

Go Web Development Cookbook

Build full-stack web applications with Go

Arpit Aggarwal

BIRMINGHAM - MUMBAI

Go Web Development
Cookbook
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However,
the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in
this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Ashwin Nair
Acquisition Editor: Denim Pinto
Content Development Editor: Nikhil Borkar
Technical Editor: Jash Bavishi
Copy Editor: Safis Editing
Project Coordinator: Ulhas Kambali
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Tania Dutta
Production Coordinator: Aparna Bhagat

First published: April 2018

Production reference: 1200418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78728-674-0

www.packtpub.com

http://www.packtpub.com

To my mother, Anita Aggarwal, and to the memory of my father, Anil Aggarwal,
for their sacrifices and for exemplifying the power of determination

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

https://mapt.io/

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Arpit Aggarwal is a programmer with over 7 years of industry experience in software
analysis, design, effort estimation, development, troubleshooting, testing, and
supporting web applications. He is among the top contributors of StackOverflow with
more than 9,000 reputation and more than 100 badges in multiple areas such as Java,
Scala, Go, Spring, Spring-MVC, GiT, Angular, Unit Testing, Web Services, and
Docker, and has written many technical articles for Java Code Geeks, System Code
Geeks, Web Code Geeks, and DZone.

About the reviewer
Anshul Joshi is a data science professional with experience primarily in data
munging, recommendation systems, predictive modeling, and distributed computing.
He has worked on Spark and Hadoop ecosystems. He is a deep learning and AI
enthusiast and holds degrees in computer science and data analytics. Most of the time,
he can be caught exploring GitHub or trying anything new that he can get his hands
on.

Packt is searching for authors
like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Title Page

Copyright and Credits

Go Web Development Cookbook

Dedication

Packt Upsell

Why subscribe?

PacktPub.com

Contributors

About the author

About the reviewer

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Download the color images

Conventions used

Sections

Getting ready

How to do it…

How it works…

There's more…

See also

Get in touch

Reviews

1. Creating Your First Server in Go

Introduction

Creating a simple HTTP server

How to do it…

How it works…

Implementing basic authentication on a simple HTTP server

Getting ready

How to do it…

How it works…

Optimizing HTTP server responses with GZIP compression

How to do it…

How it works…

Creating a simple TCP server

How to do it…

How it works…

Reading data from a TCP connection

Getting ready…

How to do it…

How it works…

Writing data to a TCP connection

Getting ready…

How to do it…

How it works…

Implementing HTTP request routing

How to do it…

How it works…

Implementing HTTP request routing using Gorilla Mux

How to do it…

How it works…

Logging HTTP requests

Getting Ready…

How to do it…

How it works…

2. Working with Templates, Static Files, and HTML Forms

Introduction

Creating your first template

How to do it…

How it works…

Serving static files over HTTP

Getting ready…

How to do it…

How it works…

Serving static files over HTTP using Gorilla Mux

Getting ready…

How to do it…

How it works…

Creating your first HTML form

How to do it…

How it works…

Reading your first HTML form

Getting ready…

How to do it…

How it works…

Validating your first HTML form

Getting ready…

How to do it…

How it works…

Uploading your first file

How to do it…

How it works…

3. Working with Sessions, Error Handling, and Caching in Go

Introduction

Creating your first HTTP session

How to do it…

How it works…

Managing your HTTP session using Redis

Getting ready…

How to do it…

How it works…

Creating your first HTTP cookie

How to do it…

How it works…

Implementing caching in Go

How to do it…

How it works…

Implementing HTTP error handling in Go

How to do it…

How it works…

Implementing login and logout in web application

Getting ready…

How to do it…

How it works…

4. Writing and Consuming RESTful Web Services in Go

Introduction

Creating your first HTTP GET method

How to do it…

How it works…

Creating your first HTTP POST method

How to do it…

How it works…

Creating your first HTTP PUT method

How to do it…

How it works…

Creating your first HTTP DELETE method

How to do it…

How it works…

Versioning your REST API

How to do it…

How it works…

Creating your first REST client

Getting ready…

How to do it…

How it works…

Creating your first AngularJS Client

Getting ready…

How to do it…

How it works…

Creating your first ReactJS client

Getting ready…

How to do it…

How it works…

Creating your first VueJS client

Getting ready…

How to do it…

How it works…

5. Working with SQL and NoSQL Databases

Introduction

Integrating MySQL and Go

Getting ready…

How to do it…

How it works…

Creating your first record in MySQL

Getting ready…

How to do it…

How it works…

Reading records from MySQL

How to do it…

How it works…

Updating your first record in MySQL

How to do it…

How it works…

Deleting your first record from MySQL

How to do it…

How it works…

Integrating MongoDB and Go

Getting ready…

How to do it…

How it works…

Creating your first document in MongoDB

How to do it…

How it works…

Reading documents from MongoDB

How to do it…

How it works…

Updating your first document in MongoDB

How to do it…

How it works…

Deleting your first document from MongoDB

How to do it…

How it works…

6. Writing Microservices in Go Using Micro – a Microservice Toolkit

Introduction

Creating your first protocol buffer

Getting ready…

How to do it…

How it works…

Spinning up a microservice discovery client

Getting ready…

How to do it…

How it works…

Creating your first microservice

Getting ready…

How to do it…

How it works…

Creating your second microservice

How to do it…

How it works…

Creating your Micro API

Getting ready…

How to do it…

How it works…

Interacting with microservices using a command-line interface and web UI

How to do it…

How it works…

7. Working with WebSocket in Go

Introduction

Creating your first WebSocket server

How to do it…

How it works…

Creating your first WebSocket client

How to do it…

How it works…

Debugging your first local WebSocket server

Getting ready…

How to do it…

How it works…

Debugging your first remote WebSocket server

How to do it…

How it works…

Unit testing your first WebSocket server

How to do it…

How it works…

8. Working with the Go Web Application Framework – Beego

Introduction

Creating your first project using Beego

How to do it…

How it works…

Creating your first controller and router

How to do it…

How it works…

Creating your first view

How to do it…

How it works…

Creating your first session variable

Getting ready…

How to do it…

How it works…

Creating your first filter

How to do it…

How it works…

Handling HTTP errors in Beego

How to do it…

How it works…

Implementing caching in Beego

How to do it…

How it works…

Monitoring the Beego application

How to do it…

How it works…

Deploying the Beego application on a local machine

How to do it…

How it works…

Deploying the Beego application with Nginx

Getting ready…

How to do it…

How it works…

9. Working with Go and Docker

Introduction

Building your first Go Docker image

Getting ready…

How to do it…

How it works…

Running your first Go Docker container

How to do it…

How it works…

Pushing your Docker image to the Docker Registry

How to do it…

How it works…

Creating your first user-defined bridge network

How to do it…

How it works…

Running a MySQL Docker image on a user-defined bridge network

How to do it…

How it works…

Building a Go web application Docker image

How to do it…

How it works…

Running a web application Docker container linked with a MySQL Docker container on a use

r-defined bridge network

How to do it…

How it works…

10. Securing a Go Web Application

Introduction

Creating a private key and SSL certificate using OpenSSL

Getting ready…

How to do it…

How it works…

Moving an HTTP server to HTTPS

How to do it…

How it works…

Defining REST APIs and routes

How to do it…

How it works…

Creating a JSON web token

How to do it…

How it works…

Securing a RESTful service using a JSON web token

How to do it…

How it works…

Preventing cross-site request forgery in Go web applications

How to do it…

How it works…

11. Deploying a Go Web App and Docker Containers to AWS

Introduction

Creating your first EC2 instance to run a Go web application

Getting ready…

How to do it…

How it works…

Interacting with your first EC2 instance

How to do it…

How it works…

Creating, copying, and running a Go web application on your first EC2 instance

How to do it…

How it works…

Setting up an EC2 instance to run a Docker container

How to do it…

How it works…

Pulling a Docker image on an AWS EC2 instance from Docker Hub

How to do it…

How it works…

Running your Go Docker container on an EC2 instance

How to do it…

How it works…

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface
Go is an open source programming language that is designed to scale and supports
concurrency at the language level, which allows developers to write large concurrent
web applications with ease.

From creating a web application to deploying it on AWS, this will be a one-stop guide
to learn web development in Go. Whether you are new to programming or a
professional developer, the book will get you up to speed on web development in Go.

The book will focus on writing modular code in Go and contains in-depth informative
recipes building the base one step at a time. You will be taken through concepts
and recipes such as creating a server, working with HTML Forms, session and error
handling, SQL and NoSQL databases, Beego, creating and securing RESTful web
services, creating, unit testing and debugging WebSockets, and creating Go Docker
containers and deploying them on AWS.

By the end of the book, you will be able to apply your newly-learned skills in Go to
create and explore web applications in any domain.

Who this book is for
This book is intended for developers who want to use Go to write large concurrent web
applications. Readers with some familiarity with Go will find this book the most
beneficial.

What this book covers
Chapter 1, Creating Your First Server in Go, explains how to write and interact with
HTTP and TCP servers, optimize server responses with GZIP compression, and
implement routing and logging in a Go web application.

Chapter 2, Working with Templates, Static Files, and HTML Forms, covers how to create
HTML templates; serve static resources from the filesystem; create, read, and validate
HTML Forms; and implement a simple user authentication for a Go web application.

Chapter 3, Working with Sessions, Error Handling, and Caching in Go, explores
implementing HTTP sessions, HTTP cookies, error handling, and caching and
managing HTTP sessions using Redis, which is required for a web application
deployed across multiple data centers.

Chapter 4, Writing and Consuming RESTful Web Services in Go, explains how to write
RESTful web services, version them, and create AngularJS with TypeScript 2,
ReactJS, and VueJS clients to consume them.

Chapter 5, Working with SQL and NoSQL Databases, goes through implementing CRUD
operations with MySQL and MongoDB databases in a Go web application.

Chapter 6, Writing Microservices in Go Using Micro – a Microservice Toolkit, focuses
on writing and working with the Protocol Buffers, using a microservice discovery
client such as Consul, writing microservices using Go Micro, and interacting with
them through command line and web dashboard, along with implementing the API
gateway pattern to access the microservices over the HTTP protocol.

Chapter 7, Working with WebSocket in Go, looks at writing a WebSocket server and its
client as well as writing unit tests and debugging them using the GoLand IDE.

Chapter 8, Working with the Go Web Application Framework - Beego, familiarizes
setting up the Beego project architecture, writing controllers, views, and filters,
implementing caching backed with Redis, and monitoring and deploying the Beego
application with Nginx.

Chapter 9, Working with Go and Docker, presents writing Docker images, creating
Docker containers, user-defined Docker network, working with Docker Registry, and
running a Go web application Docker container linked with another Docker container.

Chapter 10, Securing a Go Web Application, demonstrates creating server certificates and

private keys using OpenSSL, moving an HTTP server to HTTPS, securing RESTful
APIs with JSON Web Token (JWT), and preventing cross-site request forgery in Go
web applications.

Chapter 11, Deploying a Go Web App and Docker Containers to AWS, discusses setting
up an EC2 instance, interacting, and running a Go web application and a Go Docker
container on it.

To get the most out of this book
Readers should possess basic knowledge of Go and have Go installed on the machine
to execute the instructions and the code.

Download the example code files
You can download the example code files for this book from your account at www.packtpu
b.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and
register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/
Go-Web-Development-Cookbook. We also have other code bundles from our rich catalog of
books and videos available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Go-Web-Development-Cookbook
https://github.com/PacktPublishing/

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: http://www.packtpub.com/sites/default/files/downloads/GoWebD
evelopmentCookbook_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/GoWebDevelopmentCookbook_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "GZIP compression means sending the response to the client from the server
in a .gzip format rather than sending a plain response."

A block of code is set as follows:

for

{

 conn, err := listener.Accept()

 if err != nil

 {

 log.Fatal("Error accepting: ", err.Error())

 }

 log.Println(conn)

}

Any command-line input or output is written as follows:

$ go get github.com/gorilla/handlers

$ go get github.com/gorilla/mux

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "AngularJS client page has an HTML form
with Id, FirstName, and LastName fields as shown in the following screenshot."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How
to do it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any
software or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make you
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject
of your message. If you have questions about any aspect of this book, please email us
at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book, why not leave a review
on the site that you purchased it from? Potential readers can then see and use your
unbiased opinion to make purchase decisions, we at Packt can understand what you
think about our products, and our authors can see your feedback on their book. Thank
you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

Creating Your First Server in
Go
In this chapter, we will cover the following recipes:

Creating a simple HTTP server
Implementing basic authentication on a simple HTTP server
Optimizing HTTP server responses with GZIP compression
Creating a simple TCP server
Reading data from a TCP connection
Writing data to a TCP connection
Implementing HTTP request routing
Implementing HTTP request routing using Gorilla Mux
Logging HTTP requests

Introduction
Go was created to solve the problems that came with the new architecture of multi-
core processors, creating high-performance networks that serve millions of requests
and compute-intensive jobs. The idea behind Go was to increase productivity by
enabling rapid prototyping, decreasing compile and build time, and enabling better
dependency management.

Unlike most other programming languages, Go provides the net/http package, which is
sufficient when creating HTTP clients and servers. This chapter will cover the creation
of HTTP and TCP servers in Go.

We will start with some simple recipes to create an HTTP and TCP server and will
gradually move to recipes that are more complex, where we implement basic
authentication, optimize server responses, define multiple routes, and log HTTP
requests. We will also cover concepts and keywords such as Go Handlers, Goroutines,
and Gorilla – a web toolkit for Go.

Creating a simple HTTP server
As a programmer, if you have to create a simple HTTP server then you can easily
write it using Go's net/http package, which we will be covering in this recipe.

How to do it…
In this recipe, we are going to create a simple HTTP server that will render Hello
World! when we browse http://localhost:8080 or execute curl http://localhost:8080 from
the command line. Perform the following steps:

1. Create http-server.go and copy the following content:

package main

import

(

 "fmt"

 "log"

 "net/http"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

func helloWorld(w http.ResponseWriter, r *http.Request)

{

 fmt.Fprintf(w, "Hello World!")

}

func main()

{

 http.HandleFunc("/", helloWorld)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

2. Run the program with the following command:

$ go run http-server.go

How it works…
Once we run the program, an HTTP server will start locally listening on port 8080.
Opening http://localhost:8080 in a browser will display Hello World! from the server, as
shown in the following screenshot:

Hello World!

Let’s understand what each line in the program means:

package main: This defines the package name of the program.
import ("fmt" "log" "net/http"): This is a preprocessor command that tells the Go
compiler to include all files from fmt, log, and the net/http package.

const (CONN_HOST = "localhost" CONN_PORT = "8080"): We declare constants in the Go
program using the const keyword. Here we declared two constants—one is
CONN_HOST with localhost as a value and another one is CONN_PORT with 8080 as a value.
func helloWorld(w http.ResponseWriter, r *http.Request) { fmt.Fprintf(w, "Hello World!") }:
This is a Go function that takes ResponseWriter and Request as an input and writes
Hello World! on an HTTP response stream.

Next, we declared the main() method from where the program execution begins, as this
method does a lot of things. Let’s understand it line by line:

http.HandleFunc("/", helloWorld): Here, we are registering the helloWorld function with
the / URL pattern using HandleFunc of the net/http package, which means helloWorld

gets executed, passing (http.ResponseWriter, *http.Request) as a parameter to it
whenever we access the HTTP URL with pattern /.
err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil): Here, we are calling
http.ListenAndServe to serve HTTP requests that handle each incoming connection
in a separate Goroutine. ListenAndServe accepts two parameters—server address and
handler. Here, we are passing the server address as localhost:8080 and handler as
nil, which means we are asking the server to use DefaultServeMux as a handler.
if err != nil { log.Fatal("error starting http server : ", err) return}: Here, we check
whether there is a problem starting the server. If there is, then log the error and
exit with a status code of 1.

Implementing basic
authentication on a simple
HTTP server
Once you have created the HTTP server then you probably want to restrict resources
from being accessed by a specific user, such as the administrator of an application. If
so, then you can implement basic authentication on an HTTP server, which we will be
covering in this recipe.

Getting ready
As we have already created an HTTP server in our previous recipe, we will just extend
it to incorporate basic authentication.

How to do it…
In this recipe, we are going to update the HTTP server we created in the previous
recipe by adding a BasicAuth function and modifying the HandleFunc to call it. Perform the
following steps:

1. Create http-server-basic-authentication.go and copy the following content:

package main

import

(

 "crypto/subtle"

 "fmt"

 "log"

 "net/http"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 ADMIN_USER = "admin"

 ADMIN_PASSWORD = "admin"

)

func helloWorld(w http.ResponseWriter, r *http.Request)

{

 fmt.Fprintf(w, "Hello World!")

}

func BasicAuth(handler http.HandlerFunc, realm string) http.HandlerFunc {

 return func(w http.ResponseWriter, r *http.Request)

 {

 user, pass, ok := r.BasicAuth()

 if !ok || subtle.ConstantTimeCompare([]byte(user),

 []byte(ADMIN_USER)) != 1||subtle.ConstantTimeCompare([]byte(pass),

 []byte(ADMIN_PASSWORD)) != 1

 {

 w.Header().Set("WWW-Authenticate", `Basic realm="`+realm+`"`)

 w.WriteHeader(401)

 w.Write([]byte("You are Unauthorized to access the

 application.\n"))

 return

 }

 handler(w, r)

 }

}

func main()

{

 http.HandleFunc("/", BasicAuth(helloWorld, "Please enter your

 username and password"))

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

2. Run the program with the following command:

$ go run http-server-basic-authentication.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Once the server starts, accessing http://localhost:8080 in a browser will prompt you to
enter a username and password. Providing it as admin, admin respectively will render
Hello World! on the screen, and for every other combination of username and
password it will render You are Unauthorized to access the application.

To access the server from the command line we have to provide the --user flag as part
of the curl command, as follows:

$ curl --user admin:admin http://localhost:8080/

Hello World!

We can also access the server using a base64 encoded token of username:password, which
we can get from any website, such as https://www.base64encode.org/, and pass it as an
authorization header in the curl command, as follows:

$ curl -i -H 'Authorization:Basic YWRtaW46YWRtaW4=' http://localhost:8080/

HTTP/1.1 200 OK

Date: Sat, 12 Aug 2017 12:02:51 GMT

Content-Length: 12

Content-Type: text/plain; charset=utf-8

Hello World!

Let’s understand the change we introduced as part of this recipe:

The import function adds an additional package, crypto/subtle, which we will use to
compare the username and password from the user's entered credentials.
Using the const function we defined two additional constants, ADMIN_USER and
ADMIN_PASSWORD, which we will use while authenticating the user.
Next, we declared a BasicAuth() method, which accepts two input parameters—a
handler, which executes after the user is successfully authenticated, and realm,
which returns HandlerFunc, as follows:

func BasicAuth(handler http.HandlerFunc, realm string) http.HandlerFunc

{

 return func(w http.ResponseWriter, r *http.Request)

 {

 user, pass, ok := r.BasicAuth()

 if !ok || subtle.ConstantTimeCompare([]byte(user),

 []byte(ADMIN_USER)) != 1||subtle.ConstantTimeCompare

 ([]byte(pass),

 []byte(ADMIN_PASSWORD)) != 1

 {

 w.Header().Set("WWW-Authenticate", `Basic realm="`+realm+`"`)

 w.WriteHeader(401)

 w.Write([]byte("Unauthorized.\n"))

 return

 }

 handler(w, r)

 }

}

In the preceding handler, we first get the username and password provided in
the request's authorization header using r.BasicAuth() then compare it to the
constants declared in the program. If credentials match, then it returns the
handler, otherwise it sets WWW-Authenticate along with a status code of 401 and
writes You are Unauthorized to access the application on an HTTP response stream.

Finally, we introduced a change in the main() method to call BasicAuth from
HandleFunc, as follows:

http.HandleFunc("/", BasicAuth(helloWorld, "Please enter your username and password"))

We just pass a BasicAuth handler instead of nil or DefaultServeMux for handling all
incoming requests with the URL pattern as /.

Optimizing HTTP server
responses with GZIP
compression
GZIP compression means sending the response to the client from the server in a .gzip
format rather than sending a plain response and it’s always a good practice to send
compressed responses if a client/browser supports it.

By sending a compressed response we save network bandwidth and download time
eventually rendering the page faster. What happens in GZIP compression is the
browser sends a request header telling the server it accepts compressed content (.gzip
and .deflate) and if the server has the capability to send the response in compressed
form then sends it. If the server supports compression then it sets Content-Encoding: gzip
as a response header, otherwise it sends a plain response back to the client, which
clearly means asking for a compressed response is only a request by the browser and
not a demand. We will be using Gorilla’s handlers package to implement it in this
recipe.

How to do it…
In this recipe, we are going to create an HTTP server with a single handler, which will
write Hello World! on an HTTP response stream and use a Gorilla CompressHandler to
send all the responses back to the client in the .gzip format. Perform the following
steps:

1. To use Gorilla handlers, first we need to install the package using the go get
command or copy it manually to $GOPATH/src or $GOPATH, as follows:

$ go get github.com/gorilla/handlers

2. Create http-server-mux.go and copy the following content:

package main

import

(

 "io"

 "net/http"

 "github.com/gorilla/handlers"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

func helloWorld(w http.ResponseWriter, r *http.Request)

{

 io.WriteString(w, "Hello World!")

}

func main()

{

 mux := http.NewServeMux()

 mux.HandleFunc("/", helloWorld)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT,

 handlers.CompressHandler(mux))

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-server-mux.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Opening http://localhost:8080 in a browser will display Hello World! from the server
with the Content-Encoding response header value gzip, as shown in the following
screenshot:

Hello World!

Let’s understand what each line in the program means:

package main: This defines the package name of the program.
import ("io" "net/http" "github.com/gorilla/handlers"): This is a preprocessor
command that tells the Go compiler to include all files from io, net/http, and the
github.com/gorilla/handlers package.
const (CONN_HOST = "localhost" CONN_PORT = "8080"): We declare constants in a Go
program using the const keyword. Here, we declared two constants—one is
CONN_HOST with a value of localhost and another is CONN_PORT with a value of 8080.

func helloWorld(w http.ResponseWriter, r *http.Request) { io.WriteString(w, "Hello

World!")}: This is a Go function that takes ResponseWriter and Request as input
parameters and writes Hello World! on the HTTP response stream.

Next, we declared the main() method from where the program execution begins. As this
method does a lot of things, let’s understand it line by line:

mux := http.NewServeMux(): This allocates and returns a new HTTP request
multiplexer (ServeMux), which matches the URL of each incoming request against a
list of registered patterns and calls the handler for the pattern that most closely
matches the URL. One of the benefits of using it is that the program has complete
control over the handlers used with the server, although any handlers registered
with the DefaultServeMux are ignored.
http.HandleFunc("/", helloWorld): Here, we are registering the helloWorld function with
the / URL pattern using HandleFunc of the net/http package, which means helloWorld
gets executed, passing (http.ResponseWriter, *http.Request) as a parameter to it
whenever we access the HTTP URL with the / pattern.
err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, handlers.CompressHandler(mux)): Here,
we are calling http.ListenAndServe to serve HTTP requests that handle each
incoming connection in a separate Goroutine for us. ListenAndServe accepts two
parameters—server address and handler. Here, we are passing the server address
as localhost:8080 and handler as CompressHandler, which wraps our server with a .gzip
handler to compress all responses in a .gzip format.
if err != nil { log.Fatal("error starting http server: ", err) return}: Here, we check
whether there is any problem in starting the server. If there is, then log the error
and exit with a status code of 1.

Creating a simple TCP server
Whenever you have to build high performance oriented systems then writing a TCP
server is always the best choice over an HTTP server, as TCP sockets are less hefty
than HTTP. Go supports and provides a convenient way of writing TCP servers using
a net package, which we will be covering in this recipe.

How to do it…
In this recipe, we are going to create a simple TCP server that will accept a connection
on localhost:8080. Perform the following steps:

1. Create tcp-server.go and copy the following content:

package main

import

(

 "log"

 "net"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 CONN_TYPE = "tcp"

)

func main()

{

 listener, err := net.Listen(CONN_TYPE, CONN_HOST+":"+CONN_PORT)

 if err != nil

 {

 log.Fatal("Error starting tcp server : ", err)

 }

 defer listener.Close()

 log.Println("Listening on " + CONN_HOST + ":" + CONN_PORT)

 for

 {

 conn, err := listener.Accept()

 if err != nil

 {

 log.Fatal("Error accepting: ", err.Error())

 }

 log.Println(conn)

 }

}

2. Run the program with the following command:

$ go run tcp-server.go

How it works…
Once we run the program, the TCP server will start locally listening on port 8080.

Let’s understand what each line in the program means:

package main: This defines the package name of the program.
import ("log" "net"): This is a preprocessor command that tells the Go compiler to
include all files from the log and net package.
const (CONN_HOST = "localhost" CONN_PORT = "8080" CONN_TYPE = "tcp"): We declare
constants in a Go program using the const keyword. Here, we declare three
constants—one is CONN_HOST with a value of localhost, another one is CONN_PORT with a
value as 8080, and lastly CONN_TYPE with a value as tcp.

Next, we declared the main() method from where the program execution begins. As this
method does a lot of things, let’s understand it line by line:

listener, err := net.Listen(CONN_TYPE, CONN_HOST+":"+CONN_PORT): This creates a TCP
server running on localhost at port 8080.
if err != nil { log.Fatal("Error starting tcp server: ", err) }: Here, we check if there
is any problem in starting the TCP server. If there is, then log the error and exit
with a status code of 1.
defer listener.Close(): This defer statement closes a TCP socket listener when the
application closes.

Next, we accept the incoming request to the TCP server in a constant loop, and if there
are any errors in accepting the request, then we log it and exit; otherwise, we simply
print the connection object on the server console, as follows:

for

{

 conn, err := listener.Accept()

 if err != nil

 {

 log.Fatal("Error accepting: ", err.Error())

 }

 log.Println(conn)

}

Reading data from a TCP
connection
One of the most common scenarios in any application is the client interacting with the
server. TCP is one of the most widely used protocols for this interaction. Go provides a
convenient way to read incoming connection data through bufio implementing buffered
Input/Output, which we will be covering in this recipe.

Getting ready…
As we have already created a TCP server in our previous recipe, we will update it to
read data from incoming connections.

How to do it…
In this recipe, we are going to update the main() method to call a handleRequest method
passing the connection object to read and print data on the server console. Perform the
following steps:

1. Create tcp-server-read-data.go and copy the following content:

package main

import

(

 "bufio"

 "fmt"

 "log"

 "net"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 CONN_TYPE = "tcp"

)

func main()

{

 listener, err := net.Listen(CONN_TYPE, CONN_HOST+":"+CONN_PORT)

 if err != nil

 {

 log.Fatal("Error starting tcp server : ", err)

 }

 defer listener.Close()

 log.Println("Listening on " + CONN_HOST + ":" + CONN_PORT)

 for

 {

 conn, err := listener.Accept()

 if err != nil

 {

 log.Fatal("Error accepting: ", err.Error())

 }

 go handleRequest(conn)

 }

}

func handleRequest(conn net.Conn)

{

 message, err := bufio.NewReader(conn).ReadString('\n')

 if err != nil

 {

 fmt.Println("Error reading:", err.Error())

 }

 fmt.Print("Message Received from the client: ", string(message))

 conn.Close()

}

2. Run the program with the following command:

$ go run tcp-server-read-data.go

How it works…
Once we run the program, the TCP server will start locally listening on port 8080.
Executing an echo command from the command line as follows will send a message to
the TCP server:

$ echo -n "Hello to TCP server\n" | nc localhost 8080

This apparently logs it to a server console, as shown in the following screenshot:

Let’s understand the change we introduced in this recipe:

1. First, we called handleRequest from the main() method using the go keyword, which
means we are invoking a function in a Goroutine, as follows:

func main()

{

 ...

 go handleRequest(conn)

 ...

}

2. Next, we defined the handleRequest function, which reads an incoming connection
into the buffer until the first occurrence of \n and prints the message on the
console. If there are any errors in reading the message then it prints the error
message along with the error object and finally closes the connection, as follows:

func handleRequest(conn net.Conn)

{

 message, err := bufio.NewReader(conn).ReadString('\n')

 if err != nil

 {

 fmt.Println("Error reading:", err.Error())

 }

 fmt.Print("Message Received: ", string(message))

 conn.Close()

}

Writing data to a TCP
connection
Another common, as well as important, scenario in any web application is to send the
data back to the client or responding to the client. Go provides a convenient way to
write a message on a connection as bytes, which we will be covering in this recipe.

Getting ready…
As we have already created a TCP server that reads incoming connection data in the
previous recipe, we will just update it to write the message back to the client.

How to do it…
In this recipe, we are going to update the handleRequest method in the program to write
data back to the client. Perform the following steps:

1. Create tcp-server-write-data.go and copy the following content:

package main

import

(

 "bufio"

 "fmt"

 "log"

 "net"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 CONN_TYPE = "tcp"

)

func main()

{

 listener, err := net.Listen(CONN_TYPE, CONN_HOST+":"+CONN_PORT)

 if err != nil

 {

 log.Fatal("Error starting tcp server : ", err)

 }

 defer listener.Close()

 log.Println("Listening on " + CONN_HOST + ":" + CONN_PORT)

 for

 {

 conn, err := listener.Accept()

 if err != nil

 {

 log.Fatal("Error accepting: ", err.Error())

 }

 go handleRequest(conn)

 }

}

func handleRequest(conn net.Conn)

{

 message, err := bufio.NewReader(conn).ReadString('\n')

 if err != nil

 {

 fmt.Println("Error reading: ", err.Error())

 }

 fmt.Print("Message Received:", string(message))

 conn.Write([]byte(message + "\n"))

 conn.Close()

}

2. Run the program with the following command:

$ go run tcp-server-write-data.go

How it works…
Once we run the program, the TCP server will start locally listening on port 8080.
Execute an echo command from the command line, as follows:

$ echo -n "Hello to TCP server\n" | nc localhost 8080

This will give us the following response from the server:

Hello to TCP server

Let’s look at the changes we introduced in this recipe to write data to the client.
Everything in handleRequest is exactly the same as in the previous recipe except we
introduced a new line that writes data as a byte array to the connection, as follows:

func handleRequest(conn net.Conn)

{

 ...

 conn.Write([]byte(message + "\n"))

 ...

}

Implementing HTTP request
routing
Most of the time, you have to define more than one URL route in a web application,
which involves mapping the URL path to the handlers or resources. In this recipe, we
will learn how we can implement it in Go.

How to do it…
In this recipe, we will define three routes, such as /, /login, and /logout along with their
handlers. Perform the following steps:

1. Create http-server-basic-routing.go and copy the following content:

package main

import

(

 "fmt"

 "log"

 "net/http"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

func helloWorld(w http.ResponseWriter, r *http.Request)

{

 fmt.Fprintf(w, "Hello World!")

}

func login(w http.ResponseWriter, r *http.Request)

{

 fmt.Fprintf(w, "Login Page!")

}

func logout(w http.ResponseWriter, r *http.Request)

{

 fmt.Fprintf(w, "Logout Page!")

}

func main()

{

 http.HandleFunc("/", helloWorld)

 http.HandleFunc("/login", login)

 http.HandleFunc("/logout", logout)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

2. Run the program with the following command:

$ go run http-server-basic-routing.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080 and
accessing http://localhost:8080/, http://localhost:8080/login, and http://localhost:8080/logout
from a browser or command line will render the message defined in the corresponding
handler definition. For example, execute http://localhost:8080/ from the command line,
as follows:

$ curl -X GET -i http://localhost:8080/

This will give us the following response from the server:

We could also execute http://localhost:8080/login from the command line as follows:

$ curl -X GET -i http://localhost:8080/login

This will give us the following response from the server:

Let's understand the program we have written:

1. We started with defining three handlers or web resources, such as the following:

func helloWorld(w http.ResponseWriter, r *http.Request)

{

 fmt.Fprintf(w, "Hello World!")

}

func login(w http.ResponseWriter, r *http.Request)

{

 fmt.Fprintf(w, "Login Page!")

}

func logout(w http.ResponseWriter, r *http.Request)

{

 fmt.Fprintf(w, "Logout Page!")

}

Here, the helloWorld handler writes Hello World! on an HTTP response stream. In a

similar way, login and logout handlers write Login Page! and Logout Page! on an
HTTP response stream.

2. Next, we registered three URL paths—/, /login, and /logout with DefaultServeMux
using http.HandleFunc() . If an incoming request URL pattern matches one of the
registered paths, then the corresponding handler is called passing
(http.ResponseWriter, *http.Request) as a parameter to it, as follows:

func main()

{

 http.HandleFunc("/", helloWorld)

 http.HandleFunc("/login", login)

 http.HandleFunc("/logout", logout)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

Implementing HTTP request
routing using Gorilla Mux
Go’s net/http package offers a lot of functionalities for URL routing of the HTTP
requests. One thing it doesn’t do very well is dynamic URL routing. Fortunately, we
can achieve this with the gorilla/mux package, which we will be covering in this recipe.

How to do it…
In this recipe, we will use gorilla/mux to define a few routes, like we did in our previous
recipe, along with their handlers or resources. As we have already seen in one of our
previous recipes, to use external packages, first we have to install the package using
the go get command or we have to copy it manually to $GOPATH/src or $GOPATH. We will do
the same in the recipe as well. Perform the following steps:

1. Install github.com/gorilla/mux using the go get command, as follows:

$ go get github.com/gorilla/mux

2. Create http-server-gorilla-mux-routing.go and copy the following content:

package main

import

(

 "net/http"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

var GetRequestHandler = http.HandlerFunc

(

 func(w http.ResponseWriter, r *http.Request)

 {

 w.Write([]byte("Hello World!"))

 }

)

var PostRequestHandler = http.HandlerFunc

(

 func(w http.ResponseWriter, r *http.Request)

 {

 w.Write([]byte("It's a Post Request!"))

 }

)

var PathVariableHandler = http.HandlerFunc

(

 func(w http.ResponseWriter, r *http.Request)

 {

 vars := mux.Vars(r)

 name := vars["name"]

 w.Write([]byte("Hi " + name))

 }

)

func main()

{

 router := mux.NewRouter()

 router.Handle("/", GetRequestHandler).Methods("GET")

 router.Handle("/post", PostRequestHandler).Methods("POST")

 router.Handle("/hello/{name}",

 PathVariableHandler).Methods("GET", "PUT")

 http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

}

3. Run the program with the following command:

$ go run http-server-gorilla-mux-routing.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080, and
accessing http://localhost:8080/, http://localhost:8080/post, and
http://localhost:8080/hello/foo from a browser or command line will produce the
message defined in the corresponding handler definition. For example, execute
http://localhost:8080/ from the command line, as follows:

$ curl -X GET -i http://localhost:8080/

This will give us the following response from the server:

We could also execute http://localhost:8080/hello/foo from the command line, as follows:

$ curl -X GET -i http://localhost:8080/hello/foo

This will give us the following response from the server:

Let's understand the code changes we made in this recipe:

1. First, we defined GetRequestHandler and PostRequestHandler, which simply write a
message on an HTTP response stream, as follows:

var GetRequestHandler = http.HandlerFunc

(

 func(w http.ResponseWriter, r *http.Request)

 {

 w.Write([]byte("Hello World!"))

 }

)

var PostRequestHandler = http.HandlerFunc

(

 func(w http.ResponseWriter, r *http.Request)

 {

 w.Write([]byte("It's a Post Request!"))

 }

)

2. Next, we defined PathVariableHandler, which extracts request path variables, gets the
value, and writes it to an HTTP response stream, as follows:

var PathVariableHandler = http.HandlerFunc

(

 func(w http.ResponseWriter, r *http.Request)

 {

 vars := mux.Vars(r)

 name := vars["name"]

 w.Write([]byte("Hi " + name))

 }

)

3. Then, we registered all these handlers with the gorilla/mux router and instantiated
it, calling the NewRouter() handler of the mux router, as follows:

func main()

{

 router := mux.NewRouter()

 router.Handle("/", GetRequestHandler).Methods("GET")

 router.Handle("/post", PostCallHandler).Methods("POST")

 router.Handle("/hello/{name}", PathVariableHandler).

 Methods("GET", "PUT")

 http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

}

Logging HTTP requests
Logging HTTP requests is always useful when troubleshooting a web application, so
it’s a good idea to log a request/response with a proper message and logging level. Go
provides the log package, which can help us to implement logging in an application.
However, in this recipe we will be using Gorilla logging handlers to implement it
because the library offers more features such as logging in Apache Combined Log
Format and Apache Common Log Format, which are not yet supported by the Go log
package.

Getting Ready…
As we have already created an HTTP server and defined routes using Gorilla Mux in
our previous recipe, we will update it to incorporate Gorilla logging handlers.

How to do it…
Let's implement logging using Gorilla handlers. Perform the following steps:

1. Install the github.com/gorilla/handler and github.com/gorilla/mux packages using the go
get command, as follows:

$ go get github.com/gorilla/handlers

$ go get github.com/gorilla/mux

2. Create http-server-request-logging.go and copy the following content:

package main

import

(

 "net/http"

 "os"

 "github.com/gorilla/handlers"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

var GetRequestHandler = http.HandlerFunc

(

 func(w http.ResponseWriter, r *http.Request)

 {

 w.Write([]byte("Hello World!"))

 }

)

var PostRequestHandler = http.HandlerFunc

(

 func(w http.ResponseWriter, r *http.Request)

 {

 w.Write([]byte("It's a Post Request!"))

 }

)

var PathVariableHandler = http.HandlerFunc

(

 func(w http.ResponseWriter, r *http.Request)

 {

 vars := mux.Vars(r)

 name := vars["name"]

 w.Write([]byte("Hi " + name))

 }

)

func main()

{

 router := mux.NewRouter()

 router.Handle("/", handlers.LoggingHandler(os.Stdout,

 http.HandlerFunc(GetRequestHandler))).Methods("GET")

 logFile, err := os.OpenFile("server.log",

 os.O_WRONLY|os.O_CREATE|os.O_APPEND, 0666)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

 router.Handle("/post", handlers.LoggingHandler(logFile,

 PostRequestHandler)).Methods("POST")

 router.Handle("/hello/{name}",

 handlers.CombinedLoggingHandler(logFile,

 PathVariableHandler)).Methods("GET")

 http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

}

3. Run the program, using the following command:

$ go run http-server-request-logging.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Execute a GET request from the command line, as follows:

$ curl -X GET -i http://localhost:8080/

This will log the request details in the server log in the Apache Common Log Format,
as shown in the following screenshot:

We could also execute http://localhost:8080/hello/foo from the command line, as follows:

$ curl -X GET -i http://localhost:8080/hello/foo

This will log the request details in the server.log in the Apache Combined Log Format,
as shown in the following screenshot:

Let's understand what we have done in this recipe:

1. Firstly, we imported two additional packages, one is os, which we use to open a
file. The other one is github.com/gorilla/handlers, which we use to import logging
handlers for logging HTTP requests, as follows:

import ("net/http" "os" "github.com/gorilla/handlers" "github.com/gorilla/mux")

2. Next, we modified the main() method. Using router.Handle("/",
handlers.LoggingHandler(os.Stdout,

http.HandlerFunc(GetRequestHandler))).Methods("GET"), we wrapped GetRequestHandler with
a Gorilla logging handler, and passed a standard output stream as a writer to it,
which means we are simply asking to log every request with the URL path / on
the console in Apache Common Log Format.

3. Next, we create a new file named server.log in write-only mode, or we open it, if it
already exists. If there is any error, then log it and exit with a status code of 1, as
follows:

logFile, err := os.OpenFile("server.log", os.O_WRONLY|os.O_CREATE|os.O_APPEND, 0666)

if err != nil

{

 log.Fatal("error starting http server : ", err)

 return

}

4. Using router.Handle("/post", handlers.LoggingHandler(logFile,
PostRequestHandler)).Methods("POST"), we wrapped GetRequestHandler with a Gorilla
logging handler and passed the file as a writer to it, which means we are simply
asking to log every request with the URL path /post in a file named /hello/{name} in
Apache Common Log Format.

5. Using router.Handle("/hello/{name}", handlers.CombinedLoggingHandler(logFile,
PathVariableHandler)).Methods("GET"), we wrapped GetRequestHandler with a Gorilla
logging handler and passed the file as a writer to it, which means we are simply
asking to log every request with the URL path /hello/{name} in a file named
server.log in Apache Combined Log Format.

Working with Templates, Static
Files, and HTML Forms
In this chapter, we will cover the following recipes:

Creating your first template
Serving static files over HTTP
Serving static files over HTTP using Gorilla Mux
Creating your first HTML form
Reading your first HTML form
Validating your first HTML form
Uploading your first file

Introduction
Quite often, we would like to create HTML forms to get the information from a client
in a specified format, upload files or folders to the server, and generate generic HTML
templates, rather than repeating the same static text. With the knowledge of the
concepts covered in this chapter, we will be able to implement all these functionalities
efficiently in Go.

In this chapter, we will start with creating a basic template and then move on to serve
static files, such as .js, .css, and images from a filesystem, and eventually create, read,
and validate HTML forms and upload a file to the server.

Creating your first template
Templates allow us to define placeholders for dynamic content that can be replaced
with the values at runtime by a template engine. They can then be transformed into an
HTML file and sent to the client. Creating templates in Go is fairly easy using
Go's html/template package, which we will be covering in this recipe.

How to do it…
In this recipe, we are going to create a first-template.html with a couple of placeholders
whose value will be injected by the template engine at runtime. Perform the following
steps:

1. Create first-template.html inside the templates directory by executing the following
Unix command:

$ mkdir templates && cd templates && touch first-template.html

2. Copy the following content to first-template.html:

<html>

 <head>

 <meta charset="utf-8">

 <title>First Template</title>

 <link rel="stylesheet" href="/static/stylesheets/main.css">

 </head>

 <body>

 <h1>Hello {{.Name}}!</h1>

 Your Id is {{.Id}}

 </body>

</html>

The preceding template has two placeholders, {{.Name}} and {{.Id}}, whose
values will be substituted or injected by the template engine at runtime.

3. Create first-template.go, where we will populate the values for the placeholders,
generate an HTML as an output, and write it to the client, as follows:

import

(

 "fmt"

 "html/template"

 "log"

 "net/http"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type Person struct

{

 Id string

 Name string

}

func renderTemplate(w http.ResponseWriter, r *http.Request)

{

 person := Person{Id: "1", Name: "Foo"}

 parsedTemplate, _ := template.ParseFiles("templates/

 first-template.html")

 err := parsedTemplate.Execute(w, person)

 if err != nil

 {

 log.Printf("Error occurred while executing the template

 or writing its output : ", err)

 return

 }

}

func main()

{

 http.HandleFunc("/", renderTemplate)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

With everything in place, the directory structure should look like the following:

4. Run the program with the following command:

$ go run first-template.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Browsing http://localhost:8080 will show us the Hello Foo! served by the template
engine, as shown in the following screenshot:

Execute curl -X GET http://localhost:8080 from the command line as:

$ curl -X GET http://localhost:8080

This will result in the following response from the server:

Let's understand the Go program we have written:

type Person struct { Id string Name string }: Here we define a person struct type that
has Id and Name fields.

The field name should begin with a capital letter in the type definition; otherwise, it will result in errors
and will not be replaced in the template.

Next, we defined a renderTemplate() handler, which does a lot of things.

person := Person{Id: "1", Name: "Foo"}: Here we are initializing a person struct type
with Id as 1 and Name as Foo.
parsedTemplate, _ := template.ParseFiles("templates/first-template.html"): Here we are
calling ParseFiles of the html/template package, which creates a new template and
parses the filename we pass as an input, which is first-template.html ,in a templates
directory. The resulting template will have the name and contents of the input file.
err := parsedTemplate.Execute(w, person): Here we are calling an Execute handler on a
parsed template, which injects person data into the template, generates an HTML

output, and writes it onto an HTTP response stream.
if err != nil {log.Printf("Error occurred while executing the template or writing its

output : ", err) return }: Here we check whether there are any problems while
executing the template or writing its output on the response stream. If there are,
then we log the error and exit with a status code of 1.

Serving static files over HTTP
While designing web applications, it’s always a best practice to serve static resources,
such as .js, .css, and images from the filesystem, or any content delivery network
(CDN), such as Akamai or Amazon CloudFront, rather than serving it from the web
server. This is because all these types of files are static and do not need to be
processed; so why should we put extra load on the server? Moreover, it helps to boost
application performance, as all the requests for the static files will be served from
external sources and therefore reduce the load on the server.

Go's net/http package is sufficient enough for serving static resources from the
filesystem through FileServer, which we will be covering in this recipe.

Getting ready…
As we have already created a template in our previous recipe, we will just extend it to
serve a static .css file from the static/css directory.

How to do it…
In this recipe, we are going to create a file server that will serve static resources from
the filesystem. Perform the following steps:

1. Create main.css inside a static/css directory, as follows:

$ mkdir static && cd static && mkdir css && cd css && touch main.css

2. Copy the following content to main.css:

body {color: #00008B}

3. Create serve-static-files.go, where we will create FileServer, which will serve
resources from the static/css directory present on the filesystem for all URL
patterns with /static, as follows:

package main

import

(

 "fmt"

 "html/template"

 "log"

 "net/http"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type Person struct

{

 Name string

 Age string

}

func renderTemplate(w http.ResponseWriter, r *http.Request)

{

 person := Person{Id: "1", Name: "Foo"}

 parsedTemplate, _ := template.ParseFiles("templates/

 first-template.html")

 err := parsedTemplate.Execute(w, person)

 if err != nil

 {

 log.Printf("Error occurred while executing the template

 or writing its output : ", err)

 return

 }

}

func main()

{

 fileServer := http.FileServer(http.Dir("static"))

 http.Handle("/static/", http.StripPrefix("/static/", fileServer))

 http.HandleFunc("/", renderTemplate)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

4. Update first-template.html (created in our previous recipe) to include main.css from
the static/css directory:

<html>

 <head>

 <meta charset="utf-8">

 <title>First Template</title>

 <link rel="stylesheet" href="/static/css/main.css">

 </head>

 <body>

 <h1>Hello {{.Name}}!</h1>

 Your Id is {{.Id}}

 </body>

</html>

With everything in place, the directory structure should look like the following:

5. Run the program with the following command:

$ go run serve-static-files.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.
Browsing http://localhost:8080 will show us the same output we saw in our previous
recipe, but this time the text color has changed from the default black to blue, as
shown in the following image:

If we look at the Network tab of Chrome DevTools, we can see main.css, which has
been loaded from the static/css directory present on the filesystem.

Let's understand the changes we introduced in the main() method as part of this recipe:

fileServer := http.FileServer(http.Dir("static")): Here, we created a file server using
the FileServer handler of the net/http package, which serves HTTP requests from
the static directory present on the filesystem.
http.Handle("/static/", http.StripPrefix("/static/", fileServer)): Here, we are
registering the http.StripPrefix("/static/", fileServer) handler with the /static URL
pattern using HandleFunc of the net/http package, which means
 http.StripPrefix("/static/", fileServer) gets executed and passes (http.ResponseWriter,
*http.Request) as a parameter to it whenever we access the HTTP URL with
the /static pattern.
http.StripPrefix("/static/", fileServer): This returns a handler that serves HTTP

requests by removing /static from the request URL's path and invokes the file
server. StripPrefix handles a request for a path that doesn't begin with a prefix by
replying with an HTTP 404.

Serving static files over HTTP
using Gorilla Mux
In the previous recipe, we served static resources through Go's HTTP file server. In
this recipe, we will look at how we can serve it through the Gorilla Mux router, which
is also one of the most common ways of creating an HTTP router.

Getting ready…
As we have already created a template which serves main.css from the static/css
directory present on the filesystem in our previous recipe, we will just update it to use
the Gorilla Mux router.

How to do it…
1. Install the github.com/gorilla/mux package using the go get command, as follows:

$ go get github.com/gorilla/mux

2. Create serve-static-files-gorilla-mux.go, where we will create a Gorilla Mux router
instead of an HTTP FileServer, as follows:

package main

import

(

 "html/template"

 "log"

 "net/http"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type Person struct

{

 Id string

 Name string

}

func renderTemplate(w http.ResponseWriter, r *http.Request)

{

 person := Person{Id: "1", Name: "Foo"}

 parsedTemplate, _ := template.ParseFiles("templates/

 first-template.html")

 err := parsedTemplate.Execute(w, person)

 if err != nil

 {

 log.Printf("Error occurred while executing the template

 or writing its output : ", err)

 return

 }

}

func main()

{

 router := mux.NewRouter()

 router.HandleFunc("/", renderTemplate).Methods("GET")

 router.PathPrefix("/").Handler(http.StripPrefix("/static",

 http.FileServer(http.Dir("static/"))))

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run serve-static-files-gorilla-mux.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Browsing http://localhost:8080 will show us the same output we saw in our previous
recipe, as shown in the following screenshot:

Let's understand the changes we introduced in the main() method as part of this recipe:

router :=mux.NewRouter(): Here we instantiated the gorilla/mux router calling the
NewRouter() handler of the mux router.
router.HandleFunc("/",renderTemplate).Methods("GET"): Here we registered the / URL
pattern with the renderTemplate handler. This means renderTemplate will execute for
every request with the URL pattern /.
router.PathPrefix("/").Handler(http.StripPrefix("/static",

http.FileServer(http.Dir("static/")))): Here we are registering / as a new route along
with setting the handler to be executed once it is called.
http.StripPrefix("/static", http.FileServer(http.Dir("static/"))): This returns a handler
that serves HTTP requests by removing /static from the request URL's path and
invoking the file server. StripPrefix handles a request for a path that doesn't begin
with a prefix by replying with an HTTP 404.

Creating your first HTML form
Whenever we want to collect the data from the client and send it to the server for
processing, implementing an HTML form is the best choice. We will be covering this
in this recipe.

How to do it…
In this recipe, we will create a simple HTML form that has two input fields and a
button to submit the form. Perform the following steps:

1. Create login-form.html inside the templates directory, as follows:

$ mkdir templates && cd templates && touch login-form.html

2. Copy the following content to login-form.html:

<html>

 <head>

 <title>First Form</title>

 </head>

 <body>

 <h1>Login</h1>

 <form method="post" action="/login">

 <label for="username">Username</label>

 <input type="text" id="username" name="username">

 <label for="password">Password</label>

 <input type="password" id="password" name="password">

 <button type="submit">Login</button>

 </form>

 </body>

</html>

The preceding template has two textboxes—username and password—along with
a Login button.

On clicking the Login button, the client will make a POST call to an action
defined in an HTML form, which is /login in our case.

3. Create html-form.go, where we will parse the form template and write it onto an
HTTP response stream, as follows:

package main

import

(

 "html/template"

 "log"

 "net/http"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

func login(w http.ResponseWriter, r *http.Request)

{

 parsedTemplate, _ := template.ParseFiles("templates/

 login-form.html")

 parsedTemplate.Execute(w, nil)

}

func main()

{

 http.HandleFunc("/", login)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

With everything in place, the directory structure should look like the following:

4. Run the program with the following command:

$ go run html-form.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.
Browsing http://localhost:8080 will show us an HTML form, as shown in the following
screenshot:

Let’s understand the program we have written:

func login(w http.ResponseWriter, r *http.Request) { parsedTemplate, _ :=

template.ParseFiles("templates/login-form.html") parsedTemplate.Execute(w, nil) }: This is
a Go function that accepts ResponseWriter and Request as input parameters, parses
login-form.html, and returns a new template.

http.HandleFunc("/", login): Here we are registering a login function with the / URL
pattern using HandleFunc of the net/http package, which means the login function
gets executed every time we access the HTTP URL with the / pattern
passing ResponseWriter and Request as the parameters to it.
err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil): Here we are
calling http.ListenAndServe to serve HTTP requests that handle each incoming
connection in a separate Goroutine. ListenAndServe accepts two parameters—the
server address and the handler—where the server address is localhost:8080 and the
handler is nil.
if err != nil { log.Fatal("error starting http server : ", err) return}: Here we check if
there is a problem with starting the server. If there is, then log the error and exit
with a status code of 1.

Reading your first HTML form
Once an HTML form is submitted, we have to read the client data on the server side to
take an appropriate action. We will be covering this in this recipe.

Getting ready…
Since we have already created an HTML form in our previous recipe, we will just
extend the recipe to read its field values.

How to do it…
1. Install the github.com/gorilla/schema package using the go get command, as follows:

$ go get github.com/gorilla/schema

2. Create html-form-read.go, where we will read an HTML form field after decoding it
using the github.com/gorilla/schema package and write Hello followed by the
username to an HTTP response stream, as follows:

package main

import

(

 "fmt"

 "html/template"

 "log"

 "net/http"

 "github.com/gorilla/schema"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type User struct

{

 Username string

 Password string

}

func readForm(r *http.Request) *User

{

 r.ParseForm()

 user := new(User)

 decoder := schema.NewDecoder()

 decodeErr := decoder.Decode(user, r.PostForm)

 if decodeErr != nil

 {

 log.Printf("error mapping parsed form data to struct : ",

 decodeErr)

 }

 return user

}

func login(w http.ResponseWriter, r *http.Request)

{

 if r.Method == "GET"

 {

 parsedTemplate, _ := template.ParseFiles("templates/

 login-form.html")

 parsedTemplate.Execute(w, nil)

 }

 else

 {

 user := readForm(r)

 fmt.Fprintf(w, "Hello "+user.Username+"!")

 }

}

func main()

{

 http.HandleFunc("/", login)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run html-form-read.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.
Browsing http://localhost:8080 will show us an HTML form, as shown in the following
screenshot:

Once we enter the username and password and click on the Login button, we will
see Hello followed by the username as the response from the server, as shown in the
following screenshot:

Let’s understand the changes we introduced as part of this recipe:

1. Using import ("fmt" "html/template" "log" "net/http" "github.com/gorilla/schema"), we
imported two additional packages—fmt and github.com/gorilla/schema—which help
to convert structs to and from Form values.

2. Next, we defined the User struct type, which has Username and Password fields, as
follows:

type User struct

{

 Username string

 Password string

}

3. Then, we defined the readForm handler, which takes HTTP Request as an input
parameter and returns User, as follows:

func readForm(r *http.Request) *User {

 r.ParseForm()

 user := new(User)

 decoder := schema.NewDecoder()

 decodeErr := decoder.Decode(user, r.PostForm)

 if decodeErr != nil {

 log.Printf("error mapping parsed form data to struct : ", decodeErr)

 }

 return user

 }

Let's understand this Go function in detail:

r.ParseForm(): Here we parse the request body as a form and put the results into
both r.PostForm and r.Form.
user := new(User): Here we create a new User struct type.
decoder := schema.NewDecoder(): Here we are creating a decoder, which we will be
using to fill a user struct with Form values.
decodeErr := decoder.Decode(user, r.PostForm): Here we decode parsed form data from
POST body parameters to a user struct.

r.PostForm is only available after ParseForm is called.

if decodeErr != nil { log.Printf("error mapping parsed form data to struct : ", decodeErr)

}: Here we check whether there is any problem with mapping form data to a
struct. If there is, then log it.

Then, we defined a login handler, which checks if the HTTP request calling the handler
is a GET request and then parses login-form.html from the templates directory and writes it
to an HTTP response stream; otherwise, it calls the readForm handler, as follows:

func login(w http.ResponseWriter, r *http.Request)

{

 if r.Method == "GET"

 {

 parsedTemplate, _ := template.ParseFiles("templates/

 login-form.html")

 parsedTemplate.Execute(w, nil)

 }

 else

 {

 user := readForm(r)

 fmt.Fprintf(w, "Hello "+user.Username+"!")

 }

}

Validating your first HTML
form
Most of the time, we have to validate a client's input before processing it, which can be
achieved through the number of external packages in Go, such as gopkg.in/go-
playground/validator.v9, gopkg.in/validator.v2, and github.com/asaskevich/govalidator.

In this recipe, we will be working with the most famous and commonly used
validator, github.com/asaskevich/govalidator, to validate our HTML form.

Getting ready…
As we have already created and read an HTML form in our previous recipe, we will
just extend it to validate its field values.

How to do it…
1. Install github.com/asaskevich/govalidator and the github.com/gorilla/schema package

using the go get command, as follows:

$ go get github.com/asaskevich/govalidator

$ go get github.com/gorilla/schema

2. Create html-form-validation.go, where we will read an HTML form, decode it using
github.com/gorilla/schema, and validate each field of it against a tag defined in the
User struct using github.com/asaskevich/govalidator, as follows:

package main

import

(

 "fmt"

 "html/template"

 "log"

 "net/http"

 "github.com/asaskevich/govalidator"

 "github.com/gorilla/schema"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 USERNAME_ERROR_MESSAGE = "Please enter a valid Username"

 PASSWORD_ERROR_MESSAGE = "Please enter a valid Password"

 GENERIC_ERROR_MESSAGE = "Validation Error"

)

type User struct

{

 Username string `valid:"alpha,required"`

 Password string `valid:"alpha,required"`

}

func readForm(r *http.Request) *User

{

 r.ParseForm()

 user := new(User)

 decoder := schema.NewDecoder()

 decodeErr := decoder.Decode(user, r.PostForm)

 if decodeErr != nil

 {

 log.Printf("error mapping parsed form data to struct : ",

 decodeErr)

 }

 return user

}

func validateUser(w http.ResponseWriter, r *http.Request, user *User) (bool, string)

{

 valid, validationError := govalidator.ValidateStruct(user)

 if !valid

 {

 usernameError := govalidator.ErrorByField(validationError,

 "Username")

 passwordError := govalidator.ErrorByField(validationError,

 "Password")

 if usernameError != ""

 {

 log.Printf("username validation error : ", usernameError)

 return valid, USERNAME_ERROR_MESSAGE

 }

 if passwordError != ""

 {

 log.Printf("password validation error : ", passwordError)

 return valid, PASSWORD_ERROR_MESSAGE

 }

 }

 return valid, GENERIC_ERROR_MESSAGE

}

func login(w http.ResponseWriter, r *http.Request)

{

 if r.Method == "GET"

 {

 parsedTemplate, _ := template.ParseFiles("templates/

 login-form.html")

 parsedTemplate.Execute(w, nil)

 }

 else

 {

 user := readForm(r)

 valid, validationErrorMessage := validateUser(w, r, user)

 if !valid

 {

 fmt.Fprintf(w, validationErrorMessage)

 return

 }

 fmt.Fprintf(w, "Hello "+user.Username+"!")

 }

}

func main()

{

 http.HandleFunc("/", login)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run html-form-validation.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.
Browsing http://localhost:8080 will show us an HTML form, as shown in the following
screenshot:

Then submit the form with the valid values:

It will show us the Hello followed by the username on a browser screen, as shown in
the following screenshot:

Submitting the form with the value as non-alpha in any of the fields will show us the
error message. For example, submitting the form with the Username value as 1234:

It will show us an error message on the browser, as shown in the following screenshot:

Moreover, we can submit an HTML form from the command line as:

$ curl --data "username=Foo&password=password" http://localhost:8080/

This will give us the same output that we get in the browser:

Let’s understand the change we introduced in this recipe:

1. Using import ("fmt", "html/template", "log", "net/http"
"github.com/asaskevich/govalidator" "github.com/gorilla/schema"), we imported an
additional package—github.com/asaskevich/govalidator, which helps us to validate
structs.

2. Next, we updated the User struct type to include a string literal tag with the key as
valid and value as alpha, required, as follows:

type User struct

{

 Username string `valid:"alpha,required"`

 Password string

 valid:"alpha,required"

}

3. Next, we defined a validateUser handler, which takes ResponseWriter, Request, and User
as inputs and returns a bool and string, which are the struct valid status and
validation error message respectively. In this handler, we validated struct tags
calling the ValidateStruct handler from govalidator. If there is an error in validating
the field, then we fetch the error calling the ErrorByField handler
from govalidator and return the result along with the validation error message.

4. Next, we updated the login handler to call validateUser passing (w http.ResponseWriter,
r *http.Request, user *User) as input parameters to it and check for any validation
errors. If there are errors, then we write an error message to an HTTP response
stream and return it.

Uploading your first file
One of the most common scenarios in any web application is uploading a file or a
folder to the server. For example, if we are developing a job portal, then we may have
to provide an option where the applicant can upload their profile/resume, or, let's say,
we have to develop an e-commerce website with a feature where the customer can
upload their orders in bulk using a file.

Achieving the functionality to upload a file in Go is quite easy using its built-in
packages, which we will be covering in this recipe.

How to do it…
In this recipe, we are going to create an HTML form with a field of type file, which
lets the user pick one or more files to upload to a server via a form submission.
Perform the following steps:

1. Create upload-file.html inside the templates directory, as follows:

$ mkdir templates && cd templates && touch upload-file.html

2. Copy the following content to upload-file.html:

<html>

 <head>

 <meta charset="utf-8">

 <title>File Upload</title>

 </head>

 <body>

 <form action="/upload" method="post" enctype="multipart/

 form-data">

 <label for="file">File:</label>

 <input type="file" name="file" id="file">

 <input type="submit" name="submit" value="Submit">

 </form>

 </body>

</html>

In the preceding template, we defined a field of type file along with a Submit
button.

On clicking the Submit button, the client encodes the data that forms the body
of the request and makes a POST call to the form action, which is /upload in our
case.

3. Create upload-file.go, where we will define handlers to render the file upload
template, get the file from the request, process it, and write the response to an
HTTP response stream, as follows:

package main

import

(

 "fmt"

 "html/template"

 "io"

 "log"

 "net/http"

 "os"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

func fileHandler(w http.ResponseWriter, r *http.Request)

{

 file, header, err := r.FormFile("file")

 if err != nil

 {

 log.Printf("error getting a file for the provided form key : ",

 err)

 return

 }

 defer file.Close()

 out, pathError := os.Create("/tmp/uploadedFile")

 if pathError != nil

 {

 log.Printf("error creating a file for writing : ", pathError)

 return

 }

 defer out.Close()

 _, copyFileError := io.Copy(out, file)

 if copyFileError != nil

 {

 log.Printf("error occurred while file copy : ", copyFileError)

 }

 fmt.Fprintf(w, "File uploaded successfully : "+header.Filename)

}

func index(w http.ResponseWriter, r *http.Request)

{

 parsedTemplate, _ := template.ParseFiles("templates/

 upload-file.html")

 parsedTemplate.Execute(w, nil)

}

func main()

{

 http.HandleFunc("/", index)

 http.HandleFunc("/upload", fileHandler)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

With everything in place, the directory structure should look like the following:

4. Run the program with the following command:

$ go run upload-file.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.
Browsing http://localhost:8080 will show us the File Upload Form, as shown in the
following screenshot:

Pressing the Submit button after choosing a file will result in the creation of a file on
the server with the name as uploadedFile inside the /tmp directory. You can see this by
executing the following commands:

Also, the successful upload will display the message on the browser, as shown in the
following screenshot:

Let's understand the Go program we have written:

We defined the fileHandler() handler, which gets the file from the request, reads its
content, and eventually writes it onto a file on a server. As this handler does a lot of
things, let’s go through it in detail:

file, header, err := r.FormFile("file"): Here we call the FormFile handler on the
HTTP request to get the file for the provided form key.
if err != nil { log.Printf("error getting a file for the provided form key : ", err) return

}: Here we check whether there is any problem while getting the file from the
request. If there is, then log the error and exit with a status code of 1.
defer file.Close(): The defer statement closes the file once we return from the
function.
out, pathError := os.Create("/tmp/uploadedFile"): Here we are creating a file named
uploadedFile inside a /tmp directory with mode 666, which means the client can read
and write but cannot execute the file.

if pathError != nil { log.Printf("error creating a file for writing : ", pathError) return

}: Here we check whether there are any problems with creating a file on the
server. If there are, then log the error and exit with a status code of 1.
_, copyFileError := io.Copy(out, file): Here we copy content from the file we
received to the file we created inside the /tmp directory.
fmt.Fprintf(w, "File uploaded successfully : "+header.Filename): Here we write a
message along with a filename to an HTTP response stream.

Working with Sessions, Error
Handling, and Caching in Go
In this chapter, we will cover the following recipes:

Creating your first HTTP session
Managing your HTTP session using Redis
Creating your first HTTP cookie
Implementing caching in Go
Implementing HTTP error handling in Go
Implementing login and logout in a web application

Introduction
Sometimes, we would like to persist information such as user data at an application
level rather than persisting it in a database, which can be easily achieved using
sessions and cookies. The difference between the two is that sessions are stored on the
server side, whereas cookies are stored on the client side. We may also need to cache
static data to avoid unnecessary calls to a database or a web service, and implement
error handling while developing a web application. With knowledge of the concepts
covered in this chapter, we will be able to implement all these functionalities in a fairly
easy way.

In this chapter, we will start with creating an HTTP session, then we will learn how we
can manage it using Redis, creating cookies, caching HTTP responses, implementing
error handling, and eventually end with implementing login and logout mechanisms in
Go.

Creating your first HTTP
session
HTTP is a stateless protocol, which means each time a client retrieves a web page, the
client opens a separate connection to the server and the server responds to it without
keeping any record of the previous client request. So, if we want to implement a
mechanism where the server knows about a request that the client has sent to it, then
we can implement it using a session.

When we are working with sessions, clients just need to send an ID and the data is
loaded from the server for the corresponding ID. There are three ways that we can
implement this in a web application:

Cookies
Hidden form fields
URL rewriting

In this recipe, we will implement a session using HTTP cookies.

How to do it…
1. Install the github.com/gorilla/sessions package using the go get command, as follows:

$ go get github.com/gorilla/sessions

2. Create http-session.go where we will create a Gorilla cookie store to save and
retrieve session information defining three handlers—/login, /home, and /logout—
where we will be creating a valid session cookie, writing a response to an HTTP
response stream, and invalidating a session cookie respectively, as follows:

package main

import

(

 "fmt"

 "log"

 "net/http"

 "github.com/gorilla/sessions"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

var store *sessions.CookieStore

func init()

{

 store = sessions.NewCookieStore([]byte("secret-key"))

}

func home(w http.ResponseWriter, r *http.Request)

{

 session, _ := store.Get(r, "session-name")

 var authenticated interface{} = session.Values["authenticated"]

 if authenticated != nil

 {

 isAuthenticated := session.Values["authenticated"].(bool)

 if !isAuthenticated

 {

 http.Error(w, "You are unauthorized to view the page",

 http.StatusForbidden)

 return

 }

 fmt.Fprintln(w, "Home Page")

 }

 else

 {

 http.Error(w, "You are unauthorized to view the page",

 http.StatusForbidden)

 return

 }

}

func login(w http.ResponseWriter, r *http.Request)

{

 session, _ := store.Get(r, "session-name")

 session.Values["authenticated"] = true

 session.Save(r, w)

 fmt.Fprintln(w, "You have successfully logged in.")

}

func logout(w http.ResponseWriter, r *http.Request)

{

 session, _ := store.Get(r, "session-name")

 session.Values["authenticated"] = false

 session.Save(r, w)

 fmt.Fprintln(w, "You have successfully logged out.")

}

func main()

{

 http.HandleFunc("/home", home)

 http.HandleFunc("/login", login)

 http.HandleFunc("/logout", logout)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-session.go

How it works…
Once we run the program, the HTTP server will start listening locally on port 8080.

Next, we will execute a couple of commands to see how the session works.

First, we will access /home by executing the following command:

$ curl -X GET http://localhost:8080/home

This will result in an unauthorized access message from the server as shown in the
following screenshot:

This is because we first have to log in to an application, which will create a session
ID that the server will validate before providing access to any web page. So, let's log in
to the application:

$ curl -X GET -i http://localhost:8080/login

Executing the previous command will give us the Cookie, which has to be set as a
request header to access any web page:

Next, we will use this provided Cookie to access /home, as follows:

$ curl --cookie "session-name=MTUyMzEwMTI3NXxEdi1CQkFFQ180SUFBUkFCRUFBQUpmLUNBQUVHYzNSeWFXNW5EQThBRFdGMWRHaGxiblJwWTJGMFpXUUVZbTl2YkFJQ0FBRT18ou7Zxn3qSbqHHiajubn23Eiv8a348AhPl8RN3uTRM4M=;" http://localhost:8080/home

This results in the home page as a response from the server:

Let's understand the Go program we have written:

Using var store *sessions.CookieStore, we declared a private cookie store to store

sessions using secure cookies.
Using func init() { store = sessions.NewCookieStore([]byte("secret-key")) }, we defined
an init() function that runs before main() to create a new cookie store and assign it
to the store.

init() is always called, regardless of whether there's a main function or not, so if you import a package that
has an init function, it will be executed.

Next, we defined a home handler where we get a session from the cookie store for
the given name after adding it to the registry using store.Get and fetch the value of
the authenticated key from the cache. If it is true, then we write Home Page to an
HTTP response stream; otherwise, we write a You are unauthorized to view the
page. message along with a 403 HTTP code.

Next, we defined a login handler where we again get a session, set the authenticated
key with a value of true, save it, and finally write You have successfully logged
in. to an HTTP response stream.
Next, we defined a logout handler where we get a session, set an authenticated key
with the value of false, save it, and finally write You have successfully logged
out. to an HTTP response stream.
Finally, we defined main() where we mapped all handlers, home, login, and logout, to
/home, /login, and /logout respectively, and start the HTTP server on localhost:8080.

Managing your HTTP session
using Redis
While working with the distributed applications, we probably have
to implement stateless load balancing for frontend users. This is so we can persist
session information in a database or a filesystem so that we can identify the user
and retrieve their information if a server gets shut down or restarted.

We will be solving this problem as part of the recipe using Redis as the persistent store
to save a session.

Getting ready…
As we have already created a session variable in our previous recipe using the Gorilla
cookie store, we will just extend this recipe to save session information in Redis rather
than maintaining it on the server.

There are multiple implementations of the Gorilla session store, which you can find at
https://github.com/gorilla/sessions#store-implementations. As we are using Redis as our
backend store, we will be using https://github.com/boj/redistore, which depends on the
Redigo Redis library to store a session.

This recipe assumes you have Redis and Redis Browser installed and running
locally on ports 6379 and 4567 respectively.

How to do it…
1. Install gopkg.in/boj/redistore.v1 and github.com/gorilla/sessions using the go get

command, as follows:

$ go get gopkg.in/boj/redistore.v1

$ go get github.com/gorilla/sessions

2. Create http-session-redis.go, where we will create a RedisStore to store and retrieve
session variables, as follows:

package main

import

(

 "fmt"

 "log"

 "net/http"

 "github.com/gorilla/sessions"

 redisStore "gopkg.in/boj/redistore.v1"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

var store *redisStore.RediStore

var err error

func init()

{

 store, err = redisStore.NewRediStore(10, "tcp", ":6379", "",

 []byte("secret-key"))

 if err != nil

 {

 log.Fatal("error getting redis store : ", err)

 }

}

func home(w http.ResponseWriter, r *http.Request)

{

 session, _ := store.Get(r, "session-name")

 var authenticated interface{} = session.Values["authenticated"]

 if authenticated != nil

 {

 isAuthenticated := session.Values["authenticated"].(bool)

 if !isAuthenticated

 {

 http.Error(w, "You are unauthorized to view the page",

 http.StatusForbidden)

 return

 }

 fmt.Fprintln(w, "Home Page")

 }

 else

 {

 http.Error(w, "You are unauthorized to view the page",

 http.StatusForbidden)

 return

 }

}

func login(w http.ResponseWriter, r *http.Request)

{

 session, _ := store.Get(r, "session-name")

 session.Values["authenticated"] = true

 if err = sessions.Save(r, w); err != nil

 {

 log.Fatalf("Error saving session: %v", err)

 }

 fmt.Fprintln(w, "You have successfully logged in.")

}

func logout(w http.ResponseWriter, r *http.Request)

{

 session, _ := store.Get(r, "session-name")

 session.Values["authenticated"] = false

 session.Save(r, w)

 fmt.Fprintln(w, "You have successfully logged out.")

}

func main()

{

 http.HandleFunc("/home", home)

 http.HandleFunc("/login", login)

 http.HandleFunc("/logout", logout)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 defer store.Close()

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-session-redis.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, we will execute a couple of commands to see how the session works.

First, we will access /home by executing the following command:

$ curl -X GET http://localhost:8080/home

This will result in an unauthorized access message from the server as shown in the
following screenshot:

This is because we first have to log in to an application, which will create a session
ID that the server will validate before providing access to any web page. So, let's log
in to the application:

$ curl -X GET -i http://localhost:8080/login

Executing the previous command will give us the Cookie, which has to be set as a
request header to access any web page:

Once the previous command is executed, a Cookie will be created and saved in Redis,
which you can see by executing the command from redis-cli or in the Redis Browser,
as shown in the following screenshot:

Next, we will use the Cookie provided to access /home, as follows:

$ curl --cookie "session-name=MTUyMzEwNDUyM3xOd3dBTkV4T1JrdzNURFkyUkVWWlQxWklUekpKVUVOWE1saFRUMHBHVTB4T1RGVXlSRU5RVkZWWk5VeFNWVmRPVVZSQk4wTk1RMUU9fAlGgLGU-OHxoP78xzEHMoiuY0Q4rrbsXfajSS6HiJAm;" http://localhost:8080/home

This results in the Home Page as a response from the server:

Let's understand the changes we introduced in this recipe:

1. Using var store *redisStore.RediStore, we declared a private RediStore to store
sessions in Redis.

2. Next, we updated the init() function to create NewRediStore with a size and
maximum number of idle connections as 10, and assigned it to the store. If there is
an error while creating a store, then we log the error and exit with a status code of
1.

3. Finally, we updated main() to introduce the defer store.Close() statement, which
closes the Redis store once we return from the function.

Creating your first HTTP
cookie
Cookies play an important role when storing information on the client side and we can
use their values to identify a user. Basically, cookies were invented to solve the
problem of remembering information about the user or persistent-login authentication,
which refers to websites being able to remember the identity of a principal between
sessions.

Cookies are simple text files that web browsers create when you visit websites on the
internet. Your device stores the text files locally, allowing your browser to access the
cookie and pass data back to the original website, and are saved in name-value pairs.

How to do it…
1. Install the github.com/gorilla/securecookie package using the go get command, as

follows:

$ go get github.com/gorilla/securecookie

2. Create http-cookie.go, where we will create a Gorilla secure cookie to store and
retrieve cookies, as follows:

package main

import

(

 "fmt"

 "log"

 "net/http"

 "github.com/gorilla/securecookie"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

var cookieHandler *securecookie.SecureCookie

func init()

{

 cookieHandler = securecookie.New(securecookie.

 GenerateRandomKey(64),

 securecookie.GenerateRandomKey(32))

}

func createCookie(w http.ResponseWriter, r *http.Request)

{

 value := map[string]string

 {

 "username": "Foo",

 }

 base64Encoded, err := cookieHandler.Encode("key", value)

 if err == nil

 {

 cookie := &http.Cookie

 {

 Name: "first-cookie",

 Value: base64Encoded,

 Path: "/",

 }

 http.SetCookie(w, cookie)

 }

 w.Write([]byte(fmt.Sprintf("Cookie created.")))

}

func readCookie(w http.ResponseWriter, r *http.Request)

{

 log.Printf("Reading Cookie..")

 cookie, err := r.Cookie("first-cookie")

 if cookie != nil && err == nil

 {

 value := make(map[string]string)

 if err = cookieHandler.Decode("key", cookie.Value, &value);

 err == nil

 {

 w.Write([]byte(fmt.Sprintf("Hello %v \n",

 value["username"])))

 }

 }

 else

 {

 log.Printf("Cookie not found..")

 w.Write([]byte(fmt.Sprint("Hello")))

 }

}

func main()

{

 http.HandleFunc("/create", createCookie)

 http.HandleFunc("/read", readCookie)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-cookie.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Browsing http://localhost:8080/read will display Hello in the browser, as you can see in
the following screenshot:

Next, we will access http://localhost:8080/create, which will create a cookie with the
name first-cookie and display the Cookie created message in the browser:

Now, subsequent access to http://localhost:8080/read will use first-cookie to display
Hello, followed by the value of first-cookie, as follows:

Let's understand the program we have written:

Using import ("fmt" "log" "net/http" "github.com/gorilla
/securecookie"), we introduced an additional package
—github.com/gorilla/securecookie, which we will use to encode and decode
authenticated and encrypted cookie values.
Using var cookieHandler *securecookie.SecureCookie, we declared a private secure
cookie.
Next, we updated the init() function to create SecureCookie passing a 64-byte hash
key, which is used to authenticate values using HMAC and a 32-byte block key,
which is used to encrypt values.
Next, we defined a createCookie handler where we create a Base64 encoded cookie
with the key as username and the value as Foo using an Encode handler of
gorilla/securecookie. Then, we add a Set-Cookie header to the provided ResponseWriter
headers and write a Cookie created. message to an HTTP response.

Next, we defined a readCookie handler, where we retrieve a cookie from the
request, which is first-cookie in our code, get a value for it, and write it to an
HTTP response.
Finally, we defined main() where we mapped all handlers—createCookie and
readCookie—to /create and /read respectively, and started the HTTP server on
localhost:8080.

Implementing caching in Go
Caching data in a web application is sometimes necessary to avoid requesting static
data from a database or external service again and again. Go does not provide any
built-in package to cache responses, but it does support it through external packages.

There are a number of packages, such as https://github.com/coocood/freecache and
https://github.com/patrickmn/go-cache, which can help in implementing caching and, in this
recipe, we will be using the https://github.com/patrickmn/go-cache to implement it.

How to do it…
1. Install the github.com/patrickmn/go-cache package using the go get command, as

follows:

$ go get github.com/patrickmn/go-cache

2. Create http-caching.go, where we will create a cache and populate it with data on
server boot up, as follows:

package main

import

(

 "fmt"

 "log"

 "net/http"

 "time"

 "github.com/patrickmn/go-cache"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

var newCache *cache.Cache

func init()

{

 newCache = cache.New(5*time.Minute, 10*time.Minute)

 newCache.Set("foo", "bar", cache.DefaultExpiration)

}

func getFromCache(w http.ResponseWriter, r *http.Request)

{

 foo, found := newCache.Get("foo")

 if found

 {

 log.Print("Key Found in Cache with value as :: ",

 foo.(string))

 fmt.Fprintf(w, "Hello "+foo.(string))

 }

 else

 {

 log.Print("Key Not Found in Cache :: ", "foo")

 fmt.Fprintf(w, "Key Not Found in Cache")

 }

}

func main()

{

 http.HandleFunc("/", getFromCache)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-caching.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

On startup, the key with the name foo with a value as bar will be added to the cache.

Browsing http://localhost:8080/ will read a key value from the cache and append it to
Hello as shown in the following screenshot:

We have specified the cache data expiration time in our program as five minutes,
which means the key that we have created in the cache at server startup will not be

there after five minutes. So, accessing the same URL again after five minutes will
return Key Not Found in the Cache from the server, as follows:

Let's understand the program we have written:

1. Using var newCache *cache.Cache, we declared a private cache.
2. Next, we updated the init() function where we create a cache with five minutes of

expiration time and 10 minutes of cleanup interval, and add an item to the cache
with a key as foo with its value as bar and its expiration value as 0, which means
we want to use the cache's default expiration time.

If the expiration duration is less than one (or NoExpiration), the items in the cache never expire (by default) and
must be deleted manually. If the cleanup interval is less than one, expired items are not deleted from the cache
before calling c.DeleteExpired().

3. Next, we defined the getFromCache handler where we retrieve the value for a key

from the cache. If found, we write it to an HTTP response; otherwise, we write
the Key Not Found in Cache message to an HTTP response.

Implementing HTTP error
handling in Go
Implementing error handling in any web application is one of the main aspects because
it helps in troubleshooting and fixing bugs faster. Error handling means whenever an
error occurs in an application, it should be logged somewhere, either in a file or in a
database with the proper error message, along with the stack trace.

In Go, it can be implemented in multiple ways. One way is to write custom handlers,
which we will be covering in this recipe.

How to do it…
1. Install the github.com/gorilla/mux package using the go get command, as follows:

$ go get github.com/gorilla/mux

2. Create http-error-handling.go, where we will create a custom handler that acts as a
wrapper to handle all the HTTP requests, as follows:

package main

import

(

 "errors"

 "fmt"

 "log"

 "net/http"

 "strings"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type NameNotFoundError struct

{

 Code int

 Err error

}

func (nameNotFoundError NameNotFoundError) Error() string

{

 return nameNotFoundError.Err.Error()

}

type WrapperHandler func(http.ResponseWriter, *http.Request)

error

func (wrapperHandler WrapperHandler) ServeHTTP(w http.

ResponseWriter, r *http.Request)

{

 err := wrapperHandler(w, r)

 if err != nil

 {

 switch e := err.(type)

 {

 case NameNotFoundError:

 log.Printf("HTTP %s - %d", e.Err, e.Code)

 http.Error(w, e.Err.Error(), e.Code)

 default:

 http.Error(w, http.StatusText(http.

 StatusInternalServerError),

 http.StatusInternalServerError)

 }

 }

}

func getName(w http.ResponseWriter, r *http.Request) error

{

 vars := mux.Vars(r)

 name := vars["name"]

 if strings.EqualFold(name, "foo")

 {

 fmt.Fprintf(w, "Hello "+name)

 return nil

 }

 else

 {

 return NameNotFoundError{500, errors.New("Name Not Found")}

 }

}

func main()

{

 router := mux.NewRouter()

 router.Handle("/employee/get/{name}",

 WrapperHandler(getName)).Methods("GET")

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-error-handling.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, browsing http://localhost:8080/employee/get/foo will give us the Hello, followed by
the employee name with the status code as 200, as a response in the browser:

On the other hand, accessing http://localhost:8080/employee/get/bar will return us an
HTTP error with the message Name Not Found and an error code of 500:

Let's understand the program we have written:

1. We defined a NameNotFoundError struct with two fields—Code of type int and Err of
type error, which represents an error with an associated HTTP status code, as
follows:

type NameNotFoundError struct

{

 Code int

 Err error

}

2. Then, we allowed NameNotFoundError to satisfy the error interface, as follows:

func (nameNotFoundError NameNotFoundError) Error() string

{

 return nameNotFoundError.Err.Error()

}

3. Next, we defined a user-defined type WrapperHandler, which is a Go function that
accepts any handler that accepts func(http.ResponseWriter, *http.Request) as input
parameters and returns an error.

4. Then, we defined a ServeHTTP handler, which calls a handler we pass to
WrapperHandler passing (http.ResponseWriter, *http.Request) as parameters to it and
checks if there are any errors returned by the handler. If there are, then it handles

them appropriately using the switch case, as follows:

if err != nil

{

 switch e := err.(type)

 {

 case NameNotFoundError:

 log.Printf("HTTP %s - %d", e.Err, e.Code)

 http.Error(w, e.Err.Error(), e.Code)

 default:

 http.Error(w, http.StatusText(http.

 StatusInternalServerError),

 http.StatusInternalServerError)

 }

}

5. Next, we defined a getName handler, which extracts request path variables, gets the
value of the name variable, and checks if the name matches foo. If so, then it
writes Hello, followed by the name, to an HTTP response; otherwise, it returns a
NameNotFoundError struct with a Code field value of 500 and an err field value of an
error with the text Name Not Found.

6. Finally, we defined main(), where we registered WrapperHandler as a handler to be
called for the URL pattern as /get/{name}.

Implementing login and logout
in web application
Whenever we want an application to be accessed by registered users, we have to
implement a mechanism that asks for the user's credentials before allowing them to
view any web pages, which we will be covering in this recipe.

Getting ready…
As we have already created an HTML form in one of our previous recipes, we will just
update it to implement login and logout mechanisms using the gorilla/securecookie
package.

See the Implementing login and logout in web application recipe in Chapter 2, Working with Templates, Static
Files, and HTML Forms.

How to do it…
1. Install github.com/gorilla/mux and github.com/gorilla/securecookie using the go get

command, as follows:

$ go get github.com/gorilla/mux

$ go get github.com/gorilla/securecookie

2. Create home.html inside the templates directory, as follows:

$ mkdir templates && cd templates && touch home.html

3. Copy the following content to home.html:

<html>

 <head>

 <title></title>

 </head>

 <body>

 <h1>Welcome {{.userName}}!</h1>

 <form method="post" action="/logout">

 <button type="submit">Logout</button>

 </form>

 </body>

</html>

In the preceding template, we defined a placeholder, {{.userName}}, whose values
will be substituted by the template engine at runtime and a Logout button. By
clicking the Logout button, the client will make a POST call to a form action,
which is /logout in our case.

4. Create html-form-login-logout.go, where we will parse the login form, read the
username field, and set a session cookie when a user clicks the Login button. We
also clear the session once a user clicks the Logout button, as follows:

package main

import

(

 "html/template"

 "log"

 "net/http"

 "github.com/gorilla/mux"

 "github.com/gorilla/securecookie"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

var cookieHandler = securecookie.New

(

 securecookie.GenerateRandomKey(64),

 securecookie.GenerateRandomKey(32)

)

func getUserName(request *http.Request) (userName string)

{

 cookie, err := request.Cookie("session")

 if err == nil

 {

 cookieValue := make(map[string]string)

 err = cookieHandler.Decode("session", cookie.Value,

 &cookieValue)

 if err == nil

 {

 userName = cookieValue["username"]

 }

 }

 return userName

}

func setSession(userName string, response http.ResponseWriter)

{

 value := map[string]string

 {

 "username": userName,

 }

 encoded, err := cookieHandler.Encode("session", value)

 if err == nil

 {

 cookie := &http.Cookie

 {

 Name: "session",

 Value: encoded,

 Path: "/",

 }

 http.SetCookie(response, cookie)

 }

}

func clearSession(response http.ResponseWriter)

{

 cookie := &http.Cookie

 {

 Name: "session",

 Value: "",

 Path: "/",

 MaxAge: -1,

 }

 http.SetCookie(response, cookie)

}

func login(response http.ResponseWriter, request *http.Request)

{

 username := request.FormValue("username")

 password := request.FormValue("password")

 target := "/"

 if username != "" && password != ""

 {

 setSession(username, response)

 target = "/home"

 }

 http.Redirect(response, request, target, 302)

}

func logout(response http.ResponseWriter, request *http.Request)

{

 clearSession(response)

 http.Redirect(response, request, "/", 302)

}

func loginPage(w http.ResponseWriter, r *http.Request)

{

 parsedTemplate, _ := template.ParseFiles("templates/

 login-form.html")

 parsedTemplate.Execute(w, nil)

}

func homePage(response http.ResponseWriter, request *http.Request)

{

 userName := getUserName(request)

 if userName != ""

 {

 data := map[string]interface{}

 {

 "userName": userName,

 }

 parsedTemplate, _ := template.ParseFiles("templates/home.html")

 parsedTemplate.Execute(response, data)

 }

 else

 {

 http.Redirect(response, request, "/", 302)

 }

}

func main()

{

 var router = mux.NewRouter()

 router.HandleFunc("/", loginPage)

 router.HandleFunc("/home", homePage)

 router.HandleFunc("/login", login).Methods("POST")

 router.HandleFunc("/logout", logout).Methods("POST")

 http.Handle("/", router)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

With everything in place, the directory structure should look like the following:

5. Run the program with the following command:

$ go run html-form-login-logout.go

How it works…
Once we run the program, the HTTP server will start listening locally on port 8080.

Next, browsing http://localhost:8080 will show us the login form, as shown in the
following screenshot:

Submitting the form after entering the username Foo and a random password will
render the Welcome Foo! message in the browser and create a cookie with the name
session, which manages the user login/logout state:

Now, every subsequent request to http://localhost:8080/home will display the Welcome
Foo! message in the browser until the cookie with the name session exists.

Next, accessing http://localhost:8080/home after clearing the cookie will redirect us to
http://localhost:8080/ and show us the login form:

Let's understand the program we have written.

1. Using var cookieHandler = securecookie.New(securecookie.
GenerateRandomKey(64), securecookie.GenerateRandomKey(32)), we are creating a secure
cookie, passing a hash key as the first argument, and a block key as the second
argument. The hash key is used to authenticate values using HMAC and the block
key is used to encrypt values.

2. Next, we defined a getUserName handler, where we get a cookie from the HTTP
request, initialize a cookieValue map of string keys to string values, decode a cookie,
and get a value for the username and return.

3. Next, we defined a setSession handler, where we create and initialize a map with
the key and value as username, serialize it, sign it with a message authentication code,
encode it using a cookieHandler.Encode handler, create a new HTTP cookie, and write
it to an HTTP response stream.

4. Next, we defined clearSession, which basically sets the value of the cookie as
empty and writes it to an HTTP response stream.

5. Next, we defined a login handler, where we get a username and password from an
HTTP form, check if both are not empty, then call a setSession handler and redirect
to /home, otherwise, redirect to the root URL /.

6. Next, we defined a logout handler, where we clear the session values calling
the clearSession handler and redirect to the root URL.

7. Next, we defined a loginPage handler, where we parse login-form.html, return a new
template with the name and its content, call the Execute handler on a parsed
template, which generates HTML output, and write it to an HTTP response
stream.

8. Next, we defined a homePage handler, which gets the username from the HTTP
request calling the getUserName handler. Then, we check whether it is not empty or
whether there is a cookie value present. If the username is not blank, we parse
home.html, inject the username as a data map, generate HTML output, and write it
to an HTTP response stream; otherwise, we redirect it to the root URL /.

Finally, we defined the main() method, where we start the program execution. As this
method does a lot of things, let's look at it line by line:

var router = mux.NewRouter(): Here, we create a new router instance.
router.HandleFunc("/", loginPage): Here, we are registering the loginPageHandler handler
with the / URL pattern using HandleFunc of the gorilla/mux package, which means the
loginPage handler gets executed by passing (http.ResponseWriter, *http.Request) as
parameters to it whenever we access the HTTP URL with the / pattern.
router.HandleFunc("/home", homePage): Here, we are registering the homePageHandler
handler with the /home URL pattern using the HandleFunc of the gorilla/mux package,
which means the homePage handler gets executed by passing (http.ResponseWriter,
*http.Request) as parameters to it whenever we access the HTTP URL with
the /home pattern.

router.HandleFunc("/login", login).Methods("POST"): Here, we are registering the
loginHandler handler with the /login URL pattern using the HandleFunc
of the gorilla/mux package, which means the login handler gets executed by passing
(http.ResponseWriter, *http.Request) as parameters to it whenever we access the
HTTP URL with the /login pattern.
router.HandleFunc("/logout", logout).Methods("POST"): Here, we are registering the
logoutHandler handler with the /logout URL pattern using the HandleFunc
of the gorilla/mux package, which means the logout handler gets executed by
passing (http.ResponseWriter, *http.Request) as parameters to it whenever we access
the HTTP URL with the /logout pattern.
http.Handle("/", router): Here, we are registering the router for the / URL pattern
using HandleFunc of the net/http package, which means all requests with the / URL
pattern are handled by the router handler.

err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil): Here, we are calling
http.ListenAndServe to serve HTTP requests that handle each incoming connection
in a separate Goroutine. ListenAndServe accepts two parameters—server address and
handler, where the server address is localhost:8080 and the handler is nil, which
means we are asking the server to use DefaultServeMux as a handler.
if err != nil { log.Fatal("error starting http server : ", err) return}: Here, we check
if there are any problems with starting the server. If there are, then log the error
and exit with a status code of 1.

Writing and Consuming
RESTful Web Services in Go
In this chapter, we will cover the following recipes:

Creating your first HTTP GET method
Creating your first HTTP POST method
Creating your first HTTP PUT method
Creating your first HTTP DELETE method
Versioning your REST API
Creating your first REST client
Creating your first AngularJS client
Creating your first ReactJS client
Creating your first VueJS client

Introduction
Whenever we build a web application that encapsulates logic that could be helpful to
other related applications, we will often also write and consume web services. This is
because they expose functionality over a network, which is accessible through the
HTTP protocol, making an application a single source of truth.

In this chapter, we will write a RESTful API that supports GET, POST, PUT, and
DELETE HTTP methods, and then we will learn how we can version the REST API,
which is very helpful when we are creating APIs consumed publicly. We will finish up
with writing the REST client to consume them.

Creating your first HTTP GET
method
While writing web applications, we often have to expose our services to the client or to
the UI so that they can consume a piece of code running on a different system.
Exposing the service can be done with HTTP protocol methods. Out of the many
HTTP methods, we will be learning to implement the HTTP GET method in this recipe.

How to do it…
1. Install the github.com/gorilla/mux package using the go get command, as follows:

$ go get github.com/gorilla/mux

2. Create http-rest-get.go where we will define two routes—/employees and
/employee/{id} along with their handlers. The former writes the static array of
employees and the latter writes employee details for the provided ID to an HTTP
response stream, as follows:

package main

import

(

 "encoding/json"

 "log"

 "net/http"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type Route struct

{

 Name string

 Method string

 Pattern string

 HandlerFunc http.HandlerFunc

}

type Routes []Route

var routes = Routes

{

 Route

 {

 "getEmployees",

 "GET",

 "/employees",

 getEmployees,

 },

 Route

 {

 "getEmployee",

 "GET",

 "/employee/{id}",

 getEmployee,

 },

}

type Employee struct

{

 Id string `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: "1", FirstName: "Foo", LastName: "Bar"},

 Employee{Id: "2", FirstName: "Baz", LastName: "Qux"},

 }

}

func getEmployees(w http.ResponseWriter, r *http.Request)

{

 json.NewEncoder(w).Encode(employees)

}

func getEmployee(w http.ResponseWriter, r *http.Request)

{

 vars := mux.Vars(r)

 id := vars["id"]

 for _, employee := range employees

 {

 if employee.Id == id

 {

 if err := json.NewEncoder(w).Encode(employee); err != nil

 {

 log.Print("error getting requested employee :: ", err)

 }

 }

 }

}

func AddRoutes(router *mux.Router) *mux.Router

{

 for _, route := range routes

 {

 router.

 Methods(route.Method).

 Path(route.Pattern).

 Name(route.Name).

 Handler(route.HandlerFunc)

 }

 return router

}

func main()

{

 muxRouter := mux.NewRouter().StrictSlash(true)

 router := AddRoutes(muxRouter)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-rest-get.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, executing a GET request from the command line as follows will give you a list of
all the employees:

$ curl -X GET http://localhost:8080/employees

[{"id":"1","firstName":"Foo","lastName":"Bar"},{"id":"2","firstName":"Baz","lastName":"Qux"}]

Here, executing a GET request for a particular employee ID from the command line as
follows, will give you the employee details for the corresponding ID:

$ curl -X GET http://localhost:8080/employee/1

 {"id":"1","firstName":"Foo","lastName":"Bar"}

Let’s understand the program we have written:

1. We used import ("encoding/json" "log" "net/http" "strconv" "github.com/gorilla/mux").
Here, we imported github.com/gorilla/mux to create a Gorilla Mux Router.

2. Next, we declared the Route struct type with four fields—Name, Method, Pattern, and
HandlerFunc, where Name represents the name of an HTTP method, Method represents
the HTTP method type which can be GET, POST, PUT, DELETE, and so on, Pattern
represents the URL path, and HandlerFunc represents the HTTP handler.

3. Next, we defined two routes for the GET request, as follows:

var routes = Routes

{

 Route

 {

 "getEmployees",

 "GET",

 "/employees",

 getEmployees,

 },

 Route

 {

 "getEmployee",

 "GET",

 "/employee/{id}",

 getEmployee,

 },

}

4. Next, we defined a static Employees array, as follows:

func init()

{

 employees = Employees

 {

 Employee{Id: "1", FirstName: "Foo", LastName: "Bar"},

 Employee{Id: "2", FirstName: "Baz", LastName: "Qux"},

 }

}

5. Then, we defined two handlers—getEmployees and getEmployee where the former just
marshals a static array of employees and writes it to an HTTP response stream,
and the latter gets the employee ID from an HTTP request variable, fetches the
employee for the corresponding ID from the array, marshals the object, and writes
it to an HTTP response stream.

6. Following the handlers, we defined an AddRoutes function, which iterates over the
routes array we defined, adds it to the gorilla/mux router, and returns the Router
object.

7. Finally, we defined main() where we create a gorilla/mux router instance using the
NewRouter() handler with the trailing slash behavior for new routes as true, which
means the application will always see the path as specified in the route. For
example, if the route path is /path/, accessing /path will redirect to the former and
vice versa.

Creating your first HTTP POST
method
Whenever we have to send data to the server either through an asynchronous call or
through an HTML form, then we go with the HTTP POST method implementation,
which we will cover in this recipe.

How to do it…
1. Install the github.com/gorilla/mux package using the go get command, as follows:

$ go get github.com/gorilla/mux

2. Create http-rest-post.go where we will define an additional route that supports the
HTTP POST method and a handler that adds an employee to the initial static array
of employees and writes the updated list to an HTTP response stream, as follows:

package main

import

(

 "encoding/json"

 "log"

 "net/http"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type Route struct

{

 Name string

 Method string

 Pattern string

 HandlerFunc http.HandlerFunc

}

type Routes []Route

var routes = Routes

{

 Route

 {

 "getEmployees",

 "GET",

 "/employees",

 getEmployees,

 },

 Route

 {

 "addEmployee",

 "POST",

 "/employee/add",

 addEmployee,

 },

}

type Employee struct

{

 Id string `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: "1", FirstName: "Foo", LastName: "Bar"},

 Employee{Id: "2", FirstName: "Baz", LastName: "Qux"},

 }

}

func getEmployees(w http.ResponseWriter, r *http.Request)

{

 json.NewEncoder(w).Encode(employees)

}

func addEmployee(w http.ResponseWriter, r *http.Request)

{

 employee := Employee{}

 err := json.NewDecoder(r.Body).Decode(&employee)

 if err != nil

 {

 log.Print("error occurred while decoding employee

 data :: ", err)

 return

 }

 log.Printf("adding employee id :: %s with firstName

 as :: %s and lastName as :: %s ", employee.Id,

 employee.FirstName, employee.LastName)

 employees = append(employees, Employee{Id: employee.Id,

 FirstName: employee.FirstName, LastName: employee.LastName})

 json.NewEncoder(w).Encode(employees)

}

func AddRoutes(router *mux.Router) *mux.Router

{

 for _, route := range routes

 {

 router.

 Methods(route.Method).

 Path(route.Pattern).

 Name(route.Name).

 Handler(route.HandlerFunc)

 }

 return router

}

func main()

{

 muxRouter := mux.NewRouter().StrictSlash(true)

 router := AddRoutes(muxRouter)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-rest-post.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, executing a POST request from the command line as follows will add an employee
to the list with ID as 3 and return the list of employees as a response:

$ curl -H "Content-Type: application/json" -X POST -d '{"Id":"3", "firstName":"Quux", "lastName":"Corge"}' http://localhost:8080/employee/add

 This is shown in the following screenshot:

Let’s understand the change we introduced in this recipe:

1. First, we added another route with the name addEmployee that executes the
addEmployee handler for every POST request for the URL pattern /employee/add.

2. Then, we defined an addEmployee handler, which basically decodes the employee
data that comes as part of a POST request using the NewDecoder handler of the built-
in encoding/json package of Go, appends it to the initial static array of an employee,
and writes it to an HTTP response stream.

Creating your first HTTP PUT
method
Whenever we want to update a record that we have created earlier or want to create a
new record if it does not exist, often termed an Upsert, then we go with the
HTTP PUT method implementation, which we will cover in this recipe.

How to do it…
1. Install the github.com/gorilla/mux package using the go get command, as follows:

$ go get github.com/gorilla/mux

2. Create http-rest-put.go where we will define an additional route that supports the
HTTP PUT method and a handler that either updates the employee details for the
provided ID or adds an employee to the initial static array of employees; if the ID
does not exist, marshal it to the JSON, and write it to an HTTP response stream,
as follows:

package main

import

(

 "encoding/json"

 "log"

 "net/http"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type Route struct

{

 Name string

 Method string

 Pattern string

 HandlerFunc http.HandlerFunc

}

type Routes []Route

var routes = Routes

{

 Route

 {

 "getEmployees",

 "GET",

 "/employees",

 getEmployees,

 },

 Route

 {

 "addEmployee",

 "POST",

 "/employee/add",

 addEmployee,

 },

 Route

 {

 "updateEmployee",

 "PUT",

 "/employee/update",

 updateEmployee,

 },

}

type Employee struct

{

 Id string `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: "1", FirstName: "Foo", LastName: "Bar"},

 Employee{Id: "2", FirstName: "Baz", LastName: "Qux"},

 }

}

func getEmployees(w http.ResponseWriter, r *http.Request)

{

 json.NewEncoder(w).Encode(employees)

}

func updateEmployee(w http.ResponseWriter, r *http.Request)

{

 employee := Employee{}

 err := json.NewDecoder(r.Body).Decode(&employee)

 if err != nil

 {

 log.Print("error occurred while decoding employee

 data :: ", err)

 return

 }

 var isUpsert = true

 for idx, emp := range employees

 {

 if emp.Id == employee.Id

 {

 isUpsert = false

 log.Printf("updating employee id :: %s with

 firstName as :: %s and lastName as:: %s ",

 employee.Id, employee.FirstName, employee.LastName)

 employees[idx].FirstName = employee.FirstName

 employees[idx].LastName = employee.LastName

 break

 }

 }

 if isUpsert

 {

 log.Printf("upserting employee id :: %s with

 firstName as :: %s and lastName as:: %s ",

 employee.Id, employee.FirstName, employee.LastName)

 employees = append(employees, Employee{Id: employee.Id,

 FirstName: employee.FirstName, LastName: employee.LastName})

 }

 json.NewEncoder(w).Encode(employees)

}

func addEmployee(w http.ResponseWriter, r *http.Request)

{

 employee := Employee{}

 err := json.NewDecoder(r.Body).Decode(&employee)

 if err != nil

 {

 log.Print("error occurred while decoding employee

 data :: ", err)

 return

 }

 log.Printf("adding employee id :: %s with firstName

 as :: %s and lastName as :: %s ", employee.Id,

 employee.FirstName, employee.LastName)

 employees = append(employees, Employee{Id: employee.Id,

 FirstName: employee.FirstName, LastName: employee.LastName})

 json.NewEncoder(w).Encode(employees)

}

func AddRoutes(router *mux.Router) *mux.Router

{

 for _, route := range routes

 {

 router.

 Methods(route.Method).

 Path(route.Pattern).

 Name(route.Name).

 Handler(route.HandlerFunc)

 }

 return router

}

func main()

{

 muxRouter := mux.NewRouter().StrictSlash(true)

 router := AddRoutes(muxRouter)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-rest-put.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, executing a PUT request from the command line as follows, will update
the firstName and the lastName for an employee with ID 1:

$ curl -H "Content-Type: application/json" -X PUT -d '{"Id":"1", "firstName":"Grault", "lastName":"Garply"}' http://localhost:8080/employee/update

 This can be seen in the following screenshot:

If we execute a PUT request for an employee with ID 3 from the command line as
follows, it will add another employee to the array, as there is no employee with ID 3,
demonstrating the upsert scenario:

$ curl -H "Content-Type: application/json" -X PUT -d '{"Id":"3", "firstName":"Quux", "lastName":"Corge"}' http://localhost:8080/employee/update

This can be seen in the following screenshot:

Let’s understand the change we introduced in this recipe:

1. First, we added another route with the name updateEmployee, which executes the
updateEmployee handler for every PUT request for the URL pattern /employee/update.

2. Then, we defined an updateEmployee handler, which basically decodes the employee
data that comes as part of a PUT request using the NewDecoder handler of the built-in
encoding/json package of Go, iterates over the employees array to know whether
the employee ID requested exists in the initial static array of employees, which
we may also term as an UPDATE or UPSERT scenario, performs the required
action, and writes the response to an HTTP response stream.

Creating your first HTTP
DELETE method
Whenever we want to remove a record that is no longer required then we go with the
HTTP DELETE method implementation, which we will cover in this recipe.

How to do it…
1. Install the github.com/gorilla/mux package, using the go get command, as follows:

$ go get github.com/gorilla/mux

2. Create http-rest-delete.go where we will define a route that supports the HTTP
DELETE method and a handler that deletes the employee details for the provided ID
from the static array of employees, marshals the array to JSON, and writes it to an
HTTP response stream, as follows:

package main

import

(

 "encoding/json"

 "log"

 "net/http"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type Route struct

{

 Name string

 Method string

 Pattern string

 HandlerFunc http.HandlerFunc

}

type Routes []Route

var routes = Routes

{

 Route

 {

 "getEmployees",

 "GET",

 "/employees",

 getEmployees,

 },

 Route

 {

 "addEmployee",

 "POST",

 "/employee/add/",

 addEmployee,

 },

 Route

 {

 "deleteEmployee",

 "DELETE",

 "/employee/delete",

 deleteEmployee,

 },

}

type Employee struct

{

 Id string `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: "1", FirstName: "Foo", LastName: "Bar"},

 Employee{Id: "2", FirstName: "Baz", LastName: "Qux"},

 }

}

func getEmployees(w http.ResponseWriter, r *http.Request)

{

 json.NewEncoder(w).Encode(employees)

}

func deleteEmployee(w http.ResponseWriter, r *http.Request)

{

 employee := Employee{}

 err := json.NewDecoder(r.Body).Decode(&employee)

 if err != nil

 {

 log.Print("error occurred while decoding employee

 data :: ", err)

 return

 }

 log.Printf("deleting employee id :: %s with firstName

 as :: %s and lastName as :: %s ", employee.Id,

 employee.FirstName, employee.LastName)

 index := GetIndex(employee.Id)

 employees = append(employees[:index], employees[index+1:]...)

 json.NewEncoder(w).Encode(employees)

}

func GetIndex(id string) int

{

 for i := 0; i < len(employees); i++

 {

 if employees[i].Id == id

 {

 return i

 }

 }

 return -1

}

func addEmployee(w http.ResponseWriter, r *http.Request)

{

 employee := Employee{}

 err := json.NewDecoder(r.Body).Decode(&employee)

 if err != nil

 {

 log.Print("error occurred while decoding employee

 data :: ", err)

 return

 }

 log.Printf("adding employee id :: %s with firstName

 as :: %s and lastName as :: %s ", employee.Id,

 employee.FirstName, employee.LastName)

 employees = append(employees, Employee{Id: employee.Id,

 FirstName: employee.FirstName, LastName: employee.LastName})

 json.NewEncoder(w).Encode(employees)

}

func AddRoutes(router *mux.Router) *mux.Router

{

 for _, route := range routes

 {

 router.

 Methods(route.Method).

 Path(route.Pattern).

 Name(route.Name).

 Handler(route.HandlerFunc)

 }

 return router

}

func main()

{

 muxRouter := mux.NewRouter().StrictSlash(true)

 router := AddRoutes(muxRouter)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-rest-delete.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, executing a DELETE request from the command line as follows, will delete an
employee with ID 1 and give us the updated list of employees:

$ curl -H "Content-Type: application/json" -X DELETE -d '{"Id":"1", "firstName": "Foo", "lastName": "Bar"}' http://localhost:8080/employee/delete

 This can be seen in the following screenshot:

Let’s understand the change we introduced in this recipe:

1. First, we added another route with the name deleteEmployee, which executes the
deleteEmployee handler for every DELETE request for the URL pattern /employee/delete.

2. Then, we defined a deleteEmployee handler, which basically decodes the employee
data that comes as part of a DELETE request using the NewDecoder handler of the built-
in encoding/json package of Go, gets the index of the requested employee using
the GetIndex helper function, deletes the employee, and writes the updated array as
JSON to an HTTP response stream.

Versioning your REST API
When you create a RESTful API to serve an internal client, you probably don't have to
worry about versioning your API. Taking things a step further, if you have control
over all the clients that access your API, the same may be true.

However, in a case where you have a public API or an API where you do not have
control over every client using it, versioning of your API may be required, as
businesses need to evolve, which we will be covering in this recipe.

How to do it…
1. Install the github.com/gorilla/mux package, using the go get command, as follows:

$ go get github.com/gorilla/mux

2. Create http-rest-versioning.go where we will define two versions of the same URL
path that support the HTTP GET method, with one having v1 as a prefix and the
other one with v2 as a prefix in the route, as follows:

package main

import

(

 "encoding/json"

 "log"

 "net/http"

 "strings"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type Route struct

{

 Name string

 Method string

 Pattern string

 HandlerFunc http.HandlerFunc

}

type Routes []Route

var routes = Routes

{

 Route

 {

 "getEmployees",

 "GET",

 "/employees",

 getEmployees,

 },

}

type Employee struct

{

 Id string `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

var employeesV1 []Employee

var employeesV2 []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: "1", FirstName: "Foo", LastName: "Bar"},

 }

 employeesV1 = Employees

 {

 Employee{Id: "1", FirstName: "Foo", LastName: "Bar"},

 Employee{Id: "2", FirstName: "Baz", LastName: "Qux"},

 }

 employeesV2 = Employees

 {

 Employee{Id: "1", FirstName: "Baz", LastName: "Qux"},

 Employee{Id: "2", FirstName: "Quux", LastName: "Quuz"},

 }

}

func getEmployees(w http.ResponseWriter, r *http.Request)

{

 if strings.HasPrefix(r.URL.Path, "/v1")

 {

 json.NewEncoder(w).Encode(employeesV1)

 }

 else if strings.HasPrefix(r.URL.Path, "/v2")

 {

 json.NewEncoder(w).Encode(employeesV2)

 }

 else

 {

 json.NewEncoder(w).Encode(employees)

 }

}

func AddRoutes(router *mux.Router) *mux.Router

{

 for _, route := range routes

 {

 router.

 Methods(route.Method).

 Path(route.Pattern).

 Name(route.Name).

 Handler(route.HandlerFunc)

 }

 return router

}

func main()

{

 muxRouter := mux.NewRouter().StrictSlash(true)

 router := AddRoutes(muxRouter)

 // v1

 AddRoutes(muxRouter.PathPrefix("/v1").Subrouter())

 // v2

 AddRoutes(muxRouter.PathPrefix("/v2").Subrouter())

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-rest-versioning.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, executing a GET request with the path prefix as /v1 from the command line as
follows, will give you a list of one set of employees:

$ curl -X GET http://localhost:8080/v1/employees

[{"id":"1","firstName":"Foo","lastName":"Bar"},{"id":"2","firstName":"Baz","lastName":"Qux"}]

 Here, executing a GET request with path prefix as /v2 will give you a list of another set
of employees, as follows:

$ curl -X GET http://localhost:8080/v2/employees

 [{"id":"1","firstName":"Baz","lastName":"Qux"},{"id":"2","firstName":"Quux","lastName":"Quuz"}]

Sometimes, while designing the REST URL, we prefer to return the default data if the
client queries the endpoint without specifying the version in the URL path. To
incorporate it, we have modified the getEmployees handler to check for the prefix in the
URL and act accordingly. So, executing a GET request without the path prefix from the
command line as follows, will give you a list with a single record, which we can call
the default or initial response of the REST endpoint called:

$ curl -X GET http://localhost:8080/employees

 [{"id":"1","firstName":"Foo","lastName":"Bar"}]

Let’s understand the change we introduced in this recipe:

1. First, we defined a single route with the name getEmployees, which executes
a getEmployees handler for every GET request for the URL pattern /employees.

2. Then, we created three arrays, namely employees, employeesV1, and employeesV2, which
are returned as a response to an HTTP GET call for the URL patterns /employees,
/v1/employees, and /v2/employees respectively.

3. Next, we have defined a getEmployees handler where we check for the prefix in the
URL path and perform an action based on it.

4. Then, we defined an AddRoutes helper function, which iterates over the routes array
we defined, adds it to the gorilla/mux router, and returns the Router object.

5. Finally, we defined main() where we create a gorilla/mux router instance using the
NewRouter() handler with the trailing slash behavior for new routes as true, and add
routes to it calling the AddRoutes helper function passing the default router and two
subrouters, one with the prefix as v1 and the other with the prefix as v2.

Creating your first REST client
Today, most applications that communicate with servers use RESTful services. Based
on our needs, we consume these services through JavaScript, jQuery, or through a
REST client.

In this recipe, we will write a REST client using the https://gopkg.in/resty.v1 package,
which itself is inspired by the Ruby rest client to consume the RESTful services.

Getting ready…
Run http-rest-get.go, which we created in one of our previous recipes, in a separate
terminal, executing the following command:

$ go run http-rest-get.go

See the Creating your first HTTP GET method recipe.

Verify whether the /employees service is running locally on port 8080 by executing the
following command:

$ curl -X GET http://localhost:8080/employees

This should return the following response:

[{"id":"1","firstName":"Foo","lastName":"Bar"},{"id":"2","firstName":"Baz","lastName":"Qux"}]

How to do it…
1. Install the github.com/gorilla/mux and gopkg.in/resty.v1 packages using the go get

command, as follows:

$ go get github.com/gorilla/mux

$ go get -u gopkg.in/resty.v1

2. Create http-rest-client.go where we will define handlers that call resty handlers,
such as GET, POST, PUT, and DELETE, get the response from the REST service, and write
it to an HTTP response stream, as follows:

package main

import

(

 "encoding/json"

 "fmt"

 "log"

 "net/http"

 "github.com/gorilla/mux"

 resty "gopkg.in/resty.v1"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8090"

)

const WEB_SERVICE_HOST string = "http://localhost:8080"

type Employee struct

{

 Id string `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

func getEmployees(w http.ResponseWriter, r *http.Request)

{

 response, err := resty.R().Get(WEB_SERVICE_HOST +

 "/employees")

 if err != nil

 {

 log.Print("error getting data from the web service :: ", err)

 return

 }

 printOutput(response, err)

 fmt.Fprintf(w, response.String())

}

func addEmployee(w http.ResponseWriter, r *http.Request)

{

 employee := Employee{}

 decodingErr := json.NewDecoder(r.Body).Decode(&employee)

 if decodingErr != nil

 {

 log.Print("error occurred while decoding employee

 data :: ", decodingErr)

 return

 }

 log.Printf("adding employee id :: %s with firstName

 as :: %s and lastName as :: %s ", employee.Id,

 employee.FirstName, employee.LastName)

 response, err := resty.R().

 SetHeader("Content-Type", "application/json").

 SetBody(Employee{Id: employee.Id, FirstName:

 employee.FirstName, LastName: employee.LastName}).

 Post(WEB_SERVICE_HOST + "/employee/add")

 if err != nil

 {

 log.Print("error occurred while adding employee :: ", err)

 return

 }

 printOutput(response, err)

 fmt.Fprintf(w, response.String())

}

func updateEmployee(w http.ResponseWriter, r *http.Request)

{

 employee := Employee{}

 decodingErr := json.NewDecoder(r.Body).Decode(&employee)

 if decodingErr != nil

 {

 log.Print("error occurred while decoding employee

 data :: ", decodingErr)

 return

 }

 log.Printf("updating employee id :: %s with firstName

 as :: %s and lastName as :: %s ", employee.Id,

 employee.FirstName, employee.LastName)

 response, err := resty.R().

 SetBody(Employee{Id: employee.Id, FirstName:

 employee.FirstName, LastName: employee.LastName}).

 Put(WEB_SERVICE_HOST + "/employee/update")

 if err != nil

 {

 log.Print("error occurred while updating employee :: ", err)

 return

 }

 printOutput(response, err)

 fmt.Fprintf(w, response.String())

}

func deleteEmployee(w http.ResponseWriter, r *http.Request)

{

 employee := Employee{}

 decodingErr := json.NewDecoder(r.Body).Decode(&employee)

 if decodingErr != nil

 {

 log.Print("error occurred while decoding employee

 data :: ", decodingErr)

 return

 }

 log.Printf("deleting employee id :: %s with firstName

 as :: %s and lastName as :: %s ", employee.Id,

 employee.FirstName, employee.LastName)

 response, err := resty.R().

 SetBody(Employee{Id: employee.Id, FirstName:

 employee.FirstName, LastName: employee.LastName}).

 Delete(WEB_SERVICE_HOST + "/employee/delete")

 if err != nil

 {

 log.Print("error occurred while deleting employee :: ", err)

 return

 }

 printOutput(response, err)

 fmt.Fprintf(w, response.String())

}

func printOutput(resp *resty.Response, err error)

{

 log.Println(resp, err)

}

func main()

{

 router := mux.NewRouter().StrictSlash(false)

 router.HandleFunc("/employees", getEmployees).Methods("GET")

 employee := router.PathPrefix("/employee").Subrouter()

 employee.HandleFunc("/add", addEmployee).Methods("POST")

 employee.HandleFunc("/update", updateEmployee).Methods("PUT")

 employee.HandleFunc("/delete", deleteEmployee).Methods("DELETE")

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-rest-client.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8090.

Next, executing a GET request to the REST client from the command line as follows will
give you a list of all the employees from the service:

$ curl -X GET http://localhost:8090/employees

 [{"id":"1","firstName":"Foo","lastName":"Bar"},{"id":"2","firstName":"Baz","lastName":"Qux"}]

Similarly, run http-rest-post.go, which we created in one of our previous recipes, in a
separate terminal by executing the following command:

$ go run http-rest-post.go

Execute a POST request to the REST client from the command line, as follows:

$ curl -H "Content-Type: application/json" -X POST -d '{"Id":"3", "firstName":"Quux", "lastName":"Corge"}' http://localhost:8090/employee/add

[{"id":"1","firstName":"Foo","lastName":"Bar"},{"id":"2","firstName":"Baz","lastName":"Qux"},{"id":"3","firstName":"Quux","lastName":"Corge"}]

This will add an employee to the initial static list and return an updated list of
the employees, which will look as shown in the following screenshot:

Let’s understand the program we have written:

1. Using import ("encoding/json" "fmt" "log" "net/http" "github.com/gorilla/mux" resty
“gopkg.in/resty.v1"), we imported github.com/gorilla/mux to create a Gorilla Mux Router
and gopkg.in/resty.v1 with the package alias as resty, which is a REST client of Go,
having various handlers to consume the RESTful web service.

2. Using const WEB_SERVICE_HOST string = "http://localhost:8080", we declared the
complete URL of the RESTful web service host.

Depending on the project size, you can move the WEB_SERVICE_HOST string to the constants file or to the properties
file, helping you to override its value at runtime.

3. Next, we defined a getEmployees handler where we create a new resty request object
calling its R() handler, call the Get method, which performs the HTTP GET request,
gets the response, and writes it to an HTTP response.

4. Similarly, we defined three more handlers that do the POST, PUT, and DELETE requests
to the RESTful service and a main() where we create a gorilla/mux router instance
and register the /employees URL path with the getEmployees handler and /employee/add,

/employee/update, and /employee/delete with the addEmployee, updateEmployee, and
deleteEmployee handlers, respectively.

Creating your first AngularJS
Client
AngularJS is an open source JavaScript Model-View-Whatever (MVW) framework,
which lets us build well-structured, easily testable and maintainable browser-based
applications.

In this recipe, we will learn to create an AngularJS with TypeScript 2 client to send
a POST request to the HTTP server running locally.

Getting ready…
As we have already created an HTTP server that accepts both GET and POST requests in
one of our previous recipes, we will be using the same code base as our HTTP server.

Also, this recipe assumes you have Angular2 CLI installed on your machine. If not,
install it by executing the following command:

$ npm install -g @angular/cli

See the Creating your first HTTP POST method recipe.

How to do it…
1. Create a new project and skeleton application by executing the following

command:

$ ng new angularjs-client

2. Move to the angularjs-client directory and create server.go by executing the
following command:

$ cd angularjs-client && touch server.go

3. Copy the following code to server.go:

package main

import

(

 "encoding/json"

 "log"

 "net/http"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type Route struct

{

 Name string

 Method string

 Pattern string

 HandlerFunc http.HandlerFunc

}

type Routes []Route

var routes = Routes

{

 Route

 {

 "getEmployees",

 "GET",

 "/employees",

 getEmployees,

 },

 Route

 {

 "addEmployee",

 "POST",

 "/employee/add",

 addEmployee,

 },

}

type Employee struct

{

 Id string `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: "1", FirstName: "Foo", LastName: "Bar"},

 Employee{Id: "2", FirstName: "Baz", LastName: "Qux"},

 }

}

func getEmployees(w http.ResponseWriter, r *http.Request)

{

 json.NewEncoder(w).Encode(employees)

}

func addEmployee(w http.ResponseWriter, r *http.Request)

{

 employee := Employee{}

 err := json.NewDecoder(r.Body).Decode(&employee)

 if err != nil

 {

 log.Print("error occurred while decoding employee

 data :: ", err)

 return

 }

 log.Printf("adding employee id :: %s with firstName

 as :: %s and lastName as :: %s ", employee.Id,

 employee.FirstName, employee.LastName)

 employees = append(employees, Employee{Id: employee.Id,

 FirstName: employee.FirstName, LastName: employee.LastName})

 json.NewEncoder(w).Encode(employees)

}

func AddRoutes(router *mux.Router) *mux.Router

{

 for _, route := range routes

 {

 router.

 Methods(route.Method).

 Path(route.Pattern).

 Name(route.Name).

 Handler(route.HandlerFunc)

 }

 return router

}

func main()

{

 muxRouter := mux.NewRouter().StrictSlash(true)

 router := AddRoutes(muxRouter)

 router.PathPrefix("/").Handler(http.FileServer

 (http.Dir("./dist/")))

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

4. Move to the angularjs-client directory and create models/employee.ts and
service/employee.service.ts by executing the following command:

$ cd src/app/ && mkdir models && mkdir services && cd models && touch employee.ts && cd ../services && touch employee.service.ts

5. Copy the following code to angularjs-client/src/app/models/employee.ts:

export class Employee

{

 constructor

 (

 public id: string,

 public firstName: string,

 public lastName: string

) {}

}

6. Copy the following code to angularjs-client/src/app/services
/employee.service.ts:

import { Injectable } from '@angular/core';

import { Http, Response, Headers, RequestOptions } from '@angular/http';

import { Observable } from 'rxjs/Rx';

import { Employee } from "app/models/employee";

@Injectable()

export class EmployeeService

{

 constructor(private http: Http) { }

 getEmployees(): Observable<Employee[]>

 {

 return this.http.get("http://localhost:8080/employees")

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw(error.json().

 error || 'Server error'));

 }

 addEmployee(employee: Employee): Observable<Employee>

 {

 let headers = new Headers({ 'Content-Type':

 'application/json' });

 let options = new RequestOptions({ headers: headers });

 return this.http.post("http://localhost:8080/employee

 /add", employee, options)

 .map(this.extractData)

 .catch(this.handleErrorObservable);

 }

 private extractData(res: Response)

 {

 let body = res.json();

 return body || {};

 }

 private handleErrorObservable(error: Response | any)

 {

 console.error(error.message || error);

 return Observable.throw(error.message || error);

 }

}

7. Replace the code of angularjs-client/src/app/app.component.html with the following:

<div class = "container" style="padding:5px">

 <form>

 <div class = "form-group">

 <label for = "id">ID</label>

 <input type = "text" class = "form-control" id = "id"

 required [(ngModel)] = "employee.id" name = "id">

 </div>

 <div class = "form-group">

 <label for = "firstName">FirstName</label>

 <input type = "text" class = "form-control" id =

 "firstName" [(ngModel)] = "employee.firstName" name =

 "firstName">

 </div>

 <div class = "form-group">

 <label for = "lastName">LastName</label>

 <input type = "text" class = "form-control" id =

 "lastName" [(ngModel)] = "employee.lastName" name =

 "lastName">

 </div>

 <div>

 <button (click)="addEmployee()">Add</button>

 </div>

 </form>

</div>

<table>

 <thead>

 <th>ID</th>

 <th>FirstName</th>

 <th>LastName</th>

 </thead>

 <tbody>

 <tr *ngFor="let employee of employees">

 <td>{{employee.id}}</td>

 <td>{{employee.firstName}}</td>

 <td>{{employee.lastName}}</td>

 </tr>

 </tbody>

</table>

8. Replace the code of angularjs-client/src/app/app.component.ts with the following:

import { Component, OnInit } from '@angular/core';

import { EmployeeService } from "app/services/employee.service";

import { Employee } from './models/employee';

@Component

({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css'],

})

export class AppComponent implements OnInit

{

 title = 'app';

 employee = new Employee('', '', '');

 employees;

 constructor(private employeeService: EmployeeService) { }

 ngOnInit(): void

 {

 this.getEmployees();

 }

 getEmployees(): void

 {

 this.employeeService.getEmployees()

 .subscribe(employees => this.employees = employees);

 }

 addEmployee(): void

 {

 this.employeeService.addEmployee(this.employee)

 .subscribe

 (

 employee =>

 {

 this.getEmployees();

 this.reset();

 }

);

 }

 private reset()

 {

 this.employee.id = null;

 this.employee.firstName = null;

 this.employee.lastName = null;

 }

}

9. Replace the code of angularjs-client/src/app/app.module.ts with the following:

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { HttpModule } from '@angular/http';

import { AppComponent } from './app.component';

import { EmployeeService } from "app/services/employee.service";

import { FormsModule } from '@angular/forms';

@NgModule

({

 declarations:

 [

 AppComponent

],

 imports:

 [

 BrowserModule, HttpModule, FormsModule

],

 providers: [EmployeeService],

 bootstrap: [AppComponent]

})

export class AppModule { }

With everything in place, the directory structure should look like the following:

10. Move to the angularjs-client directory and execute the following commands to
build the project artifacts and run the program:

$ ng build

$ go run server.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Browsing to http://localhost:8080 will show us the AngularJS client page, which has an
HTML form with Id, FirstName, and LastName fields, as shown in the
following screenshot:

Clicking on the Add button after filling in the form will send a POST request to an HTTP
server running on port 8080. Once a request is processed by the server it will return
a list of all the static employees along with the newly added one, and display it in a
browser, as shown in the following screenshot:

List of all the static employees along with the newly added one

Creating your first ReactJS
client
ReactJS is a declarative JavaScript library that helps in building user interfaces
efficiently. Because it works on the concept of virtual DOM it improves application
performance, since JavaScript virtual DOM is faster than the regular DOM.

In this recipe, we will learn to create a ReactJS client to send a POST request to the
HTTP server running locally.

Getting ready…
As we have already created an HTTP server that accepts both GET and POST HTTP
requests in our previous recipe, we will be using the same code base as our HTTP
server.

Also, this recipe assumes you have npm installed on your machine and you have basic
knowledge of npm and webpack, which is a JavaScript Module bundler.

See the Creating your first HTTP POST method recipe.

How to do it…
1. Create a reactjs-client directory where we will keep all our ReactJS source files

and an HTTP server, as follows:

$ mkdir reactjs-client && cd reactjs-client && touch server.go

2. Copy the following code to server.go:

package main

import

(

 "encoding/json"

 "log"

 "net/http"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type Route struct

{

 Name string

 Method string

 Pattern string

 HandlerFunc http.HandlerFunc

}

type Routes []Route

var routes = Routes

{

 Route

 {

 "getEmployees",

 "GET",

 "/employees",

 getEmployees,

 },

 Route

 {

 "addEmployee",

 "POST",

 "/employee/add",

 addEmployee,

 },

}

type Employee struct

{

 Id string `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: "1", FirstName: "Foo", LastName: "Bar"},

 Employee{Id: "2", FirstName: "Baz", LastName: "Qux"},

 }

}

func getEmployees(w http.ResponseWriter, r *http.Request)

{

 json.NewEncoder(w).Encode(employees)

}

func addEmployee(w http.ResponseWriter, r *http.Request)

{

 employee := Employee{}

 err := json.NewDecoder(r.Body).Decode(&employee)

 if err != nil

 {

 log.Print("error occurred while decoding employee

 data :: ", err)

 return

 }

 log.Printf("adding employee id :: %s with firstName

 as :: %s and lastName as :: %s ", employee.Id,

 employee.FirstName, employee.LastName)

 employees = append(employees, Employee{Id: employee.Id,

 FirstName: employee.FirstName, LastName: employee.LastName})

 json.NewEncoder(w).Encode(employees)

}

func AddRoutes(router *mux.Router) *mux.Router

{

 for _, route := range routes

 {

 router.

 Methods(route.Method).

 Path(route.Pattern).

 Name(route.Name).

 Handler(route.HandlerFunc)

 }

 return router

}

func main()

{

 muxRouter := mux.NewRouter().StrictSlash(true)

 router := AddRoutes(muxRouter)

 router.PathPrefix("/").Handler(http.FileServer

 (http.Dir("./assets/")))

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Create another directory with the name assets where all our frontend code files,
such as .html, .js, .css, and images will be kept, as follows:

$ mkdir assets && cd assets && touch index.html

4. Copy the following content to index.html:

<html>

 <head lang="en">

 <meta charset="UTF-8" />

 <title>ReactJS Client</title>

 </head>

 <body>

 <div id="react"></div>

 <script src="/script.js"></script>

 </body>

</html>

5. Move to the reactjs-client directory and execute npm init to create package.json
where we specify all the dependencies required to build our react client such
as React, React DOM, Webpack, Babel Loader, Babel Core, Babel Preset: ES2015, and Babel
Preset: React, as follows:

$ cd reactjs-client && touch npm init

Replace the content of package.json with the following content:

{

 "name": "reactjs-client",

 "version": "1.0.0",

 "description": "ReactJs Client",

 "keywords":

 [

 "react"

],

 "author": "Arpit Aggarwal",

 "dependencies":

 {

 "axios": "^0.18.0",

 "react": "^16.2.0",

 "react-dom": "^16.2.0",

 "react-router-dom": "^4.2.2",

 "webpack": "^4.2.0",

 "webpack-cli": "^2.0.9",

 "lodash": "^4.17.5"

 },

 "scripts":

 {

 "build": "webpack",

 "watch": "webpack --watch -d"

 },

 "devDependencies":

 {

 "babel-core": "^6.18.2",

 "babel-loader": "^7.1.4",

 "babel-polyfill": "^6.16.0",

 "babel-preset-es2015": "^6.18.0",

 "babel-preset-react": "^6.16.0"

 }

}

6. Create webpack.config.js where we will configure webpack, as follows:

$ cd reactjs-client && touch webpack.config.js

Copy the following content to webpack.config.js:

var path = require('path');

module.exports =

{

 resolve:

 {

 extensions: ['.js', '.jsx']

 },

 mode: 'development',

 entry: './app/main.js',

 cache: true,

 output:

 {

 path: __dirname,

 filename: './assets/script.js'

 },

 module:

 {

 rules:

 [

 {

 test: path.join(__dirname, '.'),

 exclude: /(node_modules)/,

 loader: 'babel-loader',

 query:

 {

 cacheDirectory: true,

 presets: ['es2015', 'react']

 }

 }

]

 }

};

7. Create an entry point for the webpack, which is reactjs-client/app/main.js by
executing the following commands:

$ cd reactjs-client && mkdir app && cd app && touch main.js

Copy the following content to main.js:

'use strict';

const React = require('react');

const ReactDOM = require('react-dom')

import EmployeeApp from './components/employee-app.jsx'

ReactDOM.render

(

 <EmployeeApp />,

 document.getElementById('react')

)

8. Define ReactApp along with its child components by executing the following
commands:

$ cd reactjs-client && mkdir components && cd components && touch react-app.jsx employee-list.jsx employee.jsx add-employee.jsx

Copy the following content to reactjs-client/app/components/employee-app.jsx:

'use strict';

const React = require('react');

var axios = require('axios');

import EmployeeList from './employee-list.jsx'

import AddEmployee from './add-employee.jsx'

export default class EmployeeApp extends React.Component

{

 constructor(props)

 {

 super(props);

 this.state = {employees: []};

 this.addEmployee = this.addEmployee.bind(this);

 this.Axios = axios.create

 (

 {

 headers: {'content-type': 'application/json'}

 }

);

 }

 componentDidMount()

 {

 let _this = this;

 this.Axios.get('/employees')

 .then

 (

 function (response)

 {

 _this.setState({employees: response.data});

 }

)

 .catch(function (error) { });

 }

 addEmployee(employeeName)

 {

 let _this = this;

 this.Axios.post

 (

 '/employee/add',

 {

 firstName: employeeName

 }

)

 .then

 (

 function (response)

 {

 _this.setState({employees: response.data});

 }

)

 .catch(function (error) { });

 }

 render()

 {

 return

 (

 <div>

 <AddEmployee addEmployee={this.addEmployee}/>

 <EmployeeList employees={this.state.employees}/>

 </div>

)

 }

}

Copy the following content to reactjs-client/app/components/employee.jsx:

const React = require('react');

export default class Employee extends React.Component

{

 render()

 {

 return

 (

 <tr>

 <td>{this.props.employee.firstName}</td>

 </tr>

)

 }

}

Copy the following content to reactjs-client/app/components/employee-list.jsx:

const React = require('react');

import Employee from './employee.jsx'

export default class EmployeeList extends React.Component

{

 render()

 {

 var employees = this.props.employees.map

 (

 (employee, i) =>

 <Employee key={i} employee={employee}/>

);

 return

 (

 <table>

 <tbody>

 <tr>

 <th>FirstName</th>

 </tr>

 {employees}

 </tbody>

 </table>

)

 }

}

Copy the following content to reactjs-client/app/components/add-employee.jsx:

import React, { Component, PropTypes } from 'react'

export default class AddEmployee extends React.Component

{

 render()

 {

 return

 (

 <div>

 <input type = 'text' ref = 'input' />

 <button onClick = {(e) => this.handleClick(e)}>

 Add

 </button>

 </div>

)

 }

 handleClick(e)

 {

 const node = this.refs.input

 const text = node.value.trim()

 this.props.addEmployee(text)

 node.value = ''

 }

}

With everything in place, the directory structure should look like the following:

Directory structure

9. Move to the reactjs-client directory and execute the following commands to install
node modules and build webpack:

$ npm install

$ npm run build

10. Run the program with the following command:

$ go run server.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Browsing to http://localhost:8080 will show us the ReactJS client page, as shown in the
following screenshot:

ReactJS client page

Clicking on the Add button after filling in the textbox will send a POST request to the
HTTP server running on port 8080:

Click on the Add button after filling in the textbox

Next, executing a GET request from the command line as follows will give you a list of
all the static employees:

$ curl -X GET http://localhost:8080/employees

This will be alongside the newly added one, as follows:

[{"id":"1","firstName":"Foo","lastName":"Bar"},{"id":"2","firstName":"Baz","lastName":"Qux"},{"id":"","firstName":"Arpit","lastName":""}]

Creating your first VueJS client
Being open source, VueJS is one of the incrementally adoptable and progressive
JavaScript frameworks that companies are adopting to build their frontend or client-
facing user interfaces for the web.

In this recipe, we will learn to create a client in VueJS, which adds an employee
sending an HTTP POST request to the HTTP server running locally.

Getting ready…
As we have already created an HTTP server that accepts both GET and POST requests in
one of our previous recipes, we will be using the same code base as our HTTP server.

See the Creating your first HTTP POST method recipe.

How to do it…
1. Create a vuejs-client directory where we will keep all our VueJS source files and

an HTTP server, as follows:

$ mkdir vuejs-client && cd vuejs-client && touch server.go

2. Copy the following code to server.go:

package main

import

(

 "encoding/json"

 "log"

 "net/http"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type Route struct

{

 Name string

 Method string

 Pattern string

 HandlerFunc http.HandlerFunc

}

type Routes []Route

var routes = Routes

{

 Route

 {

 "getEmployees",

 "GET",

 "/employees",

 getEmployees,

 },

 Route

 {

 "addEmployee",

 "POST",

 "/employee/add",

 addEmployee,

 },

}

type Employee struct

{

 Id string `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: "1", FirstName: "Foo", LastName: "Bar"},

 Employee{Id: "2", FirstName: "Baz", LastName: "Qux"},

 }

}

func getEmployees(w http.ResponseWriter, r *http.Request)

{

 json.NewEncoder(w).Encode(employees)

}

func addEmployee(w http.ResponseWriter, r *http.Request)

{

 employee := Employee{}

 err := json.NewDecoder(r.Body).Decode(&employee)

 if err != nil

 {

 log.Print("error occurred while decoding employee

 data :: ", err)

 return

 }

 log.Printf("adding employee id :: %s with firstName

 as :: %s and lastName as :: %s ", employee.Id,

 employee.FirstName, employee.LastName)

 employees = append(employees, Employee{Id: employee.Id,

 FirstName: employee.FirstName, LastName: employee.LastName})

 json.NewEncoder(w).Encode(employees)

}

func AddRoutes(router *mux.Router) *mux.Router

{

 for _, route := range routes

 {

 router.

 Methods(route.Method).

 Path(route.Pattern).

 Name(route.Name).

 Handler(route.HandlerFunc)

 }

 return router

}

func main()

{

 muxRouter := mux.NewRouter().StrictSlash(true)

 router := AddRoutes(muxRouter)

 router.PathPrefix("/").Handler(http.FileServer

 (http.Dir("./assets/")))

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Create another directory with the name assets where all our frontend code files
such as .html, .js, .css, and images will be kept, as follows:

$ mkdir assets && cd assets && touch index.html && touch main.js

4. Copy the following content to index.html:

<html>

 <head>

 <title>VueJs Client</title>

 <script type = "text/javascript" src = "https://cdnjs.

 cloudflare.com/ajax/libs/vue/2.4.0/vue.js"></script>

 <script type = "text/javascript" src="https://cdn.

 jsdelivr.net/npm/vue-resource@1.5.0"></script>

 </head>

 <body>

 <div id = "form">

 <h1>{{ message }}</h1>

 <table>

 <tr>

 <td><label for="id">Id</label></td>

 <td><input type="text" value="" v-model="id"/></td>

 </tr>

 <tr>

 <td><label for="firstName">FirstName</label></td>

 <td><input type="text" value="" v-model="firstName"/>

 <td>

 </tr>

 <tr>

 <td><label for="lastName">LastName</label></td>

 <td> <input type="text" value="" v-model="lastName" />

 </td>

 </tr>

 <tr>

 <td>Add

 </td>

 </tr>

 </table>

 </div>

 <script type = "text/javascript" src = "main.js"></script>

 </body>

</html>

5. Copy the following content to main.js:

var vue_det = new Vue

({

 el: '#form',

 data:

 {

 message: 'Employee Dashboard',

 id: '',

 firstName:'',

 lastName:''

 },

 methods:

 {

 addEmployee: function()

 {

 this.$http.post

 (

 '/employee/add',

 {

 id: this.id,

 firstName:this.firstName,

 lastName:this.lastName

 }

)

 .then

 (

 response =>

 {

 console.log(response);

 },

 error =>

 {

 console.error(error);

 }

);

 }

 }

});

With everything in place, the directory structure should look like the following:

Directory structure

6. Run the program with the following command:

$ go run server.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Browsing to http://localhost:8080 will show us the VueJS client page, which has an
HTML form with Id, FirstName, and LastName fields, as shown in the following
screenshot:

VueJS client page

Clicking on the Add button after filling in the form will send a POST request to the
HTTP server running on port 8080, as shown in the following screenshot:

Click on the Add button after filling in the form

Next, executing a GET request from the command line as follows, will give you a list of
all the static employees:

$ curl -X GET http://localhost:8080/employees

 This will be alongside the newly added one as follows:

[{"id":"1","firstName":"Foo","lastName":"Bar"},{"id":"2","firstName":"Baz","lastName":"Qux"},{"id":"5","firstName":"Arpit","lastName":"Aggarwal"}]

Working with SQL and NoSQL
Databases
In this chapter, we will cover the following recipes:

Integrating MySQL and Go
Creating your first record in MySQL
Reading records from MySQL
Updating your first record in MySQL
Deleting your first record from MySQL
Integrating MongoDB and Go
Creating your first document in MongoDB
Reading documents from MongoDB
Updating your first document in MongoDB
Deleting your first document from MongoDB

Introduction
Whenever we want to persist data we always look forward to saving it in databases,
which are mainly divided into two categories—SQL and NoSQL. There are a number
of databases under each category that can be used depending on the business use case
because each one has different characteristics and serves a different purpose.

In this chapter, we will integrate a Go web application with the most famous open
source databases—MySQL and MongoDB and learn to perform CRUD operations on
them. As we will use MySQL and MongoDB, I assume both of the databases are
installed and running on your local machine.

Integrating MySQL and Go
Let's assume you are a developer and want to save your application data in a MySQL
database. As a first step, you have to establish a connection between your application
and MySQL, which we will cover in this recipe.

Getting ready…
Verify whether MySQL is installed and running locally on port 3306 by executing the
following command:

$ ps -ef | grep 3306

This should return the following response:

Also, log into the MySQL database and create a mydb database, executing the
commands as shown in the following screenshot:

How to do it…
1. Install the github.com/go-sql-driver/mysql package, using the go get command, as

follows:

$ go get github.com/go-sql-driver/mysql

2. Create connect-mysql.go. Then we connect to the MySQL database and perform a
SELECT query to get the current database name, as follows:

package main

import

(

 "database/sql"

 "fmt"

 "log"

 "net/http"

 "github.com/go-sql-driver/mysql"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 DRIVER_NAME = "mysql"

 DATA_SOURCE_NAME = "root:password@/mydb"

)

var db *sql.DB

var connectionError error

func init()

{

 db, connectionError = sql.Open(DRIVER_NAME, DATA_SOURCE_NAME)

 if connectionError != nil

 {

 log.Fatal("error connecting to database :: ", connectionError)

 }

}

func getCurrentDb(w http.ResponseWriter, r *http.Request)

{

 rows, err := db.Query("SELECT DATABASE() as db")

 if err != nil

 {

 log.Print("error executing query :: ", err)

 return

 }

 var db string

 for rows.Next()

 {

 rows.Scan(&db)

 }

 fmt.Fprintf(w, "Current Database is :: %s", db)

}

func main()

{

 http.HandleFunc("/", getCurrentDb)

 defer db.Close()

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run connect-mysql.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Browsing to http://localhost:8080/ will return you the current database name, as shown
in the following screenshot:

Let’s understand the program we have written:

1. Using import ("database/sql" "fmt" "log" "net/http" _ "github.com/go-sql-driver/mysql"),
we imported github.com/go-sql-driver/mysql for its side effects or initialization, using
the underscore in front of an import statement explicitly.

2. Using var db *sql.DB, we declared a private DB instance.

Depending on the project size, you can declare a DB instance globally, inject it as a dependency using
handlers, or put the connection pool pointer into x/net/context.

3. Next, we defined an init() function where we connect to the database passing the
database driver name and data source to it.

4. Then, we defined a getCurrentDb handler, which basically performs a select query
on the database to get the current database name, iterates over the records, copies
its value into the variable, and eventually writes it to an HTTP response stream.

Creating your first record in
MySQL
Creating or saving a record in a database requires us to write SQL queries and execute
them, implement object-relational mapping (ORM), or implement data-mapping
techniques.

In this recipe, we will be writing a SQL query and executing it using the database/sql
package to create a record. To achieve this, you can also implement ORM using any
library from a number of third-party libraries available in Go, such as
https://github.com/jinzhu/gorm, https://github.com/go-gorp/gorp, and
https://github.com/jirfag/go-queryset.

Getting ready…
As we have already established a connection with the MySQL database in our previous
recipe, we will just extend it to create a record executing a SQL query.

Before creating a record, we have to create a table in the MySQL database, which we
will do by executing the commands shown in the following screenshot:

How to do it…
1. Install the github.com/go-sql-driver/mysql and github.com/gorilla/mux packages, using

the go get command, as follows:

$ go get github.com/go-sql-driver/mysql

$ go get github.com/gorilla/mux

2. Create create-record-mysql.go. Then we connect to the MySQL database and
perform an INSERT query to create an employee record, as follows:

package main

import

(

 "database/sql"

 "fmt"

 "log"

 "net/http"

 "strconv"

 "github.com/go-sql-driver/mysql"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 DRIVER_NAME = "mysql"

 DATA_SOURCE_NAME = "root:password@/mydb"

)

var db *sql.DB

var connectionError error

func init()

{

 db, connectionError = sql.Open(DRIVER_NAME, DATA_SOURCE_NAME)

 if connectionError != nil

 {

 log.Fatal("error connecting to database : ", connectionError)

 }

}

func createRecord(w http.ResponseWriter, r *http.Request)

{

 vals := r.URL.Query()

 name, ok := vals["name"]

 if ok

 {

 log.Print("going to insert record in database for name : ",

 name[0])

 stmt, err := db.Prepare("INSERT employee SET name=?")

 if err != nil

 {

 log.Print("error preparing query :: ", err)

 return

 }

 result, err := stmt.Exec(name[0])

 if err != nil

 {

 log.Print("error executing query :: ", err)

 return

 }

 id, err := result.LastInsertId()

 fmt.Fprintf(w, "Last Inserted Record Id is :: %s",

 strconv.FormatInt(id, 10))

 }

 else

 {

 fmt.Fprintf(w, "Error occurred while creating record in

 database for name :: %s", name[0])

 }

}

func main()

{

 router := mux.NewRouter()

 router.HandleFunc("/employee/create", createRecord).

 Methods("POST")

 defer db.Close()

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run create-record-mysql.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Executing a POST request to create an employee record from the command line as
follows will give you the ID of the last record created:

$ curl -X POST http://localhost:8080/employee/create?name=foo

Last created record id is :: 1

Let’s understand the program we have written:

1. Using import ("database/sql" "fmt" "log" "net/http" "strconv" _ "github.com/go-sql-
driver/mysql" "github.com/gorilla/mux"), we imported github.com/gorilla/mux to create a
Gorilla Mux Router and initialized the Go MySQL driver, importing the
github.com/go-sql-driver/mysql package.

2. Next, we defined a createRecord handler, which fetches the name from the request,
assigns it to the local variable name, prepares an INSERT statement with a name
placeholder that will be replaced dynamically with the name, executes the
statement, and eventually writes the last created ID to an HTTP response stream.

Reading records from MySQL
In the previous recipe, we created an employee record in the MySQL database. Now,
in this recipe, we will learn how we can read it by executing a SQL query.

How to do it…
1. Install the github.com/go-sql-driver/mysql and github.com/gorilla/mux packages using

the go get command, as follows:

$ go get github.com/go-sql-driver/mysql

$ go get github.com/gorilla/mux

2. Create read-record-mysql.go where we connect to the MySQL database, perform a
SELECT query to get all the employees from the database, iterate over the records,
copy its value into the struct, add all of them to a list, and write it to an HTTP
response stream, as follows:

package main

import

(

 "database/sql" "encoding/json"

 "log"

 "net/http"

 "github.com/go-sql-driver/mysql"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 DRIVER_NAME = "mysql"

 DATA_SOURCE_NAME = "root:password@/mydb"

)

var db *sql.DB

var connectionError error

func init()

{

 db, connectionError = sql.Open(DRIVER_NAME, DATA_SOURCE_NAME)

 if connectionError != nil

 {

 log.Fatal("error connecting to database :: ", connectionError)

 }

}

type Employee struct

{

 Id int `json:"uid"`

 Name string `json:"name"`

}

func readRecords(w http.ResponseWriter, r *http.Request)

{

 log.Print("reading records from database")

 rows, err := db.Query("SELECT * FROM employee")

 if err != nil

 {

 log.Print("error occurred while executing select

 query :: ",err)

 return

 }

 employees := []Employee{}

 for rows.Next()

 {

 var uid int

 var name string

 err = rows.Scan(&uid, &name)

 employee := Employee{Id: uid, Name: name}

 employees = append(employees, employee)

 }

 json.NewEncoder(w).Encode(employees)

}

func main()

{

 router := mux.NewRouter()

 router.HandleFunc("/employees", readRecords).Methods("GET")

 defer db.Close()

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run read-record-mysql.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Browsing to http://localhost:8080/employees will list all the records from the employee
table as shown in the following screenshot:

Let’s look at the program we have written:

1. Using import ("database/sql" "encoding/json" "log" "net/http" _ "github.com/go-sql-
driver/mysql" "github.com/gorilla/mux"), we imported an additional
package, encoding/json, which helps in marshalling the Go data structure to JSON.

2. Next, we declared the Go data structure Person, which has Id and Name fields.

Do remember that the field name should begin with a capital letter in the type definition or there could be
errors.

3. Next, we defined a readRecords handler, which queries the database to get all the
records from the employee table, iterates over the records, copies its value into
the struct, adds all the records to a list, marshals the object list to JSON, and
writes it to an HTTP response stream.

Updating your first record in
MySQL
Consider a scenario where you have created a record for an employee in a database
with all its details, such as name, department, address, and so on, and after some time
the employee changes departments. In that case, we have to update their department in
a database so that their details are in sync all across the organization, which can be
achieved using a SQL UPDATE statement, and in this recipe we will learn how we can
implement it in Go.

How to do it…
1. Install the github.com/go-sql-driver/mysql and github.com/gorilla/mux packages, using

the go get command, as follows:

$ go get github.com/go-sql-driver/mysql

$ go get github.com/gorilla/mux

2. Create update-record-mysql.go. Then we connect to the MySQL database, update the
name of an employee for an ID, and write the number of records updated in a
database to an HTTP response stream, as follows:

package main

import

(

 "database/sql"

 "fmt"

 "log"

 "net/http"

 "github.com/go-sql-driver/mysql"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 DRIVER_NAME = "mysql"

 DATA_SOURCE_NAME = "root:password@/mydb"

)

var db *sql.DB

var connectionError error

func init()

{

 db, connectionError = sql.Open(DRIVER_NAME, DATA_SOURCE_NAME)

 if connectionError != nil

 {

 log.Fatal("error connecting to database :: ", connectionError)

 }

}

type Employee struct

{

 Id int `json:"uid"`

 Name string `json:"name"`

}

func updateRecord(w http.ResponseWriter, r *http.Request)

{

 vars := mux.Vars(r)

 id := vars["id"]

 vals := r.URL.Query()

 name, ok := vals["name"]

 if ok

 {

 log.Print("going to update record in database

 for id :: ", id)

 stmt, err := db.Prepare("UPDATE employee SET name=?

 where uid=?")

 if err != nil

 {

 log.Print("error occurred while preparing query :: ", err)

 return

 }

 result, err := stmt.Exec(name[0], id)

 if err != nil

 {

 log.Print("error occurred while executing query :: ", err)

 return

 }

 rowsAffected, err := result.RowsAffected()

 fmt.Fprintf(w, "Number of rows updated in database

 are :: %d",rowsAffected)

 }

 else

 {

 fmt.Fprintf(w, "Error occurred while updating record in

 database for id :: %s", id)

 }

}

func main()

{

 router := mux.NewRouter()

 router.HandleFunc("/employee/update/{id}",

 updateRecord).Methods("PUT")

 defer db.Close()

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run update-record-mysql.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, executing a PUT request from the command line to update an employee record
with the ID as 1 will give you the number of records updated in the database as a
response:

$ curl -X PUT http://localhost:8080/employee/update/1?name\=bar

Number of rows updated in database are :: 1

Let’s look at the program we have written:

1. We defined an updateRecord handler, which gets the ID to be updated in the
database as a URL path variable path, and the new name as the request variable,
prepares an update statement with a name and UID as a placeholder, which will be
replaced dynamically, executes the statement, gets the number of rows updated as
a result of its execution, and writes it to an HTTP response stream.

2. Next, we registered an updateRecord handler to be called for the URL
pattern /employee/update/{id} for every PUT request with the gorilla/mux router and
closed the database using the defer db.Close() statement once we return from the
main() function.

Deleting your first record from
MySQL
Consider a scenario where an employee has left the organization and you want to
revoke their details from the database. In that case, we can use the SQL DELETE statement,
which we will be covering in this recipe.

How to do it…
1. Install the github.com/go-sql-driver/mysql and github.com/gorilla/mux packages, using

the go get command, as follows:

$ go get github.com/go-sql-driver/mysql

$ go get github.com/gorilla/mux

2. Create delete-record-mysql.go. Then we connect to the MySQL database, delete the
name of an employee from the database, and write the number of records deleted
from a database to an HTTP response stream, as follows:

package main

import

(

 "database/sql"

 "fmt"

 "log"

 "net/http"

 "github.com/go-sql-driver/mysql"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 DRIVER_NAME = "mysql"

 DATA_SOURCE_NAME = "root:password@/mydb"

)

var db *sql.DB

var connectionError error

func init()

{

 db, connectionError = sql.Open(DRIVER_NAME, DATA_SOURCE_NAME)

 if connectionError != nil

 {

 log.Fatal("error connecting to database :: ", connectionError)

 }

}

func deleteRecord(w http.ResponseWriter, r *http.Request)

{

 vals := r.URL.Query()

 name, ok := vals["name"]

 if ok

 {

 log.Print("going to delete record in database for

 name :: ", name[0])

 stmt, err := db.Prepare("DELETE from employee where name=?")

 if err != nil

 {

 log.Print("error occurred while preparing query :: ", err)

 return

 }

 result, err := stmt.Exec(name[0])

 if err != nil

 {

 log.Print("error occurred while executing query :: ", err)

 return

 }

 rowsAffected, err := result.RowsAffected()

 fmt.Fprintf(w, "Number of rows deleted in database are :: %d",

 rowsAffected)

 }

 else

 {

 fmt.Fprintf(w, "Error occurred while deleting record in

 database for name %s", name[0])

 }

}

func main()

{

 router := mux.NewRouter()

 router.HandleFunc("/employee/delete",

 deleteRecord).Methods("DELETE")

 defer db.Close()

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run delete-record-mysql.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, executing a DELETE request from the command line to delete an employee with the
name as bar will give you the number of records deleted from the database:

$ curl -X DELETE http://localhost:8080/employee/delete?name\=bar

Number of rows deleted in database are :: 1

Let’s look at the program we have written:

1. We defined a deleteRecord handler, which gets the name to be deleted from the
database as the request variable, prepares a DELETE statement with a name as a
placeholder, which will be replaced dynamically, executes the statement, gets the
count of rows deleted as a result of its execution, and writes it to an HTTP
response stream.

2. Next, we registered a deleteRecord handler to be called for the URL
pattern /employee/delete for every DELETE request with gorilla/mux router and closed
the database using the defer db.Close() statement once we returned from the main()
function.

Integrating MongoDB and Go
Whenever you want to persist data in a MongoDB database, the first step you have to
take is to establish a connection between the database and your web application, which
we will be covering in this recipe using one of the most famous and commonly used
MongoDB drivers for Go - gopkg.in/mgo.v2.

Getting ready…
Verify whether MongoDB is installed and running locally on port 27017 by executing the
following command:

$ mongo

This should return the following response:

How to do it…
1. Install the gopkg.in/mgo.v package, using the go get command, as follows:

$ go get gopkg.in/mgo.v

2. Create connect-mongodb.go. Then we connect to the MongoDB database, get all the
database names from the cluster, and write them to an HTTP response stream, as
follows:

package main

import

(

 "fmt"

 "log"

 "net/http"

 "strings"

 mgo "gopkg.in/mgo.v2"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 MONGO_DB_URL = "127.0.0.1"

)

var session *mgo.Session

var connectionError error

func init()

{

 session, connectionError = mgo.Dial(MONGO_DB_URL)

 if connectionError != nil

 {

 log.Fatal("error connecting to database :: ", connectionError)

 }

 session.SetMode(mgo.Monotonic, true)

}

func getDbNames(w http.ResponseWriter, r *http.Request)

{

 db, err := session.DatabaseNames()

 if err != nil

 {

 log.Print("error getting database names :: ", err)

 return

 }

 fmt.Fprintf(w, "Databases names are :: %s", strings.Join

 (db, ", "))

}

func main()

{

 http.HandleFunc("/", getDbNames)

 defer session.Close()

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run connect-mongodb.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Browsing to http://localhost:8080/ will list you the name of all the databases that exist in
the MongoDB cluster and will look as shown in the following screenshot:

Let’s look at the program we have written:

1. Using import ("fmt" "log" "net/http" "strings" mgo
"gopkg.in/mgo.v2"), we imported gopkg.in/mgo.v2 with the package alias name as mgo.

2. Using var session *mgo.Session, we declared the private MongoDB Session instance,
which acts as a communication session with the database.

3. Using var connectionError error, we declared a private error object.
4. Next, we defined the init() function, where we connected to MongoDB, passing

the host as 127.0.0.1, which means both MongoDB and the application are running
on the same machine at port 27017, optionally switching the session to a monotonic
behavior so that the read data will be consistent across sequential queries in the
same session, and modifications made within the session will be observed in the
queries that follow.

If your MongoDB is running on a port other than 27017, then you have to pass both the host and port separated
by a colon, as: mgo.Dial("localhost:27018").

5. Next, we defined a getDbNames handler, which basically gets all the database names
from the MongoDB cluster and writes them to an HTTP response stream as a
comma-separated string.

Creating your first document in
MongoDB
In this recipe, we will learn how we can create a BSON document (a binary-encoded
serialization of JSON-like documents) in a database, using a MongoDB driver for Go (
gopkg.in/mgo.v2).

http://gopkg.in/mgo.v2

How to do it…
1. Install the gopkg.in/mgo.v2 and github.com/gorilla/mux packages, using the go get

command, as follows:

$ go get gopkg.in/mgo.v2

$ go get github.com/gorilla/mux

2. Create create-record-mongodb.go. Then we connect to the MongoDB database, create
an employee document with two fields—ID and name—and write the last created
document ID to an HTTP response stream, as follows:

package main

import

(

 "fmt"

 "log"

 "net/http"

 "strconv"

 "github.com/gorilla/mux"

 mgo "gopkg.in/mgo.v2"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 MONGO_DB_URL = "127.0.0.1"

)

var session *mgo.Session

var connectionError error

type Employee struct

{

 Id int `json:"uid"`

 Name string `json:"name"`

}

func init()

{

 session, connectionError = mgo.Dial(MONGO_DB_URL)

 if connectionError != nil

 {

 log.Fatal("error connecting to database :: ", connectionError)

 }

 session.SetMode(mgo.Monotonic, true)

}

func createDocument(w http.ResponseWriter, r *http.Request)

{

 vals := r.URL.Query()

 name, nameOk := vals["name"]

 id, idOk := vals["id"]

 if nameOk && idOk

 {

 employeeId, err := strconv.Atoi(id[0])

 if err != nil

 {

 log.Print("error converting string id to int :: ", err)

 return

 }

 log.Print("going to insert document in database for name

 :: ", name[0])

 collection := session.DB("mydb").C("employee")

 err = collection.Insert(&Employee{employeeId, name[0]})

 if err != nil

 {

 log.Print("error occurred while inserting document in

 database :: ", err)

 return

 }

 fmt.Fprintf(w, "Last created document id is :: %s", id[0])

 }

 else

 {

 fmt.Fprintf(w, "Error occurred while creating document in

 database for name :: %s", name[0])

 }

}

func main()

{

 router := mux.NewRouter()

 router.HandleFunc("/employee/create",

 createDocument).Methods("POST")

 defer session.Close()

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run create-record-mongodb.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, executing a POST request to create an employee document from the command line
as follows will give you the ID of the document created in MongoDB:

$ curl -X POST http://localhost:8080/employee/create?name=foo\&id=1

Last created document id is :: 1

Let’s look at the program we have written:

1. Using import ("fmt" "log" "net/http" "strconv" "github.com/gorilla/mux" mgo
"gopkg.in/mgo.v2"), we imported github.com/gorilla/mux to create a Gorilla Mux Router
and gopkg.in/mgo.v2 with the package alias name as mgo, which will act as a
MongoDB driver.

2. Next, we defined a createDocument handler, which fetches the name and ID of an
employee from the HTTP request. Because request variables are of type string, we
converted the variable ID of string type to int type. Then, we get the employee
collection from MongoDB and call the collection.Insert handler to save an instance
of the Employee struct type in the database.

Reading documents from
MongoDB
In the previous recipe, we created a BSON document in MongoDB. Now, in this
recipe, we will learn how to read it using the gopkg.in/mgo.v2/bson package, which helps
to query the MongoDB collection.

How to do it…
1. Install the gopkg.in/mgo.v2, gopkg.in/mgo.v2/bson, and github.com/gorilla/mux packages,

using the go get command, as follows:

$ go get gopkg.in/mgo.v2

$ go get gopkg.in/mgo.v2/bson

$ go get github.com/gorilla/mux

2. Create read-record-mongodb.go. Then we connect to the MongoDB database, read all
the documents from an employee collection, marshal the list to JSON, and write it
to an HTTP response stream, as follows:

package main

import

(

 "encoding/json"

 "log"

 "net/http"

 "github.com/gorilla/mux"

 mgo "gopkg.in/mgo.v2"

 "gopkg.in/mgo.v2/bson"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 MONGO_DB_URL = "127.0.0.1"

)

var session *mgo.Session

var connectionError error

func init()

{

 session, connectionError = mgo.Dial(MONGO_DB_URL)

 if connectionError != nil

 {

 log.Fatal("error connecting to database :: ", connectionError)

 }

 session.SetMode(mgo.Monotonic, true)

}

type Employee struct

{

 Id int `json:"uid"`

 Name string `json:"name"`

}

func readDocuments(w http.ResponseWriter, r *http.Request)

{

 log.Print("reading documents from database")

 var employees []Employee

 collection := session.DB("mydb").C("employee")

 err := collection.Find(bson.M{}).All(&employees)

 if err != nil

 {

 log.Print("error occurred while reading documents from

 database :: ", err)

 return

 }

 json.NewEncoder(w).Encode(employees)

}

func main()

{

 router := mux.NewRouter()

 router.HandleFunc("/employees", readDocuments).Methods("GET")

 defer session.Close()

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run read-record-mongodb.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, browsing to http://localhost:8080/employees will give you the list of all
employees from the MongoDB employee collection:

Let’s look at the changes we introduced in the program:

1. Using import ("encoding/json" "log" "net/http" "github.com/gorilla/mux" mgo
"gopkg.in/mgo.v2" "gopkg.in/mgo.v2/bson"), we imported an additional
gopkg.in/mgo.v2/bson package, which is a BSON specification for Go, and the
encoding/json package, which we used to marshal the object list, which we got from
MongoDB, to JSON.

2. Next, we defined a readDocuments handler, where we first get the employee
collection from MongoDB, query for all the documents inside it, iterate over the
documents to map it to an array of the Employee struct, and, finally, marshal it to
JSON.

Updating your first document in
MongoDB
Once a BSON document is created we may need to update some of its fields. In that
case, we have to execute update/upsert queries on the MongoDB collection, which we
will be covering in this recipe.

How to do it…
1. Install the gopkg.in/mgo.v2, gopkg.in/mgo.v2/bson, and github.com/gorilla/mux packages,

using the go get command, as follows:

$ go get gopkg.in/mgo.v2

$ go get gopkg.in/mgo.v2/bson

$ go get github.com/gorilla/mux

2. Create update-record-mongodb.go. Then we connect to the MongoDB database, update
the name of an employee for an ID, and write the number of records updated in
MongoDB to an HTTP response stream, as follows:

package main

import

(

 "fmt"

 "log"

 "net/http"

 "strconv"

 "github.com/gorilla/mux"

 mgo "gopkg.in/mgo.v2"

 "gopkg.in/mgo.v2/bson"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 MONGO_DB_URL = "127.0.0.1"

)

var session *mgo.Session

var connectionError error

type Employee struct

{

 Id int `json:"uid"`

 Name string `json:"name"`

}

func init()

{

 session, connectionError = mgo.Dial(MONGO_DB_URL)

 if connectionError != nil

 {

 log.Fatal("error connecting to database :: ",

 connectionError)

 }

 session.SetMode(mgo.Monotonic, true)

}

func updateDocument(w http.ResponseWriter, r *http.Request)

{

 vars := mux.Vars(r)

 id := vars["id"]

 vals := r.URL.Query()

 name, ok := vals["name"]

 if ok

 {

 employeeId, err := strconv.Atoi(id)

 if err != nil

 {

 log.Print("error converting string id to int :: ", err)

 return

 }

 log.Print("going to update document in database

 for id :: ", id)

 collection := session.DB("mydb").C("employee")

 var changeInfo *mgo.ChangeInfo

 changeInfo, err = collection.Upsert(bson.M{"id": employeeId},

 &Employee{employeeId, name[0]})

 if err != nil

 {

 log.Print("error occurred while updating record in

 database :: ", err)

 return

 }

 fmt.Fprintf(w, "Number of documents updated in database

 are :: %d", changeInfo.Updated)

 }

 else

 {

 fmt.Fprintf(w, "Error occurred while updating document

 in database for id :: %s", id)

 }

}

func main()

{

 router := mux.NewRouter()

 router.HandleFunc("/employee/update/{id}",

 updateDocument).Methods("PUT")

 defer session.Close()

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run update-record-mongodb.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, executing a PUT request to UPDATE an employee document from the command line
as follows will give you the number of documents updated in MongoDB:

$ curl -X PUT http://localhost:8080/employee/update/1\?name\=bar

Number of documents updated in database are :: 1

Let’s look at the program we have written:

1. We defined an updateDocument handler, which gets the ID to be updated in
MongoDB as a URL path variable and the new name as the HTTP request
variable. As request variables are of string type, we have converted the variable
ID of string type to int type. Then, we get the employee collection from
MongoDB and call the collection.Upsert handler to insert if not present, or update
an employee document with a new name for the supplied ID.

2. Next, we registered an updateDocument handler to be called for the URL
pattern /employee/update/{id} for every PUT request with gorilla/mux router and close
the MongoDB session, using the defer session.Close() statement once we return
from the main() function.

Deleting your first document
from MongoDB
Whenever we want to clean up the database or delete the documents that are no longer
needed, we can easily remove them using a MongoDB driver for Go (gopkg.in/mgo.v2),
which we will be covering in this recipe.

http://gopkg.in/mgo.v2

How to do it…
1. Install the gopkg.in/mgo.v2, gopkg.in/mgo.v2/bson, and github.com/gorilla/mux packages,

using the go get command, as follows:

$ go get gopkg.in/mgo.v2

$ go get gopkg.in/mgo.v2/bson

$ go get github.com/gorilla/mux

2. Create delete-record-mongodb.go. Then we connect to MongoDB, get the name of an
employee to be deleted from the database as an HTTP request variable, get the
named collection, and remove the document, as follows:

package main

import

(

 "fmt"

 "log"

 "net/http"

 "github.com/gorilla/mux"

 mgo "gopkg.in/mgo.v2"

 "gopkg.in/mgo.v2/bson"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 MONGO_DB_URL = "127.0.0.1"

)

var session *mgo.Session

var connectionError error

type Employee struct

{

 Id int `json:"uid"`

 Name string `json:"name"`

}

func init()

{

 session, connectionError = mgo.Dial(MONGO_DB_URL)

 if connectionError != nil

 {

 log.Fatal("error connecting to database :: ",

 connectionError)

 }

 session.SetMode(mgo.Monotonic, true)

}

func deleteDocument(w http.ResponseWriter, r *http.Request)

{

 vals := r.URL.Query()

 name, ok := vals["name"]

 if ok

 {

 log.Print("going to delete document in database for

 name :: ", name[0])

 collection := session.DB("mydb").C("employee")

 removeErr := collection.Remove(bson.M{"name": name[0]})

 if removeErr != nil

 {

 log.Print("error removing document from

 database :: ", removeErr)

 return

 }

 fmt.Fprintf(w, "Document with name %s is deleted from

 database", name[0])

 }

 else

 {

 fmt.Fprintf(w, "Error occurred while deleting document

 in database for name :: %s", name[0])

 }

}

func main()

{

 router := mux.NewRouter()

 router.HandleFunc("/employee/delete",

 deleteDocument).Methods("DELETE")

 defer session.Close()

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

3. Run the program with the following command:

$ go run delete-record-mongodb.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, executing a DELETE request to delete a BSON document from the command line as
follows will give you the name of the document deleted from the database:

$ curl -X DELETE http://localhost:8080/employee/delete?name\=bar

Document with name bar is deleted from database

Let’s look at the program we have written:

1. We defined a deleteDocument handler, which gets the name to be deleted from
MongoDB as the request variable, gets the employee collection from MongoDB,
and calls the collection.Remove handler to remove a document for a given name.

2. Then, we registered a deleteDocument handler to be called for the URL
pattern /employee/delete for every DELETE request with a gorilla/mux router, and closed
the MongoDB session, using the defer session.Close() statement once we returned
from the main() function.

Writing Microservices in Go
Using Micro – a Microservice
Toolkit
In this chapter, we will cover the following recipes:

Creating your first protocol buffer
Spinning up a microservice discovery client
Creating your first microservice
Creating your second microservice
Creating your Micro API
Interacting with microservices using a command-line interface and web UI

Introduction
With organizations now moving toward DevOps, microservices have started gaining
popularity as well. As these services are independent in nature and can be developed in
any language it allows organizations to focus on their development. With knowledge
of the concepts covered in this chapter, we will be able to write microservices using
Go Micro in a fairly easy way.

In this chapter, we will start by writing the protocol buffer. Then we will learn how we
can spin up Consul, which is a Microservice discovery client, and eventually move on
to create microservices and interact with them through the command line and web
dashboard.

Creating your first protocol
buffer
Protocol buffers are a flexible, efficient, and automated mechanism for encoding and
serializing structured data supported by Go. In this recipe, we will learn how to write
our first protocol buffer.

Getting ready…
1. Verify whether protoc is installed by executing the following command:

$ protoc --version

 libprotoc 3.3.2

2. Install protobuf by way of the following:

$ git clone https://github.com/google/protobuf

$ cd protobuf

$./autogen.sh

$./configure

$ make

$ make check

$ make install

How to do it…
1. Create hello.proto inside the proto directory and define a service interface with the

name Say, which has two datatypes—Request and Response, as follows:

syntax = "proto3";

service Say

{

 rpc Hello(Request) returns (Response) {}

}

message Request

{

 string name = 1;

}

message Response

{

 string msg = 1;

}

2. Compile hello.proto with the following command:

$ protoc --go_out=plugins=micro:. hello.proto

How it works…
Once the command has executed successfully, hello.pb.go will be created inside the
proto directory, which will look like as shown in the following screenshot:

Let’s understand the .proto file we have written:

syntax = "proto3";: Here we specify that we are using proto3 syntax, which makes
the compiler understand that the protocol buffer has to be compiled with version
3. If we don't specify the syntax explicitly then the compiler assumes we are
using proto2.
service Say { rpc Hello(Request) returns (Response) {} }: Here we defined an RPC
service with the name Say and a Hello method that takes Request and returns a
Response.
message Request { string name = 1; }: Here we defined the Request data type that has
a name field.
message Response { string msg = 1; }: Here we defined the Response data type that has
a msg field.

Spinning up a microservice
discovery client
In a microservices architecture where multiple services are deployed, the service
discovery client helps the application to find out the services they are dependent on,
which can be either through DNS or HTTP. When we talk about service discovery
clients one of the most common and famous is Consul by HashiCorp, which we will be
spinning up in this recipe.

Getting ready…
Verify whether Consul is installed by executing the following command:

$ consul version

 Consul v0.8.5

 Protocol 2 spoken by default, understands 2 to 3 (agent will automatically use protocol >2 when speaking to compatible agents)

How to do it…
Start consul agent in server mode by executing the following command:

$ consul agent -dev

How it works…
Once the command has executed successfully the Consul agent starts running in server
mode, giving us the following output:

We can also list the members of the Consul cluster by executing the following
command:

$ consul members

This will give us the following result:

Because Consul can be run either in server or client mode with at least one server, to keep the setup at a bare
minimum we have started our agent in server mode, though it is not recommended because there are chances
of data loss in a failure scenario.

Moreover, browsing to http://localhost:8500/ui/ will display the Consul web UI where
we can view all the services and nodes, as follows:

Creating your first microservice
A microservice is just a piece of code that runs as a unique process and communicates
through a well-defined, lightweight mechanism to serve a business goal, which we will
be writing in this recipe using https://github.com/micro/micro though there are a number of
libraries available such as https://github.com/go-kit/kit and https://github.com/grpc/grpc-
go, which serve the same purpose.

Getting ready…
1. Start consul agent by executing the following command:

$ consul agent -dev

2. Install and run micro by executing the following commands:

$ go get github.com/micro/micro

$ micro api

 2018/02/06 00:03:36 Registering RPC Handler at /rpc

 2018/02/06 00:03:36 Registering API Default Handler at /

 2018/02/06 00:03:36 Listening on [::]:8080

 2018/02/06 00:03:36 Listening on [::]:54814

 2018/02/06 00:03:36 Broker Listening on [::]:54815

 2018/02/06 00:03:36 Registering node: go.micro.api-a6a82a54-0aaf-11e8-8d64-685b35d52676

How to do it…
1. Create first-greeting-service.go inside the services directory by executing the

command $ mkdir services && cd services && touch first-greeting-service.go.
2. Copy the following content to first-greeting-service.go:

package main

import

(

 "log"

 "time"

 hello "../proto"

 "github.com/micro/go-micro"

)

type Say struct{}

func (s *Say) Hello(ctx context.Context, req *hello.Request,

rsp *hello.Response) error

{

 log.Print("Received Say.Hello request - first greeting service")

 rsp.Msg = "Hello " + req.Name

 return nil

}

func main()

{

 service := micro.NewService

 (

 micro.Name("go.micro.service.greeter"),

 micro.RegisterTTL(time.Second*30),

 micro.RegisterInterval(time.Second*10),

)

 service.Init()

 hello.RegisterSayHandler(service.Server(), new(Say))

 if err := service.Run(); err != nil

 {

 log.Fatal("error starting service : ", err)

 return

 }

}

With everything in place, the directory structure should look like the following:

3. Move to the services directory and run the program with the following command:

$ go run first-greeting-service.go

How it works…
Once we run the program, the RPC server will start locally listening on port 8080.

Next, execute a POST request from the command line as follows:

$ curl -X POST -H 'Content-Type: application/json' -d '{"service": "go.micro.service.greeter", "method": "Say.Hello", "request": {"name": "Arpit Aggarwal"}}' http://localhost:8080/rpc

This will give us Hello followed by the name as a response from the server as shown
in the following screenshot:

Looking at the logs of the first-greeting-service.go will show us that the request is
served by the first greeting service, as follows:

Let’s look at the program we have written:

Using import ("log" "time" hello "../proto" "github.com/micro/go-micro"
"golang.org/x/net/context"), we imported "hello "../proto", a directory that includes
protocol buffer source code and compiled protocol buffer suffixed .pb.go.
Additionally, we imported the github.com/micro/go-micro package, which consists of
all the libraries required to write the microservice.

Next, we defined a main() handler where we create a new service with the
name go.micro.service.greeter using micro.NewService(), initialize it, register the
handler with it, and finally start it.

Creating your second
microservice
In this recipe, we will create another microservice using go-micro, which is a replica of
the first-greeting-service.go except for the logger message printed on the console that
demonstrates the concept of client-side load balancing between the two different
instances of a service with the same name.

How to do it…
1. Create second-greeting-service.go inside the services directory by executing the

command $ cd services && touch second-greeting-service.go.
2. Copy the following content to second-greeting-service.go:

package main

import

(

 "context"

 "log"

 "time"

 hello "../proto"

 "github.com/micro/go-micro"

)

type Say struct{}

func (s *Say) Hello(ctx context.Context, req *hello.Request,

rsp *hello.Response) error

{

 log.Print("Received Say.Hello request - second greeting

 service")

 rsp.Msg = "Hello " + req.Name

 return nil

}

func main()

{

 service := micro.NewService

 (

 micro.Name("go.micro.service.greeter"),

 micro.RegisterTTL(time.Second*30),

 micro.RegisterInterval(time.Second*10),

)

 service.Init()

 hello.RegisterSayHandler(service.Server(), new(Say))

 if err := service.Run(); err != nil

 {

 log.Fatal("error starting service : ", err)

 return

 }

}

With everything in place, the directory structure should look like the following:

3. Move to the services directory and run the program with the following command:

$ go run second-greeting-service.go

How it works…
Once we run the program, the RPC server will start locally listening on port 8080.

Next, execute a POST request from the command line as follows:

$ curl -X POST -H 'Content-Type: application/json' -d '{"service": "go.micro.service.greeter", "method": "Say.Hello", "request": {"name": "Arpit Aggarwal"}}' http://localhost:8080/rpc

This will give us Hello followed by the name as a response from the server, as follows:

Looking at the logs of the second-greeting-service.go will show us the request is served by
the second greeting service:

Now, if we execute a POST request again then it will print the logs in the first-greeting-
service.go console, which is because of the smart, client-side, load balancing of services
built on discovery offered by Go Micro:

Creating your Micro API
So far, we have explicitly called a backend service by name and a method to access it.
In this recipe, we will learn how we can access the services using Go Micro API,
which implements an API gateway pattern to provide a single entry point to the
microservices. The advantage of using Go Micro API is that it serves over HTTP and
dynamically routes to the appropriate backend service using HTTP handlers.

Getting ready…
Start consul agent, micro API, first-greeting-service.go, and second-greeting-service.go in
separate terminals by executing the following commands:

$ consul agent -dev

$ micro api

$ go run first-greeting-service.go

$ go run second-greeting-service.go

How to do it…
1. Create greeting-api.go inside the api directory by executing the command $ mkdir api

&& cd api && touch greeting-api.go.
2. Copy the following content to greeting-api.go:

package main

import

(

 "context"

 "encoding/json"

 "log"

 "strings"

 hello "../proto"

 "github.com/micro/go-micro"

 api "github.com/micro/micro/api/proto"

)

type Say struct

{

 Client hello.SayClient

}

func (s *Say) Hello(ctx context.Context, req *api.Request,

rsp *api.Response) error

{

 log.Print("Received Say.Hello request - Micro Greeter API")

 name, ok := req.Get["name"]

 if ok

 {

 response, err := s.Client.Hello

 (

 ctx, &hello.Request

 {

 Name: strings.Join(name.Values, " "),

 }

)

 if err != nil

 {

 return err

 }

 message, _ := json.Marshal

 (

 map[string]string

 {

 "message": response.Msg,

 }

)

 rsp.Body = string(message)

 }

 return nil

}

func main()

{

 service := micro.NewService

 (

 micro.Name("go.micro.api.greeter"),

)

 service.Init()

 service.Server().Handle

 (

 service.Server().NewHandler

 (

 &Say{Client: hello.NewSayClient("go.micro.service.

 greeter", service.Client())},

),

)

 if err := service.Run(); err != nil

 {

 log.Fatal("error starting micro api : ", err)

 return

 }

}

With everything in place, the directory structure should look like the following:

3. Move to the api directory and run the program with the following command:

$ go run greeting-api.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, browse to http://localhost:8080/greeter/say/hello?name=Arpit+Aggarwal as follows:

This will give you the response Hello followed by the name received as an HTTP
request variable. Moreover, looking at the logs of the second-greeting-service.go will
show us the request is served by the second greeting service, as follows:

Now, if we execute a GET request again then it will print the logs in the first-greeting-
service.go console, which is because of the smart, client-side, load balancing of services
built on discovery offered by Go Micro:

Interacting with microservices
using a command-line interface
and web UI
So far, we have used the command line to execute GET and POST HTTP requests to access
services. This can also be achieved by way of the Go Micro web user interface as well.
All we need to do is start micro web, which we will be covering in this recipe.

How to do it…
1. Install the go get github.com/micro/micro package using the go get command, as

follows:

$ go get github.com/micro/micro

2. Run the web UI with the following command:

$ micro web

How it works…
Once a command has executed successfully, browsing to http://localhost:8082/registry
will list all the registered services as shown in the following screenshot:

Querying our greeter service using the web UI with the request {"name" : "Arpit
Aggarwal"} will render you the response, {"msg": "Hello Arpit Aggarwal"} :

Querying the same greeter service using a CLI command, query go.micro.service.greeter
Say.Hello {"name" : "Arpit Aggarwal"} will render you the response, {"msg": "Hello Arpit
Aggarwal"}:

Working with WebSocket in Go
In this chapter, we will cover the following recipes:

Creating your first WebSocket server
Creating your first WebSocket client
Debugging your first local WebSocket server
Debugging your first remote WebSocket server
Unit testing your first WebSocket server

Introduction
WebSocket provides a bidirectional, single-socket, full-duplex connection between the
server and the client, making real-time communication much more efficient than other
ways such as long polling and server-sent events.

With WebSocket, the client and the server can talk independently, each able to send
and receive information at the same time after the initial handshake, reusing the same
connection from the client to the server and the server to the client, which eventually
reduces the delay and server load greatly, allowing web applications to perform
modern tasks in the most effective way. The WebSocket protocol is supported by most
major browsers, including Google Chrome, Microsoft Edge, Internet Explorer,
Firefox, Safari, and Opera. So there are no compatibility issues.

In this chapter, we will learn how to create a WebSocket server and client, writing unit
tests and debugging the server running either locally or remotely.

Creating your first WebSocket
server
In this recipe, we will learn how to write a WebSocket server, which is a TCP
application listening on port 8080 that allows connected clients to send messages to
each other.

How to do it…
1. Install the github.com/gorilla/websocket package using the go get command, as

follows:

$ go get github.com/gorilla/websocket

2. Create websocket-server.go where we will upgrade an HTTP request to WebSocket,
read the JSON message from the client, and broadcast it to all of the connected
clients, as follows:

package main

import

(

 "log"

 "net/http"

 "github.com/gorilla/websocket"

)

var clients = make(map[*websocket.Conn]bool)

var broadcast = make(chan Message)

var upgrader = websocket.Upgrader{}

type Message struct

{

 Message string `json:"message"`

}

func HandleClients(w http.ResponseWriter, r *http.Request)

{

 go broadcastMessagesToClients()

 websocket, err := upgrader.Upgrade(w, r, nil)

 if err != nil

 {

 log.Fatal("error upgrading GET request to a

 websocket :: ", err)

 }

 defer websocket.Close()

 clients[websocket] = true

 for

 {

 var message Message

 err := websocket.ReadJSON(&message)

 if err != nil

 {

 log.Printf("error occurred while reading

 message : %v", err)

 delete(clients, websocket)

 break

 }

 broadcast <- message

 }

}

func main()

{

 http.HandleFunc

 (

 "/", func(w http.ResponseWriter,

 r *http.Request)

 {

 http.ServeFile(w, r, "index.html")

 }

)

 http.HandleFunc("/echo", HandleClients)

 err := http.ListenAndServe(":8080", nil)

 if err != nil

 {

 log.Fatal("error starting http server :: ", err)

 return

 }

}

func broadcastMessagesToClients()

{

 for

 {

 message := <-broadcast

 for client := range clients

 {

 err := client.WriteJSON(message)

 if err != nil

 {

 log.Printf("error occurred while writing

 message to client: %v", err)

 client.Close()

 delete(clients, client)

 }

 }

 }

}

3. Run the program with the following command:

$ go run websocket-server.go

How it works…
Once we run the program, the WebSocket server will start locally listening on port
8080.

Let’s understand the program we have written:

1. We used import ("log" "net/http" "github.com/gorilla/websocket") which is a
preprocessor command that tells the Go compiler to include all files from the log,
net/http, and github.com/gorilla/websocket packages.

2. Using var clients = make(map[*websocket.Conn]bool), we created a map that represents
the clients connected to a WebSocket server with KeyType as a WebSocket
connection object and ValueType as Boolean.

3. Using var broadcast = make(chan Message), we created a channel where all the received
messages are written.

4. Next, we defined a HandleClients handler, which upon receiving the HTTP GET request,
upgrades it to WebSocket, registers the client with the socket server, reads the
requested JSON messages, and writes it to the broadcast channel.

5. Then, we defined a Go function broadcastMessagesToClients, which grabs the
messages written to the broadcast channel and sends it out to every client that is
currently connected to the WebSocket server.

Creating your first WebSocket
client
In this recipe, we will create a simple client to start the WebSocket handshake process.
The client will send a pretty standard HTTP GET request to the WebSocket server and the
server upgrades it through an Upgrade header in the response.

How to do it…
1. Create index.html where we will open a connection to a non-secure WebSocket

server on page load, as follows:

<html>

 <title>WebSocket Server</title>

 <input id="input" type="text" />

 <button onclick="send()">Send</button>

 <pre id="output"></pre>

 <script>

 var input = document.getElementById("input");

 var output = document.getElementById("output");

 var socket = new WebSocket("ws://" + window.

 location.host + "/echo");

 socket.onopen = function ()

 {

 output.innerHTML += "Status: Connected\n";

 };

 socket.onmessage = function (e)

 {

 output.innerHTML += "Message from Server: " +

 e.data + "\n";

 };

 function send()

 {

 socket.send

 (

 JSON.stringify

 (

 {

 message: input.value

 }

)

);

 input.value = "";

 }

 </script>

</html>

With everything in place, the directory structure should look like the following:

2. Run the program with the following command:

$ go run websocket-server.go

How it works…
Once we run the program, the WebSocket server will start locally listening on port
8080.

Browsing to http://localhost:8080 will show us the WebSocket client page with a
textbox and a Send button as shown in the following screenshot:

Debugging your first local
WebSocket server
Debugging a web application is one of the most important skills for a developer to
learn, as it helps in identifying a problem, isolating the source of the problem, and then
either correcting the problem or determining a way to work around it. In this recipe,
we will learn how to debug a WebSocket server running locally using GoLand IDE.

Getting ready…
This recipe assumes you have GoLand IDE installed and configured to run the Go
Application on your machine.

How to do it…
1. Click Open Project in the GoLand IDE to open websocket-server.go, which we wrote

in our previous recipe, as shown in the following screenshot:

2. Once the project opens, click on Edit Configurations as shown in the following
screenshot:

3. Select Add New Configuration by clicking the + sign as shown in the following
screenshot:

4. Select Go Build, rename the configuration to WebSocket Local Debug, change Run
kind to Directory, and click on Apply and OK as shown in the following
screenshot:

5. Place a few breakpoints and click on the Debug button:

How it works…
Once we run the program, the WebSocket server will start locally in debug mode
listening on port 8080.

Browsing to http://localhost:8080 will show us the WebSocket client page with a
textbox and a Send button as shown in the following screenshot:

Enter text and click on the Send button to see the program execution stopping at the
breakpoints we placed in the GoLand IDE, as follows:

Debugging your first remote
WebSocket server
In the previous recipe, we learnt how to debug a WebSocket server that is running
locally. In this recipe, we will learn how to debug it if it is running on another or a
remote machine.

The steps are more or less the same as we took in the previous recipe except for the
debug configuration section where we will change the localhost to the remote machine
IP or DNS and start the Delve server, which is a debugger for the Go programming
language on the remote machine.

How to do it…
1. Add another configuration by clicking on Edit Configurations... as shown in the

following screenshot:

2. Click on the + sign to Add New Configuration and select Go Remote:

3. Rename the debug configuration to WebSocket Remote Debug, change the Host
to remote-machine-IP or DNS, and click on Apply and OK as shown in the following
screenshot:

4. Run a headless Delve server on the target or remote machine by executing the
following command:

dlv debug --headless --listen=:2345 --api-version=2

The preceding command will start an API server listening on port 2345.

5. Select WebSocket Remote Debug configuration and click on the Debug button:

How it works…
Browse to the remotely available WebSocket client page, enter some text, and click on
the Send button to see the program execution stopping at the breakpoints we placed:

Unit testing your first
WebSocket server
Unit testing or test-driven development helps the developer to design loosely-coupled
code with the focus on code reusability. It also helps us to realize when to stop coding
and make changes quickly.

In this recipe, we will learn how to write a unit test for the WebSocket server that we
have already written in one of our previous recipes.

See the Creating your first WebSocket server recipe.

How to do it…
1. Install the github.com/gorilla/websocket and github.com/stretchr/testify/assert packages

using the go get command, as follows:

$ go get github.com/gorilla/websocket

$ go get github.com/stretchr/testify/assert

2. Create websocket-server_test.go where we will create a test server, connect to it
using the Gorilla client, and eventually read and write messages to test the
connection, as follows:

package main

import

(

 "net/http"

 "net/http/httptest"

 "strings"

 "testing"

 "github.com/gorilla/websocket"

 "github.com/stretchr/testify/assert"

)

func TestWebSocketServer(t *testing.T)

{

 server := httptest.NewServer(http.HandlerFunc

 (HandleClients))

 defer server.Close()

 u := "ws" + strings.TrimPrefix(server.URL, "http")

 socket, _, err := websocket.DefaultDialer.Dial(u, nil)

 if err != nil

 {

 t.Fatalf("%v", err)

 }

 defer socket.Close()

 m := Message{Message: "hello"}

 if err := socket.WriteJSON(&m); err != nil

 {

 t.Fatalf("%v", err)

 }

 var message Message

 err = socket.ReadJSON(&message)

 if err != nil

 {

 t.Fatalf("%v", err)

 }

 assert.Equal(t, "hello", message.Message, "they

 should be equal")

}

How it works…
Execute a go test from the command line as follows:

$ go test websocket-server_test.go websocket-server.go

ok command-line-arguments 0.048s

It will give us the response ok, which means the test compiled and executed
successfully.

Let’s see how it looks when a Go test fails. Change the expected output in the assert
statement to something else. In the following hello has been changed to hi:

...

assert.Equal(t, "hi", message.Message, "they should be equal")

...

Execute the test again by running the go test command:

$ go test websocket-server_test.go websocket-server.go

It will give us the failure response along with the error trace as shown in the following
screenshot:

Working with the Go Web
Application Framework – Beego
In this chapter, we will cover the following recipes:

Creating your first project using Beego
Creating your first controller and router
Creating your first view
Creating your first session variable
Creating your first filter
Handling HTTP errors in Beego
Implementing caching in Beego
Monitoring the Beego application
Deploying the Beego application on a local machine
Deploying the Beego application with Nginx

Introduction
A web application framework is a must whenever we are developing an application
because it significantly speeds up and simplifies our work by eliminating the need to
write a lot of repetitive code and providing features such as models, APIs, and other
elements. Using an application framework, we can enjoy the perks of its architecture
pattern and boost the development of an application.

A popular type of web application framework is Model-View-Controller (MVC) and
there are many MVC frameworks available for Go, such as Revel, Utron, and Beego.

In this chapter, we will learn about Beego, which is one of the most popular and
commonly used web MVC frameworks. We will start with creating the project and
then move on to creating controllers, views, and filters. We will also look at
implementing caching, and monitoring and deploying an application.

Creating your first project using
Beego
The first and the foremost thing we have to do to start a project is to set up its basic
architecture. In Beego, this can be achieved easily using a tool called bee, which we
will cover in this recipe.

How to do it…
1. Install the github.com/beego/bee package using the go get command, as follows:

$ go get github.com/beego/bee

2. Open a terminal to your $GOPATH/src directory and create a project using the bee new
command, as follows:

$ cd $GOPATH/src

$ bee new my-first-beego-project

Once the command has executed successfully, it will create a new Beego
project, and the creation steps on the console will look like the following
screenshot:

3. Go to the path of the newly created project and enter bee run to compile and run
the project, as follows:

$ cd $GOPATH/src/my-first-beego-project

$ bee run

Once, command has executed successfully, bee will build the project and start
the application, as shown in the following screenshot:

How it works…
Once the command has executed successfully, a web application will run on the
default Beego port 8080 and browsing http://localhost:8080/ will render the welcome
page of the application, as shown in the following screenshot:

Creating your first controller
and router
One of the main components of a web application is the controller, which acts as a
coordinator between the view and the model and handles the user's requests, which
could be a button click, or a menu selection, or HTTP GET and POST requests. In this
recipe, we will learn how we can create a controller in Beego.

How to do it…
1. Move to $GOPATH/src/my-first-beego-project/controllers and create firstcontroller.go, as

follows:

package controllers

import "github.com/astaxie/beego"

type FirstController struct

{

 beego.Controller

}

type Employee struct

{

 Id int `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: 1, FirstName: "Foo", LastName: "Bar"},

 Employee{Id: 2, FirstName: "Baz", LastName: "Qux"},

 }

}

func (this *FirstController) GetEmployees()

{

 this.Ctx.ResponseWriter.WriteHeader(200)

 this.Data["json"] = employees

 this.ServeJSON()

}

2. Move to $GOPATH/src/my-first-beego-project/routers and edit router.go to add GET
mapping /employees, which will be handled by the GetEmployees handler defined in
FirstController, as follows:

package routers

import

(

 "my-first-beego-project/controllers"

 "github.com/astaxie/beego"

)

func init()

{

 beego.Router("/", &controllers.MainController{})

 beego.Router("/employees", &controllers.FirstController{},

 "get:GetEmployees")

}

3. Run the project using the following command:

$ bee run

How it works…
Once the command has executed successfully, the web application will run on the
default Beego port 8080.

Next, executing a GET request from the command line will give you a list of all the
employees:

$ curl -X GET http://localhost:8080/employees

[

 {

 "id": 1,

 "firstName": "Foo",

 "lastName": "Bar"

 },

 {

 "id": 2,

 "firstName": "Baz",

 "lastName": "Qux"

 }

]

Let’s understand the program we have written:

import “github.com/astaxie/beego": Here, we imported Beego.
type FirstController struct { beego.Controller }: Here, we defined the FirstController
struct type, which contains an anonymous struct field of type beego.Controller
because of which FirstController automatically acquires all the methods of
beego.Controller.
func (this *FirstController) GetEmployees() { this.Ctx.ResponseWriter.WriteHeader(200)

this.Data["json"] = employees this.ServeJSON() } : Here, we defined the GetEmployees
handler, which will execute for every GET request for the URL pattern /employees.

In Go, functions or handlers that start with a capital letter are exported functions, which means they are public
and can be used outside the program. That’s the reason we have defined all the functions in our program using
a capital letter rather than in camel case.

Creating your first view
A view is a visual representation of a model. It accesses data through the model and
specifies how that data should be presented. It maintains consistency in its
presentation when the model changes, which can be either through a push model,
where the view registers itself with the model for change notifications, or a pull model,
where the view is responsible for calling the model when it needs to retrieve the most
current data. In this recipe, we will learn how to create our first view to render the list
of employees.

How to do it…
1. Move to $GOPATH/src/my-first-beego-project/views and create dashboard.tpl and copy the

following content:

<!DOCTYPE html>

<html>

 <body>

 <table border= "1" style="width:100%;">

 {{range .employees}}

 <tr>

 <td>{{.Id}}</td>

 <td>{{.FirstName}}</td>

 <td>{{.LastName}}</td>

 </tr>

 {{end}}

 </table>

 </body>

</html>

2. Move to $GOPATH/src/my-first-beego-project/controllers and edit firstcontroller.go to
add the Dashboard handler, as follows:

package controllers

import "github.com/astaxie/beego"

type FirstController struct

{

 beego.Controller

}

type Employee struct

{

 Id int `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: 1, FirstName: "Foo", LastName: "Bar"},

 Employee{Id: 2, FirstName: "Baz", LastName: "Qux"},

 }

}

...

func (this *FirstController) Dashbaord()

{

 this.Data["employees"] = employees

 this.TplName = "dashboard.tpl"

}

3. Move to $GOPATH/src/my-first-beego-project/routers and edit router.go to add the GET
mapping /dashboard, which will be handled by the Dashboard handler defined in
FirstController, as follows:

package routers

import

(

 "my-first-beego-project/controllers"

 "github.com/astaxie/beego"

)

func init()

{

 beego.Router("/", &controllers.MainController{})

 beego.Router("/employees", &controllers.FirstController{},

 "get:GetEmployees")

 beego.Router("/dashboard", &controllers.FirstController{},

 "get:Dashbaord")

}

4. Run the project using the following command:

$ bee run

How it works…
Once the command has executed successfully, the web application will run on the
default Beego port 8080.

Browsing http://localhost:8080/dashboard will render the employee dashboard, as shown
in the following screenshot:

Creating your first session
variable
Whenever we need to pass on the user data from one HTTP request to another, we can
make use of HTTP sessions, which we will be covering in this recipe.

Getting ready…
This recipe assumes you have Redis installed and running locally on port 6379.

How to do it…
1. Install the github.com/astaxie/beego/session/redis package using the go get command,

as follows:

$ go get -u github.com/astaxie/beego/session/redis

2. Move to $GOPATH/src/my-first-beego-project/controllers and create sessioncontroller.go,
where we will define handlers which make sure that only authenticated users can
view the home page, as follows:

package controllers

import "github.com/astaxie/beego"

type SessionController struct

{

 beego.Controller

}

func (this *SessionController) Home()

{

 isAuthenticated := this.GetSession("authenticated")

 if isAuthenticated == nil || isAuthenticated == false

 {

 this.Ctx.WriteString("You are unauthorized to

 view the page.")

 return

 }

 this.Ctx.ResponseWriter.WriteHeader(200)

 this.Ctx.WriteString("Home Page")

}

func (this *SessionController) Login()

{

 this.SetSession("authenticated", true)

 this.Ctx.ResponseWriter.WriteHeader(200)

 this.Ctx.WriteString("You have successfully logged in.")

}

func (this *SessionController) Logout()

{

 this.SetSession("authenticated", false)

 this.Ctx.ResponseWriter.WriteHeader(200)

 this.Ctx.WriteString("You have successfully logged out.")

}

3. Move to $GOPATH/src/my-first-beego-project/routers and edit router.go to add the GET
mapping /home, /login, and /logout, which will be handled by the Home, Login, and
Logout handlers defined in FirstController, respectively, as follows:

package routers

import

(

 "my-first-beego-project/controllers"

 "github.com/astaxie/beego"

)

func init()

{

 beego.Router("/", &controllers.MainController{})

 beego.Router("/employees", &controllers.FirstController{},

 "get:GetEmployees")

 beego.Router("/dashboard", &controllers.FirstController{},

 "get:Dashbaord")

 beego.Router("/home", &controllers.SessionController{},

 "get:Home")

 beego.Router("/login", &controllers.SessionController{},

 "get:Login")

 beego.Router("/logout", &controllers.SessionController{},

 "get:Logout")

}

4. Move to $GOPATH/src/my-first-beego-project and edit main.go to import
github.com/astaxie/beego/session/redis, as follows:

package main

import

(

 _ "my-first-beego-project/routers"

 "github.com/astaxie/beego"

 _ "github.com/astaxie/beego/session/redis"

)

func main()

{

 beego.BConfig.WebConfig.DirectoryIndex = true

 beego.BConfig.WebConfig.StaticDir["/swagger"] = "swagger"

 beego.Run()

}

5. Switch on the session usage in $GOPATH/src/my-first-beego-project/conf/app.conf, as
follows:

SessionOn = true

SessionProvider = "redis"

SessionProviderConfig = "127.0.0.1:6379"

6. Run the program using the following command:

$ bee run

How it works…
Once the command has executed successfully, the web application will run on the
default Beego port 8080.

Next, we will execute a couple of commands to see how the session works. Firstly, we
will access /home by executing the following command:

$ curl -X GET http://localhost:8080/home

This will give us an unauthorized access message as a response from the server:

You are unauthorized to view the page.

Apparently, we can't access it because we have to login into the application first,
which will create a beegosessionID. Now let's log in to the application by executing the
following command:

$ curl -X GET -i http://localhost:8080/login

This will result in the following response from the server:

Now we will use the cookie beegosessionID created as part of the /login request to access
/home, as follows:

$ curl --cookie "beegosessionID=6e1c6f60141811f1371d7ea044f1c194" http://localhost:8080/home

Home Page

Creating your first filter
Sometimes, we may want to perform logic either before an action method is called or
after an action method runs. In that case, we use filters, which we will be covering in
this recipe.

Filters are basically handlers which encapsulate the common functionality or the cross-
cutting concern. We just define them once and then apply them to the different
controllers and action methods.

How to do it…
1. Install the github.com/astaxie/beego/context package using the go get command, as

follows:

$ go get github.com/astaxie/beego/context

2. Move to $GOPATH/src/my-first-beego-project/filters and create firstfilter.go, which
runs before the Controller, and log the IP address and current timestamp, as
follows:

package filters

import

(

 "fmt"

 "time"

 "github.com/astaxie/beego/context"

)

var LogManager = func(ctx *context.Context)

{

 fmt.Println("IP :: " + ctx.Request.RemoteAddr + ",

 Time :: " + time.Now().Format(time.RFC850))

}

3. Move to $GOPATH/src/my-first-beego-project/routers and edit router.go to add the GET
mapping /*, which will be handled by the LogManager filter, as follows:

package routers

import

(

 "my-first-beego-project/controllers"

 "my-first-beego-project/filters"

 "github.com/astaxie/beego"

)

func init()

{

 beego.Router("/", &controllers.MainController{})

 ...

 beego.InsertFilter("/*", beego.BeforeRouter,

 filters.LogManager)

}

4. Run the program using the following command:

$ bee run

How it works…
Once the command has executed successfully, the web application will run on the
default Beego port 8080.

Next, we will execute a request to get all the employees by executing the following
command:

$ curl -X GET http://localhost:8080/employees

[

 {

 "id": 1,

 "firstName": "Foo",

 "lastName": "Bar"

 },

 {

 "id": 2,

 "firstName": "Baz",

 "lastName": "Qux"

 }

]

Once the command has executed successfully, we can see the IP and timestamp
printed in the application logs on the console, as follows:

Using beego.InsertFilter("/*", beego.BeforeRouter, filters.LogManager) , we inserted a filter
in an application which executes for the URL pattern /* before finding a router and that
is handled by LogManager. Similar to beego.BeforeRouter, there are four other places where
we can position the filters: beego.BeforeStatic, beego.BeforeExec, beego.AfterExec, and
beego.FinishRouter.

Handling HTTP errors in Beego
Error handling is one of the most important aspects in a web application design
because it helps in two ways. Firstly, it lets the application user know in a relatively
friendly manner that something has gone wrong and they should contact the technical
support department or someone from tech support should be notified. Secondly, it
allows the programmer to put in some niceties to aid in the debugging of issues. In this
recipe, we will learn how we can implement error handling in Beego.

How to do it…
1. Move to $GOPATH/src/my-first-beego-project/controllers and create errorcontroller.go,

where we will define handlers to handle 404 and 500 HTTP errors as well as the
handler to handle any generic error in an application, as follows:

package controllers

import "github.com/astaxie/beego"

type ErrorController struct

{

 beego.Controller

}

func (c *ErrorController) Error404()

{

 c.Data["content"] = "Page Not Found"

 c.TplName = "404.tpl"

}

func (c *ErrorController) Error500()

{

 c.Data["content"] = "Internal Server Error"

 c.TplName = "500.tpl"

}

func (c *ErrorController) ErrorGeneric()

{

 c.Data["content"] = "Some Error Occurred"

 c.TplName = "genericerror.tpl"

}

2. Move to $GOPATH/src/my-first-beego-project/controllers and edit firstcontroller.go to
add the GetEmployee handler, which will get the ID from an HTTP request
parameter, fetch the employee details from the static employee array, and return it
as a response or throw the generic error if the requested ID does not exist, as
follows:

package controllers

import "github.com/astaxie/beego"

type FirstController struct

{

 beego.Controller

}

type Employee struct

{

 Id int `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: 1, FirstName: "Foo", LastName: "Bar"},

 Employee{Id: 2, FirstName: "Baz", LastName: "Qux"},

 }

}

...

func (this *FirstController) GetEmployee()

{

 var id int

 this.Ctx.Input.Bind(&id, "id")

 var isEmployeeExist bool

 var emps []Employee

 for _, employee := range employees

 {

 if employee.Id == id

 {

 emps = append(emps, Employee{Id: employee.Id,

 FirstName: employee.FirstName, LastName:

 employee.LastName})

 isEmployeeExist = true

 break

 }

 }

 if !isEmployeeExist

 {

 this.Abort("Generic")

 }

 else

 {

 this.Data["employees"] = emps

 this.TplName = "dashboard.tpl"

 }

}

3. Move to $GOPATH/src/my-first-beego-project/views and create genericerror.tpl with the
following content:

<!DOCTYPE html>

<html>

 <body>

 {{.content}}

 </body>

</html>

4. Run the program using the following command:

$ bee run

How it works…
Once the command has executed successfully, the web application will run on the
default Beego port 8080.

Next, browsing http://localhost:8080/employee?id=2 will give you the employee details, as
shown in the following screenshot:

Whereas browsing http://localhost:8080/employee?id=4 as follows:

It will give you the error message as Some Error Occurred. This is because we have
asked for details of the employee with the ID as 4, which does not exist in the static
employee array, hence the generic error thrown from the server, which is handled by
the ErrorGeneric handler defined in errorcontroller.go.

Implementing caching in Beego
Caching data in a web application is sometimes necessary to avoid requesting the static
data from a database or external service again and again. In this recipe, we will learn
how we can implement caching in a Beego application.

Beego supports four cache providers: file, Memcache, memory, and Redis. In this recipe, we
will be working with the framework default cache provider, which is a memory cache
provider.

How to do it…
1. Install the github.com/astaxie/beego/cache package using the go get command, as

follows:

$ go get github.com/astaxie/beego/cache

2. Move to $GOPATH/src/my-first-beego-project/controllers and create cachecontroller.go,
where we will define the GetFromCache handler, which will get the value for a key
from a cache and write it to an HTTP response, as follows:

package controllers

import

(

 "fmt"

 "time"

 "github.com/astaxie/beego"

 "github.com/astaxie/beego/cache"

)

type CacheController struct

{

 beego.Controller

}

var beegoCache cache.Cache

var err error

func init()

{

 beegoCache, err = cache.NewCache("memory",

 `{"interval":60}`)

 beegoCache.Put("foo", "bar", 100000*time.Second)

}

func (this *CacheController) GetFromCache()

{

 foo := beegoCache.Get("foo")

 this.Ctx.WriteString("Hello " + fmt.Sprintf("%v", foo))

}

3. Move to $GOPATH/src/my-first-beego-project/routers and edit router.go to add the GET
mapping /getFromCache, which will be handled by the GetFromCache handler defined in
a CacheController, as follows:

package routers

import

(

 "my-first-beego-project/controllers"

 "my-first-beego-project/filters"

 "github.com/astaxie/beego"

)

func init()

{

 beego.Router("/", &controllers.MainController{})

 ...

 beego.Router("/getFromCache", &controllers.

 CacheController{}, "get:GetFromCache")

}

4. Run the program using the following command:

$ bee run

How it works…
Once the command has executed successfully, the web application will run on the
default Beego port 8080.

On application startup, the key with the name foo with the value as bar will be added to
the cache. Next, browsing http://localhost:8080/getFromCache will read a foo key value
from the cache, append it to Hello, and display it on the browser, as shown in the
following screenshot:

Monitoring the Beego
application
Once the Beego application is up and running, we can easily monitor application
request statistics, performance, health checks, tasks, and the configuration status
through its admin dashboard. We will learn how to do this in this recipe.

How to do it…
1. Enable the application live monitor by adding EnableAdmin = true in $GOPATH/src/my-

first-beego-project/conf/app.conf, as follows:

appname = my-first-beego-project

...

EnableAdmin = true

..

Optionally, change the port it listens on, by adding fields in $GOPATH/src/my-first-
beego-project/conf/app.conf:

AdminAddr = "localhost"

AdminPort = 8088

2. Run the program using the following command:

$ bee run

How it works…
Once the command has executed successfully, the web application will run on the
default Beego port 8080 and browsing http://localhost:8088/ will render the admin
dashboard, as shown in the following screenshot:

Browsing http://localhost:8088/qps will show us the request statistics of an application,
as shown in the following screenshot:

Deploying the Beego application
on a local machine
Once the application development is over, we have to deploy it to make it available for
use by the end users, which can be done either locally or remotely. In this recipe, we
will learn how we can deploy our Beego application on a local machine.

How to do it…
1. Because the application created by bee is in the development mode by default and

it’s always a best practice to run an application in the production mode on the
public facing servers, we have to change the RunMode as prod in $GOPATH/src/my-first-
beego-project/conf/app.conf, as follows:

beego.RunMode = "prod"

2. Include static files, configuration files, and templates as part of the Beego
application bytecode file in a separate directory by executing the following
commands:

$ mkdir $GOPATH/my-first-beego-app-deployment

$ cp my-first-beego-project $GOPATH/my-first-beego-app-deployment

$ cp -fr views $GOPATH/my-first-beego-app-deployment

$ cp -fr static $GOPATH/my-first-beego-app-deployment

$ cp -fr conf $GOPATH/my-first-beego-app-deployment

3. Move to $GOPATH/my-first-beego-app-deployment and use the nohup command to run an
application as a backend process, as follows:

$ cd $GOPATH/my-first-beego-app-deployment

$ nohup ./my-first-beego-project &

How it works…
Once the command has executed successfully, the web application will run on the
default Beego port 8080, and browsing http://localhost:8080/ will render the welcome
page of the application, as shown in the following screenshot:

Deploying the Beego application
with Nginx
In the previous recipe, we learned how we can run the Beego application locally. In
this recipe, we will be deploying the same application with Nginx.

Getting ready…
This recipe assumes you have Nginx installed and running on port 80. For me, it's
installed at /Users/ArpitAggarwal/nginx.

How to do it…
1. Open the Nginx configuration file at /Users/ArpitAggarwal/nginx/conf/nginx.conf and

replace the location block under server with the following content:

location /

{

 # root html;

 # index index.html index.htm;

 proxy_pass http://localhost:8080/;

}

2. Start Nginx by executing the following command:

$ cd /Users/ArpitAggarwal/nginx/sbin

$./nginx

3. Run the Beego application by executing the following command:

$ bee run

How it works…
Once the command has executed successfully, browsing http://localhost:80/ will render
the welcome page of the application, as shown in the following screenshot:

Working with Go and Docker
In this chapter, we will cover the following recipes:

Building your first Go Docker image
Running your first Go Docker container
Pushing your Docker image to the Docker Registry
Creating your first user-defined bridge network
Running a MySQL Docker image on a user-defined bridge network
Building a Go web application Docker image
Running a web application Docker container linked with a MySQL
Docker container on a user-defined bridge network

Introduction
With organizations moving towards DevOps, Docker has started to gain popularity as
well. Docker allows for packaging an application with all of its dependencies into a
standardized unit for software development. And if that unit runs on your local
machine, we can guarantee that it will run exactly the same way, anywhere from QA,
to staging, and to production environments. With the knowledge of the concepts
covered in this chapter, we will be able to write Docker images and deploy Docker
containers with ease.

In this chapter, we will learn how to create a Docker image and Docker containers to
deploy a simple Go web application, following which we will be looking at how we
can save the container to an image and push it to the Docker registry, along with some
basic concepts of Docker networking.

As we are going to work with Docker, I assume it's installed and running on your local
machine.

Building your first Go Docker
image
A Docker image is the filesystem and configuration of our application and is further
used to create Docker containers. There are two ways by which a Docker image can be
created, which is either from scratch or from a parent image. In this recipe, we will
learn how to create a Docker image from a parent image. This means an image created
basically refers to the contents of its parent and subsequent declarations in the
Dockerfile modify the parent image.

Getting ready…
Verify whether Docker and Docker Machine are installed by executing the following
commands:

$ docker --version

Docker version 18.03.0-ce, build 0520e24

$ docker-machine --version

docker-machine version 0.14.0, build 89b8332

How to do it…
1. Create http-server.go, where we will create a simple HTTP server that will render

Hello World! browsing http://docker-machine-ip:8080 or executing curl -X GET
http://docker-machine-ip:8080 from the command line, as follows:

package main

import

(

 "fmt"

 "log"

 "net/http"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

func helloWorld(w http.ResponseWriter, r *http.Request)

{

 fmt.Fprintf(w, "Hello World!")

}

func main()

{

 http.HandleFunc("/", helloWorld)

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

2. Create a DockerFile, which is a text file that contains all the commands needed to
build an image. We will use golang:1.9.2 as the base, or the parent image, which
we have specified using the FROM directive in the Dockerfile, as follows:

FROM golang:1.9.2

 ENV SRC_DIR=/go/src/github.com/arpitaggarwal/

 ENV GOBIN=/go/bin

 WORKDIR $GOBIN

 # Add the source code:

 ADD . $SRC_DIR

 RUN cd /go/src/;

 RUN go install github.com/arpitaggarwal/;

 ENTRYPOINT ["./arpitaggarwal"]

 EXPOSE 8080

With everything in place, the directory structure should look like the following:

3. Build a Docker image from the Dockerfile executing the docker build command
with the image name as golang-image using the -t flag, as follows:

$ docker build --no-cache=true -t golang-image .

Once the preceding command has executed successfully, it will render the
following output:

If you are building an image behind a corporate proxy, you will probably have
to provide the proxy settings. You can do this by adding environment variables
using the ENV statement in the Dockerfile, which we often call as a runtime
customization, as follows:

FROM golang:1.9.2

....

ENV http_proxy "http://proxy.corp.com:80"

ENV https_proxy "http://proxy.corp.com:80"

...

We can also pass the proxy settings at build time to the builder using the --
build-arg <varname>=<value> flag, which is called as a build time customization, as
follows:

$ docker build --no-cache=true --build-arg http_proxy="http://proxy.corp.com:80" -t golang-image.

How it works…
Verify whether the Docker image has been created successfully by executing the
following command:

$ docker images

This will list all the top-level images, their repositories, tags, and their size, as shown
in the following screenshot:

Let's understand the Dockerfile we have created:

FROM golang:1.9.2: The FROM instruction specifies the base image, which is, for
us golang:1.9.2
ENV SRC_DIR=/go/src/github.com/arpitaggarwal/: Here, we are setting the Go source code
directory as an environment variable using the ENV statement
ENV GOBIN=/go/bin: Here, we are setting the GOBIN or a directory to generate
executable binaries as an environment variable using the ENV statement
WORKDIR $GOBIN: The WORKDIR instruction sets the working directory for any RUN, CMD,
ENTRYPOINT, COPY and ADD statements, which is /go/bin for our image
ADD . $SRC_DIR: Here, we copyhttp-server.go from the current directory on our host
machine to the /go/src/github.com/arpitaggarwal/ directory of golang-image using the ADD
statement

RUN cd /go/src/: Here, we change the current directory to/go/src/ in a golang-image
using the RUN statement
RUN go install github.com/arpitaggarwal/: Here, we compile
/go/src/github.com/arpitaggarwal/http-server.go and generate an executable binary file
of it in the /go/bin directory
ENTRYPOINT ["./arpitaggarwal"]: Here, we are specifying the executable binary
generated to run as an executable when running a container
EXPOSE 8080: The EXPOSE instruction informs Docker that the container that we will
create from an image will listen on the network port 8080 at runtime

Running your first Go Docker
container
A Docker container includes an application and all of its dependencies. It shares the
kernel with other containers and runs as an isolated process in the user space on the
host operating system. To run the actual application, we have to create and run the
containers from an image, which we will be covering in this recipe.

How to do it…
Execute the docker run command to create and run a Docker container from the golang-
image, assigning the container name as golang-container using the -name flag, as follows:

$ docker run -d -p 8080:8080 --name golang-container -it golang-image

 9eb53d8d41a237ac216c9bb0f76b4b47d2747fab690569ef6ff4b216e6aab486

The -d flag specified in the docker run command starts the container in a daemon mode
and the hash string at the end represents the ID of the golang-container.

How it works…
Verify whether the Docker container has been created and is running successfully by
executing the following command:

$ docker ps

Once the preceding command has executed successfully, it will give us the running
Docker container details, as shown in the following screenshot:

To list all the Docker containers, whether they are running or not, we have to pass an additional flag, -a, as
docker ps -a.

Browse http://localhost:8080/ or execute a GET call from the command line, as follows:

$ curl -X GET http://localhost:8080/

 Hello World!

This will give us Hello World! as a response, which means the HTTP server is
listening inside a Docker container at port 8080.

Pushing your Docker image to
the Docker Registry
Once a Docker image has been created, it's always best practice to store or save the
image so that the next time you have to boot up the containers from your custom
image, you don't have to bother about or remember the steps you performed earlier
while creating it.

You can save an image either on a local machine or in an artifactory or to any of the
public or private Docker Registries, such as Docker Hub, Quay, Google Container
Registry, AWS Container Registry, and so on. In this recipe, we will learn how to save
or push an image which we have created in one of our previous recipes to the Docker
Hub.

See the Building your first Go Docker image recipe.

How to do it…
1. Create your account on the Docker Hub (https://hub.docker.com/).

2. Login into the Docker Hub from the command line by executing the docker login
command, as follows:

$ docker login --username arpitaggarwal --password XXXXX

 Login Succeeded

3. Tag the golang-image:

$ docker tag golang-image arpitaggarwal/golang-image

4. Verify whether the image has been tagged successfully by executing the docker
images command:

$ docker images

Executing the preceding command will list all the Docker images, as shown in
the following screenshot:

5. Push the tagged image to the Docker Hub by executing the docker push command,
as follows:

$ docker push arpitaggarwal/golang-image

 The push refers to a repository [docker.io/arpitaggarwal

 /golang-image]

 4db0afeaa6dd: Pushed

 4e648ebe6cf2: Pushed

 6bfc813a3812: Mounted from library/golang

 e1e44e9665b9: Mounted from library/golang

 1654abf914f4: Mounted from library/golang

 2a55a2194a6c: Mounted from library/golang

 52c175f1a4b1: Mounted from library/golang

 faccc7315fd9: Pushed

 e38b8aef9521: Mounted from library/golang

 a75caa09eb1f: Mounted from library/golang

 latest: digest: sha256:ca8f0a1530d3add72ad4e328e51235ef70c5fb8f38bde906a378d74d2b75c8a8 size: 2422

How it works…
To verify whether an image has been pushed successfully to the Docker Hub, browse
https://hub.docker.com/, sign in using your credentials, and, once logged in, you will see
the tagged image, as shown in the following screenshot:

If you performed any changes to the Docker container and want to persist them as well as part of an image,
then first you have to commit the changes to a new image or to the same image using the docker commit command
before tagging and pushing it to the Docker Hub, as follows:
$ docker commit <container-id> golang-image-new

$ docker tag golang-image-new arpitaggarwal/golang-image

$ docker push arpitaggarwal/golang-image

Creating your first user-defined
bridge network
Whenever we want to connect one Docker container to another Docker container by
the container name, then first we have to create a user-defined network. This is
because Docker does not support automatic service discovery on the default bridge
network. In this recipe, we will learn how to create our own bridge network.

How to do it…
Execute the docker network command to create a bridge network with the name as my-
bridge-network, as follows:

$ docker network create my-bridge-network

 325bca66cc2ccb98fb6044b1da90ed4b6b0f29b54c4588840e259fb7b6505331

How it works…
Verify whether my-bridge-network has been created successfully by executing the
following command:

$ docker network ls

 NETWORK ID NAME DRIVER

 20dc090404cb bridge bridge

 9fa39d9bb674 host host

 325bca66cc2c my-bridge-network bridge

 f36203e11372 none null

To see detailed information about my-bridge-network, run the docker network inspect
command followed by the network name, as follows:

$ docker network inspect my-bridge-network

 [

 {

 "Name": "my-bridge-network",

 "Id": "325bca66cc2ccb98fb6044b1da90ed4b6b0

 f29b54c4588840e259fb7b6505331",

 "Scope": "local",

 "Driver": "bridge",

 "EnableIPv6": false,

 "IPAM":

 {

 "Driver": "default",

 "Options": {},

 "Config":

 [

 {

 "Subnet": "172.18.0.0/16",

 "Gateway": "172.18.0.1"

 }

]

 },

 "Internal": false,

 "Containers": {},

 "Options": {},

 "Labels": {}

 }

]

Running a MySQL Docker
image on a user-defined bridge
network
Whenever we run a Docker image to create and boot up a container, it uses the default
bridge network, which Docker creates during installation. To run an image on a
specific network, which may be either user-defined or one of the other two networks
that Docker creates automatically, host or none, we have to provide the additional --net
flag with the value as the network name as part of the docker run command.

In this recipe, we will run a MySQL image on the user-defined bridge network that we
created in the previous recipe, passing the --net flag value as my-bridge-network.

How to do it…
Execute the docker run command to create and run a MySQL Docker container from the
mysql:latest image, assigning the container name as mysql-container using the --name
flag, as follows:

$ docker run --net=my-bridge-network -p 3306:3306 --name mysql-container -e MYSQL_ROOT_PASSWORD=my-pass -d mysql:latest

 c3ca3e6f253efa40b1e691023155ab3f37eb07b767b1744266ac4ae85fca1722

The --net flag specified in the docker run command connects mysql-container to my-bridge-
network. The -p flag specified in the docker run command publishes the container's 3306
port to the host 3306 port. The -e flag specified in the docker run command sets the
MYSQL_ROOT_PASSWORD value as my-pass, which is an environment variable of the mysql:latest
image. The -d flag specified in the docker run command starts the container in a daemon
mode, and the hash string at the end represents the ID of the mysql-container.

How it works…
Verify whether the Docker container has been created and is running successfully by
executing the following command:

$ docker ps

 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

 f2ec80f82056 mysql:latest "docker-entrypoint.sh" 8 seconds ago Up 6 seconds 0.0.0.0:3306->3306/tcp mysql-container

Inspecting the my-bridge-network again will show us the mysql-container details in the
Containers section, as follows:

$ docker network inspect my-bridge-network

[

 {

 "Name": "my-bridge-network",

 "Id": "325bca66cc2ccb98fb6044b1da90ed

 4b6b0f29b54c4588840e259fb7b6505331",

 "Scope": "local",

 "Driver": "bridge",

 "EnableIPv6": false,

 "IPAM":

 {

 "Driver": "default",

 "Options": {},

 "Config":

 [

 {

 "Subnet": "172.18.0.0/16",

 "Gateway": "172.18.0.1"

 }

]

 },

 "Internal": false,

 "Containers":

 {

 "f2ec80f820566707ba7b18ce12ca7a65

 c87fa120fd4221e11967131656f68e59":

 {

 "Name": "mysql-container",

 "EndpointID": "58092b80bd34135d94154e4d8a8f5806bad

 601257cfbe28e53b5d7161da3b350",

 "MacAddress": "02:42:ac:12:00:02",

 "IPv4Address": "172.18.0.2/16",

 "IPv6Address": ""

 }

 },

 "Options": {},

 "Labels": {}

 }

]

Building a Go web application
Docker image
In this recipe, we will build a Docker image that connects to the MySQL database
instance running in a separate Docker container.

How to do it…
1. Create http-server.go, where we will create a simple HTTP server and a handler

which will give us the current database details, such as machine IP, hostname,
port, and selected database, as follows:

package main

import

(

 "bytes"

 "database/sql"

 "fmt"

 "log"

 "net/http"

 "github.com/go-sql-driver/mysql"

 "github.com/gorilla/mux"

)

var db *sql.DB

var connectionError error

const

(

 CONN_PORT = "8080"

 DRIVER_NAME = "mysql"

 DATA_SOURCE_NAME = "root:my-pass@tcp(mysql-container:3306)/mysql"

)

func init()

{

 db, connectionError = sql.Open(DRIVER_NAME, DATA_SOURCE_NAME)

 if connectionError != nil

 {

 log.Fatal("error connecting to database : ", connectionError)

 }

}

func getDBInfo(w http.ResponseWriter, r *http.Request)

{

 rows, err := db.Query("SELECT SUBSTRING_INDEX(USER(),

 '@', -1) AS ip, @@hostname as hostname, @@port as port,

 DATABASE() as current_database;")

 if err != nil

 {

 log.Print("error executing database query : ", err)

 return

 }

 var buffer bytes.Buffer

 for rows.Next()

 {

 var ip string

 var hostname string

 var port string

 var current_database string

 err = rows.Scan(&ip, &hostname, &port, ¤t_database)

 buffer.WriteString("IP :: " + ip + " | HostName :: " +

 hostname + " | Port :: " + port + " | Current

 Database :: " + current_database)

 }

 fmt.Fprintf(w, buffer.String())

}

func main()

{

 router := mux.NewRouter()

 router.HandleFunc("/", getDBInfo).Methods("GET")

 defer db.Close()

 err := http.ListenAndServe(":"+CONN_PORT, router)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

2. Create a DockerFile, which is a text file that contains all the commands needed to
build an image, as follows:

FROM golang:1.9.2

 ENV SRC_DIR=/go/src/github.com/arpitaggarwal/

 ENV GOBIN=/go/bin

 WORKDIR $GOBIN

 ADD . $SRC_DIR

 RUN cd /go/src/;

 RUN go get github.com/go-sql-driver/mysql;

 RUN go get github.com/gorilla/mux;

 RUN go install github.com/arpitaggarwal/;

 ENTRYPOINT ["./arpitaggarwal"]

 EXPOSE 8080

With everything in place, the directory structure should look like the following:

3. Build a Docker image from the Dockerfile executing the docker build command
with the image name as web-application-image using the -t flag, as follows:

$ docker build --no-cache=true -t web-application-image .

Once the preceding command has executed successfully, it will render the
following output:

How it works…
Verify whether the Docker image has been created successfully by executing the
following command:

$ docker images

This will list all the top-level images, their repositories, tags, and their size, as shown
in the following screenshot:

The Dockerfile we created in this recipe is exactly the same as the one we created in one
of our previous recipes, except for the two additional commands that install the Go
MySQL Driver and the Gorilla Mux URL router while building the image, as follows:

...

RUN go get github.com/go-sql-driver/mysql;

RUN go get github.com/gorilla/mux;

...

See the Building your first Go Docker image recipe.

Running a web application
Docker container linked with a
MySQL Docker container on a
user-defined bridge network
In this recipe, we will learn how to run a Go web application Docker image to create a
container which will communicate with the MYSQL database instance running in a
separate Docker container.

As we know Docker does not support automatic service discovery on the default
bridge network, we will be using the user-defined network that we created in one of
our previous recipes to run a Go web application Docker image.

How to do it…
Execute the docker run command to create a web application Docker container from the
web-application-image, assigning the container name as web-application-container using the --
name flag, as follows:

$ docker run --net=my-bridge-network -p 8090:8080 --name web-application-container -d web-application-image

 ef9c73396e9f9e04c94b7327e8f02cf57ce5f0cd674791e2805c86c70e5b9564

The --net flag specified in the docker run command connects the mysql-container to the my-
bridge-network. The -p flag specified in the docker run command publishes the container's
8080 port to the host 8080 port. The -d flag specified in the docker run command starts the
container in a daemon mode and the hash string at the end represents the ID of the web-
application-container.

How it works…
Verify whether the Docker container has been created and is running successfully by
executing the following command:

$ docker ps

This will render the following output:

Browsing http://localhost:8090/ as will give us the machine IP, hostname, port, and
current database details as the response:

Moreover, inspecting my-bridge-network again will show us the mysql-container and web-
application-container details in the Containers section, as follows:

$ docker network inspect my-bridge-network

[

 {

 "Name": "my-bridge-network",

 "Id": "325bca66cc2ccb98fb6044b1da90ed4b6b0

 f29b54c4588840e259fb7b6505331",

 "Scope": "local",

 "Driver": "bridge",

 "EnableIPv6": false,

 "IPAM":

 {

 "Driver": "default",

 "Options": {},

 "Config":

 [

 {

 "Subnet": "172.18.0.0/16",

 "Gateway": "172.18.0.1"

 }

]

 },

 "Internal": false,

 "Containers":

 {

 "08ce8f20c3205fa3e421083fa1077b

 673cdd10fd5be34f5ef431fead06219019":

 {

 "Name": "web-application-container",

 "EndpointID": "d22f7076cf037ef0f0057ffb9fec

 0a07e07b44b442182544731db1ad10db87e4",

 "MacAddress": "02:42:ac:12:00:03",

 "IPv4Address": "172.18.0.3/16",

 "IPv6Address": ""

 },

 "f2ec80f820566707ba7b18ce12ca7a65

 c87fa120fd4221e11967131656f68e59":

 {

 "Name": "mysql-container",

 "EndpointID": "58092b80bd34135d94154e4d8

 a8f5806bad601257cfbe28e53b5d7161da3b350",

 "MacAddress": "02:42:ac:12:00:02",

 "IPv4Address": "172.18.0.2/16",

 "IPv6Address": ""

 }

 },

 "Options": {},

 "Labels": {}

 }

]

Securing a Go Web Application
In this chapter, we will cover the following recipes:

Creating a private key and SSL certificate using OpenSSL
Moving an HTTP server to HTTPS
Defining REST APIs and routes
Creating a JSON web token
Securing a RESTful service using a JSON web token
Preventing cross-site request forgery in Go web applications

Introduction
Securing web applications is one of the most important aspects, besides creating
applications, that we will be learning about in this chapter. Application security is a
very wide topic and can be implemented in various ways that are beyond the scope of
this chapter.

In this chapter, we will just focus on how we can move our Go web application from
the HTTP protocol to HTTPS, which is often called HTTP + TLS (Transport Layer
Security), along with securing Go web application REST endpoints using JSON web
tokens (JWTs), and protecting our application from cross-site request forgery
(CSRF) attacks.

Creating a private key and SSL
certificate using OpenSSL
To move a server running on HTTP to HTTPS, the first thing we have to do is to get
the SSL certificate, which may be either self-signed or a certificate signed by a trusted
certificate authority such as Comodo, Symantec, or GoDaddy.

To get the SSL certificate signed by a trusted certificate authority, we have to provide
them with a Certificate Signing Request (CSR), which mainly consists of the public
key of a key pair and some additional information, whereas a self-signed certificate is
a certificate that you can issue to yourself, signed with its own private key.

Self-signed certificates can be used to encrypt data as well as CA-signed certificates,
but the users will be displayed with a warning that says that the certificate is not
trusted by their computer or browser. Therefore, you should not use them for the
production or public servers.

In this recipe, we will learn how to create a private key, a certificate-signing request,
and a self-signed certificate.

Getting ready…
This recipe assumes you have openssl installed on your machine. To verify that it is
installed, execute the following command:

$ openssl

OpenSSL> exit

How to do it…
1. Generate a private key and certificate signing request using openssl by executing

the following command:

$ openssl req -newkey rsa:2048 -nodes -keyout domain.key -out domain.csr -subj "/C=IN/ST=Mumbai/L=Andheri East/O=Packt/CN=packtpub.com"

This will give the following output:

2. Generate a certificate and sign it with the private key we just created by executing
the following command:

$ openssl req -key domain.key -new -x509 -days 365 -out domain.crt -subj "/C=IN/ST=Mumbai/L=Andheri East/O=Packt/CN=packtpub.com"

How it works…
Once the command has executed successfully, we can see domain.key, domain.csr,
and domain.crt generated, where domain.key is a 2,048-bit RSA private key that is used to
sign the SSL certificate, and domain.crt and domain.csr are certificate-signing requests
that consist of the public key of a key pair with some additional information, which is
inserted into the certificate when it is signed.

Let's understand the command we executed to generate a certificate-signing request:

The -newkey rsa:2048 option creates a new certificate request and a new private key
that should be 2,048-bit, generated using the RSA algorithm.
The -nodes option specifies that the private key created will not be encrypted with
a passphrase.
The -keyout domain.key option specifies the filename to write the newly created
private key to.
The -out domain.csr option specifies the output filename to write to, or the standard
output by default.
The -subj option replaces a subject field of the input request with specified data
and outputs a modified request. If we do not specify this option, then we have to
answer the CSR information prompt by OpenSSL to complete the process.

Next, we will understand the command we executed to generate the certificate and
sign it with the private key, as follows:

openssl req -key domain.key -new -x509 -days 365 -out domain.crt -subj "/C=IN/ST=Mumbai/L=Andheri East/O=Packt/CN=packtpub.com"

The -key option specifies the file to read the private key from. The -x509 option outputs
a self-signed certificate instead of a certificate request. The -days 365 option specifies
the number of days to certify the certificate for. The default is 30 days.

Moving an HTTP server to
HTTPS
Once the web application development is over, it's likely that we will deploy it to the
servers. While deploying, it is always recommended to run the web application on an
HTTPS protocol rather than HTTP, especially for the servers that are publicly
exposed. In this recipe, we will learn how we can do this in Go.

How to do it…
1. Create https-server.go, where we will define a handler that will just write Hello

World! to an HTTP response stream for all HTTPS requests, as follows:

package main

import

(

 "fmt"

 "log"

 "net/http"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8443"

 HTTPS_CERTIFICATE = "domain.crt"

 DOMAIN_PRIVATE_KEY = "domain.key"

)

func helloWorld(w http.ResponseWriter, r *http.Request)

{

 fmt.Fprintf(w, "Hello World!")

}

func main()

{

 http.HandleFunc("/", helloWorld)

 err := http.ListenAndServeTLS(CONN_HOST+":"+CONN_PORT,

 HTTPS_CERTIFICATE, DOMAIN_PRIVATE_KEY, nil)

 if err != nil

 {

 log.Fatal("error starting https server : ", err)

 return

 }

}

2. Run the program with the following command:

$ go run https-server.go

How it works…
Once we run the program, the HTTPS server will start locally listening on port 8443.

Browsing https://localhost:8443/ will give us Hello World! as a response from the
server:

 Moreover, executing a GET request from the command line passing the --insecure flag
with curl will skip the certificate validation, as we are using a self-signed certificate:

$ curl -X GET https://localhost:8443/ --insecure

 Hello World!

Let's understand the program we have written:

const (CONN_HOST = "localhost" CONN_PORT = "8443" HTTPS_CERTIFICATE = "domain.crt"

DOMAIN_PRIVATE_KEY = "domain.key"): Here, we declared four constants - CONN_HOST with
the value as localhost, CONN_PORT with the value as 8443, HTTPS_CERTIFICATE with the
value as domain.crt or a self-signed certificate, and DOMAIN_PRIVATE_KEY with the value
as domain.key or the private key that we created in the previous recipe.
func helloWorld(w http.ResponseWriter, r *http.Request) { fmt.Fprintf(w, "Hello World!") }:
This is a Go function that takes ResponseWriter and Request as input parameters and
writes Hello World! on an HTTP response stream.

Next, we declared main() from where the program execution begins. As this method
does a lot of things, let's understand it line by line:

http.HandleFunc("/", helloWorld): Here, we are registering the helloWorld function with
the URL pattern / using HandleFunc of the net/http package, which means helloWorld
gets executed, passing (http.ResponseWriter, *http.Request) as input to it whenever we
access the HTTPS URL pattern /.
err := http.ListenAndServeTLS(CONN_HOST+":"+CONN_PORT, HTTPS_CERTIFICATE,

DOMAIN_PRIVATE_KEY, nil): Here, we are calling http.ListenAndServeTLS to serve HTTPS
requests that handle each incoming connection in a separate Goroutine.
ListenAndServeTLS accepts four parameters—server address, SSL certificate, private
key, and a handler. Here, we are passing the server address as localhost:8443, our
self-signed certificate, private key, and handler as nil, which means we are asking
the server to use DefaultServeMux as a handler.
if err != nil { log.Fatal("error starting https server : ", err) return}: Here, we check

whether there are any problems in starting the server. If there are, then log the
error(s) and exit with a status code of 1.

Defining REST APIs and routes
While writing RESTful APIs, it's very common to authenticate the user before
allowing them to access it. A prerequisite to authenticating the user is to create the API
routes, which we will be covering in this recipe.

How to do it…
1. Install the github.com/gorilla/mux and github.com/gorilla/handlers packages using the go

get command, as follows:

$ go get github.com/gorilla/mux

$ go get github.com/gorilla/handlers

2. Create http-rest-api.go, where we will define three routes—/status, /get-token and
/employees—along with their handlers, as follows:

package main

import

(

 "encoding/json"

 "log"

 "net/http"

 "os"

 "github.com/gorilla/handlers"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

)

type Employee struct

{

 Id int `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: 1, FirstName: "Foo", LastName: "Bar"},

 Employee{Id: 2, FirstName: "Baz", LastName: "Qux"},

 }

}

func getStatus(w http.ResponseWriter, r *http.Request)

{

 w.Write([]byte("API is up and running"))

}

func getEmployees(w http.ResponseWriter, r *http.Request)

{

 json.NewEncoder(w).Encode(employees)

}

func getToken(w http.ResponseWriter, r *http.Request)

{

 w.Write([]byte("Not Implemented"))

}

func main()

{

 router := mux.NewRouter().StrictSlash(true)

 router.HandleFunc("/status", getStatus).Methods("GET")

 router.HandleFunc("/get-token", getToken).Methods("GET")

 router.HandleFunc("/employees", getEmployees).Methods("GET")

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT,

 handlers.LoggingHandler(os.Stdout, router))

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-rest-api.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, you could execute a GET request from the command line as:

$ curl -X GET http://localhost:8080/status

 API is up and running

This will give you the status of the REST API. You could execute a GET request from
the command line as:

$ curl -X GET http://localhost:8080/employees

 [{"id":1,"firstName":"Foo","lastName":"Bar"},{"id":2,"firstName":"Baz","lastName":"Qux"}]

This will give you a list of all the employees. We could try to get the access token
through the command line as:

$ curl -X GET http://localhost:8080/get-token

We will get the Not Implemented message from the server.

Let's understand the program we have written:

import ("encoding/json" "log" "net/http" "os" “github.com/gorilla/handlers"

"github.com/gorilla/mux"): Here, we imported github.com/gorilla/mux to create a Gorilla
Mux router and github.com/gorilla/handlers to create a Gorilla logging handler for
logging HTTP requests in the Apache Common Log Format.
func getStatus(w http.ResponseWriter, r *http.Request) { w.Write([]byte("API is up and

running"))}: This is a handler that just writes API is up and running to an HTTP
response stream.
func getEmployees(w http.ResponseWriter, r *http.Request) {

json.NewEncoder(w).Encode(employees)}: This is a handler that writes a static array of
employees to an HTTP response stream.
func notImplemented(w http.ResponseWriter, r *http.Request) {

w.Write([]byte(“Not Implemented")) }: This is a handler that just writes Not
Implemented to an HTTP response stream.
Then, we defined main(), where we create a gorilla/mux router instance using the
NewRouter() handler with the trailing slash behavior for new routes as true, add
routes and register handlers to it, and finally call http.ListenAndServe to serve HTTP
requests which handle each incoming connection in a separate Goroutine.
ListenAndServe accepts two parameters—the server address and the handler. Here,
we are passing the server address as localhost:8080 and the handler as Gorilla

LoggingHandler, which logs HTTP requests in the Apache Common Log Format.

Creating a JSON web token
To secure your REST API or a service endpoint, you have to write a handler in Go that
generates a JSON web token, or JWT.

In this recipe, we will be using https://github.com/dgrijalva/jwt-go to generate JWT ,
although you can implement any library from a number of third-party libraries
available in Go, such as https://github.com/square/go-jose and
https://github.com/tarent/loginsrv.

How to do it…
1. Install the github.com/dgrijalva/jwt-go, github.com/gorilla/mux and

github.com/gorilla/handlers packages using the go get command, as follows:

$ go get github.com/dgrijalva/jwt-go

$ go get github.com/gorilla/handlers

$ go get github.com/gorilla/mux

2. Create create-jwt.go, where we will define the getToken handler that generates JWT, as
follows:

package main

import

(

 "encoding/json"

 "log"

 "net/http"

 "os"

 "time"

 jwt "github.com/dgrijalva/jwt-go"

 "github.com/gorilla/handlers"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 CLAIM_ISSUER = "Packt"

 CLAIM_EXPIRY_IN_HOURS = 24

)

type Employee struct

{

 Id int `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: 1, FirstName: "Foo", LastName: "Bar"},

 Employee{Id: 2, FirstName: "Baz", LastName: "Qux"},

 }

}

var signature = []byte("secret")

func getToken(w http.ResponseWriter, r *http.Request)

{

 claims := &jwt.StandardClaims

 {

 ExpiresAt: time.Now().Add(time.Hour *

 CLAIM_EXPIRY_IN_HOURS).Unix(),

 Issuer: CLAIM_ISSUER,

 }

 token := jwt.NewWithClaims(jwt.SigningMethodHS256, claims)

 tokenString, _ := token.SignedString(signature)

 w.Write([]byte(tokenString))

}

func getStatus(w http.ResponseWriter, r *http.Request)

{

 w.Write([]byte("API is up and running"))

}

func getEmployees(w http.ResponseWriter, r *http.Request)

{

 json.NewEncoder(w).Encode(employees)

}

func main()

{

 muxRouter := mux.NewRouter().StrictSlash(true)

 muxRouter.HandleFunc("/status", getStatus).Methods("GET")

 muxRouter.HandleFunc("/get-token", getToken).Methods("GET")

 muxRouter.HandleFunc("/employees", getEmployees).Methods("GET")

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT,

 handlers.LoggingHandler(os.Stdout, muxRouter))

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run create-jwt.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, we execute a GET request from the command line as:

$ curl -X GET http://localhost:8080/status

 API is up and running

It will give you the status of the API. Next, we execute a GET request from the
command line as:

$ curl -X GET http://localhost:8080/employees

 [{"id":1,"firstName":"Foo","lastName":"Bar"},{"id":2,"firstName":"Baz","lastName":"Qux"}]

It will give you a list of all the employees. Next, let's attempt to get the access token of
the REST API through the command line:

$ curl -X GET http://localhost:8080/get-token

It will give us the JWT token generated:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MTM1MDY4ODEsImlzcyI6IlBhY2t0In0.95vuiR7lpWt4AIBDasBzOffL_Xv78_J9rcrKkeqSW08

Next, browse to https://jwt.io/ and paste the token generated in the Encoded section to
see it's decoded value, as shown in the following screenshot:

Let's understand the changes we introduced in this recipe:

import ("encoding/json" "log" "net/http" "os" "time" jwt "github.com/dgrijalva/jwt-go"

"github.com/gorilla/handlers" "github.com/gorilla/mux"): Here, we imported an
additional package—github.com/dgrijalva/jwt-go—which has a Go implementation
of the JWT.
const (CONN_HOST = "localhost" CONN_PORT = "8080" CLAIM_ISSUER = "Packt"

CLAIM_EXPIRY_IN_HOURS = 24): Here, we introduced two additional constants—one is
CLAIM_ISSUER, which identifies the principal that issued the JWT, and the other one
is CLAIM_EXPIRY_IN_HOURS, which identifies the expiration time on or after which the
JWT must not be accepted for processing.
var signature = []byte("secret"): This is the signature held by the server. Using this,
the server will be able to verify existing tokens and sign new ones.

Next, we defined a getToken handler, where we first prepared a claims object using

the JWT StandardClaims handler, which then generates a JWT token using the jwt
NewWithClaims handler, and, finally, signs it with the server signature and writes it to an
HTTP response stream.

Securing a RESTful service
using a JSON web token
Once we have a REST API endpoint and a JWT token generator handler in hand, we
can easily secure our endpoints with the JWT, which we will be covering in this
recipe.

How to do it…
1. Install the github.com/auth0/go-jwt-middleware, github.com/dgrijalva/jwt-go,

github.com/gorilla/mux, and github.com/gorilla/handlers packages using the go get
command, as follows:

$ go get github.com/auth0/go-jwt-middleware

$ go get github.com/dgrijalva/jwt-go

$ go get github.com/gorilla/handlers

$ go get github.com/gorilla/mux

2. Create http-rest-api-secured.go, where we will define the JWT middleware to check
for JWTs on HTTP requests, and wrap the /employees route with it, as follows:

package main

import

(

 "encoding/json"

 "log"

 "net/http"

 "os"

 "time"

 jwtmiddleware "github.com/auth0/go-jwt-middleware"

 jwt "github.com/dgrijalva/jwt-go"

 "github.com/gorilla/handlers"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8080"

 CLAIM_ISSUER = "Packt"

 CLAIM_EXPIRY_IN_HOURS = 24

)

type Employee struct

{

 Id int `json:"id"`

 FirstName string `json:"firstName"`

 LastName string `json:"lastName"`

}

type Employees []Employee

var employees []Employee

func init()

{

 employees = Employees

 {

 Employee{Id: 1, FirstName: "Foo", LastName: "Bar"},

 Employee{Id: 2, FirstName: "Baz", LastName: "Qux"},

 }

}

var signature = []byte("secret")

var jwtMiddleware = jwtmiddleware.New

(

 jwtmiddleware.Options

 {

 ValidationKeyGetter: func(token *jwt.Token) (interface{}, error)

 {

 return signature, nil

 },

 SigningMethod: jwt.SigningMethodHS256,

 }

)

func getToken(w http.ResponseWriter, r *http.Request)

{

 claims := &jwt.StandardClaims

 {

 ExpiresAt: time.Now().Add(time.Hour *

 CLAIM_EXPIRY_IN_HOURS).Unix(),

 Issuer: CLAIM_ISSUER,

 }

 token := jwt.NewWithClaims(jwt.SigningMethodHS256, claims)

 tokenString, _ := token.SignedString(signature)

 w.Write([]byte(tokenString))

}

func getStatus(w http.ResponseWriter, r *http.Request)

{

 w.Write([]byte("API is up and running"))

}

func getEmployees(w http.ResponseWriter, r *http.Request)

{

 json.NewEncoder(w).Encode(employees)

}

func main()

{

 muxRouter := mux.NewRouter().StrictSlash(true)

 muxRouter.HandleFunc("/status", getStatus).Methods("GET")

 muxRouter.HandleFunc("/get-token", getToken).Methods("GET")

 muxRouter.Handle("/employees", jwtMiddleware.Handler

 (http.HandlerFunc(getEmployees))).Methods("GET")

 err := http.ListenAndServe(CONN_HOST+":"+CONN_PORT,

 handlers.LoggingHandler(os.Stdout, muxRouter))

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

3. Run the program with the following command:

$ go run http-rest-api-secured.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8080.

Next, we execute a GET request from the command line as:

$ curl -X GET http://localhost:8080/status

 API is up and running

It will give you the status of the API. Next we execute a GET request from the command
line as:

$ curl -X GET http://localhost:8080/employees

 Required authorization token not found

It will display us the message that the JWT was not found in the request. So, to get the
list of all the employees, we have to get the access token of the API, which we can get
by executing the following command:

$ curl -X GET http://localhost:8080/get-token

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MTM1MTI2NTksImlzcyI6IlBhY2t0In0.2r_q_82erdOmt862ofluiMGr3O5x5_c0_sMyW7Pi5XE

Now, calling the employee API, again passing the JWT as the HTTP
Authorization request header as:

$ curl -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MTM1MTI2NTksImlzcyI6IlBhY2t0In0.2r_q_82erdOmt862ofluiMGr3O5x5_c0_sMyW7Pi5XE" http://localhost:8080/employees

It will give you a list of all the employees, as follows:

[{"id":1,"firstName":"Foo","lastName":"Bar"},{"id":2,"firstName":"Baz","lastName":"Qux"}]

Let's understand the changes we introduced in this recipe:

1. Using import ("encoding/json" "log" "net/http" "os" "time" jwtmiddleware
"github.com/auth0/go-jwt-middleware" jwt "github.com/dgrijalva/jwt-go"

"github.com/gorilla/handlers" "github.com/gorilla/mux"), we imported an additional
package, github.com/auth0/go-jwt-middleware, with the alias as jwtmiddleware, which
checks for JWTs on HTTP requests.

2. Then, we constructed a new secure instance of jwtmiddleware, passing SigningMethod
as HS256 and the ValidationKeyGetter option as a Go function that returns the key to
validate the JWT. Here, a server signature is used as a key to validate the JWT.

3. Finally, we wrapped the /employees route with a jwtmiddleware handler in main(),
which means for each request with the URL pattern /employees , we check and
validate the JWT before serving the response.

Preventing cross-site request
forgery in Go web applications
It's a common practice to secure web applications from a malicious website, email,
blog, instant message, or a program attacking a trusted site for which the user is
currently authenticated to prevent unwanted action. We often call this cross-site
request forgery.

Implementing cross-site request forgery in Go is fairly easy using the Gorilla CSRF
package, which we will be covering in this recipe.

How to do it…
1. Install the github.com/gorilla/csrf and github.com/gorilla/mux packages using the go get

command, as follows:

$ go get github.com/gorilla/csrf

$ go get github.com/gorilla/mux

2. Create sign-up.html with name and email input text fields and an action that gets
called whenever an HTML form is submitted, as follows:

<html>

 <head>

 <title>Sign Up!</title>

 </head>

 <body>

 <form method="POST" action="/post" accept-charset="UTF-8">

 <input type="text" name="name">

 <input type="text" name="email">

 {{ .csrfField }}

 <input type="submit" value="Sign up!">

 </form>

 </body>

</html>

3. Create prevent-csrf.go, where we create a signUp handler that renders a signup
HTML form and a post handler that gets executed whenever an HTML form is
submitted and the request has a valid CSRF token, as follows:

package main

import

(

 "fmt"

 "html/template"

 "log"

 "net/http"

 "github.com/gorilla/csrf"

 "github.com/gorilla/mux"

)

const

(

 CONN_HOST = "localhost"

 CONN_PORT = "8443"

 HTTPS_CERTIFICATE = "domain.crt"

 DOMAIN_PRIVATE_KEY = "domain.key"

)

var AUTH_KEY = []byte("authentication-key")

func signUp(w http.ResponseWriter, r *http.Request)

{

 parsedTemplate, _ := template.ParseFiles("sign-up.html")

 err := parsedTemplate.Execute

 (

 w, map[string]interface{}

 {

 csrf.TemplateTag: csrf.TemplateField(r),

 }

)

 if err != nil

 {

 log.Printf("Error occurred while executing the

 template : ", err)

 return

 }

}

func post(w http.ResponseWriter, r *http.Request)

{

 err := r.ParseForm()

 if err != nil

 {

 log.Print("error occurred while parsing form ", err)

 }

 name := r.FormValue("name")

 fmt.Fprintf(w, "Hi %s", name)

}

func main()

{

 muxRouter := mux.NewRouter().StrictSlash(true)

 muxRouter.HandleFunc("/signup", signUp)

 muxRouter.HandleFunc("/post", post)

 http.ListenAndServeTLS(CONN_HOST+":"+CONN_PORT,

 HTTPS_CERTIFICATE, DOMAIN_PRIVATE_KEY, csrf.Protect

 (AUTH_KEY)(muxRouter))

}

4. Run the program with the following command:

$ go run prevent-csrf.go

How it works…
Once we run the program, the HTTP server will start locally listening on port 8443.

Next, execute a POST request from the command line as:

$ curl -X POST --data "name=Foo&email=aggarwalarpit.89@gmail.com" https://localhost:8443/post --insecure

It will give you the Forbidden - CSRF token invalid message as a response from the
server and forbids you to submit an HTML form because the server does not find a
valid CSRF token as part of the request:

So, to submit a form, firstly we have to sign up, which generates a valid CSRF token
by executing the following command:

$ curl -i -X GET https://localhost:8443/signup --insecure

This will give you an HTTP X-CSRF-Token , as shown in the following screenshot:

And now you have to pass it as an HTTP X-CSRF-Token request header along with an
HTTP cookie to submit an HTML form, as follows:

$ curl -X POST --data "name=Foo&email=aggarwalarpit.89@gmail.com" -H "X-CSRF-Token: M9gqV7rRcXERvSJVRSYprcMzwtFmjEHKXRm6C8cDC4EjTLIt4OiNzVrHfYNB12nEx280rrKs8fqOgvfcJgQiFA==" --cookie "_gorilla_csrf=MTUyMzQzMjg0OXxJa1ZLVTFsbGJHODFMMHg0VEdWc0wxZENVRVpCWVZGU1l6bHVMMVZKVEVGM01EVjBUakVyUlVoTFdsVTlJZ289fJI5dumuyObaHVp97GN_CiZBCCpnbO0wlIwgSgvHL7-C;" https://localhost:8443/post --insecure

Hi Foo

Let's understand the program we have written:

const (CONN_HOST = "localhost" CONN_PORT = "8443" HTTPS_CERTIFICATE = "domain.crt"

DOMAIN_PRIVATE_KEY = "domain.key"): Here, we declared four constants - CONN_HOST with
the value as localhost, CONN_PORT with the value as 8443, HTTPS_CERTIFICATE with the
value as domain.crt or a self-signed certificate, and DOMAIN_PRIVATE_KEY with the value
as domain.key or the private key that we created in the previous recipe.
var AUTH_KEY = []byte("authentication-key"): This is the authentication key which is
used to generate the CSRF token.
signUp: This is a handler that parses sign-up.html and provides an <input>
field populated with a CSRF token replacing {{ .csrfField }} in the form.
post: This is a handler that parses the submitted form, gets the value of the name
input field, and writes it to an HTTP response stream.

Finally, we defined main(), where we create a gorilla/mux router instance using the
NewRouter() handler with the trailing slash behavior for new routes as true, registered
the /signup route with the signUp handler and the /post route with the post handler, and
called the http.ListenAndServeTLS passing handler as csrf.Protect(AUTH_KEY)(muxRouter), which
makes sure all POST requests without a valid token will return HTTP 403 Forbidden.

Deploying a Go Web App and
Docker Containers to AWS
In this chapter, we will cover the following recipes:

Creating your first EC2 instance to run a Go web application
Interacting with your first EC2 instance
Creating, copying, and running a Go web application on your first EC2 instance
Setting up an EC2 instance to run a Docker container
Pulling a Docker image on an AWS EC2 instance from Docker Hub
Running your Go Docker container on an EC2 instance

Introduction
Nowadays, every organization is moving toward DevOps and everyone is talking
about continuous integration and continuous deployment, often termed as CI and CD,
which have become must-have skills for developers to learn. When we refer to CI/CD,
at a very high level, we talk about the deployment of containers to public/private
clouds through continuous integration tools, such as Jenkins and Bamboo.

In this chapter, we will learn to deploy a simple Go web application and a Go Docker
container to an EC2 instance provisioned manually. As we are going to work with
Docker and AWS, I will assume you possess basic knowledge of Docker and AWS.

Creating your first EC2 instance
to run a Go web application
Creating an EC2 instance on AWS is the same as getting a new machine and installing
the required software to run a web application. In this recipe, we will create an EC2
instance, provision it, and run a simple Go web application.

Getting ready…
To start with the creating and deploying on an AWS EC2 instance, firstly, you have to
create and activate an AWS account. Because this is out of context for this recipe, we
will not be doing it here.

A well-explained process you can follow to create and activate an AWS account is
available at https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-
account/

How to do it…
1. Login into AWS, move to the EC2 Management Console, and click on Launch

Instance in the Create Instance section, as shown in the following screenshot:

2. Select Amazon Linux AMI 2017.09.1 (HVM), SSD Volume Type, as shown in
the following screenshot:

3. Select the t2.micro instance type and click on Next: Configure Instance Details:

4. Enable Auto-assign Public IP in the Configure Instance Details section, as shown
in the following screenshot:

5. Do not make any changes to the Add Storage and Add Tags section.
6. Add the HTTP and HTTPS rule and click on the Review and Launch button in the

Configure Security Group section, as shown in the following screenshot:

7. Select Create a new key pair from the drop-down menu, give a name to the key
pair, and click on the Download Key Pair button. Save the my-first-ec2-
instance.pem file and click on Launch Instance, as shown in the following
screenshot:

How it works…
Once you click on Launch Instance, it will create and boot up a Linux machine on
AWS, assigning the instance an ID, public DNS, and public IP through which we can
access it.

Moving to the Instances section of the EC2 Dashboard, you can see the instance
running, as shown in the following screenshot:

Interacting with your first EC2
instance
To deploy an application on an EC2 instance, we first have to login into it and install
the necessary packages/software, which can be easily done through an SSH client, such
as MobaXterm, Putty, and so on. In this recipe, we will login into an EC2 instance, which
we created in the previous recipe, and install Go using the Red Hat package manager.

How to do it…
1. Set the permissions of the private key file—my-first-ec2-instance.pem—to 400, which

means the user/owner can read, can't write, and can't execute, whereas the group
and others can't read, can't write, and can't execute it, by executing the chmod
command, as follows:

$ chmod 400 my-first-ec2-instance.pem

2. Get the public DNS of the EC2 instance and connect to it using a private key file
as an ec2-user by executing the ssh command, as follows:

$ ssh -i my-first-ec2-instance.pem ec2-user@ec2-172-31-34-99.compute-1.amazonaws.com

Once the command has executed successfully, we will be logged in to the EC2
instance and the output will look like the following:

3. Switch to the root user from ec2-user by executing the sudo command:

[ec2-user@ip-172-31-34-99 ~]$ sudo su

4. Install Go using the Red Hat package manager, yum, as follows:

[root@ip-172-31-34-99 ~]$ yum install -y go

How it works…
Verify whether Go has been installed successfully for the ec2-user by executing the go
version command, as follows:

[ec2-user@ip-172-31-34-99 ~]$ go version

go version go1.8.4 linux/amd64

Creating, copying, and running
a Go web application on your
first EC2 instance
Once we have an EC2 instance ready with the required libraries installed, we can
simply copy the application using the secure copy protocol and then run it using the go
run command, which we will be covering in this recipe.

How to do it…
1. Create http-server.go, where we will create a simple HTTP server that will render

Hello World! browsing http://ec2-instance-public-dns:80 or executing curl -X GET
http://ec2-instance-public-dns:80 from the command line, as follows:

package main

import

(

 "fmt"

 "log"

 "net/http"

)

const

(

 CONN_PORT = "80"

)

func helloWorld(w http.ResponseWriter, r *http.Request)

{

 fmt.Fprintf(w, "Hello World!")

}

func main()

{

 http.HandleFunc("/", helloWorld)

 err := http.ListenAndServe(":"+CONN_PORT, nil)

 if err != nil

 {

 log.Fatal("error starting http server : ", err)

 return

 }

}

With everything in place, the directory structure should look like the following:

2. Copy http-server.go from the local machine directory to an EC2 user home
(/home/ec2-user) directory using the secure copy or scp command, as follows:

$ scp -i my-first-ec2-instance.pem http-server.go ec2-user@ec2-172-31-34-99.compute-1.amazonaws.com:/home/ec2-user

3. Login into an EC2 instance using a private key file and a public DNS name, as
follows:

$ ssh -i my-first-ec2-instance.pem ec2-user@ec2-172-31-34-99.compute-1.amazonaws.com

4. Run http-server.go in the background, executing the no hang-up or nohup command,
as follows:

[ec2-user@ip-172-31-34-99 ~] $ nohup go run http-server.go &

How it works…
Once we run the program on an EC2 instance, the HTTP server will start locally
listening on port 80.

Next, execute a GET request from the command line as:

$ curl -i -X GET http://ec2-172-31-34-99.compute-1.amazonaws.com:80/

This will give Hello World! as a response, which will give the following output:

HTTP/1.1 200 OK

Date: Sat, 06 Jan 2018 10:59:38 GMT

Content-Length: 12

Content-Type: text/plain; charset=utf-8

Hello World!

Setting up an EC2 instance to
run a Docker container
To run a Docker container on an EC2 instance, we first have to set up an instance with
a Docker installation and add an ec2-user to the Docker group so that we can execute
Docker commands with an ec2-user rather than as a root user, which we will be
covering in this recipe.

How to do it…
1. Switch to the root user from the ec2-user user by executing the following

command:

[ec2-user@ip-172-31-34-99 ~]$ sudo su

[root@ip-172-31-34-99 ec2-user]#

2. Install Docker and update an EC2 instance by executing the following commands:

[root@ip-172-31-34-99 ec2-user] yum install -y docker

[root@ip-172-31-34-99 ec2-user] yum update -y

3. Start Docker as a service on an EC2 instance by executing the following command:

[root@ip-172-31-34-99 ec2-user] service docker start

4. Add ec2-user to the docker group so that you can execute Docker commands
without using sudo, as follows:

[root@ip-172-31-34-99 ec2-user] usermod -a -G docker ec2-user

5. Log out of the EC2 instance by executing the following commands:

[root@ip-172-31-34-99 ec2-user]# exit

 exit

[ec2-user@ip-172-31-34-99 ~]$ exit

 logout

Connection to ec2-172-31-34-99.compute-1.amazonaws.com closed.

6. Log in again to pick up the new Docker group permissions by executing the
following command:

$ ssh -i my-first-ec2-instance.pem ec2-user@ec2-172-31-34-99.compute-1.amazonaws.com

This will give us the output on the console, as shown in the following
screenshot:

How it works…
Login into an EC2 instance and verify whether ec2-user can run Docker commands
without using sudo by executing following command:

[ec2-user@ip-54-196-74-162 ~]$ docker info

This will display system-wide information regarding the Docker installation, as shown
in the following output:

 Containers: 1

 Running: 1

 Paused: 0

 Stopped: 0

 Images: 1

 ...

 Kernel Version: 4.9.62-21.56.amzn1.x86_64

 Operating System: Amazon Linux AMI 2017.09

 ...

 Live Restore Enabled: false

Pulling a Docker image on an
AWS EC2 instance from Docker
Hub
To run a Docker container, we need to have a Docker image, which we can either
build from a DockerFile or can pull from any of the public or private Docker registries,
such as Docker Hub, Quay, Google Container Registry, AWS Container Registry, and
so on.

As we have already learned how to create a Docker image from a DockerFile and push it
to Docker Hub in Chapter 9, Working with Go and Docker, we will not build an image
again in this recipe. Instead, we will be pulling the pre-built image from Docker Hub
on an EC2 instance.

See the Building your first Go Docker image recipe in Chapter 9, Working with Go and Docker.

How to do it…
1. Login into Docker Hub using your credentials from the command line by

executing the following command:

$ docker login --username arpitaggarwal --password XXXXX

 Login Succeeded

2. Execute the docker pull command to pull arpitaggarwal/golang-image from Docker
Hub, as follows:

$ docker pull arpitaggarwal/golang-image

This will result in the following output:

How it works…
Login into an EC2 instance and verify whether arpitaggarwal/golang-image has been pulled
successfully from Docker Hub by executing the following command:

$ docker images

This will list all the top-level images, their repositories, tags, and their size, as shown
in the following screenshot:

Running your Go Docker
container on an EC2 instance
Once we have a Docker image and Docker installed on an EC2 instance, then you can
simply run the Docker container by executing the docker run command, which we will
cover in this recipe.

How to do it…
Login into an EC2 instance and execute the docker run command to create and run a
Docker container from arpitaggarwal/golang-image, assigning the container name as golang-
container, using the --name flag, as follows:

$ docker run -d -p 80:8080 --name golang-container -it arpitaggarwal/golang-image

 8a9256fcbffc505ad9406f5a8b42ae33ab3951fffb791502cfe3ada42aff781e

The -d flag specified in the docker run command starts the container in a daemon mode
and the hash string at the end represents the ID of the golang-container.
The -p flag specified in the docker run command publishes a container's port(s) to the
host. As we have an HTTP server running on port 8080 inside a Docker container and
we opened port 80 for inbound traffic of our E2C instance, we mapped it as 80:8080.

How it works…
Login into an EC2 instance and verify whether the Docker container has been created
and is running successfully by executing the following command:

$ docker ps

Once the preceding command has executed successfully, it will give us the running
Docker container details, as shown in the following screenshot:

Get the public DNS of an EC2 instance and execute a GET request from the command
line as:

$ curl -i -X GET http://ec2-172-31-34-99.compute-1.amazonaws.com/

This will give Hello World! as a response, as shown in the following output:

 HTTP/1.1 200 OK

 Date: Sat, 06 Jan 2018 12:49:28 GMT

 Content-Length: 12

 Content-Type: text/plain; charset=utf-8

 Hello World!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Cloud Native programming with Golang
Mina Andrawos, Martin Helmich

ISBN: 978-1-78712-598-8

Understand modern software applications architectures
Build secure microservices that can effectively communicate with other services
Get to know about event-driven architectures by diving into message queues such
as Kafka, Rabbitmq, and AWS SQS.
Understand key modern database technologies such as MongoDB, and Amazon’s
DynamoDB
Leverage the power of containers
Explore Amazon cloud services fundamentals
Know how to utilize the power of the Go language to access key services in the
Amazon cloud such as S3, SQS, DynamoDB and more.
Build front-end applications using ReactJS with Go
Implement CD for modern applications

Distributed Computing with Go
V.N. Nikhil Anurag

https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/distributed-computing-go

ISBN: 978-1-78712-538-4

Gain proficiency with concurrency and parallelism in Go
Learn how to test your application using Go's standard library
Learn industry best practices with technologies such as REST, OpenAPI, Docker,
and so on
Design and build a distributed search engine
Learn strategies on how to design a system for web scale

Leave a review - let other
readers know what you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Table of Contents

Title Page 2
Copyright and Credits 3

Go Web Development Cookbook 4
Dedication 5
Packt Upsell 6

Why subscribe? 7
PacktPub.com 8

Contributors 9
About the author 10
About the reviewer 11
Packt is searching for authors like you 12

Preface 20
Who this book is for 21
What this book covers 22
To get the most out of this book 24

Download the example code files 25
Download the color images 26
Conventions used 27

Sections 28
Getting ready 29
How to do it… 30
How it works… 31
There's more… 32
See also 33

Get in touch 34
Reviews 35

Creating Your First Server in Go 36
Introduction 37
Creating a simple HTTP server 38

How to do it… 39
How it works… 40

Implementing basic authentication on a simple HTTP server 42
Getting ready 43
How to do it… 44

How it works… 46
Optimizing HTTP server responses with GZIP compression 48

How to do it… 49
How it works… 50

Creating a simple TCP server 52
How to do it… 53
How it works… 54

Reading data from a TCP connection 55
Getting ready… 56
How to do it… 57
How it works… 58

Writing data to a TCP connection 59
Getting ready… 60
How to do it… 61
How it works… 62

Implementing HTTP request routing 63
How to do it… 64
How it works… 65

Implementing HTTP request routing using Gorilla Mux 67
How to do it… 68
How it works… 70

Logging HTTP requests 72
Getting Ready… 73
How to do it… 74
How it works… 76

Working with Templates, Static Files, and HTML Forms 79
Introduction 80
Creating your first template 81

How to do it… 82
How it works… 84

Serving static files over HTTP 86
Getting ready… 87
How to do it… 88
How it works… 90

Serving static files over HTTP using Gorilla Mux 92
Getting ready… 93
How to do it… 94
How it works… 95

Creating your first HTML form 96

How to do it… 97
How it works… 99

Reading your first HTML form 100
Getting ready… 101
How to do it… 102
How it works… 104

Validating your first HTML form 107
Getting ready… 108
How to do it… 109
How it works… 111

Uploading your first file 113
How to do it… 114
How it works… 116

Working with Sessions, Error Handling, and Caching in Go 119
Introduction 120
Creating your first HTTP session 121

How to do it… 122
How it works… 124

Managing your HTTP session using Redis 126
Getting ready… 127
How to do it… 128
How it works… 130

Creating your first HTTP cookie 132
How to do it… 133
How it works… 135

Implementing caching in Go 139
How to do it… 140
How it works… 142

Implementing HTTP error handling in Go 145
How to do it… 146
How it works… 148

Implementing login and logout in web application 151
Getting ready… 152
How to do it… 153
How it works… 156

Writing and Consuming RESTful Web Services in Go 161

Introduction 162
Creating your first HTTP GET method 163

How to do it… 164
How it works… 166

Creating your first HTTP POST method 168
How to do it… 169
How it works… 171

Creating your first HTTP PUT method 172
How to do it… 173
How it works… 176

Creating your first HTTP DELETE method 177
How to do it… 178
How it works… 181

Versioning your REST API 182
How to do it… 183
How it works… 185

Creating your first REST client 186
Getting ready… 187
How to do it… 188
How it works… 191

Creating your first AngularJS Client 193
Getting ready… 194
How to do it… 195
How it works… 201

Creating your first ReactJS client 203
Getting ready… 204
How to do it… 205
How it works… 212

Creating your first VueJS client 214
Getting ready… 215
How to do it… 216
How it works… 220

Working with SQL and NoSQL Databases 222
Introduction 223
Integrating MySQL and Go 224

Getting ready… 225
How to do it… 226
How it works… 228

Creating your first record in MySQL 229

Getting ready… 230
How to do it… 231
How it works… 233

Reading records from MySQL 234
How to do it… 235
How it works… 237

Updating your first record in MySQL 238
How to do it… 239
How it works… 241

Deleting your first record from MySQL 242
How to do it… 243
How it works… 245

Integrating MongoDB and Go 246
Getting ready… 247
How to do it… 248
How it works… 250

Creating your first document in MongoDB 251
How to do it… 252
How it works… 254

Reading documents from MongoDB 255
How to do it… 256
How it works… 258

Updating your first document in MongoDB 259
How to do it… 260
How it works… 262

Deleting your first document from MongoDB 263
How to do it… 264
How it works… 266

Writing Microservices in Go Using Micro – a
Microservice Toolkit 267

Introduction 268
Creating your first protocol buffer 269

Getting ready… 270
How to do it… 271
How it works… 272

Spinning up a microservice discovery client 273

Getting ready… 274
How to do it… 275

How it works… 276
Creating your first microservice 278

Getting ready… 279
How to do it… 280
How it works… 281

Creating your second microservice 282
How to do it… 283
How it works… 284

Creating your Micro API 285
Getting ready… 286
How to do it… 287
How it works… 289

Interacting with microservices using a command-line interface and web UI 290
How to do it… 291
How it works… 292

Working with WebSocket in Go 295
Introduction 296
Creating your first WebSocket server 297

How to do it… 298
How it works… 300

Creating your first WebSocket client 301
How to do it… 302
How it works… 303

Debugging your first local WebSocket server 304
Getting ready… 305
How to do it… 306
How it works… 311

Debugging your first remote WebSocket server 313
How to do it… 314
How it works… 318

Unit testing your first WebSocket server 319
How to do it… 320
How it works… 321

Working with the Go Web Application Framework –
Beego 322

Introduction 323
Creating your first project using Beego 324

How to do it… 325

How it works… 327
Creating your first controller and router 328

How to do it… 329
How it works… 330

Creating your first view 331
How to do it… 332
How it works… 334

Creating your first session variable 335
Getting ready… 336
How to do it… 337
How it works… 339

Creating your first filter 340
How to do it… 341
How it works… 342

Handling HTTP errors in Beego 343
How to do it… 344
How it works… 346

Implementing caching in Beego 348
How to do it… 349
How it works… 351

Monitoring the Beego application 352
How to do it… 353
How it works… 354

Deploying the Beego application on a local machine 355
How to do it… 356
How it works… 357

Deploying the Beego application with Nginx 358
Getting ready… 359
How to do it… 360
How it works… 361

Working with Go and Docker 362
Introduction 363
Building your first Go Docker image 364

Getting ready… 365

How to do it… 366
How it works… 368

Running your first Go Docker container 369
How to do it… 370
How it works… 371

Pushing your Docker image to the Docker Registry 372
How to do it… 373
How it works… 374

Creating your first user-defined bridge network 375
How to do it… 376
How it works… 377

Running a MySQL Docker image on a user-defined bridge network 378
How to do it… 379
How it works… 380

Building a Go web application Docker image 381
How to do it… 382
How it works… 385

Running a web application Docker container linked with a MySQL
Docker container on a user-defined bridge network 386

How to do it… 387
How it works… 388

Securing a Go Web Application 390
Introduction 391
Creating a private key and SSL certificate using OpenSSL 392

Getting ready… 393
How to do it… 394
How it works… 395

Moving an HTTP server to HTTPS 396
How to do it… 397
How it works… 398

Defining REST APIs and routes 400
How to do it… 401
How it works… 403

Creating a JSON web token 405
How to do it… 406
How it works… 408

Securing a RESTful service using a JSON web token 411
How to do it… 412

How it works… 414
Preventing cross-site request forgery in Go web applications 415

How to do it… 416
How it works… 418

Deploying a Go Web App and Docker Containers to AWS 420
Introduction 421
Creating your first EC2 instance to run a Go web application 422

Getting ready… 423
How to do it… 424
How it works… 430

Interacting with your first EC2 instance 431
How to do it… 432
How it works… 433

Creating, copying, and running a Go web application on your first EC2
instance 434

How to do it… 435
How it works… 437

Setting up an EC2 instance to run a Docker container 438
How to do it… 439
How it works… 440

Pulling a Docker image on an AWS EC2 instance from Docker Hub 441
How to do it… 442
How it works… 443

Running your Go Docker container on an EC2 instance 444
How to do it… 445
How it works… 446

Other Books You May Enjoy 447
Leave a review - let other readers know what you think 449

	Title Page
	Copyright and Credits
	Go Web Development Cookbook

	Dedication
	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Get in touch
	Reviews

	Creating Your First Server in Go
	Introduction
	Creating a simple HTTP server
	How to do it…
	How it works…

	Implementing basic authentication on a simple HTTP server
	Getting ready
	How to do it…
	How it works…

	Optimizing HTTP server responses with GZIP compression
	How to do it…
	How it works…

	Creating a simple TCP server
	How to do it…
	How it works…

	Reading data from a TCP connection
	Getting ready…
	How to do it…
	How it works…

	Writing data to a TCP connection
	Getting ready…
	How to do it…
	How it works…

	Implementing HTTP request routing
	How to do it…
	How it works…

	Implementing HTTP request routing using Gorilla Mux
	How to do it…
	How it works…

	Logging HTTP requests
	Getting Ready…
	How to do it…
	How it works…

	Working with Templates, Static Files, and HTML Forms
	Introduction
	Creating your first template
	How to do it…
	How it works…

	Serving static files over HTTP
	Getting ready…
	How to do it…
	How it works…

	Serving static files over HTTP using Gorilla Mux
	Getting ready…
	How to do it…
	How it works…

	Creating your first HTML form
	How to do it…
	How it works…

	Reading your first HTML form
	Getting ready…
	How to do it…
	How it works…

	Validating your first HTML form
	Getting ready…
	How to do it…
	How it works…

	Uploading your first file
	How to do it…
	How it works…

	Working with Sessions, Error Handling, and Caching in Go
	Introduction
	Creating your first HTTP session
	How to do it…
	How it works…

	Managing your HTTP session using Redis
	Getting ready…
	How to do it…
	How it works…

	Creating your first HTTP cookie
	How to do it…
	How it works…

	Implementing caching in Go
	How to do it…
	How it works…

	Implementing HTTP error handling in Go
	How to do it…
	How it works…

	Implementing login and logout in web application
	Getting ready…
	How to do it…
	How it works…

	Writing and Consuming RESTful Web Services in Go
	Introduction
	Creating your first HTTP GET method
	How to do it…
	How it works…

	Creating your first HTTP POST method
	How to do it…
	How it works…

	Creating your first HTTP PUT method
	How to do it…
	How it works…

	Creating your first HTTP DELETE method
	How to do it…
	How it works…

	Versioning your REST API
	How to do it…
	How it works…

	Creating your first REST client
	Getting ready…
	How to do it…
	How it works…

	Creating your first AngularJS Client
	Getting ready…
	How to do it…
	How it works…

	Creating your first ReactJS client
	Getting ready…
	How to do it…
	How it works…

	Creating your first VueJS client
	Getting ready…
	How to do it…
	How it works…

	Working with SQL and NoSQL Databases
	Introduction
	Integrating MySQL and Go
	Getting ready…
	How to do it…
	How it works…

	Creating your first record in MySQL
	Getting ready…
	How to do it…
	How it works…

	Reading records from MySQL
	How to do it…
	How it works…

	Updating your first record in MySQL
	How to do it…
	How it works…

	Deleting your first record from MySQL
	How to do it…
	How it works…

	Integrating MongoDB and Go
	Getting ready…
	How to do it…
	How it works…

	Creating your first document in MongoDB
	How to do it…
	How it works…

	Reading documents from MongoDB
	How to do it…
	How it works…

	Updating your first document in MongoDB
	How to do it…
	How it works…

	Deleting your first document from MongoDB
	How to do it…
	How it works…

	Writing Microservices in Go Using Micro – a Microservice Toolkit
	Introduction
	Creating your first protocol buffer
	Getting ready…
	How to do it…
	How it works…

	Spinning up a microservice discovery client
	Getting ready…
	How to do it…
	How it works…

	Creating your first microservice
	Getting ready…
	How to do it…
	How it works…

	Creating your second microservice
	How to do it…
	How it works…

	Creating your Micro API
	Getting ready…
	How to do it…
	How it works…

	Interacting with microservices using a command-line interface and web UI
	How to do it…
	How it works…

	Working with WebSocket in Go
	Introduction
	Creating your first WebSocket server
	How to do it…
	How it works…

	Creating your first WebSocket client
	How to do it…
	How it works…

	Debugging your first local WebSocket server
	Getting ready…
	How to do it…
	How it works…

	Debugging your first remote WebSocket server
	How to do it…
	How it works…

	Unit testing your first WebSocket server
	How to do it…
	How it works…

	Working with the Go Web Application Framework – Beego
	Introduction
	Creating your first project using Beego
	How to do it…
	How it works…

	Creating your first controller and router
	How to do it…
	How it works…

	Creating your first view
	How to do it…
	How it works…

	Creating your first session variable
	Getting ready…
	How to do it…
	How it works…

	Creating your first filter
	How to do it…
	How it works…

	Handling HTTP errors in Beego
	How to do it…
	How it works…

	Implementing caching in Beego
	How to do it…
	How it works…

	Monitoring the Beego application
	How to do it…
	How it works…

	Deploying the Beego application on a local machine
	How to do it…
	How it works…

	Deploying the Beego application with Nginx
	Getting ready…
	How to do it…
	How it works…

	Working with Go and Docker
	Introduction
	Building your first Go Docker image
	Getting ready…
	How to do it…
	How it works…

	Running your first Go Docker container
	How to do it…
	How it works…

	Pushing your Docker image to the Docker Registry
	How to do it…
	How it works…

	Creating your first user-defined bridge network
	How to do it…
	How it works…

	Running a MySQL Docker image on a user-defined bridge network
	How to do it…
	How it works…

	Building a Go web application Docker image
	How to do it…
	How it works…

	Running a web application Docker container linked with a MySQL Docker container on a user-defined bridge network
	How to do it…
	How it works…

	Securing a Go Web Application
	Introduction
	Creating a private key and SSL certificate using OpenSSL
	Getting ready…
	How to do it…
	How it works…

	Moving an HTTP server to HTTPS
	How to do it…
	How it works…

	Defining REST APIs and routes
	How to do it…
	How it works…

	Creating a JSON web token
	How to do it…
	How it works…

	Securing a RESTful service using a JSON web token
	How to do it…
	How it works…

	Preventing cross-site request forgery in Go web applications
	How to do it…
	How it works…

	Deploying a Go Web App and Docker Containers to AWS
	Introduction
	Creating your first EC2 instance to run a Go web application
	Getting ready…
	How to do it…
	How it works…

	Interacting with your first EC2 instance
	How to do it…
	How it works…

	Creating, copying, and running a Go web application on your first EC2 instance
	How to do it…
	How it works…

	Setting up an EC2 instance to run a Docker container
	How to do it…
	How it works…

	Pulling a Docker image on an AWS EC2 instance from Docker Hub
	How to do it…
	How it works…

	Running your Go Docker container on an EC2 instance
	How to do it…
	How it works…

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

