and finalFind.go—the new functionality is implemented in a Go
function named excludeExtensions(), which makes things easier to understand:

$ diff finalFind.go excludeFind.go
8d7
< "strings"
21,34d19
< func excludeExtensions(name string, extension string) bool {
< if extension == "" {
< return false
< }
< basename := filepath.Base(name)
< s := strings.Split(basename, ".")
< length := len(s)
< basenameExtension := s[length-1]
< if basenameExtension == extension {
< return true
< }
< return false
< }
<
43d27
< minusEXT := flag.String("ext", "", "Extensions")
74,77d57
< if excludeExtensions(path, *minusEXT) {
< return nil
< }
<

Files and Directories

[145]

As we are looking for the string after the last dot in the path, we use strings.Split() to
split the path based on the dot characters it contains. Then, we take the last part of the
return value of strings.Split() and we compare it against the extension that was given
with the -ext flag. Therefore, nothing special here, just some string manipulation code.
Once again, a more appropriate name for excludeExtensions() would have been
isExcludedExtension().

Executing finalFind.go will generate the following output:

$ go run finalFind.go -ext=py ~/code/python
/home/mtsouk/code/python
/home/mtsouk/code/python/dataFile.txt
/home/mtsouk/code/python/python
$ go run finalFind.go ~/code/python
/home/mtsouk/code/python
/home/mtsouk/code/python/dT.py
/home/mtsouk/code/python/dataFile.txt
/home/mtsouk/code/python/python

Using regular expressions
This section will illustrate how to add support for regular expressions in
finalFind.go—the name of the last version of the tool will be regExpFind.go. The new
flag will be called -re and it will require a string value—anything that matches this string
value will be included in the output unless it is excluded by another command-line option.
Additionally, due to the flexibility that flags offer, we do not need to delete any of the
previous options in order to add another one!

Once again, the diff(1) command will tell us the code differences between
regExpFind.go and finalFind.go:

$ diff regExpFind.go finalFind.go
8d7
< "regexp"
36,44d34
< func regularExpression(path, regExp string) bool {
< if regExp == "" {
< return true
< }
< r, _ := regexp.Compile(regExp)
< matched := r.MatchString(path)
< return matched
< }
<

Files and Directories

[146]

54d43
< minusRE := flag.String("re", "", "Regular Expression")
71a61
>
75,78d64
< if regularExpression(path, *minusRE) == false {
< return nil
< }
<

In Chapter 7, Working with System Files, we ;will talk more about pattern matching and
regular expressions in Go—for now, it is enough to understand that regexp.Compile()
creates a regular expression and MatchString() tries to do the matching in the
regularExpression() function.

Executing regExpFind.go will generate the following output:

$ go run regExpFind.go -re=anotherPackage /Users/mtsouk/go
/Users/mtsouk/go/pkg/darwin_amd64/anotherPackage.a
/Users/mtsouk/go/src/anotherPackage
/Users/mtsouk/go/src/anotherPackage/anotherPackage.go
$ go run regExpFind.go -ext=go -re=anotherPackage /Users/mtsouk/go
/Users/mtsouk/go/pkg/darwin_amd64/anotherPackage.a
/Users/mtsouk/go/src/anotherPackage

The previous output can be verified by using the following command:

$ go run regExpFind.go /Users/mtsouk/go | grep anotherPackage
/Users/mtsouk/go/pkg/darwin_amd64/anotherPackage.a
/Users/mtsouk/go/src/anotherPackage
/Users/mtsouk/go/src/anotherPackage/anotherPackage.go

Creating a copy of a directory structure
Armed with the knowledge you gained in the previous sections, we will now develop a Go
program that creates a copy of a directory structure in another directory—this means that
any files in the input directory will not be copied to the destination directory, only the
directories will be copied. This can be handy when you want to save useful files from a
directory structure somewhere else while keeping the same directory structure or when you
want to take a backup of a filesystem manually.

Files and Directories

[147]

As you are only interested in directories, the code of cpStructure.go is based on the code
of traverseDir.go you saw earlier in this chapter—once again, a small program that was
developed for learning purposes helps you implement a bigger program! Additionally, the
test option will show what the program will do without actually creating any directories.

The code of cpStructure.go will be presented in four parts. The first one is as follows:

package main

import (
 "flag"
 "fmt"
 "os"
 "path/filepath"
 "strings"
)

There is nothing special here, just the expected preamble. The second part is as follows:

func main() {
 minusTEST := flag.Bool("test", false, "Test run!")

 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 || len(flags) == 1 {
 fmt.Println("Not enough arguments!")
 os.Exit(1)
 }

 Path := flags[0]
 NewPath := flags[1]

 permissions := os.ModePerm
 _, err := os.Stat(NewPath)
 if os.IsNotExist(err) {
 os.MkdirAll(NewPath, permissions)
 } else {
 fmt.Println(NewPath, "already exists - quitting...")
 os.Exit(1)
 }

Files and Directories

[148]

The cpStructure.go program demands that the destination directory does not exist in
advance in order to avoid unnecessary surprises and errors afterwards.

The third part contains the code of the walkFunction variable:

 walkFunction := func(currentPath string, info os.FileInfo, err error)
error {
 fileInfo, _ := os.Lstat(currentPath)
 if fileInfo.Mode()&os.ModeSymlink != 0 {
 fmt.Println("Skipping", currentPath)
 return nil
 }

 fileInfo, err = os.Stat(currentPath)
 if err != nil {
 fmt.Println("*", err)
 return err
 }

 mode := fileInfo.Mode()
 if mode.IsDir() {
 tempPath := strings.Replace(currentPath, Path, "", 1)
 pathToCreate := NewPath + "/" + filepath.Base(Path) +
tempPath

 if *minusTEST {
 fmt.Println(":", pathToCreate)
 return nil
 }

 _, err := os.Stat(pathToCreate)
 if os.IsNotExist(err) {
 os.MkdirAll(pathToCreate, permissions)
 } else {
 fmt.Println("Did not create", pathToCreate, ":", err)
 }
 }
 return nil
 }

Here, the first if statement makes sure that we will deal with symbolic links because
symbolic links can be dangerous and create problems—always try to treat special situations
in order to avoid problems and nasty bugs.

Files and Directories

[149]

The os.IsNotExist() function allows you to make sure that the directory you are trying
to create is not already there. So, if the directory is not there, you create it using
;os.MkdirAll(). The os.MkdirAll() function creates a directory path including all the
necessary parents, which makes things simpler for the developer.

Nevertheless, the trickiest part that the code of the walkFunction variable has to deal with
is removing the unnecessary parts of the source path and constructing the new path
correctly. The strings.Replace() function used in the program replaces the occurrences
of its second argument (Path) that can be found in the first argument (currentPath) with
its third argument ("") as many times as its last argument (1). If the last argument is a
negative number, which is not the case here, then there will be no limit to the number of
replacements. In this case, it removes the value of the Path variable, which is the source
directory, from the currentPath variable, which is the directory that is being examined.

The last part of the program is as follows:

 err = filepath.Walk(Path, walkFunction)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
}

Executing cpStructure.go will generate the following output:

$ go run cpStructure.go ~/code /tmp/newCode
Skipping /home/mtsouk/code/aLink
$ ls -l /home/mtsouk/code/aLink
lrwxrwxrwx 1 mtsouk mtsouk 14 Apr 21 18:10 /home/mtsouk/code/aLink ->
/usr/local/bin

The following figure shows a graphical representation of the source and destination
directory structures used in the aforementioned example:

Files and Directories

[150]

A graphical representation of two directory structures with their files

Files and Directories

[151]

Exercises
Read the documentation page of the os package at1.
https://golang.org/pkg/os/.
Visit https://golang.org/pkg/path/filepath/ to learn more about the2.
filepath.Walk() function.
Change the code of rm.go in order to support multiple command-line3.
arguments, and then try to implement the -v command-line option of the rm(1)
utility.
Make the necessary changes to the Go code of which.go in order to support4.
multiple command-line arguments.
Start implementing a version of the ls(1) utility in Go. Do not try to support5.
every ls(1) option at once.
Change the code of traverseDir.go in order to print regular files only.6.
Check the manual page of find(1) and try to add support for some of its options7.
in regExpFind.go.

Summary
In this chapter, we talked about many things including the use of the flag standard
package, Go functions that allow you to work with directories and files, and traverse
directory structures, and we developed Go versions of various Unix command-line utilities
including pwd(1), which(1), rm(1), and find(1).

In the next chapter, we will continue talking about file operations, but this time you will
learn how to read files and write to files in Go—as you will see there are many ways to do
this. Although this gives you versatility, it also demands that you should be able to choose
the right technique to do your job as efficiently as possible! So, you will start by learning
more about the io package as well as the bufio package and by the end of the chapter, you
will have Go versions of the wc(1) and dd(1) utilities!

https://golang.org/pkg/os/
https://golang.org/pkg/path/filepath/

6
File Input and Output

In the previous chapter, we talked about manipulating files and directories as entities
without looking at their contents. However, in this chapter, we will take a different
approach and look into the contents of files—you might consider this chapter one of the
most important chapters in this book because file input and file output are primary tasks
of any operating system.

The main purpose of this chapter is to teach how the Go standard library permits us to open
files, read their contents, process them if we like, create new files, and put the desired data
into them. There are two main ways to read and write files: using the io package and using
the functions of the bufio package. However, both packages work in a comparative way.

This chapter will tell you about the following:

Opening files for writing and reading
Using the io package for file input and output
Using the io.Writer and io.Reader interfaces
Using the bufio package for buffered input and output
Copying files in Go
Implementing a version of the wc(1) utility in Go
Developing a version of the dd(1) command in Go
Creating sparse files
The importance of byte slices in file input and output—byte slices were first
mentioned in Chapter 2, Writing Programs in Go
Storing structured data in files and reading them afterwards
Converting tabs into space characters and vice versa

File Input and Output

[153]

This chapter will not talk about appending data to an existing file—you will have to wait
until Chapter 7, Working with System Files, to learn more about putting data at the end of a
file without destroying its existing data.

About file input and output
File input and output includes everything that has to do with reading the data of a file and
writing the desired data to a file. There is not a single operating system that does not offer
support for files and therefore for file input and output.

As this chapter is pretty big, I will stop talking and start showing you practical Go code that
will make things clearer. So, the first thing that you will learn in this chapter is byte slices,
which are very important in applications that are concerned with file input and output.

Byte slices
Byte slices are a kind of slices used for file reading and writing. Putting it simply, they are
slices of bytes used as a buffer during file reading and writing operations. This section will
present a small Go example where a byte slice is used for writing to a file and reading from
a file. As you will see byte slices all over this chapter, make sure that you understand the
presented example. The related Go code is saved as byteSlice.go and will be presented
in three parts.

The first part is as follows:

package main

import (
 "fmt"
 "io/ioutil"
 "os"
)

File Input and Output

[154]

The second part of byteSlice.go is as follows:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide a filename")
 os.Exit(1)
 }
 filename := os.Args[1]

 aByteSlice := []byte("Mihalis Tsoukalos!\n")
 ioutil.WriteFile(filename, aByteSlice, 0644)

Here, you use the aByteSlice byte slice to save some text into a file that is identified by
the filename variable. The last part of byteSlice.go is the following Go code:

 f, err := os.Open(filename)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
 defer f.Close()

 anotherByteSlice := make([]byte, 100)
 n, err := f.Read(anotherByteSlice)
 fmt.Printf("Read %d bytes: %s", n, anotherByteSlice)

}

Here, you define another byte slice named anotherByteSlice with 100 places that will be
used for reading from the file you created previously. Note that %s used in fmt.Printf()
forces anotherByteSlice to be printed as a string—using Println() would have
produced a totally different output.

Note that as the file is smaller, the f.Read() call will put less data into
anotherByteSlice.

The size of anotherByteSlice denotes the maximum amount of data that can be stored
into it after a single call to Read() or after any other similar operation that reads data from
a file.

File Input and Output

[155]

Executing byteSlice.go will generate the following output:

$ go run byteSlice.go usingByteSlices
Read 19 bytes: Mihalis Tsoukalos!

Checking the size of the usingByteSlices file will verify that the right amount of data
was written to it:

$ wc usingByteSlices
 1 2 19 usingByteSlices

About binary files
There is no difference between reading and writing binary and plain text files in Go. So,
when processing a file, Go makes no assumptions about its format. However, Go offers a
package named binary that allows you to make translations between different encodings
such as little endian and big endian.

The readBinary.go file briefly illustrates how to convert an integer number to a little
endian number and to a big endian number, which might be useful when the files you want
to process contain certain kinds of data; this mainly happens when we are dealing with raw
devices and raw packet manipulation—remember everything is a file! The source code of
readBinary.go will be presented in two parts.

The first part is as follows:

package main

import (
 "bytes"
 "encoding/binary"
 "fmt"
 "os"
 "strconv"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide an integer")
 os.Exit(1)
 }
 aNumber, _ := strconv.ParseInt(os.Args[1], 10, 64)

File Input and Output

[156]

There is nothing special in this part of the program. The second part is the following:

 buf := new(bytes.Buffer)
 err := binary.Write(buf, binary.LittleEndian, aNumber)
 if err != nil {
 fmt.Println("Little Endian:", err)
 }

 fmt.Printf("%d is %x in Little Endian\n", aNumber, buf)
 buf.Reset()
 err = binary.Write(buf, binary.BigEndian, aNumber)

 if err != nil {
 fmt.Println("Big Endian:", err)
 }
 fmt.Printf("And %x in Big Endian\n", buf)
}

The second part contains all the important Go code—the conversions happen with the help
of the binary.Write() method and the proper write parameter (binary.LittleEndian
or binary.BigEndian). The bytes.Buffer variable is used for the io.Reader and
io.Writer interfaces of the program. Lastly, the buf.Reset() statement resets the buffer
in order to be used afterwards for storing the big endian.

Executing readBinary.go will generate the following output:

$ go run readBinary.go 1
1 is 0100000000000000 in Little Endian
And 0000000000000001 in Big Endian

You can find more information about the binary package by visiting its documentation page
at https://golang.org/pkg/encoding/binary/.

Useful I/O packages in Go
The io package is for performing primitive file I/O operations, whereas the bufio package
is for executing buffered I/O.

In buffered I/O, the operating system uses an intermediate buffer during
file read and write operations in order to reduce the number of filesystem
calls. As a result, buffered input and output is faster and more efficient.

https://golang.org/pkg/encoding/binary/

File Input and Output

[157]

Additionally, you can use some of the functions of the fmt package to write text to a file.
Note that the flag package will be also used in this chapter as well as in all the forthcoming
ones where the developed utilities need to support command-line flags.

The io package
The io package offers functions that allow you to write to or read from files. Its use will be
illustrated in the usingIO.go file, which will be presented in three parts. What the
program does is read 8 bytes from a file and write them in a standard output.

The first part is the preamble of the Go program:

package main

import (
 "fmt"
 "io"
 "os"
)

The second part is the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide a filename")
 os.Exit(1)
 }

 filename := os.Args[1]
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening %s: %s", filename, err)
 os.Exit(1)
 }
 defer f.Close()

The program also uses the handy defer command that defers the execution of a function
until the surrounding function returns. As a result, defer is used very frequently in file I/O
operations because it saves you from having to remember to execute the Close() call after
you are done working with a file or when you leave a function in any number of locations
using a return statement or os.Exit().

File Input and Output

[158]

The last part of the program is the following:

 buf := make([]byte, 8)
 if _, err := io.ReadFull(f, buf); err != nil {
 if err == io.EOF {
 err = io.ErrUnexpectedEOF
 }
 }
 io.WriteString(os.Stdout, string(buf))
 fmt.Println()
}

The io.ReadFull() function here reads from the reader of an open file and puts the data
into a byte slice that has 8 places. You can also see here the use of the io.WriteString()
function for printing data to a standard output (os.Stdout) that is also a file. However,
this is not a very common practice as you can simply use fmt.Println() instead.

Executing usingIO.go generates the following output:

$ go run usingIO.go usingByteSlices
Mihalis

The bufio package
The functions of the bufio package allow you to perform buffered file operations, which
means that although its operations look similar to the ones found in io, they work in a
slightly different way.

What bufio actually does is to wrap an io.Reader or io.Writer object into a new value
that implements the required interface while providing buffering to the new value. One of
the handy features of the bufio package is that it allows you to read a text file line by line,
word by word, and character by character without too much effort.

Once again, an example will try to clarify things—the name of the Go file that showcases
the use of bufio is bufIO.go and will be presented in four parts.

File Input and Output

[159]

The first part is the expected preamble:

package main

import (
 "bufio"
 "fmt"
 "os"
)

The second part is the following:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide a filename")
 os.Exit(1)
 }

 filename := os.Args[1]

Here, you just try to get the name of the file that you are going to use.

The third part of bufIO.go has the following Go code:

 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening %s: %s", filename, err)
 os.Exit(1)
 }
 defer f.Close()

 scanner := bufio.NewScanner(f)

The default behavior of bufio.NewScanner is to read its input line by line, which means
that each time you call the Scan() method that reads the next token, a new line will be
returned. The last part is where you actually call the Scan() method in order to read the
full contents of the file:

 for scanner.Scan() {
 line := scanner.Text()

 if scanner.Err() != nil {
 fmt.Printf("error reading file %s", err)
 os.Exit(1)
 }
 fmt.Println(line)
 }
}

File Input and Output

[160]

The Text() method returns the latest token from the Scan() method as a string, which in
this case will be a line. However, if you ever get strange results while trying to read a file
line by line, it will most likely be the way your file ends a line, which is usually the case
with text files coming from Windows machines.

Executing bufIO.go and feeding wc(1) with its output can help you verify that bufIO.go
works as expected:

$ go run bufIO.go inputFile | wc
 11 12 62
$ wc inputFile
 11 12 62 inputFile

File I/O operations
Now that you know the basics of the io and bufio packages, it is time to learn more
detailed information about their usage and how they can help you work with files. But first,
we will talk about the fmt.Fprintf() function.

Writing to files using fmt.Fprintf()
The use of the fmt.Fprintf() function allows you to write formatted text to files in a way
that is similar to the way the fmt.Printf() function works. Note that fmt.Fprintf() can
write to any io.Writer interface and that our files will satisfy the io.Writer interface.

The Go code that illustrates the use of fmt.Fprintf() can be found in fmtF.go, which
will be presented in three parts. The first part is the expected preamble:

package main

import (
 "fmt"
 "os"
)

The second part has the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide a filename")
 os.Exit(1)
 }

File Input and Output

[161]

 filename := os.Args[1]
 destination, err := os.Create(filename)
 if err != nil {
 fmt.Println("os.Create:", err)
 os.Exit(1)
 }
 defer destination.Close()

Note that the os.Create() function will truncate the file if it already exists.

The last part is the following:

 fmt.Fprintf(destination, "[%s]: ", filename)
 fmt.Fprintf(destination, "Using fmt.Fprintf in %s\n", filename)
}

Here, you write the desired text data to the file that is identified by the destination variable
using fmt.Fprintf() as if you were using the fmt.Printf() method.

Executing fmtF.go will generate the following output:

$ go run fmtF.go test
$ cat test
[test]: Using fmt.Fprintf in test

In other words, you can create plain text files using fmt.Fprintf().

About io.Writer and io.Reader
Both io.Writer and io.Reader are interfaces that embed the io.Write() and
io.Read() methods, respectively. The use of io.Writer and io.Reader will be
illustrated in readerWriter.go, which will be presented in four parts. The program
computes the characters of its input file and writes the number of characters to another
file—if you are dealing with Unicode characters that take more than one byte per character,
you might consider that the program is reading bytes. The output filename has the name of
the original file plus the .Count extension.

File Input and Output

[162]

The first part is the following:

package main

import (
 "fmt"
 "io"
 "os"
)

The second part is the following:

func countChars(r io.Reader) int {
 buf := make([]byte, 16)
 total := 0
 for {
 n, err := r.Read(buf)
 if err != nil && err != io.EOF {
 return 0
 }
 if err == io.EOF {
 break
 }
 total = total + n
 }
 return total
}

Once again, a byte slice is used during reading. The break statement allows you to exit the
for loop. The third part is the following code:

func writeNumberOfChars(w io.Writer, x int) {
 fmt.Fprintf(w, "%d\n", x)
}

Here you can see how you can write a number to a file using fmt.Fprintf()—I did not
manage to do the same using a byte slice! Additionally, note that the presented code writes
text to a file using an io.Writer variable (w).

The last part of readerWriter.go has the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide a filename")
 os.Exit(1)
 }

 filename := os.Args[1]

File Input and Output

[163]

 _, err := os.Stat(filename)

 if err != nil {
 fmt.Printf("Error on file %s: %s\n", filename, err)
 os.Exit(1)
 }

 f, err := os.Open(filename)
 if err != nil {
 fmt.Println("Cannot open file:", err)
 os.Exit(-1)
 }
 defer f.Close()

 chars := countChars(f)
 filename = filename + ".Count"
 f, err = os.Create(filename)
 if err != nil {
 fmt.Println("os.Create:", err)
 os.Exit(1)
 }
 defer f.Close()
 writeNumberOfChars(f, chars)
}

The execution of readerWriter.go generates no output; so, it is up to you to check its
correctness, which in this case happens with the help of wc(1):

$ go run readerWriter.go /tmp/swtag.log
$ wc /tmp/swtag.log
 119 635 7780 /tmp/swtag.log
$ cat /tmp/swtag.log.Count
7780

Finding out the third column of a line
Now that you know how to read a file, it is time to present a modified version of the
readColumn.go program you saw in Chapter 3, Advanced Go Features. The new version is
also named readColumn.go, but has two major improvements. The first is that you can
provide the desired column as a command-line argument and the second is that it can read
multiple files if it gets multiple command-line arguments.

File Input and Output

[164]

The readColumn.go file will be presented in three parts. The first part of readColumn.go
is the following:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "os"
 "strings"
)

The next part of readColumn.go contains the following Go code:

func main() {
 minusCOL := flag.Int("COL", 1, "Column")
 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 {
 fmt.Printf("usage: readColumn <file1> [<file2> [... <fileN]]\n")
 os.Exit(1)
 }

 column := *minusCOL

 if column < 0 {
 fmt.Println("Invalid Column number!")
 os.Exit(1)
 }

As you will understand from the definition of the minusCOL variable, if the user does not
use this flag, the program will print the contents of the first column of each file it reads.

The last part of readColumn.go is as follows:

 for _, filename := range flags {
 fmt.Println("\t\t", filename)
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s", err)
 continue
 }
 defer f.Close()

 r := bufio.NewReader(f)

File Input and Output

[165]

 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 }

 data := strings.Fields(line)
 if len(data) >= column {
 fmt.Println((data[column-1]))
 }
 }
 }
}

The preceding code does not do anything that you have not seen before. The for loop is
used for processing all command-line arguments. However, if a file fails to open for some
reason, the program will not stop its execution, but it will continue processing the rest of the
files if they exist. However, the program expects that its input files end in a newline and
you might see strange results if an input file ends differently.

Executing readColumn.go generates the following output, which is abbreviated in order to
save some book space:

$ go run readColumn.go -COL=3 pF.data isThereAFile up.data
 pF.data
 isThereAFile
error opening file open isThereAFile: no such file or directory
 up.data
0.05
0.05
0.05
0.05
0.05
0.05

In this case, there is no file named isThereAFile and the pF.data file does not have a
third column. However, the program did its best and printed what it could!

File Input and Output

[166]

Copying files in Go
Every operating system allows you to copy files because this is a very important and
necessary operation. This section will show you how to copy files in Go now that you know
how to read files!

There is more than one way to copy a file!
Most programming languages offer more than one way to create a copy of a file and Go is
no exception. It is up to the developer to decide which approach to implement.

The there is more than one way to do it rule applies to almost everything
implemented in this book, but file copying is the most characteristic
example of this rule because you can copy a file by reading it line by line,
byte by byte, or all at once! However, this rule does not apply to the way
Go likes to format its code!

Copying text files
There is no point in treating the copying of text files in a special way unless you want to
inspect or modify their contents. As a result, the three techniques presented here will not
differentiate between plain text and binary file copying.

Chapter 7, Working with System Files, will talk about file permissions because there are times
that you want to create new files with the file permissions you choose.

Using io.Copy
This subsection will present a technique for copying files that uses the io.Copy() function.
What is special about the io.Copy() function is the fact that is does not give you any
flexibility in the process. The name of the program will be notGoodCP.go and will be
presented in three parts. Note that a more appropriate filename for notGoodCP.go would
have been copyEntireFileAtOnce.go or copyByReadingInputFileAllAtOnce.go!

File Input and Output

[167]

The first part of the Go code of notGoodCP.go is the following:

package main

import (
 "fmt"
 "io"
 "os"
)

The second part is as follows:

func Copy(src, dst string) (int64, error) {
 sourceFileStat, err := os.Stat(src)
 if err != nil {
 return 0, err
 }

 if !sourceFileStat.Mode().IsRegular() {
 return 0, fmt.Errorf("%s is not a regular file", src)
 }

 source, err := os.Open(src)
 if err != nil {
 return 0, err
 }
 defer source.Close()

 destination, err := os.Create(dst)
 if err != nil {
 return 0, err
 }
 defer destination.Close()
 nBytes, err := io.Copy(destination, source)
 return nBytes, err

}

Here we define our own function that uses io.Copy() to make a copy of a file. The Copy()
function checks whether the source file is a regular file before trying to copy it, which
makes perfect sense.

File Input and Output

[168]

The last part is the implementation of the main() function:

func main() {
 if len(os.Args) != 3 {
 fmt.Println("Please provide two command line arguments!")
 os.Exit(1)
 }

 sourceFile := os.Args[1]
 destinationFile := os.Args[2]
 nBytes, err := Copy(sourceFile, destinationFile)

 if err != nil {
 fmt.Printf("The copy operation failed %q\n", err)
 } else {
 fmt.Printf("Copied %d bytes!\n", nBytes)
 }
}

The best tool for testing whether a file is an exact copy of another file is the
diff(1) utility, which also works with binary files. You can learn more
about diff(1) by reading its main page.

Executing notGoodCP.go will generate the following results:

$ go run notGoodCP.go testFile aCopy
Copied 871 bytes!
$ diff aCopy testFile
$ wc testFile aCopy
 51 127 871 testFile
 51 127 871 aCopy
 102 254 1742 total

Reading a file all at once!
The technique in this section will use the ioutil.WriteFile() and ioutil.ReadFile()
functions. Note that ioutil.ReadFile() does not implement the io.Reader interface
and therefore is a little restrictive.

The Go code for this section is named readAll.go and will be presented in three parts.

File Input and Output

[169]

The first part has the following Go code:

package main

import (
 "fmt"
 "io/ioutil"
 "os"
)

The second part is the following:

func main() {
 if len(os.Args) != 3 {
 fmt.Println("Please provide two command line arguments!")
 os.Exit(1)
 }

 sourceFile := os.Args[1]
 destinationFile := os.Args[2]

The last part is as follows:

 input, err := ioutil.ReadFile(sourceFile)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

 err = ioutil.WriteFile(destinationFile, input, 0644)
 if err != nil {
 fmt.Println("Error creating the new file", destinationFile)
 fmt.Println(err)
 os.Exit(1)
 }
}

Note that the ioutil.ReadFile() function reads the entire file, which might not be
efficient when you want to copy huge files. Similarly, the ioutil.WriteFile() function
writes all the given data to a file that is identified by its first argument.

File Input and Output

[170]

The execution of readAll.go generates the following output:

$ go run readAll.go testFile aCopy
$ diff aCopy testFile
$ ls -l testFile aCopy
-rw-r--r-- 1 mtsouk staff 871 May 3 21:07 aCopy
-rw-r--r--@ 1 mtsouk staff 871 May 3 21:04 testFile
$ go run readAll.go doesNotExist aCopy
open doesNotExist: no such file or directory
exit status 1

An even better file copy program
This section will present a program that uses a more traditional approach, where a buffer is
used for reading and copying to the new file.

Although traditional Unix command-line utilities are silent when there are
no errors, it is not bad to print some kind of information, such as the
number of bytes read, in your own tools. However, the right thing to do is
to follow the Unix way.

There exist two main reasons that make cp.go better than notGoodCP.go. The first is that
the developer has more control over the process in exchange for having to write more Go
code and the second is that cp.go allows you to define the size of the buffer, which is the
most important parameter in the copy operation.

The code of cp.go will be presented in five parts. The first part is the expected preamble
along with a global variable that holds the size of the read buffer:

package main

import (
 "fmt"
 "io"
 "os"
 "path/filepath"
 "strconv"
)

var BUFFERSIZE int64

File Input and Output

[171]

The second part is the following:

func Copy(src, dst string, BUFFERSIZE int64) error {
 sourceFileStat, err := os.Stat(src)
 if err != nil {
 return err
 }

 if !sourceFileStat.Mode().IsRegular() {
 return fmt.Errorf("%s is not a regular file.", src)
 }

 source, err := os.Open(src)
 if err != nil {
 return err
 }
 defer source.Close()

As you can see here, the size of the buffer is given to the Copy() function as an argument.
The other two command-line arguments are the input filename and the output filename.

The third part has the remaining Go code of the Copy() function:

 _, err = os.Stat(dst)
 if err == nil {
 return fmt.Errorf("File %s already exists.", dst)
 }

 destination, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer destination.Close()

 if err != nil {
 panic(err)
 }

 buf := make([]byte, BUFFERSIZE)
 for {
 n, err := source.Read(buf)
 if err != nil && err != io.EOF {
 return err
 }
 if n == 0 {
 break
 }

File Input and Output

[172]

 if _, err := destination.Write(buf[:n]); err != nil {
 return err
 }
 }
 return err
}

There is nothing special here—you just keep calling source, Read() until you reach the end
of the input file. Each time you read something, you call destination. Write() to save it to
the output file. The buf[:n] notation allows you to read the first n characters from the buf
slice.

The fourth part contains the following Go code:

func main() {
 if len(os.Args) != 4 {
 fmt.Printf("usage: %s source destination BUFFERSIZE\n",
filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 source := os.Args[1]
 destination := os.Args[2]
 BUFFERSIZE, _ = strconv.ParseInt(os.Args[3], 10, 64)

The filepath.Base() is used for getting the name of the executable file.

The last part is the following:

 fmt.Printf("Copying %s to %s\n", source, destination)
 err := Copy(source, destination, BUFFERSIZE)
 if err != nil {
 fmt.Printf("File copying failed: %q\n", err)
 }
}

Executing cp.go will generate the following output:

$ go run cp.go inputFile aCopy 2048
Copying inputFile to aCopy
$ diff inputFile aCopy

If there is a problem with the copy operation, you will get a descriptive error message.

File Input and Output

[173]

So, if the program cannot find the input file, it will print the following:

$ go run cp.go A /tmp/myCP 1024
Copying A to /tmp/myCP
File copying failed: "stat A: no such file or directory"

If the program cannot read the input file, you will get the following message:

$ go run cp.go inputFile /tmp/myCP 1024
Copying inputFile to /tmp/myCP
File copying failed: "open inputFile: permission denied"

If the program cannot create the output file, it will print the following error message:

$ go run cp.go inputFile /usr/myCP 1024
Copying inputFile to /usr/myCP
File copying failed: "open /usr/myCP: operation not permitted"

If the destination file already exists, you will get the following output:

$ go run cp.go inputFile outputFile 1024
Copying inputFile to outputFile
File copying failed: "File outputFile already exists."

Benchmarking file copying operations
The size of the buffer you use in file operations is really important and affects the
performance of your system tools, especially when you are dealing with very big files.

Although developing reliable software should be your main concern, you
should not forget to make your systems software fast and efficient!

So, this section will try to see how the size of the buffer affects the file copying operations
by executing cp.go with various buffer sizes and comparing its performance with
readAll.go, notGoodCP.go as well as cp(1).

In the old Unix days when the amount of RAM on Unix machines was too small, using a
large buffer was not recommended. However, nowadays, using a buffer with a size of 100
MB is not considered bad practice, especially when you know in advance that you are going
to copy lots of big files such as the data files of a database server.

File Input and Output

[174]

We will use three files with different sizes in our testing—these three files will be generated
using the dd(1) utility, as shown here:

$dd if=/dev/urandom of=100MB count=100000 bs=1024
100000+0 records in
100000+0 records out
102400000 bytes transferred in 6.800277 secs (15058210 bytes/sec)
$ dd if=/dev/urandom of=1GB count=1000000 bs=1024
1000000+0 records in
1000000+0 records out
1024000000 bytes transferred in 68.887482 secs (14864820 bytes/sec)
$ dd if=/dev/urandom of=5GB count=5000000 bs=1024
5000000+0 records in
5000000+0 records out
5120000000 bytes transferred in 339.357738 secs (15087324 bytes/sec)
$ ls -l 100MB 1GB 5GB
-rw-r--r-- 1 mtsouk staff 102400000 May 4 10:30 100MB
-rw-r--r-- 1 mtsouk staff 1024000000 May 4 10:32 1GB
-rw-r--r-- 1 mtsouk staff 5120000000 May 4 10:38 5GB

The first file is 100 MB, the second is 1 GB, and the third is 5 GB in size.

Now, it is time for the actual testing using the time(1) utility. First, we will test the
performance of notGoodCP.go and readAll.go:

$ time ./notGoodCP 100MB copy
Copied 102400000 bytes!
real 0m0.153s
user 0m0.003s
sys 0m0.084s
$ time ./notGoodCP 1GB copy
Copied 1024000000 bytes!
real 0m1.461s
user 0m0.029s
sys 0m0.833s
$ time ./notGoodCP 5GB copy
Copied 5120000000 bytes!
real 0m12.193s
user 0m0.161s
sys 0m5.251s
$ time ./readAll 100MB copy
real 0m0.249s
user 0m0.003s
sys 0m0.138s
$ time ./readAll 1GB copy
real 0m3.117s
user 0m0.639s
sys 0m1.644s

File Input and Output

[175]

$ time ./readAll 5GB copy
real 0m28.918s
user 0m8.106s
sys 0m21.364s

Now, you will see the results from the cp.go program using four different buffer sizes, 16,
1024, 1048576, and 1073741824. First, let's copy the 100 MB file:

$ time ./cp 100MB copy 16
Copying 100MB to copy
real 0m13.240s
user 0m2.699s
sys 0m10.530s
$ time ./cp 100MB copy 1024
Copying 100MB to copy
real 0m0.386s
user 0m0.053s
sys 0m0.303s
$ time ./cp 100MB copy 1048576
Copying 100MB to copy
real 0m0.135s
user 0m0.001s
sys 0m0.075s
$ time ./cp 100MB copy 1073741824
Copying 100MB to copy
real 0m0.390s
user 0m0.011s
sys 0m0.136s

Then, we will copy the 1 GB file:

$ time ./cp 1GB copy 16
Copying 1GB to copy
real 2m10.054s
user 0m26.497s
sys 1m43.411s
$ time ./cp 1GB copy 1024
Copying 1GB to copy
real 0m3.520s
user 0m0.533s
sys 0m2.944s
$ time ./cp 1GB copy 1048576
Copying 1GB to copy
real 0m1.431s
user 0m0.006s
sys 0m0.749s
$ time ./cp 1GB copy 1073741824
Copying 1GB to copy

File Input and Output

[176]

real 0m2.033s
user 0m0.012s
sys 0m1.310s

Next, we will copy the 5 GB file:

$ time ./cp 5GB copy 16
Copying 5GB to copy
real 10m41.551s
user 2m11.695s
sys 8m29.248s
$ time ./cp 5GB copy 1024
Copying 5GB to copy
real 0m16.558s
user 0m2.415s
sys 0m13.597s
$ time ./cp 5GB copy 1048576
Copying 5GB to copy
real 0m7.172s
user 0m0.028s
sys 0m3.734s
$ time ./cp 5GB copy 1073741824
Copying 5GB to copy
real 0m8.612s
user 0m0.011s
sys 0m4.536s

Finally, let's present the results from the cp(1) utility that comes with macOS Sierra:

$ time cp 100MB copy
real 0m0.274s
user 0m0.002s
sys 0m0.105s
$ time cp 1GB copy
real 0m2.735s
user 0m0.003s
sys 0m1.014s
$ time cp 5GB copy
real 0m12.199s
user 0m0.012s
sys 0m5.050s

File Input and Output

[177]

The following figure shows a graph with the values of the real fields from the output of the
time(1) utility for all the aforementioned results:

Benchmarking results for the various copy utilities

As you can see from the results, the cp(1) utility does a pretty good job. However, cp.go
is more versatile because it allows you to define the size of the buffer. On the other hand, if
you use cp.go with a small buffer size (16 bytes), then the entire process will be totally
ruined! Additionally, it is interesting that readAll.go does a pretty decent job with
relatively small files and it is slow only when copying the 5 GB file, which is not bad for
such a small program—you can consider readAll.go as a quick and dirty solution!

File Input and Output

[178]

Developing wc(1) in Go
The principal idea behind the code of the wc.go program is that you can read a text file line
by line until there is nothing left to read. For each line you read, you find out the number of
characters and the number of words it has. As you need to read your input line by line, the
use of bufio is preferred instead of the plain io because it simplifies the code. However,
trying to implement wc.go on your own using io would be a very educational exercise.

But first, you will see that the wc(1) utility generates the following output:

$ wc wc.go cp.go
 68 160 1231 wc.go
 45 112 755 cp.go
 113 272 1986 total

So, if wc(1) has to process more than one file, it automatically generates summary
information.

In Chapter 9, Goroutines – Basic Features, you will learn how to create a version of wc.go
using Go routines. However, the core functionality of both versions will be exactly the
same!

Counting words
The trickiest part of the code implementation is word counting, which is implemented
using regular expressions:

r := regexp.MustCompile("[^\\s]+")
for range r.FindAllString(line, -1) {
numberOfWords++
}

Here, the provided regular expression separates the words of a line based on whitespace
characters in order to count them afterwards!

The wc.go code!
After this little introduction, it is time to see the Go code of wc.go, which will be presented
in five parts. The first part is the expected preamble:

package main

File Input and Output

[179]

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "os"
 "regexp"
)

The second part is the implementation of the countLines() function, which includes the
core functionality of the program. Note that the name countLines() may have been a
poor choice as countLines() also counts the words and the characters of a file:

func countLines(filename string) (int, int, int) {
 var err error
 var numberOfLines int
 var numberOfCharacters int
 var numberOfWords int
 numberOfLines = 0

 numberOfCharacters = 0
 numberOfWords = 0

 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s", err)
 os.Exit(1)
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 break
 }

 numberOfLines++
 r := regexp.MustCompile("[^\\s]+")
 for range r.FindAllString(line, -1) {
 numberOfWords++
 }
 numberOfCharacters += len(line)

File Input and Output

[180]

 }

 return numberOfLines, numberOfWords, numberOfCharacters
}

Lots of interesting things exist here. First of all, you can see the Go code presented in the
previous section for counting the words of each line. Counting lines is easy because each
time the bufio reader reads a new line, the value of the numberOfLines variable is
increased by one. The ReadString() function tells the program to read until the first
occurrence of '\n' in the input—multiple calls to ReadString() mean that you are
reading a file line by line.

Next, you can see that the countLines() function returns three integer values. Lastly,
counting characters is implemented with the help of the len() function that returns the
number of characters in a given string, which in this case is the line that was read. The for
loop terminates when you get the io.EOF error message, which signifies that there is
nothing left to read from the input file.

The third part of wc.go starts with the beginning of the implementation of the main()
function, which also includes the configuration of the flag package:

func main() {
 minusC := flag.Bool("c", false, "Characters")
 minusW := flag.Bool("w", false, "Words")
 minusL := flag.Bool("l", false, "Lines")

 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 {
 fmt.Printf("usage: wc <file1> [<file2> [... <fileN]]\n")
 os.Exit(1)
 }

 totalLines := 0
 totalWords := 0
 totalCharacters := 0
 printAll := false

 for _, filename := range flag.Args() {

The last for statement is for processing all the input files given to the program. The wc.go
program supports three flags: the -c flag is for printing the character count, the -w flag is
for printing the word count, and the -l flag is for printing the line count.

File Input and Output

[181]

The fourth part is the following:

 numberOfLines, numberOfWords, numberOfCharacters :=
countLines(filename)

 totalLines = totalLines + numberOfLines
 totalWords = totalWords + numberOfWords
 totalCharacters = totalCharacters + numberOfCharacters

 if (*minusC && *minusW && *minusL) || (!*minusC && !*minusW &&
!*minusL) {
 fmt.Printf("%d", numberOfLines)
 fmt.Printf("\t%d", numberOfWords)
 fmt.Printf("\t%d", numberOfCharacters)
 fmt.Printf("\t%s\n", filename)
 printAll = true
 continue
 }

 if *minusL {
 fmt.Printf("%d", numberOfLines)
 }

 if *minusW {
 fmt.Printf("\t%d", numberOfWords)
 }

 if *minusC {
 fmt.Printf("\t%d", numberOfCharacters)
 }

 fmt.Printf("\t%s\n", filename)
 }

This part deals with printing the information on a per file basis depending on the
command-line flags. As you can see, most of the Go code here is for handling the output
according to the command-line flags.

The last part is the following:

 if (len(flags) != 1) && printAll {
 fmt.Printf("%d", totalLines)
 fmt.Printf("\t%d", totalWords)
 fmt.Printf("\t%d", totalCharacters)
 fmt.Println("\ttotal")
return
 }

File Input and Output

[182]

 if (len(flags) != 1) && *minusL {
 fmt.Printf("%d", totalLines)
 }

 if (len(flags) != 1) && *minusW {
 fmt.Printf("\t%d", totalWords)
 }

 if (len(flags) != 1) && *minusC {
 fmt.Printf("\t%d", totalCharacters)
 }

 if len(flags) != 1 {
 fmt.Printf("\ttotal\n")
 }
}

This is where you print the total number of lines, words, and characters read according to
the flags of the program. Once again, most of the Go code here is for modifying the output
according to the command-line flags.

Executing wc.go will generate the following output:

$ go build wc.go
$ ls -l wc
-rwxr-xr-x 1 mtsouk staff 2264384 Apr 29 21:10 wc
$./wc wc.go sparse.go notGoodCP.go
120 280 2319 wc.go
44 98 697 sparse.go
27 61 418 notGoodCP.go
191 439 3434 total
$./wc -l wc.go sparse.go
120 wc.go
44 sparse.go
164 total
$./wc -w -l wc.go sparse.go
120 280 wc.go
44 98 sparse.go
164 378 total

There is a subtle point here: using Go source files as command-line arguments to the go
run wc.go command will fail. This will happen because the compiler will try to compile
the Go source files instead of treating them as command-line arguments to the go run
wc.go command. The following output proves this:

$ go run wc.go sparse.go
command-line-arguments

File Input and Output

[183]

./sparse.go:11: main redeclared in this block
 previous declaration at ./wc.go:49
$ go run wc.go wc.go
package main: case-insensitive file name collision:
"wc.go" and "wc.go"
$ go run wc.go cp.go sparse.go
command-line-arguments
./cp.go:35: main redeclared in this block
 previous declaration at ./wc.go:49
./sparse.go:11: main redeclared in this block
 previous declaration at ./cp.go:35

Additionally, trying to execute wc.go on a Linux system with Go version 1.3.3 will fail with
the following error message:

$ go version
go version go1.3.3 linux/amd64
$ go run wc.go
command-line-arguments
./wc.go:40: syntax error: unexpected range, expecting {
./wc.go:46: non-declaration statement outside function body
./wc.go:47: syntax error: unexpected }

Comparing the performance of wc.go and wc(1)
In this subsection, we will compare the performance of our version of wc(1) with the
wc(1) version that comes with macOS Sierra 10.12.6. First, we will execute wc.go:

$ file wc
wc: Mach-O 64-bit executable x86_64
$ time ./wc *.data
672320 3361604 9413057 connections.data
269123 807369 4157790 diskSpace.data
672040 1344080 8376070 memory.data
1344533 2689066 5378132 pageFaults.data
269465 792715 4068250 uptime.data
3227481 8994834 31393299 total
real 0m17.467s
user 0m22.164s
sys 0m3.885s

File Input and Output

[184]

Then, we will execute the macOS version of wc(1) to process the same files:

$ file `which wc`
/usr/bin/wc: Mach-O 64-bit executable x86_64
$ time wc *.data
672320 3361604 9413057 connections.data
269123 807369 4157790 diskSpace.data
672040 1344080 8376070 memory.data
1344533 2689066 5378132 pageFaults.data
269465 792715 4068250 uptime.data
3227481 8994834 31393299 total
real 0m0.086s
user 0m0.076s
sys 0m0.007s

Let's look at the good news here first; the two utilities generated exactly the same output,
which means that our Go version of wc(1) works great and can process big text files!

Now, the bad news; wc.go is slow! It took wc(1) less than a second to process all five files,
whereas it took wc.go nearly 18 seconds to perform the same task!

The general idea when developing software of any kind, on any platform,
using any programming language, is that you should try to have a
working version of it, which does not contain any bugs before trying to
optimize it and not the other way round!

Reading a text file character by character
Although reading a text file character by character is not needed for the development of the
wc(1) utility, it would be good to know how to implement it in Go. The name of the file
will be charByChar.go and will be presented in four parts.

The first part is the following Go code:

package main

import (
 "bufio"
 "fmt"
 "io/ioutil"
 "os"
 "strings"
)

File Input and Output

[185]

Although charByChar.go does not have many lines of Go code, it needs lots of Go
standard packages, which is a naïve indication that the task it implements is not trivial. The
second part is as follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Not enough arguments!")
 os.Exit(1)
 }
 input := arguments[1]

The third part is the following:

 buf, err := ioutil.ReadFile(input)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

The last part has the following Go code:

 in := string(buf)
 s := bufio.NewScanner(strings.NewReader(in))
 s.Split(bufio.ScanRunes)

 for s.Scan() {
 fmt.Print(s.Text())
 }
}

Here, ScanRunes is a split function that returns each character (rune) as a token. Then, the
call to Scan() allows us to process each character one by one. There also exist ScanWords
and ScanLines for getting words and lines, respectively. If you use
fmt.Println(s.Text()) as the last statement in the program instead of
fmt.Print(s.Text()), then each character will be printed on its own line and the task of
the program will be more obvious.

Executing charByChar.go generates the following output:

$ go run charByChar.go test
package main
...

File Input and Output

[186]

The wc(1) command can verify the correctness of the Go code of charByChar.go by
comparing the input file with the output generated by charByChar.go:

$ go run charByChar.go test | wc
 32 54 439
$ wc test
 32 54 439 test

Doing some file editing!
This section will present a Go program that converts tab characters to space characters in
files and vice versa! This is the job that is usually done by a text editor, but it is good to
know how to perform it on your own.

The code will be saved in tabSpace.go and will be presented in four parts.

Note that tabSpace.go reads text files line by line, but you can also
develop a version that reads text file character by character.

In the current implementation, all the work is done with the help of regular expressions,
pattern matching, and search and replace operations.

The first part is the expected preamble:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "path/filepath"
 "strings"
)

The second part contains the following Go code:

func main() {
 if len(os.Args) != 3 {
 fmt.Printf("Usage: %s [-t|-s] filename!\n",
filepath.Base(os.Args[0]))
 os.Exit(1)
 }
 convertTabs := false

File Input and Output

[187]

 convertSpaces := false
 newLine := ""

 option := os.Args[1]
 filename := os.Args[2]
 if option == "-t" {
 convertTabs = true
 } else if option == "-s" {
 convertSpaces = true
 } else {
 fmt.Println("Unknown option!")
 os.Exit(1)
 }

The third part contains the following Go code:

 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening %s: %s", filename, err)
 os.Exit(1)
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 os.Exit(1)
 }

The last part is the following:

 if convertTabs == true {
 newLine = strings.Replace(line, "\t", " ", -1)
 } else if convertSpaces == true {
 newLine = strings.Replace(line, " ", "\t", -1)
 }

 fmt.Print(newLine)
 }
}

File Input and Output

[188]

This part is where the magic happens using the appropriate strings.Replace() call. In
its current implementation, each tab is replaced by four space characters and vice versa, but
you can change that by modifying the Go code.

Once again, a big part of tabSpace.go relates to error handling because many strange
things can happen when you try to open a file for reading!

According to the Unix philosophy, the output of tabSpace.go will be printed on the screen
and will not be saved in a new text file. Using tabSpace.go with wc(1) can prove its
correctness:

$ go run tabSpace.go -t cp.go > convert
$ wc convert cp.go
 76 192 1517 convert
 76 192 1286 cp.go
 152 384 2803 total
$ go run tabSpace.go -s convert | wc
 76 192 1286

Interprocess communication
Interprocess communication (IPC), putting it simply, is allowing Unix processes to talk to
each other. Various techniques exist that allow processes and programs to talk to each
other. The single most popular technique used in Unix systems is the pipe, which exists
since the early Unix days. Chapter 8, Processes and Signals, will talk more about
implementing Unix pipes in Go. Another form of IPC is Unix domain sockets, which will
also be discussed in Chapter 8, Processes and Signals.

Chapter 12, Network Programming, will talk about another form of Interprocess
communication, which is network sockets. Shared memory also exists, but Go is against the
use of shared memory as a means of communication. Chapter 9, Goroutines – Basic Features,
and Chapter 10, Goroutines – Advanced Features, will show various techniques that allow
goroutines to communicate with others and share and exchange data.

Sparse files in Go
Large files that are created with the os.Seek() function may have holes in them and
occupy fewer disk blocks than files with the same size, but without holes in them; such files
are called sparse files. This section will develop a program that creates sparse files.

File Input and Output

[189]

The Go code of sparse.go will be presented in three parts. The first part is the following:

package main

import (
 "fmt"
 "log"
 "os"
 "path/filepath"
 "strconv"
)

The second part of sparse.go has the following Go code:

func main() {
 if len(os.Args) != 3 {
 fmt.Printf("usage: %s SIZE filename\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 SIZE, _ := strconv.ParseInt(os.Args[1], 10, 64)
 filename := os.Args[2]

 _, err := os.Stat(filename)
 if err == nil {
 fmt.Printf("File %s already exists.\n", filename)
 os.Exit(1)
 }

The strconv.ParseInt() function is used for converting the command-line argument
that defines the size of the sparse file from its string value to its integer value. Additionally,
the os.Stat() call makes sure that you will not accidentally overwrite an existing file.

The last part is where the action takes place:

 fd, err := os.Create(filename)
 if err != nil {
 log.Fatal("Failed to create output")
 }

 _, err = fd.Seek(SIZE-1, 0)
 if err != nil {
 fmt.Println(err)
 log.Fatal("Failed to seek")
 }

 _, err = fd.Write([]byte{0})
 if err != nil {

File Input and Output

[190]

 fmt.Println(err)
 log.Fatal("Write operation failed")
 }

 err = fd.Close()
 if err != nil {
 fmt.Println(err)
 log.Fatal("Failed to close file")
 }
}

First, you try to create the desired sparse file using os.Create(). Then, you call
fd.Seek() in order to make the file bigger without adding actual data. Lastly, you write a
byte to it using fd.Write(). As you do not have anything more to do with the file, you call
fd.Close() and you are done.

Executing sparse.go generates the following output:

$ go run sparse.go 1000 test
$ go run sparse.go 1000 test
File test already exists.
exit status 1

How can you tell whether a file is a sparse file or not? You will learn this in a while, but
first, let's create some files:

$ go run sparse.go 100000 testSparse
$ dd if=/dev/urandom bs=1 count=100000 of=noSparseDD
100000+0 records in
100000+0 records out
100000 bytes (100 kB) copied, 0.152511 s, 656 kB/s
$ dd if=/dev/urandom seek=100000 bs=1 count=0 of=sparseDD
0+0 records in
0+0 records out
0 bytes (0 B) copied, 0.000159399 s, 0.0 kB/s
$ ls -l noSparseDD sparseDD testSparse
-rw-r--r-- 1 mtsouk mtsouk 100000 Apr 29 21:43 noSparseDD
-rw-r--r-- 1 mtsouk mtsouk 100000 Apr 29 21:43 sparseDD
-rw-r--r-- 1 mtsouk mtsouk 100000 Apr 29 21:40 testSparse

File Input and Output

[191]

Note that some Unix variants will not create sparse files—the first such
Unix variant that comes to mind is macOS that uses the HFS filesystem.
Therefore, for better results, you can execute all these commands on a
Linux machine.

So, how can you tell if any of these three files is a sparse file or not? The -s flag of the
ls(1) utility shows the number of filesystem blocks actually used by a file. So, the output
of the ls -ls command allows you to detect if you are dealing with a sparse file or not:

$ ls -ls noSparseDD sparseDD testSparse
104 -rw-r--r-- 1 mtsouk mtsouk 100000 Apr 29 21:43 noSparseDD
 0 -rw-r--r-- 1 mtsouk mtsouk 100000 Apr 29 21:43 sparseDD
 8 -rw-r--r-- 1 mtsouk mtsouk 100000 Apr 29 21:40 testSparse

Now look at the first column of the output. The noSparseDD file, which was generated
using the dd(1) utility, is not a sparse file. The sparseDD file is a sparse file generated
using the dd(1) utility. Lastly, the testSparse is also a sparse file that was created using
sparse.go.

Reading and writing data records
This section will teach you how to deal with writing and reading data records. What
differentiates a record from other kinds of text data is that a record has a given structure
with a specific number of fields—think of it as a row from a table in a relational database.
Actually, records can be very useful for storing data in tables in case you want to develop
your own database server in Go!

The Go code of records.go will save data in the CSV format and will be presented in four
parts. The first part contains the following Go code:

package main

import (
 "encoding/csv"
 "fmt"
 "os"
)

File Input and Output

[192]

So, this is where you have to declare that you are going to read or write data in the CSV
format. The second part is the following:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Need just one filename!")
 os.Exit(-1)
 }

 filename := os.Args[1]
 _, err := os.Stat(filename)
 if err == nil {
 fmt.Printf("File %s already exists.\n", filename)
 os.Exit(1)
 }

The third part of the program is as follows:

 output, err := os.Create(filename)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 defer output.Close()

 inputData := [][]string{{"M", "T", "I."}, {"D", "T", "I."},
{"M", "T", "D."}, {"V", "T", "D."}, {"A", "T", "D."}}
 writer := csv.NewWriter(output)
 for _, record := range inputData {
 err := writer.Write(record)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 }
 writer.Flush()

You should be familiar with the operations in this part; the biggest difference from what
you have seen so far in this chapter is that the writer is from the csv package.

File Input and Output

[193]

The last part of records.go has the following Go code:

 f, err := os.Open(filename)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer f.Close()

 reader := csv.NewReader(f)
 reader.FieldsPerRecord = -1
 allRecords, err := reader.ReadAll()
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

 for _, rec := range allRecords {
 fmt.Printf("%s:%s:%s\n", rec[0], rec[1], rec[2])
 }
}

The reader reads the entire file at once to make the whole operation faster. However, if
you are dealing with huge data files, you might need to read smaller parts of the file each
time until you have read the complete file. The used reader is from the csv package.

Executing records.go will create the following output:

$ go run records.go recordsDataFile
M:T:I.
D:T:I.
M:T:D.
V:T:D.
A:T:D.
$ ls -l recordsDataFile
-rw-r--r-- 1 mtsouk staff 35 May 2 19:20 recordsDataFile

The CSV file, which is named recordsDataFile, contains the following data:

$ cat recordsDataFile
M,T,I.
D,T,I.
M,T,D.
V,T,D.
A,T,D.

File Input and Output

[194]

File locking in Go
There are times that you do not want any other child of the same process to change a file or
even access it because you are changing its data and you do not want the other processes to
read incomplete or inconsistent data. Although you will learn more about file locking and
go routines in Chapter 9, Goroutines – Basic Features and Chapter 10, Goroutines – Advanced
Features, this chapter will present a small Go example without a detailed explanation in
order to give you an idea about how things work—you should wait until Chapter 9,
Goroutines – Basic Features and Chapter 10, Goroutines – Advanced Features, to learn more.

The presented technique will use Mutex, which is a general synchronization mechanism.
The Mutex lock will allow us to lock a file from within the same Go process. As a result, this
technique has nothing to do with the use of the flock(2) system call.

Various techniques exist for file locking. One of them is by creating an
additional file that signifies that another program or process is using a
given resource. The presented technique is more suitable for programs
that use multiple go routines.

The file locking technique for writing will be illustrated in fileLocking.go, which will be
presented in four parts. The first part is the following:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "sync"
 "time"
)

var mu sync.Mutex

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

File Input and Output

[195]

The second part is the following:

func writeDataToFile(i int, file *os.File, w *sync.WaitGroup) {
 mu.Lock()
 time.Sleep(time.Duration(random(10, 1000)) * time.Millisecond)
 fmt.Fprintf(file, "From %d, writing %d\n", i, 2*i)
 fmt.Printf("Wrote from %d\n", i)
 w.Done()
mu.Unlock()
}

The locking of the file is done using the mu.Lock() statement and the unlocking of the file
with the mu.Unlock() statement.

The third part is the following:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide one command line argument!")
 os.Exit(-1)
 }

 filename := os.Args[1]
 number := 3

 file, err := os.OpenFile(filename, os.O_CREATE|os.O_WRONLY|os.O_TRUNC,
0644)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

The last part is the following Go code:

 var w *sync.WaitGroup = new(sync.WaitGroup)
 w.Add(number)

 for r := 0; r < number; r++ {
 go writeDataToFile(r, file, w)
 }

 w.Wait()
}

File Input and Output

[196]

Executing fileLocking.go will create the following output:

$ go run fileLocking.go 123
Wrote from 0
Wrote from 2
Wrote from 1
$ cat /tmp/swtag.log
From 0, writing 0
From 2, writing 4
From 1, writing 2

The correct version of fileLocking.go has a call to mu.Unlock() at the end of the
writeDataToFile() function, which allows all goroutines to use the file. If you remove
that call to mu.Unlock() from the writeDataToFile() function, and execute
fileLocking.go, you will get the following output:

$ go run fileLocking.go 123
Wrote from 2
fatal error: all goroutines are asleep - deadlock!
goroutine 1 [semacquire]:
sync.runtime_Semacquire(0xc42001024c)
 /usr/local/Cellar/go/1.8.1/libexec/src/runtime/sema.go:47 +0x34
sync.(*WaitGroup).Wait(0xc420010240)
 /usr/local/Cellar/go/1.8.1/libexec/src/sync/waitgroup.go:131 +0x7a
main.main()
 /Users/mtsouk/Desktop/goBook/ch/ch6/code/fileLocking.go:47 +0x172
goroutine 5 [semacquire]:
sync.runtime_SemacquireMutex(0x112dcbc)
 /usr/local/Cellar/go/1.8.1/libexec/src/runtime/sema.go:62 +0x34
sync.(*Mutex).Lock(0x112dcb8)
 /usr/local/Cellar/go/1.8.1/libexec/src/sync/mutex.go:87 +0x9d
main.writeDataToFile(0x0, 0xc42000c028, 0xc420010240)
 /Users/mtsouk/Desktop/goBook/ch/ch6/code/fileLocking.go:18 +0x3f
created by main.main
 /Users/mtsouk/Desktop/goBook/ch/ch6/code/fileLocking.go:44 +0x151
goroutine 6 [semacquire]:
sync.runtime_SemacquireMutex(0x112dcbc)
 /usr/local/Cellar/go/1.8.1/libexec/src/runtime/sema.go:62 +0x34
sync.(*Mutex).Lock(0x112dcb8)
 /usr/local/Cellar/go/1.8.1/libexec/src/sync/mutex.go:87 +0x9d
main.writeDataToFile(0x1, 0xc42000c028, 0xc420010240)
 /Users/mtsouk/Desktop/goBook/ch/ch6/code/fileLocking.go:18 +0x3f
created by main.main
 /Users/mtsouk/Desktop/goBook/ch/ch6/code/fileLocking.go:44 +0x151
exit status 2
$ cat 123
From 2, writing 4

File Input and Output

[197]

The reason for getting this output is that apart from the first goroutine that will be able to
execute the mu.Lock() statement, the rest of them cannot get Mutex. Therefore, they cannot
write to the file, which means that they will never finish their jobs and wait forever, which
is the reason that Go is generating the aforementioned error messages.

If you do not completely understand this example, you should wait until Chapter 9,
Goroutines – Basic Features and Chapter 10, Goroutines – Advanced Features.

A simplified Go version of the dd utility
The dd(1) tool can do many things, but this section will implement a small part of its
functionality. Our version of dd(1) will include support for two command-line flags: one
for specifying the block size in bytes (-bs) and the other for specifying the total number of
blocks that will be written (-count). Multiplying these two values will give you the size of
the generated file in bytes.

The Go code is saved as ddGo.go and will be presented to you in four parts. The first part is
the expected preamble:

package main

import (
 "flag"
 "fmt"
 "math/rand"
 "os"
 "time"
)

The second part contains the Go code of two functions:

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

func createBytes(buf *[]byte, count int) {
 if count == 0 {
 return
 }
 for i := 0; i < count; i++ {
 intByte := byte(random(0, 9))
 *buf = append(*buf, intByte)
 }
}

File Input and Output

[198]

The first function is for getting random numbers and the second one is for creating a byte
slice with the desired size filled with random numbers.

The third part of ddGo.go is the following:

func main() {
 minusBS := flag.Int("bs", 0, "Block Size")
 minusCOUNT := flag.Int("count", 0, "Counter")
 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 {
 fmt.Println("Not enough arguments!")
 os.Exit(-1)
 }

 if *minusBS < 0 || *minusCOUNT < 0 {
 fmt.Println("Count or/and Byte Size < 0!")
 os.Exit(-1)
 }

 filename := flags[0]
 rand.Seed(time.Now().Unix())

 _, err := os.Stat(filename)
 if err == nil {
 fmt.Printf("File %s already exists.\n", filename)
 os.Exit(1)
 }

 destination, err := os.Create(filename)
 if err != nil {
 fmt.Println("os.Create:", err)
 os.Exit(1)
 }

Here, you mainly deal with the command-line arguments of the program.

File Input and Output

[199]

The last part is the following:

 buf := make([]byte, *minusBS)
 buf = nil
 for i := 0; i < *minusCOUNT; i++ {
 createBytes(&buf, *minusBS)
 if _, err := destination.Write(buf); err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 buf = nil
 }
}

The reason for emptying the buf byte slice each time you want to call createBytes() is
that you do not want the buf byte slice to get bigger and bigger each time you call the
createBytes() function. This happens because the append() function adds data at the
end of a slice without touching the existing data.

In the first version of ddGo.go that I wrote, I forgot to empty the buf byte
slice before each call to createBytes(). Consequently, the generated files
were bigger than expected! It took me a while and a couple of
fmt.Println(buf) statements to find out the reason for this unforeseen
behavior!

The execution of ddGo.go will generate the files you want quite fast:

$ time go run ddGo.go -bs=10000 -count=5000 test3
real 0m1.655s
user 0m1.576s
sys 0m0.104s
$ ls -l test3
-rw-r--r-- 1 mtsouk staff 50000000 May 6 15:27 test3

Additionally, the use of random numbers makes the generated files of the same size
different from each other:

$ go run ddGo.go -bs=100 -count=50 test1
$ go run ddGo.go -bs=100 -count=50 test2
$ ls -l test1 test2
-rw-r--r-- 1 mtsouk staff 5000 May 6 15:26 test1
-rw-r--r-- 1 mtsouk staff 5000 May 6 15:26 test2
$ diff test1 test2
Binary files test1 and test2 differ

File Input and Output

[200]

Exercises
Visit the documentation page of the bufio package that can be found at1.
https://golang.org/pkg/bufio/.
Visit the documentation of the io package at https://golang.org/pkg/io/.2.
Try to make wc.go faster.3.
Implement the functionality of tabSpace.go, but try to read your input text files4.
character by character instead of line by line.
Change the code of tabSpace.go in order to be able to get the number of spaces5.
that will replace a tab as a command-line argument.
Learn more information about the little endian and the big endian6.
representations.

Summary
In this chapter, we talked about file input and output in Go. Among other things, we
developed Go versions of the wc(1), dd(1), and cp(1) Unix command-line utilities while
learning more about the io and bufio packages of the Go standard library, which allow
you to read from and write to files.

In the next chapter, we will talk about another important subject, which is the Go way of
working with the system files of a Unix machine. Additionally, you will learn how to read
and change the Unix file permissions as well as how to find the owner and the group of a
file. Also, we will talk about log files and how you can use pattern matching to acquire the
information you want from log files.

https://golang.org/pkg/bufio/
https://golang.org/pkg/io/

7
Working with System Files

In the previous chapter, we talked about file input and output in Go, and created Go
versions of the wc(1), dd(1), and cp(1) utilities.

While the main subject of this chapter is Unix system files and log files, you will also learn
many other things, including pattern matching, file permissions, working with users and
groups, and dealing with dates and times in Go. For all these subjects, you will see handy
Go codes that will explain the presented techniques, and these can be used in your own Go
programs without requiring too many changes.

So, this chapter will talk about the following topics:

Appending data to an existing file
Reading a file and altering each one of its lines
Regular expressions and pattern matching in Go
Sending information to Unix log files
Working with dates and times in Go
Working with Unix file permissions
Working with user IDs and group IDs
Learning more information about files and directories
Processing log files and extracting useful information from them
Generating difficult to guess passwords using random numbers

Working with System Files

[202]

Which files are considered system files?
Each Unix operation system contains files that are responsible for the configuration of the
system as well as its various services. Most of these files are located in the /etc directory. I
also like to consider log files as system files, although some people might disagree. Usually,
most system log files can be found inside /var/log. However, the log files of the Apache
and the nginx web server can be found elsewhere, depending on their configuration.

Logging in Go
The log package provides a general way to log information on your Unix machine, whereas
the log/syslog Go package allows you to send information to the system logging service
using the logging level and the logging facility you want. Also, the time package can help
you work with dates and times.

Putting data at the end of a file
As discussed in Chapter 6, File Input and Output, in this chapter, we will talk about opening
a file for writing without destroying its existing data.

The Go program that will illustrate the technique, appendData.go, will accept two
command-line arguments—the message you want to append and the name of the file that
will store the text. This program will be presented in three parts.

The first part of appendData.go contains the following Go code:

package main

import (
 "fmt"
 "os"
 "path/filepath"
)

As expected, the first part of the program contains the Go packages that will be used in the
program.

Working with System Files

[203]

The second part is the following:

func main() {
 arguments := os.Args
 if len(arguments) != 3 {
 fmt.Printf("usage: %s message filename\n",
filepath.Base(arguments[0]))
 os.Exit(1)
 }
 message := arguments[1]
 filename := arguments[2]

 f, err := os.OpenFile(filename,
os.O_RDWR|os.O_APPEND|os.O_CREATE, 0660)

The desired task is done by the os.O_APPEND flag of the os.OpenFile() function that tells
Go to write at the end of the file. Additionally, the os.O_CREATE flag will make
os.OpenFile() to create the file if it does not exist, which is pretty handy because it saves
you from having to write Go code that tests whether the file is already there or not.

The last part of the program is the following:

 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 defer f.Close()

 fmt.Fprintf(f, "%s\n", message)
}

The fmt.Fprintf() function is used here in order to write the message to the file as plain
text. As you can see, appendData.go is a relatively small Go program that does not contain
any surprises.

Executing appendData.go will create no output, but it will do its job, as you can see from
the output of the cat(1) utility before and after the execution of appendData.go:

$ cat test
[test]: test
: test
$ go run appendData.go test test
$ cat test
[test]: test
: test
test

Working with System Files

[204]

Altering existing data
This section will teach you how to modify the contents of a file. The program that will be
developed does a pretty convenient job: it adds a line number in front of each line of a text
file. This means that you will need to read the input file line by line, keep a variable that
will hold the line number value, and save it using the original name. Additionally, the
initial value of the variable that holds the line number value can be defined when you start
the program. The name of the Go program will be insertLineNumber.go, and it will be
presented in four parts.

First, you will see the expected preamble:

package main

import (
 "flag"
 "fmt"
 "io/ioutil"
 "os"
 "strings"
)

The second part is mainly the configuration of the flag package:

func main() {
 minusINIT := flag.Int("init", 1, "Initial Value")
 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 {
 fmt.Printf("usage: insertLineNumber <files>\n")
 os.Exit(1)
 }

 lineNumber := *minusINIT
 for _, filename := range flags {
 fmt.Println("Processing:", filename)

The lineNumber variable is initiated by the value of the minusINIT flag. Additionally, the
utility can process multiple files using a for loop.

Working with System Files

[205]

The third part of the program is the following:

 input, err := ioutil.ReadFile(filename)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }

 lines := strings.Split(string(input), "\n")

As you can see, insertLineNumber.go reads its input file all at once using
ioutil.ReadFile(), which might not be so efficient when processing huge text files.
However, with today's computers, this should not be a problem. A better approach would
be to read the input file line by line, write each altered line to a temporary file, and then
replace the original file with the temporary one.

The last part of the utility is the following:

 for i, line := range lines {
 lines[i] = fmt.Sprintf("%d: %s ", lineNumber, line)
 lineNumber = lineNumber + 1
 }

 lines[len(lines)-1] = ""
 output := strings.Join(lines, "\n")
 err = ioutil.WriteFile(filename, []byte(output), 0644)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 }
 fmt.Println("Processed", lineNumber-*minusINIT, "lines!")
}

As the range loop will introduce an extra line at the end of the file, you have to delete the
last line in the lines slice using the lines[len(lines)-1] = "" statement, which means
that the program assumes that all the files it processes end with a new line. If your text files
do not do that, then you might want to change the code of insertLineNumber.go or add a
new line at the end of your text files.

Working with System Files

[206]

The running of insertLineNumber.go generates no visible output apart from the filename
of each file it processes and the total number of processed lines. However, you can see the
results of its execution by looking at the contents of the files you processed:

$ cat test
a
b
$ go run insertLineNumber.go -init=10 test
Processing: test
Processed 4 lines!
$ cat test
10: a
11:
12: b

If you try to process the same input file multiple times, as in the following example, an
interesting thing will happen:

$ cat test
a
b
$ go run insertLineNumber.go -init=10 test test test
Processing: test
Processing: test
Processing: test
Processed 12 lines!
$ cat test
18: 14: 10: a
19: 15: 11:
20: 16: 12: b

About log files
This part will teach you how to send information from a Go program to the logging service
and therefore to system log files. Despite the obvious fact that it is good to keep information
stored, log files are necessary for server processes because there is no other way for a server
process to send information to the outside world, as it has no Terminal to send any output.

Log files are important and you should not underestimate the value of the
information stored in them. Log files should be the first place to look for
help when strange things start happening on a Unix machine.

Working with System Files

[207]

Generally speaking, using a log file is better than displaying the output on the screen for
two reasons: first, the output does not get lost, as it is stored on a file, and second, you can
search and process log files using Unix tools, such as grep(1), awk(1), and sed(1), which
cannot be done when messages are printed on a Terminal window.

About logging
All Unix machines have a separate server process for logging log files. On macOS machines,
the name of the process is syslogd(8). On the other hand, most Linux machines use
rsyslogd(8), which is an improved and more reliable version of syslogd(8), which was
the original Unix system utility for message logging.

However, despite the Unix variant you are using, or the name of the server process used for
logging, logging works the same way on every Unix machine and therefore does not affect
the Go code that you will write.

The best way to watch one or more log files is with the help of the
tail(1) utility, followed by the -f flag and the name of the log file you
want to watch. The -f flag tells tail(1) to wait for additional data. You
will need to terminate such a tail(1) command by pressing Ctrl + C.

Logging facilities
A logging facility is like a category used for logging information. The value of the logging
facility part can be any one of auth, authpriv, cron, daemon, kern, lpr, mail, mark, news, syslog,
user, UUCP, local0, local1, local2, local3, local4, local5, local6, and local7; this is defined inside
/etc/syslog.conf, /etc/rsyslog.conf, or another appropriate file depending on the
server process used for system logging on your Unix machine. This means that if a logging
facility is not defined and therefore handled, the log messages you send to it might get lost.

Logging levels
A logging level or priority is a value that specifies the severity of the log entry. There exist
various logging levels including debug, info, notice, warning, err, crit, alert, and emerg, in
reverse order of severity.

Look at the /etc/rsyslog.conf file of a Linux machine to learn more about how to
control logging facilities and logging levels.

Working with System Files

[208]

The syslog Go package
This subsection will present a Go program that works on all Unix machines and sends data
to the logging service in various ways. The name of the program is useSyslog.go, and it
will be presented in four parts.

First, you will see the expected preamble:

package main

import (
 "fmt"
 "log"
 "log/syslog"
 "os"
 "path/filepath"
)

You have to use the log package for logging and the log/syslog package for defining the
logging facility and the logging level of your program.

The second part is the following:

func main() {
 programName := filepath.Base(os.Args[0])
 sysLog, e := syslog.New(syslog.LOG_INFO|syslog.LOG_LOCAL7, programName)
 if e != nil {
 log.Fatal(e)
 }
 sysLog.Crit("Crit: Logging in Go!")

The syslog.New() function call, which returns a writer, tells your program where to direct
all log messages. The good thing is that you already know how to use a writer!

Note that the developer should define both the priority and the facility
that a program uses.

However, even with a defined priority and facility, the log/syslog package allows you to
send direct log messages to other priorities using functions such as sysLog.Crit().

Working with System Files

[209]

The third part of the program is the following:

 sysLog, e = syslog.New(syslog.LOG_ALERT|syslog.LOG_LOCAL7, "Some
program!")
 if e != nil {
 log.Fatal(sysLog)
 }
sysLog.Emerg("Emerg: Logging in Go!")

This part shows that you can call syslog.New() multiple times in the same program. Once
again, calling the Emerg() function allows you to bypass what was defined by the
syslog.New() function.

The last part is the following:

 fmt.Fprintf(sysLog, "log.Print: Logging in Go!")
}

This is the only call that uses the logging priority and the logging facility that were defined
by syslog.New(), by directly writing to the sysLog writer.

Executing useLog.go will generate some output on the screen, but it will also write data to
the appropriate log files. On a macOS Sierra or a Mac OS X machine, you will see the
following:

$ go run useSyslog.go
Broadcast Message from _iconservices@iMac.local
 (no tty) at 18:01 EEST...
Emerg: Logging in Go!
$ grep "Logging in Go" /var/log/* 2>/dev/null
/var/log/system.log:May 19 18:01:31 iMac useSyslog[22608]: Crit: Logging in
Go!
/var/log/system.log:May 19 18:01:31 iMac Some program![22608]: Emerg:
Logging in Go!
/var/log/system.log:May 19 18:01:31 iMac Some program![22608]: log.Print:
Logging in Go!

Working with System Files

[210]

On a Debian Linux machine, you will see the following results:

$ go run useSyslog.go
Message from syslogd@mail at May 19 18:03:00 ...
Some program![1688]: Emerg: Logging in Go!
$
Broadcast message from systemd-journald@mail (Fri 2017-05-19 18:03:00
EEST):
useSyslog[1688]: Some program![1688]: Emerg: Logging in Go!
$ tail -5 /var/log/syslog
May 19 18:03:00 mail useSyslog[1688]: Crit: Logging in Go!
May 19 18:03:00 mail Some program![1688]: Emerg: Logging in Go!
May 19 18:03:00 mail Some program![1688]: log.Print: Logging in Go!
$ grep "Logging in Go" /var/log/* 2>/dev/null
/var/log/cisco.log:May 19 18:03:00 mail useSyslog[1688]: Crit: Logging in
Go!
/var/log/cisco.log:May 19 18:03:00 mail Some program![1688]: Emerg: Logging
in Go!
/var/log/cisco.log:May 19 18:03:00 mail Some program![1688]: log.Print:
Logging in Go!
/var/log/syslog:May 19 18:03:00 mail useSyslog[1688]: Crit: Logging in Go!
/var/log/syslog:May 19 18:03:00 mail Some program![1688]: Emerg: Logging in
Go!
/var/log/syslog:May 19 18:03:00 mail Some program![1688]: log.Print:
Logging in Go!

The output from the two machines shows that the Linux machine has a different syslog
configuration, which is the reason that the messages from useLog.go were also written to
/var/log/cisco.log.

However, your main concern should not be whether the log messages will be written to too
many files or not; rather if you will be able to find them or not!

Processing log files
This subsection will process a log file that contains client IP addresses in order to create a
summary of them. The name of the Go file will be countIP.go, and it will be presented in
four parts. Note that countIP.go requires two parameters: the name of the log file and the
field that contains the desired information. As countIP.go does not check whether the
given field contains an IP address or not, it can also be used for other kinds of data if you
remove some of its code.

Working with System Files

[211]

First, you will see the expected preamble of the program:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "net"
 "os"
 "path/filepath"
 "strings"
)

The second part comes with the following Go code, which is the beginning of the
implementation of the main() function:

func main() {
 minusCOL := flag.Int("COL", 1, "Column")
 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 {
 fmt.Printf("usage: %s <file1> [<file2> [... <fileN]]\n",
filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 column := *minusCOL
 if column < 0 {
 fmt.Println("Invalid Column number!")
 os.Exit(1)
 }

The countIP.go utility uses the flag package and can process multiple files.

The third part of the program is the following:

 myIPs := make(map[string]int)
 for _, filename := range flags {
 fmt.Println("\t\t", filename)
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s\n", err)
 continue
 }
 defer f.Close()

Working with System Files

[212]

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 continue
 }

Each input file is read line by line, whereas the myIPs map variable is used for holding the
count of each IP address.

The last part of countIP.go is as follows:

 data := strings.Fields(line)
 ip := data[column-1]
 trial := net.ParseIP(ip)
 if trial.To4() == nil {
 continue
 }

 _, ok := myIPs[ip]
 if ok {
 myIPs[ip] = myIPs[ip] + 1
 } else {
 myIPs[ip] = 1
 }
 }
 }

 for key, _ := range myIPs {
 fmt.Printf("%s %d\n", key, myIPs[key])
 }
}

Here is where the magic happens: first, you extract the desired field from the working line.
Then, you use the net.ParseIP() function to make sure that you are dealing with a valid
IP address—if you want the program to process other kinds of data, you should delete the
Go code that uses the net.ParseIP() function. After that, you update the contents of the
myIPs map based on whether the current IP address can be found in the map or not—you
saw that code back in Chapter 2, Writing Programs in Go. Finally, you print the contents of
the myIPs map on the screen, and you are done!

Working with System Files

[213]

Executing countIP.go generates the following output:

$ go run countIP.go /tmp/log.1 /tmp/log.2
 /tmp/log.1
 /tmp/log.2
164.132.161.85 4
66.102.8.135 17
5.248.196.10 15
180.76.15.10 12
66.249.69.40 142
51.255.65.35 7
95.158.53.56 1
64.183.178.218 31
$ go run countIP.go /tmp/log.1 /tmp/log.2 | wc
 1297 2592 21266

However, it would be better if the output was sorted by the count associated with each IP
address, which you can easily do with the help of the sort(1) Unix utility:

$ go run countIP.go /tmp/log.1 /tmp/log.2 | sort -rn -k2
45.55.38.245 979
159.203.126.63 976
130.193.51.27 698
5.9.63.149 370
77.121.238.13 340
46.4.116.197 308
51.254.103.60 302
51.255.194.31 277
195.74.244.47 201
61.14.225.57 179
69.30.198.242 152
66.249.69.40 142
2.86.9.124 140
2.86.27.46 127
66.249.69.18 125

Working with System Files

[214]

If you want the first 10 IP addresses, you can filter the previous output with the head(1)
utility as follows:

$ go run countIP.go /tmp/log.1 /tmp/log.2 | sort -rn -k2 | head
45.55.38.245 979
159.203.126.63 976
130.193.51.27 698
5.9.63.149 370
77.121.238.13 340
46.4.116.197 308
51.254.103.60 302
51.255.194.31 277
195.74.244.47 201
61.14.225.57 179

File permissions revisited
There are times that we need to find detailed information about the Unix permissions of a
file. The filePerm.go Go utility will teach you how to read the Unix file permissions of a
file or a directory and print them as a binary number, a decimal number, and a string. The
program will be presented in three parts. The first part is the following:

package main

import (
 "fmt"
 "os"
 "path/filepath"
)

The second part is as follows:

func tripletToBinary(triplet string) string {
 if triplet == "rwx" {
 return "111"
 }
 if triplet == "-wx" {
 return "011"
 }
 if triplet == "--x" {
 return "001"
 }
 if triplet == "---" {
 return "000"
 }
 if triplet == "r-x" {

Working with System Files

[215]

 return "101"
 }
 if triplet == "r--" {
 return "100"
 }
 if triplet == "--x" {
 return "001"
 }
 if triplet == "rw-" {
 return "110"
 }
 if triplet == "-w-" {
 return "010"
 }
 return "unknown"
}

func convertToBinary(permissions string) string {
 binaryPermissions := permissions[1:]
 p1 := binaryPermissions[0:3]
 p2 := binaryPermissions[3:6]
 p3 := binaryPermissions[6:9]
 return tripletToBinary(p1) + tripletToBinary(p2) + tripletToBinary(p3)
}

Here, you implement two functions that will help you convert a string with nine characters
that hold the permissions of a file into a binary number. As an example, the rwxr-x---
string will be converted to 111101000. The initial string is extracted from the os.Stat()
function call.

The last part contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Printf("usage: %s filename\n", filepath.Base(arguments[0]))
 os.Exit(1)
 }

 filename := arguments[1]
 info, _ := os.Stat(filename)
 mode := info.Mode()

 fmt.Println(filename, "mode is", mode)
 fmt.Println("As string is", mode.String()[1:10])
 fmt.Println("As binary is", convertToBinary(mode.String()))
}

Working with System Files

[216]

Executing filePerm.go will generate the following output:

$ go run filePerm.go .
. mode is drwxr-xr-x
As string is rwxr-xr-x
As binary is 111101101
$ go run filePerm.go /tmp/swtag.log
/tmp/swtag.log mode is -rw-rw-rw-
As string is rw-rw-rw-
As binary is 110110110

Changing file permissions
This section will explain how to change the Unix permissions of a file or a directory to the
desired value; however, it will not deal with the sticky bit, the set user ID bit, or the set
group ID bit—not because they are difficult to implement, but because you usually do not
need any of these when dealing with system files.

The name of the utility will be setFilePerm.go, and it will be presented in four parts. The
new file permissions will be given as a string with nine characters such as rwxrw-rw-.

The first part of setFilePerm.go contains the expected preamble Go code:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "strconv"
)

The second part is the implementation of the tripletToBinary() function that you saw in
the previous section:

func tripletToBinary(triplet string) string {
 if triplet == "rwx" {
 return "111"
 }
 if triplet == "-wx" {
 return "011"
 }
 if triplet == "--x" {
 return "001"
 }
 if triplet == "---" {

Working with System Files

[217]

 return "000"
 }
 if triplet == "r-x" {
 return "101"
 }
 if triplet == "r--" {
 return "100"
 }
 if triplet == "--x" {
 return "001"
 }
 if triplet == "rw-" {
 return "110"
 }
 if triplet == "-w-" {
 return "010"
 }
 return "unknown"
}

The third part contains the following Go code:

func convertToBinary(permissions string) string {
 p1 := permissions[0:3]
 p2 := permissions[3:6]
 p3 := permissions[6:9]

 p1 = tripletToBinary(p1)
 p2 = tripletToBinary(p2)
 p3 = tripletToBinary(p3)

 p1Int, _ := strconv.ParseInt(p1, 2, 64)
 p2Int, _ := strconv.ParseInt(p2, 2, 64)
 p3Int, _ := strconv.ParseInt(p3, 2, 64)

 returnValue := p1Int*100 + p2Int*10 + p3Int
 tempReturnValue := int(returnValue)
 returnString := "0" + strconv.Itoa(tempReturnValue)
 return returnString
}

Here, the name of the function is misleading, as it does not return a binary number—this is
my fault.

Working with System Files

[218]

The last part contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) != 3 {
 fmt.Printf("usage: %s filename permissions\n",
filepath.Base(arguments[0]))
 os.Exit(1)
 }

 filename, _ := filepath.EvalSymlinks(arguments[1])
 permissions := arguments[2]
 if len(permissions) != 9 {
 fmt.Println("Permissions should be 9 characters
(rwxrwxrwx):", permissions)
 os.Exit(-1)
 }

 bin := convertToBinary(permissions)
 newPerms, _ := strconv.ParseUint(bin, 0, 32)
 newMode := os.FileMode(newPerms)
 os.Chmod(filename, newMode)
}

Here, you get the return value of convertToBinary() and convert it to an
os.FileMode() variable in order to use it with the os.Chmod() function.

Running setFilePerm.go generates the following results:

$ go run setFilePerm.go /tmp/swtag.log rwxrwxrwx
$ ls -l /tmp/swtag.log
-rwxrwxrwx 1 mtsouk wheel 7066 May 22 19:17 /tmp/swtag.log
$ go run setFilePerm.go /tmp/swtag.log rwxrwx---
$ ls -l /tmp/swtag.log
-rwxrwx--- 1 mtsouk wheel 7066 May 22 19:17 /tmp/swtag.log

Finding other kinds of information about files
The most important information about a Unix file is its owner and its group, and this
section will teach you how to find both of them using Go code. The findOG.go utility
accepts a list of files as its command-line arguments and returns the owner and the group of
each one of them. Its Go code will be presented in three parts.

Working with System Files

[219]

The first part is the following:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "syscall"
)

The second part is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Printf("usage: %s <files>\n", filepath.Base(arguments[0]))
 os.Exit(1)
 }

 for _, filename := range arguments[1:] {
 fileInfo, err := os.Stat(filename)
 if err != nil {
 fmt.Println(err)
 continue
 }

In this part, you make a call to the os.Stat() function to make sure that the file you want
to process exists.

The last part of findOG.go comes with the following Go code:

 fmt.Printf("%+v\n", fileInfo.Sys())
 fmt.Println(fileInfo.Sys().(*syscall.Stat_t).Uid)
 fmt.Println(fileInfo.Sys().(*syscall.Stat_t).Gid)
 }
}

Yes, this is the most cryptic code you have seen so far in this book that uses the return value
of os.Stat() to extract the desired information. Additionally, it is neither portable, which
means that it might not work on your Unix variant, nor you can be sure that it will continue
to work in forthcoming versions of Go!

Sometimes tasks that look easy might take you more time than expected.
One of these tasks is the findOG.go program. This mainly happens
because Go does not have an easy and portable way to find out the owner
and the group of a file. Hopefully, this will change in the future.

Working with System Files

[220]

Executing findOG.go on macOS Sierra or Mac OS X will generate the following output:

$ go run findOG.go /tmp/swtag.log
&{Dev:16777218 Mode:33206 Nlink:1 Ino:50547755 Uid:501 Gid:0 Rdev:0
Pad_cgo_0:[0 0 0 0] Atimespec:{Sec:1495297106 Nsec:0}
Mtimespec:{Sec:1495297106 Nsec:0} Ctimespec:{Sec:1495297106 Nsec:0}
Birthtimespec:{Sec:1495044975 Nsec:0} Size:2586 Blocks:8 Blksize:4096
Flags:0 Gen:0 Lspare:0 Qspare:[0 0]}
501
0
$ ls -l /tmp/swtag.log
-rw-rw-rw- 1 mtsouk wheel 2586 May 20 19:18 /tmp/swtag.log
$ grep wheel /etc/group
wheel:*:0:root

Here, you can see that the fileInfo.Sys() call returns a plethora of information from the
file in a somehow puzzling format—the information is analogous to the information from a
C call to stat(2). The first line of output is the contents of the os.Stat.Sys() call,
whereas the second line is the user ID (501) of the owner of the file and the third line is the
group ID (0) of the owner of the file.

Executing findOG.go on a Debian Linux machine will generate the following output:

$ go run findOG.go /home/mtsouk/connections.data
&{Dev:2048 Ino:1196167 Nlink:1 Mode:33188 Uid:1000 Gid:1000 X__pad0:0
Rdev:0 Size:9626800 Blksize:4096 Blocks:18840 Atim:{Sec:1412623801 Nsec:0}
Mtim:{Sec:1495307521 Nsec:929812185} Ctim:{Sec:1495307521 Nsec:929812185}
X__unused:[0 0 0]}
1000
1000
$ ls -l /home/mtsouk/connections.data
-rw-r--r-- 1 mtsouk mtsouk 9626800 May 20 22:12
/home/mtsouk/connections.data
code$ grep ^mtsouk /etc/group
mtsouk:x:1000:

The good news here is that findOG.go worked on both macOS Sierra and Debian Linux,
even though macOS Sierra was using Go version 1.8.1 and Debian Linux was using Go
version 1.3.3!

Most of the presented Go code will be used later in this chapter for the implementation of
the userFiles.go utility.

Working with System Files

[221]

More pattern matching examples
This section will present regular expressions that match more difficult patterns than the
ones you have seen so far in this book. Just remember that regular expressions and pattern
matching are practical subjects that you should learn by experimenting and sometimes
failing, not by reading about them.

If you are very careful with regular expressions in Go, you can easily read
or change almost all the system files of a Unix system that are in plain text
format. Just be extra careful when modifying system files!

A simple pattern matching example
The example of this section will improve the functionality of the countIP.go utility, by
developing a program that automatically detects the field with the IP address; therefore, it
will not require the user to define the field of each log entry that contains the IP address. To
make things simpler, the created program will only process the first IP address of each
line—findIP.go takes a single command-line argument, which is the name of the log file
you want to process. The program will be presented in four parts.

The first part of findIP.go is the following:

package main

import (
 "bufio"
 "fmt"
 "io"
 "net"
 "os"
 "path/filepath"
 "regexp"
)

The second part is where most of the magic happens with the help of a function:

func findIP(input string) string {
 partIP := "(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])"
 grammar := partIP + "\\." + partIP + "\\." + partIP + "\\." + partIP
 matchMe := regexp.MustCompile(grammar)
 return matchMe.FindString(input)
}

Working with System Files

[222]

The regular expression is pretty complex considering that we just want to match four
decimal numbers in the 0-255 range that are separated by dots, which mainly shows that
regular expressions can be pretty complicated when you want to be methodical.

But let me explain this to you in more detail. An IP address has four parts separated by
dots. Each one of these parts can have a value between 0 and 255, which means that number
257 is not an acceptable value—this is the main reason that the regular expression is so
complex. The first case is for numbers between 250 and 255. The second case is for numbers
between 200 and 249, and the third case is for numbers between 100 and 199. The last case is
for catching values between 0 and 99.

The third part of findIP.go is the following:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("usage: %s logFile\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }
 filename := os.Args[1]

 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s\n", err)
 os.Exit(-1)
 }
 defer f.Close()

 myIPs := make(map[string]int)
 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 break
 }

Here, you read the input log file line by line using bufio.NewReader().

Working with System Files

[223]

The last part has the following Go code, which deals with processing the matches of the
regular expression:

 ip := findIP(line)
 trial := net.ParseIP(ip)
 if trial.To4() == nil {
 continue
 } else {
 _, ok := myIPs[ip]
 if ok {
 myIPs[ip] = myIPs[ip] + 1
 } else {
 myIPs[ip] = 1
 }
 }
 }
 for key, _ := range myIPs {
 fmt.Printf("%s %d\n", key, myIPs[key])
 }
}

As you can see, findIP.go executes an additional checking on the IP that was found by the
function that performed the pattern matching operation, using net.ParseIP(); this
mainly happens because IP addresses are pretty tricky, and it is considered good practice to
double check them! Additionally, this catches the case where findIP() returns nothing
because a valid IP was not found in the processed line. The last thing the program does
before exiting is to print the contents of the myIPs map.

Consider how many incredible and useful utilities you can develop with a
small amount of Go code: it is really amazing!

Executing findIP.go on a Linux machine in order to process the /var/log/auth.log log
file will create the following output:

$ wc /var/log/auth.log
 1499647 20313719 155224677 /var/log/auth.log
$ go run findIP.go /var/log/auth.log
39.114.101.107 1003
111.224.233.41 10
189.41.147.179 306
55.31.112.181 1
5.141.131.102 10
171.60.251.143 30
218.237.65.48 1

Working with System Files

[224]

24.16.210.120 8
199.115.116.50 3
139.160.113.181 1

You can sort the previous output by the number of times an IP was found and display the
10 most popular IP addresses, as shown here:

$ go run findIP.go /var/log/auth.log | sort -nr -k2 | head
218.65.30.156 102533
61.177.172.27 37746
218.65.30.43 34640
109.74.11.18 32870
61.177.172.55 31968
218.65.30.124 31649
59.63.188.3 30970
61.177.172.28 30023
116.31.116.30 29314
61.177.172.14 28615

So, in this case, the findIP.go utility is used for checking the security of your Linux
machine!

An advanced example of pattern matching
In this section, you will learn how to swap the values of two fields of each line of a text file,
provided they are in the correct format. This mainly happens in log files or other text files
where you want to scan a line for certain types of data, and if the data is found, you might
need to do something with them—in this case, you will change the place of the two values.

The name of the program will be swapRE.go, and it will be presented in four parts. Once
again, the program will read a text file line by line and try to match the desired strings
before swapping them. The utility will print the contents of the new file on the screen; it is
the responsibility of the user to save the results to a new file. The format of the log entries
that swapRE.go expects to process are similar to the following:

127.0.0.1 - - [24/May/2017:06:41:11 +0300] "GET /contact HTTP/1.1" 200 6048
"http://www.mtsoukalos.eu/" "Mozilla/5.0 (Windows NT 6.3; WOW64;
Trident/7.0; rv:11.0) like Gecko" 132953

Working with System Files

[225]

The entries from the previous line that the program will swap are
[24/May/2017:06:41:11 +0300] and 132953, which are the date and time and the time it
took the browser to get the desired information, respectively; the program expects to find
this at the end of each line. However, the regular expression also checks that the date and
time are in the correct format and that the last field of each log entry is indeed a number.

As you will see, using regular expressions in Go, can be perplexing
sometimes, mainly because regular expressions are relatively difficult to
build, in general.

The first part of swapRE.go will be the expected preamble:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "os"
 "regexp"
)

The second part comes with the following Go code:

func main() {
 flag.Parse()
 if flag.NArg() != 1 {
 fmt.Println("Please provide one log file to process!")
 os.Exit(-1)
 }
 numberOfLines := 0
 numberOfLinesMatched := 0

 filename := flag.Arg(0)
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s", err)
 os.Exit(1)
 }
 defer f.Close()

There is nothing particularly interesting or new here.

Working with System Files

[226]

The third part is the following:

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 }

Here is the Go code that allows you to process the input file line by line.

The last part of swapRE.go is the following:

 numberOfLines++
 r := regexp.MustCompile(`(.*)
(\[\d\d\/(\w+)/\d\d\d\d:\d\d:\d\d:\d\d(.*)\]) (.*) (\d+)`)
 if r.MatchString(line) {
 numberOfLinesMatched++
 match := r.FindStringSubmatch(line)
 fmt.Println(match[1], match[6], match[5], match[2])
 }
 }
 fmt.Println("Line processed:", numberOfLines)
 fmt.Println("Line matched:", numberOfLinesMatched)
}

As you can imagine, complex regular expressions, such as the one presented here, are built
step by step, not all at once. Even in that case, you may still fail many times in the process
because even the tiniest mistake in a complex regular expression will cause it to not do what
you expect—extensive testing is the key here!

The parentheses used inside a regular expression allow you to reference each match
afterwards and are very handy when you want to process what you have matched. What
you want here is to find a [character, then two digits that will be the day of the month,
then a word, which will be the name of the month, and then four digits that will be the year.
Next, you match anything else until you find a] character. Then you match all the digits at
the end of each line.

Note that there might exist alternative ways to write the same regular
expression. The general advice here is to write it in a way that is clear and
that you can understand.

Working with System Files

[227]

Executing swapRE.gowith, a small test log file will generate the following output:

$ go run swapRE.go /tmp/log.log
127.0.0.1 - - 28787 "GET /taxonomy/term/35/feed HTTP/1.1" 200 2360 "-"
"Mozilla/5.0 (compatible; Baiduspider/2.0;
+http://www.baidu.com/search/spider.html)" [24/May/2017:07:04:48 +0300]
- - 32145 HTTP/1.1" 200 2616 "http://www.mtsoukalos.eu/" "Mozilla/5.0
(compatible; inoreader.com-like FeedFetcher-Google)" [24/May/2017:07:09:24
+0300]
Line processed: 3
Line matched: 2

Renaming multiple files using regular
expressions
The last section on pattern matching and regular expressions will work on filenames and
will allow you to rename multiple files. As you can guess, a walk function will be used in
the program while a regular expression will match the filenames you want to rename.

When dealing with files, you should be extra careful because you might
accidentally destroy things! Putting it simply, do not test such utilities on a
production server.

The name of the utility will be multipleMV.go, and it will be presented in three parts.
What multipleMV.go will do is insert a string in front of every filename that is a match to
the given regular expression.

The first part is the expected preamble:

package main

import (
 "flag"
 "fmt"
 "os"
 "path/filepath"
 "regexp"
)

var RE string
var renameString string

Working with System Files

[228]

The two global variables save you from having to use many parameters in your functions.
Additionally, as the signature of the walk() function, presented in a while, cannot change,
it will not be possible to pass them as parameters to walk(). So, in this case, having two
global parameters makes things easier and simpler.

The second part contains the following Go code:

func walk(path string, f os.FileInfo, err error) error {
 regex, err := regexp.Compile(RE)
 if err != nil {
 fmt.Printf("Error in RE: %s\n", RE)
 return err
 }

 if path == "." {
 return nil
 }
 nameOfFile := filepath.Base(path)
 if regex.MatchString(nameOfFile) {
 newName := filepath.Dir(path) + "/" + renameString + "_" +
nameOfFile
 os.Rename(path, newName)
 }
 return nil
}

All the functionality of the program is embedded in the walk() function. After a successful
match, the new filename is stored in the newName variable before executing the
os.Rename() function.

The last part of multipleMV.go is the implementation of the main() function:

func main() {
 flag.Parse()
 if flag.NArg() != 3 {
 fmt.Printf("Usage: %s REGEXP RENAME Path",
filepath.Base(os.Args[0]))
 os.Exit(-1)
 }

 RE = flag.Arg(0)
 renameString = flag.Arg(1)
 Path := flag.Arg(2)
 Path, _ = filepath.EvalSymlinks(Path)
 filepath.Walk(Path, walk)
}

Working with System Files

[229]

Here, there is nothing you have not seen before—the only interesting thing is the call to
filepath.EvalSymlinks() in order to not have to deal with symbolic links.

Using multipleMV.go is as simple as running the following commands:

$ ls -l /tmp/swtag.log
-rw-rw-rw- 1 mtsouk wheel 446 May 22 09:18 /tmp/swtag.log
$ go run multipleMV.go 'log$' new /tmp
$ ls -l /tmp/new_swtag.log
-rw-rw-rw- 1 mtsouk wheel 446 May 22 09:18 /tmp/new_swtag.log
$ go run multipleMV.go 'log$' new /tmp
$ ls -l /tmp/new_new_swtag.log
-rw-rw-rw- 1 mtsouk wheel 446 May 22 09:18 /tmp/new_new_swtag.log
$ go run multipleMV.go 'log$' new /tmp
$ ls -l /tmp/new_new_new_swtag.log
-rw-rw-rw- 1 mtsouk wheel 446 May 22 09:18 /tmp/new_new_new_swtag.log

Searching files revisited
This section will teach you how to find files using criteria such as user ID, group ID, and file
permissions. Although this section could have been included in Chapter 5, Files and
Directories, I decided to put it here, because there are times when you will want to use this
kind of information in order to inform a system administrator that there is something
wrong with the system.

Finding the user ID of a user
This subsection will present a program that shows the user ID of a user, given their
username, which is more or less the output of the id -u utility:

$ id -u
33
$ id -u root
0

The fact that there exists a Go package named user, which can be found under the os
package that can help you implement the desired task, should not come as surprise to you.
The name of the program will be userID.go, and it will be presented in two parts. If you
give no command-line arguments to userID.go, it will print the user ID of the current
user; otherwise, it will print the user ID of the given username.

Working with System Files

[230]

The first part of userID.go is the following:

package main

import (
 "fmt"
 "os"
 "os/user"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 uid := os.Getuid()
 fmt.Println(uid)
 return
 }

The os.Getuid() function returns the user ID of the current user.

The second part of userID.go comes with the following Go code:

 username := arguments[1]
 u, err := user.Lookup(username)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println(u.Uid)
}

Given a username, the user.Lookup() function returns a user.User compound value.
We will only use the Uid field of that compound value to find the user ID of the given
username.

Executing userID.go will generate the following output:

$ go run userID.go
501
$ go run userID.go root
0
$ go run userID.go doesNotExist
user: unknown user doesNotExist

Working with System Files

[231]

Finding all the groups a user belongs to
Each user can belong to more than one group—this section will show how to find out the
list of groups a user belongs to, given their username.

The name of the utility will be listGroups.go, and it will be presented in four parts. The
first part of listGroups.go is the following:

package main

import (
 "fmt"
 "os"
 "os/user"
)

The second part has the following Go code:

func main() {
 arguments := os.Args
 var u *user.User
 var err error
 if len(arguments) == 1 {
 u, err = user.Current()
 if err != nil {
 fmt.Println(err)
 return
 }

The approach that listGroups.go takes when there are no command-line arguments is
similar to the one found in userID.go. However, there is a big difference, as this time you
do not need the user ID of the current user, but the username of the current user; so you call
user.Current(), which returns a user.User value.

The third part contains the following Go code:

 } else {
 username := arguments[1]
 u, err = user.Lookup(username)
 if err != nil {
 fmt.Println(err)
 return
 }
 }

Working with System Files

[232]

So, if a command-line argument is given to the program, it is handled by the previous code
with the help of the user.Lookup() function that also returns a user.User value.

The last part contains the following Go code:

 gids, _ := u.GroupIds()
 for _, gid := range gids {
 group, err := user.LookupGroupId(gid)
 if err != nil {
 fmt.Println(err)
 continue
 }
 fmt.Printf("%s(%s) ", group.Gid, group.Name)
 }
 fmt.Println()
}

Here, you get the list of the group IDs that the user—signified by the u variable—is a
member of, by calling the u.GroupIds() function. Then, you will need a for loop to iterate
over all the list elements and print them. It should be made clear that this list is stored in u;
that is, a user.User value.

Executing listGroups.go will generate the following output:

$ go run listGroups.go
 20(staff) 701(com.apple.sharepoint.group.1) 12(everyone)
61(localaccounts) 79(_appserverusr) 80(admin) 81(_appserveradm)
98(_lpadmin) 33(_appstore) 100(_lpoperator) 204(_developer)
395(com.apple.access_ftp) 398(com.apple.access_screensharing)
399(com.apple.access_ssh)
$ go run listGroups.go www
70(_www) 12(everyone) 61(localaccounts) 701(com.apple.sharepoint.group.1)
100(_lpoperator)

The output of listGroups.go is much more enriched than the output of both the id -G -
n and groups commands:

$ id -G -n
staff com.apple.sharepoint.group.1 everyone localaccounts _appserverusr
admin _appserveradm _lpadmin _appstore _lpoperator _developer
com.apple.access_ftp com.apple.access_screensharing com.apple.access_ssh
$ groups
staff com.apple.sharepoint.group.1 everyone localaccounts _appserverusr
admin _appserveradm _lpadmin _appstore _lpoperator _developer
com.apple.access_ftp com.apple.access_screensharing com.apple.access_ssh

Working with System Files

[233]

Finding files that belong or do not belong to a
given user
This subsection will create a Go program that scans a directory tree and presents files that
belong or do not belong to a given user. The name of the program will be userFiles.go.
In its default mode of operation, userFiles.go will display all files that belong to a given
username; when used with the -no flag, it will only display the files that do not belong to
the given username.

The code of userFiles.go will be presented in four parts.

The first one is the following:

package main

import (
 "flag"
 "fmt"
 "os"
 "os/user"
 "path/filepath"
 "strconv"
 "syscall"
)

var uid int32 = 0
var INCLUDE bool = true

The reason for declaring INCLUDE and uid as global variables is that you want both of them
to be accessible from every point of the program. Additionally, as the signature of
walkFunction() cannot change—only its name can change—using global variables makes
things easier for the developer.

The second part comes with the following Go code:

func userOfFIle(filename string) int32 {
 fileInfo, err := os.Stat(filename)
 if err != nil {
 fmt.Println(err)
 return 1000000
 }
 UID := fileInfo.Sys().(*syscall.Stat_t).Uid
 return int32(UID)
}

Working with System Files

[234]

The use of a local variable named UID might be a poor choice, given that there is a global
variable named uid! A better name for the global variable would have been gUID. Note that
for an explanation of the way that the call that returns the UID variable works, you should
search for the interfaces and type conversions in Go, because talking about it is beyond the
scope of this book.

The third part contains the following Go code:

func walkFunction(path string, info os.FileInfo, err error) error {
 _, err = os.Lstat(path)
 if err != nil {
 return err
 }

 if userOfFIle(path) == uid && INCLUDE {
 fmt.Println(path)
 } else if userOfFIle(path) != uid && !(INCLUDE) {
 fmt.Println(path)
 }

 return err
}

Here you can see the implementation of a walk function that will access every file and
directory in a given directory tree, in order to print the desired filenames only.

The last part of the utility contains the following Go code:

func main() {
 minusNO := flag.Bool("no", true, "Include")
 minusPATH := flag.String("path", ".", "Path to Search")
 flag.Parse()
 flags := flag.Args()

 INCLUDE = *minusNO
 Path := *minusPATH

 if len(flags) == 0 {
 uid = int32(os.Getuid())
 } else {
 u, err := user.Lookup(flags[0])
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
 temp, err := strconv.ParseInt(u.Uid, 10, 32)
 uid = int32(temp)

Working with System Files

[235]

 }

 err := filepath.Walk(Path, walkFunction)
 if err != nil {
 fmt.Println(err)
 }
}

Here you deal with the configuration of the flag package before calling the
filepath.Walk() function.

Executing userFiles.go generates the following output:

$ go run userFiles.go -path=/tmp www-data
/tmp/.htaccess
/tmp/update-cache-2a113cac
/tmp/update-extraction-2a113cac

If you do not give any command-line arguments or flags, the userFiles.go utility will
assume that you want to search the current directory for files that belong to the current
user:

$ go run userFiles.go
.
appendData.go
countIP.go

So, in order to find all the files in the /srv/www/www.highiso.net directory that do not
belong to the www-data user, you should execute the following command:

$ go run userFiles.go -no=false -path=/srv/www/www.highiso.net www-data
/srv/www/www.highiso.net/list.files
/srv/www/www.highiso.net/public_html/wp-content/.htaccess
/srv/www/www.highiso.net/public_html.UnderCon/.htaccess

Working with System Files

[236]

Finding files based on their permissions
Now that you know how to find the Unix permissions of a file, you can improve the
regExpFind.go utility from the previous chapter in order to support searching based on
file permissions; however, in order to avoid presenting a really big Go program here
without any practical reason, the presented program will be autonomous and only support
finding files based on their permissions. The name of the new utility will be findPerm.go,
and it will be presented in four parts. The permissions will be given in the command line as
a string using the format returned by the ls(1) command (rwxr-xr--).

The first part of the utility is the following:

package main

import (
 "fmt"
 "os"
 "path/filepath"
)

var PERMISSIONS string

The PERMISSIONS variable is made global in order to be accessible from anywhere in the
program, and because the signature of walkFunction() cannot change.

The second part of findPerm.go contains the following code:

func permissionsOfFIle(filename string) string {
 info, err := os.Stat(filename)
 if err != nil {
 return "-1"
 }
 mode := info.Mode()
 return mode.String()[1:10]
}

Working with System Files

[237]

The third part is the implementation of walkFunction():

func walkFunction(path string, info os.FileInfo, err error) error {
 _, err = os.Lstat(path)
 if err != nil {
 return err
 }

 if permissionsOfFIle(path) == PERMISSIONS {
 fmt.Println(path)
 }
 return err
}

The last part of findPerm.go is the following:

func main() {
 arguments := os.Args
 if len(arguments) != 3 {
 fmt.Printf("usage: %s RootDirectory permissions\n",
filepath.Base(arguments[0]))
 os.Exit(1)
 }

 Path := arguments[1]
 Path, _ = filepath.EvalSymlinks(Path)
 PERMISSIONS = arguments[2]

 err := filepath.Walk(Path, walkFunction)
 if err != nil {
 fmt.Println(err)
 }
}

Executing findPerm.go will generate the following output:

$ go run findPerm.go /tmp rw-------
/private/tmp/.adobeLockFile
$ ls -l /private/tmp/.adobeLockFile
-rw------- 1 mtsouk wheel 0 May 19 14:36 /private/tmp/.adobeLockFile

Working with System Files

[238]

Date and time operations
This section will show you how to work with dates and times in Go. This task might look
insignificant, but it can be very important when you want to synchronize things such as log
entries and error messages. We will start by illustrating some of the functionality of the
time package.

Playing with dates and times
This section will present a small Go program named dateTime.go that shows how to work
with times and dates in Go. The code of dateTime.go will be presented in three parts. The
first part is the following:

package main

import (
 "fmt"
 "time"
)

func main() {

 fmt.Println("Epoch time:", time.Now().Unix())
 t := time.Now()
 fmt.Println(t, t.Format(time.RFC3339))
 fmt.Println(t.Weekday(), t.Day(), t.Month(), t.Year())
 time.Sleep(time.Second)
 t1 := time.Now()
 fmt.Println("Time difference:", t1.Sub(t))

 formatT := t.Format("01 January 2006")
 fmt.Println(formatT)
 loc, _ := time.LoadLocation("Europe/London")
 londonTime := t.In(loc)
 fmt.Println("London:", londonTime)

In this part, you can see how you can change a date from one format to another, and also,
how to find the date and time in a different time zone. The time.Now() function used at
the beginning of the main() function returns the current time.

Working with System Files

[239]

The second part is the following:

 myDate := "23 May 2017"
 d, _ := time.Parse("02 January 2006", myDate)
 fmt.Println(d)

 myDate1 := "23 May 2016"
 d1, _ := time.Parse("02 February 2006", myDate1)
 fmt.Println(d1)

The list of constants that can be used for creating your own parse format
can be found at https:/ ​/ ​golang. ​org/ ​src/​time/ ​format. ​go. Go does not
define the format of a date or a time in a form like DDYYYYMM or %D
%Y %M as the rest of the programming languages do, but uses its own
approach.

Here, you see how you can read a string and try to convert it to a valid date, both
successfully (d) and unsuccessfully (d1). The problem with the d1 variable is the use of
February in the format string—you should have used January instead.

The last part of dateTime.go comes with the following Go code:

 myDT := "Tuesday 23 May 2017 at 23:36"
 dt, _ := time.Parse("Monday 02 January 2006 at 15:04", myDT)
 fmt.Println(dt)
}

This part also shows how to convert a string into a date and a time, provided that it is in the
expected format.

Executing dateTime.go will generate the following output:

$ go run dateTime.go
Epoch time: 1495572122
2017-05-23 23:42:02.459713551 +0300 EEST 2017-05-23T23:42:02+03:00
Tuesday 23 May 2017
Time difference: 1.001749054s
05 May 2017
London: 2017-05-23 21:42:02.459713551 +0100 BST
2017-05-23 00:00:00 +0000 UTC
0001-01-01 00:00:00 +0000 UTC
2017-05-23 23:36:00 +0000 UTC

https://golang.org/src/time/format.go
https://golang.org/src/time/format.go
https://golang.org/src/time/format.go
https://golang.org/src/time/format.go
https://golang.org/src/time/format.go
https://golang.org/src/time/format.go
https://golang.org/src/time/format.go
https://golang.org/src/time/format.go
https://golang.org/src/time/format.go
https://golang.org/src/time/format.go
https://golang.org/src/time/format.go
https://golang.org/src/time/format.go
https://golang.org/src/time/format.go
https://golang.org/src/time/format.go
https://golang.org/src/time/format.go

Working with System Files

[240]

Reformatting the times in a log file
This section will show how to implement a program that reads a log file that contains date
and time information, in order to convert the time format found in each log entry. This
operation might be needed when you have log files from different servers that are in several
time zones, and you want to synchronize their times in order to create reports from their
data or store them into a database to process them some other time.

The name of the presented program will be dateTimeLog.go, and it will be presented in
four parts.

The first part is the following:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "os"
 "regexp"
 "strings"
 "time"
)

The second part contains the following Go code:

func main() {
 flag.Parse()
 if flag.NArg() != 1 {
 fmt.Println("Please provide one log file to process!")
 os.Exit(-1)
 }

 filename := flag.Arg(0)
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s", err)
 os.Exit(1)
 }
 defer f.Close()

Here, you just configure the flag package and open the input file for reading.

Working with System Files

[241]

The third part of the program is the following:

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 }

Here you read the input file line by line.

The last part is the following:

 r :=
regexp.MustCompile(`.*\[(\d\d\/\w+/\d\d\d\d:\d\d:\d\d:\d\d.*)\] .*`)
 if r.MatchString(line) {
 match := r.FindStringSubmatch(line)
 d1, err := time.Parse("02/Jan/2006:15:04:05 -0700",
match[1])
 if err != nil {
 fmt.Println(err)
 }
 newFormat := d1.Format(time.RFC3339)
 fmt.Print(strings.Replace(line, match[1], newFormat, 1))
 }
 }
}

The general idea here is that once you have a match, you parse the date and time you found
using time.Parse() and then convert it to the desired format using the time.Format()
function. Also, you replace the initial match with the output of the time.Format()
function before you print it using strings.Replace().

Executing dateTimeLog.go will generate the following output:

$ go run dateTimeLog.go /tmp/log.log
127.0.0.1 - - [2017-05-24T07:04:48+03:00] "GET /taxonomy/term/35/feed
HTTP/1.1" 200 2360 "-" "Mozilla/5.0 (compatible; Baiduspider/2.0;
+http://www.baidu.com/search/spider.html)" 28787
- - [2017-05-24T07:09:24+03:00] HTTP/1.1" 200 2616
"http://www.mtsoukalos.eu/" "Mozilla/5.0 (compatible; inoreader.com-like
FeedFetcher-Google)" 32145
[2017-05-24T07:38:08+03:00] "GET /tweets?page=181 HTTP/1.1" 200 8605 "-"
"Mozilla/5.0 (compatible; Baiduspider/2.0;
+http://www.baidu.com/search/spider.html)" 100531

Working with System Files

[242]

Rotating log files
Log files tend to get bigger and bigger all the time because data is written to them all the
time; it would be good to have a technique for rotating them. This section will present such
a technique. The name of the Go program will be rotateLog.go, and it will be presented
in three parts. Note that for a process to rotate a log file, the process must be the one that
opened that log file for writing. Trying to rotate a log that you do not own might create
problems on your Unix machine, and should be avoided!

What you will also see here is another technique where you use your own log file for
storing your log entries, with the help of log.SetOutput()—after a successful call to
log.SetOutput(), each function call to log.Print() will make the output go to the log
file used as the parameter of log.SetOutput().

The first part of rotateLog.go is the following:

package main

import (
 "fmt"
 "log"
 "os"
 "strconv"
 "time"
)

var TOTALWRITES int = 0
var ENTRIESPERLOGFILE int = 100
var WHENTOSTOP int = 230
var openLogFile os.File

Using hard coded variables that define when the program will stop is considered good
practice—this happens because you do not have any other way to tell rotateLog.go to
stop. However, if you use the functionality of the rotateLog.go utility in a compiled
program, then such variables should be given as command-line arguments, because you
should not have to recompile the program in order to change the way the program behaves!

Working with System Files

[243]

The second part of rotateLog.go is the following:

func rotateLogFile(filename string) error {
 openLogFile.Close()
 os.Rename(filename, filename+"."+strconv.Itoa(TOTALWRITES))
 err := setUpLogFile(filename)
 return err
}

func setUpLogFile(filename string) error {
 openLogFile, err := os.OpenFile(filename,
os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
 if err != nil {
 return err
 }
 log.SetOutput(openLogFile)
 return nil
}

Here, you define the Go function named rotateLogFile() for rotating the desired log file,
which is the most important part of the program. The setUpLogFile() function helps you
restart the log file after you rotate it. What is also illustrated here is the use of
log.SetOutput() to tell the program where to write the log entries. Note that you should
open your log file using os.OpenFile(), because os.Open() will not work for
log.SetOutput(), and os.Open() does open files for writing!

The last part is the following:

func main() {
 numberOfLogEntries := 0
 filename := "/tmp/myLog.log"
 err := setUpLogFile(filename)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }

 for {
 log.Println(numberOfLogEntries, "This is a test log entry")
 numberOfLogEntries++
 TOTALWRITES++
 if numberOfLogEntries > ENTRIESPERLOGFILE {
 rotateLogFile(filename)
 numberOfLogEntries = 0
 }
 if TOTALWRITES > WHENTOSTOP {
 rotateLogFile(filename)

Working with System Files

[244]

 break
 }
 time.Sleep(time.Second)
 }
 fmt.Println("Wrote", TOTALWRITES, "log entries!")
}

In this part, the main() function keeps writing data to a log file while counting the number
of entries that have been written so far. When the defined number of entries have been
reached (ENTRIESPERLOGFILE), the main() function will call the rotateLogFile()
function, which will do the dirty work for us. On a real program, you will most likely not
need to call time.Sleep() to delay the execution of the program. For this particular
program, time.Sleep() will give you time to examine your log file using tail -f,
should you choose to do so.

Running rotateLog.go will generate the following output on the screen and inside the
/tmp directory:

$ go run rotateLog.go
Wrote 231 log entries!
$ wc /tmp/myLog.log*
 0 0 0 /tmp/myLog.log
 101 909 4839 /tmp/myLog.log.101
 101 909 4839 /tmp/myLog.log.202
 29 261 1382 /tmp/myLog.log.231
 231 2079 11060 total

Chapter 8,Processes and Signals, will present a much better approach on log rotating that
will be based on Unix signals.

Working with System Files

[245]

Creating good random passwords
This section will illustrate how to create good random passwords in Go, in order to protect
the security of your Unix machines. The main reason for including it here instead of another
chapter is because the presented Go program will use the /dev/random device, which is a
file defined by your Unix system, for getting the seed of the random number generator.
The name of the Go program will be goodPass.go, and it will require just one optional
parameter, which will be the length of the generated password—the default size of the
generated password will be 10 characters. Additionally, the program will generate ASCII
characters starting from ! up to z. The ASCII code of the exclamation mark is 33, whereas
the ASCII code of small z is 122.

The first part of goodPass.go is the required preamble:

package main

import (
 "encoding/binary"
 "fmt"
 "math/rand"
 "os"
 "path/filepath"
 "strconv"
)

The second part of the program is as follows:

var MAX int = 90
var MIN int = 0
var seedSize int = 10

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

You have already seen the random() function back in Chapter 2, Writing Programs in Go, so
there is nothing particularly interesting here.

Working with System Files

[246]

The third part of goodPass.go is where the implementation of the main() function begins:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("usage: %s length\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 LENGTH, _ := strconv.ParseInt(os.Args[1], 10, 64)
 f, _ := os.Open("/dev/random")
 var seed int64
 binary.Read(f, binary.LittleEndian, &seed)
 rand.Seed(seed)
 f.Close()
 fmt.Println("Seed:", seed)

Here, apart from reading the command-line argument, you also open the /dev/random
device for reading, which happens by calling the binary.Read() function and storing
what you read in the seed variable. The reason for using binary.Read() is that you need
to specify the byte order used (binary.LittleEndian) and that you need to build an int64
instead of a series of bytes. This is an example of having to read from a binary file into Go
types.

The last part of the program contains the following Go code:

 startChar := "!"
 var i int64
 for i = 0; i < LENGTH; i++ {
 anInt := int(random(MIN, MAX))
 newChar := string(startChar[0] + byte(anInt))
 if newChar == " " {
 i = i - i
 continue
 }
 fmt.Print(newChar)
 }
 fmt.Println()
}

As you can see, Go has a strange way of dealing with ASCII characters because Go supports
Unicode characters by default. However, you can still convert an integer number into an
ASCII character as can be seen in the way you define the newChar variable.

Working with System Files

[247]

Executing goodPass.go will generate the following output:

$ go run goodPass.go 1
Seed: -5195038511418503382
b
$ go run goodPass.go 10
Seed: 8492864627151568776
k43Ve`+YD)
$ go run goodPass.go 50
Seed: -4276736612056007162
!=Gy+;XV>6eviuR=ST\u:Mk4Q875Y4YZiZhq&q_4Ih/]''`2:x

Another Go update
As I was writing this chapter, Go got updated. The following output shows the related
information:

$ date
Wed May 24 13:35:36 EEST 2017
$ go version
go version go1.8.2 darwin/amd64

Exercises
Find and read the documentation of the time package.1.
Try to change the Go code of userFiles.go in order to support multiple users.2.
Change the Go code of insertLineNumber.go in order to read the input file line3.
by line, write each line to a temporary file, and then, replace the original file with
the temporary one. If you do not know how and where to create a temporary file,
you can use a random number generator to get a temporary filename and the
/tmp directory to temporarily save it.
Make the necessary changes to multipleMV.go in order to print the files that are4.
a match to the given regular expression without actually renaming them.
Try to create a regular expression that matches PNG files and use it to process the5.
contents of a log file.
Create a regular expression that catches a date and a time string in order to print6.
just the date part and delete the time part.

Working with System Files

[248]

Summary
In this chapter, we talked about many things, including working with log files, dealing with
Unix file permissions, users, and groups, creating regular expressions, and processing text
files.

In the next chapter, we will talk about Unix signals, which allow you to communicate with
a running program from the outside world, in an asynchronous way. Furthermore, we will
tell you how to plot in Go.

8
Processes and Signals

In the previous chapter, we talked about many interesting topics including working with
Unix system files, dealing with dates and times in Go, finding information about file
permissions and users as well as regular expressions and pattern matching.

The central subject of this chapter is developing Go applications that can handle the Unix
signals that can be caught and handled. Go offers the os/signal package for dealing with
signals, which uses Go channels. Although channels are fully explored in the next chapter,
this will not stop you from learning how to work with Unix signals in Go programs.

Furthermore, you will learn how to create Go command-line utilities that can work with
Unix pipes, how to draw bar charts in Go, and how to implement a Go version of the
cat(1) utility. So, in this chapter you will learn about the following topics:

Listing the processes of a Unix machine
Signal handling in Go
The signals that a Unix machine supports as well as how to use the kill(1)
command to send these signals
Making signals do the work you want
Implementing a simple version of the cat(1) utility in Go
Plotting data in Go
Using pipes in order to send the output of one program to another
Converting a big program into two smaller ones that will cooperate with the help
of Unix pipes
Creating a client for a Unix socket

Processes and Signals

[250]

About Unix processes and signals
Strictly speaking, a process is an execution environment that contains instructions, user-
data and system-data parts, and other kinds of resources that are obtained during runtime,
whereas a program is a file that contains instructions and data, which are used for
initializing the instruction and user-data parts of a process.

Process management
Go is not that good at dealing with processes and process management in general.
Nevertheless, this section will present a small Go program that lists all the processes of a
Unix machine by executing a Unix command and getting its output. The name of the
program will be listProcess.go. It works on both Linux and macOS systems, and will be
presented in three parts.

The first part of the program is the following:

package main

import (
 "fmt"
 "os"
 "os/exec"
 "syscall"
)

The second part of listProcess.go has the following Go code:

func main() {

 PS, err := exec.LookPath("ps")
 if err != nil {
 fmt.Println(err)
 }
fmt.Println(PS)

 command := []string{"ps", "-a", "-x"}
 env := os.Environ()
 err = syscall.Exec(PS, command, env)

Processes and Signals

[251]

As you can see, you first need to get the path of the executable file using exec.LookPath()
to make sure that you are not going to accidentally execute another binary file and then
define the command you want to execute, including the parameters of the command, using
a slice. Next, you will have to read the Unix environment using os.Environ(). Also, you
execute the desired command using syscall.Exec(), which will automatically print its
output, which is not a very elegant way to execute commands because you have no control
over the task and because you are calling processes at the lowest level instead of using a
higher level library such as os/exec.

The last part of the program is for printing the error message of the previous code, in case
there is one:

 if err != nil {
 fmt.Println(err)
 }
}

Executing listProcess.go will generate the following output—the head(1) utility is
used to get a smaller output:

$ go run listProcess.go | head -3
/bin/ps
 PID TTY TIME CMD
 1 ?? 0:30.72 /sbin/launchd
signal: broken pipe

About Unix signals
Have you ever pressed Ctrl + C in order to stop a program from running? If yes, then you
are already familiar with signals because Ctrl + C sends the SIGINT signal to the program.

Strictly speaking, Unix signals are software interrupts that can be accessed either by a name
or number and offer a way of handling asynchronous events such as when a child process
exits or a process is told to pause on a Unix system.

A program cannot handle all signals; some of them are non-catchable and non-ignorable.
The SIGKILL and SIGSTOP signals cannot be caught, blocked, or ignored. The reason for
this is that they provide the kernel and the root user a way of stopping any process. The
SIGKILL signal, which is also known by the number 9, is usually called in extreme
conditions where you need to act fast; so, it is the only signal that is usually called by
number because it is quicker to do so. The most important thing to remember here is that
not all Unix signals can be handled!

Processes and Signals

[252]

Unix signals in Go
Go provides the os/signal package to programmers to help them handle incoming
signals. However, we will start the discussion about handling by presenting the kill(1)
utility.

The kill(1) command
The kill(1) command is used for either terminating a process or sending a less cruel
signal to it. Keep in mind that the fact that you can send a signal to a process does not mean
that the process can or has code to handle this signal.

By default, kill(1) sends the SIGTERM signal. If you want to find out all the supported
signals of your Unix machine, you should execute the kill -l command. On a macOS
Sierra machine, the output of kill -l is the following:

$ kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGEMT 8) SIGFPE
9) SIGKILL 10) SIGBUS 11) SIGSEGV 12) SIGSYS
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGURG
17) SIGSTOP 18) SIGTSTP 19) SIGCONT 20) SIGCHLD
21) SIGTTIN 22) SIGTTOU 23) SIGIO 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGINFO 30) SIGUSR1 31) SIGUSR2

If you execute the same command on a Debian Linux machine, you will get a more enriched
output:

$ kill -l
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU
23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR
31) SIGSYS 34) SIGRTMIN
35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3
38) SIGRTMIN+4 39) SIGRTMIN+5
40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10

Processes and Signals

[253]

45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13
48) SIGRTMIN+14 49) SIGRTMIN+15
50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12
53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7
58) SIGRTMAX-6 59) SIGRTMAX-5
60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

If you try to kill or send another signal to the process of another user without having the
required permissions, which most likely will happen if you are not the root user, kill(1)
will not do the job and you will get an error message similar to the following:

$ kill 2908
-bash: kill: (2908) - Operation not permitted

A simple signal handler in Go
This subsection will present a naïve Go program that handles only the SIGTERM and
SIGINT signals. The Go code of h1s.go will be presented in three parts; the first part is the
following:

package main

import (
 "fmt"
 "os"
 "os/signal"
 "syscall"
 "time"
)

func handleSignal(signal os.Signal) {
 fmt.Println("Got", signal)
}

Apart from the preamble of the program, there is also a function named handleSignal()
that will be called when the program receives any of the two supported signals.

The second part of h1s.go contains the following Go code:

func main() {
 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs, os.Interrupt, syscall.SIGTERM)
 go func() {
 for {

Processes and Signals

[254]

 sig := <-sigs
 fmt.Println(sig)
 handleSignal(sig)
 }
 }()

The previous code uses a goroutine and a Go channel, which are Go features that have not
been discussed in this book. Unfortunately, you will have to wait until Chapter 9,
Goroutines – Basic Features, to learn more about both of them. Note that although
os.Interrupt and syscall.SIGTERM belong to different Go packages, they are both
signals.

For now, understanding the technique is important; it includes three steps:

The definition of a channel, which acts as a way of passing data around, that is1.
required for the technique (sigs).
Calling signal.Notify() in order to define the list of signals you want to be2.
able to catch.
The definition of an anonymous function that runs in a goroutine (go func())3.
right after signal.Notify(), which is used for deciding what you are going to
do when you get any of the desired signals.

In this case, the handleSignal() function will be called. The for loop inside the
anonymous function is used to make the program to keep handling all signals and not stop
after receiving its first signal.

The last part of h1s.go is the following:

 for {
 fmt.Printf(".")
 time.Sleep(10 * time.Second)
 }
}

This is an endless for loop that delays the ending of the program forever—in its place you
would most likely put the actual code of your program. Executing h1s.go and sending
signals to it from another Terminal will make h1s.go generate the following output:

$./h1s
......................^Cinterrupt
Got interrupt
^Cinterrupt
Got interrupt
.Hangup: 1

Processes and Signals

[255]

The bad thing here is that h1s.go will stop when it receives the SIGHUP signal because the
default action for SIGHUP when it is not being specifically handled by a program is to kill
the process! The next subsection will show how to handle three signals in a better way, and
the subsection after that will teach you how to handle all signals that can be handled.

Handling three different signals!
This subsection will teach you how to create a Go application that can handle three different
signals—the name of the program will be h2s.go, and it will handle the SIGTERM, SIGINT,
and SIGHUP signals.

The Go code of h2s.go will be presented in four parts.

The first part of the program contains the expected preamble:

package main

import (
 "fmt"
 "os"
 "os/signal"
 "syscall"
 "time"
)

The second part has the following Go code:

func handleSignal(signal os.Signal) {
 fmt.Println("* Got:", signal)
}

func main() {
 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs, os.Interrupt, syscall.SIGTERM, syscall.SIGHUP)

Here, the last statement tells you that the program will only handle the os.Interrupt,
syscall.SIGTERM, and syscall.SIGHUP signals.

The third part of h2s.go is the following:

 go func() {
 for {
 sig := <-sigs
 switch sig {
 case os.Interrupt:

Processes and Signals

[256]

 handleSignal(sig)
 case syscall.SIGTERM:
 handleSignal(sig)
 case syscall.SIGHUP:
 fmt.Println("Got:", sig)
 os.Exit(-1)
 }
 }
 }()

Here, you can see that it is not compulsory to call a separate function when a given signal is
caught; it is also allowed to handle it inside the for loop as it happens with
syscall.SIGHUP. However, I find the use of a named function better because it makes the
Go code easier to read and modify. The good thing is that Go has a central place for
handling all signals, which makes it easy to find out what is going on with your program.

Additionally, h2s.go specifically handles the SIGHUP signal, although a SIGHUP signal will
still terminate the program; however, this time this is our decision.

Keep in mind that it is considered good practice to make one of the signal
handlers to stop the program because otherwise you will have to
terminate it by issuing a kill -9 command.

The last part of h2s.go is the following:

 for {
 fmt.Printf(".")
 time.Sleep(10 * time.Second)
 }
}

Executing h2s.go and sending four signals to it (SIGINT, SIGTERM, SIGHUP, and SIGKILL)
from another shell will generate the following output:

$ go build h2s.go
$./h2s
..* Got: interrupt
* Got: terminated
.Got: hangup
.Killed: 9

Processes and Signals

[257]

The reason for building h2s.go is that it is easier to find the process ID of an autonomous
program—the go run command builds a temporary executable program behind the scenes,
which in this case offers less flexibility. If you want to improve h2s.go, you can make it call
os.Getpid() in order to print its process ID, which will save you from having to find it on
your own.

The program handles three signals before getting a SIGKILL that cannot be handled and
therefore terminates it!

Catching every signal that can be handled
This subsection will present a simple technique that allows you to catch every signal that
can be handled—once again, you should keep in mind that you cannot handle all signals!
The program will stop once it gets a SIGTERM signal.

The name of the program will be catchAll.go and will be presented in three parts.

The first part is the following:

package main

import (
 "fmt"
 "os"
 "os/signal"
 "syscall"
 "time"
)

func handleSignal(signal os.Signal) {
 fmt.Println("* Got:", signal)
}

The second part of the program is the following:

func main() {
 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs)
 go func() {
 for {
 sig := <-sigs
 switch sig {
 case os.Interrupt:
 handleSignal(sig)
 case syscall.SIGTERM:

Processes and Signals

[258]

 handleSignal(sig)
 os.Exit(-1)
 case syscall.SIGUSR1:
 handleSignal(sig)
 default:
 fmt.Println("Ignoring:", sig)
 }
 }
 }()

In this case, all the difference is made by the way you call signal.Notify() in your code.
As you do not define any particular signals, the program will be able to handle any signal
that can be handled. However, the for loop inside the anonymous function only takes care
of three signals while ignoring the remaining ones! Note that I believe that this is the best
way to handle signals in Go: catch everything while processing only the signals that interest
you. However, some people believe that being explicit about what you handle is a better
approach. There is no right or wrong here.

The catchAll.go program will not terminate when it gets SIGHUP because the default
case of the switch block handles it.

The last part is the expected call to the time.Sleep() function:

 for {
 fmt.Printf(".")
 time.Sleep(10 * time.Second)
 }
}

Executing catchAll.go will create the following output:

$./catchAll
.Ignoring: hangup
.......................................* Got: interrupt
* Got: user defined signal 1
.Ignoring: user defined signal 2
Ignoring: hangup
.* Got: terminated
$

Processes and Signals

[259]

Rotating log files revisited!
As I told you back in Chapter 7, Working with System Files, this chapter will present you
with a technique that will allow you to end the program and rotate log files in a more
conventional way with the help of signals and signal handling.

The name of the new version of rotateLog.go will be rotateSignals.go and will be
presented in four parts. Moreover, when the utility receives os.Interrupt, it will rotate
the current log file, whereas when it receives syscall.SIGTERM, it will terminate its
execution. Every other signal that can be handled will create a log entry without any other
action.

The first part of the rotateSignals.go is the expected preamble:

package main

import (
 "fmt"
 "log"
 "os"
 "os/signal"
 "strconv"
 "syscall"
 "time"
)

var TOTALWRITES int = 0
var openLogFile os.File

The second part of rotateSignals.go has the following Go code:

func rotateLogFile(filename string) error {
 openLogFile.Close()
 os.Rename(filename, filename+"."+strconv.Itoa(TOTALWRITES))
 err := setUpLogFile(filename)
 return err
}

func setUpLogFile(filename string) error {
 openLogFile, err := os.OpenFile(filename,
os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
 if err != nil {
 return err
 }
 log.SetOutput(openLogFile)
 return nil
}

Processes and Signals

[260]

You have just defined two functions here that perform two tasks. The third part of
rotateSignals.go contains the following Go code:

func main() {
 filename := "/tmp/myLog.log"
 err := setUpLogFile(filename)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }

 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs)

Once again, all signals will be caught. The last part of rotateSignals.go is the following:

 go func() {
 for {
 sig := <-sigs
 switch sig {
 case os.Interrupt:
 rotateLogFile(filename)
 TOTALWRITES++
 case syscall.SIGTERM:
 log.Println("Got:", sig)
 openLogFile.Close()
 TOTALWRITES++
 fmt.Println("Wrote", TOTALWRITES, "log entries in
total!")
 os.Exit(-1)
 default:
 log.Println("Got:", sig)
 TOTALWRITES++
 }
 }
 }()

 for {
 time.Sleep(10 * time.Second)
 }
}

Processes and Signals

[261]

As you can see, rotateSignals.go records information about the signals it has received
by writing one log entry for each signal. Although presenting the entire code of
rotateSignals.go is good, it would be very educational to see the output of the diff(1)
utility to show the code differences between rotateLog.go and rotateSignals.go:

$ diff rotateLog.go rotateSignals.go
6a7
> "os/signal"
7a9
> "syscall"
12,13d13
< var ENTRIESPERLOGFILE int = 100
< var WHENTOSTOP int = 230
33d32
< numberOfLogEntries := 0
41,51c40,59
< for {
< log.Println(numberOfLogEntries, "This is a test log entry")
< numberOfLogEntries++
< TOTALWRITES++
< if numberOfLogEntries > ENTRIESPERLOGFILE {
< _ = rotateLogFile(filename)
< numberOfLogEntries = 0
< }
< if TOTALWRITES > WHENTOSTOP {
< _ = rotateLogFile(filename)
< break

> sigs := make(chan os.Signal, 1)
> signal.Notify(sigs)
>
> go func() {
> for {
> sig := <-sigs
> switch sig {
> case os.Interrupt:
> rotateLogFile(filename)
> TOTALWRITES++
> case syscall.SIGTERM:
> log.Println("Got:", sig)
> openLogFile.Close()
> TOTALWRITES++
> fmt.Println("Wrote", TOTALWRITES, "log entries in
total!")
> os.Exit(-1)
> default:
> log.Println("Got:", sig)

Processes and Signals

[262]

> TOTALWRITES++
> }
53c61,64
< time.Sleep(time.Second)

> }()
>
> for {
> time.Sleep(10 * time.Second)
55d65
< fmt.Println("Wrote", TOTALWRITES, "log entries!")

The good thing here is that the use of signals in rotateSignals.go makes most of the
global variables used in rotateLog.go unnecessary because you can now control the
utility by sending signals. Additionally, the design and the structure of rotateSignals.go
are simpler than rotateLog.go because you only have to understand what the anonymous
function does.

After executing rotateSignals.go and sending some signals to it, the contents of
/tmp/myLog.log will look like the following:

$ cat /tmp/myLog.log
2017/06/03 14:53:33 Got: user defined signal 1
2017/06/03 14:54:08 Got: user defined signal 1
2017/06/03 14:54:12 Got: user defined signal 2
2017/06/03 14:54:19 Got: terminated

Additionally, you will have the following files inside /tmp:

$ ls -l /tmp/myLog.log*
-rw-r--r-- 1 mtsouk wheel 177 Jun 3 14:54 /tmp/myLog.log
-rw-r--r-- 1 mtsouk wheel 106 Jun 3 13:42 /tmp/myLog.log.0

Improving file copying
The original cp(1) utility prints useful information when it receives a SIGINFO signal, as
shown in the following output:

$ cp FileToCopy /tmp/copy
FileToCopy -> /tmp/copy 26%
FileToCopy -> /tmp/copy 29%
FileToCopy -> /tmp/copy 31%

Processes and Signals

[263]

So, the rest of this section will implement the same functionality to the Go implementation
of the cp(1) command. The Go code in this section will be based on the cp.go program
because it can be very slow when used with a small buffer size giving us time for testing.
The name of the new copy utility will be cpSignal.go and will be presented in four parts.

The fundamental difference between cpSignal.go and cp.go is that cpSignal.go should
find the size of the input file and keep the number of bytes that have been written at a given
point. Apart from those modifications there is nothing else that you should worry about
because the core functionality of the two versions, which is copying a file, is exactly the
same.

The first part of the program is the following:

package main

import (
 "fmt"
 "io"
 "os"
 "os/signal"
 "path/filepath"
 "strconv"
 "syscall"
)

var BUFFERSIZE int64
var FILESIZE int64
var BYTESWRITTEN int64

In order to make things simpler for the developer, the program introduces two global
variables called FILESIZE and BYTESWRITTEN and these keep the size of the input file and
the number of bytes that have been written, respectively. Both variables are used by the
function that handles the SIGINFO signal.

The second part is as follows:

func Copy(src, dst string, BUFFERSIZE int64) error {
 sourceFileStat, err := os.Stat(src)
 if err != nil {
 return err
 }

 FILESIZE = sourceFileStat.Size()

 if !sourceFileStat.Mode().IsRegular() {
 return fmt.Errorf("%s is not a regular file.", src)

Processes and Signals

[264]

 }

 source, err := os.Open(src)
 if err != nil {
 return err
 }
 defer source.Close()

 _, err = os.Stat(dst)
 if err == nil {
 return fmt.Errorf("File %s already exists.", dst)
 }

 destination, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer destination.Close()

 if err != nil {
 panic(err)
 }

 buf := make([]byte, BUFFERSIZE)
 for {
 n, err := source.Read(buf)
 if err != nil && err != io.EOF {
 return err
 }
 if n == 0 {
 break
 }
 if _, err := destination.Write(buf[:n]); err != nil {
 return err
 }
 BYTESWRITTEN = BYTESWRITTEN + int64(n)
 }
 return err
}

Here, you use the sourceFileStat.Size() function to get the size of the input file and
set the value of the FILESIZE global variable.

Processes and Signals

[265]

The third part is where you define the signal handling:

func progressInfo() {
 progress := float64(BYTESWRITTEN) / float64(FILESIZE) * 100
 fmt.Printf("Progress: %.2f%%\n", progress)
}

func main() {
 if len(os.Args) != 4 {
 fmt.Printf("usage: %s source destination BUFFERSIZE\n",
filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 source := os.Args[1]
 destination := os.Args[2]
 BUFFERSIZE, _ = strconv.ParseInt(os.Args[3], 10, 64)
 BYTESWRITTEN = 0

 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs)

Here, you choose to catch all signals. However, the Go code of the anonymous function will
only call progressInfo() after receiving a syscall.SIGINFO signal.

If you want to have a way of gracefully terminating the program, you might want to use the
SIGINT signal because when capturing all signals, gracefully terminating a program is no
longer possible—you will need to send a SIGKILL in order to terminate your program,
which is a little cruel.

The last part of cpSignal.go is the following:

 go func() {
 for {
 sig := <-sigs
 switch sig {
 case syscall.SIGINFO:
 progressInfo()
 default:
 fmt.Println("Ignored:", sig)
 }
 }
 }()

 fmt.Printf("Copying %s to %s\n", source, destination)
 err := Copy(source, destination, BUFFERSIZE)
 if err != nil {

Processes and Signals

[266]

 fmt.Printf("File copying failed: %q\n", err)
 }
}

Executing cpSignal.go and sending two SIGINFO signals to it will generate the following
output:

$./cpSignal FileToCopy /tmp/copy 2
Copying FileToCopy to /tmp/copy
Ignored: user defined signal 1
Progress: 21.83%
^CIgnored: interrupt
Progress: 29.78%

Plotting data
The utility that will be developed in this section will read multiple log files and will create a
graphical image with as many bars as the number of log files read. Each bar will represent
the number of times a given IP address has been found in a log file.

However, the Unix philosophy tells us that instead of developing a single utility, we should
make two distinct utilities: one for processing the log files and creating a report and another
for plotting the data generated by the first utility—the two utilities will communicate using
Unix pipes. Although this section will implement the first approach, you will see the
implementation of the second approach later in The plotIP.go utility revisited section of
this chapter.

The idea for the presented utility came from a tutorial that I wrote for a
magazine where I developed a small Go program that did some
plotting—even small and naïve programs can inspire you to develop
bigger things, so do not underestimate their power.

The name of the utility will be plotIP.go, and it will be presented in seven parts—the
good thing is that plotIP.go will reuse some of the code of countIP.go and findIP.go.
The only thing that plotIP.go does not do is writing text to the image, so you can only
plot the bars without knowing the actual values or the corresponding log file of a particular
bar—you can try to add text capabilities to the program as an exercise.

Processes and Signals

[267]

Also, plotIP.go will require at least three parameters, which are the width and height of
the image and the name of the log file that will be used—in order to make plotIP.go
smaller, plotIP.go will not use the flag package and assume that you will give its
parameters in the correct order. If you give it more parameters, it will consider them as log
files.

The first part of plotIP.go is the following:

package main

import (
 "bufio"
 "fmt"
 "image"
 "image/color"
 "image/png"
 "io"
 "os"
 "path/filepath"
 "regexp"
 "strconv"
)

var m *image.NRGBA
var x int
var y int
var barWidth int

These global variables related to the dimensions of the image (x and y), the image as a Go
variable (m), and the width of one of its bars (barWidth) that depends on the size of the
image and the number of the bars that will be plotted. Note that using x and y as variable
names instead of something like IMAGEWIDTH and IMAGEHEIGHT might be a little wrong
and dangerous here.

The second part is the following:

func findIP(input string) string {
 partIP := "(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])"
 grammar := partIP + "\\." + partIP + "\\." + partIP + "\\." + partIP
 matchMe := regexp.MustCompile(grammar)
 return matchMe.FindString(input)
}

func plotBar(width int, height int, color color.RGBA) {
 xx := 0
 for xx < barWidth {

Processes and Signals

[268]

 yy := 0
 for yy < height {
 m.Set(xx+width, y-yy, color)
 yy = yy + 1
 }
 xx = xx + 1
 }
}

Here, you implement a Go function named plotBar() that does the plotting of each bar,
given its height, its width, and its color of the bar. This function is the most challenging part
of plotIP.go.

The third part has the following Go code:

func getColor(x int) color.RGBA {
 switch {

 case x == 0:
 return color.RGBA{0, 0, 255, 255}
 case x == 1:
 return color.RGBA{255, 0, 0, 255}
 case x == 2:
 return color.RGBA{0, 255, 0, 255}
 case x == 3:
 return color.RGBA{255, 255, 0, 255}
 case x == 4:
 return color.RGBA{255, 0, 255, 255}
 case x == 5:
 return color.RGBA{0, 255, 255, 255}
 case x == 6:
 return color.RGBA{255, 100, 100, 255}
 case x == 7:
 return color.RGBA{100, 100, 255, 255}
 case x == 8:
 return color.RGBA{100, 255, 255, 255}
 case x == 9:
 return color.RGBA{255, 255, 255, 255}
 }
 return color.RGBA{0, 0, 0, 255}
}

Processes and Signals

[269]

This function lets you define the colors that will be present in the output—you can change
them if you want.

The fourth part contains the following Go code:

func main() {
 var data []int
 arguments := os.Args
 if len(arguments) < 4 {
 fmt.Printf("%s X Y IP input\n", filepath.Base(arguments[0]))
 os.Exit(0)
 }

 x, _ = strconv.Atoi(arguments[1])
 y, _ = strconv.Atoi(arguments[2])
 WANTED := arguments[3]
 fmt.Println("Image size:", x, y)

Here, you read the desired IP address, which is saved in the WANTED variable and you read
the dimensions of the generated PNG image.

The fifth part contains the following Go code:

 for _, filename := range arguments[4:] {
 count := 0
 fmt.Println(filename)
 f, err := os.Open(filename)
 if err != nil {
 fmt.Fprintf(os.Stderr, "Error: %s\n", err)
 continue
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 }

if err != nil {
 fmt.Fprintf(os.Stderr, "Error in file: %s\n", err)
 continue
 }
 ip := findIP(line)
 if ip == WANTED {
 count++

Processes and Signals

[270]

 }
 }
 data = append(data, count)
 }

Here, you process the input log files one by one and store the values you calculate in the
data slice. Error messages are printed to os.Stderr—the main advantage you get from
printing error messages to os.Stderr is that you can easily redirect error messages to a file
while using data written to os.Stdout in a different way.

The sixth part of plotIP.go contains the following Go code:

 fmt.Println("Slice length:", len(data))
 if len(data)*2 > x {
 fmt.Println("Image size (x) too small!")
 os.Exit(-1)
 }

 maxValue := data[0]
 for _, temp := range data {
 if maxValue < temp {
 maxValue = temp
 }
 }

 if maxValue > y {
 fmt.Println("Image size (y) too small!")
 os.Exit(-1)
 }
 fmt.Println("maxValue:", maxValue)
 barHeighPerUnit := int(y / maxValue)
 fmt.Println("barHeighPerUnit:", barHeighPerUnit)
 PNGfile := WANTED + ".png"
 OUTPUT, err := os.OpenFile(PNGfile, os.O_CREATE|os.O_WRONLY, 0644)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 m = image.NewNRGBA(image.Rectangle{Min: image.Point{0, 0}, Max:
image.Point{x, y}})

Processes and Signals

[271]

Here, you calculate things about the plot and create the output image file using
os.OpenFile(). The PNG file generated by the plotIP.go utility is named after the given
IP address to make things simpler.

The last part of the Go code of plotIP.go is the following:

 i := 0
 barWidth = int(x / len(data))
 fmt.Println("barWidth:", barWidth)
 for _, v := range data {
 c := getColor(v % 10)
 yy := v * barHeighPerUnit
 plotBar(barWidth*i, yy, c)
 fmt.Println("plotBar", barWidth*i, yy)
 i = i + 1
 }
 png.Encode(OUTPUT, m)
}

Here, you read the values of the data slice and create a bar for each one of them by calling
the plotBar() function.

Executing plotIP.go will generate the following output:

$ go run plotIP.go 1300 1500 127.0.0.1 /tmp/log.*
Image size: 1300 1500
/tmp/log.1
/tmp/log.2
/tmp/log.3
Slice length: 3
maxValue: 1500
barHeighPerUnit: 1
barWidth: 433
plotBar 0 1500
plotBar 433 1228
plotBar 866 532
$ ls -l 127.0.0.1.png
-rw-r--r-- 1 mtsouk mtsouk 11023 Jun 5 18:36 127.0.0.1.png

Processes and Signals

[272]

However, apart from the generated text output, what is important is the produced PNG file
that can be seen in the following figure:

The output generated by the plotIP.go utility

Processes and Signals

[273]

If you want to save the error messages to a different file, you can use a variation of the
following command:

$ go run plotIP.go 130 150 127.0.0.1 doNOTExist 2> err
Image size: 130 150
doNOTExist
Slice length: 0
$ cat err
Error: open doNOTExist: no such file or directory
panic: runtime error: index out of range
goroutine 1 [running]:
main.main()
 /Users/mtsouk/Desktop/goBook/ch/ch8/code/plotIP.go:112 +0x12de
exit status 2

The following command discards all error messages by sending them to /dev/null:

$ go run plotIP.go 1300 1500 127.0.0.1 doNOTExist 2>/dev/null
Image size: 1300 1500
doNOTExist
Slice length: 0

Unix pipes in Go
We first talked about pipes in Chapter 6, File Input and Output. Pipes have two serious
limitations: first, they usually communicate in one direction, and second, they can only be
used between processes that have a common ancestor.

The general idea behind pipes is that if you do not have a file to process, you should wait to
get your input from standard input. Similarly, if you are not told to save your output to a
file, you should write your output to standard output, either for the user to see it or for
another program to process it. As a result, pipes can be used for streaming data between
two processes without creating any temporary files.

This section will present some simple utilities written in Go that use Unix pipes for clarity.

Processes and Signals

[274]

Reading from standard input
The first thing that you need to know in order to develop Go applications that support Unix
pipes is how to read from standard input.

The developed program is named readSTDIN.go and will be presented in three parts.

The first part of the program is the expected preamble:

package main

import (
 "bufio"
 "fmt"
 "os"
)

The second part of readSTDIN.go has the following Go code:

func main() {
 filename := ""
 var f *os.File
 arguments := os.Args
 if len(arguments) == 1 {
 f = os.Stdin
 } else {
 filename = arguments[1]
 fileHandler, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening %s: %s", filename, err)
 os.Exit(1)
 }
 f = fileHandler
 }
 defer f.Close()

Here, you resolve whether you have an actual file to process, which can be determined by
the number of the command-line arguments of your program. If you do not have a file to
process, you will try to read data from os.Stdin. Make sure that you understand the
presented technique because it will be used many times in this chapter.

Processes and Signals

[275]

The last part of readSTDIN.go is the following:

 scanner := bufio.NewScanner(f)
 for scanner.Scan() {
 fmt.Println(">", scanner.Text())
 }
}

This code is the same whether you are processing an actual file or os.Stdin, which
happens because everything in Unix is a file. Note that the program output begins with the
> character.

Executing readSTDIN.go will generate the following output:

$ cat /tmp/testfile
1
2
$ go run readSTDIN.go /tmp/testFile
> 1
> 2
$ cat /tmp/testFile | go run readSTDIN.go
> 1
> 2
$ go run readSTDIN.go
3
> 3
2
> 2
1
> 1

In the last case, readSTDIN.go echoes each line it reads because the input is read line by
line—the cat(1) utility works the same way.

Processes and Signals

[276]

Sending data to standard output
This subsection will show you how to send data to standard output in a better way than just
using fmt.Println() or any other function from the fmt standard Go package. The Go
program will be named writeSTDOUT.go and will be presented to you in three parts.

The first part is the following:

package main

import (
 "io"
 "os"
)

The second part of writeSTDOUT.go has the following Go code:

func main() {
 myString := ""
 arguments := os.Args
 if len(arguments) == 1 {
 myString = "You did not give an argument!"
 } else {
 myString = arguments[1]
 }

The last part of writeSTDOUT.go is the following:

 io.WriteString(os.Stdout, myString)
 io.WriteString(os.Stdout, "\n")
}

The only subtle thing is that you need to put your text into a slice before using
io.WriteString() to write data to os.Stdout.

Executing writeSTDOUT.go will generate the following output:

$ go run writeSTDOUT.go 123456
123456
$ go run writeSTDOUT.go
You do not give an argument!

Processes and Signals

[277]

Implementing cat(1) in Go
This subsection will present a Go version of the cat(1) command-line utility. If you give
one or more command-line arguments to cat(1), then cat(1) will print their contents on
the screen. However, if you just type cat(1) on your Unix shell, then cat(1) will wait for
your input, which will be terminated when you type Ctrl + D.

The name of the Go implementation will be cat.go and will be presented in three parts.

The first part of cat.go is the following:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
)

The second part is the following:

func catFile(filename string) error {
 f, err := os.Open(filename)
 if err != nil {
 return err
 }
 defer f.Close()
 scanner := bufio.NewScanner(f)
 for scanner.Scan() {
 fmt.Println(scanner.Text())
 }
 return nil
}

The catFile() function is called when the cat.go utility has to process real files. Having
a function to do your job makes the design of the program better.

The last part has the following Go code:

func main() {
 filename := ""
 arguments := os.Args
 if len(arguments) == 1 {
 io.Copy(os.Stdout, os.Stdin)
 os.Exit(0)
 }

Processes and Signals

[278]

 filename = arguments[1]
 err := catFile(filename)
 if err != nil {
 fmt.Println(err)
 }
}

So, if the program has no arguments, then it assumes that it has to read os.Stdin. In that
case, it just echoes each line you give to it. If the program has arguments, then it processes
the first argument as a file using the catFile() function.

Executing cat.go will generate the following output:

$ go run cat.go /tmp/testFile | go run cat.go
1
2
$ go run cat.go
Mihalis
Mihalis
Tsoukalos
Tsoukalos
$ echo "Mihalis Tsoukalos" | go run cat.go
Mihalis Tsoukalos

The plotIP.go utility revisited
As promised in a previous section of this chapter, this section will create two separate
utilities, which when combined will implement the functionality of plotIP.go. Personally,
I prefer to have two separate utilities and combine them when needed than having just one
utility that does two or more tasks.

The names of the two utilities will be extractData.go and plotData.go. As you can
easily understand, only the second utility would have to be able to get input from standard
input as long as the first utility prints its output on standard output either using
os.Stdout, which is the correct way, or using fmt.Println(), which usually does the job.

I think that I should now tell you my little secret: I created extractData.go and
plotData.go first and then developed plotIP.go because it is easier to develop two
separate utilities than a bigger one that does everything! Additionally, the use of two
different utilities allows you to filter the output of extractData.go using standard Unix
utilities such as tail(1), sort(1), and head(1), which means that you can modify your
data in different ways without the need for writing any extra Go code.

Processes and Signals

[279]

Taking two command-line utilities and creating one utility that
implements the functionality of both utilities is easier than taking one big
utility and dividing its functionality into two or more distinct utilities
because the latter usually requires more variables and more error
checking.

The extractData.go utility will be presented in four parts; the first part is the following:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "path/filepath"
 "regexp"
)

The second part of extractData.go has the following Go code:

func findIP(input string) string {
 partIP := "(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])"
 grammar := partIP + "\\." + partIP + "\\." + partIP + "\\." + partIP
 matchMe := regexp.MustCompile(grammar)
 return matchMe.FindString(input)
}

You should be familiar with the findIP() function, which you saw in findIP.go in
Chapter 7, Working with System files.

The third part of extractData.go is the following:

func main() {
 arguments := os.Args
 if len(arguments) < 3 {
 fmt.Printf("%s IP <files>\n", filepath.Base(os.Args[0]))
 os.Exit(-1)
 }

 WANTED := arguments[1]
 for _, filename := range arguments[2:] {
 count := 0
 buf := []byte(filename)
 io.WriteString(os.Stdout, string(buf))
 f, err := os.Open(filename)
 if err != nil {

Processes and Signals

[280]

 fmt.Fprintf(os.Stderr, "Error: %s\n", err)
 continue
 }
 defer f.Close()

The use of the buf variable is redundant here because filename is a string and
io.WriteString() expects a string—it is just my habit to put the value of filename into
a byte slice. You can remove it if you want.

Once again, most of the Go code is from the plotIP.go utility. The last part of
extractData.go is the following:

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Fprintf(os.Stderr, "Error in file: %s\n", err)
 continue
 }

 ip := findIP(line)
 if ip == WANTED {
 count = count + 1
 }
 }
 buf = []byte(strconv.Itoa(count))
 io.WriteString(os.Stdout, " ")
 io.WriteString(os.Stdout, string(buf))
 io.WriteString(os.Stdout, "\n")
 }
}

Here, extractData.go writes its output to standard output (os.Stdout) instead of using
the functions of the fmt package in order to be more compatible with pipes. The
extractData.go utility requires at least two parameters—an IP address and a log file, but
it can process as many log files as you wish.

You might want to move the printing of the filename value from the third part here in
order to have all printing commands at the same place.

Processes and Signals

[281]

Executing extractData.go will generate the following output:

$./extractData 127.0.0.1 access.log{,.1}
access.log 3099
access.log.1 6333

Although extractData.go prints two values in each line, only the second field will be
used by plotData.go. The best way to do that is filter the output of extractData.go
using awk(1):

$./extractData 127.0.0.1 access.log{,.1} | awk '{print $2}'
3099
6333

As you can understand, awk(1) allows you to do many more things with the generated
values.

The plotData.go utility will also be presented in six parts; its first part is the following:

package main

import (
 "bufio"
 "fmt"
 "image"
 "image/color"
 "image/png"
 "os"
 "path/filepath"
 "strconv"
)

var m *image.NRGBA
var x int
var y int
var barWidth int

Once again, the use of global variables is for avoiding the passing of too many arguments to
some of the functions of the utility.

Processes and Signals

[282]

The second part of plotData.go contains the following Go code:

func plotBar(width int, height int, color color.RGBA) {
 xx := 0
 for xx < barWidth {
 yy := 0
 for yy < height {
 m.Set(xx+width, y-yy, color)
 yy = yy + 1
 }
 xx = xx + 1
 }
}

The third part of plotData.go has the following Go code:

func getColor(x int) color.RGBA {
 switch {
 case x == 0:
 return color.RGBA{0, 0, 255, 255}
 case x == 1:
 return color.RGBA{255, 0, 0, 255}
 case x == 2:
 return color.RGBA{0, 255, 0, 255}
 case x == 3:
 return color.RGBA{255, 255, 0, 255}
 case x == 4:
 return color.RGBA{255, 0, 255, 255}
 case x == 5:
 return color.RGBA{0, 255, 255, 255}
 case x == 6:
 return color.RGBA{255, 100, 100, 255}
 case x == 7:
 return color.RGBA{100, 100, 255, 255}
 case x == 8:
 return color.RGBA{100, 255, 255, 255}
 case x == 9:
 return color.RGBA{255, 255, 255, 255}
 }
 return color.RGBA{0, 0, 0, 255}
}

Processes and Signals

[283]

The fourth part of plotData.go contains the following Go code:

func main() {
 var data []int
 var f *os.File
 arguments := os.Args
 if len(arguments) < 3 {
 fmt.Printf("%s X Y input\n", filepath.Base(arguments[0]))
 os.Exit(0)
 }

 if len(arguments) == 3 {
 f = os.Stdin
 } else {
 filename := arguments[3]
 fTemp, err := os.Open(filename)
 if err != nil {
 fmt.Println(err)
 os.Exit(0)
 }
 f = fTemp
 }
 defer f.Close()

 x, _ = strconv.Atoi(arguments[1])
 y, _ = strconv.Atoi(arguments[2])
 fmt.Println("Image size:", x, y)

The fifth part of plotData.go is the following:

 scanner := bufio.NewScanner(f)
 for scanner.Scan() {
 value, err := strconv.Atoi(scanner.Text())
 if err == nil {
 data = append(data, value)
 } else {
 fmt.Println("Error:", value)
 }
 }

 fmt.Println("Slice length:", len(data))
 if len(data)*2 > x {
 fmt.Println("Image size (x) too small!")
 os.Exit(-1)
 }

 maxValue := data[0]
 for _, temp := range data {

Processes and Signals

[284]

 if maxValue < temp {
 maxValue = temp
 }
 }

 if maxValue > y {
 fmt.Println("Image size (y) too small!")
 os.Exit(-1)
 }
 fmt.Println("maxValue:", maxValue)
 barHeighPerUnit := int(y / maxValue)
 fmt.Println("barHeighPerUnit:", barHeighPerUnit)

The last part of plotData.go is the following:

 PNGfile := arguments[1] + "x" + arguments[2] + ".png"
 OUTPUT, err := os.OpenFile(PNGfile, os.O_CREATE|os.O_WRONLY, 0644)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 m = image.NewNRGBA(image.Rectangle{Min: image.Point{0, 0}, Max:
image.Point{x, y}})

 i := 0
 barWidth = int(x / len(data))
 fmt.Println("barWidth:", barWidth)
 for _, v := range data {
 c := getColor(v % 10)
 yy := v * barHeighPerUnit
 plotBar(barWidth*i, yy, c)
 fmt.Println("plotBar", barWidth*i, yy)
 i = i + 1
 }

 png.Encode(OUTPUT, m)
}

Although you can use plotData.go on its own, using the output of extractData.go as
the input to plotData.go is as easy as executing the following command:

$./extractData.go 127.0.0.1 access.log{,.1} | awk '{print $2}' |
./plotData 6000 6500
Image size: 6000 6500
Slice length: 2
maxValue: 6333
barHeighPerUnit: 1
barWidth: 3000

Processes and Signals

[285]

plotBar 0 3129
plotBar 3000 6333
$ ls -l 6000x6500.png
-rw-r--r-- 1 mtsouk mtsouk 164915 Jun 5 18:25 6000x6500.png

The graphical output from the previous command can be an image like the one you can see
in the following figure:

The output generated by the plotData.go utility

Processes and Signals

[286]

Unix sockets in Go
There exist two kinds of sockets: Unix sockets and network sockets. Network sockets will be
explained in Chapter 12, Network Programming, whereas Unix sockets will be briefly
explained in this section. However, as the presented Go functions also work with TCP/IP
sockets, you will still have to wait till Chapter 12, Network Programming, in order to fully
understand them as they will not be explained here. So, this section will just present the Go
code of a Unix socket client, which is a program that uses a Unix socket, which is a special
Unix file, to read and write data. The name of the program will be readUNIX.go and will
be presented in three parts.

The first part is the following:

package main

import (
 "fmt"
 "io"
 "net"
 "strconv"
 "time"
)

The second part of readUNIX.go is the following:

func readSocket(r io.Reader) {
 buf := make([]byte, 1024)
 for {
 n, _ := r.Read(buf[:])
 fmt.Print("Read: ", string(buf[0:n]))
 }
}

Processes and Signals

[287]

The last part contains the following Go code:

func main() {
 c, _ := net.Dial("unix", "/tmp/aSocket.sock")
 defer c.Close()

 go readSocket(c)
 n := 0
 for {
 message := []byte("Hi there: " + strconv.Itoa(n) + "\n")
 _, _ = c.Write(message)
 time.Sleep(5 * time.Second)
 n = n + 1
 }
}

The use of readUNIX.go requires the presence of another process that also reads and writes
to the same socket file (/tmp/aSocket.sock).

The generated output depends on the implementation of the other part—in this case, that
output was the following:

$ go run readUNIX.go
Read: Hi there: 0
Read: Hi there: 1

If the socket file cannot be found or if no program is watching it, you will get the following
error message:

panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x0 pc=0x10cfe77]
goroutine 1 [running]:
main.main()
 /Users/mtsouk/Desktop/goBook/ch/ch8/code/readUNIX.go:21 +0x67
exit status 2

RPC in Go
RPC stands for Remote Procedure Call and is a way of executing function calls to a remote
server and getting the answer back in your clients. Once again, you will have to wait until
Chapter 12, Network Programming, in order to learn how to develop an RPC server and an
RPC client in Go.

Processes and Signals

[288]

Programming a Unix shell in Go
This section will briefly and naïvely present Go code that can be used as the foundation for
the development of a Unix shell. Apart from the exit command, the only other command
that the program can recognize is the version command that just prints the version of the
program. All other user input will be echoed on the screen.

The Go code of UNIXshell.go will be presented in three parts. However, before that I will
present to you the first version of the shell, which mainly contains comments in order to
better understand how I usually start the implementation of a relatively challenging
program:

package main

import (
 "fmt"
)

func main() {

 // Present prompt

 // Read a line

 // Get the first word of the line

 // If it is a built-in shell command, execute the command

 // otherwise, echo the command

}

This is more or less the algorithm that I would use as a starting point—the good thing is
that the comments briefly show how the program will operate. Keep in mind that the
algorithm does not depend on the programming language. After that, it is easier to start
implementing things because you know what you want to do.

Processes and Signals

[289]

So, the first part of the final version of the shell is the following:

package main

import (
 "bufio"
 "fmt"
 "os"
 "strings"
)

var VERSION string = "0.2"

The second part is the following:

func main() {
 scanner := bufio.NewScanner(os.Stdin)
 fmt.Print("> ")
 for scanner.Scan() {

 line := scanner.Text()
 words := strings.Split(line, " ")
 command := words[0]

Here, you just read the input from the user line by line and find out the first word of the
input.

The last part of UNIXshell.go is the following:

 switch command {
 case "exit":
 fmt.Println("Exiting...")
 os.Exit(0)
 case "version":
 fmt.Println(VERSION)
 default:
 fmt.Println(line)
 }

 fmt.Print("> ")
 }
}

The aforementioned Go code checks the command that the user gave and acts accordingly.

Processes and Signals

[290]

Executing UNIXshell.go and interacting with it will generate the following output:

$ go run UNIXshell.go
> version
0.2
> ls -l
ls -l
> exit
Exiting...

Should you wish to learn more about creating your own Unix shell in Go, you can visit
https:/​/​github.​com/ ​elves/ ​elvish.

Yet another minor Go update
While I was writing this chapter, Go was updated—this is a minor update, which mainly
fixes bugs:

$ date
Thu May 25 06:30:53 EEST 2017
$ go version
go version go1.8.3 darwin/amd64

Exercises
Put the plotting functionality of plotIP.go into a Go package and use that1.
package to rewrite both plotIP.go and plotData.go.
Review the Go code of ddGo.go from Chapter 6, File Input and Output, in order2.
to print information about its progress when receiving a SIGINFO signal.
Change the Go code of cat.go to add support for multiple input files.3.
Change the code of plotData.go in order to print gridlines to the generated4.
image.
Change the code of plotData.go in order to leave a little space between the bars5.
of the plot.
Try to make the UNIXshell.go program a little better by adding new features to6.
it.

https://github.com/elves/elvish
https://github.com/elves/elvish
https://github.com/elves/elvish
https://github.com/elves/elvish
https://github.com/elves/elvish
https://github.com/elves/elvish
https://github.com/elves/elvish
https://github.com/elves/elvish
https://github.com/elves/elvish
https://github.com/elves/elvish
https://github.com/elves/elvish

Processes and Signals

[291]

Summary
In this chapter, we talked about many interesting and handy topics, including signal
handling and creating graphical images in Go. Additionally, we taught you how to add
support for Unix pipes in your Go programs.

In the next chapter, we will talk about the most unique feature of Go, which is goroutines.
You will learn what a goroutine is, how to create and synchronize them as well as how to
create channels and pipelines. Have in mind that many people come to Go in order to learn
a modern and safe programming language, but stay for its goroutines!

9
Goroutines – Basic Features

In the previous chapter, you learned about Unix signal handling as well as adding support
for pipes and creating graphical images in Go.

The subject of this really important chapter is goroutines. Go uses goroutines and channels
in order to program concurrent applications in its own way while providing support for
traditional concurrency techniques. Everything in Go is executed using goroutines; when a
program starts its execution, its single goroutine automatically calls the main() function in
order to begin the actual execution of the program.

In this chapter, we will present the easy parts of goroutines using easy to follow code
examples. However, in Chapter 10, Goroutines – Advanced Features, that is coming next, we
will talk about more important and advanced techniques related to goroutines and
channels; so, make sure that you fully understand this chapter before reading the next one.

Therefore, this chapter will tell you about the following:

Creating goroutines
Synchronizing goroutines
About channels and how to use them
Reading and writing to channels
Creating and using pipelines
Changing the Go code of the wc.go utility from Chapter 6, File Input and Output,
in order to use goroutines in the new implementation
Improving the goroutine version of wc.go even further

Goroutines – Basic Features

[293]

About goroutines
A goroutine is the minimum Go entity that can be executed concurrently. Note that the use
of the word minimum is very important here because goroutines are not autonomous
entities. Goroutines live in threads that live in Unix processes. Putting it simply, processes
can be autonomous and exist on their own, whereas both goroutines and threads cannot.
So, in order to create a goroutine, you will need to have a process with at least one thread.
The good thing is that goroutines are lighter than threads, which are lighter than processes.
Everything in Go is executed using goroutines, which makes perfect sense since Go is a
concurrent programming language by design. As you have just learned, when a Go
program starts its execution, its single goroutine calls the main() function, which starts the
actual program execution.

You can define a new goroutine using the go keyword followed by a function name or the
full definition of an anonymous function. The go keyword starts the function argument to it
in a new goroutine and allows the invoking function to continue on by itself.

However, as you will see, you cannot control or make any assumptions about the order
your goroutines are going to get executed because this depends on the scheduler of the
operating system as well as the load of the operating system.

Concurrency and parallelism
A very common misconception is that concurrency and parallelism refer to the same thing,
which is far from true! Parallelism is the simultaneous execution of multiple things,
whereas concurrency is a way of structuring your components so that they can be
independently executed when possible.

Only when you build things concurrently you can safely execute them in parallel—when
and if your operating system and your hardware permit it. The Erlang programming
language did this a long time ago, long before CPUs had multiple cores and computers had
lots of RAM.

In a valid concurrent design, adding concurrent entities makes the whole system run faster
because more things can run in parallel. So, the desired parallelism comes from a better
concurrent expression and implementation of the problem. The developer is responsible for
taking concurrency into account during the design phase of a system and benefit from a
potential parallel execution of the components of the system. So, the developer should not
think about parallelism, but about breaking things into independent components that solve
the initial problem when combined.

Goroutines – Basic Features

[294]

Even if you cannot run your functions in parallel on a Unix machine, a valid concurrent
design will still improve the design and the maintainability of your programs. In other
words, concurrency is better than parallelism!

The sync Go packages
The sync Go package contains functions that can help you synchronize goroutines; the
most important functions of sync are sync.Add, sync.Done, and sync.Wait. The
synchronization of goroutines is a mandatory task for every programmer.

Note that the synchronization of goroutines has nothing to do with shared variables and
shared state. Shared variables and shared state have to do with the method you want to use
for performing concurrent interactions.

A simple example
In this subsection, we will present a simple program that creates two goroutines. The name
of the sample program will be aGoroutine.go and will be presented in three parts; the
first part is the following:

package main

import (
 "fmt"
 "time"
)

func namedFunction() {
 time.Sleep(10000 * time.Microsecond)
 fmt.Println("Printing from namedFunction!")
}

Apart from the expected package and import statements, you can see the implementation
of a function named namedFunction() that sleeps for a while before printing a message on
the screen.

The second part of aGoroutine.go contains the following Go code:

func main() {
 fmt.Println("Chapter 09 - Goroutines.")
 go namedFunction()

Goroutines – Basic Features

[295]

Here, you create a goroutine that executes the namedFunction() function. The last part of
this naïve program is the following:

 go func() {
 fmt.Println("An anonymous function!")
 }()

 time.Sleep(10000 * time.Microsecond)
 fmt.Println("Exiting...")
}

Here, you create another goroutine that executes an anonymous function that contains a
single fmt.Println() statement.

As you can see, goroutines that run this way are totally isolated from each other and cannot
exchange any kind of data, which is not always the operational style that is desired.

If you forget to call the time.Sleep() function in the main() function, or if
time.Sleep() sleeps for a small amount of time, then main() will finish too early and the
two goroutines will not have enough time to start and therefore finish their jobs; as a result,
you will not see all the expected output on your screen!

Executing aGoroutine.go will generate the following output:

$ go run aGoroutine.go
Chapter 09 - Goroutines.
Printing from namedFunction!
Exiting...

Creating multiple goroutines
This subsection will show you how to create many goroutines and the problems that arise
from having to handle more goroutines. The name of the program will be
moreGoroutines.go and will be presented in three parts.

The first part of moreGoroutines.go is the following:

package main

import (
 "fmt"
 "time"
)

Goroutines – Basic Features

[296]

The second part of the program has the following Go code:

func main() {
 fmt.Println("Chapter 09 - Goroutines.")

 for i := 0; i < 10; i++ {
 go func(x int) {
 time.Sleep(10)
 fmt.Printf("%d ", x)
 }(i)
 }

This time, the anonymous function takes a parameter named x, which has the value of the i
variable. The for loop that uses the i variable creates ten goroutines, one by one.

The last part of the program is the following:

 time.Sleep(10000)
 fmt.Println("Exiting...")
}

Once again, if you put a smaller value as the parameter to time.Sleep(), you will see
different results when you execute the program.

Executing moreGoroutines.go will generate a somehow strange output:

$ go run moreGoroutines.go
Chapter 09 - Goroutines.
1 7 Exiting...
2 3

However, the big surprise comes when you execute moreGoroutines.go multiple times:

$ go run moreGoroutines.go
Chapter 09 - Goroutines.
Exiting...
$ go run moreGoroutines.go
Chapter 09 - Goroutines.
3 1 0 9 2 Exiting...
4 5 6 8 7
$ go run moreGoroutines.go
Chapter 09 - Goroutines.
2 0 1 8 7 3 6 5 Exiting...
4

Goroutines – Basic Features

[297]

As you can see, all previous outputs of the program are different from the first one! So, not
only the output is not coordinated and there is not always enough time for all goroutines to
get executed; you cannot be sure about the order the goroutines will get executed.
However, although you cannot do anything about the latter problem because the order that
goroutines get executed depends on various parameters that the developer cannot control,
the next subsection will teach you how to synchronize goroutines and give them enough
time to finish without having to call time.Sleep().

Waiting for goroutines to finish their jobs
This subsection will demonstrate to you the correct way to make a calling function that wait
for its goroutines to finish their jobs. The name of the program will be waitGR.go and will
be presented in four parts; the first part is the following:

package main

import (
 "fmt"
 "sync"
)

There is nothing special here apart from the absence of the time package and the addition
of the sync package.

The second part has the following Go code:

func main() {
 fmt.Println("Waiting for Goroutines!")

 var waitGroup sync.WaitGroup
 waitGroup.Add(10)

Here, you create a new variable with a type of sync.WaitGroup, which waits for a group
of goroutines to finish. The number of goroutines that belong to that group is defined by
one or multiple calls to the sync.Add() function.

Calling sync.Add() before the Go statement in order to prevent race
conditions is important.

Goroutines – Basic Features

[298]

Additionally, the sync.Add(10) call tells our program that we will wait for ten goroutines
to finish.

The third part of the program is the following:

 var i int64
 for i = 0; i < 10; i++ {

 go func(x int64) {
 defer waitGroup.Done()
 fmt.Printf("%d ", x)
 }(i)
 }

Here, you create the desired number of goroutines using a for loop, but you could have
used multiple sequential Go statements. When each goroutine finishes its job, the
sync.Done() function is executed—the use of the defer keyword right after the function
definition tells the anonymous function to automatically call sync.Done() just before it
finishes.

The last part of waitGR.go is the following:

 waitGroup.Wait()
 fmt.Println("\nExiting...")
}

The good thing here is that there is no need to call time.Sleep() because sync.Wait()
does the necessary waiting for us.

Once again, it should be noted here that you should not make any assumptions about the
order the goroutines will get executed in which is also verified by the following output:

$ go run waitGR.go
Waiting for Goroutines!
9 0 5 6 7 8 2 1 3 4
Exiting...
$ go run waitGR.go
Waiting for Goroutines!
9 0 5 6 7 8 3 1 2 4
Exiting...
$ go run waitGR.go
Waiting for Goroutines!
9 5 6 7 8 1 0 2 3 4
Exiting...

Goroutines – Basic Features

[299]

If you call waitGroup.Add() more times than needed, you will get the following error
message when you execute waitGR.go:

Waiting for Goroutines!
fatal error: all goroutines are asleep - deadlock!
goroutine 1 [semacquire]:
sync.runtime_Semacquire(0xc42000e28c)
 /usr/local/Cellar/go/1.8.3/libexec/src/runtime/sema.go:47 +0x34
sync.(*WaitGroup).Wait(0xc42000e280)
 /usr/local/Cellar/go/1.8.3/libexec/src/sync/waitgroup.go:131 +0x7a
main.main()
 /Users/mtsouk/ch/ch9/code/waitGR.go:22 +0x13c
exit status 2
9 0 1 2 6 7 8 3 4 5

This happens because when you tell your program to wait for n+1 goroutines by calling
sync.Add(1) n+1 times, your program cannot have only n goroutines (or less)! Putting it
simply, this will make sync.Wait() to wait indefinitely for one or more goroutines to call
sync.Done() without any luck, which is obviously a deadlock situation that prevents your
program from finishing.

Creating a dynamic number of goroutines
This time, the number of goroutines that will be created will be given as a command-line
argument—the name of the program will be dynamicGR.go and will be presented in four
parts.

The first part of dynamicGR.go is the following:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "strconv"
 "sync"
)

The second part of dynamicGR.go contains the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("usage: %s integer\n",filepath.Base(os.Args[0]))
 os.Exit(1)

Goroutines – Basic Features

[300]

 }

 numGR, _ := strconv.ParseInt(os.Args[1], 10, 64)
 fmt.Printf("Going to create %d goroutines.\n", numGR)
 var waitGroup sync.WaitGroup

 var i int64
 for i = 0; i < numGR; i++ {
 waitGroup.Add(1)

As you can see, the waitGroup.Add(1) statement is called just before you create a new
goroutine.

The third part of the Go code of dynamicGR.go is the following:

 go func(x int64) {
 defer waitGroup.Done()
 fmt.Printf(" %d ", x)
 }(i)
 }

In the preceding part, each simplistic goroutine is created.

The last part of the program is the following:

 waitGroup.Wait()
 fmt.Println("\nExiting...")
}

Here, you just tell the program to wait for all goroutines to finish using the
waitGroup.Wait() statement.

The execution of dynamicGR.go requires an integer parameter, which is the number of
goroutines you want to create:

$ go run dynamicGR.go 15
Going to create 15 goroutines.
 0 2 4 1 3 5 14 10 8 9 12 11 6 13 7
Exiting...
$ go run dynamicGR.go 15
Going to create 15 goroutines.
 5 3 14 4 10 6 7 11 8 9 12 2 13 1 0
Exiting...
$ go run dynamicGR.go 15
Going to create 15 goroutines.
 4 2 3 6 5 10 9 7 0 12 11 1 14 13 8
Exiting...

Goroutines – Basic Features

[301]

As you can imagine, the more goroutines you want to create, the more diverse outputs you
will have because there is no way to control the order that the goroutines of a program are
going to be executed.

About channels
A channel, putting it simply, is a communication mechanism that allows goroutines to
exchange data. However, some rules exist here. First, each channel allows the exchange of a
particular data type, which is also called the element type of the channel, and second, for a
channel to operate properly, you will need to use some Go code to receive what is sent via
the channel.

You should declare a new channel using the chan keyword and you can close a channel
using the close() function. Additionally, as each channel has its own type, the developer
should define it.

Last, a very important detail: when you are using a channel as a function parameter, you
can specify its direction, that is, whether it will be used for writing or reading. In my
opinion, if you know the purpose of a channel in advance, use this capability because it will
make your program more robust as well as safer—otherwise, just do not define the purpose
of the channel function parameter. As a result, if you declare that a channel function
parameter will be used for reading only and you try to write to it, you will get an error
message that will most likely save you from nasty bugs.

The error message you will get when you try to read from a write channel will be similar to
the following:

command-line-arguments
./writeChannel.go:13: invalid operation: <-c (receive from send-only type
chan<- int)

Writing to a channel
In this subsection, you will learn how to write to a channel. The presented program will be
called writeChannel.go and you will see it in three parts.

Goroutines – Basic Features

[302]

The first part has the expected preamble:

package main

import (
 "fmt"
 "time"
)

As you can understand, the use of channels does not require any extra Go packages.

The second part of writeChannel.go is the following:

func writeChannel(c chan<- int, x int) {
 fmt.Println(x)
 c <- x
 close(c)
 fmt.Println(x)
}

Although the writeChannel() function writes to the channel, the data will be lost because
currently nobody reads the channel in the program.

The last part of the program contains the following Go code:

func main() {
 c := make(chan int)
 go writeChannel(c, 10)
 time.Sleep(2 * time.Second)
}

Here, you can see the definition of a channel variable named c with the help of the chan
keyword that is used for the int data.

Executing writeChannel.go will create the following output:

 $ go run writeChannel.go
 10

This is not what you expected to see! The cause of this unpredicted output is that the second
fmt.Println(x) statement was not executed. The reason for this is pretty simple: the c <-
x statement is blocking the execution of the rest of the writeChannel() function because
nobody is reading from the c channel.

Goroutines – Basic Features

[303]

Reading from a channel
This subsection will improve the Go code of writeChannel.go by allowing you to read
from a channel. The presented program will be called readChannel.go and be presented
in four parts.

The first part is the following:

package main

import (
 "fmt"
 "time"
)

The second part of readChannel.go has the following Go code:

func writeChannel(c chan<- int, x int) {
 fmt.Println(x)
 c <- x
 close(c)
 fmt.Println(x)
}

Once again, note that if nobody collects the data written to a channel, the function that sent
it will stall while waiting for someone to read its data. However, in Chapter 10, Goroutines –
Advanced Features, you will see a very pretty solution to this problem.

The third part has the following Go code:

func main() {
 c := make(chan int)
 go writeChannel(c, 10)
 time.Sleep(2 * time.Second)
 fmt.Println("Read:", <-c)
 time.Sleep(2 * time.Second)

Here, the <-c statement in the fmt.Println() function is used for reading a single value
from the channel—the same statement can be used for storing the value of a channel into a
variable. However, if you do not store the value you read from a channel, it will be lost.

Goroutines – Basic Features

[304]

The last part of readChannel.go is the following:

 _, ok := <-c
 if ok {
 fmt.Println("Channel is open!")
 } else {
 fmt.Println("Channel is closed!")
 }
}

Here, you see a technique that allows you to find out whether the channel that you want to
read from is closed or not. However, if the channel was open, the presented Go code will
discard the read value of the channel because of the use of the _ character in the
assignment.

Executing readChannel.go will create the following output:

$ go run readChannel.go
10
Read: 10
10
Channel is closed!
$ go run readChannel.go
10
10
Read: 10
Channel is closed!

Explaining h1s.go
In Chapter 8, Processes and Signals, you saw how Go handles Unix signals using many
examples including h1s.go. However, now that you understand more about goroutines
and channels, it is time to explain the Go code of h1s.go a little more.

As you already know that h1s.go uses channels and goroutines, it should be clear now that
the anonymous function that is executed as a goroutine reads from the sigs channel using
an infinite for loop. This means that each time there is a signal that interests us, the
goroutine will read it from the sigs channel and handle it.

Goroutines – Basic Features

[305]

Pipelines
Go programs rarely use a single channel. One very common technique that uses multiple
channels is called a pipeline. So, a pipeline is a method for connecting goroutines so that
the output of a goroutine becomes the input of another with the help of channels. The
benefits of using pipelines are as follows:

One of the benefits you get from using pipelines is that there is a constant flow in
your program because nobody waits for everything to be completed in order to
start the execution of goroutines and channels of the program
Additionally, you are using less variables and therefore less memory space
because you do not have to save everything
Last, the use of pipelines simplifies the design of the program and improves its
maintainability

The code of pipelines.go, which works with a pipeline of integers, will be presented in
five parts; the first part is the following:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "strconv"
)

The second part contains the following Go code:

func genNumbers(min, max int64, out chan<- int64) {

 var i int64
 for i = min; i <= max; i++ {
 out <- i
 }
 close(out)
}

Here, you define a function that takes three arguments: two integers and one output
channel. The output channel will be used for writing data that will be read in another
function—this is how a pipeline is created.

Goroutines – Basic Features

[306]

The third part of the program is the following:

func findSquares(out chan<- int64, in <-chan int64) {
 for x := range in {
 out <- x * x
 }
 close(out)
}

This time, the function takes two arguments that are both channels. However, out is an
output channel, whereas in is an input channel used for reading data.

The fourth part contains the definition of another function:

func calcSum(in <-chan int64) {
 var sum int64
 sum = 0
 for x2 := range in {
 sum = sum + x2
 }
 fmt.Printf("The sum of squares is %d\n", sum)
}

The last function of pipelines.go takes just one argument, which is a channel used for
reading data.

The last part of pipelines.go is the implementation of the main() function:

func main() {
 if len(os.Args) != 3 {
 fmt.Printf("usage: %s n1 n2\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }
 n1, _ := strconv.ParseInt(os.Args[1], 10, 64)
 n2, _ := strconv.ParseInt(os.Args[2], 10, 64)

 if n1 > n2 {
 fmt.Printf("%d should be smaller than %d\n", n1, n2)
 os.Exit(10)
 }

 naturals := make(chan int64)
 squares := make(chan int64)
 go genNumbers(n1, n2, naturals)
 go findSquares(squares, naturals)
 calcSum(squares)
}

Goroutines – Basic Features

[307]

Here, the main() function firstly reads its two command-line arguments and creates the
necessary channel variables (naturals and squares). Then, it calls the functions of the
pipeline—note that the last function of the channel is not being executed as a goroutine.

The following figure shows a graphical representation of the pipeline used in
pipelines.go in order to the way this particular pipeline works:

A graphical representation of the pipeline structure used in pipelines.go

Running pipelines.go generates the following output:

$ go run pipelines.go
usage: pipelines n1 n2
exit status 1
$ go run pipelines.go 3 2
3 should be smaller than 2
exit status 10
$ go run pipelines.go 3 20
The sum of squares is 2865
$ go run pipelines.go 1 20
The sum of squares is 2870
$ go run pipelines.go 20 20
The sum of squares is 400

A better version of wc.go
As we talked about in Chapter 6, File Input and Output, in this chapter, you will learn how
to create a version of wc.go that uses goroutines. The name of the new utility will be
dWC.go and will be presented in four parts. Note that the current version of dWC.go
considers each command-line argument as a file.

The first part of the utility is the following:

package main

import (

Goroutines – Basic Features

[308]

 "bufio"
 "fmt"
 "io"
 "os"
 "path/filepath"
 "regexp"
 "sync"
)

The second part has the following Go code:

func count(filename string) {
 var err error
 var numberOfLines int = 0
 var numberOfCharacters int = 0
 var numberOfWords int = 0

 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("%s\n", err)
 return
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s\n", err)
 }
 numberOfLines++
 r := regexp.MustCompile("[^\\s]+")
 for range r.FindAllString(line, -1) {
 numberOfWords++
 }
 numberOfCharacters += len(line)
 }

 fmt.Printf("\t%d\t", numberOfLines)
 fmt.Printf("%d\t", numberOfWords)
 fmt.Printf("%d\t", numberOfCharacters)
 fmt.Printf("%s\n", filename)
}

Goroutines – Basic Features

[309]

The count() function does all the processing without returning any information to the
main() function—it just prints the lines, words, and characters of its input file and exits.
Although the current implementation of the count() function does the desired job, it is not
the correct way to design a program because there is no way to control its output of the
program.

The third part of the utility is the following:

func main() {
 if len(os.Args) == 1 {
 fmt.Printf("usage: %s <file1> [<file2> [... <fileN]]\n",
 filepath.Base(os.Args[0]))
 os.Exit(1)
 }

The last part of dWC.go is the following:

 var waitGroup sync.WaitGroup
 for _, filename := range os.Args[1:] {
 waitGroup.Add(1)
 go func(filename string) {
 count(filename)
 defer waitGroup.Done()
 }(filename)
 }
 waitGroup.Wait()
}

As you can see, each input file is being processed by a different goroutine. As expected, you
cannot make any assumptions about the order the input files will be processed.

Executing dWC.go will generate the following output:

$ go run dWC.go /tmp/swtag.log /tmp/swtag.log doesnotExist
open doesnotExist: no such file or directory
 48 275 3571 /tmp/swtag.log
 48 275 3571 /tmp/swtag.log

Here, you can see that although the doesnotExist filename is the last command-line
argument, it is the first one in the output of dWC.go!

Although dWC.go uses goroutines, there is no cleverness in it because goroutines run
without communicating with each other and without performing any other tasks.
Additionally, the output might get scrambled because there is no guarantee that the
fmt.Printf() statements of the count() function will not get interrupted.

Goroutines – Basic Features

[310]

As a result, the forthcoming section as well as some of the techniques that will be presented
in Chapter 10, Goroutines – Advanced Features, will improve dWC.go.

Calculating totals
The current version of dWC.go cannot calculate totals, which can be easily solved by
processing the output of dWC.go with awk:

$ go run dWC.go /tmp/swtag.log /tmp/swtag.log | awk '{sum1+=$1; sum2+=$2;
sum3+=$3} END {print "\t", sum1, "\t", sum2, "\t", sum3}'
 96 550 7142

Still, this is far from being perfect and elegant!

The main reason that the current version of dWC.go cannot calculate totals is that its
goroutines have no way of communicating with each other. This can be easily solved with
the help of channels and pipelines. The new version of dWC.go will be called dWCtotal.go
and will be presented in five parts.

The first part of dWCtotal.go is the following:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "path/filepath"
 "regexp"
)

type File struct {
 Filename string
 Lines int
 Words int
 Characters int
 Error error
}

Here, a new struct type is defined. The new structure is called File and has four fields
and an additional field for keeping error messages. This is the correct way for a pipeline to
circulate multiple values. One might argue that a better name for the File structure would
have been Counts, Results, FileCounts, or FileResults.

Goroutines – Basic Features

[311]

The second part of the program is the following:

func process(files []string, out chan<- File) {
 for _, filename := range files {
 var fileToProcess File
 fileToProcess.Filename = filename
 fileToProcess.Lines = 0
 fileToProcess.Words = 0
 fileToProcess.Characters = 0
 out <- fileToProcess
 }
 close(out)
}

A better name of the process() function would have been beginProcess() or
processResults(). You can try to make that change on your own throughout the
dWCtotal.go program.

The third part of dWCtotal.go has the following Go code:

func count(in <-chan File, out chan<- File) {
 for y := range in {
 filename := y.Filename
 f, err := os.Open(filename)
 if err != nil {
 y.Error = err
 out <- y
 continue
 }
 defer f.Close()
 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 y.Error = err
 out <- y
 continue
 }
 y.Lines = y.Lines + 1
 r := regexp.MustCompile("[^\\s]+")
 for range r.FindAllString(line, -1) {
 y.Words = y.Words + 1
 }
 y.Characters = y.Characters + len(line)
 }

Goroutines – Basic Features

[312]

 out <- y
 }
 close(out)
}

Although the count() function still calculates the counts, it does not print them. It just
sends the counts of lines, words, and characters as well as the filename to another channel
using a struct variable of the File type.

There exists one very important detail here, which is the last statement of the count()
function—in order to properly end a pipeline, you should close all involved channels,
starting from the first one. Otherwise, the execution of the program will fail with an error
message similar to the following one:

fatal error: all goroutines are asleep - deadlock!

However, as far as closing the channels of a pipeline is concerned, you should also be
careful about closing channels too early, especially when there are splits in a pipeline.

The fourth part of the program contains the following Go code:

func calculate(in <-chan File) {
 var totalWords int = 0
 var totalLines int = 0
 var totalChars int = 0
 for x := range in {
 totalWords = totalWords + x.Words
 totalLines = totalLines + x.Lines
 totalChars = totalChars + x.Characters
 if x.Error == nil {
 fmt.Printf("\t%d\t", x.Lines)
 fmt.Printf("%d\t", x.Words)
 fmt.Printf("%d\t", x.Characters)
 fmt.Printf("%s\n", x.Filename)
 }
 }

 fmt.Printf("\t%d\t", totalLines)
 fmt.Printf("%d\t", totalWords)
 fmt.Printf("%d\ttotal\n", totalChars)
}

Goroutines – Basic Features

[313]

There is nothing special here—the calculate() function does the dirty job of printing the
output of the program.

The last part of dWCtotal.go is the following:

func main() {
 if len(os.Args) == 1 {
 fmt.Printf("usage: %s <file1> [<file2> [... <fileN]]\n",
 filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 files := make(chan File)
 values := make(chan File)

 go process(os.Args[1:], files)
 go count(files, values)
 calculate(values)
}

Since the files channel is only used for passing around filenames, it could have been a
string channel instead of a File channel. However, this way the code is more consistent.

Now dWCtotal.go automatically generates totals even if it has to process just one file:

$ go run dWCtotal.go /tmp/swtag.log
 48 275 3571 /tmp/swtag.log
 48 275 3571 total
$ go run dWCtotal.go /tmp/swtag.log /tmp/swtag.log doesNotExist
 48 275 3571 /tmp/swtag.log
 48 275 3571 /tmp/swtag.log
 96 550 7142 total

Goroutines – Basic Features

[314]

Note that both dWCtotal.go and dWC.go implement the same core functionality, which is
counting the words, characters, and lines of a file—it is the way the information is handled
that is different because dWCtotal.go uses a pipeline and not isolated goroutines.

Chapter 10, Goroutines – Advanced Features, will use other techniques to implement the
functionality of dWCtotal.go.

Doing some benchmarking
In this section, we will compare the performance of wc.go from Chapter 6, File Input and
Output, with the performance of wc(1), dWC.go and dWCtotal.go. In order for the results
to be more accurate, all three utilities will process relatively big files:

$ wc /tmp/*.data
 712804 3564024 9979897 /tmp/connections.data
 285316 855948 4400685 /tmp/diskSpace.data
 712523 1425046 8916670 /tmp/memory.data
 1425500 2851000 5702000 /tmp/pageFaults.data
 285658 840622 4313833 /tmp/uptime.data
 3421801 9536640 33313085 total

So, the time(1) utility will measure the following commands:

$ time wc /tmp/*.data /tmp/*.data
$ time wc /tmp/uptime.data /tmp/pageFaults.data
$ time ./dWC /tmp/*.data /tmp/*.data
$ time ./dWC /tmp/uptime.data /tmp/pageFaults.data
$ time ./dWCtotal /tmp/*.data /tmp/*.data
$ time ./dWCtotal /tmp/uptime.data /tmp/pageFaults.data
$ time ./wc /tmp/uptime.data /tmp/pageFaults.data
$ time ./wc /tmp/*.data /tmp/*.data

Goroutines – Basic Features

[315]

The following figure shows a graphical representation of the real field from the output of
the time(1) utility when used to measure the aforementioned commands:

Plotting the real field of the time(1) utility

The original wc(1) utility is by far the fastest of all. Additionally, dWC.go is faster than both
dWCtotal.go and wc.go. Apart from dWC.go, the remaining two Go versions have the
same performance.

Goroutines – Basic Features

[316]

Exercises
Create a pipeline that reads text files, finds the number of occurrences of a given1.
word, and calculates the total number of occurrences of the word in all files.
Try to make dWCtotal.go faster.2.
Create a simple Go program that plays ping pong using channels. You should3.
define the total number of pings and pongs using a command-line argument.

Summary
In this chapter, we talked about creating and synchronizing goroutines as well as about
creating and using pipelines and channels to allow goroutines to communicate with each
other. Additionally, we developed two versions of the wc(1) utility that use goroutines to
process their input files.

Make sure that you fully understand the concepts of this chapter before continuing with the
next chapter because in the next chapter, we will talk about more advanced features related
to goroutines and channels including shared memory, buffered channels, the select
keyword, the GOMAXPROCS environment variable, and signal channels.

10
Goroutines – Advanced

Features
This is the second chapter of this book that deals with goroutines—the most important
feature of the Go programming language—as well as channels that greatly improve what
goroutines can do, and we will continue this from where we stopped it in Chapter 9,
Goroutines – Basic Features.

Thus, you will learn how to use various types of channels, including buffered channels,
signal channels, nil channels, and channels of channels! Additionally, you will learn how
you can utilize shared memory and mutexes with goroutines as well as how to time out a
program when it is taking too long to finish.

Specifically, this chapter will discuss the following topics:

Buffered channels
The select keyword
Signal channels
Nil channels
Channel of channels
Timing out a program and avoiding waiting forever for it to end
Shared memory and goroutines
Using sync.Mutex in order to guard shared data
Using sync.RWMutex in order to protect your shared data
Changing the code of dWC.go from Chapter 9, Goroutines – Basic Features, in
order to add support for buffered channels and mutexes to it

Goroutines – Advanced Features

[318]

The Go scheduler
In the previous chapter, we said that the kernel scheduler is responsible for the order your
goroutines will be executed in, which is not completely accurate. The kernel scheduler is
responsible for the execution of the threads your programs have. The Go runtime has its
own scheduler that is responsible for the execution of the goroutines using a technique
known as m:n scheduling, where m goroutines are executed using n operating system
threads using multiplexing. As the Go scheduler has to deal with the goroutines of a single
program, its operation is much cheaper and faster than the operation of the kernel
scheduler.

The sync Go package
Once again, we will use functions and data types from the sync package in this chapter.
Particularly, you will learn about the usefulness of the sync.Mutex and sync.RWMutex
types and the functions supporting them.

The select keyword
A select statement in Go is like a switch statement for channels and allows a goroutine to
wait on multiple communication operations. Therefore, the main advantage you get from
using the select keyword is that the same function can deal with multiple channels using
a single select statement! Additionally, you can have nonblocking operations on channels.

The name of the program that will be used for illustrating the select keyword will be
useSelect.go and will be presented in five parts. The useSelect.go program allows you
to generate the number of random you want, which is defined in the first command-line
argument, up to a certain limit, which is the second command-line argument.

Goroutines – Advanced Features

[319]

The first part of useSelect.go is the following:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "path/filepath"
 "strconv"
 "time"
)

The second part of useSelect.go is the following:

func createNumber(max int, randomNumberChannel chan<- int, finishedChannel
chan bool) {
 for {
 select {
 case randomNumberChannel <- rand.Intn(max):
 case x := <-finishedChannel:
 if x {
 close(finishedChannel)
 close(randomNumberChannel)
 return
 }
 }
 }
}

Here, you can see how the select keyword allows you to listen to and coordinate two
channels (randomNumberChannel and finishedChannel) at the same time. The select
statement waits for a channel to unblock and then executes on that.

The for loop of the createNumber() function will not end on this own. Therefore,
createNumber() will keep generating random numbers for as long as the
randomNumberChannel branch of the select statement is used. The createNumber()
function will exit when it gets the Boolean value true in the finishedChannel channel.

A better name for the finishedChannel channel would have been done or even
noMoreData.

Goroutines – Advanced Features

[320]

The third part of the program contains the following Go code:

func main() {
 rand.Seed(time.Now().Unix())
 randomNumberChannel := make(chan int)
 finishedChannel := make(chan bool)

 if len(os.Args) != 3 {
 fmt.Printf("usage: %s count max\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 n1, _ := strconv.ParseInt(os.Args[1], 10, 64)
 count := int(n1)
 n2, _ := strconv.ParseInt(os.Args[2], 10, 64)
 max := int(n2)

 fmt.Printf("Going to create %d random numbers.\n", count)

There is nothing special here—you just read the command-line arguments before starting
the desired goroutine.

The fourth part of useSelect.go is where you will start the desired goroutine and create a
for loop in order to generate the desired number of random numbers:

 go createNumber(max, randomNumberChannel, finishedChannel)
 for i := 0; i < count; i++ {
 fmt.Printf("%d ", <-randomNumberChannel)
 }

 finishedChannel <- false
 fmt.Println()
 _, ok := <-randomNumberChannel
 if ok {
 fmt.Println("Channel is open!")
 } else {
 fmt.Println("Channel is closed!")
 }

Here, you also send a message to finishedChannel and check whether the
randomNumberChannel channel is open or closed after sending the message to
finishedChannel. As you sent false to finishedChannel, the finishedChannel
channel will remain open. Note that a message sent to a closed channel panics, whereas a
message received from a closed channel returns the zero value immediately.

Goroutines – Advanced Features

[321]

Note that once you close a channel, you cannot write to this channel.
However, you can still read from that channel!

The last part of useSelect.go has the following Go code:

 finishedChannel <- true
 _, ok = <-randomNumberChannel
 if ok {
 fmt.Println("Channel is open!")
 } else {
 fmt.Println("Channel is closed!")
 }
}

Here, you sent the true value to finishedChannel, so your channels will close and the
createNumber() goroutine will exit.

Running useSelect.go will create the following output:

$ go run useSelect.go 2 100
Going to create 2 random numbers.
19 74
Channel is open!
Channel is closed!

As you will see in the bufChannels.go program that explains buffered channels, the
select statement can also save you from overflowing a buffered channel.

Signal channels
A signal channel is a channel that is used just for signaling. Signal channels will be
illustrated using the signalChannel.go program with a rather unusual example that will
be presented in five parts. The program executes four goroutines—when the first one is
finished, it sends a signal to a signal channel by closing it, which will unblock the second
goroutine. When the second goroutine finishes its job, it closes another channel that
unblocks the remaining two goroutines. Note that signal channels are not the same as
channels that carry the os.Signal values.

Goroutines – Advanced Features

[322]

The first part of the program is the following:

package main

import (
 "fmt"
 "time"
)

func A(a, b chan struct{}) {
 <-a
 fmt.Println("A!")
 time.Sleep(time.Second)
 close(b)
}

The A() function is blocked by the channel defined in the a parameter. This means that
until this channel is closed, the A() function cannot continue its execution. The last
statement of the function closes the channel that is stored in the b variable, which will be
used for unblocking other goroutines.

The second part of the program is the implementation of the B() function:

func B(b, c chan struct{}) {
 <-b
 fmt.Println("B!")
 close(c)
}

Similarly, the B() function is blocked by the channel stored in the b argument, which
means that until the b channel is closed, the B() function will be waiting in its first
statement.

The third part of signalChannel.go is the following:

func C(a chan struct{}) {
 <-a
 fmt.Println("C!")
}

Once again, the C() function is blocked by the channel stored in its a argument.

Goroutines – Advanced Features

[323]

The fourth part of the program is the following:

func main() {
 x := make(chan struct{})
 y := make(chan struct{})
 z := make(chan struct{})

Defining a signal channel as an empty struct with no fields is a very
common practice because empty structures take no memory space. In such
a case, you could have used a bool channel instead.

The last part of signalChannel.go has the following Go code:

 go A(x, y)
 go C(z)
 go B(y, z)
 go C(z)

 close(x)
 time.Sleep(2 * time.Second)
}

Here, you start four goroutines. However, until you close the a channel, all of them will be
blocked! Additionally, A() will finish first and unblock B() that will unblock the two C()
goroutines. So, this technique allows you to define the order of execution of your
goroutines.

If you execute signalChannel.go, you will get the following output:

$ go run signalChannel.go
A!
B!
C!
C!

As you can see, the goroutines are being executed in the desired order despite the A()
function taking more time to execute than the others due to the time.Sleep() function
call.

Goroutines – Advanced Features

[324]

Buffered channels
Buffered channels allow the Go scheduler to put jobs in the queue quickly in order to be
able to serve more requests. Moreover, you can use buffered channels as semaphores in
order to limit throughput. The technique works as follows: incoming requests are
forwarded to a channel, which processes one request at a time. When the channel is done, it
sends a message to the original caller saying that it is ready to process a new request. So, the
capacity of the buffer of the channel restricts the number of simultaneous requests it can
keep and process—this can be easily implemented using a for loop with a call to
time.Sleep() at its end.

Buffered channels will be illustrated in bufChannels.go, which will be presented in four
parts.

The first part of the program is the following:

package main

import (
 "fmt"
)

The preamble proves that you do not need any extra packages for supporting buffered
channels in your Go program.

The second part of the program has the following Go code:

func main() {
 numbers := make(chan int, 5)

Here, you create a new channel named numbers with 5 places, which is denoted by the last
parameter of the make statement. This means that you can write five integers to that
channel without having to read any one of them in order to make space for the others.
However, you cannot put six integers on a channel with five integer places!

Goroutines – Advanced Features

[325]

The third part of bufChannels.go is the following:

 counter := 10
 for i := 0; i < counter; i++ {
 select {
 case numbers <- i:
 default:
 fmt.Println("Not enough space for", i)
 }
 }

Here, you try to put 10 integers to a buffered channel with 5 places. However, the use of the
select statement allows you to know whether you have enough space for storing all the
integers or not and act accordingly!

The last part of bufChannels.go is the following:

 for i := 0; i < counter*2; i++ {
 select {
 case num := <-numbers:
 fmt.Println(num)
 default:
 fmt.Println("Nothing more to be done!")
 break
 }
 }
}

Here, you also use a select statement while trying to read 20 integers from a channel.
However, as soon as reading from the channel fails, the for loop exits using a break
statement. This happens because when there is nothing left to read from the numbers
channel, the num := <-numbers statement will block, which makes the case statement to
go to the default branch.

As you can see from the code, there is no goroutine in bufChannels.go, which means that
buffered channels can work on their own.

Executing bufChannels.go will generate the following output:

$ go run bufChannels.go
Not enough space for 5
Not enough space for 6
Not enough space for 7
Not enough space for 8
Not enough space for 9
0
1

Goroutines – Advanced Features

[326]

2
3
4
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!

About timeouts
Can you imagine waiting forever for something to perform an action? Neither can I! So, in
this section you will learn how to implement timeouts in Go with the help of the select
statement.

The program with the sample code will be named timeOuts.go and will be presented in
four parts; the first part is the following:

package main

import (
 "fmt"
 "time"
)

The second part of timeOuts.go is the following:

func main() {
 c1 := make(chan string)
 go func() {
 time.Sleep(time.Second * 3)
 c1 <- "c1 OK"
 }()

Goroutines – Advanced Features

[327]

The time.Sleep() statement in the goroutine is used for simulating the time it will take
for the goroutine to do its real job.

The third part of timeOuts.go has the following code:

 select {
 case res := <-c1:
 fmt.Println(res)
 case <-time.After(time.Second * 1):
 fmt.Println("timeout c1")
 }

This time the use of time.After() is required for declaring the time you want to wait
before timing out. The wonderful thing here is that if the time of time.After() expires
without the select statement having received any data from the c1 channel, the case
branch of time.After() will get executed.

The last part of the program will have the following Go code:

 c2 := make(chan string)
 go func() {
 time.Sleep(time.Second * 3)
 c2 <- "c2 OK"
 }()

 select {
 case res := <-c2:
 fmt.Println(res)
 case <-time.After(time.Second * 4):
 fmt.Println("timeout c2")
 }
}

In the previous code, you see an operation that does not time out because it is completed
within the desired time, which means that the first branch of the select block will get
executed instead of the second one that signifies the timeout.

The execution of timeOuts.go will generate the following output:

$ go run timeOuts.go
timeout c1
c2 OK

Goroutines – Advanced Features

[328]

An alternative way to implement timeouts
The technique of this subsection will let you not wait for any stubborn goroutines to finish
their jobs. Therefore, this subsection will show you how to time out goroutines with the
help of the timeoutWait.go program that will be presented in four parts. Despite the code
differences between timeoutWait.go and timeOuts.go, the general idea is exactly the
same.

The first part of timeoutWait.go contains the expected preamble:

package main

import (
 "fmt"
 "sync"
 "time"
)

The second part of timeoutWait.go is the following:

func timeout(w *sync.WaitGroup, t time.Duration) bool {
 temp := make(chan int)
 go func() {
 defer close(temp)
 w.Wait()
 }()

 select {
 case <-temp:
 return false
 case <-time.After(t):
 return true
 }
}

Here, you declare a function that does the entire job. The core of the function is the select
block that works the same way as in timeOuts.go. The anonymous function of timeout()
will successfully end when the w.Wait() statement returns, which will happen when the
appropriate number of sync.Done() calls have been executed, which means that all
goroutines will be finished. In this case, the first case of the select statement will be
executed.

Goroutines – Advanced Features

[329]

Note that the temp channel is needed in the select block and nowhere
else. Additionally, the element type of the temp channel could have been
anything, including bool.

The third part of timeOuts.go has the following code:

func main() {
 var w sync.WaitGroup
 w.Add(1)

 t := 2 * time.Second
 fmt.Printf("Timeout period is %s\n", t)

 if timeout(&w, t) {
 fmt.Println("Timed out!")
 } else {
 fmt.Println("OK!")
 }

The last fragment of the program has the following Go code:

 w.Done()
 if timeout(&w, t) {
 fmt.Println("Timed out!")
 } else {
 fmt.Println("OK!")
 }
}

After the anticipated w.Done() call has been executed, the timeout() function will return
true, which will prevent the timeout from happening.

As mentioned at the beginning of this subsection, timeoutWait.go actually prevents your
program from having to wait indefinitely for one or more goroutines to end.

Executing timeoutWait.go will create the following output:

$ go run timeoutWait.go
Timeout period is 2s
Timed out!
OK!

Goroutines – Advanced Features

[330]

Channels of channels
In this section, we will talk about creating and using a channel of channels. Two possible
reasons to use such a channel are as follows:

For acknowledging that an operation finished its job
For creating many worker processes that will be controlled by the same channel
variable

The name of the naïve program that will be developed in this section is cOfC.go and will
be presented in four parts.

The first part of the program is the following:

package main

import (
 "fmt"
)

var numbers = []int{0, -1, 2, 3, -4, 5, 6, -7, 8, 9, 10}

The second part of the program is the following:

func f1(cc chan chan int, finished chan struct{}) {
 c := make(chan int)
 cc <- c
 defer close(c)

 total := 0
 i := 0
 for {
 select {
 case c <- numbers[i]:
 i = i + 1
 i = i % len(numbers)
 total = total + 1
 case <-finished:
 c <- total
 return
 }
 }
}

Goroutines – Advanced Features

[331]

The f1() function returns integer numbers that belong to the numbers variable. When it is
about to end, it also returns the number of integers it has sent back to the caller function
using the c <- total statement.

As you cannot use a channel of channels directly, you should first read from it (cc <- c)
and get a channel that you can actually use. The handy thing here is that although you can
close the c channel, the channel of channels (cc) will be still up and running.

The third part of cOfC.go is the following:

func main() {
 c1 := make(chan chan int)
 f := make(chan struct{})

 go f1(c1, f)
 data := <-c1

In this Go code, you can see that you can declare a channel of channels using the chan
keyword two consecutive times.

The last part of cOfC.go has the following Go code:

 i := 0
 for integer := range data {
 fmt.Printf("%d ", integer)
 i = i + 1
 if i == 100 {
 close(f)
 }
 }
 fmt.Println()
}

Here, you limit the number of integers that will be created by closing the f channel when
you have the number of integers you want.

Executing cOfC.go will generate the following output:

$ go run cOfC.go
0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7 8 9
10 0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7 8
9 10 0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7
8 9 10 0 100

A channel of channels is an advanced Go feature that you probably will not need to use in
your system software. However, it is good to know that it exists.

Goroutines – Advanced Features

[332]

Nil channels
This section will talk about nil channels, which are a special sort of channel that will always
block. The name of the program will be nilChannel.go and will be presented in four
parts.

The first part of the program contains the expected preamble:

package main

import (
 "fmt"
 "math/rand"
 "time"
)

The second portion contains the implementation of the addIntegers() function:

func addIntegers(c chan int) {
 sum := 0
 t := time.NewTimer(time.Second)

 for {
 select {
 case input := <-c:
 sum = sum + input
 case <-t.C:
 c = nil
 fmt.Println(sum)
 }
 }
}

The addIntegers() function stops after the time defined in the time.NewTimer()
function passes and will go to the relevant branch of the case statement. There, it makes c a
nil channel, which means that the channel will stop receiving new data and that the
function will just wait there.

The third part of nilChannel.go is the following:

func sendIntegers(c chan int) {
 for {
 c <- rand.Intn(100)
 }
}

Goroutines – Advanced Features

[333]

Here, the sendIntegers() function keeps generating random numbers and sends them to
the c channel as long as the c channel is open. However, here you also have a goroutine
that is never cleaned up.

The last part of the program has the following Go code:

func main() {
 c := make(chan int)
 go addIntegers(c)
 go sendIntegers(c)
 time.Sleep(2 * time.Second)
}

Executing nilChannel.go will generate the following output:

$ go run nilChannel.go
162674704
$ go run nilChannel.go
165021841

Shared memory
Shared memory is the traditional way that threads use for communicating with each other.
Go comes with built-in synchronization features that allow a single goroutine to own a
shared piece of data. This means that other goroutines must send messages to this single
goroutine that owns the shared data, which prevents the corruption of the data! Such a
goroutine is called a monitor goroutine. In Go terminology, this is sharing by communicating
instead of communicating by sharing.

This technique will be illustrated in the sharedMem.go program, which will be presented in
five parts. The first part of sharedMem.go has the following Go code:

package main

import (
 "fmt"
 "math/rand"
 "sync"
 "time"
)

Goroutines – Advanced Features

[334]

The second part is the following:

var readValue = make(chan int)
var writeValue = make(chan int)

func SetValue(newValue int) {
 writeValue <- newValue
}

func ReadValue() int {
 return <-readValue
}

The ReadValue() function is used for reading the shared variable, whereas the
SetValue() function is used for setting the value of the shared variable. Also, the two
channels used in the program need to be global variables in order to avoid passing them as
arguments to all the functions of the program. Note that these global variables are usually
wrapped up in a Go library or a struct with methods.

The third part of sharedMem.go is the following:

func monitor() {
 var value int
 for {
 select {
 case newValue := <-writeValue:
 value = newValue
 fmt.Printf("%d ", value)
 case readValue <- value:
 }
 }
}

The logic of sharedMem.go can be found in the implementation of the monitor() function.
When you have a read request, the ReadValue() function attempts to read from the
readValue channel. Then, the monitor() function returns the current value that is kept in
the value parameter. Similarly, when you want to change the stored value, you call
SetValue(), which writes to the writeValue channel that is also handled by the select
statement. Once again, the select block plays a key role because it orchestrates the
operations of the monitor() function.

Goroutines – Advanced Features

[335]

The fourth portion of the program has the following Go code:

func main() {
 rand.Seed(time.Now().Unix())
 go monitor()
 var waitGroup sync.WaitGroup

 for r := 0; r < 20; r++ {
 waitGroup.Add(1)
 go func() {
 defer waitGroup.Done()
 SetValue(rand.Intn(100))
 }()
 }

The last part of the program is the following:

 waitGroup.Wait()
 fmt.Printf("\nLast value: %d\n", ReadValue())
}

Executing sharedMem.go will generate the following output:

$ go run sharedMem.go
33 45 67 93 33 37 23 85 87 23 58 61 9 57 20 61 73 99 42 99
Last value: 99
$ go run sharedMem.go
71 66 58 83 55 30 61 73 94 19 63 97 12 87 59 38 48 81 98 49
Last value: 49

If you want to share more values, you can define a new structure that will hold the desired
variables with the data types you prefer.

Using sync.Mutex
Mutex is an abbreviation for mutual exclusion; the Mutex variables are mainly used for
thread synchronization and for protecting shared data when multiple writes can occur at
the same time. A mutex works like a buffered channel of capacity 1 that allows at most one
goroutine to access a shared variable at a time. This means that there is no way for two or
more goroutines to try to update that variable simultaneously. Although this is a perfectly
valid technique, the general Go community prefers to use the monitor goroutine technique
presented in the previous section.

Goroutines – Advanced Features

[336]

In order to use sync.Mutex, you will have to declare a sync.Mutex variable first. You can
lock that variable using the Lock method and release it using the Unlock method. The
sync.Lock() method gives you exclusive access over the shared variable for a region of
code that finishes when you call the Unlock() method and is called a critical section.

Each critical section of a program cannot be executed without locking it first using
sync.Lock(). However, if a lock has already been taken, everybody should wait for its
release first. Although multiple functions might wait to get a lock, only one of them will get
it when it will be released.

You should try to make critical sections as small as possible; in other words, do not delay
releasing a lock because other goroutines might want to use it. Additionally, forgetting to
unlock Mutex will most likely result in a deadlock.

The name of the Go program with the code for illustrating the use of sync.Mutex will be
mutexSimple.go and will be presented in five chunks.

The first part of mutexSimple.go contains the expected preamble:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "strconv"
 "sync"
)

The second part of the program is the following:

var aMutex sync.Mutex
var sharedVariable string = ""

func addDot() {
 aMutex.Lock()
 sharedVariable = sharedVariable + "."
 aMutex.Unlock()
}

Goroutines – Advanced Features

[337]

Note that a critical section is not always obvious and you should be very
careful when specifying it. Also note that a critical section cannot be
embedded in another critical section when both critical sections use the
same Mutex variable! Putting it simply, avoid, at almost all costs,
spreading mutexes across functions because that makes really hard to see
whether you are embedding or not!

Here, addDot() adds a dot character at the end of the sharedVariable string. However,
as the string should be altered simultaneously by multiple goroutines, you use a
sync.Mutex variable to protect it. As the critical section contains just one command, the
waiting period for getting access to the mutex will be fairly small, if not instantaneous.
However, in a real-world situation, the waiting period might be much longer, especially on
software such as database servers where many things happen simultaneously by thousands
of processes—you can simulate that by adding a call to time.Sleep() in the critical
section.

Note that it is the responsibility of the developer to associate a mutex with
one or more shared variables!

The third code segment of mutexSimple.go is the implementation of another function that
uses the mutex:

func read() string {
 aMutex.Lock()
 a := sharedVariable
 aMutex.Unlock()
 return a
}

Although locking the shared variable while reading it is not absolutely necessary, this kind
of locking prevents the shared variable from changing while you are reading it. This might
look like a small issue here but imagine reading the balance of your bank account instead!

Goroutines – Advanced Features

[338]

The fourth part is where you define the number of goroutines that you will start:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("usage: %s n\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 numGR, _ := strconv.ParseInt(os.Args[1], 10, 64)
 var waitGroup sync.WaitGroup

The final part of mutexSimple.go contains the following Go code:

 var i int64
 for i = 0; i < numGR; i++ {
 waitGroup.Add(1)
 go func() {
 defer waitGroup.Done()
 addDot()
 }()
 }
 waitGroup.Wait()
 fmt.Printf("-> %s\n", read())
 fmt.Printf("Length: %d\n", len(read()))
}

Here, you start the desired number of goroutines. Each goroutine calls the addDot()
function that accesses the shared variable—and you wait for them to finish before reading
the value of the shared variable using the read() function.

The output you will get from executing mutexSimple.go will be similar to the following:

$ go run mutexSimple.go 20
->
Length: 20
$ go run mutexSimple.go 30
->
Length: 30

Goroutines – Advanced Features

[339]

Using sync.RWMutex
Go offers another type of mutex, called sync.RWMutex, that allows multiple readers to hold
the lock but only a single writer - sync.RWMutex is an extension of sync.Mutex that adds
two methods named sync.RLock and sync.RUnlock, which are used for locking and
unlocking for reading purposes. Locking and unlocking a sync.RWMutex for exclusive
writing should be done with Lock() and Unlock(), respectively.

This means that either one writer can hold the lock or multiple readers—not both! You will
most likely use such a mutex when most of the goroutines want to read a variable and you
do not want goroutines to wait in order to get an exclusive lock.

In order to demystify sync.RWMutex a little, you should discover that the sync.RWMutex
type is a Go structure currently defined as follows:

type RWMutex struct {
 w Mutex
 writerSem uint32
 readerSem uint32
 readerCount int32
 readerWait int32
}

So, there is nothing to be afraid of here! Now, it is time to see a Go program that uses
sync.RWMutex. The program will be named mutexRW.go and will be presented in five
parts.

The first part of mutexRW.go contains with the expected preamble as well as the definition
of a global variable and a new struct type:

package main

import (
 "fmt"
 "sync"
 "time"
)

var Password = secret{counter: 1, password: "myPassword"}

type secret struct {
 sync.RWMutex
 counter int
 password string
}

Goroutines – Advanced Features

[340]

The secret structure embeds sync.RWMutex and therefore it can call all the methods of
sync.RWMutex.

The second part of mutexRW.go has the following Go code:

func Change(c *secret, pass string) {
 c.Lock()
 fmt.Println("LChange")
 time.Sleep(20 * time.Second)
 c.counter = c.counter + 1
 c.password = pass
 c.Unlock()
}

This function makes changes to one of its arguments, which means that it requires an
exclusive lock, hence the use of the Lock() and Unlock() functions.

The third part of the sample code is the following:

func Show(c *secret) string {
 fmt.Println("LShow")
 time.Sleep(time.Second)

 c.RLock()
 defer c.RUnlock()
 return c.password
}

func Counts(c secret) int {
 c.RLock()
 defer c.RUnlock()
 return c.counter
}

Here, you can see the definition of two functions that use an sync.RWMutex for reading.
This means that multiple instances of them can get the sync.RWMutex lock.

The fourth portion of the program is the following:

func main() {
 fmt.Println("Pass:", Show(&Password))
 for i := 0; i < 5; i++ {
 go func() {
 fmt.Println("Go Pass:", Show(&Password))
 }()
 }

Goroutines – Advanced Features

[341]

Here, you start five goroutines in order to make things more interesting and random.

The last part of mutexRW.go is the following:

 go func() {
 Change(&Password, "123456")
 }()

 fmt.Println("Pass:", Show(&Password))
 time.Sleep(time.Second)
 fmt.Println("Counter:", Counts(Password))
}

Although shared memory and the use of a mutex are still a valid approach
to concurrent programming, using goroutines and channels is a more
modern way that follows the Go philosophy. Therefore, if you can solve a
problem using channels and pipelines, you should prefer that way instead
of using shared variables.

Executing mutexRW.go will generate the following output:

$ go run mutexRW.go
LShow
Pass: myPassword
LShow
LShow
LShow
LShow
LShow
LShow
LChange
Go Pass: 123456
Go Pass: 123456
Pass: 123456
Go Pass: 123456
Go Pass: 123456
Go Pass: 123456
Counter: 2

If the implementation of Change() was using a RLock() call as well as a RUnlock() call,
which would have been totally wrong, then the output of the program would have been the
following:

$ go run mutexRW.go
LShow
Pass: myPassword
LShow

Goroutines – Advanced Features

[342]

LShow
LShow
LShow
LShow
LShow
LChange
Go Pass: myPassword
Pass: myPassword
Go Pass: myPassword
Go Pass: myPassword
Go Pass: myPassword
Go Pass: myPassword
Counter: 1

Put simply, you should be fully aware of the locking mechanism you are using and the way
it works. In this case, it is the timing that is deciding what Counts() will return—the
timing depends on the time.Sleep() call of the Change() function that emulates the
processing that will happen in a real function. The problem is that the use of RLock() and
RUnlock() in Change() allows multiple goroutines to read the shared variable and
therefore get the wrong output from the Counts() function.

The dWC.go utility revisited
In this section, we will change the implementation of the dWC.go utility developed in the
previous chapter.

The first version of the program will use a buffered channel whereas the second version of
the program will use shared memory for keeping the counts for each file you process.

Using a buffered channel
The name of this implementation will be WCbuffered.go and will be presented in five
parts.

The first part of the utility is the following:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"

Goroutines – Advanced Features

[343]

 "path/filepath"
 "regexp"
)

type File struct {
 Filename string
 Lines int
 Words int
 Characters int
 Error error
}

The File structure will keep the counts for each input file. The second chunk of
WCbuffered.go has the following Go code:

func monitor(values <-chan File, count int) {
 var totalWords int = 0
 var totalLines int = 0
 var totalChars int = 0
 for i := 0; i < count; i++ {
 x := <-values
 totalWords = totalWords + x.Words
 totalLines = totalLines + x.Lines
 totalChars = totalChars + x.Characters
 if x.Error == nil {
 fmt.Printf("\t%d\t", x.Lines)
 fmt.Printf("%d\t", x.Words)
 fmt.Printf("%d\t", x.Characters)
 fmt.Printf("%s\n", x.Filename)
 } else {
 fmt.Printf("\t%s\n", x.Error)
 }
 }
 fmt.Printf("\t%d\t", totalLines)
 fmt.Printf("%d\t", totalWords)
 fmt.Printf("%d\ttotal\n", totalChars)
}

The monitor() function collects all the information and prints it. The for loop inside
monitor() makes sure that it will collect the right amount of data.

The third part of the program contains the implementation of the count() function:

func count(filename string, out chan<- File) {
 var err error
 var nLines int = 0
 var nChars int = 0
 var nWords int = 0

Goroutines – Advanced Features

[344]

 f, err := os.Open(filename)
 defer f.Close()
 if err != nil {
 newValue := File{
Filename: filename,
Lines: 0,
Characters: 0,
Words: 0,
Error: err }
 out <- newValue
 return
 }

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s\n", err)
 }
 nLines++
 r := regexp.MustCompile("[^\\s]+")
 for range r.FindAllString(line, -1) {
 nWords++
 }
 nChars += len(line)
 }
 newValue := File {
Filename: filename,
Lines: nLines,
Characters: nChars,
Words: nWords,
Error: nil }

 out <- newValue

}

When the count() function is done, it sends the information to the buffered channel, so
there is nothing special here.

Goroutines – Advanced Features

[345]

The fourth portion of WCbuffered.go is the following:

func main() {
 if len(os.Args) == 1 {
 fmt.Printf("usage: %s <file1> [<file2> [... <fileN]]\n",
 filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 values := make(chan File, len(os.Args[1:]))

Here, you create a buffered channel named values with as many places as the number of
files you will process.

The last portion of the utility is the following:

 for _, filename := range os.Args[1:] {
 go func(filename string) {
 count(filename, values)
 }(filename)
 }
 monitor(values, len(os.Args[1:]))
}

Using shared memory
The good thing with shared memory and mutexes is that, in theory, they usually take a very
small amount of the code, which means that the rest of the code can work concurrently
without any other delays. However, only after you have implemented something can you
see what really happens!

The name of this implementation will be WCshared.go and will be presented in five
parts—the first part of the utility is the following:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "path/filepath"
 "regexp"
 "sync"
)

Goroutines – Advanced Features

[346]

type File struct {
 Filename string
 Lines int
 Words int
 Characters int
 Error error
}

var aM sync.Mutex
var values = make([]File, 0)

The values slice will be the shared variable of the program whereas the name of the mutex
variable will be aM.

The second chunk of WCshared.go has the following Go code:

func count(filename string) {
 var err error
 var nLines int = 0
 var nChars int = 0
 var nWords int = 0

 f, err := os.Open(filename)
 defer f.Close()
 if err != nil {
 newValue := File{Filename: filename, Lines: 0, Characters: 0,
Words: 0, Error: err}
 aM.Lock()
 values = append(values, newValue)
 aM.Unlock()
 return
 }

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s\n", err)
 }
 nLines++
 r := regexp.MustCompile("[^\\s]+")
 for range r.FindAllString(line, -1) {
 nWords++
 }
 nChars += len(line)

Goroutines – Advanced Features

[347]

 }

 newValue := File{Filename: filename, Lines: nLines, Characters: nChars,
Words: nWords, Error: nil}
 aM.Lock()
 values = append(values, newValue)
 aM.Unlock()
}

So, just before the count() function exits, it adds an element to the values slice using a
critical section.

The third part of WCshared.go is the following:

func main() {
 if len(os.Args) == 1 {
 fmt.Printf("usage: %s <file1> [<file2> [... <fileN]]\n",
 filepath.Base(os.Args[0]))
 os.Exit(1)
 }

Here, you just deal with the command-line arguments of the utility.

The fourth part of WCshared.go contains the following Go code:

 var waitGroup sync.WaitGroup
 for _, filename := range os.Args[1:] {
 waitGroup.Add(1)
 go func(filename string) {
 defer waitGroup.Done()
 count(filename)
 }(filename)
 }

 waitGroup.Wait()

Here, you just start the desired number of goroutines and wait for them to finish their jobs.

Goroutines – Advanced Features

[348]

The last code slice of the utility is the following:

 var totalWords int = 0
 var totalLines int = 0
 var totalChars int = 0
 for _, x := range values {
 totalWords = totalWords + x.Words
 totalLines = totalLines + x.Lines
 totalChars = totalChars + x.Characters
 if x.Error == nil {
 fmt.Printf("\t%d\t", x.Lines)
 fmt.Printf("%d\t", x.Words)
 fmt.Printf("%d\t", x.Characters)
 fmt.Printf("%s\n", x.Filename)
 }
 }
 fmt.Printf("\t%d\t", totalLines)
 fmt.Printf("%d\t", totalWords)
 fmt.Printf("%d\ttotal\n", totalChars)
}

When all goroutines are done, it is time to process the contents of the shared variable,
calculate totals, and print the desired output. Note that in this case, there is no shared
variable of any kind and therefore there is no need for a mutex—you just wait to gather all
results and print them.

More benchmarking
This section will measure the performance of WCbuffered.go and WCshared.go using the
handy time(1) utility. However, this time, instead of presenting a graph, I will give you
the actual output of the time(1) utility:

$ time go run WCshared.go /tmp/*.data /tmp/*.data
real 0m31.836s
user 0m31.659s
sys 0m0.165s
$ time go run WCbuffered.go /tmp/*.data /tmp/*.data
real 0m31.823s
user 0m31.656s
sys 0m0.171s

As you can see, both utilities performed equally well, or equally badly if you prefer!
However, apart from the speed of a program, what also matters is the clarity of its design
and how easy it is to make code changes to it! Additionally, the presented way also times
the compile times of both utilities, which might make the results less accurate.

Goroutines – Advanced Features

[349]

The reason that both programs can easily generate totals is that they both have a control
point. For the WCshared.go utility, the control point is the shared variable, whereas for
WCbuffered.go, the control point is the buffered channel that collects the desired
information inside the monitor() function.

Detecting race conditions
If you use the -race flag when running or building a Go program, you will turn on the Go
race detector, which makes the compiler create a modified version of the typical executable
file. This modified version can record the accesses to shared variables as well as all
synchronization events that take place, including calls to sync.Mutex, sync.WaitGroup,
and so on. After doing some analysis of the events, the race detector prints a report that can
help you identify potential problems so that you can correct them.

In order to showcase the operation of the race detector, we will use the code of the rd.go
program, which will be presented in four parts. For this particular program, the data race
will happen because two or more goroutines access the same variable concurrently and at
least one of them changes the value of the variable in some way.

Note that the main() program is also a goroutine in Go!

The first part of the program is the following:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "strconv"
 "sync"
)

Nothing special here, so if there is a problem with the program, it is not in the preamble.

Goroutines – Advanced Features

[350]

The second part of rd.go is the following:

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Printf("usage: %s number\n", filepath.Base(arguments[0]))
 os.Exit(1)
 }
 numGR, _ := strconv.ParseInt(os.Args[1], 10, 64)
 var waitGroup sync.WaitGroup
 var i int64

Once again, there is no problem in this particular code.

The third segment of rd.go has the following Go code:

 for i = 0; i < numGR; i++ {
 waitGroup.Add(1)
 go func() {
 defer waitGroup.Done()
 fmt.Printf("%d ", i)
 }()
 }

This code is very suspicious because you try to print the value of a variable that keeps
changing all the time because of the for loop.

The last part of rd.go is the following:

 waitGroup.Wait()
 fmt.Println("\nExiting...")
}

There is nothing special in the last chunk of code.

Enabling the Go race detector for rd.go will generate the following output:

$ go run -race rd.go 10
==================
WARNING: DATA RACE
Read at 0x00c420074168 by goroutine 6:
 main.main.func1()
 /Users/mtsouk/Desktop/goBook/ch/ch10/code/rd.go:25 +0x6c
Previous write at 0x00c420074168 by main goroutine:
 main.main()
 /Users/mtsouk/Desktop/goBook/ch/ch10/code/rd.go:21 +0x30c
Goroutine 6 (running) created at:
 main.main()

Goroutines – Advanced Features

[351]

 /Users/mtsouk/Desktop/goBook/ch/ch10/code/rd.go:26 +0x2e2
==================
==================
WARNING: DATA RACE
Read at 0x00c420074168 by goroutine 7:
 main.main.func1()
 /Users/mtsouk/Desktop/goBook/ch/ch10/code/rd.go:25 +0x6c
Previous write at 0x00c420074168 by main goroutine:
 main.main()
 /Users/mtsouk/Desktop/goBook/ch/ch10/code/rd.go:21 +0x30c
Goroutine 7 (running) created at:
 main.main()
 /Users/mtsouk/Desktop/goBook/ch/ch10/code/rd.go:26 +0x2e2
==================
2 3 4 4 5 6 7 8 9 10
Exiting...
Found 2 data race(s)
exit status 66

So, the race detector found two data races. The first one happens when number 1 was not
printed at all and the second when number 4 was printed two times. Additionally, number
0 was not printed despite being the initial value of i. Last, you should not get number 10 in
the output but you did get it because the last value of i is indeed 10. Note that the
main.main.func1() notation found in the preceding output means that Go talks about an
anonymous function.

Put simply, what the previous two messages tell you is that there is something wrong with
the i variable because it keeps changing while the goroutines of the program try to read it.
Additionally, you cannot deterministically tell what will happen first.

Running the same program without the race detector will generate the following output:

$ go run rd.go 10
10 10 10 10 10 10 10 10 10 10
Exiting...

The problem with rd.go can be found in the anonymous function. As the anonymous
function takes no arguments, it uses the current value of i, which cannot be determined
with any certainty as it depends on the operating system and the Go scheduler—this is
where the race situation happens! So, have in mind that one of the easiest places to have a
race condition is inside a goroutine spawned from an anonymous function! As a result, if
you have to solve such as situation, start by converting the anonymous function into regular
functions with defined arguments!

Goroutines – Advanced Features

[352]

Programs that use the race detector are slower and need more RAM than the same
programs without the race detector. Last, if the race detector has nothing to report, it will
generate no output.

About GOMAXPROCS
The GOMAXPROCS environment variable (and Go function) allows you to limit the number of
operating system threads that can execute user-level Go code simultaneously.

Starting with Go version 1.5, the default value of GOMAXPROCS should be
the number of cores available on your Unix system.

Although using a GOMAXPROCS value that is smaller than the number of the cores a Unix
machine has might affect the performance of a program, specifying a GOMAXPROCS value
that is bigger than the number of the available cores will not make your program run faster!

The code of goMaxProcs.go allows you to determine the value of the GOMAXPROCS - it will
be presented in two parts.

The first part is the following:

package main

import (
 "fmt"
 "runtime"
)

func getGOMAXPROCS() int {
 return runtime.GOMAXPROCS(0)
}

The second part is the following:

func main() {
 fmt.Printf("GOMAXPROCS: %d\n", getGOMAXPROCS())
}

Goroutines – Advanced Features

[353]

Executing goMaxProcs.go on an Intel i7 machine with hyper threading support and the
latest Go version gives the following output:

$ go run goMaxProcs.go
GOMAXPROCS: 8

However, if you execute goMaxProcs.go on a Debian Linux machine that runs an older Go
version and has an older processor, it will generate the following output:

$ go version
go version go1.3.3 linux/amd64
$ go run goMaxProcs.go
GOMAXPROCS: 1

The way to change the value of GOMAXPROCS on the fly is as follows:

$ export GOMAXPROCS=80; go run goMaxProcs.go
GOMAXPROCS: 80

However, putting a value bigger than 256 will not work:

$ export GOMAXPROCS=800; go run goMaxProcs.go
GOMAXPROCS: 256

Last, have in mind that if you are running a concurrent program such as dWC.go using a
single core, the concurrent version of the program might not be faster than the version of
the program without goroutines! In some situations, this happens because the use of
goroutines as well as the various calls to the sync.Add, sync.Wait, and sync.Done
functions slows down the performance of a program. This can be verified by the following
output:

$ export GOMAXPROCS=8; time go run dWC.go /tmp/*.data
real 0m10.826s
user 0m31.542s
sys 0m5.043s
$ export GOMAXPROCS=1; time go run dWC.go /tmp/*.data
real 0m15.362s
user 0m15.253s
sys 0m0.103s
$ time go run wc.go /tmp/*.data
real 0m15.158sexit
user 0m15.023s
sys 0m0.120s

Goroutines – Advanced Features

[354]

Exercises
Read carefully the documentation page of the sync package that can be found at1.
https:/​/ ​golang. ​org/ ​pkg/ ​sync/ ​.
Try to implement dWC.go using a different shared memory technique than the2.
one used in this chapter.
Implement a struct data type that holds your account balance and make3.
functions that read the amount of money you have and make changes to the
money. Create an implementation that uses sync.RWMutex and another one that
uses sync.Mutex.
What would happen to mutexRW.go if you used Lock() and Unlock()4.
everywhere instead of RLock() and RUnlock()?
Try to implement traverse.go from Chapter 5, Files and Directories using5.
goroutines.
Try to create an implementation of improvedFind.go from Chapter 5, Files and6.
Directories using goroutines.

Summary
This chapter talked about some advanced Go features related to goroutines, channels, and
concurrent programming. However, the moral of this chapter is that channels can do many
things and can be used in many situations, which means that the developer must be able to
choose the appropriate technique to implement a task based on their experience.

The subject of the next chapter will be web development in Go and it will contain very
interesting material, including sending and receiving JSON data, developing web servers
and web clients, as well as talking to a MongoDB database from your Go code.

https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/

11
Writing Web Applications in Go

In the previous chapter, we discussed many advanced topics related to goroutines and
channels as well as shared memory and mutexes.

The main subject of this chapter is the development of web applications in Go. However,
this chapter will also talk about how to interact with two popular databases in your Go
programs. The Go standard library provides packages that can help you develop web
applications using higher level functions, which means that you can do complex things
such as reading web pages by just calling a couple of Go functions with the right
arguments. Although this kind of programming hides the complexity behind a request and
offers less control over the details, it allows you to develop difficult applications using
fewer lines of code, which also results in having fewer bugs in your programs.

However, as this book is about systems programming, this chapter will not go into too
much depth—you might consider the presented information as a good starting point for
anyone who wants to learn about web development in Go.

More specifically, this chapter will talk about the following topics:

Creating a Go utility for MySQL database administrators
Administering a MongoDB database
Using the Go MongoDB driver to talk to a MongoDB database
Creating a web server in Go
Creating a web client in Go
The http.ServeMux type
Dealing with JSON data in Go
The net/http package
The html/template Go standard package
Developing a command-line utility that searches web pages for a given keyword

Writing Web Applications in Go

[356]

What is a web application?
A web application is a client-server software application where the client part runs on a web
browser. Web applications include webmail, instant messaging services, and online stores.

About the net/http Go package
The hero of this chapter will be the net/http package that can help you write web
applications in Go. However, if you are interested in dealing with TCP/IP connections at a
lower level, then you should go to Chapter 12, Network Programming, which talks about
developing TCP/IP applications using lower level function calls.

The net/http package offers a built-in web server as well as a built-in web client that are
both pretty powerful. The http.Get() method can be used for making HTTP and HTTPS
requests, whereas the http.ListenAndServe() function can be used for creating naïve
web servers by specifying the IP address and the TCP port the server will listen to, as well
as the functions that will handle incoming requests.

Another very convenient package is html/template, which is part of the Go standard
library and allows you to generate an HTML output using Go HTML template files.

Developing web clients
In this section, you will learn how to develop web clients in Go and how to time out a web
connection that takes too long to finish.

Fetching a single URL
In this subsection, you will learn how to read a single web page with the help of the
http.Get() function, which is going to be demonstrated in the getURL.go program. The
utility will be presented in four parts; the first part of the program is the expected preamble:

package main

import (
 "fmt"
 "io"
 "net/http"
 "os"

Writing Web Applications in Go

[357]

 "path/filepath"
)

Although there is nothing new here, you might find impressive the fact that you will use Go
packages that are related to file input and output operations even though you are reading
data from the internet. The explanation for this is pretty simple: Go has a uniform interface
for reading and writing data regardless of the medium it is in.

The second part of getURL.go has the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 URL :=os.Args[1]
 data, err := http.Get(URL)

The URL you want to fetch is given as a command-line argument to the program.
Additionally, you can see the call to http.Get(), which does all the dirty work! What
http.Get() returns is a Response variable, which in reality is a Go structure with various
properties and methods.

The third part is the following:

 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 } else {

If there is an error after calling http.Get(), this is the place to check for it.

The fourth part contains the following Go code:

 defer data.Body.Close()
 _, err := io.Copy(os.Stdout, data.Body)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 }
}

Writing Web Applications in Go

[358]

As you can see, the data of URL is written in standard output using os.Stdout, which is the
preferred way for printing data on the screen. Additionally, the data is saved in the Body
property of the return value of the http.Get() call. However, not all HTTP requests are
simple. If the response streams a video or something similar, it would make sense to be able
to read it one piece at a time instead of getting all of it in a single data piece. You can do that
with io.Reader and the Body part of the response.

Executing getURL.go will generate the following raw results, which is what a web browser
would have gotten and rendered:

$ go run getURL.go http://www.mtsoukalos.eu/ | head
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
<htmlxmlns="http://www.w3.org/1999/xhtml" xml:lang="en" version="XHTML+RDFa
1.0" dir="ltr"
xmlns:content=http://purl.org/rss/1.0/modules/content/
. . .
</script>
</body>
</html>

Generally speaking, although getURL.go does the desired job, the way it works is not so
sophisticated because it gives you no flexibility or a way to be creative.

Setting a timeout
In this subsection, you will learn how to set a timeout for a http.Get() request. For
reasons of simplicity, it will be based on the Go code of getURL.go. The name of the
program will be timeoutHTTP.go and will be presented in five parts.

The first part of the program is the following:

package main

import (
 "fmt"
 "io"
 "net"
 "net/http"
 "os"
 "path/filepath"
 "time"
)

var timeout = time.Duration(time.Second)

Writing Web Applications in Go

[359]

Here, you declare the desired timeout period, which is 1 second, as a global parameter.

The second part of timeoutHTTP.go has the following Go code:

func Timeout(network, host string) (net.Conn, error) {
 conn, err := net.DialTimeout(network, host, timeout)
 if err != nil {
 return nil, err
 }
 conn.SetDeadline(time.Now().Add(timeout))
 return conn, nil
}

Here, you define two types of timeouts, the first one is defined with net.DialTimeout()
and is for the time it will take your client to connect to the server. The second one is the
read/write timeout, which has to do with the time you want to wait to get a response from
the web server after connecting to it—this is defined with the call to the
conn.SetDeadline() function.

The third part of the presented program is the following:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 URL :=os.Args[1]

The fourth portion of the program is the following:

 t := http.Transport{
 Dial: Timeout,
 }

 client := http.Client{
 Transport: &t,
 }
 data, err := client.Get(URL)

Here, you define the desired parameters of the connection using an http.Transport
variable.

The last part of the program contains the following Go code:

 if err != nil {
 fmt.Println(err)

Writing Web Applications in Go

[360]

 os.Exit(100)
 } else {
 deferdata.Body.Close()
 _, err := io.Copy(os.Stdout, data.Body)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 }
}

This part of the program is all about error handling!

Executing timeoutHTTP.go will generate the following output in case of a timeout:

$ go run timeoutHTTP.go http://localhost:8001
Get http://localhost:8001: read tcp [::1]:58018->[::1]:8001: i/o timeout
exit status 100

The simplest way to deliberately create a timeout during a web connection is to call the
time.Sleep() function in the handler function of a web server.

Developing better web clients
Although getURL.go does the required job pretty quickly and without writing too much
Go code, it is in a way not adaptable or informative. It just prints a bunch of raw HTML
code without any other information and without the capability of dividing the HTML code
into its logical parts. Therefore, getURL.go needs to be improved!

The name of the new utility will be webClient.go and will be presented to you in five
segments of Go code.

The first part of the utility is the following:

package main

import (
 "fmt"
 "net/http"
 "net/http/httputil"
 "net/url"
 "os"
 "path/filepath"
 "strings"
)

Writing Web Applications in Go

[361]

The second part of the Go code from webClient.go is the following:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 URL, err :=url.Parse(os.Args[1])
 if err != nil {
 fmt.Println("Parse:", err)
 os.Exit(100)
 }

The only new thing here is the use of the url.Parse() function that creates a URL structure
from a URL that is given as a string to it.

The third part of webClient.go has the following Go code:

 c := &http.Client{}

 request, err := http.NewRequest("GET", URL.String(), nil)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 httpData, err := c.Do(request)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

In this Go code, you first create an http.Client variable. Then, you construct a GET HTTP
request using http.NewRequest(). Last, you send the HTTP request using the Do()
function, which returns the actual response data saved in the httpData variable.

The fourth code part of the utility is the following:

 fmt.Println("Status code:", httpData.Status)
 header, _ := httputil.DumpResponse(httpData, false)
 fmt.Print(string(header))

 contentType := httpData.Header.Get("Content-Type")
 characterSet := strings.SplitAfter(contentType, "charset=")
 fmt.Println("Character Set:", characterSet[1])

 if httpData.ContentLength == -1 {

Writing Web Applications in Go

[362]

 fmt.Println("ContentLength in unknown!")
 } else {
 fmt.Println("ContentLength:", httpData.ContentLength)
 }

Here, you find the status code of the HTTP request using the Status property. Then, you
do a little digging into the Header part of the response in order to find the character set of
the response. Last, you check the value of the ContentLength property, which equals -1
for dynamic pages—this means that you do not know the page size in advance.

The last part of the program has the following Go code:

 length := 0
 var buffer [1024]byte

 r := httpData.Body
 for {
 n, err := r.Read(buffer[0:])
 if err != nil {
 fmt.Println(err)
 break
 }
 length = length + n
 }
 fmt.Println("Response data length:", length)
}

Here, you find the length of the response by reading from the Body reader and counting its
data. If you want to print the contents of the response, this is the right place to do it.

Executing webClient.go will create the following output:

$ go run webClient.go invalid
Get invalid: unsupported protocol scheme ""
exit status 100
$ go run webClient.go https://www.mtsoukalos.eu/
Get https://www.mtsoukalos.eu/: dial tcp 109.74.193.253:443: getsockopt:
connection refused
exit status 100
$ go run webClient.go http://www.mtsoukalos.eu/
Status code: 200 OK
HTTP/1.1 200 OK
Accept-Ranges: bytes
Age: 0
Cache-Control: no-cache, must-revalidate
Connection: keep-alive

Writing Web Applications in Go

[363]

Content-Language: en
Content-Type: text/html; charset=utf-8
Date: Mon, 10 Jul 2017 07:29:48 GMT
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Server: Apache/2.4.10 (Debian) PHP/5.6.30-0+deb8u1 mod_wsgi/4.3.0
Python/2.7.9
Vary: Accept-Encoding
Via: 1.1 varnish-v4
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
X-Generator: Drupal 7 (http://drupal.org)
X-Powered-By: PHP/5.6.30-0+deb8u1
X-Varnish: 6922264
Character Set: utf-8
ContentLength in unknown!
EOF
Response data length: 50176

A small web server
Enough with the web clients—in this section, you will learn how to develop web servers in
Go!

The Go code for the implementation of a naïve web server can be found in webServer.go,
and this will be presented in four parts; the first part is the following:

package main

import (
 "fmt"
 "net/http"
 "os"
)

The second part is where things start to get tricky and strange:

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

Writing Web Applications in Go

[364]

This is a kind of function that handles HTTP requests—the function takes two arguments, a
http.ResponseWriter variable and a pointer to an http.Request variable. The first
argument will be used for constructing the HTTP response, whereas the http.Request
variable holds the details of the HTTP request that was received by the server, including the
requested URL and the IP address of the client.

The third part of webServer.go has the following Go code:

func main() {
 PORT := ":8001"
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Using default port number: ", PORT)
 } else {
 PORT = ":" + arguments[1]
 }

Here, you just deal with the port number of the web server—the default port number is
8001, unless there is a command-line argument.

The last chunk of Go code for webServer.go is the following:

 http.HandleFunc("/", myHandler)
 err := http.ListenAndServe(PORT, nil)
 if err != nil {
 fmt.Println(err)
 os.Exit(10)
 }
}

The http.HandleFunc() call defines the name of the handler function (myHandler) as
well as the URLs that it will support—you can call http.HandleFunc() multiple times.
The current handler supports /URL, which in Go matches all URLs!

After you are done with the http.HandleFunc() calls, you are ready to call
http.ListenAndServe() and start waiting for incoming connections! If you do not
specify an IP address in the http.ListenAndServe() function call, then the web server
will listen to all configured network interfaces of the machine.

Writing Web Applications in Go

[365]

Executing webServer.go will generate no output, unless you try to fetch some data from
it—in this case, it will print logging information on your Terminal, which will show the
server name (localhost) and port number (8001) of the request, as shown here:

$ go run webServer.go
Using default port number: :8001

Served: localhost:8001
Served: localhost:8001
Served: localhost:8001

The following screenshot shows three outputs of webServer.go on a web browser:

Using webServer.go

Writing Web Applications in Go

[366]

However, if you use a command-line utility such as wget(1) or getURL.go instead of a
web browser, you will get the following output when you try to connect to the Go web
server:

$ go run getURL.go http://localhost:8001/
Serving: /

The biggest advantage you get from custom made web servers is security
because they are really difficult to hack when developed with security as
well as easier customization in mind.

The next subsection will show how to create web servers using http.ServeMux.

The http.ServeMux type
In this subsection, you will learn how to use the http.ServeMux type in order to improve
the way your Go web server will operate. Putting it simply, http.ServeMux is a HTTP
request router.

Using http.ServeMux
The web server implementation of this section will support multiple paths with the help of
http.ServeMux, which will be illustrated in the serveMux.go program that will be
displayed in four parts.

The first part of the program is the following:

package main

import (
 "fmt"
 "net/http"
 "time"
)

Writing Web Applications in Go

[367]

The second part of serveMux.go has the following Go code:

func about(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "This is the /about page at %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

func cv(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "This is the /CV page at %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

func timeHandler(w http.ResponseWriter, r *http.Request) {
 currentTime := time.Now().Format(time.RFC1123)
 title := currentTime
 Body := "The current time is:"
 fmt.Fprintf(w, "<h1 align=\"center\">%s</h1><h2
align=\"center\">%s</h2>", Body, title)
 fmt.Printf("Served: %s for %s\n", r.URL.Path, r.Host)
}

Here, you have the implementation of three HTTP handler functions. The first two display a
static page, whereas the third one displays the current time, which is a dynamic text.

The third part of the program is the following:

func home(w http.ResponseWriter, r *http.Request) {
 ifr.URL.Path == "/" {
 fmt.Fprintf(w, "Welcome to my home page!\n")
 } else {
 fmt.Fprintf(w, "Unknown page: %s from %s\n", r.URL.Path, r.Host)
 }
 fmt.Printf("Served: %s for %s\n", r.URL.Path, r.Host)
}

The home() handler function will have to make sure that it is actually serving /Path,
because /Path catches everything!

Writing Web Applications in Go

[368]

The last part of serveMux.go contains the following Go code:

func main() {
 m := http.NewServeMux()
 m.HandleFunc("/about", about)
 m.HandleFunc("/CV", cv)
 m.HandleFunc("/time", timeHandler)
 m.HandleFunc("/", home)

 http.ListenAndServe(":8001", m)
}

Here, you define the paths that your web server will support. Note that paths are case
sensitive and that the last path in the preceding code catches everything. This means that if
you put m.HandleFunc("/", home) first, you will not be able to match anything else.
Putting it simply, the order of the m.HandleFunc() statements matters. Also, note that if
you want to support both /about and /about/, you should have both
m.HandleFunc("/about", about) and m.HandleFunc("/about/", about).

Running serveMux.go will generate the following output:

$ go run serveMux.go
Served: / for localhost:8001
Served: /123 for localhost:8001
Served: localhost:8001
Served: /cv for localhost:8001

The following screenshot shows the various kinds of outputs generated by serveMux.go
on a web browser—note that the browser output is not related to the preceding output from
the go run serveMux.go command:

Writing Web Applications in Go

[369]

Using serveMux.go

Writing Web Applications in Go

[370]

If you use wget(1) instead of a web browser, you will get the following output:

$ wget -qO- http://localhost:8001/CV
This is the /CV page at /CV
$ wget -qO- http://localhost:8001/cv
Unknown page: /cv from localhost:8001
$ wget -qO- http://localhost:8001/time
<h1 align="center">The current time is:</h1><h2 align="center">Mon, 10 Jul
2017 13:13:27 EEST</h2>
$ wget -qO- http://localhost:8001/time/
Unknown page: /time/ from localhost:8001

So, http.HandleFunc() is the default call in the library that will be used for first time
implementations, whereas the HandleFunc() function of http.NewServeMux() is for
everything else. Putting it simply, it is better to use the http.NewServeMux() version
instead of the default one except in the simplest of cases.

The html/template package
Templates are mainly used for separating the formatting and data parts of the output. Note
that a Go template can be either a file or string—the general idea is to use strings for smaller
templates and files for bigger ones.

In this section, we will talk about the html/template package by showing an example,
which can be found in the template.go file and will be presented in six parts. The general
idea behind template.go is that you are reading a text file with records that you want to
present in HTML format. Given that the name of the package is html/template, a better
name for the program would have been genHTML.go or genTemplate.go.

There is also the text/template package, which is more useful for
creating plain text output. However, you cannot import both
text/template and html/template on the same Go program without
taking some extra steps to disambiguate them because the two packages
have the same package name (template). The key distinction between the
two packages is that html/template does sanitization of the data input
for HTML injection, which means that it is more secure.

Writing Web Applications in Go

[371]

The first part of the source file is the following:

package main

import (
 "bufio"
 "fmt"
 "html/template"
 "net/http"
 "os"
 "strings"
)

type Entry struct {
 WebSite string
 WebName string
 Quality string
}

var filename string

The definition of the structure is really important because this is how your data is going to
be passed to the template file.

The second part of template.go has the following Go code:

func dynamicContent(w http.ResponseWriter, r *http.Request) {
 var Data []Entry
 var f *os.File
 if filename == "" {
 f = os.Stdin
 } else {
 fileHandler, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening %s: %s", filename, err)
 os.Exit(1)
 }
 f = fileHandler
 }
 defer f.Close()
 scanner := bufio.NewScanner(f)
 myT := template.Must(template.ParseGlob("template.gohtml"))

The template.ParseGlob() function is used for reading the external template file, which
can have any file extension you want. Using the .gohtml extension might make your life
simpler when you are looking for Go template files in your projects.

Writing Web Applications in Go

[372]

Although I personally prefer the .gohtml extension for Go template files, .tpl is a pretty
common extension that is widely used. You can choose whichever you like.

The third chunk of code from template.go is the following:

 for scanner.Scan() {

 parts := strings.Fields(scanner.Text())
 if len(parts) == 3 {
 temp := Entry{WebSite: parts[0], WebName: parts[1], Quality:
parts[2]}
 Data = append(Data, temp)
 }
 }

 fmt.Println("Serving", r.Host, "for", r.URL.Path)
 myT.ExecuteTemplate(w, "template.gohtml", Data)
}

The third parameter to the ExecuteTemplate() function is the data you want to process.
In this case, you pass a slice of records to it.

The fourth part of the program is the following:

func staticPage(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Serving", r.Host, "for", r.URL.Path)
 myT := template.Must(template.ParseGlob("static.gohtml"))
 myT.ExecuteTemplate(w, "static.gohtml", nil)
}

This function displays a static HTML page, which we are just going to pass through the
template engine with the nil data, which is signified by the third argument of the
ExecuteTemplate() function. If you have the same function handling different pieces of
data, you may end up with cases where there is nothing to render, but keep it there for
common code structure.

The fifth part of template.go contains the following Go code:

func main() {
 arguments := os.Args

 if len(arguments) == 1 {
 filename = ""
 } else {
 filename = arguments[1]
 }

Writing Web Applications in Go

[373]

The last chunk of Go code from template.go is where you define the supported paths and
start the web server using port number 8001:

 http.HandleFunc("/static", staticPage)
 http.HandleFunc("/dynamic", dynamicContent)
 http.ListenAndServe(":8001", nil)
}

The contents of the template.gohtml file are as follows:

<!doctype html>
<htmllang="en">
<head>
 <meta charset="UTF-8">
 <title>Using Go HTML Templates</title>
 <style>
 html {
 font-size: 16px;
 }
 table, th, td {
 border: 3px solid gray;
 }
 </style>
</head>
<body>

<h2 alight="center">Presenting Dynamic content!</h2>

<table>
 <thead>
 <tr>
 <th>Web Site</th>
 <th>Quality</th>
 </tr>
 </thead>
 <tbody>
{{ range . }}
<tr>
 <td>{{ .WebName }}</td>
 <td> {{ .Quality }} </td>
</tr>
{{ end }}
 </tbody>
</table>

</body>
</html>

Writing Web Applications in Go

[374]

The dot (.) character represents the current data being processed—to put it simply, the dot
(.) character is a variable. The {{ range . }} statement is equivalent to a for loop that
visits all the elements of the input slice, which are structures in this case. You can access the
fields of each structure as .WebSite, .WebName, and .Quality.

The contents of the static.gohtml file are the following:

<!doctype html>
<htmllang="en">
<head>
 <meta charset="UTF-8">
 <title>A Static HTML Template</title>
</head>
<body>

<H1>Hello there!</H1>

</body>
</html>

If you execute template.go, you will get the following output on the screen:

$ go run template.go /tmp/sites.html
Serving localhost:8001 for /dynamic
Serving localhost:8001 for /static

The following screenshot shows the two outputs of template.go as displayed on a web
browser. The sites.html file has three columns, which are the URL, the name and the
quality and can have multiple lines. The good thing here is that if you change the contents
of the /tmp/sites.html file and reload the web page, you will see the updated contents!

Writing Web Applications in Go

[375]

Using template.go

About JSON
JSON stands for JavaScript Object Notation. This is a text-based format designed as an easy
and light way to pass information between JavaScript systems.

A simple JSON document has the following format:

{ "name":"Mihalis",

"surname":"Tsoukalos",
"country":"Greece" }

Writing Web Applications in Go

[376]

The preceding JSON document has three fields named name, surname, and country. Each
field has a single value.

However, JSON documents can have more complex structures with multiple depth levels.

Before seeing some code, I think that it would be very useful to talk about the
encoding/json Go package first. The encoding/json package offers the Encode() and
Decode() functions that allow the conversion of a Go object into a JSON document and
vice versa. Additionally, the encoding/json package offers the Marshal() and
Unmarshal() functions that work similarly to Encode() and Decode() and are based on
the Encode() and Decode() methods.

The main difference between Marshal()-Unmarshal() and Encode()-Decode() is that
the former functions work on single objects, whereas the latter functions can work on
multiple objects as well as streams of bytes.

Last, the encoding/json Go package includes two interfaces named Marshaler and
Unmarshaler—each one of them requires the implementation of a single method, named
MarshalJSON() and UnmarshalJSON(), respectively. These two interfaces allow you to
perform custom JSON Marshalling and Unmarshalling in Go. Unfortunately, those two
interfaces will not be covered in this book.

Saving JSON data
This subsection will teach you how to convert regular data into JSON format in order to
send it over a network connection. The Go code of this subsection will be saved as
writeJSON.go and will be presented in four parts.

The first chunk of Go code is the expected preamble of the program as well as the definition
of two new struct types named Record and Telephone, respectively:

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

type Record struct {
 Name string
 Surname string
 Tel []Telephone

Writing Web Applications in Go

[377]

}

type Telephone struct {
 Mobile bool
 Number string
}

Note that only the members of a structure that begin with an uppercase
letter will be in the JSON output because members that begin with a
lowercase letter are considered private—in this case, all members of
Record and Telephone structures are public and will get exported.

The second part is the definition of a function named saveToJSON():

funcsaveToJSON(filename string, key interface{}) {
 out, err := os.Create(filename)
 if err != nil {
 fmt.Println(err)
 return
 }

 encodeJSON := json.NewEncoder(out)
 err = encodeJSON.Encode(key)
 if err != nil {
 fmt.Println(err)
 return
 }

 out.Close()
}

The saveToJSON() function does all the work for us as it creates a JSON encoder variable
named encodeJSON, which is associated with a filename, which is where the data is going
to be saved. Then, the call to Encode() saves the data of the record to the associated
filename and we are done! As you will see in the next section, a similar process will help
you read a JSON file and convert it into a Go variable.

The third part of the program has the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a filename!")
 os.Exit(100)
 }

 filename := arguments[1]

Writing Web Applications in Go

[378]

There is nothing special here—you just get the first command-line argument of the
program.

The last part of the utility is the following:

 myRecord := Record{
 Name: "Mihalis",
 Surname: "Tsoukalos",
 Tel: []Telephone{Telephone{Mobile: true, Number: "1234-567"},
 Telephone{Mobile: true, Number: "1234-abcd"},
 Telephone{Mobile: false, Number: "abcc-567"},
 }}

 saveToJSON(filename, myRecord)
}

Here, we do two things. The first is defining a new Record variable and filling it with data.
The second is the call to saveToJSON() for saving the myRecord variable in the JSON
format to the selected file.

Executing writeJSON.go will generate the following output:

$ go run writeJSON.go /tmp/SavedFile

After that, the contents of /tmp/SavedFile will be the following:

$ cat /tmp/SavedFile
{"Name":"Mihalis","Surname":"Tsoukalos","Tel":[{"Mobile":true,"Number":"123
4-567"},{"Mobile":true,"Number":"1234-
abcd"},{"Mobile":false,"Number":"abcc-567"}]}

Sending JSON data over a network requires the use of the net Go standard package that will
be discussed in the next chapter.

Parsing JSON data
This subsection will illustrate how to read a JSON record and convert it into one Go variable
that you can use in your own programs. The name of the presented program will be
readJSON.go and will be shown to you in four parts.

Writing Web Applications in Go

[379]

The first part of the utility is identical to the first part of the writeJSON.go utility:

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

type Record struct {
 Name string
 Surname string
 Tel []Telephone
}

type Telephone struct {
 Mobile bool
 Number string
}

The second part of the Go code is the following:

funcloadFromJSON(filename string, key interface{}) error {
 in, err := os.Open(filename)
 if err != nil {
 return err
 }

 decodeJSON := json.NewDecoder(in)
 err = decodeJSON.Decode(key)
 if err != nil {
 return err
 }
 in.Close()
 return nil
}

Here, you define a new function named loadFromJSON() that is used for decoding a JSON
file according to a data structure that is given as the second argument to it. You first call the
json.NewDecoder() function to create a new JSON decode variable that is associated with
a file, and then you call the Decode() function for actually decoding the contents of the file.

Writing Web Applications in Go

[380]

The third part of readJSON.go has the following Go code:

func main() {
 arguments := os.Args
 iflen(arguments) == 1 {
 fmt.Println("Please provide a filename!")
 os.Exit(100)
 }

 filename := arguments[1]

The last part of the program is the following:

 var myRecord Record
 err := loadFromJSON(filename, &myRecord)
 if err == nil {
 fmt.Println(myRecord)
 } else {
 fmt.Println(err)
 }
}

If you run readJSON.go, you will get the following output:

$ go run readJSON.go /tmp/SavedFile
{Mihalis Tsoukalos [{true 1234-567} {true 1234-abcd} {false abcc-567}]}

Reading your JSON data from a network will be discussed in the next chapter, as JSON
records do not differ from any other kind of data transferred over a network.

Using Marshal() and Unmarshal()
In this subsection, you will see how to use Marshal() and Unmarshal() in order to
implement the functionality of readJSON.go and writeJSON.go. The Go code that
illustrates the Marshal() and Unmarshal() functions can be found in marUnmar.go, and
this will be presented in four parts.

The first part of marUnmar.go is the expected preamble:

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

Writing Web Applications in Go

[381]

type Record struct {
 Name string
 Surname string
 Tel []Telephone
}

type Telephone struct {
 Mobile bool
 Number string
}

The second part of the program contains the following Go code:

func main() {
 myRecord := Record{
 Name: "Mihalis",
 Surname: "Tsoukalos",
 Tel: []Telephone{Telephone{Mobile: true, Number: "1234-567"},
 Telephone{Mobile: true, Number: "1234-abcd"},
 Telephone{Mobile: false, Number: "abcc-567"},
 }}

This is the same record that is used in the writeJSON.go program. Therefore, so far there is
nothing special.

The third part of marUnmar.go is where the marshalling happens:

 rec, err := json.Marshal(&myRecord)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 fmt.Println(string(rec))

Note that json.Marshal() requires a pointer for passing data to it even if the value is a
map, array, or slice.

The last part of the program contains the following Go code that performs the
unmarshalling operation:

 var unRec Record
 err1 := json.Unmarshal(rec, &unRec)
 if err1 != nil {
 fmt.Println(err1)
 os.Exit(100)
 }
 fmt.Println(unRec)
}

Writing Web Applications in Go

[382]

As you can see from the code, json.Unmarshal() requires the use of a pointer for saving
the data even if the value is a map, array, or slice.

Executing marUnmar.go will create the following output:

$ go run marUnmar.go
{"Name":"Mihalis","Surname":"Tsoukalos","Tel":[{"Mobile":true,"Number":"123
4-567"},{"Mobile":true,"Number":"1234-
abcd"},{"Mobile":false,"Number":"abcc-567"}]}
{Mihalis Tsoukalos [{true 1234-567} {true 1234-abcd} {false abcc-567}]}

As you can see, the Marshal() and Unmarshal() functions cannot help you store your
data into a file—you will need to implement that on your own.

Using MongoDB
A relational database is a structured collection of data that is strictly organized into tables.
The dominant language for querying databases is SQL. NoSQL databases, such as
MongoDB, do not use SQL, but various other query languages and do not have a strict
structure in their tables, which are called collections in the NoSQL terminology.

You can categorize NoSQL databases according to their data model as Document, Key-
Value, Graph, and Column-family. MongoDB is the most popular document-oriented
NoSQL database that is appropriate for use in web applications.

Document databases were not made for dealing with Microsoft Word
documents, but for storing semistructured data.

Basic MongoDB administration
If you want to use MongoDB on your Go applications, it would be very practical to know
how to perform some basic administrative tasks on a MongoDB database.

Writing Web Applications in Go

[383]

Most of the tasks presented in this section will be performed from the Mongo shell, which
starts by executing the mongo command. If no MongoDB instance is running on your Unix
machine, you will get the following output:

$ mongo
MongoDB shell version v3.4.5
connecting to: mongodb://127.0.0.1:27017
2017-07-06T19:37:38.291+0300 W NETWORK [thread1] Failed to connect to
127.0.0.1:27017, in(checking socket for error after poll), reason:
Connection refused
2017-07-06T19:37:38.291+0300 E QUERY [thread1] Error: couldn't connect
to server 127.0.0.1:27017, connection attempt failed :
connect@src/mongo/shell/mongo.js:237:13
@(connect):1:6
exception: connect failed

The previous output tells us two things:

The default TCP port number for the MongoDB server process is 27017
The mongo executable tries to connect to the 127.0.0.1 IP address, which is the
IP address of the local machine

In order to execute the following commands, you should start a MongoDB server instance
on your local machine. Once the MongoDB server process is up and running, executing
mongo will create the following output:

$ mongo
MongoDB shell version: 2.4.10
connecting to: test
>

The following commands will show you how to create a new MongoDB database and a new
MongoDB collection, and how to insert some documents in to that collection:

>use go;
switched to db go
>db.someData.insert({x:0, y:1})
>db.someData.insert({x:1, y:2})
>db.someData.insert({x:2, y:3})
>db.someData.count()
3

Once you try to insert a document into a collection using db.someData.insert(), the
collection (someData) will be automatically created if it does not already exist. The last
command counts the number of records stored into the someData collection of the current
database.

Writing Web Applications in Go

[384]

MongoDB will not inform you about any typographical errors you might
have. Putting it simply, if you mistype the name of a database or a
collection, MongoDB will create a totally new database or a new collection
while you are trying to find out what went wrong! Additionally, if you
put more, less, or different fields on a document and try to save it,
MongoDB will not complain!

You can find the records of a collection using the find() function:

>db.someData.find()
{ "_id" : ObjectId("595e84cd63883cb3fe7f42f3"), "x" : 0, "y" : 1 }
{ "_id" : ObjectId("595e84d263883cb3fe7f42f4"), "x" : 1, "y" : 2 }
{ "_id" : ObjectId("595e84d663883cb3fe7f42f5"), "x" : 2, "y" : 3 }

You can find the list of databases on a running MongoDB instance as follows:

>show databases;
LXF 0.203125GB
go 0.0625GB
local 0.078125GB

Similarly, you can find the names of the collections stored in the current MongoDB database
as follows:

>db.getCollectionNames()
["someData", "system.indexes"]

You can delete all the records of a MongoDB collection as follows:

>db.someData.remove()
>show collections
someData
system.indexes

Last, you can delete an entire collection, including its records, as follows:

>db.someData.drop()
true
>show collections
system.indexes

The preceding information will get you going for now, but if you want to learn more about
MongoDB, you should visit the documentation site of MongoDB at
https://docs.mongodb.com/.

https://docs.mongodb.com/

Writing Web Applications in Go

[385]

Using the MongoDB Go driver
In order to use MongoDB in your Go programs, you should first have the MongoDB Go
driver installed on your Unix machine. The name of the MongoDB Go driver is mgo and you
can learn more information about the MongoDB Go driver by visiting
https://github.com/go-mgo/mgo, https:/ ​/ ​labix. ​org/ ​mgo, and
https://docs.mongodb.com/ecosystem/drivers/go/.

As the driver is not part of the standard Go library, you should first download the required
packages using the following two commands:

$ go get labix.org/v2/mgo
$ go get labix.org/v2/mgo/bson

After that, you will be free to use it in your own Go utilities. If you try to execute the
program without having the two packages on your Unix system, you will get an error
message similar to the following:

$ go run testMongo.go
testMongo.go:5:2: cannot find package "labix.org/v2/mgo" in any of:
 /usr/local/Cellar/go/1.8.3/libexec/src/labix.org/v2/mgo (from
$GOROOT)
 /Users/mtsouk/go/src/labix.org/v2/mgo (from $GOPATH)
testMongo.go:6:2: cannot find package "labix.org/v2/mgo/bson" in any of:
 /usr/local/Cellar/go/1.8.3/libexec/src/labix.org/v2/mgo/bson (from
$GOROOT)
 /Users/mtsouk/go/src/labix.org/v2/mgo/bson (from $GOPATH)

Note that you might need to install Bazaar on your Unix system in order
to execute the two go get commands. You can get more information
about the Bazaar version control system at https:/ ​/​bazaar. ​canonical.
com/​.

So, you should first try to run a simple Go program that connects to a MongoDB database,
creates a new database and a new collection, and adds new documents to it in order to
make sure that everything works as expected—the name of the program will be
testMongo.go and will be presented in four parts.

https://github.com/go-mgo/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://docs.mongodb.com/ecosystem/drivers/go/
https://bazaar.canonical.com/
https://bazaar.canonical.com/
https://bazaar.canonical.com/
https://bazaar.canonical.com/
https://bazaar.canonical.com/
https://bazaar.canonical.com/
https://bazaar.canonical.com/
https://bazaar.canonical.com/
https://bazaar.canonical.com/

Writing Web Applications in Go

[386]

The first part of the program is the following:

package main

import (
 "fmt"
 "labix.org/v2/mgo"
 "labix.org/v2/mgo/bson"
 "os"
 "time"
)

type Record struct {
 Xvalueint
 Yvalueint
}

Here, you see the use of the Go MongoDB driver in the import block. Additionally, you see
the definition of a new Go structure named Record that will hold the data of each
MongoDB document.

The second part of testMongo.go has the following Go code:

func main() {
 mongoDBDialInfo := &mgo.DialInfo{
 Addrs: []string{"127.0.0.1:27017"},
 Timeout: 20 * time.Second,
 }

 session, err := mgo.DialWithInfo(mongoDBDialInfo)
 if err != nil {
 fmt.Printf("DialWithInfo: %s\n", err)
 os.Exit(100)
 }
 session.SetMode(mgo.Monotonic, true)

 collection := session.DB("goDriver").C("someData")

Now the collection variable will be used for dealing with the someData collection of the
goDriver database—a better name for the database would have been myDB. Note that there
was not a goDriver database in the MongoDB instance before running the Go program;
this also means that neither the someData collection was there.

Writing Web Applications in Go

[387]

The third part of the program is the following:

 err = collection.Insert(&Record{1, 0})
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 err = collection.Insert(&Record{-1, 0})
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

Here, you insert two documents to the MongoDB database using the Insert() function.

The last portion of testMongo.go contains the following Go code:

 var recs []Record
 err = collection.Find(bson.M{"yvalue": 0}).All(&recs)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 for x, y := range recs {
 fmt.Println(x, y)
 }
 fmt.Println("Found:", len(recs), "results!")
}

As you do not know the number of documents that you will get from the Find() query,
you should use a slice of records for storing them.

Additionally, note that you should put the yvalue field in lowercase in
the Find() function because MongoDB will automatically convert the
fields of the Record structure in lowercase when you are storing them!

Now, execute testMongo.go, as shown here:

$ go run testMongo.go
0 {1 0}
1 {-1 0}
Found: 2 results!

Writing Web Applications in Go

[388]

Note that if you execute testMongo.go multiple times, you will find the same documents
inserted multiple times into the someData collection. However, MongoDB will not have
any problems differentiating between all these documents because the key of each
document is the _id field, which is automatically inserted by MongoDB each time you
insert a new document to a collection.

After that, connect to your MongoDB instance using the MongoDB shell command to make
sure that everything worked as expected:

$ mongo
MongoDB shell version v3.4.5
connecting to: mongodb://127.0.0.1:27017
MongoDB server version: 3.4.5
>use goDriver
switched to db goDriver
>show collections
someData
>db.someData.find()
{ "_id" : ObjectId("595f88593fb7048f4846e555"), "xvalue" : 1, "yvalue" : 0
}
{ "_id" : ObjectId("595f88593fb7048f4846e557"), "xvalue" : -1, "yvalue" : 0
}
>

Here, it is important to understand that MongoDB documents are presented in JSON
format, which you already know how to handle in Go.

Also, note that the Go MongoDB driver has many more capabilities than the ones presented
here. Unfortunately, talking more about it is beyond the scope of this book, but you can
learn more by visiting https://github.com/go-mgo/mgo, https:/ ​/​labix. ​org/ ​mgo, and
https://docs.mongodb.com/ecosystem/drivers/go/.

Creating a Go application that displays MongoDB
data
The name of the utility will be showMongo.go and it will be presented in three parts. The
utility will connect to a MongoDB instance, read a collection, and display the documents of
the collection as a web page. Note that showMongo.go is based on the Go code of
template.go.

https://github.com/go-mgo/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://labix.org/mgo
https://docs.mongodb.com/ecosystem/drivers/go/

Writing Web Applications in Go

[389]

The first part of the web application is the following:

package main

import (
 "fmt"
 "html/template"
 "labix.org/v2/mgo"
 "net/http"
 "os"
 "time"
)

var DatabaseName string
var collectionName string

type Document struct {
 P1 int
 P2 int
 P3 int
 P4 int
 P5 int
}

You should know in advance the structure of the MongoDB documents
that you will retrieve because the field names are hard coded in the
struct type and need to match.

The second part of the program is the following:

func content(w http.ResponseWriter, r *http.Request) {
 var Data []Document
 myT := template.Must(template.ParseGlob("mongoDB.gohtml"))

 mongoDBDialInfo := &mgo.DialInfo{
 Addrs: []string{"127.0.0.1:27017"},
 Timeout: 20 * time.Second,
 }

 session, err := mgo.DialWithInfo(mongoDBDialInfo)
 if err != nil {
 fmt.Printf("DialWithInfo: %s\n", err)
 return
 }
 session.SetMode(mgo.Monotonic, true)
 c := session.DB(DatabaseName).C(collectionName)

Writing Web Applications in Go

[390]

 err = c.Find(nil).All(&Data)
 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Println("Found:", len(Data), "results!")
 myT.ExecuteTemplate(w, "mongoDB.gohtml", Data)
}

As before, you connect to MongoDB using mgo.DialWithInfo() with the parameters that
were defined in the mgo.DialInfo structure.

The last part of the web application is the following:

func main() {
 arguments := os.Args

 iflen(arguments) <= 2 {
 fmt.Println("Please provide a Database and a Collection!")
 os.Exit(100)
 } else {
 DatabaseName = arguments[1]
 collectionName = arguments[2]
 }

 http.HandleFunc("/", content)
 http.ListenAndServe(":8001", nil)
}

The contents of MongoDB.gohtml are similar to the contents of template.gohtml and will
not be presented here. You can refer to The html/template package section for the contents of
template.gohtml.

The execution of showMongo.go will not display the actual data on the screen—you will
need to use a web browser for that:

$ go run showMongo.go goDriver Numbers
Found: 0 results!
Found: 10 results!
Found: 14 results!

The good thing is that if the data of the collections is changed, you will not need to
recompile your Go code in order to see the changes—you will just need to reload the web
page.

Writing Web Applications in Go

[391]

The following screenshot shows the output of showMongo.go as displayed on a web
browser:

Using showMongo.go

Writing Web Applications in Go

[392]

Note that the Numbers collection contains the following documents:

>db.Numbers.findOne()

{

 "_id" : ObjectId("596530aeaab5252f5c1ab100"),
 "p1" : -10,
 "p2" : -20,
 "p3" : 100,
 "p4" : -1000,
 "p5" : 10000
}

Have in mind that extra data in the MongoDB structure that does not have
corresponding fields in the Go structure is ignored.

Creating an application that displays MySQL data
In this subsection, we will present a Go utility that executes a query on a MySQL table. The
name of the new command-line utility will be showMySQL.go and will be presented in five
parts.

Note that showMySQL.go will use the database/sql package that
provides a generic SQL interface to relational databases for querying the
MySQL database.

The presented utility requires two parameters—a username with administrative privileges
and its password.

Writing Web Applications in Go

[393]

The first part of showMySQL.go is the following:

package main

import (
 "database/sql"
 "fmt"
 _ "github.com/go-sql-driver/mysql"
 "os"
 "text/template"
)

There is a small change here, as showMySQL.go uses text/template instead of
html/template. Note that the drivers that conform to the database/sql interface are
never really referenced directly in your code, but they still need to be initialized and
imported. The _ character in front of "github.com/go-sql-driver/mysql" does this by
telling Go to ignore the fact that the "github.com/go-sql-driver/mysql" package is
not actually used in the code.

You will also need to download the MySQL Go driver:

$ go get github.com/go-sql-driver/mysql

The second part of the utility has the following Go code:

func main() {
 var username string
 var password string

 arguments := os.Args
 if len(arguments) == 3 {
 username = arguments[1]
 password = arguments[2]
 } else {
 fmt.Println("programName Username Password!")
 os.Exit(100)
 }

Writing Web Applications in Go

[394]

The third chunk of Go code from showMySQL.go is the following:

 connectString := username + ":" + password +
"@unix(/tmp/mysql.sock)/information_schema"
 db, err := sql.Open("mysql", connectString)

 rows, err := db.Query("SELECT DISTINCT(TABLE_SCHEMA) FROM TABLES;")
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

Here, you manually construct the connection string to MySQL. For reasons of security, a
default MySQL installation works with a socket (/tmp/mysql.sock) instead of a network
connection. The name of the database that will be used is the last part of the connection
string (information_schema).

You will most likely have to adjust these parameters for your own
database.

The fourth part of showMySQL.go is the following:

 var DATABASES []string
 for rows.Next() {
 var databaseName string
 err := rows.Scan(&databaseName)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 DATABASES = append(DATABASES, databaseName)
 }
 db.Close()

The Next() function iterates over all the records returned from the select query and
returns them one by one with the help of the for loop.

Writing Web Applications in Go

[395]

The last part of the program is the following:

 t := template.Must(template.New("t1").Parse(`
 {{range $k := .}} {{ printf "\tDatabase Name: %s" $k}}
 {{end}}
 `))
 t.Execute(os.Stdout, DATABASES)
 fmt.Println()
}

This time, instead of presenting the data as a web page, you will receive it as plain text.
Additionally, as the text template is small, it is defined in line with the help of the t
variable.

Is the use of the template necessary here? Of course not! But it is good to
learn how to define Go templates without using an external template file.

Therefore, the output of showMySQL.go will be similar to the following:

$ go run showMySQL.go root 12345
 Database Name: information_schema
 Database Name: mysql
 Database Name: performance_schema
 Database Name: sys

The preceding output shows information about the available databases for the current
MySQL instance, which is a great way to get information about a MySQL database without
having to connect using the MySQL client.

A handy command-line utility
In this section, we will develop a handy command-line utility that reads a number of web
pages, which can be found in a text file or read from standard input, and returns the
number of times a given keyword was found in these web pages. In order to be faster, the
utility will use goroutines to get the desired data and a monitoring process to gather the
data and present it on the screen. The name of the utility will be findKeyword.go and will
be presented in five parts.

Writing Web Applications in Go

[396]

The first part of the utility is the following:

package main

import (
 "bufio"
 "fmt"
 "net/http"
 "net/url"
 "os"
 "regexp"
)

type Data struct {
 URL string
 Keyword string
 Times int
 Error error
}

The Data struct type will be used for passing information between channels.

The second part of findKeyword.go has the following Go code:

func monitor(values <-chan Data, count int) {
 fori := 0; i< count; i++ {
 x := <-values
 if x.Error == nil {
 fmt.Printf("\t%s\t", x.Keyword)
 fmt.Printf("\t%d\t in\t%s\n", x.Times, x.URL)
 } else {
 fmt.Printf("\t%s\n", x.Error)
 }
 }
}

The monitor() function is where all the information is collected and printed on the screen.

The third part is the following:

func processPage(myUrl, keyword string, out chan<- Data) {
 var err error
 times := 0

 URL, err :=url.Parse(myUrl)
 if err != nil {
 out<- Data{URL: myUrl, Keyword: keyword, Times: 0, Error: err}
 return

Writing Web Applications in Go

[397]

 }

 c := &http.Client{}
 request, err := http.NewRequest("GET", URL.String(), nil)
 if err != nil {
 out<- Data{URL: myUrl, Keyword: keyword, Times: 0, Error: err}
 return
 }

 httpData, err := c.Do(request)
 if err != nil {
 out<- Data{URL: myUrl, Keyword: keyword, Times: 0, Error: err}
 return
 }

 bodyHTML := ""

 var buffer [1024]byte
 reader := httpData.Body
 for {
 n, err := reader.Read(buffer[0:])
 if err != nil {
 break
 }
 bodyHTML = bodyHTML + string(buffer[0:n])
 }

 regExpr := keyword

 r := regexp.MustCompile(regExpr)
 matches := r.FindAllString(bodyHTML, -1)
 times = times + len(matches)

 newValue := Data{URL: myUrl, Keyword: keyword, Times: times, Error: nil}
 out<- newValue
}

Here, you can see the implementation of the processPage() function that is executed in a
goroutine. If the Error field of the Data structure is not nil, then there was an error
somewhere.

The reason for using the bodyHTML variable to save the entire contents of a URL is for not
having a keyword split between two consecutive calls to reader.Read(). After that, a
regular expression (r) is used for searching the bodyHTML variable for the desired keyword.

Writing Web Applications in Go

[398]

The fourth part contains the following Go code:

func main() {
 filename := ""
 var f *os.File
 var keyword string

 arguments := os.Args
 iflen(arguments) == 1 {
 fmt.Println("Not enough arguments!")
 os.Exit(-1)
 }

 iflen(arguments) == 2 {
 f = os.Stdin
 keyword = arguments[1]
 } else {
 keyword = arguments[1]
 filename = arguments[2]
 fileHandler, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening %s: %s", filename, err)
 os.Exit(1)
 }
 f = fileHandler
 }

 deferf.Close()

As you can see, findKeyword.go expects its input from a text file or from standard input,
which is the common Unix practice—this technique was first illustrated back in Chapter 8,
Processes and Signals, in the Reading from standard input section.

The last chunk of Go code for findKeyword.go is the following:

 values := make(chan Data, len(os.Args[1:]))

 scanner := bufio.NewScanner(f)
 count := 0
 forscanner.Scan() {
 count = count + 1
 gofunc(URL string) {
 processPage(URL, keyword, values)
 }(scanner.Text())
 }

 monitor(values, count)
}

Writing Web Applications in Go

[399]

There is nothing special here—you just start the desired goroutines and the monitor()
function to take care of them.

Executing findKeyword.go will create the following output:

$ go run findKeyword.go Tsoukalos /tmp/sites.html
 Get http://really.doesnotexist.com: dial tcp: lookup
really.doesnotexist.com: no such host
 Tsoukalos 8 in http://www.highiso.net/
 Tsoukalos 4 in http://www.mtsoukalos.eu/
 Tsoukalos 3 in
https://www.packtpub.com/networking-and-servers/go-systems-programming
 Tsoukalos 0 in http://cnn.com/
 Tsoukalos 0 in http://doesnotexist.com

The funny thing here is that the doesnotexist.com domain does actually exist!

Exercises
Download and install MongoDB on your Unix machine.1.
Visit the documentation page of the net/http Go standard package at https:/ ​/2.
golang.​org/ ​pkg/ ​net/ ​http/ ​.
Visit the documentation page of the html/template Go standard package at3.
https:/​/ ​golang. ​org/ ​pkg/ ​html/ ​template/ ​.
Change the Go code of getURL.go in order to make it able to fetch multiple web4.
pages.
Read the documentation of the encoding/json package that can be found at5.
https:/​/ ​golang. ​org/ ​pkg/ ​encoding/ ​json/ ​.
Visit the MongoDB site at https:/ ​/​www. ​mongodb. ​org/ ​.6.
Learn how to use text/template by developing your own example.7.
Change the Go code of findKeyword.go in order to be able to search multiple8.
keywords.

https://golang.org/pkg/net/http/
https://golang.org/pkg/net/http/
https://golang.org/pkg/net/http/
https://golang.org/pkg/net/http/
https://golang.org/pkg/net/http/
https://golang.org/pkg/net/http/
https://golang.org/pkg/net/http/
https://golang.org/pkg/net/http/
https://golang.org/pkg/net/http/
https://golang.org/pkg/net/http/
https://golang.org/pkg/net/http/
https://golang.org/pkg/net/http/
https://golang.org/pkg/net/http/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/
https://www.mongodb.org/
https://www.mongodb.org/
https://www.mongodb.org/
https://www.mongodb.org/
https://www.mongodb.org/
https://www.mongodb.org/
https://www.mongodb.org/
https://www.mongodb.org/
https://www.mongodb.org/
https://www.mongodb.org/

Writing Web Applications in Go

[400]

Summary
In this chapter, we talked about web development in Go including parsing, marshalling and
unmarshalling JSON data, interacting with a MongoDB database; reading data from a
MySQL database; creating web servers in Go; creating web clients in Go; and using the
http.ServeMux type.

In the next chapter, we will talk about network programming in Go, which includes
creating TCP and UDP clients and servers using low level commands. We will also teach
you how to develop an RCP client and an RCP server in Go. If you love developing TCP/IP
applications, then the last chapter of this book is for you!

12
Network Programming

In the previous chapter, we talked about developing web applications, talking to databases,
and dealing with JSON data in Go.

The topic of this chapter is the development of Go applications that work over TCP/IP
networks. In addition, you will learn how to create TCP and UDP clients and servers. The
central Go package of this chapter will be the net package—most of its functions are quite
low level and require a good knowledge of TCP/IP and its family of protocols.

However, have in mind that network programming is a huge theme that cannot be covered
in a single chapter. This chapter will give you the foundational directions for how to create
TCP/IP applications in Go.

More analytically, this chapter will talk about the following topics:

How TCP/IP operates
The net Go standard package
Developing TCP clients and servers
Programing UDP clients and servers
Developing an RPC client
Implementing an RPC server
The Wireshark and tshark(1) network traffic analyzers
Unix sockets
Performing DNS lookups from Go programs

Network Programming

[402]

About network programming
Network programming is the development of applications that can operate over computer
networks using TCP/IP, which is the dominant networking protocol. Therefore, without
knowing the way TCP/IP and its protocols work, you cannot create network applications
and develop TCP/IP servers.

The best two advices that I can give to developers of network applications, are to know the
theory behind the task they want to perform and to know that networks fail all the time for
several reasons. The nastiest types of network failures have to do with malfunctioning or
misconfigured DNS servers, because such problems are challenging to find and difficult to
correct.

About TCP/IP
TCP/IP is a family of protocols that help the internet to operate. Its name comes from its
two most well-known protocols: TCP and IP.

Every device that uses TCP/IP must have an IP address, which should be unique at least to
its local network. It also needs a network mask (used for dividing big IP networks into
smaller networks) that is related to its current network, one or more DNS servers (used for
translating an IP address to a human-memorable format and vice versa) and, if you want to
communicate with devices beyond your local network, the IP address of a device that will
act as the default gateway (a network device that TCP/IP sends a network packet to when it
cannot find where else to send it).

Each TCP/IP service, which in reality is a Unix process, listens to a port number that is
unique to each machine. Note that port numbers 0-1023 are restricted and can only be used
by the root user, so it is better to avoid using them and choose something else, provided
that it is not already in use by a different process.

About TCP
TCP stands for Transmission Control Protocol. TCP software transmits data between
machines using segments, which are called TCP packets. The main characteristic of TCP is
that it is a reliable protocol, which means that it attempts to make sure that a packet was
delivered. If there is no proof of a packet delivery, TCP resends that particular packet.
Among other things, a TCP packet can be used for establishing connections, transferring
data, sending acknowledgments, and closing connections.

Network Programming

[403]

When a TCP connection is established between two machines, a full duplex virtual circuit,
similar to the telephone call, is created between these two machines. The two machines
constantly communicate to make sure that data are sent and received correctly. If the
connection fails for some reason, the two machines try to find the problem and report to the
relevant application.

TCP assigns a sequence number to each transmitted packet and expects a positive
acknowledgment (ACK) from the receiving TCP stack. If the ACK is not received within a
timeout interval, the data is retransmitted as the original packet is considered undelivered.
The receiving TCP stack uses the sequence numbers to rearrange the segments when they
arrive out of order, which also eliminates duplicate segments.

The TCP header of each packet includes source port and destination port fields. These two
fields plus the source and destination IP addresses are combined to uniquely identify each
TCP connection. The TCP header also includes a 6-bit flags field that is used to relay control
information between TCP peers. The possible flags include SYN, FIN, RESET, PUSH, URG,
and ACK. The SYN and ACK flags are used for the initial TCP 3-way handshake. The
RESET flag signifies that the receiver wants to abort the connection.

The TCP handshake!
When a connection is initiated, the client sends a TCP SYN packet to the server. The TCP
header also includes a sequence number field that has an arbitrary value in the SYN packet.
The server sends back a TCP [SYN, ACK] packet, which includes the sequence number of
the opposite direction and an acknowledgment of the previous sequence number. Finally,
in order to truly establish the TCP connection, the client sends a TCP ACK packet in order
to acknowledge the sequence number of the server.

Although all these actions take place automatically, it is good to know
what is happening behind the scenes!

About UDP and IP
IP stands for Internet Protocol. The main characteristic of IP is that it is not a reliable
protocol by nature. IP encapsulates the data that travels in a TCP/IP network because it is
responsible for delivering packets from the source host to the destination host according to
the IP addresses. IP has to find an addressing method to effectively send the packet to its
destination. Although there exist dedicated devices called routers that perform IP routing,
every TCP/IP device has to perform some basic routing.

Network Programming

[404]

UDP (short for User Datagram Protocol) is based on IP, which means that it is also
unreliable. Generally speaking, UDP is simpler than TCP mainly because UDP is not
reliable by design. As a result, UDP messages can be lost, duplicated, or arrive out of order.
Furthermore, packets can arrive faster than the recipient can process them. So, UDP is used
when speed is more important than reliability! An example for this is live video and audio
applications where catching up is way more important than buffering and not losing any
data.

So, when you do not need too many network packets to transfer the desired information,
using a protocol that is based on IP might be more efficient than using TCP, even if you
have to retransmit a network packet, because there is no traffic overhead from the TCP
handshake.

About Wireshark and tshark
Wireshark is a graphical application for analyzing network traffic of almost any kind.
Nevertheless, there are times that you need something lighter that you can execute remotely
without a graphical user interface. In such situations, you can use tshark, which is the
command-line version of Wireshark.

In order to help you find the network data you really want, Wireshark and tshark have
support for capture filters and display filters.

Capture filters are the filters that are applied during network data capturing; therefore, they
make Wireshark discard network traffic that does not match the filter. Display filters are the
filters that are applied after packet capturing; therefore, they just hide some network traffic
without deleting it—you can always disable a display filter and get your hidden data back.
Generally speaking, display filters are considered more useful and versatile than capture
filters because, normally, you do not know in advance what you will capture or want to
examine. Nevertheless, applying filters at capture time can save you time and disk space
and that is the main reason for using them.

The following screenshot shows the traffic of a TCP handshake in more detail as captured
by Wireshark. The client IP address is 10.0.2.15 and the destination IP address is
80.244.178.150. Additionally, a simple display filter (tcp && !http) makes Wireshark
display fewer packets and makes the output less cluttered and therefore easier to read:

Network Programming

[405]

The TCP handshake!

The same information can be seen in text format using tshark(1):

$ tshark -r handshake.pcap -Y '(tcp.flags.syn==1) || (tcp.flags == 0x0010
&& tcp.seq==1 && tcp.ack==1)'
 18 5.144264 10.0.2.15 → 80.244.178.150 TCP 74 59897 → 80 [SYN]
Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=1585402 TSecr=0 WS=128
 19 5.236792 80.244.178.150 → 10.0.2.15 TCP 60 80 → 59897 [SYN,
ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460
 20 5.236833 10.0.2.15 → 80.244.178.150 TCP 54 59897 → 80 [ACK]
Seq=1 Ack=1 Win=29200 Len=0

The -r parameter followed by an existing filename allows you to replay a previously
captured data file on your screen, whereas a more complex display filter, which is defined
after the -Y parameter, does the rest of the job!

You can learn more about Wireshark at https:/ ​/​www. ​wireshark. ​org/ ​ and by looking at its
documentation at https:/ ​/ ​www. ​wireshark. ​org/ ​docs/ ​.

https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/

Network Programming

[406]

About the netcat utility
There are times that you will need to test a TCP/IP client or a TCP/IP server—the
netcat(1) utility can help you with that by playing the role of the client or server in a TCP
or UDP application.

You can use netcat(1) as a client for a TCP service that runs on a machine with the
192.168.1.123 IP address and listens to port number 1234, as follows:

$ netcat 192.168.1.123 1234

Similarly, you can use netcat(1) as a client for a UDP service that runs on a Unix machine
named amachine.com and listens to port number 2345, as shown here:

$ netcat -vv -u amachine.com 2345

The -l option tells netcat(1) to listen for incoming connections, which makes netcat(1)
to act as a TCP or UDP server. If you try to use netcat(1) as a server with a port that is
already in use, you will get the following output:

$ netcat -vv -l localhost -p 80
Can't grab 0.0.0.0:80 with bind : Permission denied

The net Go standard package
The most useful Go package for creating TCP/IP applications is the net Go standard
package. The net.Dial() function is used for connecting to a network as a client, and the
net.Listen() function is used for accepting connections as a server. The first parameter of
both functions is the network type, but this is where the similarities end.

For the net.Dial() function, the network type can be one of tcp, tcp4 (IPv4-only), tcp6
(IPv6-only), udp, udp4 (IPv4-only), udp6 (IPv6-only), ip, ip4 (IPv4-only), ip6 (IPv6-only),
Unix, Unixgram, or Unixpacket. For the net.Listen() function, the first parameter can be
one of tcp, tcp4, tcp6, Unix, or Unixpacket.

The return value of the net.Dial() function is of the net.Conn interface type, which
implements the io.Reader and io.Writer interfaces! This means that you already know
how to access the variables of the net.Conn interface!

Network Programming

[407]

So, although the way you create a network connection is different from the way you create a
text file, their access methods are the same because the net.Conn interface implements the
io.Reader and io.Writer interfaces. Therefore, as network connections are treated as
files, you might need to review Chapter 6, File Input and Output, at this moment.

Unix sockets revisited
Back in Chapter 8, Processes and Signals, we talked a little about Unix sockets and presented
a small Go program that was acting as a Unix socket client. This section will also create a
Unix socket server to make things even clearer. However, the Go code of the Unix socket
client will be also explained here in more detail and will be enriched with error handling
code.

A Unix socket server
The Unix socket server will act as an Echo server, which means that it will send the received
message back to the client. The name of the program will be socketServer.go and it will
be presented to you in four parts.

The first part of socketServer.go is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

The second part of the Unix socket server is the following:

func echoServer(c net.Conn) {
 for {
 buf := make([]byte, 1024)
 nr, err := c.Read(buf)
 if err != nil {
 return
 }

 data := buf[0:nr]
 fmt.Printf("->: %v\n", string(data))
 _, err = c.Write(data)
 if err != nil {

Network Programming

[408]

 fmt.Println(err)
 }
 }
}

This is where the function that serves incoming connections is implemented.

The third portion of the program has the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a socket file.")
 os.Exit(100)
 }
 socketFile := arguments[1]

 l, err := net.Listen("unix", socketFile)
 if err != nil {
 fmt.Println(err)
os.Exit(100)
 }

Here, you can see the use of the net.Listen() function with the unix argument for
creating the desired socket file.

Finally, the last part contains the following Go code:

 for {
 fd, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 go echoServer(fd)
 }
}

As you can see, each connection is first handled by the Accept() function and served by its
own goroutine.

When socketServer.go serves a client, it generates the following output:

$ go run socketServer.go /tmp/aSocket
->: Hello Server!

Network Programming

[409]

If you cannot create the desired socket file, for instance, if it already exists, you will get an
error message similar to the following:

$ go run socketServer.go /tmp/aSocket
listen unix /tmp/aSocket: bind: address already in use
exit status 100

A Unix socket client
The name of the Unix socket client program is socketClient.go and will be presented in
four parts.

The first part of the utility contains the expected preamble:

package main

import (
 "fmt"
 "io"
 "log"
 "net"
 "os"
 "time"
)

There is nothing special here, just the required Go packages. The second portion contains
the definition of a Go function:

func readSocket(r io.Reader) {

 buf := make([]byte, 1024)
 for {
 n, err := r.Read(buf[:])
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println("-> ", string(buf[0:n]))
 }
}

Network Programming

[410]

The readSocket() function reads the data from a socket file using Read(). Note that,
although socketClient.go just reads from the socket file, the socket is bisectional, which
means that you can also write to it.

The third part has the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a socket file.")
 os.Exit(100)
 }
 socketFile := arguments[1]

 c, err := net.Dial("unix", socketFile)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 defer c.Close()

The net.Dial() function with the right first argument allows you to connect to the socket
file before you try to read from it.

The last part of socketClient.go is the following:

 go readSocket(c)
 for {
 _, err := c.Write([]byte("Hello Server!"))
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 time.Sleep(1 * time.Second)
 }
}

In order to use socketClient.go, you must have another program dealing with the Unix
socket file, which, in this case will be socketServer.go. So, if socketServer.go is
already running, you will get the following output from socketClient.go:

$ go run socketClient.go /tmp/aSocket
->: Hello Server!

Network Programming

[411]

If you do not have enough Unix file permissions to read the desired socket file, then
socketClient.go will fail with the following error message:

$ go run socketClient.go /tmp/aSocket
dial unix /tmp/aSocket: connect: permission denied
exit status 100

Similarly, if the socket file you want to read does not exist, socketClient.go will fail with
the following error message:

$ go run socketClient.go /tmp/aSocket
dial unix /tmp/aSocket: connect: no such file or directory
exit status 100

Performing DNS lookups
There exist many types of DNS lookups, but two of them are the most popular. In the first
type, you want to go from an IP address to a domain name and in the second type you want
to go from a domain name to an IP address.

The following output shows an example of the first type of DNS lookup:

$ host 109.74.193.253
253.193.74.109.in-addr.arpa domain name pointer
li140-253.members.linode.com.

The following output shows three examples of the second type of DNS lookup:

$ host www.mtsoukalos.eu
www.mtsoukalos.eu has address 109.74.193.253
$ host www.highiso.net
www.highiso.net has address 109.74.193.253
$ host -t a cnn.com
cnn.com has address 151.101.1.67
cnn.com has address 151.101.129.67
cnn.com has address 151.101.65.67
cnn.com has address 151.101.193.67

As you just saw in the aforementioned examples, an IP address can serve many hosts and a
host name can have many IP addresses.

Network Programming

[412]

The Go standard library provides the net.LookupHost() and net.LookupAddr()
functions that can answer DNS queries for you. However, none of them allow you to define
the DNS server you want to query. While using standard Go libraries is ideal, there exist
external Go libraries that allow you to choose the DNS server you desire, which is mainly
required when troubleshooting DNS configurations.

Using an IP address as input
The name of the Go utility that will return the hostname of an IP address will be
lookIP.go and will be presented in three parts.

The first part is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

The second part has the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide an IP address!")
 os.Exit(100)
 }

 IP := arguments[1]
 addr := net.ParseIP(IP)
 if addr == nil {
 fmt.Println("Not a valid IP address!")
 os.Exit(100)
 }

The net.ParseIP() function allows you to verify the validity of the given IP address and
is pretty handy for catching illegal IP addresses such as 288.8.8.8 and 8.288.8.8.

Network Programming

[413]

The last part of the utility is the following:

 hosts, err := net.LookupAddr(IP)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 for _, hostname := range hosts {
 fmt.Println(hostname)
 }
}

As you can see, the net.LookupAddr() function returns a string slice with the list of names
that match the given IP address.

Executing lookIP.go will generate the following output:

$ go run lookIP.go 288.8.8.8
Not a valid IP address!
exit status 100
$ go run lookIP.go 8.8.8.8
google-public-dns-a.google.com.

You can validate the output of dnsLookup.go using host(1) or dig(1):

$ host 8.8.8.8
8.8.8.8.in-addr.arpa domain name pointer google-public-dns-a.google.com.

Using a host name as input
The name of this DNS utility will be lookHost.go and will be presented in three parts. The
first part of the lookHost.go utility is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

Network Programming

[414]

The second part of the program has the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide an argument!")
 os.Exit(100)
 }

 hostname := arguments[1]
 IPs, err := net.LookupHost(hostname)

Similarly, the net.LookupHost() function also returns a string slice with the desired
information.

The third part of the program has the following code, which is for error checking and
printing the output of net.LookupHost():

 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 for _, IP := range IPs {
 fmt.Println(IP)
 }
}

Executing lookHost.go will generate the following output:

$ go run lookHost.go www.google
lookup www.google: no such host
exit status 100
$ go run lookHost.go www.google.com
2a00:1450:4001:81f::2004
172.217.16.164

The first line of the output is the IPv6 address, whereas the second output line is the IPv4
address of www.google.com.

You can verify the operation of lookHost.go by comparing its output with the output of
the host(1) utility:

$ host www.google.com
www.google.com has address 172.217.16.164
www.google.com has IPv6 address 2a00:1450:4001:81a::2004

Network Programming

[415]

Getting NS records for a domain
This subsection will present an additional kind of DNS lookup that returns the domain
name servers for a given domain. This is very handy for troubleshooting DNS-related
problems and finding out the status of a domain. The presented program will be named
lookNS.go and will be presented in three parts.

The first part of the utility is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

The second part has the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a domain!")
 os.Exit(100)
 }

 domain := arguments[1]

 NSs, err := net.LookupNS(domain)

The net.LookupNS() function does all the work for us by returning a slice of NS elements.

The last part of the code is mainly for printing the results:

 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 for _, NS := range NSs {
 fmt.Println(NS.Host)
 }
}

Network Programming

[416]

Executing lookNS.go will generate the following output:

$ go run lookNS.go mtsoukalos.eu
ns5.linode.com.
ns2.linode.com.
ns3.linode.com.
ns1.linode.com.
ns4.linode.com.

The reason that the following query will fail is that www.mtsoukalos.eu is not a domain
but a single host, which means that it has no NS records associated with it:

$ go run lookNS.go www.mtsoukalos.eu
lookup www.mtsoukalos.eu on 8.8.8.8:53: no such host
exit status 100

You can use the host(1) utility to verify the previous output:

$ host -t ns mtsoukalos.eu
mtsoukalos.eu name server ns5.linode.com.
mtsoukalos.eu name server ns4.linode.com.
mtsoukalos.eu name server ns3.linode.com.
mtsoukalos.eu name server ns1.linode.com.
mtsoukalos.eu name server ns2.linode.com.
$ host -t ns www.mtsoukalos.eu
www.mtsoukalos.eu has no NS record

Developing a simple TCP server
This section will develop a TCP server that implements the Echo service. The Echo service is
usually implemented using the UDP protocol due to its simplicity, but it can also be
implemented with TCP. The Echo service usually uses port number 7, but our
implementation will use other port numbers:

$ grep echo /etc/services
echo 7/tcp
echo 7/udp

The TCPserver.go file will hold the Go code of this section and will be presented in six
parts. For reasons of simplicity, each connection is handled inside the main() function
without calling a separate function. However, this is not the recommended practice.

Network Programming

[417]

The first part contains the expected preamble:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
)

The second part of the TCP server is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide port number")
 os.Exit(100)
 }

The third part of TCPserver.go contains the following Go code:

 PORT := ":" + arguments[1]
 l, err := net.Listen("tcp", PORT)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 defer l.Close()

What is important to remember here is that net.Listen() returns a Listener variable,
which is a generic network listener for stream-oriented protocols. Additionally, the
Listen() function can support more formats—check the documentation of the net
package to find more information about that.

The fourth part of the TCP server has the following Go code:

 c, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

Only after a successful call to Accept(), the TCP server can start interacting with TCP
clients. Nonetheless, the current version of TCPserver.go has a very serious shortcoming:
it can only serve a single TCP client, the first one that will connect to it.

Network Programming

[418]

The fifth portion of the TCPserver.go code is the following:

 for {
 netData, err := bufio.NewReader(c).ReadString('\n')
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

Here, you read data from your client using bufio.NewReader().ReadString(). The
aforementioned call allows you to read your input line by line. Additionally, the for loop
allows you to keep reading data from the TCP client for as long as you wish.

The last part of the Echo TCP server is the following:

 fmt.Print("-> ", string(netData))
 c.Write([]byte(netData))
 if strings.TrimSpace(string(netData)) == "STOP" {
 fmt.Println("Exiting TCP server!")
 return
 }
 }
}

The current version of TCPserver.go stops when it receives the STOP string as input.
Although TCP servers do not usually terminate in that style, this is a pretty handy way to
terminate a TCP server process that will only serve a single client!

Next, we will test TCPserver.go with netcat(1):

$ go run TCPserver.go 1234
-> Hi!
-> STOP
Exiting TCP server!

The netcat(1) part is the following:

$ nc localhost 1234

Hi!
Hi!
STOP
STOP

Here, the first and third lines are our input, whereas the second and fourth lines are the
responses from the Echo server.

Network Programming

[419]

If you try to use an improper port number, TCPserver.go will generate the following error
message and exit:

$ go run TCPserver.go 123456
listen tcp: address 123456: invalid port
exit status 100

Developing a simple TCP client
In this section, we will develop a TCP client named TCPclient.go. The port number the
client will try to connect to as well as the server address will be given as command-line
arguments to the program. The Go code of the TCP client will be presented in five parts; the
first part is the following:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
)

The second part of TCPclient.go is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide host:port.")
 os.Exit(100)
 }

The third part of TCPclient.go has the following Go code:

 CONNECT := arguments[1]
 c, err := net.Dial("tcp", CONNECT)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

Once again, you use the net.Dial() function to try to connect to the desired port of the
desired TCP server.

Network Programming

[420]

The fourth part of the TCP client is the following:

 for {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> ")
 text, _ := reader.ReadString('\n')
 fmt.Fprintf(c, text+"\n")

Here, you read data from the user that you will send to the TCP server using
fmt.Fprintf().

The last part of TCPclient.go is the following:

 message, _ := bufio.NewReader(c).ReadString('\n')
 fmt.Print("->: " + message)
 if strings.TrimSpace(string(text)) == "STOP" {
 fmt.Println("TCP client exiting...")
 return
 }
 }
}

In this part, you get data from the TCP server using bufio.NewReader().ReadString().
The reason for using the strings.TrimSpace() function is to remove any spaces and
newline characters from the variable you want to compare with the static string (STOP).

So, now it is time to verify that TCPclient.go works as expected using it to connect to
TCPserver.go:

$ go run TCPclient.go localhost:1024
>> 123
->: 123
>> Hello server!
->: Hello server!
>> STOP
->: STOP
TCP client exiting...

If no process listens to the specified TCP port at the specified host, then you will get an error
message similar to the following:

$ go run TCPclient.go localhost:1024
dial tcp [::1]:1024: getsockopt: connection refused
exit status 100

Network Programming

[421]

Using other functions for the TCP server
In this subsection, we will develop the functionality of TCPserver.go using some slightly
different functions. The name of the new TCP server will be TCPs.go and will be presented
in four parts.

The first part of TCPs.go is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

The second part of the TCP server is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 os.Exit(100)
 }

 SERVER := "localhost" + ":" + arguments[1]

So far, there are no differences from the code of TCPserver.go.

The differences start in the third part of TCPs.go, which is the following:

 s, err := net.ResolveTCPAddr("tcp", SERVER)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 l, err := net.ListenTCP("tcp", s)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

Network Programming

[422]

Here, you use the net.ResolveTCPAddr() and net.ListenTCP() functions. Is this
version better than TCPserver.go? Not really. But the Go code might look a little clearer
and this is a big advantage for some people. Additionally, net.ListenTCP() returns a
TCPListener value that when used with net.AcceptTCP() instead of net.Accept()
will return TCPConn, which offers more methods that allow you to change more socket
options.

The last part of TCPs.go has the following Go code:

 buffer := make([]byte, 1024)

 for {
 conn, err := l.Accept()
 n, err := conn.Read(buffer)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 fmt.Print("> ", string(buffer[0:n]))

 _, err = conn.Write(buffer)

 conn.Close()
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 }
}

There is nothing special here. You still use Accept() to get and process client requests.
However, this version uses Read() to get the client data all at once, which is great when
you do not have to process lots of input.

The operation of TCPs.go is the same with the operation of TCPserver.go, so it will not be
shown here.

If you try to create a TCP server using an invalid port number, TCPs.go will generate an
informative error message, as shown here:

$ go run TCPs.go 123456
address 123456: invalid port
exit status 100

Network Programming

[423]

Using alternative functions for the TCP client
Once again, we will implement TCPclient.go using some slightly different functions that
are provided by the net Go standard package. The name of the new version will be
TCPc.go and will be shown in four code segments.

The first part is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

The second code segment of the program is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a server:port string!")
 os.Exit(100)
 }

 CONNECT := arguments[1]
 myMessage := "Hello from TCP client!\n"

This time, we will send a static message to the TCP server.

The third part of TCPc.go is the following:

 tcpAddr, err := net.ResolveTCPAddr("tcp", CONNECT)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 conn, err := net.DialTCP("tcp", nil, tcpAddr)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

In this part, you see the use of net.ResolveTCPAddr() and net.DialTCP(), which is
where the differences between TCPc.go and TCPclient.go exist.

Network Programming

[424]

The last part of the TCP client is the following:

 _, err = conn.Write([]byte(myMessage))
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 fmt.Print("-> ", myMessage)
 buffer := make([]byte, 1024)

 n, err := conn.Read(buffer)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 fmt.Print(">> ", string(buffer[0:n]))
 conn.Close()
}

You might ask if you can use TCPc.go with TCPserver.go or TCPs.go with
TCPclient.go. The answer is a definitive yes because the implementation and the function
names have nothing to do with the actual TCP/IP operations that take place.

Developing a simple UDP server
This section will also develop an Echo server. However, this time the Echo server will use
the UDP protocol. The name of the program will be UDPserver.go and will be presented
to you in five parts.

The first part contains the expected preamble:

package main

import (
 "fmt"
 "net"
 "os"
 "strings"
)

Network Programming

[425]

The second part is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 os.Exit(100)
 }
 PORT := ":" + arguments[1]

The third part of UDPserver.go is the following:

 s, err := net.ResolveUDPAddr("udp", PORT)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 connection, err := net.ListenUDP("udp", s)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

The UDP approach is similar to the TCP approach—you just call functions with different
names.

The fourth part of the program has the following Go code:

 defer connection.Close()
 buffer := make([]byte, 1024)

 for {
 n, addr, err := connection.ReadFromUDP(buffer)
 fmt.Print("-> ", string(buffer[0:n]))
 data := []byte(buffer[0:n])
 _, err = connection.WriteToUDP(data, addr)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

In the UDP case, you use ReadFromUDP() to read from a UDP connection and
WriteToUDP() to write to an UDP connection. Additionally, the UDP connection does not
need to call a function similar to net.Accept().

Network Programming

[426]

The last part of the UDP server is the following:

 if strings.TrimSpace(string(data)) == "STOP" {
 fmt.Println("Exiting UDP server!")
 return
 }
 }
}

Once again, we will test UDPserver.go with netcat(1):

$ go run UDPserver.go 1234
-> Hi!
-> Hello!
-> STOP
Exiting UDP server!

Developing a simple UDP client
In this section, we will develop a UDP client, which we will name UDPclient.go and
present in five parts.

As you will see, the code differences between the Go code of UDPclient.go and TCPc.go
are basically the differences in the names of the functions used—the general idea is exactly
the same.

The first part of the UDP client is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

The second part of the utility contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a host:port string")
 os.Exit(100)
 }
 CONNECT := arguments[1]

Network Programming

[427]

The third part of UDPclient.go has the following Go code:

 s, err := net.ResolveUDPAddr("udp", CONNECT)
 c, err := net.DialUDP("udp", nil, s)

 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 fmt.Printf("The UDP server is %s\n", c.RemoteAddr().String())
 defer c.Close()

Nothing special here—just the use of net.ResolveUDPAddr() and net.DialUDP() to
connect to the UDP server.

The fourth part of the UDP client is the following:

 data := []byte("Hello UDP Echo server!\n")
 _, err = c.Write(data)

 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

This time, you send your data to the UDP server using Write(), although you will read
from the UDP server using ReadFromUDP().

The last part of UDPclient.go is the following:

 buffer := make([]byte, 1024)
 n, _, err := c.ReadFromUDP(buffer)
 fmt.Print("Reply: ", string(buffer[:n]))
}

As we have UDPserver.go and we know that it works, we can test the operation of
UDPclient.go using UDPserver.go:

$ go run UDPclient.go localhost:1234
The UDP server is 127.0.0.1:1234
Reply: Hello UDP Echo server!

Network Programming

[428]

If you execute UDPclient.go without a UDP server listening to the desired port, you will
get the following output, which does not clearly state that it could not connect to an UDP
server—it just shows an empty reply:

$ go run UDPclient.go localhost:1024
The UDP server is 127.0.0.1:1024
Reply:

A concurrent TCP server
In this section, you will learn how to develop a concurrent TCP server—each client
connection will be assigned to a new goroutine that will serve the client request. Note that
although TCP clients initially connect to the same port, they are served using a different
port number than the main port number of the server—this is automatically handled by
TCP and is the way TCP works.

Although creating a concurrent UDP server is also a possibility, it might
not be absolutely necessary due to the way UDP works. However, if you
have a really busy UDP service, then you might consider developing a
concurrent UDP server.

The name of the program will be concTCP.go and will be presented in five parts. The good
thing is that once you define a function to handle incoming connections, all you need is to
execute that function as a goroutine, and the rest will be handled by Go!

The first part of concTCP.go is the following:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
 "time"
)

Network Programming

[429]

The second part of the concurrent TCP server is the following:

func handleConnection(c net.Conn) {
 for {
 netData, err := bufio.NewReader(c).ReadString('\n')
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 fmt.Print("-> ", string(netData))
 c.Write([]byte(netData))
 if strings.TrimSpace(string(netData)) == "STOP" {
 break
 }
 }
 time.Sleep(3 * time.Second)
 c.Close()
}

Here is the implementation of the function that handles each TCP request. The time delay at
the end of it is used for giving you the necessary time to connect with another TCP client
and prove that concTCP.go can serve multiple TCP clients.

The third part of the program contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 os.Exit(100)
 }

 PORT := ":" + arguments[1]

The fourth part of concTCP.go has the following Go code:

 l, err := net.Listen("tcp", PORT)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 defer l.Close()

So far, there is nothing special in the main() function because although concTCP.go will
handle multiple requests, it only needs a single call to net.Listen().

Network Programming

[430]

The last chunk of Go code is the following:

 for {
 c, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 go handleConnection(c)
 }
}

All the differences in the way concTCP.go processes its requests can be found in the last
lines of Go code. Each time the program accepts a new network request using Accept(), a
new goroutine gets started and concTCP.go is immediately ready to accept more requests.
Note that in order to terminate concTCP.go, you will have to press Ctrl + C because the
STOP keyword is used for terminating each goroutine of the program.

Executing concTCP.go and connecting to it using various TCP clients, will generate the
following output:

$ go run concTCP.go 1234
-> Hi!
-> Hello!
-> STOP
...

Remote procedure call (RPC)
Remote Procedure Call (RPC) is a client-server mechanism for interprocess
communication. Note that the RPC client and the RPC server communicate using TCP/IP,
which means that they can exist in different machines.

In order to develop the implementation of an RPC client or RPC server, you will need to
follow some steps and call some functions in a given way. Neither of the two
implementations is difficult; you just have to follow certain steps.

Also, visit the documentation page of the net/rpc Go standard package that can be found
at https://golang.org/pkg/net/rpc/.

Network Programming

[431]

Note that the presented RPC example will use TCP for client-server
interaction. However, you can also use HTTP for client-server
communication.

An RPC server
This subsection will present an RPC server named RPCserver.go. As you will see in the
preamble of the RPCserver.go program, the RPC server imports a package named
sharedRPC, which is implemented in the sharedRPC.go file—the name of the package is
arbitrary. Its contents are the following:

package sharedRPC

type MyInts struct {
 A1, A2 uint
 S1, S2 bool
}

type MyInterface interface {

 Add(arguments *MyInts, reply *int) error
 Subtract(arguments *MyInts, reply *int) error
}

So, here you define a new structure that holds the signs and the values of two unsigned
integers and a new interface named MyInterface.

Then, you should install sharedRPC.go, which means that you should execute the
following commands before you try to use the sharedRPC package in your programs:

$ mkdir ~/go
$ mkdir ~/go/src
$ mkdir ~/go/src/sharedRPC
$ export GOPATH=~/go
$ vi ~/go/src/sharedRPC/sharedRPC.go
$ go install sharedRPC

Network Programming

[432]

If you are on a macOS machine (darwin_amd64) and you want to make sure that
everything is OK, you can execute the following two commands:

$ cd ~/go/pkg/darwin_amd64/
$ ls -l sharedRPC.a
-rw-r--r-- 1 mtsouk staff 4698 Jul 27 11:49 sharedRPC.a

What you really must keep in mind is that, at the end of the day, what is being exchanged
between an RPC server and an RPC client are function names and their arguments. Only
the functions defined in the interface of sharedRPC.go can be used in an RPC
interaction—the RPC server will need to implement the functions of the MyInterface
interface. The Go code of RPCserver.go will be presented in five parts; the first part of the
RPC server has the expected preamble, which also includes the sharedRPC package we
made:

package main

import (
 "fmt"
 "net"
 "net/rpc"
 "os"
 "sharedRPC"
)

The second part of RPCserver.go is the following:

type MyInterface int

func (t *MyInterface) Add(arguments *sharedRPC.MyInts, reply *int) error {
 s1 := 1
 s2 := 1

 if arguments.S1 == true {
 s1 = -1
 }

 if arguments.S2 == true {
 s2 = -1
 }

 *reply = s1*int(arguments.A1) + s2*int(arguments.A2)
 return nil
}

Network Programming

[433]

Here is the implementation of the first function that will be offered to the RPC clients—you
can have as many functions as you want, provided that they are included in the interface.

The third part of RPCserver.go has the following Go code:

func (t *MyInterface) Subtract(arguments *sharedRPC.MyInts, reply *int)
error {
 s1 := 1
 s2 := 1

 if arguments.S1 == true {
 s1 = -1
 }

 if arguments.S2 == true {
 s2 = -1
 }

 *reply = s1*int(arguments.A1) - s2*int(arguments.A2)
 return nil
}

This is the second function that is offered to the RPC clients by this RPC server.

The fourth part of RPCserver.go contains the following Go code:

func main() {
 PORT := ":1234"

 myInterface := new(MyInterface)
 rpc.Register(myInterface)

 t, err := net.ResolveTCPAddr("tcp", PORT)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 l, err := net.ListenTCP("tcp", t)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

As our RPC server uses TCP, you need to make calls to net.ResolveTCPAddr() and
net.ListenTCP(). However, you will first need to call rpc.Register() in order to be
able to serve the desired interface.

Network Programming

[434]

The last part of the program is the following:

 for {
 c, err := l.Accept()
 if err != nil {
 continue
 }
 rpc.ServeConn(c)
 }
}

Here, you accept a new TCP connection using Accept() as usual, but you serve it using
rpc.ServeConn().

You will have to wait for the next section and the development of the RPC client in order to
test the operation of RPCserver.go.

An RPC client
In this section, we will develop an RPC client named RPCclient.go. The Go code of
RPCclient.go will be presented in five parts; the first part is the following:

package main

import (
 "fmt"
 "net/rpc"
 "os"
 "sharedRPC"
)

Note the use of the sharedRPC package in the RPC client.

The second part of RPCclient.go is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a host:port string!")
 os.Exit(100)
 }

 CONNECT := arguments[1]

Network Programming

[435]

The third part of the program has the following Go code:

 c, err := rpc.Dial("tcp", CONNECT)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 args := sharedRPC.MyInts{17, 18, true, false}
 var reply int

As the MyInts structure is defined in sharedRPC.go, you need to use it as
sharedRPC.MyInts in the RPC client. Moreover, you call rpc.Dial() to connect to the
RPC server instead of net.Dial().

The fourth part of the RPC client contains the following Go code:

 err = c.Call("MyInterface.Add", args, &reply)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 fmt.Printf("Reply (Add): %d\n", reply)

Here, you use the Call() function to execute the desired function in the RPC server. The
result of the MyInterface.Add() function is stored in the reply variable, which was
previously declared.

The last part of RPCclient.go is the following:

 err = c.Call("MyInterface.Subtract", args, &reply)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 fmt.Printf("Reply (Subtract): %d\n", reply)
}

Here, you do the same thing as before for executing the MyInterface.Subtract()
function.

As you can guess, you cannot test the RPC client without having an RCP server and vice
versa—netcat(1) cannot be used for RPC.

Network Programming

[436]

First, you will need to start the RPCserver.go process:

$ go run RPCserver.go

Then, you will execute the RPCclient.go program:

$ go run RPCclient.go localhost:1234
Reply (Add): 1
Reply (Subtrack): -35

If the RPCserver.go process is not running and you try to execute RPCclient.go, you
will get the following error message:

$ go run RPCclient.go localhost:1234
dial tcp [::1]:1234: getsockopt: connection refused
exit status 100

Of course, RPC is not for adding integers or natural numbers, but for doing much more
complex operations that you want to control from a central point.

Exercises
Read the documentation of the net package in order to find out about its list of1.
available functions at https:/ ​/ ​golang. ​org/ ​pkg/ ​net/ ​.
Wireshark is a great tool for analyzing network traffic of any kind—try to use it2.
more.
Change the code of socketClient.go in order to read the input from the user.3.
Change the code of socketServer.go in order to return a random number to4.
the client.
Change the code of TCPserver.go in order to stop when it receives a given Unix5.
signal from the user.
Change the Go code of concTCP.go in order to keep track of the number of6.
clients it has served and print that number before exiting.
Add a quit() function to RPCserver.go that does what its name implies.7.
Develop your own RPC example.8.

https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/

Network Programming

[437]

Summary
In this chapter, we introduced you to TCP/IP, and we talked about developing TCP and
UDP servers and clients in Go and about creating RPC clients and servers.

At this point, there is no next chapter because this is the last chapter of this book!
Congratulations for reading the whole book! You are now ready to start developing useful
Unix command-line utilities in Go; so, go ahead and start programming your own tools
immediately!

Index

A
addCLA.go program 65
advanced file I/O 10
algorithms 91
anonymous functions 36
arrays
 about 43
 shortcomings 45

B
big endian 155
Big O notation 91
binary package
 reference 156
binary tree
 creating 99
bubble sort algorithm 92
buffered channels 324, 325
bufio package 158, 160
byte slices 153, 154

C
C 78
C code
 calling, from Go 76
C++ 79
cat(1) utility
 implementing, in Go 277
cgo tool
 reference 76
channel of channels
 using 330, 331
channels
 about 301
 element type 301
 reading from 303

 writing to 301, 302
collections 382
command-line arguments
 about 119
 sum of command-line arguments, finding 30
 using 29
common Go mistakes
 avoiding 88
concurrency 293
concurrent TCP server 428, 429, 430
critical section 336
crypto/rand package
 reference 58

D
data race 349
data records
 reading 191, 192, 193
 writing 191, 192, 193
data
 existing data, altering 204, 206
 inserting, at end of file 202, 203
 plotting 266, 267, 269, 271, 272, 273
date operations
 working with 238
dd utility
 simplified Go version 197, 198, 199
default gateway 402
defer keyword 39, 41
directed acyclic graph 98
directed graph 98
directories
 about 11
 dealing with 122
 permission bits, printing of 129, 130
 visiting 136
directory structure

[439]

 copy, creating of 146, 147, 148, 149
directory tree
 traversing 135
DNS lookup
 host name, using as input 413
 IP address, using as input 412
 performing 411
DNS servers 402
doubly linked list 95
DTrace utility
 about 83, 85
 reference 86
dWC.go utility
 about 342
 buffered channels, using 342, 345
 shared memory, using 345, 348

E
End of File (EOF) 61
environment 114, 115
environment variables 27
error handling 61
error logging 63, 64
executable file
 size, checking 26
external Go packages
 using 109, 110

F
file copy program 170, 171, 172
file copying operations
 benchmarking 173, 174, 175, 176
file copying
 improving 262, 263, 265
file I/O 10
file I/O operations
 about 160
 readColumn.go 163
file input 153
file locking 194, 195, 197
file output 153
file permissions
 about 214, 215
 modifying 216, 217
files I/O operations

 fmt.Fprintf() 160
files
 about 11
 copying 166
 dealing with 130
 deleting 130
 editing 186
 finding 233, 234
 finding, based on permissions 236, 237
 moving 132, 133
 permission bits, printing of 129, 130
 reading 168, 169
 renaming 132, 133
 searching 229
find(1) utility
 command-line options, adding 139, 140, 142
 developing, in Go 134
 file extension, excluding from file output 144,

145

 filenames, excluding from find output 142, 143
 first version 137, 138, 139
findOG.go utility 218, 220
flag package 119, 120, 121
fmt package
 reference 33
fmt.Fprintf() function
 used, for writing to files 160
forking 11
functions
 about 107
 error variables, returning 61

G
garbage collection 112, 114
Garbage Collection (GC) 19
Go 1.8
 features 13
Go application
 creating, that displays MongoDB data 388
 creating, that displays MySQL data 392
go clean command 112
Go code
 compiling 23, 24, 25
Go data structures
 about 43

[440]

 slices 46, 47
Go documentation
 reference 58
Go function
 about 38
 return values, naming of 36
Go packages
 about 104, 119
 http 104
 io 104
 math 104
 net 104
 os 104
 time 104
 using 108, 109
Go program
 running, ways 24
Go scheduler 318
Go
 about 13
 advantages 19
 C code, calling from 76
 comparing, to programming languages 78
 disadvantages 20
 download link 9
 find(1) utility, developing 134
 hash table, developing in 100, 101, 102
 reference 22
 tools 15
 Unix shell, programming in 288, 289
 version, finding 14
 wc(1) utility, developing in 178
 which(1) utility, developing in 126, 128
godoc utility
 about 17
 reference 15
 using 18
gofmt utility
 reference 15
GOMAXPROCS environment variable 352, 353
goroutines
 about 293
 dynamic number of goroutines, creating 299
 multiple goroutines, creating 295, 296
 waiting for 298, 299

grammar 66
graph 98
groups
 finding, based on user 231

H
h1s.go 304
handy command-line utility 395, 396, 397
hash table
 developing, in Go 100, 101, 102
Homebrew
 reference 24
html/template package 371, 372
http.ServeMux type
 about 366
 used, for creating web servers 367

I
I/O packages
 about 156
 bufio package 158, 160
 io package 157
init() function 107
inodes 122
interfaces
 about 53
 defining 54, 55
Internet Protocol (IP) 403
interprocess communication (IPC) 11, 188
io package 157
io.Copy
 using 166, 167
io.Reader 161
io.Writer 161
ioutil.ReadFile() function 168
ioutil.WriteFile() function 168

J
JavaScript Object Notation (JSON)
 about 375
 Marshal(), implementing 380
 Unmarshal(), implementing 380
JSON data
 parsing 378, 379
 saving 376, 377

[441]

K
key 48
kill(1) command 252

L
Last In First Out (LIFO) 41
linked list
 about 94
 head element 94
 implementing 95
 tail element 94
little endian 155
log files
 about 206
 processing 210, 212, 213, 243
 rotating 242, 259, 260, 261
 times, reformatting in 240
log package 202
logging level 207
logging
 about 207
 facilities 207
 in Go 202

M
m*n scheduling 318
Map data type 48
map
 array, converting into 50
MongoDB Go driver
 reference 385
 using 385, 387
MongoDB
 about 382
 basic MongoDB administration 382, 383, 384
 reference 384
monitor goroutine 333
multiple files
 renaming, regular expressions used 227, 229
Mutex 335

N
net Go standard package 406
net/http package 356

netcat utility 406
network mask 402
network programming 11, 402
nil channels 332, 333
node 98
NS records
 obtaining, for domain 415

O
operating system 9
output
 printing 35

P
packages
 about 104
 creating 105, 106
parallelism 293
pattern matching
 about 66
 advanced example 224, 225, 226
 examples 221
 simple example 221, 222, 223
Perl 79
permission bits
 printing, of directories 129, 130
 printing, of files 129, 130
pipelines
 about 305, 306
 benefits 305
plotIP.go utility 278, 279, 281, 282, 283
pointer variables
 using, in functions 42
private variables 107
process 250
process control 11
process management 250, 251
program 250
pwd(1) command
 implementing 124, 125
Python 79

Q
quicksort algorithm 92

[442]

R
race conditions
 detecting 349, 350
race detector 349
random numbers
 creating 56, 58
random passwords
 creating 245, 246
readColumn.go program
 third column, finding of line 163, 165
reflection 74, 75
regular expressions
 about 66, 67
 find command 73
 number of occurrences, finding 71, 72
 replace command 73
 used, for renaming multiple files 227, 228, 229
 using 145
 values, printing from column of line 68, 69
Remote Procedure Call (RPC) 287, 430
return values
 naming, of Go function 36
RPC client
 about 435
 developing 434
RPC server 431, 432, 433
Rust 79

S
select keyword 318, 319, 320, 321
semaphores 324
server processes 11
shared memory 333, 334, 335
signal channels 321, 322, 323
signal handler, Go 253
signal processing 11
signals
 about 250
 three signals, handling 255
simple TCP client
 developing 419, 420
simple TCP server
 developing 416, 417, 418
simple UDP client

 developing 426, 427
simple UDP server
 developing 424, 425
slices 45, 47
soft links 123
software
 analyzing 80
sort.Slice() function 92, 94
sorting algorithms
 bubble sort 92
 quicksort algorithm 92
sparse files 188, 191
standard Go packages
 reference 104
 using 104
strace(1) command-line utility
 using 80, 81, 82, 83
structures 51
summaries
 creating 69, 70
Swift 79
symbolic links 123, 124
sync Go packages
 about 294, 318
 simple example 294, 295
sync.Mutex
 using 335, 336, 337, 338
sync.RWMutex
 using 339, 340, 341
syslog Go package 208, 209
system configuration 11
system files 11, 202
System Integrity Protection
 disabling, on macOS 86
 reference 86
systems programming
 about 10
 learning 12

T
TCP client
 alternate functions, using for 423
TCP handshake 403
TCP packet 403
TCP server

 functions, using for 421, 422, 423
TCP/IP 402
templates 370
text files
 copying 166
 reading, character by character 184, 185
threads 11
time operations
 working with 238
timeouts
 about 326, 327
 implementing 328, 329
times
 reformatting, in log file 240
tools, Go
 godoc 16, 17
 gofmt 15
Transmission Control Protocol (TCP) 402
trees 98
tshark 404

U
UNIX operating system 9
Unix pipes, in Go
 about 273
 data, reading from standard input 274
 data, sending to standard output 276
UNIX process
 states 20, 21
Unix shell
 programming, in Go 288, 289
Unix signals 251
Unix signals, in Go 252
Unix socket client 409, 411
Unix socket server 407, 408
Unix sockets 407
Unix sockets, in Go 286, 287

unreachable code 86, 87
unsafe code 77
User Datagram Protocol (UDP) 404
user ID
 finding, of user 229, 230
user input
 about 33
 obtaining 33
user output 33

V
verbs
 reference 35

W
wc(1) utility
 developing, in Go 178
wc.go program
 about 307, 309
 benchmark, performing 314, 315
 code 178, 180, 181, 182
 totals, calculating 310, 311
 versus wc(1) utility 183, 184
 words, counting 178
web application 356
web clients
 developing 356, 360, 361, 362
 single URL, fetching 356, 357
web servers
 creating, http.ServeMux type used 366, 367
 implementing 364
which(1) utility
 developing, in Go 126, 128
Wireshark
 about 404
 reference 405

	Cover
	Title Page
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with Go and Unix Systems Programming
	The structure of the book
	What is systems programming?
	Learning systems programming

	About Go
	Getting ready for Go

	Two useful Go tools
	Advantages and disadvantages of Go

	The various states of a Unix process
	Exercises
	Summary

	Chapter 2: Writing Programs in Go
	Compiling Go code
	Checking the size of the executable file

	Go environment variables
	Using command-line arguments
	Finding the sum of the command-line arguments

	User input and output
	Getting user input
	Printing output

	Go functions
	Naming the return values of a Go function
	Anonymous functions
	Illustrating Go functions
	The defer keyword
	Using pointer variables in functions

	Go data structures
	Arrays
	Slices
	Maps
	Converting an array into a map

	Structures

	Interfaces
	Creating random numbers
	Exercises
	Summary

	Chapter 3: Advanced Go Features
	Error handling in Go
	Functions can return error variables
	About error logging
	The addCLA.go program revisited

	Pattern matching and regular expressions
	Printing all the values from a given column of a line
	Creating summaries
	Finding the number of occurrences
	Find and replace

	Reflection
	Calling C code from Go
	Unsafe code

	Comparing Go to other programming languages
	Analysing software
	Using the strace(1) command-line utility
	The DTrace utility
	Disabling System Integrity Protection on macOS

	Unreachable code
	Avoiding common Go mistakes
	Exercises
	Summary

	Chapter 4: Go Packages, Algorithms, and Data Structures
	About algorithms
	The Big O notation

	Sorting algorithms
	The sort.Slice() function

	Linked lists in Go
	Trees in Go
	Developing a hash table in Go
	About Go packages
	Using standard Go packages
	Creating your own packages
	Private variables and functions
	The init() function

	Using your own Go packages
	Using external Go packages
	The go clean command

	Garbage collection
	Your environment
	Go gets updated frequently!
	Exercises
	Summary

	Chapter 5: Files and Directories
	Useful Go packages
	Command-line arguments revisited!
	The flag package

	Dealing with directories
	About symbolic links
	Implementing the pwd(1) command
	Developing the which(1) utility in Go
	Printing the permission bits of a file or directory

	Dealing with files in Go
	Deleting a file
	Renaming and moving files

	Developing find(1) in Go
	Traversing a directory tree
	Visiting directories only!

	The first version of find(1)
	Adding some command-line options
	Excluding filenames from the find output
	Excluding a file extension from the find output

	Using regular expressions
	Creating a copy of a directory structure

	Exercises
	Summary

	Chapter 6: File Input and Output
	About file input and output
	Byte slices
	About binary files

	Useful I/O packages in Go
	The io package
	The bufio package

	File I/O operations
	Writing to files using fmt.Fprintf()
	About io.Writer and io.Reader

	Finding out the third column of a line

	Copying files in Go
	There is more than one way to copy a file!
	Copying text files
	Using io.Copy
	Reading a file all at once!
	An even better file copy program
	Benchmarking file copying operations

	Developing wc(1) in Go
	Counting words
	The wc.go code!
	Comparing the performance of wc.go and wc(1)

	Reading a text file character by character
	Doing some file editing!

	Interprocess communication
	Sparse files in Go
	Reading and writing data records
	File locking in Go
	A simplified Go version of the dd utility
	Exercises
	Summary

	Chapter 7: Working with System Files
	Which files are considered system files?
	Logging in Go
	Putting data at the end of a file
	Altering existing data

	About log files
	About logging
	Logging facilities
	Logging levels
	The syslog Go package
	Processing log files
	File permissions revisited
	Changing file permissions
	Finding other kinds of information about files

	More pattern matching examples
	A simple pattern matching example
	An advanced example of pattern matching
	Renaming multiple files using regular expressions

	Searching files revisited
	Finding the user ID of a user
	Finding all the groups a user belongs to
	Finding files that belong or do not belong to a given user
	Finding files based on their permissions

	Date and time operations
	Playing with dates and times
	Reformatting the times in a log file

	Rotating log files
	Creating good random passwords
	Another Go update
	Exercises
	Summary

	Chapter 8: Processes and Signals
	About Unix processes and signals
	Process management
	About Unix signals

	Unix signals in Go
	The kill(1) command
	A simple signal handler in Go
	Handling three different signals!
	Catching every signal that can be handled
	Rotating log files revisited!

	Improving file copying
	Plotting data
	Unix pipes in Go
	Reading from standard input
	Sending data to standard output
	Implementing cat(1) in Go
	The plotIP.go utility revisited

	Unix sockets in Go
	RPC in Go
	Programming a Unix shell in Go
	Yet another minor Go update
	Exercises
	Summary

	Chapter 9: Goroutines — Basic Features
	About goroutines
	Concurrency and parallelism

	The sync Go packages
	A simple example
	Creating multiple goroutines

	Waiting for goroutines to finish their jobs
	Creating a dynamic number of goroutines

	About channels
	Writing to a channel
	Reading from a channel
	Explaining h1s.go

	Pipelines
	A better version of wc.go
	Calculating totals
	Doing some benchmarking

	Exercises
	Summary

	Chapter 10: Goroutines — Advanced Features
	The Go scheduler
	The sync Go package
	The select keyword
	Signal channels
	Buffered channels
	About timeouts
	An alternative way to implement timeouts

	Channels of channels
	Nil channels
	Shared memory
	Using sync.Mutex
	Using sync.RWMutex

	The dWC.go utility revisited
	Using a buffered channel
	Using shared memory
	More benchmarking

	Detecting race conditions
	About GOMAXPROCS
	Exercises
	Summary

	Chapter 11: Writing Web Applications in Go
	What is a web application?
	About the net/http Go package
	Developing web clients
	Fetching a single URL
	Setting a timeout

	Developing better web clients

	A small web server
	The http.ServeMux type
	Using http.ServeMux

	The html/template package
	About JSON
	Saving JSON data
	Parsing JSON data
	Using Marshal() and Unmarshal()

	Using MongoDB
	Basic MongoDB administration
	Using the MongoDB Go driver
	Creating a Go application that displays MongoDB data
	Creating an application that displays MySQL data

	A handy command-line utility
	Exercises
	Summary

	Chapter 12: Network Programming
	About network programming
	About TCP/IP
	About TCP
	The TCP handshake!

	About UDP and IP
	About Wireshark and tshark
	About the netcat utility

	The net Go standard package
	Unix sockets revisited
	A Unix socket server
	A Unix socket client

	Performing DNS lookups
	Using an IP address as input
	Using a host name as input
	Getting NS records for a domain

	Developing a simple TCP server
	Developing a simple TCP client
	Using other functions for the TCP server
	Using alternative functions for the TCP client

	Developing a simple UDP server
	Developing a simple UDP client
	A concurrent TCP server
	Remote procedure call (RPC)
	An RPC server
	An RPC client

	Exercises
	Summary

	Index

