

Hands-On Software
Architecture with Golang

Design and architect highly scalable and robust applications
using Go

Jyotiswarup Raiturkar

BIRMINGHAM - MUMBAI

Hands-On Software Architecture
with Golang
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Merint Mathew
Acquisition Editor: Chaitanya Nair
Content Development Editor: Rohit Kumar Singh
Technical Editor: Ketan Kamble
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Alishon Mendonsa
Production Coordinator: Arvindkumar Gupta

First published: December 2018

Production reference: 1071218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-259-2

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical ebooks and videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free ebook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers ebook versions of every book published, with PDF and
ePub files available? You can upgrade to the ebook version at www.packt.com and as a print
book customer, you are entitled to a discount on the ebook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
ebooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Jyotiswarup Raiturkar has architected products ranging from high-volume e-commerce
sites to core infrastructure products. Notable products include the Walmart Labs
Ecommerce Fulfillment Platform, Intuit Mint, SellerApp, Goibibo, Microsoft Virtual Server,
and ShiftPixy, to name a few. Nowadays, he codes in Golang, Python, and Java.

About the reviewer
Peter Malina is a CTO at a Brno-based software agency called FlowUp. He is a cloud lover,
a bleeding-edge technology pioneer, and a Golang and Angular specialist. He also is a
speaker at local events and is an enthusiastic Kubernetes and GCP solution architect.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Building Big with Go 7
Problem solving for the big picture 8

The role of the architect 9
Requirements clarification 10
True North 10
Technology selection 11
Leadership in the kitchen 11
Coaching and mentoring 11
Target state versus current state 12

Software architecture 12
Architecture versus design 12
What does architecture look like? 13

Microservices 17
The challenges for microservices – efficiency 21
The challenges for microservices – programming complexity 22

Go 23
Hello World! 26
Data types and structures 26
Functions and methods 28
Flow control 30
Packaging 31
Concurrency 33
Garbage collection 35
Object-orientation 36

Summary 37

Chapter 2: Packaging Code 38
Contracts 39
Object orientation 40

Object orientation in Go – the struct 47
Object orientation in Go – visibility 49
Object oriented in Go – the interface 50
Object oriented in Go – embedding 54

Modules 57
Code layout 57
Third-party dependencies 59
Framework 62

Testing 62
Structuring tests 63

Table of Contents

[ii]

Summary 65

Chapter 3: Design Patterns 66
Design principles 66

Single Responsibility Principle (S) 67
Open/Closed Principle (O) 68
Liskov Substitution Principle (L) 69
Interface Segregation Principle (I) 70
Dependency Inversion Principle (D) 71

Creational design patterns 72
Factory method 73
Builder 73
Abstract factory 75
Singleton 77

 Structural design patterns 78
Adaptor 78
Bridge 79
Composite 82
Decorator 83
Facade 84
Proxy 85

Behavioral design patterns 86
Command 86
Chain of Responsibility 89
Mediator 90
Memento 92
Observer 93
Visitor 95
Strategy 98
State 100

Summary 102

Chapter 4: Scaling Applications 103
Scaling algorithms 105

Algorithm complexity 105
Distributed algorithms 109

Scaling data structures 111
Profiling data structures 111
Probabilistic data structures 114

Scaling data 115
Scalability bottlenecks 116

The C10K problem 116
The Thundering Herd problem 118

Sources 118
Programming 119
Operating systems 120

Table of Contents

[iii]

Memory usage 122
Losing state 124
Scaling systems 127

X-axis scaling 128
Y-axis scaling 129
Z-axis scaling 133

Scaling deployments 134
Summary 135

Chapter 5: Going Distributed 136
Topology 138
Distributed system quirks 140

The network is reliable 140
The latency is zero 141
The bandwidth is infinite 142
The network is secure 142
The topology doesn't change 143
There is one administrator 144
The transport cost is zero 144
The network is homogeneous 145

Consistency 146
ACID 147
Client-centric consistency models 147

Strong consistency 148
Weak consistency 149
Eventual consistency 149

Sequential consistency 149
Causal consistency 150
Session consistency 150
Monotonic read consistency 150
Monotonic write consistency 151

Storage system-centric consistency model 151
CAP theorem 152

Consensus 153
The two generals problem 154
Consensus based on time – causality 154
Multi-phase commit 157

Two-phase commit 158
Three-phase commit 159

Paxos 160
Raft 163
Leader-election 164

Distributed architectures 165
Object-based systems 165
Layered architectures 168
Peer-2-peer (P2P) architecture 169
Distributed computations 174

Table of Contents

[iv]

Event-driven architecture (EDA) 177
The Actor model 181
Stream processing 182

Summary 183

Chapter 6: Messaging 184
Performance characterization 184
Broker-based messaging 185

The queuing model 185
The Pub/Sub model 187
Delivery semantics 188

Acknowledgement 189
At-least-once delivery 190
At-most-once delivery 191
Exactly-once delivery 191

Resilience 192
AMQP 192

Apache Kafka deep dive 194
Concepts 194
Publishing messages 198

The AsyncProducer interface 198
The Sync producer 201

Consuming messages 203
Stream processing 205

Brokerless messaging 206
NSQ deep-dive 207

Concepts 208
Publishing messages 210
Consuming messages 212

Integration patterns 214
The request-reply pattern 214
The correlation identifier pattern 215
The pipes and filters pattern 216
The content-based router pattern 218
The fan-in pattern 219
The fan-out pattern 221
The background worker pattern 222

Summary 224

Chapter 7: Building APIs 225
Endpoints 225

Networking basics 226
Service discovery 226

Server-side service discovery 227
Client-side service discovery 230

Data serialization 231
XML 231

Table of Contents

[v]

JSON 232
Protobuf 233
Performance 234

Representational State Transfer (REST) 234
Concepts 234
Constraints 235

Client-server model 235
Stateless 235
Cacheability 236
Uniform interface 236

Richardson Maturity Model 236
Level 0 – swamp of POX 237
Level 1 – resources 237
Level 2 – HTTP verbs 237
Level 3 – hypermedia controls 237

Building a REST service using Gin 239
Gin introduction 241
Sample application 241
Router 242
Create 243
Read 245
Update 247
Delete 248

GraphQL 248
Schema 249
Endpoints 250

Queries 251
Mutations 254
Subscriptions 256

Higher-level patterns 257
Model-View-Controller (MVC) 257
Load balancing health checks 259
API gateway 259

Go kit 262
Summary 266

Chapter 8: Modeling Data 267
Entities and relationships 267
Consistency guarantees 269

ACID (Atomicity, Consistency, Isolation, Durability) 269
Atomicity 269
Consistency 270
Isolation 270
Durability 273

BASE (Basically Available, Soft state, Eventual consistency) 273
Relational model 274

The first normal form 274

Table of Contents

[vi]

The second normal form 275
The third normal form 277
The Boyce-Codd normal form 278
The fourth normal form 279
SQL 280
Indices 280
Views 281

Inner join 282
Left outer join 283
Right outer join 284
Full outer join 284

MySQL deep-dive 286
Connection management 286
Query execution 287
Storage engines 291

InnoDB 291
MyISAM 292
Other plugins 293

High availability/scalability 293
Object Relational Mappers (ORMs) 294

Key/value stores 299
Concepts 300
Redis deep-dive 300

Architecture 300
Data structures 301
Persistence 302
Clustering 304
Use cases 304
Golang usage 305

Wide column stores 309
Column family stores 310

Cassandra deep-dive 310
Data distribution 310
Write paths 314
Read paths 315
Golang usage 315

Patterns for scaling data performance 318
Sharding 319
Denormalization 319
Materialized views 321

Summary 322

Chapter 9: Anti-Fragile Systems 323
Reliability metrics 324

Dynamic metrics 325
Static metrics 326

Engineering reliability 326
Rugged services 328

Table of Contents

[vii]

High availability 329
Messaging 331

The asynchronous computation pattern 332
The orchestrator pattern 335
The compensating-transaction pattern 336
The pipes and filter pattern 338
Hotspots 339

The sidecar pattern 340
Throttling 341
Versioning 343

Reliability verification 343
Unit tests 345
Integration tests 347
UI tests 348
Performance tests 348

Chaos-engineering 350
Dependencies 352

Failure multiplication 353
Cascading failures 354
Dependency resilience 357

An introduction to Hystrix 357
Hystrix – fallback 359
Hystrix – circuit breaker 360
Hystrix in Golang 361
Hystrix monitoring 363

Database-level reliability 364
Datacenter-level reliability 365

Consistency 366
Routing and cutover 367

Summary 368

Chapter 10: Case Study – Travel Website 369
The product 369

Actors 369
Requirements 370

Data modeling 371
High-level architecture 373
Search 374

Flights 375
Hotels 385

Booking 388
Payment 389
Reservation 391

Summary 398

Chapter 11: Planning for Deployment 399

Table of Contents

[viii]

Deployment architecture 400
Components 400

Computes 402
Physical Servers 402
Virtual machines 402
Containers 403
Compute Attributes 404

Storage 405
Networking 406
Load Balancers 407
API Gateways 409
Reverse proxies 410
Messaging brokers 411

Environments 411
Capacity Planning and Sizing 413
Disaster recovery 414

CICD 415
Overview 415
Jenkins 416

Sample Code 416
Installing Jenkins 417
Installing Docker 417
Setting up Plugins 418
Creating a project 421
Running the Build 424

Target Configuration 425
Tooling 426

go fmt 426
golint 427
go build 428

Footnote 428
Monitoring 429

Logs 430
Metrics 431
Application Performance Monitoring/Dashboards 432
Alerts 434
Team 434

Clouds 435
Infrastructure as a Service (IaaS) 436
Platform as a Service (PaaS) 437
Software as a service (SaaS) 440

Security 441
Summary 443

Chapter 12: Migrating Applications 444
Reasons for migration 445

Python 445
Java 450

Table of Contents

[ix]

Migration strategy 455
Phase 1 – Learning Go 455
Phase 2 – Piloting a service 456
Phase 3 – Defining packages 456
Phase 4 – Porting main 456
Phase 5 – Porting packages 457
Phase 6 – Improving computation 459

Building a team 459
Summary 461

Other Books You May Enjoy 462

Index 465

Preface
Golang was conceived and built at Google around 2007 by Robert Griesemer, Rob Pike, and
Ken Thompson. The objective was to build a pragmatic programming language to handle
large code bases, complex multi-threading scenarios, and multi-core processors. Version 1.0
went out in March 2012, and since then, the language has grown in leaps and bounds in
terms of popularity. Developers like me love its simplicity, expressiveness, explicit nature,
and awesome community.

Having built a few production-grade applications in Go over the past few years, I have
tried to distill my learning from a hands-on architect perspective in this book. Primarily, the
book is a broad overview of the Go ecosystem, but at a few junctures, we deep dive and
write code to demonstrate the theory. Finally, we build a non-trivial e-commerce
application using the learned constructs!

Who this book is for
Today, the majority of backend software is still in languages such as Java, C++, and C#.
Companies have invested a lot in these technologies and they are sometimes apprehensive
about newer tech, including Go. This book is for software developers, architects, and CTOs,
in similar situations, looking to use Go in their software architecture to build production-
grade applications and migrating from other platforms.

What this book covers
Chapter 1, Building Big with Go, takes a broad view of what considerations are needed
when setting out to build mission-critical software. It gives an overview of microservices
and how Go is a good fit for this architectural paradigm. We end the chapter with a quick
tour of Go, for the sake of those who are new to the language.

Chapter 2, Packaging Code, delves into ways of organizing code at various levels in Go. It
looks at project organization, packages, object orientation, and structuring tests. Many first
timers get the encapsulation wrong, leading to unmanageable code or cyclic dependencies
later on. This chapter provides pointers on how to avoid these and structure code for
feature velocity.

Preface

[2]

Chapter 3, Design Patterns, takes us through various design patterns, such as the creational,
structural, and behavioral design patterns, looking at descriptions of each pattern and
examining the Go code for each implementation. We also look at the general principles of
class (struct/interface) design.

Chapter 4, Scaling Applications, explores what scalability means, and how to quantify
systems in terms of scalability. We describe how to scale algorithms and data structures,
and how to identify bottlenecks and alleviate them. Then we'll look at ways of running
multiple application instances and what mechanisms work best for different use cases.

Chapter 5, Going Distributed, looks at building distributed systems in Go, as your
application is not going to run on a single machine. The chapter starts by listing common
fallacies when it comes to distributed systems. It goes into detail on the common problems,
such as consensus and consistency, and the patterns and protocols for solving them. We
then go deep into various distributed architectures.

Chapter 6, Messaging, covers some messaging theory and then dives into Apache Kafka
and NSQ—a brokerless messaging platform. Messaging systems are described in detail,
and illustrated with code. This chapter also describes various messaging patterns, such as
request-reply, fan-out, and pipes-and-filters.

Chapter 7, Building APIs, shows how to build REST and GraphQL services in Go. APIs are
the lingua franca of the microservices world. At the end, the chapter takes a deep dive into
Go-Kit, a collection of packages that together give a slightly opinionated framework for
quickly building a service-oriented architecture.

Chapter 8, Modeling Data, starts off by introducing the entity-relationship way of modeling
data. It then describes various persistence stores (such as relational databases, key-value
stores, and column-oriented stores). This chapter takes a deep dive into MySQL, Redis, and
Cassandra, the most commonly used storage technologies. This chapter outlines the
architecture of the stores and showcases the Go code for interacting with them.

Chapter 9, Anti-Fragile Systems, explores various facets of building resilient systems, from
ruggedizing individual services to achieving high availability. Each of these facets need to
work together to enable systems that thrive under stress. We describe common patterns
such as Hystrix and explain how to implement them in Go. The chapter also briefly covers
disaster recovery and business continuity.

Chapter 10, Case Study – Travel Website, details some high-level architecture, low-level
design, and key code constructs. Having a sense of the various building blocks, we will
build an e-commerce app – a travel website, to be exact. Essentially, we will use
everything we will have learned so far to build a non-trivial system.

Preface

[3]

Chapter 11, Planning for Deployment, discusses deployment considerations for Go
programs. These includes things such as Continuous Integration and Continuous
Deployment (CICD) pipelines, as well as application monitoring using tools such as New
Relic. We build a robust CICD pipeline for a sample program using Jenkins and tools such
as fmt and lint to ensure code quality before the push to production.

Chapter 12, Migrating Applications, describes a migration strategy that systematically
moves relevant/critical parts of your applications to Go and showcases the business value
of doing so at every stage. In this final chapter of the book, I also describe my experience
with hiring and staffing a team for Go development—a common concern for many
companies.

To get the most out of this book
You will need to install all the tools that are required to run Go programs on your
computer; this includes the following:

Go (preferably v 0.9).
An editor. Nothing fancy needed; Sublime Text will do just fine.
Also, a few chapters deal with Cassandra, Kafka, Redis, and NSQ. All of these
can be installed on a regular laptop. On a Mac, all of them are available via
Homebrew. The latest stable version should be fine for all of them.

As you read a chapter, be sure to consider what you are learning and try to play around
with the code. These moments will help you distill and crystallize the concepts you
encounter.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[4]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Hands- ​On- ​Software- ​Architecture- ​with- ​Golang. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/9781788622592_ColorImages

.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Then you can enable it for remote invocation using the rpc package."

A block of code is set as follows:

type Args struct {
 A, B int
}

type MuliplyService struct{}

func (t *Arith) Do(args *Args, reply *int) error {
 *reply = args.A * args.B
 return nil
}

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Golang
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781788622592_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788622592_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788622592_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788622592_ColorImages.pdf

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

type Args struct {
 A, B int
}

type MuliplyService struct{}

func (t *Arith) Do(args *Args, reply *int) error {
 *reply = args.A * args.B
 return nil
}

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

http://www.packt.com/submit-errata

Preface

[6]

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Building Big with Go

It's easy to solve small confined problems with limited constraints. It's also easy to
comprehend and mentally model requirements and build a solution. However, as problems
become more complex or constraints add up, problem-solving without a plan more often
than not ends in failure. On the other hand, sometimes we overdo planning and are left
with little room to react to new situations as they crop up. Architecture is the fine act of
balancing the long versus the short.

This chapter asks the question: Why engineer software?. It outlines the elements needed for
making and executing a blueprint for a successful software product. The topics covered in
this chapter include the following:

Problem solving for the big picture and the role that the architect is supposed to
play in this
The basic tenets of software architecture
A deep dive into microservices
Introduction to Golang

Building Big with Go Chapter 1

[8]

Problem solving for the big picture
Suppose you're planning a trip from New York to Los Angeles. There are two major aspects
that you need to keep in mind:

What do you need to do before starting the trip?
What do you need to do during the trip to ensure that you stay on the right
track?

Generally, there are two extreme options in planning for such a trip:

Take your car and start driving. Figure things out along the way.
Make a very detailed plan—figure out the route, note down the directions at
every junction, plan for contingencies such as a flat tire, plan where you're going
to stop, and so on.

The first scenario allows you to execute fast. The problem is that, more likely than not, your
trip will be very adventurous. Most likely, your route will not be optimal. If you want to
update your friend in LA on when you'll be reaching the destination, your estimates will
vary wildly based on your current situation. Without a long-term plan, planning for an
outcome in the future is best effort.

Building Big with Go Chapter 1

[9]

But the other extreme is also fraught with pitfalls. Every objective has time constraints, and
spending time over-analyzing something might mean that you miss the bus (or car). More
frequently, if you give these directions to someone else and, at a juncture, reality turns out
not to be what you predicted, then the driver is left with little room to improvise.

Extending the analogy, the architecture of a software product is the plan for the journey of
building a product that meets the requirements of the customers and other stakeholders,
including the developers themselves!

Writing code for computers to understand and use to solve a problem has
become easy. Modern tools do all of the heavy lifting for us. They suggest
syntax, they optimize instructions, and they even correct some of our
mistakes. But writing code that can be understood by other developers,
works within multiple constraints, and evolves with changing
requirements is an extremely hard thing to do.

Architecture is the shape given to a system by those who build it. Shape essentially means
the constituent components, the arrangement of those components, and the ways in which
those components communicate with each other. The purpose of that shape is to facilitate
the development, deployment, operation, and maintenance of the software system
contained within it. In today's world of ever changing requirements, building a platform on
which we can execute quickly and effectively is the key to success.

The role of the architect
An architect is not a title or a rank; it's a role. The primary responsibility of the architect is
to define a blueprint for what needs to be built and ensure that the rest of the team has
sufficient details to get the job done. The architect guides the rest of the team toward this
design during execution, while managing constant dialogues with all of the stakeholders.

The architect is also a sounding board for both developers and non-technical stakeholders,
in terms of what is possible, what is not, and the cost implications (in terms of effort, trade-
offs, technical debt, and so on) of various options.

It's possible to do the architect's job without coding. But in my personal opinion, this leads
to stunted design. It's not possible to come up with a great design unless we understand the
low-level details, constraints, and complexity. Many organizations dismiss the architect's
role because of their negative experiences of architects that dictate from ivory towers and
aren't engaged with the actual task of building working software. But, on the other hand,
not having a blueprint can lead to a wild west code base, with small changes causing non-
intuitive effects, in terms of effort and the quality of the product.

Building Big with Go Chapter 1

[10]

This book is not a theoretical study in software engineering. This book is meant for
architects who want to build awesome, reliable, and high-performance products, while
being in the kitchen as the product is getting built!

So what are the guidance systems or guard rails that the architect is expected to deliver on?
Essentially, the team needs the following things from an architect.

Requirements clarification
Clarifying and distilling the top-level functional and nonfunctional requirements of the
software is a key prerequisite for success. If you don't know what to build, your chances of
building something that customers want are pretty slim. Product managers often get caught
up on features, but rarely ask what non-functional requirements (or system qualities) the
customers need. Sometimes, stakeholders will tell us that the system must be fast, but that's
far too subjective. Non-functional requirements need to be specific, measurable, achievable,
and testable if we are going to satisfy them. The architect needs to work with all
stakeholders and ensure that functional and nonfunctional requirements are well
crystallized and consumable for development.

In today's agile world, requirement analysis is an almost ongoing activity. But the architect
helps the team navigate the requirements and take decisions on what to do (which may not
always be so obvious).

True North
Besides the requirements, we need to define key engineering principles for the system.
These principles include the following:

High-level design: This is the decomposition of the system into high-level
components. This serves as the blueprint that the product and code need to
follow at every stage of the product development life cycle. For example, once we
have a layered architecture (see the following section), then we can easily
identify for any new requirement to which layer each new component should go
to.
Quality attributes: We want high quality code, and this means no code checking
would be allowed without unit tests and 90% code coverage.

Building Big with Go Chapter 1

[11]

Product velocity: The product has a bounded value in time and, to ensure that
there is high developer productivity, the team should build Continuous
Integration / Continuous Deployment (CICD) pipelines from the start.
A/B testing: Every feature should have a flag, so that it can be shown only to an x
percentage of users.

These generic guidelines or principles, along with the high-level design, help the team to
make decisions at every stage.

Technology selection
Once we have an architecture, we need to define things, such as the programming
languages and frameworks, and make source-versus-build choices for individual
constructs. This can include database selection, vendor selection, technology strategy,
deployment environment, upgrade policies, and so on. The sum of these factors can often
make a straightforward task of choosing something simple into a complete nightmare. And
then, finally, all of these technologies have to actually work well together.

Leadership in the kitchen
Once the team starts executing, the architect needs to provide technical leadership to the
team. This does not mean taking every technical decision, but implies having ownership
and ensuring that the individual components being built add up to the blueprint made. The
architect sells the vision to the team at every design review meeting. Sometimes, steering
needs to happen, in the form of tough questions asked to the developers in the design
review (rather than prescribing solutions).

Coaching and mentoring
The developers working on such a product often need, and seek out, coaching and
mentoring outside of their immediate deliverables. One of their core objectives is to learn,
discuss tough problems, and improve their skills. Not having an environment where such
interactions are facilitated leads to frustrations and developer churn.

While managing the technical stewardship of the product, many times, the architect needs
to play the coach and mentor role for the developers. This could involve things ranging
from technical feedback sessions to career counseling.

Building Big with Go Chapter 1

[12]

Target state versus current state
When architects and developers are given requirements, they often come up with beautiful
and elegant designs. But generally, once the project kicks off, there is pressure on the team
to deliver quickly. The business stakeholders want something out fast (a Minimum Viable
Product), rather than wait for the Grand Final Product to be released. This makes sense in
terms of de-risking the product and provides key feedback to the team, in terms of whether
the product is fulfilling business requirements or not.

But this mode of operation also has a significant cost. Developers cut corners while building
the project in order to meet the deadlines. Hence, even though we have a clean, beautiful
target state in terms of architecture, the reality will not match this.

Having this mismatch is not wrong; rather, it's natural. But it is important for the team to
have the target state in mind and define the next set of bite-sized chunks to take the product
to the target state during each sprint. This means the architect needs to get involved in
sprint planning for the team, along with the product and engineering managers.

Software architecture
This section briefly explores the tenants of software architecture, its relationship with
design, and various architectural lenses or paradigms that are used to analyze and solve a
problem.

Architecture versus design
The word is often used to refer to something at a high level that is distinct from the lower-
level details, whereas design more often refers to structures and decisions at a lower level.
But the two are intrinsically linked, and we cannot have a good product without synergy
between the two. The low-level details and high-level structure are all part of the same
whole. They form a continuous fabric that defines the shape of the system. You can't have
one without the other; there is a continuum of decisions from the highest to the lowest
levels.

Building Big with Go Chapter 1

[13]

Working separately on architecture and design, without a central theme and principles
guiding both, leads to developers perceiving the code base in the same way that the blind
men perceived the elephant in the famous parable.

On the other hand, it is not practical (or desirable) for the architect to document every
aspect of low-level design. The key is to build a vision and guiding principles for the code,
which can be used as guard rails by the developers when making decisions at each level.

What does architecture look like?
There have been multiple architectural paradigms over the year, but all of them have one
key goal: managing complexity. How can we package code into components and work with
these components as abstract entities to infer about and build chunks of behavior?

These components divide the system into partitions, so that each partition has a specific
concern and role. Each component has well defined interfaces and responsibilities and is
segregated from the rest of the components. Having this abstraction allows us to not worry
about the inner workings of the components.

System decomposition needs to be a well thought-out activity. There are two key metrics
for assessing how good your components are, named cohesion and coupling:

High cohesion means a component performs a single related task.
Low coupling means components should have less dependency between
themselves.

A component can easily be extended to add more functionality or data to it. And, if needed,
it should be completely replaceable, without that affecting the rest of the system.

Building Big with Go Chapter 1

[14]

Robert Cecil Martin (more commonly known as Uncle Bob) is a software engineer and
author. He paints a beautiful picture through his clean architecture blog, describing the
component/layering idea:

The concentric circles represent different layers (that is, different sets of components or
higher-order components) of software.

In general, the inner circles are more abstract, and deal with things such as business rules
and policies. They are the least likely to change when something external changes. For
example, you would not expect your employee entity to change just because you want to
show employee details on a mobile application, in addition to an existing web product.

The outer circles are mechanisms. They define how the inner circles are fulfilled using the
mechanisms available. They are composed of things such as the database and web
framework. This is generally code that you re-use, rather than write fresh.

Building Big with Go Chapter 1

[15]

The Controllers (or Interface Adaptors) layer converts data from the formats available in
the mechanisms to what is most convenient for the business logic.

The rule that is key to making this architecture successful is the dependency rule. This rule
says that source code dependencies can only point inward. Nothing in an inner circle
(variables, classes, data, and private functions) can know anything at all about something in
an outer circle. The interfaces between the layers and the data that crosses these boundaries
are well defined and versioned. If a software system follows this rule, then any layer can be
replaced or changed easily, without affecting the rest of the system.

These four layers are just indicative—different architectures will bring out
different numbers and sets of layers (circles). The key is to have a logical
separation of the system so that, as new code needs to be written,
developers have crisp ideas on what goes where.

Here is a quick summary of main architectural paradigms that are commonly used:

Package-based

The system is broken down into packages (here, the
component is the package), where each package has a
well-defined purpose and interface. There is clear
separation of concerns in terms of the components.
However, the level of independence and enforcement of
segregation between modules is variable: in some
contexts, the parts have only logical separation, and a
change in one component might require another
component to be re-built or re-deployed.

Layering/N-tier/3-tier

This segregates functionality into separate layers, where
components are hosted in a specific layer. Generally,
layers only interact with the layer below, thereby
reducing complexity and enabling reusability. Layers
might be packages or services. The most famous example
of layered architecture is the networking stack (7 layer
OSI or the TCP/IP stack).

Building Big with Go Chapter 1

[16]

Async / message-bus / actor
model / Communicating

Sequential Processes (CSP)

Here, the key idea is that systems communicate with
each other through messages (or events). This allows for
clean decoupling: the system producing the event does
not need to know about the consumers. This allows
allows for 1-n communication.
In Unix, this paradigm is employed via pipes: simple
tools, such as cat and grep, are coupled through pipes
to enable more complex functionality such as search
for cat in words.txt.
In a distributed system, the messages exist over the
network. We shall look at distributed systems in detail in
a later chapter. If you're wondering what the actor model
or CSP is, these paradigms are explained later in this
chapter.

Object-oriented

This is an architectural style where components are
modeled as objects that encapsulate attributes and
expose methods. The methods operate on the data within
the object. This approach is discussed in detail in Chapter
3, Design Patterns.

Model-View-Controller
(MVC) / separated

presentation

Here, the logic for handling user interaction is placed
into a view component, and the data that powers the
interaction goes into a model component. The controller
component orchestrates the interactions between them.
We shall look at this in more detail in Chapter 6,
Messaging.

Mircoservices / service-oriented
architecture (SOA)

Here, the system is designed as a set of independent
services that collaborate with each other to provide the
necessary system behavior. Each service encapsulates its
own data and has a specific purpose. The key difference
here from the other paradigms is the existence of
independently running and deployable services. There is
a deep dive on this style further on in this chapter.

Building Big with Go Chapter 1

[17]

Microservices
While the theoretical concepts discussed previously have been with us for decades now, a
few things have recently been changing very rapidly. There is an ever increasing amount of
complexity in software products. For example, in object-oriented programming, we might
start off with a clean interface between two classes, but during a sprint, under extra time
pressure, a developer might cut corners and introduce a coupling between classes. Such a
technical debt is rarely paid back on its own; it starts to accumulate until our initial design
objective is no longer perceivable at all!

Another thing that's changing is that products are rarely built in isolation now; they make
heavy use of services provided by external entities. A vivid example of this is found in
managed services in cloud environments, such as Amazon Web Services (AWS). In AWS,
there is a service for everything, from a database to one that enables building a chatbot.

It has become imperative that we try to enforce separation of concerns. Interactions and
contracts between components are becoming increasingly Application Programming
Interface (API)-driven. Components don't share memory, hence they can only
communicate via network calls. Such components are called as services. A service takes
requests from clients and fulfills them. Clients don't care about the internals of the service.
A service can be a client for another service.

A typical initial architecture of a system is shown here:

The system can be broken into three distinct layers:

Frontend (a mobile application or a web page): This is what the users interact
with and makes network classes go to the backend to get data and enable
behavior.
Backend piece: This layer has the business logic for handling specific requests.
This code is generally supposed to be ignorant of the frontend specifics (such as
whether it is an application or a web page making the call).
A data store: This is the repository for persistent data.

Building Big with Go Chapter 1

[18]

In the early stages, when the team (or company) is young, and people start developing with
a greenfield environment and the number of developers is small, things work wonderfully
and there is good development velocity and quality. Developers pitch in to help other
developers whenever there are any issues, since everyone knows the system components at
some level, even if they're not the developer responsible for the component. However, as
the company grows, the product features start to multiply, and as the team gets bigger, four
significant things happen:

The code complexity increases exponentially and the quality starts to drop. A lot
of dependencies spurt up between the current code and new features being
developed, while bug fixes are made to current code. New developers don't have
context into the tribal knowledge of the team and the cohesive structure of the
code base starts to break.
Operational work (running and maintaining the application) starts taking a
significant amount time for the team. This usually leads to the hiring of
operational engineers (DevOps engineers) who can independently take over
operations work and be on call for any issues. However, this leads to developers
losing touch with production, and we often see classic issues, such as it works on
my setup but fails in production.
The third thing that happens is the product hitting scalability limits. For example,
the database may not meet the latency requirements under increased traffic. We
might discover that an algorithm that was chosen for a key business rule is
getting very latent. Things that were working well earlier suddenly start to fail,
just because of the increased amount of data and requests.
Developers start writing huge amounts of tests to have quality gates. However,
these regression tests become very brittle with more and more code being added.
Developer productivity falls off a cliff.

Applications that are in this state are called monoliths. Sometimes, being a monolith is not
bad (for example, if there are stringent performance/latency requirements), but generally,
the costs of being in this state impact the product very negatively. One key idea, which has
become prevalent to enable software to scale, has been microservices, and the paradigm is
more generally called service-oriented architecture (SOA).

The basic concept of a microservice is simple—it's a simple, standalone application that
does one thing only and does that one thing well. The objective is to retain the simplicity,
isolation, and productivity of the early app. A microservice cannot live alone; no
microservice is an island—it is part of a larger system, running and working alongside
other microservices to accomplish what would normally be handled by one large
standalone application.

Building Big with Go Chapter 1

[19]

Each microservice is autonomous, independent, self-contained, and individually
deployable and scalable. The goal of microservice architecture is to build a system
composed of such microservices.

The core difference between a monolithic application and microservices is that a monolithic
application will contain all features and functions within one application (code base)
deployed at the same time, with each server hosting a complete copy of the entire
application, while a microservice contains only one function or feature, and lives in a
microservice ecosystem along with other microservices:

Monolithic architecture

Building Big with Go Chapter 1

[20]

Here, there is one deployable artifact, made from one application code base that contains all
of the features. Every machine runs a copy of the same code base. The database is shared
and usually leads to non-explicit dependencies (Feature A requires Feature B to maintain a
Table X using a specific schema, but nobody told the Feature B team!)

Contrast this with a microservices application:

Microservices-based architecture

Here, in it's canonical form, every feature is itself packaged as a service, or a microservice,
to be specific. Each microservice is individually deployable and scalable and has its own
separate database.

Building Big with Go Chapter 1

[21]

To summarize, microservices bring a lot to the table:

They allow us to use the componentization strategy (that is, divide and rule) more
effectively, with clear boundaries between components.
There's the ability to create the right tool for each job in a microservice.
It ensures easier testability.
There's improved developer productivity and feature velocity.

The challenges for microservices – efficiency
A non-trivial product with microservices will have tens (if not hundreds) of microservices,
all of which need to co-operate to provide higher levels of value. A challenge for this
architecture is deployment—How many machines do we need?

Moore's law refers to an observation made by Intel co-founder Gordon Moore in 1965. He
famously noticed that the number of transistors per square inch on integrated circuits had
doubled every year since their invention, and hence, should continue to do so.

This law has more or less held true for more than 40 years now, which means that high-
performance hardware has become a commodity. For many problems, throwing hardware
at the problem has been an efficient solution for many companies. With cloud
environments such as AWS, this is even more so the case; one can literally get more
horsepower just by pressing a button:

Building Big with Go Chapter 1

[22]

However with the microservices paradigm, it is no longer possible to remain ignorant of
efficiency or cost. Microservices would be in their tens or hundreds, with each service
having multiple instances.

Besides deployment, another efficiency challenge is the developer setup—a developer
needs to be able to run multiple services on their laptop in order to work on a feature.
While they may be making changes in only one, they still need to run mocks/sprint-branch
version of others so that one can exercise the code.

A solution that immediately comes to mind is, Can we co-host microservices on the same
machine? To answer this, one of the first things to consider is the language runtime. For
example, in Java, each microservice needs a separate JVM process to run, in order to enable
the segregation of code. However, the JVM tends to be pretty heavy in terms of resource
requirements, and worse, the resource requirements can spike, leading to one JVM process
to cause others to fail due to resource hogging.

Another thing to consider about the language is the concurrency primitives. Microservices
are often I/O-bound and spend a lot of time communicating with each other. Often, these
interactions are parallel. If we were to use Java, then almost everything parallel needs a
thread (albeit in a thread pool). Threads in Java are not lean, and typically use about 1 MB
of the heap (for the stack, housekeeping data, and so on). Hence, efficient thread usage
becomes an additional constraint when writing parallel code in Java. Other things to worry
about include the sizing of thread pools, which degenerates into a trial-and-error exercise in
many situations.

Thus, though microservices are language-agnostic, some languages are better suited and/or
have better support for microservices than others. One language that stands out in terms of
friendliness with microservices is Golang. It's extremely frugal with resources, lightweight,
very fast, and has a fantastic support for concurrency, which is a powerful capability when
running across several cores. Go also contains a very powerful standard library for writing
web services for communication (as we shall see ourselves, slightly further down the line).

The challenges for microservices – programming
complexity
When working in a large code base, local reasoning is extremely important. This refers to
the ability of a developer to understand the behavior of a routine by examining the routine
itself, rather than examining the entire system. This is an extension of what we saw
previously, compartmentalization is key to managing complexity.

Building Big with Go Chapter 1

[23]

In a single-threaded system, when you're looking at a function that manipulates some state,
you only need to read the code and understand the initial state. Isolated threads are of little
use. However, when threads need to talk to each other, very risky things can happen! But
by contrast, in a multi-threaded system, any arbitrary thread can possibly interfere with the
execution of the function (including deep inside a library you don't even know you're
using!). Hence, understanding a function means not just understanding the code in the
function, but also an exhaustive cognition of all possible interactions in which the function's
state can be mutated.

It's a well known fact that human beings can juggle about seven things at one time. In a big
system, where there might be millions of functions and billions of possible interactions, not
having local reasoning can be disastrous.

Synchronization primitives, such as mutexes and semaphores, do help, but they do come
with their own baggage, including the following issues:

Deadlocks: Two threads requesting resources in a slightly different pattern
causes both to block:

Priority inversion: A high priority process wait on a low-priority slow process
Starvation: A process occupies a resource for much more time than another
equally important process

In the next section, we will see how Golang helps us to overcome these challenges and
adopt microservices in the true spirit of the idea, without worrying about efficiency
constraints or increased code complexity.

Building Big with Go Chapter 1

[24]

Go
The level of scale at Google is unprecedented. There are millions of lines of code and
thousands of engineers working on it. In such an environment where there are a lot of
changes done by different people, a lot of software engineering challenges will crop up—in
particular, the following:

Code becomes hard to read and poorly documented. Contracts between
components cannot be easily inferred.
Builds are slow. The development cycles of code-compile-test grow in difficulty,
with inefficiency in modeling concurrent systems, as writing efficient code with
synchronization primitives is tough.
Manual memory management often leads to bugs.
There are uncontrolled dependencies.
There is a variety of programming styles due to multiple ways of doing
something, leading to difficulty in code reviews, among other things.

The Go programming language was conceived in late 2007 by Robert Griesemer, Rob Pike,
and Ken Thompson, as an open source programming language that aims to simplify
programming and make it fun again. It's sponsored by Google, but is a true open source
project—it commits from Google first, to the open source projects, and then the public
repository is imported internally.

The language was designed by and for people who write, read, debug, and maintain large
software systems. It's a statically-typed, compiled language with built-in concurrency and
garbage collection as first-class citizens. Some developers, including myself, find beauty in
its minimalistic and expressive design. Others cringe at things such as a lack of generics.

Since its inception, Go has been in constant development, and already has a considerable
amount of industry support. It's used in real systems in multiple web-scale applications
(image source: https:/ ​/​madnight. ​github. ​io/ ​githut/ ​):

https://madnight.github.io/githut/
https://madnight.github.io/githut/
https://madnight.github.io/githut/
https://madnight.github.io/githut/
https://madnight.github.io/githut/
https://madnight.github.io/githut/
https://madnight.github.io/githut/
https://madnight.github.io/githut/
https://madnight.github.io/githut/
https://madnight.github.io/githut/
https://madnight.github.io/githut/
https://madnight.github.io/githut/

Building Big with Go Chapter 1

[25]

For a quick summary of what has made Go popular, you can refer to the WHY GO? section
at https:/​/​smartbear. ​com/ ​blog/ ​develop/ ​an- ​introduction- ​to- ​the- ​go-​language-
boldly-​going-​wh/ ​.

We will now quickly recap the individual features of the language, before we start looking
at how to utilize them to architect and engineer software in the rest of this book.

The following sections do not cover Go's syntax exhaustively; they are just
meant as a recap. If you're very new to Go, you can take a tour of Go,
available at https:/ ​/​tour. ​golang. ​org/ ​welcome/ ​1, while reading the
following sections.

https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://smartbear.com/blog/develop/an-introduction-to-the-go-language-boldly-going-wh/
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1

Building Big with Go Chapter 1

[26]

Hello World!
No introduction to any language is complete without the canonical Hello World program
(http:/​/​en.​wikipedia. ​org/ ​wiki/ ​Hello_ ​world). This programs starts off by defining a
package called main, then imports the standard Go input/output formatting package (fmt),
and lastly, defines the main function, which is the standard entry point for every Go
program. The main function here just outputs Hello World!:

package main

import "fmt"

func main() {
 fmt.Println("Hello World!")
}

Go was designed with the explicit object of having clean, minimal code. Hence, compared
to other languages in the C family, its grammar is modest in size, with about 25 keywords.

"Less is EXPONENTIALLY more."

- Robert Pike

Go statements are generally C-like, and most of the primitives should feel familiar to
programmers accustomed to languages such as C and Java. This makes it easy for non-Go
developers to pick up things quickly. That said, Go makes many changes to C semantics,
mostly to avoid the reliability pitfalls associated with low-level resource management (that
is, memory allocation, pointer arithmetic, and implicit conversions), with the aim of
increasing robustness. Also, despite syntactical similarity, Go introduces many modern
constructs, including concurrency and garbage collection.

Data types and structures
Go supports many elementary data types, including int, bool, int32, and float64. One
of the most obvious points where the language specification diverges from the familiar
C/Java syntax is where, in the declaration syntax, the declared name appears before the
type. For example, consider the following snippet:

var count int

http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world
http://en.wikipedia.org/wiki/Hello_world

Building Big with Go Chapter 1

[27]

It declares a count variable of the integer type (int). When the type of a variable is
unambiguous from the initial value, then Go offers a shorted variable declaration syntax pi
:= 3.14.

It's important to note the language is strongly typed, so the following code, for example,
would not compile:

var a int = 10

var b int32 = 20

c := a + b

One unique data type in Go is the error type. It's used to store errors, and there is a
helpful package called errors for working with the variables of this type:

err := errors.New("Some Error")
if err != nil {
 fmt.Print(err)
}

Go, like C, gives the programmer control over pointers. For example, the following code
denotes the layout of a point structure and a pointer to a Point Struct:

type Point Struct {
 X, Y int
}

Go also supports compound data structures, such as string, map, array, and slice
natively. The language runtime handles the details of memory management and provides
the programmer with native types to work with:

var a[10]int // an array of type [10]int

a[0] = 1 // array is 0-based

a[1] = 2 // assign value to element

var aSlice []int // slice is like an array, but without upfront sizing

var ranks map[string]int = make(map[string]int) // make allocates the map
ranks["Joe"] = 1 // set
ranks["Jane"] = 2
rankOfJoe := ranks["Joe"] // get

string s = "something"
suff := "new"

Building Big with Go Chapter 1

[28]

fullString := s + suff // + is concatenation for string

Go has two operators, make() and new(), which can be confusing. new()
just allocates memory, whereas make() initializes structures such as map.
make() hence needs to be used with maps, slices, or channels.
Slices are internally handled as Struct, with fields defining the current
start of the memory extent, the current length, and the extent.

Functions and methods
As in the C/C++ world, there are code blocks called functions. They are defined by the func
keyword. They have a name, some parameters, the main body of code, and optionally, a list
of results. The following code block defines a function to calculate the area of a circle:

func area(radius int) float64 {
 var pi float64 = 3.14
 return pi*radius*radius
}

It accepts a single variable, radius, of the int type, and returns a single float64 value.
Within the function, a variable called pi of the float64 type is declared.

Functions in Go can return multiple values. A common case is to return the function result
and an error value as a pair, as seen in the following example:

func GetX() (x X, err error)

myX, err := GetX()
if err != nil {
 ...
}

Go is an object-oriented language and has concepts of structures and methods. A struct is
analogous to a class and encapsulates data and related operations. For example, consider
the following snippet:

type Circle struct {
 Radius int
 color String
}

Building Big with Go Chapter 1

[29]

It defines a Circle structure with two members and fields:

Radius, which is of the int type and is public
color, which is of the String type and is private

We shall look at class design and public/private visibility in more detail in
Chapter 3, Design Patterns.

A method is a function with a special parameter (called a receiver), which can be passed to
the function using the standard dot notation. This receiver is analogous to the self or this
keyword in other languages.

Method declaration syntax places the receiver in parentheses before the function name.
Here is the preceding Area function declared as a method:

func (c Circle) Area() float64 {
 var pi float64 = 3.14
 return pi*c.radius*c.radius
}

Receivers can either be pointers (reference) or non-pointers (value).
Pointer references are useful in the same way as normal pass-by-reference
variables, should you want to modify struct, or if the size of struct is
large, and so on. In the previous example of Area(), the c Circle
receiver is passed by value. If we passed it as c * Circle, it would be
pass by reference.

Finally, on the subject of functions, it's important to note that Go has first-class functions
and closures:

areaSquared := func(radius int) float64 {
 return area*area
}

There is one design decision in the function syntax that points to one of my favorite design
idioms in Go—keep things explicit. With default arguments, it becomes easy to patch API
contracts and overload functions. This allows for easy wins in the short term, but leads to
complicated, entangled code in the long run. Go encourages developers to use separate
functions, with clear names, for each such requirement. This makes the code a lot more
readable. If we really need such overloading and a single function that accepts a varied
number of arguments, then we can utilize Go's type-safe variadic functions.

Building Big with Go Chapter 1

[30]

Flow control
The main stay of flow control in code is the familiar if statement. Go has the if statement,
but does not mandate parentheses for conditions. Consider the following example:

if val > 100 {
 fmt.Println("val is greater than 100")
} else {
 fmt.Println("val is less than or equal to 100")
}

To define loops, there is only one iteration keyword, for. There are no while or
do...while keywords that we see in other languages, such as C or Java. This is in line
with the Golang design principles of minimalism and simplicity—whatever we can do with
a while loop, the same can be achieved with a for loop, so why have two constructs? The
syntax is as follows:

func naiveSum(n Int) (int){
 sum := 0;
 for i:=0; i < n ; i++ {
 sum += index
 }
 return sum
}

As you can see, again, there are no parentheses around the loop conditions. Also, the i
variable is defined for the scope of the loop (with i:= 0). This syntax will be familiar to
C++ or Java programmers.

Note that the for loop need not strictly follow the three-tuple initial version (declaration,
check, increment). It can simply be a check, as with a while loop in other languages:

i:= 0
for i <= 2 {
 fmt.Println(i)
 i = i + 1
}

And finally, a while(true) statement looks like this:

for {
 // forever
}

Building Big with Go Chapter 1

[31]

There is a range operator that allows iterations of arrays and maps. The operator is seen in
action for maps here:

// range over the keys (k) and values (v) of myMAp
for k,v := range myMap {
 fmt.Println("key:",k)
 fmt.Println("val:",v)
}

// just range over keys
for key := range myMap {
 fmt.Println("Got Key :", key)
}

The same operator works in an intuitive fashion for arrays:

 input := []int{100, 200, 300}
 // iterate the array and get both the index and the element
 for i, n := range input {
 if n == 200 {
 fmt.Println("200 is at index : ", i)
 }
 }

 sum := 0
 // in this iteration, the index is skipped, it's not needed
 for _, n := range input {
 sum += n
 }
 fmt.Println("sum:", sum)

Packaging
In Go, code is binned into packages. These packages provide a namespaces for code. Every
Go source file, for instance, encoding/json/json.go, starts with a package clause, like
this:

 package json

Here, json is the package name, a simple identifier. Package names are usually concise.

Building Big with Go Chapter 1

[32]

Packages are rarely in isolation; they have dependencies. If code in one package wants to
use something from a different package, then the dependency needs to be called out
explicitly. The dependent packages can be other packages from the same project, a Golang
standard package, or from a third-party package on GitHub. To declare dependent
packages, after the package clause, each source file may have one or more import
statements, comprising the import keyword and the package identifier:

import "encoding/json”

One important design decision in Go, dependency-wise, is that the language specification
requires unused dependencies to be declared as a compile-time error (not a warning, like
most other build systems). If the source file imports a package it doesn't use, the program
will not compile. This was done to speed up build times by making the compiler work on
only those packages that are needed. For programmers, it also means that code tends to be
cleaner, with less unused imports piling up. The flip side is that, if you're experimenting
with different packages while coding, you may find the compiler errors irritating!

Once a package has been imported, the package name qualifies items from the package in
the source file being imported:

var dec = json.NewDecoder(reader)

Go takes an unusual approach to defining the visibility of identifiers (functions/variables)
inside a package. Unlike private and public keywords, in Go, the name itself carries the
visibility definition. The case of the initial letter of the identifier determines the visibility. If
the initial character is an uppercase letter, then the identifier is public and is exported out of
the package. Such identifiers can be used outside of the package. All other identifiers are
not visible (and hence not usable) outside of the host package. Consider the following
snippet:

package circles

func AreaOf(c Circle) float64 {
}

func colorOf(c Circle) string {
}

In the preceding code block, the AreaOf function is exported and visible outside of the
circles package, but colorOf is visible only within the package.

We shall look at packing Go code in greater detail in Chapter 3, Design Patterns.

Building Big with Go Chapter 1

[33]

Concurrency
Real life is concurrent. With API-driven interactions and multi-core machines, any non-
trivial program written today needs to be able to schedule multiple operations in parallel,
and these need to happen concurrently using the available cores. Languages such as C++ or
Java did not have language-level support for concurrency for a long time. Recently, Java 8
has added support for parallelism with stream processing, but it still follows an inefficient
fork-join process, and communication between parallel streams is difficult to engineer.

Communicating Sequential Processes (CSP) is a formal language for describing patterns
of interaction in concurrent systems. It was first described in a 1978 paper by Tony Hoare.
The key concept in CSP is that of a process. Essentially, code inside a process is sequential.
At some point in time, this code can start another process. Many times, these processes
need to communicate. CSP promotes the message-passing paradigm of communication, as
compared to the shared memory and locks paradigm for communication. Shared memory
models, like the one depicted in the following diagram, are fraught with risks:

It's easy to get deadlock and corruption if a process misbehaves or crashes inside a critical
section. Such systems also experience difficulty in recovering from failure.

Building Big with Go Chapter 1

[34]

In contrast, CSP promotes messages passing using the concept of channels, which are
essentially queues with a simple logical interface of send() and recv(). These operations
can be blocking. This model is described in this following:

Go uses a variant of CSP with first-class channels. Procedures are called goroutines. Go
enables code, which is mostly regular procedural code, but allows concurrent composition
using independently executing functions (goroutines). In procedural programming, we can
just call a function inline; however, with Go, we can also spawn a goroutine out of the
function and have it execute independently.

Channels are also first-class Go primitives. Sharing is legal and passing a pointer over a
channel is idiomatic (and efficient).

The main() function itself is a goroutine, and a new goroutine can be spawned using the
go keyword. For example, the snippet below modifies the Hello World program to spawn
a goroutine:

package main

import (
 "fmt"
 "time"
)

func say(what string){
 fmt.Println(what)
}

func main() {

Building Big with Go Chapter 1

[35]

 message := "Hello world!"
 go say(message)
 time.Sleep(5*time.Second)
}

Note that, after the go say(message) statement is executed, the main() goroutine
immediately proceeds to the next statement. The time.Sleep() function is important here
to prevent the program from exiting! An illustration of goroutines is shown in the following
diagram:

We shall look at channels and more concurrency constructs in Chapter 4, Scaling
Applications.

Garbage collection
Go has no explicit memory-freeing operation: the only way allocated memory can be
returned to the pools is via garbage collection. In a concurrent system, this is an must-have
feature, because the ownership of an object might change (with multiple references) in non-
obvious ways. This allows programmers to concentrate on modeling and coding the
concurrent aspects of the system, without having to bother about pesky resource
management details. Of course, garbage collection brings in implementation complexity
and latency. Nonetheless, ultimately, the language is much easier to use because of garbage
collection.

Not everything thing is freed on the programmer's behalf. Sometimes, the programmer has
to make explicit calls to enable the freeing of an object's memory.

Building Big with Go Chapter 1

[36]

Object-orientation
The Go authors felt that the normal type-hierarchy model of software development is easy
to abuse. For example, consider the following class and the related description:

Coding in such large class hierarchies usually generates brittle code. Early decisions
become very hard to change, and base class changes can have devastating consequences
further down the line. However, the irony is that, early on, all of the requirements might
not be clear, nor the system well understood enough, to allow for great base class design.

The Go way of object-orientation is : composition over inheritance.

For polymorphic behavior, Go uses interfaces and duck typing:

"If it looks like a duck and quacks like a duck, it's a duck."

Duck typing implies that any class that has all of the methods that an interfaces advertises
can be said to implement the said interface.

We shall look at more detail on object-orientation in Go later on in Chapter 3, Design
Patterns.

Building Big with Go Chapter 1

[37]

Summary
In this chapter, we looked at why having a plan is important when building big. We
reviewed various design paradigms and key aspects of Golang. The discussion of these
topics here was focused and very condensed. For more insights, I strongly recommend
reading Clean Architecture: A Craftsman's Guide to Software Structure and Design by Robert C.
Martin and A tour of Go (https:/ ​/ ​tour. ​golang. ​org/​welcome/ ​1).

In the next chapter, we will look at the problem statement of the case study that we will be
working on for the rest of this book. At the end of each section of the book, we will apply
whatever we learned in the section's chapters to build solutions for specific aspects of the
case study.

https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1

2
Packaging Code

When Mihai Budiu interviewed Brian Kernighan in 2000 (http:/ ​/​www. ​cs.​cmu. ​edu/
~mihaib/​kernighan- ​interview/ ​index. ​html), Brian Kernighan was asked the following
question:

"Can you tell us about the worst features of C, from your point of view?"

He responded with the following:

"I think that the real problem with C is that it doesn't give you enough mechanisms for
structuring really big programs, for creating firewalls within programs so you can keep
the various pieces apart. It's not that you can't do all of these things, that you can't
simulate object-oriented programming or other methodology you want in C. You can
simulate it, but the compiler, the language itself, isn't giving you any help."

Developers should be warned when they feel that code is being pushed into arbitrary
places. This generally implies that the code base does not have a coherence or a sense of
purpose distilled from the architecture. This is not just aesthetics or traceability; good
packaging is the first step to a maintainable code base.

As we saw in Chapter 1, Building Big with Go, managing complexity is one of the main
objectives of architecture. One way of doing this is encapsulation—packaging code into a
higher level of abstractions, which create the firewalls that Kernighan described earlier.

This chapter delves into ways of organizing code at two levels:

Object-orientation in Go
Code layout of packages, dependencies, and so on

But before we go there, we need to define crisply a key aspect of module design—contracts.

http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html
http://www.cs.cmu.edu/~mihaib/kernighan-interview/index.html

Packaging Code Chapter 2

[39]

Contracts
A software contract is a formalized documentation of an interaction with a software
component. It can be an interface (in the object-oriented sense), an API, or a protocol (for
example, TCP). Contracts allow diverse unconnected components of a system to work
together. Having clear, crisp contracts is a prerequisite to enabling successful distributed
software development. Here, distributed means not just in the normal distributed systems
sense (software with independent components), but also distributed teams.

All libraries and products implement contracts, explicit or implicit. Contracts may be
documented (using formal prose such as RFCs, ideally), or embedded in code (less than
ideal unless clearly called out).

Contracts do change. The key task of the architect is to ensure the following:

Contracts are durable and not reactive, and there is no change amplification, such
that small requirement changes cause churn in the contract.
Contracts are versioned. You can never know what the state is of the clients
interacting with your component. Hence, it is important that contracts have a
version associated with them. Generally, contracts should be backward
compatible (for example, version 2.2 of the component should interact reliably
with a client assuming version 1.1 of the contract). Sometimes, the burden of
backward compatibility can be substantial. In this case, you can make an
informed decision to make a breaking change. Even then, interactions with
earlier clients should gracefully fail, and communicate a clear error message that
the version of the contract is no longer supported.
Contracts should include non-functional requirements, typically called service-
level agreements (SLAs). These help clients in figuring out how to calculate
things such as timeouts.

Within this context, let's look at how object orientation plays out in Go.

Packaging Code Chapter 2

[40]

Object orientation
In object-oriented programming, the key idea is to split code into several small, manageable
parts or objects. Each object has its own identity, data (or attributes), and logic (or
behavior). For example, consider modeling an elephant in software.

Attributes are the properties of the object. For example, in the case of the elephant, things
such as these:

Weight
Color
Type
Location

The collection of all these attributes describes the current state of an object. The state of one
object is generally independent of another. Behavior is things that the object can do; in the
case of an elephant, it can trumpet. Behavior is the object's interface with the outside world.
The individual constructs (or functions) by which you can invoke behavior on the object are
called methods.

A class is a blueprint, or a template for objects that share the same behavior and properties.
Being a template, it can be used as a specification to create objects. It is usually correct to
say that objects instantiated from a class are of the same type. So, our Elephant class can
be something such as the following:

Packaging Code Chapter 2

[41]

Encapsulation is the key guiding principle for class design. It implies exposing a contract
for the behavior of objects and hiding volatile implementation details. The private
attributes and methods are hidden inside a capsule according to a need-to-know basis.

Instead of having a long procedural program, the design paradigm is to decompose
behavior into small manageable (and ideally reusable) components (objects), each with a
well-defined contract (interface). Doing this effectively allows me, as the class developer, to
change implementation while not affecting my clients. Also, we can ensure safer behavior
in the system, as we don't need to worry about the clients misusing implementation
constructs, thereby reducing complexity of the overall system.

Many times, we come across a set of objects/classes that are very similar, and it helps to
reason about these classes as a group. For example, let's say we are designing a zoo, where
there are multiple animals. There is some behavior that we expect from all animals, and it
simplifies code immensely if we use the abstract interface of the animal, rather than worry
about specific animals. This type of relationship is normally modeled as inheritance, as
shown in the following diagram:

Packaging Code Chapter 2

[42]

Packaging Code Chapter 2

[43]

Here, we have an animal interface and multiple animal classes implementing the contract
defined by the interface. The child classes can have extra attributes or methods, but they
cannot omit methods specified by the parent. This inheritance modeling implies an is a
relationship (for example, a tiger is an animal). Now a feature such as zoo roll call, where
we want to find names of all the animals in the zoo, can be built without worrying about
individual animals, and will work even as new animals enter the zoo or some types of
animals move out.

You might notice that each animal has a unique sound—tigers roar, elephants trumpet, and
so on and so forth. During the roll call, however, we don't care what the sound is as long as
we can prompt the animal to speak. The how of speaking can be different for each animal
and is not relevant to the feature in question. We can implement this using a Speak method
on the Animal interface, and depending on the Animal, what Speak does will be different.
This ability of an interface method to behave differently based on the actual object is called
polymorphism and is key to many design patterns:

Packaging Code Chapter 2

[44]

Packaging Code Chapter 2

[45]

Inheritance, though useful, has its pitfalls. It often leads to a hierarchy of classes, and
sometimes the behavior of the final object is spread across the hierarchy. In an inheritance
hierarchy, super classes can often be fragile, because one little change to a superclass can
ripple out and affect many other places in the application's code. One of the better things
that can happen is a compile time error (compiled languages), but the really tricky
situations are those where there are no compile time errors, but, subtle behavior changes
leading to errors/bugs in fringe scenarios. Such things can be really hard to debug; after all,
nothing changed in your code! There is no easy way to catch this in processes such as code
review, since, by design, the base class (and the developers who maintain that) don't care
(or know) about the derived classes.

An alternative to inheritance is to delegate behavior, also called composition. Instead of an
is a, this is a has a relationship. It refers to combining simple types to make more complex
ones. The preceding Animal relationship is modeled as the following:

Packaging Code Chapter 2

[46]

Packaging Code Chapter 2

[47]

Here, instead of a hierarchy, there are only two constructs:

Classes implement an interface—which is the contract the base class offers.
Functionality reuse happens through having references to objects, rather than
deriving from classes.

This is why many people, including people who code in Go, have the Composition Over
Inheritance principle.

Before closing this topic, there is another key advantage of composition that needs to be
called out. Building objects and references through compositions allows you to delay the
creation of objects until and unless they are needed, thereby improving the memory
footprint of the program. Objects can also mutate the state of the referenced objects
dynamically, allowing you to express complex behavior through simple constructs. One
example is the state design pattern as detailed in Chapter 4, Scaling Applications. When
efficiency and dynamism is a requirement, composition is super-key!

Object orientation in Go – the struct
In Go, instead of Java and C++ classes, the equivalent container for encapsulation is called a
struct. It describes the attributes of the objects for this class. A struct looks like this:

type Animal struct {
 Name string
 canFly bool
 }

This defines a new type with the collection of fields mentioned.

Once you have defined struct, you can instantiate it as follows:

anAnimal := Animal{Name: "Lion", canFly: false}

This creates a new object, anAnimal of type Animal. Once you have an object such as
anAnimal, we can use it to access fields using the dot notation as shown here:

 fmt.Println(anAnimal.Name)

You can also use dots with pointers to objects (rather than the actual object). The pointers
are automatically dereferenced. So, in the next example, aLionPtr.age works in both
cases: aLionPtr being a pointer to an object, as well as being a reference to the object itself:

aLionPtr := &anAnimal
fmt.Println(aLionPtr.age)

Packaging Code Chapter 2

[48]

Methods are functions that operate on particular struct. They have a receiver clause that
mandates what type they operate on. For example, consider the following struct and
method:

// This `Person` struct again
type Person struct {
 name string
 age int
 }
func (p Person) canVote() bool {
 return p.Age > 18
 }

In the preceding example, the language construct between the func keyword and the
method name is the receiver:

 (p Person)

This is analogous to the self or this construct of other object-oriented languages. You can
view receiver parameters analogous to this or self-identifiers in other languages. There can
be only one receiver, and you can define methods using pointer receivers:

 func (t * type) doSomething(param1 int)

And you can use non-pointer method receivers:

 func (t type) doSomething(param1 int)

A pointer receiver method makes for Pass-By-Reference semantics, while a non-pointer
one is a Pass-By-Value. Generally, pointer receiver methods are used if either of the
following apply:

You want to actually modify the receiver (read/write, as opposed to just read).
The struct is very large and a deep copy is expensive.

Slices and maps act as references, so even passing them as value will allow mutation of the
objects. It should be noted that a pointer receiver method can work with a non-pointer type
and vice-versa. For example, the following code will print "11 11", as the DoesNotGrow()
is working on a non-pointer receiver, and thus the increment there won't affect the actual
value in struct:

package main
import (
 "fmt"
)
type Person struct {

Packaging Code Chapter 2

[49]

 Name string
 Age int
}
func (p *Person) Grow() {
 p.Age++
}
func (p Person) DoesNotGrow() {
 p.Age++
}
func main() {
 p := Person{"JY", 10}
 p.Grow()
 fmt.Println(p.Age)
 ptr := &p
 ptr.DoesNotGrow()
 fmt.Println(p.Age)
 }

This can be confusing for people, but it is clarified in the Go Spec (reference: https:/ ​/
golang.​org/​ref/​spec#Method_ ​sets).

"A method call x.m() is valid if the method set of (the type of) x contains m and the
argument list can be assigned to the parameter list of m. If x is addressable and &x value's
method set contains m, x.m() is shorthand for (&x).m():."

And if you are wondering what a method set is, the spec defines this as follows:

"The method set of any other type T consists of all methods declared with receiver type T.
The method set of the corresponding pointer type *T is the set of all methods with receiver
*T or T (that is, it also contains the method set of T)."

Object orientation in Go – visibility
Managing visibility is key to good class design and, in turn, to the ruggedness of the
system. Unlike other object-oriented languages, there are no public or private keywords in
Go. A struct field with a lowercase starting letter is private, while if it is in uppercase,
then it's public. For example, consider a Pigeon package:

package pigeon

type Pigeon struct {
 Name string
 featherLength int
 }

https://golang.org/ref/spec#Method_sets
https://golang.org/ref/spec#Method_sets
https://golang.org/ref/spec#Method_sets
https://golang.org/ref/spec#Method_sets
https://golang.org/ref/spec#Method_sets
https://golang.org/ref/spec#Method_sets
https://golang.org/ref/spec#Method_sets
https://golang.org/ref/spec#Method_sets
https://golang.org/ref/spec#Method_sets
https://golang.org/ref/spec#Method_sets
https://golang.org/ref/spec#Method_sets
https://golang.org/ref/spec#Method_sets

Packaging Code Chapter 2

[50]

func (p *Pigeon) GetFeatherLength() int {
 return p.featherLength
}
func (p *Pigeon) SetFeatherLength(length int) {
 p.featherLength = length
}

Here, inside struct we have the following:

Name is a public attribute, and the code outside of the package can reference it.
featherLength is a private attribute, and the code outside of the package
cannot reference it.

The implications of this packaging mean that the following code will not compile
(assuming the code is outside of the Pigeon package):

func main() {
 p := pigeon.Pigeon{"Tweety", 10} //This will not compile
}

featherLength is not exposed from the Pigeon package. The right way to instantiate an
object of this struct would be to use the setter function provided:

func main() {
 p := pigeon.Pigeon{Name :"Tweety", }
 p.SetFeatherLength(10)
 fmt.Println(p.Name)
 fmt.Println(p.GetFeatherLength())
 //fmt.Println(p.featherLength) - This will not compile
 }

The capitalization-of-initial-letter convention also extends for methods too. Public methods
have the first letter capitalized, whereas private ones start with a lowercase character

Object oriented in Go – the interface
As we saw in Chapter 1, Building Big with Go, the interface construct is key to
polymorphism in Go—abstracting out details from a set of related objects so that we can
simplify code. The interface defines a contract that can be assumed by clients, without
knowledge (and thus coupling) of the actual class that implements the interface. Interfaces
are types that declare sets of methods. Similar to interfaces in other languages, they have no
implementation. Interfaces are at the core of Go's object-oriented support.

Packaging Code Chapter 2

[51]

Many object-oriented languages define explicit implementations of an interface; however,
Go is different. Here, the implementation is implicit through duck typing (as we saw in
Chapter 1, Building Big with Go). Objects that implement all the interface methods
automatically implement the interface. There is no inheritance or subclassing or
implements keyword.

Duck typing is found in other languages such as Python, but one advantage of Go is the
ability of the compiler to catch obvious mistakes, such as passing an int where a string was
expected or calling with the wrong number of arguments.

To use interfaces, first define the interface type like so:

type LatLong stuct {
 Lat float64
 Long float64
 }
type Animal interface {
 GetLocation() LatLong
 SetLocation(LatLong)
 CanFly() bool
 Speak()
 }

In Golang, all implementations are implicit. If the method set of a type T is a super set of the
method set declared by an interface type I, then the type T implements the interface type I,
implicitly. Here, T can also be an interface type. If T is a named non-interface type, then *T
must also implement I, for the method set of *T is a super set of the method set of T.

So, for example, for the animal interface, we can define Lion and Pigeon classes that both
implement the interface, as follows:

// The Lion Family
//
type Lion struct {
 name string
 maneLength int
 location LatLong
}

func (lion *Lion) GetLocation() LatLong {
 return lion.location
}
func (lion *Lion) SetLocation(loc LatLong) {
 lion.location = loc
}
func (lion *Lion) CanFly() bool {

Packaging Code Chapter 2

[52]

 return false
}
func (lion *Lion) Speak() string {
 return "roar"
}
func (lion *Lion) GetManeLength() int {
 return lion.maneLength
}
func (lion *Lion) GetName() string {
 return lion.name
}

Here is the code for the Pigeon class:

// The Pigeon Family
//
type Pigeon struct {
 name string
 location LatLong
}
func (p *Pigeon) GetLocation() LatLong {
 return p.location
}
func (p *Pigeon) SetLocation(loc LatLong) {
 p.location = loc
}
func (p *Pigeon) CanFly() bool {
 return false
}
func (p *Pigeon) Speak() string {
 return "hoot"
}
func (p *Pigeon) GetName() string {
 return p.name
}

The whole point of this is, of course, polymorphism—Lion and Pigeon can be used in any
place where the animal interface is expected.

Packaging Code Chapter 2

[53]

As described in Chapter 1, Building Big with Go, this is also called duck typing—"If it quacks
like a duck, it must be a duck." Specifically, if a type T implements an interface type I, then
values of T can be assigned to values of I. Calling a method of an interface value will call
the corresponding method of the dynamic value of the interface value. The polymorphism
is demonstrated by this code:

// The symphony
func makeThemSing(animals []Animal) {
 for _, animal := range animals {
 fmt.Println(animal.GetName() + " says " + animal.Speak())
 }
}
func main() {
 var myZoo []Animal
 Leo := Lion{
 "Leo",
 10,
 LatLong{10.40, 11.5},
 }
 myZoo = append(myZoo, &Leo)
 Tweety := Pigeon{
 "Tweety",
 LatLong{10.40, 11.5},
 }
 myZoo = append(myZoo, &Tweety)
 makeThemSing(myZoo) // do some work with the collection
}

A note on the implementation: polymorphism is typically implemented as either of the
following:

Tables for all the method calls prepared statically (as in C++ and Java)
A method lookup at each call (JavaScript and Python)

Go has slightly different method tables but computes them at runtime. Essentially,
interfaces are represented as a pointer-pair: one pointer to information about the type and
method tables (called i-table), and the other pointer references the associated data. For
example, take a look at the following assignment:

var aAnimal Animal
aAnimal = &Lion{
 "Leo",
 10,
 LatLong{10.40, 11.5},
 }

Packaging Code Chapter 2

[54]

It can be pictorially visualized as follows:

This diagram can help us visualize how the language runtime implements interfaces and
polymorphism.

Object oriented in Go – embedding
Embedding is a mechanism to allow the ability to borrow pieces from different classes. It is
the equivalent of multiple inheritance with non-virtual members.

Let's call Base, struct embedded into a Derived struct. Like normal (public/protected)
subclassing, the fields and methods of the Base class are directly available in the Derived
struct. Internally, a hidden/anonymous field is created with the name of the base struct. The
following code sample demonstrates the behavior:

type Bird struct {
 featherLength int
 classification string
}
type Pigeon struct {
 Bird
 Name string

Packaging Code Chapter 2

[55]

}

func main() {
 p := Pigeon{Name :"Tweety", }
 p.featherLength = 10
 fmt.Println(p)
}

Base fields and methods can be shadowed, if redefined in the derived class. Once
shadowed, the only way to access the base member is to use the hidden field named as the
base-struct-name:

type Bird struct {
 featherLength int
 classification string
}

type Pigeon struct {
 Bird
 featherLength float64
 Name string
}

func main() {
 p := Pigeon{Name :"Tweety", }
 p.featherLength = 3.14
 // featherLength refers to the member of the Pigeon struct NOT Bird
 fmt.Println(p)
}

This may feel like inheritance, but embedding does not provide polymorphism. Embedding
differs from subclassing in an important way: when a type is embedded, the methods of
that type are available as methods of the outer type; however, for invocation of the
embedded struct methods, the receiver of the method must be the inner (embedded)
type, not the outer one.

Embedding can also be done on interfaces. A famous example of this is the ReaderWriter
interface in the Golang stdlib, which combines both the Reader and Writer interface:

type ReadWriter interface {
 Reader
 Writer
}

Packaging Code Chapter 2

[56]

Golang allows multiple structures to be embedded inside one. This gives the ability to
borrow behavior from multiple classes. This is similar to multiple inheritance. However, a
note of caution: there is a reason why languages such as Java avoid multiple inheritance. It's
called the deadly diamond of death problem. This problem refers to the ambiguity that
arises when two classes, B and C, inherit from A, and a third class, D, inherits from both B
and C. Here, if there is a method in A that B and C have overridden but D has not, then it is
ambiguous on what exact method version is advertised by D:

Packaging Code Chapter 2

[57]

That said, in Golang, since embedding essentially means that inherited fields remain in the
inheriting struct namespace (struct), the compiler catches any ambiguities.

To know more about method overriding, visit https:/ ​/​en. ​wikipedia.
org/​wiki/ ​Method_ ​overriding.

Modules
Eventually, any interesting software project will come to depend on another project, library,
or framework. Packages provide a namespace or a firewall for your code. By firewall I mean,
insulate the code in the package from changes in other parts or packages. Entities inside a
package (types, functions, variables, and so on) can be exported (public—visible outside the
package) or unexported (private—not visible outside the package). The way to control
visibility is exactly like the mechanism described for classes: if the identifier name starts
with a capital letter, and it is exported from the package, otherwise, it's unexported.

This is an example of a convention over configuration paradigm and is one of the key enablers
of encapsulation in Go. The rule of thumb is this:

All code of the package should be private, unless explicitly needed by other client packages.

Go's standard library comes with a lot of useful packages that can be used for building real-
world applications. For example, the standard library provides a net/http package that
can be used for building web applications and web services. Besides the standard packages,
it is idiomatic in Go to use third-party packages. You can literally pick any third-party
package on GitHub and use it in your code, after a simple go get command.

While this flexibility is good, it is important to have a packing philosophy and guidelines so
that developers know exactly where to put and find code.

Code layout
Go mandates code to be organized on the filesystem in a certain way—the organization has
to be at the highest level in terms of a workspace. While there are general recommendations
to have one workspace for all projects, in practical situations, I have found it much more
scalable to have one workspace per project; for example, consider the situation of two
projects using a common dependency, with a different version (more on that in the next
section, third-party dependencies.

https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Method_overriding

Packaging Code Chapter 2

[58]

Here is the recommended high-level structure for the code:

bin: This directory contains the executables; that is, the output of the compiler.
pkg: This folder is for the package objects.
<package>: A folder for each of the top-level packages that make the
components of the project.
vendor: This folder hosts third-party dependencies. There will be more on this in
the following section, third-party libraries.
Makefile: This makes it easier to organize various tasks such as compilation,
linting, tests, and also stage code. This again is described in more detail in the
next section, third- party libraries.
scripts: Various scripts including DB provisioning/migrations.
Main driver: The main file(s) that drive the components and control the life
cycle of top-level objects.

This is how a typical Golang workspace looks:

├── Makefile
├── README.md
├── api
├── bin
├── db
├── lib
├── scheduler
├── scrapper.go
├── tests
└── vendor
├── pkg
└── src
 ├── github.com
 │ ├── fatih
 │ │ └── structs
 │ ├── influxdata
 │ │ └── influxdb
 │ ├── jasonlvhit
 │ │ └── gocron
 │ ├── magiconair
 │ │ └── properties
 │ ├── mattn
 │ │ └── go-isatty
 │ ├── mitchellh
 │ │ └── mapstructure
 │ ├── olivere
 │ │ └── elastic
 │ ├── pkg

Packaging Code Chapter 2

[59]

 │ │ └── errors
 │ ├── sirupsen
 │ │ └── logrus
 │ ├── spf13
 │ │ ├── afero
 │ │ ├── cast
 │ │ ├── jwalterweatherman
 │ │ ├── pflag
 │ │ └── viper
 │ ├── uber-go
 │ │ └── atomic

The GOPATH environment variable specifies the location of your workspace. It defaults to a
directory named go inside your home directory. If you would like to work in a different
location, you will need to set GOPATH to the path to that directory with a fallback to the Go
home directory. The following section shows you how to do this in detail.

Third-party dependencies
While using third-party libraries allows rapid development, it also brings some challenges.
Consider what happened in 2016 in the JavaScript/NPM word—11 lines of JavaScript broke
big projects such as Node and Babel. Here's what happened:

Azer Koçulu got unhappy with NPM because a brand-infringement inquiry on an lib called
Kik went against him. In retaliation, he unpublished around 250 of his modules from NPM,
one of which was left-pad. This library was used to pad out the left-hand side of strings
with zeros or spaces. It so happened that thousands of projects (including Node and Babel)
relied on this library. Without the dependency being available in NPM, these widely-used
applications failed (for reference, visit http:/ ​/​www. ​informit. ​com/ ​articles/ ​article. ​aspx?
p=​1941206).

In professional software development, we need to insulate ourselves from such impact.
That is why I'm an ardent supporter of managing your dependencies in your own version
control, with clear versioning. Even here, there are two options:

Have a company-wide/cross-project dependency repository.
Have per-project dependencies.

http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206
http://www.informit.com/articles/article.aspx?p=1941206

Packaging Code Chapter 2

[60]

A common issue with the first approach is versioning—not all projects in your team may
want to use the same version all the time. With a common Go Workspace, this becomes
tough to manage. To circumvent such issues, and to retain control of dependencies, I
usually advocate the following:

Checking in the dependencies in the the same source tree as the main code under
a vendor folder.
Using a unique GOPATH (and workspace) for each project, effectively using
GOPATH as follows:

$(PWD)/vendor:$(PWD)

$(PWD) is the source root.
Using a Makefile, as shown here, to help stage vendor code before checking
into the parent repository:

.PHONY: build doc fmt lint run test clean vet

TAGS = -tags 'newrelic_enabled'

default: build

build: fmt clean
 go build -v -o ./myBin

doc:
 godoc -http=:6060 -index

https://github.com/golang/lint
go get github.com/golang/lint/golint
lint:
 golint ./src

clean:
 rm -rf `find ./vendor/src -type d -name .git` \
 && rm -rf `find ./vendor/src -type d -name .hg` \
 && rm -rf `find ./vendor/src -type d -name .bzr` \
 && rm -rf `find ./vendor/src -type d -name .svn`
 rm -rf ./bin/*
 rm -rf ./pkg/*
 rm -rf ./vendor/bin/*
 rm -rf ./vendor/pkg/*

http://godoc.org/code.google.com/p/go.tools/cmd/vet

Packaging Code Chapter 2

[61]

go get code.google.com/p/go.tools/cmd/vet
vet:
go vet ./src/...

This mechanism takes a snapshot of the dependencies, with actual code, and checks it into
the vendor folder. Thus, everything required to build the project is contained in the Git
repository.

A few people who have interacted with me have expressed reservations about managing
dependencies inside the parent repository; they suggested things such as git submodules as
alternatives.

Submodules are pseudo git repositories stored within the parent repository. The parent just
stores the SHA (hash ID) of a specific commit for each submodule inside a directory for
each dependency. While this looks convenient and clean in terms of isolation, it can lead to
lot of subtle issues:

Easy overwrite of submodules: You need to run an explicit git submodule
update command to pull the latest version of the dependencies. Without this
command, even with a normal git pull, the submodules don't get updated. If
the submodule update is not done, then the submodule repository reference will
still be pointing to an older version. If someone else updates the submodule, the
update will not be available for your checkout. Also, it's quite easy to commit the
old submodule version in your next parent commit—thus effectively reverting
the submodule update for all others! Submodule maintenance needs a strict
process to be used properly.
Merge difficulty: If you are rebasing, and there is a conflict in the dependency,
all that shows up are different SHAs. There is no way to figure out the difference.
Detached head: When you invoke git submodule update, each submodule gets a
checkout of the corresponding SHA, and this puts the submodule into a detached
HEAD state. Any changes you commit will still leave the submodule in a detached
HEAD state. In this situation, an action such as rebase (which merges other
changes) won't show up as conflicts, and your changes will be overwritten by
what is being merged.

While there are other tools, such as Git subtree, considering simplicity, I still recommend
checking in the vendor folder (with source) in the parent repository.

Packaging Code Chapter 2

[62]

Framework
Once your company/team starts writing Go code, you will notice that people are building
lots of similar code. You would ideally want to re-factor such code into a framework
package that can be used by multiple projects in the company. Typical areas of re-use
include authentication, logging, configuration, helper classes, and so on.

This can be thought of as an internal third-party package under the vendor and
maintained as mentioned.

While common code is good, it is also tougher to engineer right. We need to ensure that
there are clear guidelines for writing such code. Some of these are as follows:

The configuration for the code should be externalized. For example, it should not
expect a configuration file at /etc/config/my_lib.
This logger inside the code should get context from the environment.
This code should as far as possible, not handle errors on its own. It should
translate library events into something meaningful related to the contract and
emit them.

Testing
There are two critical aspects that affect the testability of a good application:

Writing code that can be tested easily
Having self-contained, easily reproducible tests

The first part is about structuring code so that the code business logic is isolated from
dependencies such as external services, and so on. This allows mocking the dependencies
about these boundaries to allow the test cases to exercise the execution flow along various
interesting paths. For example, consider you are writing the flight search feature on a travel
marketplace. There are two aspects to this:

Obtaining prices for a sector from various providers
Running some business logic to filter and sort the results

Packaging Code Chapter 2

[63]

Now, it may not be possible to get various error scenarios reliably reproduced by making
direct calls to the provider. Also, it might be expensive (and insecure) to give API keys to
each developer. This will affect the testability of our overall code. To overcome this, you
might cleanly segregate the two parts as follows:

The Seller package(s) that implements the logic to interact with the seller, using
the API and getting the prices (among other things).
The Search package that implements the business logic of aggregating results
and sorting them.

These two packages can be built and tested independently.

For testing the leaf package Seller, you need simple Golang test driver code, which
exercises the code along interesting paths and validates output. Examples of how we can
structure this using tables is given next.

For testing the interior Search package, you can mock the Seller package to return mock
data. Mocking can be done at the interface level (using tools such as GoMock. For more
details, visit https:/ ​/ ​github. ​com/ ​golang/ ​mock), or at the package level using build tags.
The latter is a neat way of mocking—essentially, you can selectively compile parts of a
package based on a tag. So, for example, we can have a single file that implements mocks
for all the exported methods of the package:

// +build AirlineAMock
// Mock for the Airline A Seller
package airlineA
func NewClient() *airlineA {
return makeAMockClient()
}
func (a *airlineA) getPrices(srcDate, dstDate TravelDate, src, dst
Places) {
 return getPricesFromLocalFile(srcDate, dstDate, srcDate,
dstDate)
}

The other files in the package can be prefixed with the // +build !AirlineAMock string.
With this, when the package is built using the following, a mocked version of the package
is built:

go build airlineA -tags 'AirlineAMock'

https://github.com/golang/mock
https://github.com/golang/mock
https://github.com/golang/mock
https://github.com/golang/mock
https://github.com/golang/mock
https://github.com/golang/mock
https://github.com/golang/mock
https://github.com/golang/mock
https://github.com/golang/mock
https://github.com/golang/mock
https://github.com/golang/mock

Packaging Code Chapter 2

[64]

Structuring tests
Many times when writing tests, you will find yourself copying and pasting code.
Experienced programmers know that this is never an ideal scenario. To remain DRY (Don't
Repeat Yourself), one excellent solution is table-driven tests. Here, the test cases are written
as (<complete inputs>, expected output) tuples in a table with a common driver code.
Each table entry can sometimes have additional information such as a test name to make
the test output easily readable. Here is a good example from the testing code for the fmt
package (http:/​/ ​golang. ​org/ ​pkg/ ​fmt/ ​):

var flagtests = []struct {
 in string
 out string
 }{
 {"%a", "[%a]"},
 {"%-a", "[%-a]"},
 {"%+a", "[%+a]"},
 {"%#a", "[%#a]"},
 {"% a", "[% a]"},
 {"%0a", "[%0a]"},
 {"%1.2a", "[%1.2a]"},
 {"%-1.2a", "[%-1.2a]"},
 {"%+1.2a", "[%+1.2a]"},
 {"%-+1.2a", "[%+-1.2a]"},
 {"%-+1.2abc", "[%+-1.2a]bc"},
 {"%-1.2abc", "[%-1.2a]bc"},
 }

 func TestFlagParser(t *testing.T) {
 var flagprinter flagPrinter
 for _, tt := range flagtests {
 s := Sprintf(tt.in, &flagprinter)
 if s != tt.out {
 t.Errorf("Sprintf(%q, &flagprinter) => %q, want %q", tt.in,
s, tt.out)
 }
 }
 }

Given a table of test cases, the actual test simply iterates through all table entries and, for
each entry, performs the necessary tests. The test code can be written well once (good error
messages, and so on) and reused across tests. This structure makes adding new tests a very
low-overhead task.

http://golang.org/pkg/fmt/
http://golang.org/pkg/fmt/
http://golang.org/pkg/fmt/
http://golang.org/pkg/fmt/
http://golang.org/pkg/fmt/
http://golang.org/pkg/fmt/
http://golang.org/pkg/fmt/
http://golang.org/pkg/fmt/
http://golang.org/pkg/fmt/
http://golang.org/pkg/fmt/
http://golang.org/pkg/fmt/
http://golang.org/pkg/fmt/

Packaging Code Chapter 2

[65]

With Go 1.7, the testing package supports sub-tests that can be run in parallel, thereby
reducing the total test execution time. For example, the following code runs through in one
second, not four:

func TestParallel(t *testing.T) {
 tests := []struct {
 dur time.Duration
 }{
 {time.Second},
 {time.Second},
 {time.Second},
 {time.Second},
 }
 for _, tc := range tests {
 t.Run("", func(subtest *testing.T) {
 subtest.Parallel()
 time.Sleep(tc.dur)
 })
 }
 }

A final word of caution on unit tests. While automated unit tests provide the
insurance/guardrails to move fast in terms of development, on many occasions, the very
frameworks that we choose to make our lives easier sometimes get in the way. As Daniel
Lebrero aptly summarized in his blog (http:/ ​/ ​labs. ​ig.​com/ ​code- ​coverage- ​100- ​percent-
tragedy), one common anti-pattern is writing a huge amount of test harness code for
something that is straightforward. This results in code being fragile and tough-to-iterate-on.
Every technique/recommendation has a context, and when the recommendation is applied
blindly, it can lead to developer frustration and, ultimately, lack of quality.

Summary
To summarize, good packaging is important because it enables changes to code to happen
faster with less risk (it is easy to grasp what to change and where due to the clear
separation of concerns within the modules). This also leads to fewer bugs in production.

Good packaging also helps the non-technical aspects of engineering: there is a clear quanta
of ownership for teams, and so there are fewer conflicts/communication and more of a
sense of ownership.

In the next chapter, we will begin to look at design patterns. These are blueprints for
solutions to various well-known scenarios that we encounter in software engineering.

http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy
http://labs.ig.com/code-coverage-100-percent-tragedy

3
Design Patterns

Design patterns are solutions to recurring problems in software engineering. Rather than a
comprehensive solution, a design pattern is a description of a problem and a template of
how to solve it. This template then becomes usable in many different contexts.

The idea is to study both the problem and the applicable solutions. The motivation is that
once you have done this, it is easy to recognize patterns among the product requirements
and architecture and bring ruggedized, pre-conceived solutions to the problem. Another
key advantage is that once your design is composed of well-known patterns, it is easy to
communicate and discuss the design with other colleagues/stakeholders.

Design patterns can be roughly categorized into three areas:

Creational
Structural
Behavioral

We shall look at these patterns in detail in the following sections. However, we will begin
the discussion with the basic design principles that form the guidelines for all the patterns.

Design principles
There are two key aspects to be taken care of in low-level design:

Responsibility assignment: What is the responsibility of each class?
Dependency management: What other classes should this class depend on, and
what is the contract between these classes?

Design Patterns Chapter 3

[67]

Robert C Martin (Uncle Bob) has very nicely laid out five principles of good class design to
guide us when doing low-level object-oriented design in his book Agile Software
Development, Principles, Patterns, and Practices. Though the book and the languages used
there are old, the principles are still true and extensible to Go. A mnemonic to remember
these principles has been called SOLID (each letter corresponding to a specific principle), as
shown here:

Single Responsibility Principle (S)
The principle states the following:

"One class should have one, and only one, responsibility."

While this seems obvious, it is important to have discipline to maintain this principle in the
face of the ever-increasing complexity of product requirements. For example, on our travel
website, let's say we model a ticket using an entity struct (entity classes are a representation
of persistent objects in memory; they present the data). Initially, the company did only
airline reservations and the ticket was modeled as such. However, after some time, the
product had requirements for hotel reservations or bus tickets. With the knowledge of the
new requirements, our previous design might not be the best one possible. When such new
requirements arise, it is important to refactor code to stay true to the guidelines mentioned
here.

So, in this specific example, instead of clubbing the ticket semantics of all business verticals,
it is important to build a hierarchy with say reservation as the base class and
AirlineTicket, BusTicket, and HotelReservations as all the derived classes. Patterns
to build such a hierarchy are described later in the chapter. An example of the reservation
interface is shown here:

type Reservation interface {
 GetReservationDate() string
 CalculateCancellationFee() float64

Design Patterns Chapter 3

[68]

 Cancel()
 GetCustomerDetails() []Customer
 GetSellerDetails() Seller
}

Of course, this is a very minimal set of methods for illustrative purposes only. When the
client code does not care about the type of the reservation, extraneous coupling is not
introduced.

Besides classes, this principle is more important in package design. For example, packages
named utils become a dumping ground of miscellaneous functions. Such a name and
collection should be avoided. On the other hand, some examples of good package names
from the Go standard library, which clearly indicate the purpose, are as follows:

net/http: this provides http clients and servers.
encoding/json: this implements JSON serialization/deserialization.

Open/Closed Principle (O)
The original text of the principle is this:

"You should be able to extend a class's behavior without modifying it."

This essentially means that classes should be open for extension but closed for
modification, so it should be possible to extend or override class behavior without having
to modify code. Behavior change should be pluggable into the class, either through
overriding some methods or injecting some configuration. One excellent example of a
framework exhibiting this principle is the Spring Framework.

One common place to use this principle is for algorithms or business logic. In our travel
website, let's say we have two requirements:

We should be able to bundle airline and hotel reservations into a Trip object.
We should be able to calculate the cancellation fee for a trip.

Thus, we can model Trips as a struct with a collection (repository) of reservations, and
for the cancellation, have each derived type of reservation compute the cancellation fee, as
shown here:

type Trip struct {
 reservations []Reservation
}

Design Patterns Chapter 3

[69]

func (t *Trip) CalculateCancellationFee() float64 {
 total:= 0.0

 for _, r:= range(t.reservations) {
 total += r.CalculateCancellationFee()
 }

 return total
}

func (t *Trip) AddReservation (r Reservation) {
 t.reservations = append(t.reservations, r)
}

In the future, if we have a new type of reservation, as long as it implements the
CalculateCancellationFee() method of the reservation interface,
the CalculateCancellationFee() method should be calculating the cancellation fee.

Liskov Substitution Principle (L)
This is a slight variation of the Open/Closed Principle, and Uncle Bob states it as follows:

"Derived types must be substitutable for their base types."

This principle is called Liskov because it was first written by Barbara Liskov:

"What is wanted here is something like the following substitution property: If for each
object o1 of type S there is an object o2 of type T such that for all programs P defined in
terms of T, the behavior of P is unchanged when o1 is substituted for o2—then S is a
subtype of T.

The crux of the principle is that derived classes must be usable through the base class
interface without the need for the client to know the specific derived class.

As we have seen earlier, in Go, object orientation is enabled by composition (prototype
pattern), rather than class hierarchies. So, though this principle does not imply as strongly
as other languages, it does give us guidance to interface design: the interface should be able
to suffice for all structs that implement that interface.

Design Patterns Chapter 3

[70]

A good example for application of this principle is the previous example of cancellation fee
calculation. This enables a clear separation of concerns:

The client who wants to compute the cancellation fee for a trip does not care
about the specific type of reservations in the trip.
 The trip's code does not know how each reservation computes the cancellation
fee.

If, however, the client code tries to check the type of derived class (through Reflection for
example) to explicitly call the cancellation-fee method on each (concrete) type of
reservation, then the abstraction breaks down. The Liskov Substitution Principle (LSP)
precisely advises against doing this type of thing.

Interface Segregation Principle (I)
This principle states this:

"Many client-specific interfaces are better than one general-purpose interface."

As our code evolves, it is a common symptom for base classes to be a collect-all for behavior.
However, this makes the whole code brittle: derived classes have to implement methods
that don't make sense to them. Clients also can get confused by this variable nature of
derived classes. To avoid this, this principle recommends having an interface for each type
of client.

For example, in the preceding reservation example, let's say we have a fat reservation base
class for all airline, hotel, bus tickets, and so on. Now suppose airline reservations have a
special method; say, AddExtraLuggageAllowance(), which allows the ticket holder to
carry extra luggage. With a hotel reservation, we need the ability to change the room
type—ChangeType(). With a naive design, all these methods would be stuffed in the base
reservation class, with derived classes having to implement unrelated methods. A better
design is to have the base reservation class just deal with the common behavior and have
specific interfaces for airline, bus, and hotel reservations:

type Reservation interface {
 GetReservationDate() string
 CalculateCancellationFee() float64
}

type HotelReservation interface {
 Reservation
 ChangeType()
}

Design Patterns Chapter 3

[71]

type FlightReservation interface {
 Reservation
 AddExtraLuggageAllowance(peices int)
}

type HotelReservationImpl struct{
 reservationDate string
}

func (r HotelReservationImpl) GetReservationDate() string {
 return r.reservationDate
}

func (r HotelReservationImpl) CalculateCancellationFee() float64 {
 return 1.0 // flat:P
}

type FlightReservationImpl struct{
 reservationDate string
 luggageAllowed int
}

func (r FlightReservationImpl) AddExtraLuggageAllowance(peices int) {
 r.luggageAllowed = peices
}

func (r FlightReservationImpl) CalculateCancellationFee() float64 {
 return 2.0 // flat but slight more than hotels:P
}

func (r FlightReservationImpl) GetReservationDate() string {
 // this might look repetitive, but the idea is to provide freedom for
the
 // derived classes to flux independently of each other
 return r.reservationDate
}

Dependency Inversion Principle (D)
The final principle is the Dependency Inversion Principle, which states the following:

"Depend on abstractions, not on concretions."

Design Patterns Chapter 3

[72]

This means that higher-level modules should depend only on interfaces and not on
concrete implementations. In Java, huge frameworks such as Spring have come up as
dependency injection capabilities so that beans (objects) can be injected into the application at
runtime, while the rest of the code just works with interfaces of the beans (rather than the
concrete implementations).

In Go, this principle boils down to two recommendations:

Every package should have interfaces that advertise functionality without the
implementation specifics.
When a package needs a dependency, it should take that dependency as a
parameter.

To illustrate the second point, let's say we have built two packages (layers) for the search
microservice of our travel website:

Service layer: This layer has a lot of the business logic for the searching and
sorting.
Communication layer: This layer is just responsible for getting data from
different sellers. Each seller has its own API, and thus this layer has a lot of
different implementations of a SellerCommunication interface.

According to this principle, we should be able to inject a specific instantiation of the
communication layer to the service layer. The injection of the concrete implementation of
the communication layer can be done through the driver's main function. This allows the
service layer to function just knowing (depending on) on the SellerCommunication
interface and not on a specific implementation. One way to immediately exploit this is
mocking—the SellerDAO interface can be mocked for test cases of the service layer
components.

With these principles in mind, let's look at specific design patterns, beginning with
creational design patterns.

Creational design patterns
Creational design patterns are design patterns that deal with object creation mechanisms in
a safe and efficient manner and decouple clients from implementation specifics. With these
patterns, the code using an object need not know details about how the object is created, or
even the specific type of object, as long as the object adheres to the interface expected.

Design Patterns Chapter 3

[73]

Factory method
A factory is an object that is used to create other objects. We looked at the preceding
reservation interface. Essentially, it is an association between an item for sale and a user
who bought it, along with some metadata such as dates and so on, and there will be
multiple types of reservation. So, how does the client code create a reservation without
knowing about implementation classes such as HotelReservationImpl?

In a factory method pattern, a helper method (or function) is defined, to enable object
creation without knowing the implementation class details. For example, in the case of
reservation, the simple factory can be this:

func NewReservation(vertical, reservationDate string) Reservation {
 switch(vertical) {
 case "flight":
 return FlightReservationImpl{reservationDate,}
 case "hotel":
 return HotelReservationImpl{reservationDate,}
 default:
 return nil
 }
}

It can be used as follows:

hotelReservation:= NewReservation("hotel","20180101")

Builder
Sometimes, object creation is not so straightforward. For example:

It might be necessary to have business rules to validate some parameters or
derive some added attributes. For example, in a reservation, we might derive a
nonCancellable attribute based on the vertical, seller, and travel date details.
We might need some code to bring in efficiency—for example, retrieving an
object from the cache rather than reading from the DB.
It might be necessary to have idempotency and thread safety in object creation.
That is, multiple requests for object creation with the same parameters should
give the same object.
The objects might have multiple constructor arguments (typically called
telescopic constructors), and it is difficult to remember the order of parameters
for the clients. Some of these parameters might be optional. Such constructors
frequently lead to bugs in client code.

Design Patterns Chapter 3

[74]

The builder pattern allows you to create different flavors of an object while enforcing the
constraints mentioned previously. For our reservation example, the builder will look like
this:

type ReservationBuilder interface {
 Vertical(string) ReservationBuilder
 ReservationDate(string) ReservationBuilder
 Build() Reservation
}

type reservationBuilder struct {
 vertical string
 rdate string
}

func (r *reservationBuilder) Vertical(v string) ReservationBuilder {
 r.vertical = v
 return r
}

func (r *reservationBuilder) ReservationDate(date string)
ReservationBuilder {
 r.rdate = date
 return r
}

func (r *reservationBuilder) Build() Reservation {
 var builtReservation Reservation

 switch r.vertical {
 case "flight":
 builtReservation = FlightReservationImpl{r.rdate}
 case "hotel":
 builtReservation = HotelReservationImpl{r.rdate}
 }

 return builtReservation
}

func NewReservationBuilder() ReservationBuilder {
 return &reservationBuilder{}
}

As you can see, our object creation is much more powerful. The lazy creation (after we have
all the arguments) also helps us exploit efficiency goals; for example, loading an expensive-
to-create object from the cache.

Design Patterns Chapter 3

[75]

Abstract factory
With real-life problems, there are many related (family of) objects that need to be created
together. For example, if our travel website decides to give away invoices for reservations,
then with our two verticals we essentially have the following:

Two types of entities: reservation and invoice
Two verticals/types of products: hotel and flight

When the client code is creating such related products, how do we ensure that clients don't
make mistakes (for example, associating a flight invoice to a hotel reservation)? The simple
factory method does not cut it here, since the client would need to figure out all the right
factories needed for each type of entity/object.

The abstract factory pattern attempts to solve this issue with a factory of factories construct: a
factory that groups the different related/dependent factories together without specifying
their concrete classes:

An implementation of an abstract factory with the reservation/invoice:

// We have Reservation and Invoice as two generic products
type Reservation interface{}
type Invoice interface{}

Design Patterns Chapter 3

[76]

type AbstractFactory interface {
 CreateReservation() Reservation
 CreateInvoice() Invoice
}

type HotelFactory struct{}

func (f HotelFactory) CreateReservation() Reservation {
 return new(HotelReservation)
}

func (f HotelFactory) CreateInvoice() Invoice {
 return new(HotelInvoice)
}

type FlightFactory struct{}

func (f FlightFactory) CreateReservation() Reservation {
 return new(FlightReservation)
}

func (f FlightFactory) CreateInvoice() Invoice {
 return new(FlightReservation)
}

type HotelReservation struct{}
type HotelInvoice struct{}
type FlightReservation struct{}
type FlightInvoice struct{}

func GetFactory(vertical string) AbstractFactory {
 var factory AbstractFactory
 switch vertical {
 case "flight":
 factory = FlightFactory{}
 case "hotel":
 factory = HotelFactory{}
 }

 return factory
}

The client can use the abstract factory as follows:

hotelFactory:= GetFactory("hotel")
reservation:= hotelFactory.CreateReservation()
invoice:= hotelFactory.CreateInvoice()

Design Patterns Chapter 3

[77]

Singleton
Sometimes, you may come across a need to restrict the number of objects of a specific time
in the system. Singleton is the design pattern that restricts the creation of objects to a single
one. This might be useful, for example, when you want a single coordinator object across in
multiple places of the code.

The following code snippet shows how to implement the singleton pattern in Go. Note that
we have used the sync.Do() method: if once.Do(f) is called multiple times, only the first
call will invoke the function f, even in the face of multiple threads calling this
simultaneously:

type MyClass struct {
 attrib string
}

func (c* MyClass) SetAttrib(val string) {
 c.attrib = val
}

func (c* MyClass) GetAttrib() string {
 return c.attrib
}

var (
 once sync.Once
 instance *MyClass
)

func GetMyClass() *MyClass {
 once.Do(func() {
 instance = &MyClass{"first"}
 })

 return instance
}

It can be used as follows:

a:= GetMyClass()
a.SetAttrib("second")
fmt.Println(a.GetAttrib()) // will print second
b:= GetMyClass()
fmt.Println(b.GetAttrib()) // will also print second

Design Patterns Chapter 3

[78]

It should be noted that the singleton pattern is actually considered an anti-
pattern because of the introduction of a global state. This causes a
hidden coupling between components and can lead to difficult-to-debug
situations. It should not be overused.

 Structural design patterns
In software engineering, structural design patterns help delineate clean relationships
between objects and simplify design. Unlike creational patterns that we saw previously,
these patterns are quite varied and represent a bouquet of recipes for various situations.

Adaptor
Many times when you code, you come across situations where you have a new
requirement, and a component that almost meets that requirement. A non-software
example of this situation is the power adapter: a three-legged plug from India can't be
connected to a two-pronged outlet in the US. You need to use a power adapter to enable
compatibility and use both entities.

In the pattern, there is an adaptor class that proxies what is required and delegates the
work to the Adaptee (the incompatible class), using a method expected by the Adaptee.
This is shown in the following diagram:

Design Patterns Chapter 3

[79]

In theory, there are two ways of implementing this pattern:

Object Adaptor: Here, the adaptor class has an instance of the Adaptee class and
the adaptor method delegates the work to the wrapped instance.
Class Adaptor: Here, the adaptor is a mix-in (a class with multiple inheritance)
and inherits from both places:

The interface that is expected
The Adaptee interface

In Golang, the object Adaptor is much more amenable. A sample is given here:

type Adaptee struct{}
 func (a *Adaptee) ExistingMethod() {
 fmt.Println("using existing method")
}

type Adapter struct {
 adaptee *Adaptee
}

func NewAdapter() *Adapter {
 return &Adapter{new(Adaptee)}
}

func (a *Adapter) ExpectedMethod() {
 fmt.Println("doing some work")
 a.adaptee.ExistingMethod()
}

And the client doWork() will look as simple as this:

adaptor:= NewAdapter()
adaptor.ExpectedMethod()

Bridge
Consider a use case in our travel product where we have two types of reservations:

Premium reservations: special benefits such as free cancellation, better cashback,
and so on.
Normal reservation: normal restrictions.

Design Patterns Chapter 3

[80]

Also, recall from Chapter 2, Packaging Code, that we have two types of sellers:

Institutional: those who can give us an API to pull data off and do our bookings.
Small scale: those who will use a platform we build as a part of this product to
onboard inventory.

The reservations are finally fulfilled by the sellers. The naive implementation will have a
matrix of the reservation type for each type of seller. However, very soon, the code will
become unmaintainable. As the code grows in complexity, we might find hard-to-engineer
binding between interface and implementation.

The is a relationships between the interfaces start getting mixed up with the
implementation details. The abstraction and implementation cannot both be independently
extended.

The bridge pattern aims to solve this as follows:

Decoupling the abstraction from the implementation so that both can vary
independently
Segregating the interface hierarchy and the implementation hierarchy into two
separate trees

This pattern is described here:

The dummy implementation for the use case mentioned previously is given here:

type Reservation struct {
 sellerRef Seller // this is the implementer reference
}

Design Patterns Chapter 3

[81]

func (r Reservation) Cancel() {
 r.sellerRef.CancelReservation(10) // charge $10 as cancellation feed
}

type PremiumReservation struct {
 Reservation
}

func (r PremiumReservation) Cancel() {
 r.sellerRef.CancelReservation(0) // no charges
}

// This is the interface for all Sellers
type Seller interface {
 CancelReservation(charge float64)
}

type InstitutionSeller struct {}

func (s InstitutionSeller) CancelReservation(charge float64) {
 fmt.Println("InstitutionSeller CancelReservation charge =", charge)
}

type SmallScaleSeller struct {}

func (s SmallScaleSeller) CancelReservation(charge float64) {
 fmt.Println("SmallScaleSeller CancelReservation charge =", charge)
}

Its usage is as follows:

res:= Reservation{InstitutionSeller{}}
res.Cancel() // will print 10 as the cancellation charge

premiumRes:= PremiumReservation{Reservation{SmallScaleSeller{}}}
premiumRes.Cancel() // will print 0 as the cancellation charge

The abstraction here is a struct not an interface, since in Go you can't have
abstract structs/interfaces where you can store a reference to the seller
implementation.

Design Patterns Chapter 3

[82]

Composite
Many times, we come across structures that are comprised of leaf elements. However, the
clients don't really care about this nature and want to behave with single (leaf) and
composite structures in the same way. The expectation is that composites delegate the
behavior to each constituent leaf.

The pattern can be visualized by this figure:

Here is some sample code in Golang:

type InterfaceX interface {
 MethodA()
 AddChild(InterfaceX)
}

type Composite struct{
 children []InterfaceX
}

func (c *Composite) MethodA() {
 if len(c.children) == 0 {
 fmt.Println("I'm a leaf ")
 return
 }

 fmt.Println("I'm a composite ")

Design Patterns Chapter 3

[83]

 for _, child:= range c.children {
 child.MethodA()
 }
}

func (c *Composite) AddChild(child InterfaceX) {
 c.children = append(c.children, child)
}

The usage is shown as follows:

func test() {
var parent InterfaceX

parent = &Composite{}
parent.MethodA() // only a leaf and the print will confirm!

var child Composite
parent.AddChild(&child)
parent.MethodA() // one composite, one leaf
}

The code for composite implements the interface using pointer receivers
because the AddChild method needs to mutate the struct.

Decorator
The decorator pattern allows the extension of a function of an existing object dynamically
without the need to alter the original object. This is achieved by wrapping the original
object and function into a new function.

The decorator pattern is illustrated by the following code, which can be used to profile how
much time another function takes to execute.

A toy profiler that just works with a function taking and returning float is shown here:

type Function func(float64) float64

// the decorator function
func ProfileDecorator(fn Function) Function {
 return func(params float64) float64 {
 start:= time.Now()
 result:= fn(params)
 elapsed:= time.Now().Sub(start)

Design Patterns Chapter 3

[84]

 fmt.Println("Function completed with time: ", elapsed)
 return result
 }
}

func client(){
 decoratedSquqreRoot:= ProfileDecorator(SquareRoot)
 fmt.Println(decoratedSquqreRoot(16))
}

Like the tracing example, logging and other types of middleware are common places where
the decorator pattern is employed.

Facade
When a package has multiple interfaces, it can get difficult for clients to use it. Though the
individual interfaces may be exciting for a power user, most clients will get confused with
the complicated details they don't care about.

The facade design pattern solves this, with advertising an alternative/simplified interface to
other parts of the code. This is shown by this figure:

Design Patterns Chapter 3

[85]

In Golang, a facade can be implemented using an interface and struct, which offers a
simplified interaction model over the rest of the interfaces.

Proxy
In our product, the fulfilment is done by external sellers. For institutional sellers, there is an
external API that needs to be called to perform actions such as booking. Suppose an
institutional seller, say HotelBoutique, gives a REST API (more on API types in a follow-
up chapter); how should the system interact with this external agent? Obviously, the first
thought that comes to our mind is to encapsulate and isolate the HotelBoutique specifics
in one place.

A proxy is essentially a class functioning as an interface to something else. It is an object
that delegates the work to the subject (that which is being proxied) and abstracts clients
from the subject specifics. The specifics include the location, so this allows cool design
where the client and the subject may or may not be in the same compiled binary, but the
rest of the code works without any change.

The proxy delegation can simply be forwarding, or it can provide additional logic (for
example, caching).

For the HotelBoutique example, the proxy pattern, with a dummy class instead of the API
call, is given here:

// Proxy
type HotelBoutiqueProxy struct {
 subject *HotelBoutique
}

func (p *HotelBoutiqueProxy) Book() {
 if p.subject == nil {
 p.subject = new(HotelBoutique)
 }

 fmt.Println("Proxy Delegating Booking call")

 // The API call will happen here
 // For example sake a simple delegation is implemented
 p.subject.Book()
}

// Dummy Subject
type HotelBoutique struct{}

Design Patterns Chapter 3

[86]

func (s *HotelBoutique) Book() {
 fmt.Println("Booking done on external site")
}

Behavioral design patterns
Behavioral design patterns are design patterns that identify communication patterns
among objects and provide solution templates for specific situations. In doing so, these
patterns increase the extensibility of the interactions.

Some of the patterns are concerned with reducing the coupling of sending and receivers,
while others describe how the internal state (and any change notifications) of an object's
state can be made available to other interested objects. So, as you can imagine, this is a
pretty diverse bunch of patterns.

Command
The command pattern is a behavioral design pattern in which an object is used to represent
a request (or actions) and encapsulate all information needed to process the same. This
information includes the method name, the object that owns the method, and values for the
method parameters.

Many times, the command needs to be persisted. This can happen if the command is going
to be a long-running one or when you need to remember the commands to support features
such as undo in a word processor (here, each change to the document will be a command).

The players in the command pattern are as follows:

A command interface that encapsulates various actions to be done. It generally
has a single execute() method to actually perform the requested command.
There are many common interface declared for all concrete commands.
Concrete commands implement the actual operations. Some commands can be
self-contained. Others require a receiver, an external object that actually does the
work. In the latter case, the concrete command's execute() method delegates to
the receiver.
An invoker object knows how to execute a command, and optionally does book
keeping about the command execution. The invoker is only dependent on the
command interface and not the concrete commands. It usually has a repository of
commands. In case of long-running background jobs, the invoker also plays the
role of a scheduler for these commands.

Design Patterns Chapter 3

[87]

The last is the client that has references to all the invoker objects, command
objects, and receiver objects and orchestrates the flow:

A key requirement to the travel marketplace was business insights gleaned from reports.
These could vary from user insights on various features to top-performing sellers in a
specific category.

As we have seen in the introductory chapter, all such functionality is split into frontend (the
client side code mostly responsible for rendering elements) and the backend (an API server
that does the actual computation). We have a dedicated chapter on API design later on, but
a common method of modeling such APIs is called Representational State
Transfer (REST). Here, we have a resource analogous to an object, and the APIs are
essentially methods that get/set on this resource.

We can model this analytics API as a report API, where clients can request a report by
doing POST on a /reports URL. The backed will turn this request to a command and
schedule it to be done by background workers. The following code snippet shows the
command pattern in action in this scenario. Here, report is the command interface and
client is the web layer of the API handler:

// The Command
type Report interface {
 Execute()
}

Design Patterns Chapter 3

[88]

// The Concrete Commands
type ConcreteReportA struct {
 receiver *Receiver
}

func (c *ConcreteReportA) Execute() {
 c.receiver.Action("ReportA")
}

type ConcreteReportB struct {
 receiver *Receiver
}

func (c *ConcreteReportB) Execute() {
 c.receiver.Action("ReportB")
}

// The Receiver
type Receiver struct{}

func (r *Receiver) Action(msg string) {
 fmt.Println(msg)
}

// Invoker
type Invoker struct {
 repository []Report
}

func (i *Invoker) Schedule(cmd Report) {
 i.repository = append(i.repository, cmd)
}

func (i *Invoker) Run() {
 for _, cmd:= range i.repository {
 cmd.Execute()
 }
}

The client code will look as follows:

func client() {
 receiver:= new(Receiver)
 ReportA:= &ConcreteReportA{receiver}
 ReportB:= &ConcreteReportB{receiver}

 invoker:= new(Invoker)

Design Patterns Chapter 3

[89]

 invoker.Schedule(ReportA)
 invoker.Run()
 invoker.Schedule(ReportB)
 invoker.Run()
}

Chain of Responsibility
Many times, the commands described previously might need handling such that we want a
receiver to do work only when it is able to, and it's not then hand off the command to
someone else next in the chain. For example, for the reports use case, we might want to
handle authenticated and unauthenticated users differently.

The Chain of Responsibility pattern enables this by chaining a set of receiver objects. The
receiver at the head of the chain tries to handle the command first, and if it's not able to
handle it, delegates it to the next.

The sample code is given here:

type ChainedReceiver struct {
 canHandle string
 next *ChainedReceiver
}

func (r *ChainedReceiver) SetNext(next *ChainedReceiver) {
 r.next = next
}

func (r *ChainedReceiver) Finish() error {
 fmt.Println(r.canHandle, " Receiver Finishing")
 return nil
}

func (r *ChainedReceiver) Handle(what string) error {
 // Check if this receiver can handle the command
 if what==r.canHandle {
 // handle the command here
 return r.Finish()
 } else if r.next != nil {
 // delegate to the next guy
 return r.next.Handle(what)
 } else {
 fmt.Println("No Receiver could handle the request!")
 return errors.New("No Receiver to Handle")
 }
}

Design Patterns Chapter 3

[90]

Mediator
The mediator pattern adds a third-party object (called a mediator) to control the interaction
between two objects (colleagues). By virtue of the mediator object, the communicating
classes don't get coupled to each other's implementation .

It helps reduce the coupling between the classes communicating with each other, because
now they don't need to have the knowledge of each other's implementation.

Sample code is given here:

// The Mediator interface
type Mediator interface {
 AddColleague(colleague Colleague)
}

// The Colleague interface
type Colleague interface {
 setMediator(mediator Mediator)
}

// Concrete Colleague 1 - uses state as string
type Colleague1 struct {
 mediator Mediator
 state string
}

func (c *Colleague1) SetMediator(mediator Mediator) {
 c.mediator = mediator
}

func (c *Colleague1) SetState(state string) {
 fmt.Println("Colleague1: setting state: ", state)
 c.state = state
}

func (c *Colleague1) GetState() string {
 return c.state
}

// Concrete Colleague 2 - uses state as int
type Colleague2 struct {
 mediator Mediator
 state int

Design Patterns Chapter 3

[91]

}

func (c *Colleague2) SetState(state int) {
 fmt.Println("Colleague2: setting state: ", state)
 c.state = state
}

func (c *Colleague2) GetState() int {
 return c.state
}

func (c *Colleague2) SetMediator(mediator Mediator) {
 c.mediator = mediator
}

// Concrete Mediator
type ConcreteMediator struct {
 c1 Colleague1
 c2 Colleague2
}

func (m *ConcreteMediator) SetColleagueC1(c1 Colleague1) {
 m.c1 = c1
}

func (m *ConcreteMediator) SetColleagueC2(c2 Colleague2) {
 m.c2 = c2
}

func (m *ConcreteMediator) SetState(s string) {
 m.c1.SetState(s)
 stateAsString, err:= strconv.Atoi(s)
 if err == nil {
 m.c2.SetState(stateAsString)
 fmt.Println("Mediator set status for both colleagues")
 }
}

Client code is given here:

c1:= Colleague1{}
c2:= Colleague2{}

// initialize mediator with colleagues
mediator:= ConcreteMediator{}
mediator.SetColleagueC1(c1)
mediator.SetColleagueC2(c2)

Design Patterns Chapter 3

[92]

// mediator keeps colleagues in sync
mediator.SetState("10")

Memento
The memento pattern is about capturing and storing the current state of an object so that it
can be restored later on in a smooth manner. This pattern has three players:

The originator is an object that has an internal state.
The caretaker is planning to do something that might change the originator state.
But in case of any problems, it wants to be able to undo (or rollback) the change.
To accomplish this, the caretaker starts off by asking the originator for a
memento object. After this, the caretaker performs the mutation/operations. If
some trouble ensues, it returns the memento object to the originator.

The important thing in this pattern is that the memento object is opaque, and thus
encapsulation of the originator object is not broken.

The code for the pattern is given here:

// Originator
type Originator struct {
 state string
}

func (o *Originator) GetState() string {
 return o.state
}

func (o *Originator) SetState(state string) {
 fmt.Println("Setting state to " + state)
 o.state = state
}

func (o *Originator) GetMemento() Memento {
 // externalize state to Momemto objct
 return Memento{o.state}
}

func (o *Originator) Restore(memento Memento) {
 // restore state
 o.state = memento.GetState()
}

Design Patterns Chapter 3

[93]

// Momento
type Memento struct {
 serializedState string
}

func (m *Memento) GetState() string {
 return m.serializedState
}

// caretaker

func Caretaker() {
 // assume that A is the original state of the Orginator
 theOriginator:= Originator{"A"}
 theOriginator.SetState("A")
 fmt.Println("theOriginator state = ", theOriginator.GetState())

 // before mutating, get an momemto
 theMomemto:= theOriginator.GetMemento()

 // mutate to unclean
 theOriginator.SetState("unclean")
 fmt.Println("theOriginator state = ", theOriginator.GetState())

 // rollback
 theOriginator.Restore(theMomemto)
 fmt.Println("RESTORED: theOriginator state = ",
theOriginator.GetState())
}

Observer
In many situations, there is one entity (subject) with state and several others (observers)
that are interested in that state. The observer pattern is a software design pattern that
defines the interaction between the subject and the observer. Essentially, the subject
maintains a list of observers and notifies them of any state changes. The pattern is shown in
this figure:

Design Patterns Chapter 3

[94]

Here is the implementation in Go:

// The Subject

type Subject struct {
 observers []Observer
 state string
}

func (s *Subject) Attach(observer Observer) {
 s.observers = append(s.observers, observer)
}

func (s *Subject) SetState(newState string) {
 s.state = newState
 for _,o:= range(s.observers) {
 o.Update()
 }
}

func (s *Subject) GetState() string {
 return s.state
}

// The Observer Inteface

type Observer interface {
 Update()
}

// Concrete Observer A

Design Patterns Chapter 3

[95]

type ConcreteObserverA struct {
 model *Subject
 viewState string
}

func (ca *ConcreteObserverA) Update() {
 ca.viewState = ca.model.GetState()
 fmt.Println("ConcreteObserverA: updated view state to ", ca.viewState)
}

func (ca *ConcreteObserverA) SetModel(s *Subject) {
 ca.model = s
}

And the client will call as follows:

func client() {
 // create Subject
 s:= Subject{}

 // create concrete observer
 ca:= &ConcreteObserverA{}
 ca.SetModel(&s) // set Model

 // Attach the observer
 s.Attach(ca)

 s.SetState("s1")
}

Note that in the textbook form of the object pattern (shown in the figure),
the model reference is in the observer interface (as in, an abstract base
class in Java). However, since in Go interfaces can't have data and there is
no inheritance, the model reference gets pushed down to the concrete
observers.

Visitor
Many times, we want to do different things with elements (nodes) of an aggregate (array,
tree, list, and so on). The naive approach is, of course, to add methods on the nodes for each
functionality. If there are different type of nodes then the concrete nodes all have to
implement each processing function. As you can see, this approach is not ideal and defeats
the segregation principles and introduces a lot of coupling between the nodes and the
different types of processing.

Design Patterns Chapter 3

[96]

The objective of the visitor design pattern is to encapsulate and isolate processing that
needs be done to each element (node) of an aggregate. This avoids the method pollution
that we described in the earlier paragraph.

The key elements of the pattern are these:

Visitor: This class defines the interfaces for various processing and has a single
method, visit(), which takes a node object as an argument. Concrete visitor
classes describe the actual node processing in their implementation visit()
method.
Node: This is the element of the aggregate on which we want to do the visiting. It
has an accept() method that takes visitor as argument and starts the processing
by calling the visitor's visit() method. Each concrete node can add more
functionality to this as needed.

In most design patterns, polymorphism is implemented through single dispatch; that is to
say, the operation being executed depends on the type of the called object. In visitor, we see
the double dispatch variation: the operation to be executed finally depends both on the called
object (the concrete node object), as well as the caller object (the concrete visitor):

Design Patterns Chapter 3

[97]

New processing can easily be added by just subclassing to the original inheritance
hierarchy by creating a new visitor subclass. Here is some sample code in Go:

// the Node interface
type Node interface {
 Accept(Visitor)
}

type ConcreteNodeX struct{}
func (n ConcreteNodeX) Accept(visitor Visitor) {
 visitor.Visit(n)
}

type ConcreteNodeY struct{}
func (n ConcreteNodeY) Accept(visitor Visitor) {
 // do something NodeY-specific before visiting
 fmt.Println("ConcreteNodeY being visited !")
 visitor.Visit(n)
}

// the Vistor interface
type Visitor interface {
 Visit(Node)
}

// and an implementation
type ConcreteVisitor struct{}
func (v ConcreteVisitor) Visit(node Node) {
 fmt.Println("doing something concrete")
 // since there is no function overloading..
 // this is one way of checking the concrete node type
 switch node.(type) {
 case ConcreteNodeX:
 fmt.Println("on Node ")
 case ConcreteNodeY:
 fmt.Println("on Node Y")
 }
}

The client code will look as follows:

func main() {
 // a simple aggregate
 aggregate:= []Node {ConcreteNodeX{}, ConcreteNodeY{},}
 // a vistor
 visitor:= new(ConcreteVisitor)

Design Patterns Chapter 3

[98]

 // iterate and visit
 for _, node:= range(aggregate){
 node.Accept(visitor)
 }

}

Strategy
The goal of the strategy pattern is simple: allow the user to change the algorithm used
without changing the rest of the code. Here, the developer focuses on the inputs and
outputs of a generic algorithm and implements this as a method for an interface. Then each
specific algorithm implementation implements the interface. The client code is only coupled
to the interface, not to the specific implementation. This allows the user to plug-out and
plug-in new algorithms on the fly.

Sample code for an algorithm that finds the breadth (difference between the smallest and
largest number in an array) is given here:

type Strategy interface {
 FindBreadth([]int) int // the algorithm
}

// A O(nlgn) implementation
type NaiveAlgo struct {}
func (n *NaiveAlgo) FindBreadth(set []int) int {
 sort.Ints(set)
 return set[len(set)-1] - set[0]
}

// A O(n) implementation
type FastAlgo struct {}
func (n *FastAlgo) FindBreadth(set []int) int {
 min:= math.MaxInt32
 max:= math.MinInt64

 for _,x:= range(set) {
 if x < min {
 min = x
 }
 if x > max {
 max =x
 }
 }

Design Patterns Chapter 3

[99]

 return max - min
}

// The client is ignorant of the algorithm
func client(s Strategy) int {
 a:= []int { -1, 10, 3, 1}
 return s.FindBreadth(a)
}

A variation of this pattern is called the template method. Here, an algorithm is broken
down into parts: the main class defines the master algorithm and uses some methods (steps),
which are defined in specific concrete classes that subtly change the master algorithm by
implementing the steps differently.

Here is the code:

// The 'abstract' MasterAlgorithm
type MasterAlgorithm struct {
 template Template
}

func (c *MasterAlgorithm) TemplateMethod() {
 // orchestrate the steps
 c.template.Step1()
 c.template.Step2()
}

// The steps which can be specialized
type Template interface {
 Step1()
 Step2()
}

// Variant A
type VariantA struct{}
func (c *VariantA) Step1() {
 fmt.Println("VariantA step 1")
}
func (c *VariantA) Step2() {
 fmt.Println("VariantA step 2")
}

Design Patterns Chapter 3

[100]

The instantiation can be as follows:

func client() {
 masterAlgorithm:= MasterAlgorithm{new(VariantA)}
 masterAlgorithm.TemplateMethod()
}

State
Most real-life objects are stateful, and they change their behavior according to the state. For
example, a reservation may be in the following states, with corresponding behavior
changes in the cancellation user flow:

INITIAL: Here, the reservation state is very preliminary. Cancellation in this
state is trivial.
PAID: Here, the user has paid for the hotel/flight. But the actual booking with
the seller is not yet made. Here, cancellation might mean a full refund to the
customer.
CONFIRMED: In this state, the booking is made, and the seller and the
cancellation might incur charges.
FULFILLED: The customer has used the reservation. No cancellation is possible.
CANCELLED: The reservation has been cancelled. No further cancellation is
possible.

The state design pattern allows us to code this elegantly with clear separation of stateful
behavior, without having a big switch case. The main players are as follows:

Context: This object has the current state of the client. It is also the interaction
point for the client.
State: This is the interface for the object behavior in different states. Each method
in this interface needs to have polymorphic behavior, depending on the current
state.

Design Patterns Chapter 3

[101]

Concrete state(s): These are the actual states in which the object can be and
implement the behavior methods for this state. Generally, these methods also
cause state transition. New states and transitions are modeled by new subclasses
of state:

The code for the pattern is given here:

// The State Inteface with the polymorphic methods
type State interface {
 Op1(*Context)
 Op2(*Context)
}

// The Context class
type Context struct {
 state State
}

func (c *Context) Op1() {
 c.state.Op1(c)
}

func (c *Context) Op2() {
 c.state.Op2(c)
}

func (c *Context) SetState(state State) {
 c.state = state
}

Design Patterns Chapter 3

[102]

func NewContext() *Context{
 c:= new(Context)
 c.SetState(new(StateA)) // Initial State
 return c
}

The client is abstracted from all the state changes as shown here:

func client() {
 context:= NewContext()

 // state operations
 context.Op1()
 context.Op2() // <- This changes state to State 2
 context.Op1()
 context.Op2() // <- This changes state back to State 1
}

Summary
In this chapter, we looked at low-level design principles and various patterns in detail.
Hopefully, this will give the reader a hands-on grasp of various low-level constructs.

In the next chapter, we will look at what scalability means for applications and the various
dimensions that need to be taken care of to ensure applications meet the desired
performance and reliability requirements.

4
Scaling Applications

Scalability is the attribute of a software system that allows it to handle an increased
amount of work with proportionally more resources, while still maintaining the service
level agreements (SLAs) that the system offered. A scalable system allows you to solve an
increased amount of traffic/work by throwing money at the problem; that is, by adding more
hardware. A non-scalable system simply cannot handle the load, even with increased
resources.

For example, consider a backend software service that provides an API that is useful for an
app. But it is also important that the API returns data within a guaranteed amount of time
so that users don't experience latency or unresponsiveness at the app. A system not
designed with scalability in mind will behave as shown here:

Scaling Applications Chapter 4

[104]

With an increase in traffic, the response times go through the roof! In contrast, with a
system that is designed to be scalable, the response times will be more-or-less the
same. That is, they will exhibit the characteristic shown here:

There is a key difference between performance and scalability:

A system has a performance problem if it cannot meet the request of a single user
with the needed SLA.
A system has a scalability problem if it's good for a single user but the SLAs are
compromised with an increased number of concurrent users.

In this chapter, we will look at how scalability is impacted by things such as the following:

Algorithms
Data structures
Threading model
Local state

We shall also look at the following:

Bottlenecks
Different options on how systems can be scaled
Scaling deployments

Scaling Applications Chapter 4

[105]

Scaling algorithms
A problem can be solved in more than one way. Different algorithms have different
characteristics in terms of time and space complexity. Also, some algorithms are more
easier to parallelize than others. This section recaps the complexity analysis of various
algorithms and demonstrates how it affects stability. It also has a section on distributed
algorithms.

Algorithm complexity
Time complexity of an algorithm defines the amount of time taken by an algorithm to run
as a function of the input size. Similarly, the space complexity of an algorithm gives a
measure for the amount of space (memory) taken by an algorithm to run for a specific
length of the input. These complexity metrics define how much time and space an
algorithm takes with an increasing amount of data (inputs on which the algorithm has to
work on).

For example, consider the problem of adding two numbers. Here, we will look at each digit
pair in the two integers, add them, and then move to the next digit pair. If we had to denote
the time taken to perform this addition, we could model it as, T(n) = c * n:

Here T(n) is the time taken to add two integers of n digits.
c is time taken for the addition of a two-digit pair.

Intuitively, we can sense that the time taken will be proportional to the number of digits in
the number.

Before we go into details, let's review a key mathematical notion: order of growth. For any
two monotonic functions f(n) and g(n), we say that f(n) = O(g(n)) when there exist constants
c > 0 and n0 > 0:

f(n) ≤ c * g(n), for all n ≥ n0

Scaling Applications Chapter 4

[106]

This is depicted by this graph (courtesy of Wikipedia):

The implication is that function f(n) does not grow faster than g(n), or that function g(n) is
an upper bound for f(n), for all sufficiently large n. Thus, if we can model T(N) in the
preceding form, we get a worst case running time for an algorithm for any given n!

As a concrete example on how complexity has an impact on scalability, let's look at two
ways of sorting an array of integers. Bubble sorts works by comparing adjacent elements in
the array and swapping them if they are out of order. Thus, in every top-level run, the
largest element bubbles to the end of the array. A Golang implementation is given here:

func bubbleSort(array []int) {
 swapped:= true;

 for swapped {
 swapped = false

Scaling Applications Chapter 4

[107]

 for i:= 0; i < len(array) - 1; i++ {
 if array[i + 1] < array[i] {
 array[i + 1], array[i] = array[i], array[i + 1]
 swapped = true
 }
 }
 }
}

Here, as you can see, there are two for loops that go over the whole array. As described
earlier, the top- level for loop always pushes the next-largest element to the end of the yet-
unsorted element. Let's run this through an example input array say, [15 1 4 3 8].

First pass of the outer for loop:

[15 1 4 3 8] –> [1 15 4 3 8]: swap since 15 > 1
[1 15 4 3 8] –> [1 4 15 3 8]: swap since 15 > 4
[1 4 15 3 8] –> [1 4 3 15 8], swap since 15 > 3
[1 4 3 15 8] –> [1 4 3 8 15], swap since 15 > 8

Here is the second pass:

[1 4 3 8 15] –>[1 4 3 8 15]
[1 4 3 8 15] –> [1 3 4 8 15], swap since 4 > 3

At this point, the array is already sorted, but our algorithm needs one whole pass without
any swap to know it is sorted. The next pass will keep swapped as false and then the code
will bail out. In the worst case, we will need n * n comparisons; that is, n2 operations.
Assuming each operation takes a unit time, this algorithm is thus said to have a worst case
complexity of O(n2), or quadratic complexity.

Quicksort is another example of solving the problem. It is a type of the divide-and-conquer
strategy of algorithm design, and is based on the idea of choosing one element of the array
as a pivot and partitioning the array around this so that the elements to the left of the pivot
are less than the value, while those on the right are larger than the pivot. A Go
implementation is shown here:

func quickSort(array []int) []int {
 if len(array) <= 1 {
 return array
 }
 left, right:= 0, len(array) - 1

 // Pick a pivot randomly and move it to the end

Scaling Applications Chapter 4

[108]

 pivot:= rand.Int() % len(array)
 a[pivot], a[right] = a[right], a[pivot]

 // Partition
 for i:= range array {
 if array[i] < array[right] {
 array[i], array[left] = array[left], array[i]
 left++
 }
 }

 // Put the pivot in place
 array[left], array[right] = array[right], array[left]

 // Recurse
 quickSort(array[:left])
 quickSort(array[left + 1:])

 return array
}

As you can see from the code, at each step, the following is true:

There is a linear scan of the data.
The input is divided into two parts and the code recourses on it.

In a mathematical form, the time taken will be as follows:

T(n) = 2T(n/2) + n

Without going into the math details, this reduces to nlogn. Thus, for quicksort, the time
complexity is O(nlogn).

Well, the code is slightly more complicated and we have changed the complexity from n2 to
nlogn. Is this really worth it? To understand the difference, let's say you had to sort an array
of a million elements. Bubble sort would need worst-case 1,012 operations, whereas
quicksort would need just 20 * 106 operations! If each operation takes a millisecond, bubble
sort would need more than 10 days, while quicksort would complete the task in around
five hours! A very significant improvement in the scalability of the algorithm.

The following figure gives a graphical of the number of operations required for various
Big-O Complexity:

Scaling Applications Chapter 4

[109]

Thus, it is extremely important to analyze and profile your code and identify sub-optimal
algorithms to improve the scalability of the code.

Distributed algorithms
Sometimes, systems reach a point where even the most efficient of algorithms cannot
provide the answer in a reasonable amount of time by running on a single machine.
Sometimes, the dataset is so large that it cannot fit into the memory or disk of a single
machine. The obvious solution to this problem is to split the task across machines.
However, this involves a lot of tricky low-level details, such as the following:

Automatic parallelization
Communication and coordination
Distribution
Optimization for network and disk access

Scaling Applications Chapter 4

[110]

Google's MapReduce library was the first effort to build a generic library that offered a
simple programming model and could be used to solve many problems. In this, essentially
programmers specify two methods:

Map (C) -> [(kx, vy)]: This extracts information from a record and
generates key-value tuples.
Reduce (k, [vx,vy...[]) -> (k,vagg): The reducer takes the key-value
tuples generated in the map phase, grouped by the key, and generates an
aggregate result.

The MapReduce library takes care of the gory details described, and also does things such
as the Group-Bys (shuffle and sort) for the mapper outputs to be used in the reducers.

The famous hello world of distributed computing is word count. Given a file (document),
count the number of times each word is mentioned. Here, the two functions do the
following:

Map takes a chunk of the document, splits it into words, and generated KV
tuples of the type: [("this": "1"), ("is", "1"), ("good", "1")] for a
sentence, such as This is good.
In the reducer phase, all the words would be grouped and the reducer function
will get an array of 1 for each time that the word was counted; something such as
this: Reduce(key="this", values = "1", "1"). The reducer in this case just
needs to count the array of values to get the occurrence count of the word in the
whole document!

In Golang, there are couple of libraries that offer similar distributed processing
frameworks. For example, there is a project called Glow, which offers a master/minion
framework (here, the minions are called agents). Code is then serialized and sent to the
agents for execution. The following word count implementation is taken from the Glow
author Chris Lu's blog on Glow (https:/ ​/ ​blog.​gopheracademy. ​com/ ​advent- ​2015/ ​glow-
map-​reduce-​for-​golang/ ​):

func main() {
 flow.New().TextFile(
 "/etc/passwd", 3,
).Filter(func(line string) bool {
 return !strings.HasPrefix(line, "#")
 }).Map(func(line string, ch chan string) {
 for _, token:= range strings.Split(line, ":") {
 ch <- token

https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/
https://blog.gopheracademy.com/advent-2015/glow-map-reduce-for-golang/

Scaling Applications Chapter 4

[111]

 }
 }).Map(func(key string) int {
 return 1
 }).Reduce(func(x int, y int) int {
 return x + y
 }).Map(func(x int) {
 fmt.println("count:", x)
 }).Run()
}

The author has been since working on a project called Gleam that aims to allow more
flexibility in the dynamic composition of the computation flow.

Scaling data structures
The way in which we store data for an algorithm has a huge impact on the scalability for
that particular algorithm. Various data structures provide different complexity for different
operations. The following sections describe various data structures and the characteristics
of various operations.

Profiling data structures
The algorithm scalability choices also often manifest themselves in the choice of data
structures. This table gives the time and space complexity of common data structures and
their operations:

Data structure
Time complexity Space complexity

Average Worst Worst case
Search Insert Delete Search Insert Delete

Array O(n) O(n) O(n) O(n) O(n) O(n) O(n)
Linked list O(n) O(1) O(1) O(n) O(1) O(1) O(n)

Skip list O(logn) O(logn) O(logn) O(n) O(n) O(n) O(nlogn)
Hash table O(1) O(1) O(1) O(n) O(n) O(n) O(n)

Binary search tree O(logn) O(logn) O(logn) O(n) O(n) O(n) O(n)
Red black tree O(logn) O(logn) O(logn) O(logn) O(logn) O(logn) O(n)

Just as an example, to clarify the worst-case scenario performance, consider inserting the
following numbers:

3, 4, 5, 6, 7, 8, 9

For an empty Binary Search Tree (BST) and a Red-Black Tree.

Scaling Applications Chapter 4

[112]

In the case of a BST, this is the worst case, and it would degenerate to a linked list as shown:

This is because there is no re-balancing in the plain BST. However, for a Red-Black Tree,
there are periodic rotations to keep the invariant.

Red-Black Tree is a self-balancing BST, where the following invariants have to be
maintained at every stage at every node:

Every node has a color; either red or black.
The root of tree is always black.
There are no two adjacent red nodes (a red node cannot have a red parent or a
red child).
Every path from the root to the leaves has same number of black nodes.

Scaling Applications Chapter 4

[113]

At every insertion, the initial procedure for insertion is the same as the BST, but if the
invariants change, there is rotation so that the self-balancing occurs. For example, for the
same insertion, the Red-Black Tree looks like this:

To summarize, based on what operation you want to do, how often, with a data structure,
you can choose the right one for a job.

Another aspect to consider in data structure is how space allocation plays out with an
increase in data. For example, arrays are fixed length, and thus the data structure scalability
is limited to the size at the time of allocation. In contrast, linked lists need no upfront total
capacity allocation, but they do not offer the O(1) access time characteristics of arrays. That
said, there are some hybrid data structures such as array lists that offer the best of both
worlds.

Also, for a large amount of data, it is useful to think about how efficiently we can store the
information. For example, if we have to store a Boolean flag for all users on a website, then
there are two options:

Boolean array: one byte per flag/user
Bitset: a bit for each user/flag

The first option is slightly easier to code, but 50 M users will need 47 MB for the first option
verses about 6 MB for the second. If there are multiple such flags for different use cases,
you can imagine that bit sets will allow us to store more data in RAM, leading to better
performance.

Scaling Applications Chapter 4

[114]

Probabilistic data structures
Sometimes, the scalability problem is just the sheer number of elements that the data
structure has to handle. This can be solved by probabilistic data structures. Consider the
problem of finding the top-K frequent elements in a set, where the number of different
values is very large. A straightforward solution might be to use a hash table to count
frequencies and a min-heap of elements ordered by frequencies of the elements. However,
this requires space proportional to the number of elements in the set. An alternative data
structure is called count-min sketch. Internally, this consists of a two-dimensional matrix.
Each element is mapped to one position at each of the d rows using d different/independent
hash functions. These individual values values are then scaled by a weight vector. Each
position of the matrix is a counter. This is depicted by this figure:

Whenever a new value is inserted, the corresponding counters are incremented and the
total taken. We can then use this as an good estimate for frequency in the min-heap. If the
frequency count is greater than the frequency of the element at the heap top, then the top of
the heap is popped and the new element is inserted.

Another such related problem is as follows: Given a large number of elements, give a
function that gives a subset of elements from the set, and the probability of the elements
returned should be proportional to the total number of elements in the set. In real life, this
problem manifests as things such as the following:

Give the top 10 types of phones sold.
Give the top 10 mobile phones in our network that make the most number of
calls.

Scaling Applications Chapter 4

[115]

The naive way of handling this is, of course, having a large array and choosing the element
randomly (without replacement) from this array. This, however, means that all the
elements need to be stored, which by the problem statement would be unfeasible. We need
a smarter data structure.

Reservoir sampling is an algorithm/data structure that enables these types of queries. First,
we create a reservoir (array) of a size equal to the sample size required. In our case, say, 10.
The first 10 elements are ingested as-in in the set. Now let's say we are processing the 11th
element. Here, the new element should go into the chose set with probability 10/11. But if
we do this, are we penalizing the existing elements in the set? Consider the fifth element in
the set. This was chosen in the 10-member set with a probability of 100% (there were 10
slots). The probability that it will be chosen for replacement is 1/10. Thus, the probability of
the element going out of the set: Probability (fifth element not being in the set):

= Probability(choosing the 11 element) X Probability(choosing the 5th
element)
= 10/11 * 1/10
= 1/11

Thus, the probability of the fifth element being in the set is this:

= 1 - Probability(5th element not being in the set)
= 1 - 1/11
= 10/11

This is same probability of choosing the 11th element! In fact, with this scheme, each array
index has the same probability (10/11) of being in the set. Thus, if an element is present
more than once, its probability gets directly proportional to the cardinality of that element
in the set! This can be generalized from 11 to any n element that we are processing.

Scaling data
The way data is stored in the database also has a huge impact on the scalability of the
system. There are essentially two ways this impact manifests:

Like the complexity modeling of algorithms and data structures mentioned
previously, having a large number of elements may make searching for a
particular element inefficient. In a relational database, this typically happens
when there are columns in the search query without relevant indexes.
There are a lot of concurrent updates of the database. Typically, most databases
err on the side of safety. This means some clients are locked while updates or
reads are happening for another client.

Scaling Applications Chapter 4

[116]

We will look at database design and scaling in much more depth later in the book.

Scalability bottlenecks
Scalability bottlenecks are those system aspects that serialize (or choke) parallel
operations. With bottlenecks, the ability of the system to do more work in parallel drops;
hence, a major design objective of scalable systems is to remove these bottlenecks.

To understand system bottlenecks, let's look at a couple of very interesting problems that
were encountered by architects in the recent past:

The C10K problem: A web server bottleneck observed with the Apache server.
The Thundering Herd problem.

The C10K problem
At the start of the 21st century, engineers ran into a scalability bottleneck: web servers were
not able to handle more than 10,000 concurrent connections. For example, for the Apache
server, performance was inversely proportional to the number of concurrent connections.
Daniel Kegel wrote a paper (http:/ ​/​www. ​kegel. ​com/ ​c10k. ​html) about this problem in
detail, and included his tuning on how to get one web server to handle 10,000 connections.

Apache (until Version 2.4) could be configured to run in two main modes: pre-forked or
worker multi-process mode (MPM). Either way, with each request that is currently active
in the system, one thread is hogged up and competes for resources like CPU and memory
with all other threads. Besides resource hogging, the increased number of threads leads to
increased context switching. If the duration of each request is small, even with a high
throughput (Transactions Per Second - TPS), the number of concurrent connections does
not change much and you might not hit the concurrent-connection limit. However, if the
duration for each request changes to say 10 seconds, then at the same throughput of 1,000
TPS, you'll have 10K connections open and system performance would drop off a cliff!

Another issue was the the suboptimal algorithms for different networking areas in the
kernel. For example:

Each new packet would have to iterate through all the 10K processes in the
kernel to figure out which thread should handle the packet.
The select/poll constructs needed a linear scan to figure out what file descriptors
had an event.

http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html

Scaling Applications Chapter 4

[117]

Based on this learning, web servers based on an entirely different programming model
(called the eventing model) got designed. Nginx is an example of this type of web server. The
key architectural features are these:

There are a static number of processes, typically one for each core.
Each process handles a large number of concurrent connections using
asynchronous I/O and without spawning separate threads. Essentially, each
process manages a set of file descriptors (FDs)—one for each outstanding
request and handles events on these FDs using the efficient epoll system call.

The following figure describes Nginx architecture:

Reference: http://www.aosabook.org/en/nginx.html#fig.nginx.arch

Scaling Applications Chapter 4

[118]

The Thundering Herd problem
Let's say we are using a cache to avoid some heavy computations. For example, caching the
seller prices in our travel website. But since the cache is transient and generally built on
demand, it can cause some non-intuitive issues.

Let's say we have cached all keys with a time-to-live (TTL) of five seconds. For a very
popular cache in the key (say NY-LA flight listings), there will be multiple requests hitting
the cache simultaneously, all will not find the key and hit the backend services to get the data
into cache. If the cache is per-server, and say there are 50 servers, then the data will be
cached at 50 places at approximately the same time. Well, not so bad you think. But the
insight is that all these caches will expire at the same time, resulting in 50 simultaneous
requests to the backend! One way to avoid this is to slightly randomize the cache TTLs (4.8
to 5.2 seconds, instead of five seconds everywhere).

This thundering herd situation also happens in the case of the operating system problem of
process scheduling. For example, let's say you have a number of processes that are waiting
on a single event to occur. When that event happens, all the waiting process, that are
eligible to handle the event are awakened. In the end, only one of those processes will
actually be able to do the work, but all the others wake up and contend for CPU time before
being put back to sleep. If this starts to happen many times per second, the performance
impact can be significant.

Sources
The following sections describe some common bottleneck sources in various aspects of
system architecture: http:/ ​/ ​highscalability. ​com/​blog/ ​2012/ ​5/ ​16/​big- ​list- ​of- ​20-
common-​bottlenecks. ​html

http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html
http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html

Scaling Applications Chapter 4

[119]

Programming
We already looked at how algorithm and data structure choice can significantly impact
performance and scalability. Besides this, other programming source of bottlenecks are as
follows:

Locks: There is no fun in having multiple threads doing something in parallel,
only to take a lock and serialize themselves. Consistency is must in a thread-safe
application, but you need to consider the granularity of the lock made. A
common source of error is making the critical section (the part of code under the
lock) too fat; not everything needs to be done with the lock taken.
Deadlocks: In a multithreaded application, if threads need more than one
resource to do the work, getting into deadlocks is a real possibility. Deadlocks
can also happen when a thread holding a lock dies and essentially nothing else
can happen in the system, without a restart. To avoid these situations, consider
the following:

Locks need to be taken in the same order by all threads.
Locks need to be taken with variable amount of timeouts so that
stop-the-world scenarios don't happen.

Databases generally offer multiversion concurrency control and timeouts retain
the data in a consistent state. However, if you are using timeout locks then we
need to ensure that we leave the data in a form that can be reset back to the
consistent state. Again, lock granularity is a big factor here; for example, let's say
we are updating a large object. We can compute a duplicate version of the object
with the updates and just update the reference to the original object under lock.
Generally, pointer updates are atomic and, thus, even under a lock, wither the
object will be updated to the new version, or the old version will persist. We
would not have a half n half object!
Reader/Writer locks: Mutex and semaphores are commonly known locks.
However, many times, we just want to avoid concurrent write-write or read-
write scenarios. Read-read concurrency scenarios are just fine. In this case, code
scalability is drastically increased by using read-write locks. With a mutex or a
semaphore, the lock state is either locked or unlocked, and only one thread can
lock it at a time. But with a reader-writer lock, three states are now possible:

Locked for read: Multiple threads can take the lock in this state.
Locked for write mode: The lock is only with one thread. No other
thread is having the lock in any other state.
Unlocked.

Scaling Applications Chapter 4

[120]

These kinds of locks are highly efficient for read-more-write-less scenarios.

Context switches—too many threads or context switches can cause a drastic effect on
performance, which drops off a cliff as the system spends too much time in managing
context. Such systems also defeat the locality-of-reference principle on which most CPU
architectures and OS constructs are based.

Operating systems
When we write application code, we tend to forget that there is a huge ecosystem of the
operating system supporting the code. How we use these resources is key to how scalable
the code is. Some common sources of these type of bottlenecks are as follows:

Disk-related: Most disks are optimized for block access and sequential I/O and
not random I/O. If your code is doing a lot of disk seeks, it will seriously slow
down your code and cause non-intuitive bottlenecks. Also, multiple disks have
different performance (IOPS) characteristics. As far as possible, we should use
local SSD disks for high I/O use cases and reserve using networked-drives when
data needs to be shipped remotely. For example, if you are writing a compiler
that is supposed to write the output to a remove drive, you don't really need to
store the intermediate files in the same location! The code can use different
locations for the final and intermediate files (including logs), and thus achieve
much better performance and scalability. Also important is how your code is
using the OS cache for disk (buffer cache)— frequent unwarranted fsync is a
sure-shot recipe for slow-downs
Networking: Common source of bottlenecks are as follows:

Interrupt Request handler (IRQ) saturation: Soft interrupts taking
up 100% CPU.

Scaling Applications Chapter 4

[121]

Non-optimal TCP buffers: TCP uses a slow start algorithm to
avoid congesting clogged/low-bandwidth links. At any point in
time, it uses a congestion window buffer size to determine how
many packets it can send at one time. The larger the congestion
window size, the higher the throughput. The slow start algorithm
works by starting with a modest buffer size and with each instance
of not finding congestion, the buffer size is increased. On most
OSes, there is a tunable for the maximum congestion window size
and it defines the amount of buffer space that the kernel allocates
for each socket. Though there is a default, individual programs can
override this value by making a system call before opening the
socket. If the buffer size is too low, the sender will be throttled. If,
on the other hand, the buffer size is too large, then the sender can
overrun the receiver and cause congestion control to kick in. To
achieve maximum throughput, it is critical to set the buffer sizes to
the right values for the network link being used. A rule of thumb
for setting the buffer size is double the value for delay times
bandwidth (buffer size = 2 * bandwidth * delay). The ping utility is
an easy way to get the round-trip-time (RTT) or twice the delay,
so you can just multiply this with the bandwidth of the link to get
the buffer size.
Helper services such as DNS lookups: If you are using an internal
DNS server, you need to ensure that they are setup for the scale
needed.

File descriptor limits: in most modern systems such as Linux, nearly everything
is a file descriptor. The OS caps these with some default values, and you need to
ensure these are set up to the right levels to avoid process failures. In Linux, you
can use the unlimit command to get and set the limits, as shown here:

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 32767
max locked memory (kbytes, -l) 32max memory size
(kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited

Scaling Applications Chapter 4

[122]

max user processes (-u) 50
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

$ ulimit -u 100

Memory usage
Sometimes, our usage of memory (either from the heap or the stack) is very naive and can
exceed the limits in certain scenarios, leading to Out Of Memory (OOM) crashes. For heap,
the common source of errors in non-garbage collected language runtimes are memory leaks;
that is, memory chunks allocated but no longer reference-able. For stack, memory overflow
can happen if, for example, using recursion naively and the scale of the data drastically
increases.

In languages where actual memory allocation is managed by the runtime, one of the key
system aspects that can cause bottlenecks is the Garbage Collector (GC) pauses. Let's start
with an overview of what typically happens during garbage collection:

There are typically a few GC roots. These are code blocks which start off the
program and could be the main driver program or static objects.
Each of these roots has functionality that allocates memory. The GC runtime
builds a graph of allocation, each graph component rooted at one of those GC
roots.
At periodic intervals, the GC runs for reclamation and does things in two phases:

Phase 1: Runs from each of the root and marks each node as used.1.
Phase 2: For those chunks that are not allocated, the GC reclaims the2.
space.

In most of the initial GC algorithms, phase 1 involves a period where the application is
locked out effectively as a stop-the-world activity. For low-latency applications, this is a
problem, since when the stop-the-world phase runs, the application becomes unresponsive.

Scaling Applications Chapter 4

[123]

There have been many improvements in the GC algorithms and efforts to reduce this
pause. For example, in Go v1.5, a new garbage collector (concurrent, tri-color, mark-sweep
collector) was built based upon an idea first proposed by Dijkstra in 1978 (http:/ ​/​dl.​acm.
org/​citation.​cfm? ​id= ​359655). In the algorithm, every object is either white, grey, or black,
and the heap is modeled as a graph of various roots. At the start of a GC cycle, all objects
are white. Periodically, the GC then chooses a grey object, blackens it, and then scans it for
pointers to other objects. If the scanned object is white, it turns that object grey. This process
(or the GC cycle) continues until there are no more grey objects. At this point, white objects
are known to be unreachable and are reclaimed. The key difference is that the mark phase
does not need to stop the world. It happens concurrently with the application running. This
is achieved by the runtime maintaining the invariant that no black object points to a white
object. This means that there are no dangling pointers. Whenever a pointer on the heap is
modified, the destination object is colored gray.

The result has shown to be a pause reduction of as much as 85 % (Alan Shreve's production
server graphs (https:/ ​/​twitter. ​com/ ​inconshreveable/ ​status/ ​620650786662555648)):

http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
http://dl.acm.org/citation.cfm?id=359655
https://twitter.com/inconshreveable/status/620650786662555648
https://twitter.com/inconshreveable/status/620650786662555648
https://twitter.com/inconshreveable/status/620650786662555648
https://twitter.com/inconshreveable/status/620650786662555648
https://twitter.com/inconshreveable/status/620650786662555648
https://twitter.com/inconshreveable/status/620650786662555648
https://twitter.com/inconshreveable/status/620650786662555648
https://twitter.com/inconshreveable/status/620650786662555648
https://twitter.com/inconshreveable/status/620650786662555648
https://twitter.com/inconshreveable/status/620650786662555648
https://twitter.com/inconshreveable/status/620650786662555648
https://twitter.com/inconshreveable/status/620650786662555648
https://twitter.com/inconshreveable/status/620650786662555648

Scaling Applications Chapter 4

[124]

Losing state
Many websites want to give a personalized stateful experience to users. For example, they
will keep users authenticated via cookies (for a limited duration), and also manage their
preferences there. But, sometimes, this state tends to creep into the backend services. The
system remembers what happened last in objects called sessions. These are server-side blobs
of information that want to persist throughout the user's interaction with the application.
The session serves as a context for further requests. With increasing requirements, a lot of
state tends to be stuffed into session objects, and low-latency access to this becomes
mandatory.

A common pattern for this is to keep the session state locally on servers and have the load
balancer route all requests of an user to a specific server. The astute reader will notice an
implication of this construct—all requests for a specific user needs to be sent to the same
server so that the requests utilize the session. This can lead to hotspots, where specific users
who are assigned to a server start having much more activity compared to others. This is
shown here:

Another issue with this design is fault-tolerance: If Server1 crashes in the deployment
above, userA and userB will lose the saved state, and can even get logged out! This is
clearly not ideal.

Scaling Applications Chapter 4

[125]

The first option to solve this that comes to mind is Can we move the session storage to a central
place? Take a look at this diagram:

However, as the red color shows, this makes the common session store as the bottleneck.
While this can be alleviated via replication of the store, it is still not a bottleneck-free design.

Scaling Applications Chapter 4

[126]

One solution that is bottleneck-free is to have all state relegated to the clients. This makes
the servers all stateless:

In this design, the client session is stored on the client. The server is stateless, and this
means any server can service any client at any time; there is no session affinity or stickiness.
The session (state) information is passed to the server as needed.

For people familiar with the REST (Representational State Transfer) paradigm, this is
where the State Transfer, or ST, comes from. The state is transferred from the clients to the
servers on the API request. We shall cover REST API in Chapter 7, Building APIs.

Essentially, we are delegating the session management to the client and effectively
amortizing the costs. This also means the system can, at one level, auto-scale with new
clients, since each client brings its own session management to the table.

As with most things, this design is not free:

Clients need to retain state, so the complexity (processing and storage
requirements) for them increases.
The state needs to be sent to the servers every time; this increases the amount of
traffic, and in the case of mobile apps, might mean increased traffic for your
customers.

Scaling Applications Chapter 4

[127]

Multiple clients (mobile app and web for example) cannot share state.

Note that this does not preclude the mixing and matching of other design
patterns. For example, critical information for business objects such as the
shopping cart can still be retained on the server side, while frequently
changing/application state can be kept on the client.

Scaling systems
It's now time to take a slightly higher-level view of scalability. Once we have written code
and deployed it, how can we scale it?

The book The Art of Scalability (http:/ ​/ ​theartofscalability. ​com/ ​), describes a really
useful, three-dimensional scalability model in the form of a scale cube:

Each of the axes represents a specific way in which an application can be augmented to
enable scalability in the face of increased load/traffic. They are described in the next
sections.

http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/
http://theartofscalability.com/

Scaling Applications Chapter 4

[128]

X-axis scaling
Scaling along the x-axis means running multiple copies (instances) of the application
behind a load balancer. If there are n instances, then each handles 1/n of the load. This is the
simplest way of increasing scalability, by throwing hardware at the problem.

However, there are drawbacks/limitations:

The application and the distribution has to be able to scale well with the
increased load. For example, if the requests take a disproportionate amount of
work, then such a strategy will not work, and resources will be used inefficiently.

If the instances need to communicate with each other, or share the same data,
then this becomes a bottleneck. You will find everyone blocked of the same set of
resources, and things are not able to happen in parallel.
Lastly, and most importantly, this does not solve the problems of increasing
complexity in the software architecture, which is probably the root of scalability
problems.

Thus, scaling along the x-axis has to be done in tandem with scaling along other axes, as
well as code refactoring, to be effective:

Scaling Applications Chapter 4

[129]

Y-axis scaling
The objective of scaling along the y-axis is splitting the application into multiple, different
services. Each service is responsible for one or more closely related functions. This relates to
our microservices discussion, and is essentially a perfect deployment strategy for a service-
oriented architecture. The benefit of this type of architecture is that hardware can be
efficiently used for only those areas of the application that need it. For example, on a travel
website, typically search would have a much higher traffic than booking (more people search
more times, compared to booking). This means that we can dedicate more machines to
search versus booking. We can also choose the right set of hardware for each microservice:

Scaling Applications Chapter 4

[130]

One thing to think about with this architecture is how to enable aggregated functionality.
For example, on the typical Product Details pages of the travel website, the data may be
served from various services such as these:

Product catalog: Mostly static information about the product such as hotel name,
address
Pricing service: Product price
Availability service: Product inventory/availability
Reviews and ratings: Customer reviews, photos, and so on
Wallet: Shows details about the customers' rewards points that are applicable

When a client needs to compose behavior from such varied services, does it need to make n
calls? There are few things to consider here:

The granularity of APIs provided by microservices is mostly different than what
a client needs. And this granularity may change over time as the number of
services (partitioning) changes. This refactoring should be hidden from clients.
Different clients need different data. For example, the browser version of the
Hotel Details page will have a different layout, and thus information needs, as
compared to the mobile version.
Network performance might be variable. A native mobile client uses a network
that has very difference performance characteristics than a LAN used by a
server-side web application. This difference manifests into different round-trip-
times and variable latencies for the client. Based on the link, the API
communication may be tuned (batched).

The solution to these issues is to implement an API gateway: an endpoint that clients calls
which in turn handles the orchestration and composition of communication between
services to get the clients what they need. Nginx is a popular high-performance webserver,
and besides a host of configuration options, even has Lua scripting ability. All this enables a
wide variety of use cases as a API gateway.

Scaling Applications Chapter 4

[131]

Another great example of an API gateway is the Netflix API gateway (http:/ ​/​techblog.
netflix.​com/​2013/ ​02/ ​rxjava- ​netflix- ​api. ​html). The Netflix streaming service is used
by hundreds of different kinds of devices, each with different requirements and
characteristics. Initially, Netflix attempted to provide a single API for their streaming
service. However, the company discovered that this does not scale because of the diversity
of requests and the issues we have discussed. So, it pivoted to an API gateway that
provides an API tailored for each device by running device‑specific adapter code. This code
does a composition over six-to-seven backend services on average. The Netflix API gateway
handles billions of requests per day. For more details visit, https:/ ​/​medium. ​com/​netflix-
techblog/​embracing- ​the- ​differences- ​inside- ​the-​netflix- ​api- ​redesign-
15fd8b3dc49d:

http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d

Scaling Applications Chapter 4

[132]

Another interesting variant of this pattern is called Backend-For-Frontend. Many times, the
device specifics that we saw previously quickly gain complexity, and it becomes difficult to
engineer this in constrained environments such as Nginx (with Lua scripting). The solution
is to have a specific backend service to serve as the API gateway for each type to client. The
solution is described here:

Scaling Applications Chapter 4

[133]

Z-axis scaling
In the z-axis scaling mode, each instance runs the same code, but with a different set of
data. That is, each server is responsible for only a subset of the data. The orchestrator
described previously now becomes more intelligent and has to route requests to the specific
instance having the data in order for the request to complete. One commonly used routing
parameter is the primary key of the attribute for which the request is being made: for
example, to get bookings for a specific user, we can route the requests based on the user ID.
We can route not just on specific IDs, but also on segments; for example, the travel website
can provide premium customers with a better SLA than the rest by outing the requests to a
specific pool of high-capacity servers.

Z-axis scaling mandates that the data (and hence the database) be split across the various
set of instances. This is called sharding. Sharding is typically done on the primary key of
the data and divides the whole data set into multiple partitions. The partitioning logic can
be configurable: it can be a random distribution or something more business-specific like
the premium-versus-rest distribution that we mentioned previously.

It should be noted that this type of scaling is usually done in tandem with x-axis scaling.
Each shard usually runs multiple instances of the code and the connected database has a set
of replicas to serve the requests:

Scaling Applications Chapter 4

[134]

Z-axis scaling has a number of benefits:

The irregular pattern of request workload is solved. We can use partitioning to
distribute high-cost entities across the partitions.
There is improved hardware (CPU/cache) utilization and reduction in cross-
service I/O.
There is improved fault detection and isolation. It is very apparent which part of
the system is done, and it is easier to provide tolerance for the same.

Z-axis scaling has some drawbacks:

Increased application complexity.

We need to get the partitioning scheme right at the start. If the traffic pattern
changes, our distribution will no longer be efficient. Handling such scenarios
requires complicated engineering.

Scaling deployments
The place where your application is deployed and the deployment topology also plays a
significant impact on the scalability of the system. For example, if you have deployed code
on physical systems in a datacenter, then scalability is limited to how often can you procure
hardware. The implications are as follows:

The deployment is not elastic: you cannot scale up and scale down easily within
minutes.
You cannot scale cost easily: Hardware comes with specific quantum of capacity
and cost. Also, if you want to scale down, then you cannot get back the cost of
the hardware easily.

In contrast, in a cloud environment such as Amazon Web Service (AWS), you can spin up,
compute, and store resources of fine-grained capacity on demand. You pay literally for the
exact time you are using the resources. In addition, they have auto-scaling capabilities,
which automate the launch and tear-down of resources in response to signals such as
increased traffic.

We shall look at deployment considerations in much more detail in Chapter 11, Planning
for Deployment.

Scaling Applications Chapter 4

[135]

Summary
In this chapter, we looked at the various tenets of building scalability in applications. It
starts from the code (algorithms, data structures, and so on) and goes up to engineering
scalability at a system level.

As our application is not going to run on a single machine, we need to build distributed
systems in Go, which is the topic for our next chapter.

5
Going Distributed

Modern systems are rarely deployed on a single machine. With the availability of high-
speed LAN interconnects, cloud-based pay-per-use environments, and microservices-based
architectures, systems are increasingly composed on independent services, which are
deployed on multiple computers. They work together to give a single coherent experience
to the users.

Distributed architectures have two key ingredients:

Components: Modular units with well-defined interfaces (such as services and
databases)
Interconnects: The communication links between the components (sometimes
with the additional responsibility of mediation/coordination between
components)

Going Distributed Chapter 5

[137]

In the initial days of non-distributed computation, the components were hosted within a
single process and components were essentially software modules that were
orchestrated/initiated by a driver (Main) program. However, soon, systems began to
outgrow a single machine and components that were hosted on different machines had to
talk to each other. The interconnects started including network links:

This shift meant that programs had to make use of message-passing, instead of local same-
memory-based communication, as a means of communication and synchronization.

Besides fulfilling the main requirements, every distributed system has a few generic goals:

Scalability: It should be easy to scale the resources allocated to the system as per
demand.
Distributed transparency: The system should hide the fact that it is distributed
and make clients transparent to where each service or resources lies.
Consistency: The clients should make the guarantees of the consistency offered
by the system explicit. For example, is it guaranteed that a read after a write
returns the last written value?
Using the right tool for a specific job: The services and interconnect that make
up the distributed system should be extensible. It should be relatively easy to
add a new service to the existing milieu, even though it is on a different
operating system/programming language. Having the freedom of tech-stack
heterogeneity is one key advantage of distributed systems.

Going Distributed Chapter 5

[138]

Security: When computation happens on multiple machines and data flows
through messages, it is important to consider the authentication/authorization
and privacy implications of various choices.
Debuggability: It should be possible to debug and localize issues or problems in
the services that make up the system. We should have the ability to trace user
requests as they are fulfilled by various components in the system.

This chapter discusses what happens when we go from one machine to several. In the
following sections, we will cover the following topics:

Topology: A top level overview of distributed systems
Quirks: Unique characteristics of distributed systems
Consistency: How consistency is achieved when data is distributed
Consensus: How multiple independent systems agree on something
Architecture pattern: Common design patterns in distributed systems

Topology
A distributed system consists of a bunch of services connected over a network. Each of the
services has a specific purpose. Some of the services might be exposed for interactions with
the clients (actors, in the use case parlance). Some services might just be hosting data and
doing transformations for upstream services. The services communicate with each other to
enable macro behavior and fulfil the requirements of the system.

The services interact with one another over the network using either of the following:

Application Programming Interface (API)
Messaging

Irrespective of the channel, the data is exchanged in a standardized format over the
network.

The API paradigm is the most common. As described in Chapter 7, Building APIs, services
communicate with each other over the network. They send requests and receive responses
from specific endpoints. The most popular mechanism for engineering APIs is using the
Hypertext Transfer Protocol (HTTP) and the Representational State Transfer (REST)
standard. Multiple service instances are hosted behind a virtual IP (VIP) address by a load
balancer (LB).

Going Distributed Chapter 5

[139]

There are three downsides of this paradigm:

The communication is blocking.
The caller must know about the collie.
The one-to-many communication paradigm is not efficiently achievable.

The second communication paradigm is messaging. Here, services communicate with each
other asynchronously using messages, generally through brokers. This paradigm is much
more loosely-coupled and scalable, due to the following:

The message producers don't need to know about the consumers.
The consumers don't need to be up when the producers are producing the
message.

However, this mode has its own set of complications: brokers become critical failure points
for the system, and the communication is more difficult to change/extend compared to
HTTP/JSON. Messaging is covered in detail in Chapter 6, Messaging.

A typical distributed system is depicted here:

Going Distributed Chapter 5

[140]

Here's how this works:

There are four services. Service A, Service B, and Service C all serve requests
from clients. These are behind a LB.
Service X handles requests from other services and is responsible for background
tasks (such as sending an email to a customer).
Each service has more than one instance to enable redundancy and scalability.
Each service has its own database. Database sharing is an anti-pattern and
introduces coupling between services.
Some of the database might be a replicated data store—so instead of one
database instance to connect to, there are several.
The services communicate with each other asynchronously using Messaging.
The whole cluster is replicated in a remote datacenter so it enables business
continuity in case of a datacenter-wide outage in the primary datacenter.

In this chapter, we will look at various aspects of building such systems. Let's start off by
listing some not-so-obvious quirks of distributed systems.

Distributed system quirks
Distributed systems are more difficult to engineer and are quite error-prone, as compared
to single program ones. In 1994, Peter Deutsch, who worked at Sun Microsystems, wrote
about common wrong assumptions that developers/architects make, which cause things to
go wrong in distributed systems. In 1997, James Gosling added to this list to create what is
commonly known as the eight fallacies of distributed computing. They are described here.

The network is reliable
Things always go wrong with individual components of the networks—whether it be
power failures or cable cuts. Networks are typically architected at the hardware level using
a set of redundant links and software is responsible for providing an ordered, reliable
message pipe between two systems. This software is typically referred to as the networking
layers (TCP/IP). Even with the layers trying to achieve sanity across unreliable links, often,
applications get exposed to failures and need to handle things appropriately.

This vulnerability is particularly acute for distributed data stores, and we will look at how
to enable consistency in such scenarios in the Consistency section, later. For external calls, in
Chapter 7, Building APIs, we will look at how to insulate application from network outages
using a pattern called Hystrix.

Going Distributed Chapter 5

[141]

The latency is zero
Latency is the time it takes for requests and responses to move from one place to another.
Wrong assumptions about latency/distribution can cause significant performance issues in
a system's otherwise elegant object-oriented (OO) designs. OO principles stress the
separation of concerns, however not having a sense of distribution of the objects can cause
excessive chattiness and fragility in the system. Network latency can also impact things
such as the ability to back up or restore data, thus affecting uptime guarantees. This is
covered in detail in Chapter 7, Building APIs.

The differences in latency are visualized here:

(Original source: Jeff Dean—https://gist.github.com/jboner/2841832)

Taking latency into consideration means minimizing network communication. There are a
few options to solve this:

Co-locate chatty components.
Batching: Include multiple requests in one meta request payload. The server will
then send a meta response—consisting of individual responses for each request in
the batch.
Carry all required data in each request/response: For example, a user profile
object may be carried instead of just a user ID. This reduces the amount of calls to
the profile services which would have otherwise ensued.

Going Distributed Chapter 5

[142]

Once good example of solving for latency is described at http:/ ​/​blogs. ​msdn. ​com/
oldnewthing/​archive/ ​2006/ ​04/ ​07/ ​570801. ​aspx. Listing the contents of a folder in
Windows means not just getting the filenames, but also related metadata. There was no
single call that returned all required information, and these multiple roundtrips meant
degraded performance for users, specially in the case of remote filesystems. The solution
was to batch calls.

Designing for minimizing latency is contradictory to other design goals,
such as location transparency. While having a simpler (read: distribution
unaware) architecture is always good, sometime extra constructs are
needed to help with latency. This tradeoff of complexity versus solving for
latency needs to be carefully considered for each use case.

The bandwidth is infinite
Bandwidth is the capacity of a network to transfer data. Even though network bandwidth
capacity has been improving over the years, the sheer amount of information that needs to
be transferred has also been increasing exponentially. That said, this is the weakest of all
the fallacies that can be assumed (that means it's OK if this assumption was made in many
situations).

Acknowledging that the bandwidth is not infinite has a balancing effect on solving for
latency; that is, not going overboard with a few very large messages. The recommendation
for both latency and bandwidth is to simulate production topology to figure out where one
or the other needs to be optimized.

The network is secure
The only system that is completely secure is one that is not connected to any network! We
need to build security into the architecture from day one. Sensitive information, such as
customer names and addresses, must be encrypted at test. Data also should be encrypted in
transit—which means HTTPS (and not HTTP) communication for APIs and encryption of
messages for message-based communication. Authentication must be enabled for sensitive
resources. These and other security-related details are covered in Chapter 8, Modeling Data.

http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/07/570801.aspx

Going Distributed Chapter 5

[143]

The topology doesn't change
Topology is the definition/schematic of the components and the interconnects. With the
high feature velocity in most modern systems, the topology of application deployment is
rarely static. In fact, one of the reasons people opt for distributed systems and cloud
deployments is the ability to change topology as needed.

What does this mean in terms of code? It means not assuming location (endpoints) for
various services. We need to build in service discovery, so that clients of services can figure
out how to reach a particular service. There are two ways clients can discover service
endpoints:

Client-side discovery: Each service instance registers itself (the connection
endpoint) with a service registry when it starts up. It is removed from the service
registry when the instance terminates. Clients are responsible for consulting the
service registry to get an appropriate instance endpoint and directly talk to this
endpoint. Netflix OSS has frameworks for supporting the client‑side discovery
pattern. Netflix Eureka is a service registry. Netflix Ribbon is an IPC client that
works with Eureka to load balance requests across the available service instances.
Server-side discovery: Clients are totally ignorant of the distribution of the
instances for a service. The client requests go through a router (LB) that is
available at a well-known URI. The LB periodically pings each instance to a
service to determine the set of healthy instances for the service. When a request is
received from a client, the LB uses one of multiple algorithms (such as round
robin, random, or affinity) to route the request to the best possible service
instance.

Server-side discovery is much simpler to code. However, it can lead to extra hops (client |
router | service). Client-side service discovery also allows clients to choose a best possible
instance. Thus the tradeoff is more in terms of easier scalability in server-side discovery
versus more fine-grained control in client-side-discovery. In practice, the server-side
discovery mechanism is more prevalent.

Going Distributed Chapter 5

[144]

There is one administrator
In distributed systems, it is more likely that more than one administration domain will be
involved. This means not just multiple groups within the organization, but also external
companies. There might be conflicts there—for example, you might need to pass on user
IDs to a third-party service for something such as user monitoring. However, this might be
against the policies of the identity/profile service team—who is responsible for maintaining
the customer information. The architect would then need to build glue systems that allow
these multiple administration/policy domains to work together. In the case of user IDs, one
possible solution could be building obfuscation logic for passing IDs to the third-party
service.

The transport cost is zero
Onto fallacy number seven in the fallacy list: the transport cost is zero. There are two ways
to think of cost here:

The costs of setting and running the network infrastructure. While nothing in life
is free, these costs have reduced dramatically, and in cloud-based deployments,
you can actually purchase only what you need, per gigabyte or hour.
The cost of serializing and deserializing data as it moves from memory to
network and back. This is very real and needs to be accounted for in terms of
latency. A optimizations are possible, for example, Google protobufs are faster to
Marshall/Unmarshall compared to JSON. But going down this path of using a
binary protocol might mean that debuggability is hampered and custom tools are
needed to debug exchanges between systems; you can't just stick a service URL
in a browser to what's being returned.

There are various options for serialization; it is important to consider each in the context of
your application. The following table gives a brief comparison of the serialization
performance of various frameworks in Go (https:/ ​/ ​github. ​com/ ​alecthomas/ ​go_
serialization_​benchmarks):

Benchmark Time (ns/op)
BinaryMarshal-8 1,306
BinaryUnmarshal-8 1,497
BsonMarshal-8 1,415
BsonUnmarshal-8 1,996
EasyJsonMarshal-8 1,288

https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks

Going Distributed Chapter 5

[145]

EasyJsonUnmarshal-8 1,330
FlatBuffersMarshal-8 389
FlatBuffersUnmarshal-8 252
GencodeMarshal-8 166
GencodeUnmarshal-8 181
GencodeUnsafeMarshal-8 104
GencodeUnsafeUnmarshal-8 144
GoAvro2BinaryMarshal-8 922
GoAvro2BinaryUnmarshal-8 989
GoAvro2TextMarshal-8 2,797
GoAvro2TextUnmarshal-8 2,665
GoAvroMarshal-8 2,403
GoAvroUnmarshal-8 5,876
GobMarshal-8 1,009
GobUnmarshal-8 1,032
GogoprotobufMarshal-8 152
GogoprotobufUnmarshal-8 221
GoprotobufMarshal-8 506
GoprotobufUnmarshal-8 691
JsonMarshal-8 2,980
JsonUnmarshal-8 3,120
MsgpMarshal-8 178
MsgpUnmarshal-8 338
ProtobufMarshal-8 901
ProtobufUnmarshal-8 692

The network is homogeneous
This fallacy was added to the original seven by James Gosling, the creator of Java, in 1997.
The network is not one smooth pipe, rather it consists of various legs or miles with very
different characteristics. For stringent requirements of performance, the application
architects needs to consider this aspect to get the relevant performance characteristics.

Going Distributed Chapter 5

[146]

Consistency
Consider a system that has multiple processes working against a replicated, distributed
data store. The general organization of a logical data store, physically distributed and
replicated across multiple processes, is shown here:

There are a few characteristics to consider:

Each of the processes might be multiple instances of the same service, or it could
be different applications trying access the data (not recommended!).
Clients can be mobile. For example, in the preceding diagram, sometimes
Client_x speaks to one instance, but that can change.

Considering our knowledge of the distributed system quirks, what kind of guarantees
should the application code in processes expect from the data store? Rather than a single
answer, a range of consistency models are possible, and these are described here.

Going Distributed Chapter 5

[147]

ACID
The ACID acronym stands for:

Atomicity: All operations in a transaction either succeed or all are rolled back.
Consistent: The database integrity constraints are valid on completion of the
transaction.
Isolated: Simultaneously occurring transactions do not interfere with each other.
Contentious concurrent access is moderated by the database so that transactions
appear to run sequentially.
Durable: Irrespective of hardware or software failures, the updates made by the
transaction are permanent.

This is the most stringent of all consistency models. Most developers are familiar with and
rely on the ACID properties of databases. Coding is so much easier when a data store offers
this consistency, but the tradeoff is that such systems usually don't scale well (covered in
Chapter 8, Modeling Data).

Client-centric consistency models
While ACID transactions are reliable and offer an easy programming model, they are not
scalable for large datasets. For example, in the preceding diagram, if there needs to be
ACID semantics, all the different nodes would need to coordinate a distributed transaction,
driven by a Transaction Manager. A typical two-phase distributed transaction from the XA
Resource spec is shown here:

Going Distributed Chapter 5

[148]

XA transactions work with two transaction IDs: a global transaction ID and local
transaction ID (xid) for each XA Resource. In the first phase of the two-phase protocol
(prepare), the Transaction Manager preps each resource participating in the transaction by
calling the prepare (xid) method on that resource. The resource can either respond with an
OK or ABORT vote. After receiving OK votes from each of the resources, the manager decides
to execute a commit (xid) operation (commit phase). If an XA Resource sends ABORT, the
the end (xid) method is called on each resource to rollback. There are multiple edge cases
here—for example, a node might restart after it's responded with OK but before it can
commit.

While many vendors claim to offer fully-resilient distributed transaction support, in my
personal experience, such guarantees always come with some fine print. Such a globally
coordinated locking system is also a scalability bottleneck, and hence best avoided in
distributed systems.

What we need in most use cases is availability of the system and the following guarantees:

Eventually things will be consistent for all clients
From a single client's perspective, things should be consistent—a read after a
write should return the new value

Even here, there are multiple options possible. Let's look at, options in the consistency
spectrum from the client's perspective.

Strong consistency
This is the most rigid of all models. After any update, any subsequent access by any process
will return the updated value.

In this model, any read on a data item, X, returns the value corresponding to the result of
the most recent write of X. This is depicted in the following diagram:

Here, P1 writes a to X, and when P2 reads X later on, it gets a.

This is the most rigid form of consistency. Its implementation requires absolute global time
and implementation of the fact that a write done on any process is simultaneously available
on all processes. Building such guarantees is considered mostly impossible.

Going Distributed Chapter 5

[149]

Weak consistency
This model is at the opposite end of the spectrum. The data store makes no guarantees, and
the client code has to ensure consistency if needed. There are no guarantees that subsequent
accesses will return the written value. The period between the update and the moment
when it is guaranteed that any observer will always see the updated value is called the
inconsistency window.

Eventual consistency
This is a specific form of weak consistency where the storage system guarantees that
eventually all accesses will return the last updated value when writes quiesce. In the
absence of failures occurring, the maximum amount of the inconsistency window can be
computed (looking at things such as network delays and the load).

One example of this type of system is Domain Name System (DNS). Updates to a name are
distributed according to a set pattern, thus not all nodes will have the latest information
during the initial update phase. A few nodes host caches with time-to-live (TTL) and they
will get the latest update after the caches expire.

For eventual consistency, there are a whole slew of models to consider when figuring out
guarantees during the inconsistency window. These are described in the next section.

Sequential consistency
This model is a slightly weaker model than strict consistency. Instead of a write being
available instantaneously to all processes, the order of writes to variables by different
processes has to be seen as the same on all process. The operations of each individual
process should appear in this sequence, as written in the program.

Leslie Lamport mentions that, Sequential Consistency is met if the result of any execution is the
same as if the operations of all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in the order specified by its
program (reference: how to make a multiprocessor computer that correctly executes multiprocess
programs and computers, IEEE Transactions by Leslie Lamport).

The diagram on the left shows a sequentially consistent system (here, all processes see b
written before a). On the right, however, is a system that is not sequentially consistent (P3
sees b as the value of X, while P4 sees the value as a):

Going Distributed Chapter 5

[150]

Causal consistency
This models relaxes the requirement of the sequential consistency model to enable better
concurrency. If process P1 has written a value to x and this value has been read by process
P2, then any subsequent access by P2 will return the updated value. Also any write by P2
process B will supersede the earlier write. So, the behavior in the following diagram is
allowed, since the b and c writes are not causal:

Session consistency
A important form of consistency is Read-Your-Write. Here, it is guaranteed that after a
process updates the value of X to, say, b, all subsequent reads from that process will read b.

An important practical variation of this is session consistency—here, all access happens in
the context of a session. For a valid session, the system guarantees Read-Your-Write
semantics for any process. However, when the session is expired or deleted, there is no
ordering guaranteed.

Monotonic read consistency
Here, the guarantee is that if a process, P1, has seen a particular value for an object, x, then
all future accesses will never return values written before the time x was written last—that
is, each process sees writes for an object in the order of time.

Going Distributed Chapter 5

[151]

Monotonic write consistency
The storage system guarantees that a write operation by a process on a object (x) is
completed before any successive write operation on x—that is, concurrent writes within the
same process are serialized.

Storage system-centric consistency model
This section discusses consistency from the perspective of the storage system. Generally,
the storage system has multiple replicas to allow for resilience (redundancy) and scalability.
As part of accepting a write, the storage systems needs to decide how many of these
replicas have to be updated before the write can be acknowledged to the client.

Let the terms be as follows:

N: The number of nodes in the storage system
W: The number of replicas that are updated before the write is acknowledged to
the client
R: The number of replicas that are contacted for a read (for a quorum, see the
following)

If W + R > N, then it will never happen that processes see inconsistent data, thereby
guaranteeing strong consistency. The problem with this configuration is that the whole
write operation can fail if some nodes fail, thereby impacting the availability of the system
(see the CAP Theorem section).

For systems needing fault-tolerance to a single machine failure, N is often an odd number
greater than or equal to three. Here, both W and R can be two to give good consistency.

If the system needs to optimize for reads, then all reads should be served from local nodes.
To do this, the writes should update all the replicas. Here, W = N and R - 1.

Weak or eventual consistency arises when W + R < = N.

Whether the storage system can support Read-Your-Writes, Session and Monotonic
consistency depends on how sticky the client it. If each process contacts the same storage
node each time (unless there is failure), then such models are easier to satisfy. But this
makes load balancing and fault-tolerance difficult.

All these choices are generally available as tuneables in the storage system. You need to
analyze the use cases carefully to fine-tune the parameters. We will cover a few practical
examples of such systems in Chapter 8, Modeling Data.

Going Distributed Chapter 5

[152]

CAP theorem
As seen from the preceding discussion, consistency in a distributed system is a complicated
subject. However, there is a theorem that cleanly summarizes the most important impacts,
and it is called the CAP theorem. It was proposed by Eric Brewer in 1998, and states that it
is impossible for a distributed computer system to simultaneously provide all three of the
following guarantees:

Consistency (C): By consistency, we mean strict consistency. A read is
guaranteed to return the most recent write, from any client.
Availability (A): The response is able to handle a request at any given point in
time, and provide a legitimate response.
Partition-tolerance (P): The system remains operational, despite the loss of
network connectivity or message loss between nodes.

According to the CAP theorem, only any two of the three are possible. In the face of
Partition-tolerance, the system has to choose between either being available (such a system
then become—AP) or Consistent (CP):

The core choice of the CAP theorem takes space when one of the data nodes want to
communicate to others (maybe for replication) and there is a timeout. Here, the code must
decide between two actions:

Terminate the operation and declare the system as unavailable to the client
Proceed with the operation locally and other reachable node, and thus
compromise consistency

We can always retry communications, but the decision needs to be made at some point.

Going Distributed Chapter 5

[153]

Retrying indefinitely is effectively the first choice we mentioned—choosing Consistency
over Availability.

Generally, most modern systems, such as Cassandra, leave the CP or AP choice as
tuneables for the user. However, understanding the tradeoff and making the application
work with a soft state (the eventually consistent model) can lead to massive increase in the
scalability of the application.

Consensus
Continuing with the sample system we looked at in the Consistency section, let's look at
how these independent instances can reach an agreement. Agreements can take various
forms, for example, if an email to a customer needs to be sent by a single service instance,
then all the instances need to agree on which instance serves which customer.

Broadly, consensus is the process by which all nodes of a distributed system agree on some
specific value for a variable. This seemingly simple problem finds large applicability in the
field of distributed systems. Here are some examples:

Leader elections: In a cluster of nodes, choosing one who will handle the
interactions
Distributed lock manager: Handling mutual exclusion between multiple
machines
Distributed transactions: Consistent transactions across a set of machines

For the purpose of this discussion, let's assume that there are N processes trying to reach a
consensus on a value. The expectations are:

Agreement: All non-faulty processes agree on the same value.
Validity: The value chosen has to be one that was proposed. This rules out
trivial/theoretical solutions.
Liveliness: The consensus process should terminate in an bounded period of
time.

In a theoretical worst-case scenario, where we cannot make assumptions of the time
required for processes to finish their work for agreement or the speed of the network, we
simply cannot guarantee consensus. This was proved by Fischer, Lynch, and Patterson in
their paper (FLP[85]).

Going Distributed Chapter 5

[154]

The two generals problem
This problem in an example of a distributed system where the processes are reliable, but
the network is not. The problem is as follows:

Two divisions of an army are headed by generals A1 and A2. They both want to attack
another army led by general C. A1 and A2 can win against C, but only if they both attack
together. A1 and A2 are physically separated and can communicate using a
messenger—however this channel is unreliable! The messenger can be caught and killed,
and so the message may not have made it to the other general! Note not just the message,
but the acknowledgement of the message is also needed for generals A1 and A2 to be fully
certain:

(Image: Wikipedia)

This problem cannot be reliably solved. Of course it has a solution: one message and an
acknowledgement is enough for the armies to succeed. But there is no way to guarantee
that scenario over an unreliable network.

The following sections describe ways in which processes (a substitute for the generals, here)
can work on getting consensus over unreliable networks.

This problem can be further complicated if we assume that one of the
generals can behave in an unethical manner. This is called the Byzantine
Army problem. For more on this, read Leslie Lamport's paper: http:/ ​/
research. ​microsoft. ​com/ ​en- ​us/​um/ ​people/ ​lamport/ ​pubs/ ​byz. ​pdf.

Consensus based on time – causality
In this model, there is no explicit blocking. Whenever a process (Px) receives a value from
another process (P1), and if that value was arrived at a later point in time, then Px
overwrites its own copy of the value with what P1 said it was.

http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf

Going Distributed Chapter 5

[155]

Generally, it is not easy to have a common clock source for all processes. The alternatives
usually used are vector clocks (designed by Leslie Lamport). Essentially, a vector clock is a
vector or an array of counters, one for each Process. Every time a Process sends or receives
a message, this counter is incremented. When a Process shares information (the value), it
also shares the vector clock it has. The receiving Process updates each element in its own
vector by the maximum of the values for each element in the received vector and its own
vector.

The point of this is that if every element in the received vector is more (or equal) to the
vector in the receiving process, then the receiving process can assume that it has received
an updated value, after a state that it's currently in. To put in another way: the process that
sent the value had seen the same point in history as the receiving process and now knows a
later value. Thus, the receiving process can trust the new value.

When a vector clock, Va, has every counter with a number greater than another vector
clock, Vb, Va is said to be a descendant of Vb.

If, on the other hand, this situation does not hold, then the sender process did not see
everything that the receiving process did and consensus is not possible through Causality.
Some other mechanism must be employed.

To illustrate this, let's look at a sample consensus problem:

Alice, Bob, Charlie, and David are planning to go to a movie together, but need to decide on
a day. However, they live in different places and need to call each other to confirm (and a
group call is not possible!). The sequence of events is as follows:

Alice meets Bob and they both decide on Wednesday.1.
David and Charlie decide on Monday.2.
David and Bob get talking and decide to stick with Wednesday.3.
Bob calls Charlie, but Charlie says he's already spoken to David and decided on4.
Monday!
Dave's phone is switched off and neither Bob nor Charlie can figure out what day5.
Dave has in mind.

The solution here would be simple if we had a sense of time. In this case, Bob and Charlie
would know Dave's latest answer and reach consensus.

Going Distributed Chapter 5

[156]

In the vector clock world, the ordering would look something like this (Note VC = vector
clock):

Alice thinks of Wednesday and send a message to Bob (Day = Wednesday, VC =[1.
Alice:1]).
Bob acknowledges and updates his value and vector clock. Thus, the state at Bob2.
is as follows:

Day = Wednesday, VC = [Alice:1, Bob:1]

David calls Charlie and both decide on Monday. Now, the situation for both is as3.
follows:

David Charlie
Day = Monday
VC = [David:1]

Day = Monday
VC = [David:1, Charlie:1,]

Bob calls David and they decide to stick to Wednesday. Now, the situation for4.
both is as follows:

Bob David
Day = Wednesday
VC = [Alice:1, Bob:2, David:2]

Day = Wednesday
VC = [Alice:1, Bob:1, David:2, Charlie:1]

Bob calls Charlie to propose Wednesday. The two conflicting states with Charlie5.
are as follows:

Monday: VC = [David:1, Charlie:1,]
Wednesday: [Alice:1, Bob:2, David:2]

Charlie can see that David promised Wednesday after he said Monday and a consensus is
reached!

The Labix package provides vector clock support in Go: https:/ ​/​labix. ​org/​vclock.

This is a sample hello world example from the website:

package main

import (
 "fmt"
 "labix.org/v1/vclock"
)

func main() {

https://labix.org/vclock
https://labix.org/vclock
https://labix.org/vclock
https://labix.org/vclock
https://labix.org/vclock
https://labix.org/vclock
https://labix.org/vclock
https://labix.org/vclock
https://labix.org/vclock

Going Distributed Chapter 5

[157]

 vc1 := vclock.New()
 vc1.Update("A", 1)

 vc2 := vc1.Copy()
 vc2.Update("B", 0)

 fmt.Println(vc2.Compare(vc1, vclock.Ancestor)) // true
 fmt.Println(vc1.Compare(vc2, vclock.Descendant)) // true

 vc1.Update("C", 5)

 fmt.Println(vc1.Compare(vc2, vclock.Descendant)) // false
 fmt.Println(vc1.Compare(vc2, vclock.Concurrent)) // true

 vc2.Merge(vc1)
 fmt.Println(vc1.Compare(vc2, vclock.Descendant)) // true

 data := vc2.Bytes()
 fmt.Printf("%#v\n", string(data))

 vc3, err := vclock.FromBytes(data)
 if err != nil {
 panic(err)
 }

 fmt.Println(vc3.Compare(vc2, vclock.Equal)) // will print true
}

Multi-phase commit
One way to drive consensus is that a proposing Process sends the proposed value to every
other process and essentially forces it to either accept or reject the proposal. The proposing
process assumes that consensus is reached if it gets acceptance from all of all the processes.

There are two main versions of the distributed commit:

Two-phase commit
Three-phase commit

Going Distributed Chapter 5

[158]

Two-phase commit
As discussed, let's assume that there is one proposing process (P0) and a bunch of other
[P1...PN] processes (let's call them executors) that need to perform the value update. In the
Two-Phase Commit protocol, the proposing process (P0) coordinates the consensus in two
phases:

Prepare phase: P0 sends a message, Prepare Update V = x, to the other
executor processes [P1...PN]. Each executor process either votes PREPARED or
NO, and if PREPARED possibly locally stages the change. A process can say NO if,
for example, there is another concurrent transaction.
Commit phase: Once all responses have been received, P0 sends either a
COMMIT or ABORT message. Each of the executor processes obey this
command and thus complete the transaction.

To enable easy handling of things such as restarts, each Process records its current state in
durable storage before sending a message. For example, once all executors reply with
PREPARED, P0 can record that it's in the Commit phase.

This algorithm is susceptible to failures in the Commit phase:

P0 may crash after the Prepare phase. Here, all the other Executors are blocked
on P0, and until P0 is up and current, the system comes to a halt in terms of
consensus. P0 did know whether the crashed node wanted to go ahead or abort
the transaction.
If an executor process crashes in Phase 2, P0 does not know whether the process
failed before or after committing.

To summarize, the biggest disadvantages of the two-phase commit is the blocking we just
described. If one of the processes dies at a critical stage, things come to a grinding halt.

Going Distributed Chapter 5

[159]

Three-phase commit
A non-blocking commit protocol is one in where the failure of a single process does not
prevent the other processes from deciding whether the transaction is committed or aborted.
One way of enabling this behavior is by splitting the Commit phase into two:

2.a – Pre-commit phase: After receiving PREPARED messages from the executors,
P0 enters a prepare-to-commit phase. P0 sends preCommit messages to all
executors. During this phase, the executors stage the change (maybe get locks),
but don't actually commit.
2.b – Commit phase: If P0 receives YES from all executors during the prepare-to-
commit phase, it then sends COMMIT messages to all executors, thereby finishing
the transaction. If any executors replies with NO or fails to reply during the
prepare-to-commit phase, the transaction is aborted.

This is described in the following diagram:

Courtesy of Wikipedia, here the Coordinator and Cohorts are other names for P0 and the Executors, respectively

Going Distributed Chapter 5

[160]

The pre-commit phase helps the algorithm to recover from the cases of process failure.
Processes can now have timeouts, and if the executors don't hear back from P0, they can
elect a new coordinator that can drive the transaction to completion. The new coordinator
can query the rest of the executors and check the current state of the transaction; if it's in
state 2.b – Commit, then it knows that some failure occurred but everyone intended to
Commit.

On the other hand, if an executor replies to the new coordinator that it did not receive a
Prepare-to-Commit message, then the new coordinator can assume that P0 failed before
going to the the third phase. Since no other executors have made any changes yet, the
transaction can be safely aborted.

This algorithm is not perfect, and is particularly susceptible to network failures.

Paxos
Paxos is a flexible and fault-tolerant consensus protocol that was defined by Leslie Lamport
in his paper The part-time parliament. ACM Trans. on Comp. Syst. 16 (2), 133-169 (1998).

In order to fully describe the algorithm and construct, we must generalize the assumption
we made about the preceding topology. Instead of a single P0 process making the change,
essentially a process (or node, in Paxos parlance) can take up one of three roles:

Proposer: This is the node driving the consensus.
Acceptor: These are nodes that independently accept or reject the proposal.
Learner: Learners are not directly involved in the consensus building process,
they learn of the accepted values from the Acceptor. Generally, Learners and
Acceptors are packaged together in a single component.

The basic steps in Paxos are very similar to the two-phase commit. As in the two-phase
protocol, in the standard Paxos algorithm, proposers send two types of messages to
acceptors: Prepare and Accept. However, for the Prepare phase, in addition to the value
being proposed, they also send a proposal number (n). These proposal numbers must be
positive, monotonically increasing numbers and unique across all the processes. One way
to achieve this is to construct the proposal number from two integers—one identifying the
process itself and the other being a per-process counter. Whenever an Acceptor gets
conflicting proposals, it chooses the one with the higher proposal number. An acceptor has
to remember the highest numbered proposal that it has ever accepted and the number of
the highest-numbered prepare request to which it has responded.

Going Distributed Chapter 5

[161]

The various stages are described here:

Phase 1:
Prepare: The Proposed constructs a Prepare message with the
value (v) and the proposal number, N (which is greater than any
previous number used by that process). This message is then sent
to a Quorum of Acceptors.
Promise: When an Acceptor gets the Prepare message, it checks
that the proposal's number (N) is higher than any previous
proposal number that has been accepted. If so, it logs the latest
accepted value and the sequence number, N. Any Prepare
messages with proposal numbers less than N are ignored (even
though response is not necessary, sending a NACK will help the
algorithm to converge faster). If the Acceptor accepted a proposal
at some point in the past, it must include the previous proposal
number and previous value in its response to the Proposer.

An acceptor can be in a state where it has accepted multiple proposals.

Phase 2
Accept Request: Once the Proposer receives response messages
from the majority of the nodes, it moves the algorithm to the
Acceptance phase. The proposer essentially wants the acceptors to
commit to what they accepted. Here, there are three cases:

 If a majority of the Acceptors reply with a NACK
message or fail to reply, the Proposer abandons the
proposal and will go back to the initial state/phase.
If none of the Acceptors have accepted a proposal up
to this point, the Proposer may choose the original
value, v, with proposal number, N.
If any Acceptors had previously accepted any
proposal, the value and sequence numbers will be
available at the Proposer. Here, if w is the value of
the accepted values with the higher sequence
number (say, w), Paxos forces the Proposer to drive
the acceptance of w (not v). This prevents the new
Proposer who died and came back up to not diverge
the system from consensus.

Going Distributed Chapter 5

[162]

The Proposer sends an Accept message with the chosen value to all the
Acceptors:

Acceptance: When an Acceptor receives the Accept message, it
checks for the following conditions:

The value is one from one of the previously accepted
proposals.
The sequence number in the message is the highest
proposal number the Acceptor has agreed on.
If both conditions are met, the Acceptor sends an
Accept message back to Proposer. Otherwise, a
Reject message is sent.

Paxos is more failure-tolerant than the multi-commit algorithm because of the following:

Proposer failure-tolerance: If a Proposer fails in-between, another node can take
up the role and issue its own proposal.
If there are dueling Proposers, especially after an earlier Proposer recovery, then
due to ordering imposed by the sequence number's only a previously accepted
value can be chosen.
Network partitioning does not affect Paxos as it does to the three-phase commit
protocol, because just a majority of acceptors is needed. If a majority is there,
consensus is reached, even if the other nodes are not reachable and it's not there,
the round is failed.

One potential issue with Paxos is that it is possible for two dueling proposers to keep
issuing proposals with increasing numbers. Acceptors might ignore messages with lower
proposal numbers, which might cause Proposers to continuously try with higher and
higher proposal numbers. To overcome this and ensure that progress is made, a
distinguished proposer is generally selected among the Proposers. This Leader sequences
the proposals and avoids this situation. Leader-election is covered in a later section.

Paxos Go implementations can be found at https:/ ​/​github. ​com/​go- ​distributed/
epaxos and https:/ ​/​github. ​com/ ​kkdai/ ​paxos.

https://github.com/go-distributed/epaxos
https://github.com/go-distributed/epaxos
https://github.com/go-distributed/epaxos
https://github.com/go-distributed/epaxos
https://github.com/go-distributed/epaxos
https://github.com/go-distributed/epaxos
https://github.com/go-distributed/epaxos
https://github.com/go-distributed/epaxos
https://github.com/go-distributed/epaxos
https://github.com/go-distributed/epaxos
https://github.com/go-distributed/epaxos
https://github.com/go-distributed/epaxos
https://github.com/kkdai/paxos
https://github.com/kkdai/paxos
https://github.com/kkdai/paxos
https://github.com/kkdai/paxos
https://github.com/kkdai/paxos
https://github.com/kkdai/paxos
https://github.com/kkdai/paxos
https://github.com/kkdai/paxos
https://github.com/kkdai/paxos
https://github.com/kkdai/paxos
https://github.com/kkdai/paxos

Going Distributed Chapter 5

[163]

Raft
Raft is a consensus algorithm, similar to Paxos, but designed to have fewer states and a
much simpler algorithm.

At any given time, each Raft instance is in one of three states: leader, follower, or candidate.
Every instance starts out as a follower. In this state, the instance is passive and is only
supposed to respond to messages: replicate state from a Leader based on log-entry
messages and answer election messages from candidates. If no messages are received for
some time, the instances promote themselves to a candidate state, to kickstart an election
with the objective to becoming the Leader themselves. In the candidate state, the instances
request votes from other instances—their peers. If it receives a majority (quorum) of votes,
it is promoted to a leader. Elections happen over a term, which is a logical unit of time.
Leader-election is described in a later section.

When an instance gets promoted to Leader, it is supposed to do three things:

Handle writes, that is, state-change requests from clients
Replicate the state change to all the followers
Handle reads in case stale reads are not allowed

In Raft, handling writes is essentially an append to a log. The leader does the append in
durable storage and then initiates replication on the followers. The Log is a key component
of the Raft architecture. The problem of consensus is essentially boiled down to a replicated
log. The system is consistent if all instances have the same log entries in the same order.

A write is considered committed if the replication happens successfully for a quorum
(majority) of instances. For a cluster of n instances, the quorum consists of (n/2 + 1) nodes. It
is a design choice to block the write for the client, until it's committed.

Once the log entry is committed, it can be applied to a finite state machine on the instances.
The finite state machine hosts application-specific code, which handles the change. This
code should be deterministic—since all the nodes work on the same data in the same order,
the output should be the same.

Compared to Paxos, Raft is simpler and https:/ ​/ ​ramcloud. ​stanford. ​edu/ ​raft. ​pdf offers
a lot of implementation details. Hence, it's gaining popularity over Paxos. The Hashicorps
implementation in Go is very comprehensive, you can refer to it at https:/ ​/​github. ​com/
hashicorp/​raft.

https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft

Going Distributed Chapter 5

[164]

Leader-election
In a cluster of multiple instances, all of which are capable of doing the same job, often it is
important for one instance to assume the role of Leader and coordinate actions for the rest
of the instances. For example, for a set of instances representing a replicated data store, the
Leader always gets the writes from clients and ensures that the write is replicated on the
rest of the instances. This avoids handling issues, such as conflicting concurrent writes and
resource contention/deadlock. Having a Leader coordinate actions is a common pattern of
engineering consistency and consensus:

There are several well-researched strategies for electing a leader among a set of
instances/nodes, including the following:

ID-based selection: Each instance is given a unique ID. Whenever an election
occurs, the instances exchange IDs and the one with the lowest (or highest) ID.
There are both O(n2) as well as O(nlgn) algorithms for electing a leader in a ring-
based topology of instances, as depicted by the preceding diagram. The Bully
Algorithm is a well-known leader-election algorithm and will be described later.
Mutex race: The instances race with each other to atomically lock a shared
mutex/lock. The instance that gets the lock becomes the leader. This approach has
issues where the Leader dies while holding onto the lock.

Generally, there is a keepalive mechanism between the Leader and the instances to ensure
that in case of Leader failure, a new election takes place.

Going Distributed Chapter 5

[165]

Most distributed systems divide time into units called epochs or rounds. These need not be
actual units of time; a simple election-counter will do. When exchanging messages, this
number is carried in the payload, which allows a node to not vote on two different leaders
for the same election:

Distributed architectures
This section illustrates different patterns in building distributed architectures. These have
been distilled considering the quirks described previously and arising out of the lessons
learned over the years. Note that these are not mutually exclusive—rather, they can be
thought of as templates for building various functionalities.

Object-based systems
The simplest (and earliest) distributed systems were composed of objects interacting with
each other using Remote Procedure Calls (RPCs) or Remote Method Invocations (RMIs):

Going Distributed Chapter 5

[166]

The architecture consisted of three layers on each machine:

The stub/skeleton layer: These were stubs or proxies for clients and skeletons for
servers. A stub is a client-held reference to a remote object and it implements the
exact interface of the remote object. The stub forwards requests to the actual
object on the server and the remote reference layer.
The remote reference layer: Responsible for carrying out the semantics of the
invocation. It delegates communication specifics to the transport layer.
The transport layer: Responsible for connection management and remote object-
tracking.

There were two main ecosystems for this type or architecture:

Common Object Request Broker Architecture (CORBA): Defined by a group
called Object Management Group (OMG), which was the RPC framework in the
Java world
Distributed Component Object Model (DCOM): Sponsored by Microsoft

In Go, stdlib has an rpc package that allows us to export any object method through
remote procedure calls.

For example, imagine you have the following Multiply service:

type Args struct {
 A, B int
}

type MuliplyService struct{}

func (t *Arith) Do(args *Args, reply *int) error {
 *reply = args.A * args.B
 return nil
}

Going Distributed Chapter 5

[167]

Then, you can enable it for remote invocation using the rpc package, like so:

func main() {
 service := new(MuliplyService)
 rpc.Register(MuliplyService)
 rpc.HandleHTTP()
 l, err := net.Listen("tcp", ":1234")
 if err != nil {
 log.Fatal("listen error:", err)
 }

 go http.Serve(l, nil)
}

The clients who want to make RPC calls can connect to this server and issue requests like
so:

client, err := rpc.DialHTTP(
 "tcp",
 serverAddress + ":1234")
if err != nil {
 log.Fatal("dialing:", err)
}

// synchronous rpc
args := &server.Args{3,4}
var reply int
client.Call("Multiply.Do", args, &reply)
fmt.Printf(" %d*%d=%d", args.A, args.B, reply)

This style of architecture has lost popularity in recent years due to the following reasons:

It tries to add a wrapper for remote objects and fakes a local reference to a remote
object. But as we saw from the eight fallacies, remote behavior is never the same
as local, and the architecture does not leave much scope for easily solving this
impedance mismatch.
The caller and collie both need to be up and running at the time of
communication. Often, this is not a requirement of the application build.
Some of the frameworks, such as CORBA, started to become horrendously
complicated since they were designed by committee.

Going Distributed Chapter 5

[168]

Layered architectures
As described in Chapter 1, Building Big with Go, the components are organized into tiers
and communication is restricted only between adjacent layers. The layers are distributed
across machines:

This architectural style can be thought of as an inverted pyramid of reuse, where each layer
aggregates the responsibilities and abstractions of the layer directly beneath it. When the
layers are on different machines, they are called tiers. The most common example of strict
layering is where components in one layer can interact only with components in the same
layer or with components from the layer directly below it.

The layers of an application may reside on the same physical computer (networking stack),
but in distributed systems, of course, these are on different machines. In this case, they are
called an n-tier architecture. For example, a typical web application design consists of the
following:

A Presentation layer: A UI-related functionality.
HTTP server layer: This is a network server responsible for handling
HTTP/HTTPS and features such as reverse caching, persistent connection
handling, transparent SSL/TLS encryption, and load balancing.
A Business Logic layer: Hosts the actual processing to be done as per the
business rules. This is typically handled by code deployed in web containers or
frameworks. In Golang, the containers tend to be much less complicated
compared to other languages, such as Java (JAX-RX or Spring MVC).
A Data Layer: Deals with interactions with durable data (database). This is
generally built using mostly reusable code, configured with application specifics.
In initial versions, this layer is co-located with the Business Logic layer.

Going Distributed Chapter 5

[169]

In which tier to place which layer is an important design decision that the architect has to
grapple with. There is an entire spectrum in terms of responsibility allocation:

We should start by having clients as dumb as possible (left side of the preceding diagram),
since this allows maximum flexibility in terms of reuse (across clients) and extensibility
(generally, server code is easier to change and deploy compared with client code).
However, some more layers may creep into the client to solve for things such as latency
optimization.

Peer-2-peer (P2P) architecture
In the P2P architecture model, all the actors are peers and there is no central coordinator
between them. Each instance takes a part of the workload or shares its resources with other
peers in the network. Generally, in this architecture, the nodes or instances act as both the
servers and clients.

Though traditionally this paradigm implied equally privileged peers, in practice, there can
be variations of this:

Hybrid: Some instances might have a specific functionality.
Structured P2P: Nodes might structure themselves into some sort of overlay and
processing may flow like in the layered architecture pattern described
previously. However, the key difference is that the overlay is temporal and
disposable.

Bit-torrent is an example of a P2P architecture. It is a file-sharing server where each node
streams whatever content it has and for new content, queries a central service (web page) to
figure out which nodes host what chunks of the required content:

Going Distributed Chapter 5

[170]

Source: http://www.bittorrent.org/

An example of a Structured P2P is a distributed hash table (DHT). If you recall, a hash
table is a data structure that allows for the storage of Key-Value objects. Internally, the data
is stored in various buckets. A good hash function is used to map the Key to a hash value
and then perform a modulo operation with a set number of buckets to get to the bucket that
contains the Key. Within a bucket, Keys are stored in a format amenable to searching (such
as Red-Black trees), but each bucket has to work with a much lesser scale of data than the
hash table as a whole.

The DHT allows for designing a hash table that is distributed across machines. A common
need for DHT is when we want to do request-specific routing—here any instance can get a
request, but will consult the DHT to figure out which instance to route the instance to in
order to fulfil it. So, how do we build a DHT?

An initial (naive) solution might be to hash the key and do modulo-n to get a server
address. For example, with three servers, six keys could be distributed as follows:

Key Hash Server at (Hash- mod- 3)
Alice 3333333333 0
Bob 7733228434 1

Chris 3734343434 2
Doug 6666666666 0
Elgar 3000034135 1
Fred 6000799124 3

This scheme is simple and works fine. However, the problem is with redistribution. One of
the main requirements of distributed systems is scalability—the ability to add/remove
servers to scale with load. Here, if we change the number of servers to four, then the hash
values, and thus the server assignments of nearly all the keys, will change! This means a lot
of wasteful data movement and downtime while the cluster reconfigures.

Going Distributed Chapter 5

[171]

One scheme that overcomes this limitation is called consistent hashing, and was first
described by Karger et al. at MIT in an academic paper from 1997. The basic idea behind the
algorithm is to hash both the servers hosting the cache and the keys using the same hash
function.

The reason to do this is to map the cache to an interval, which will contain a number of
object hashes. If the cache is removed, its interval is taken over by a cache with an adjacent
interval. All the other caches remain unchanged.

To understand how consistent hashing works, consider a circle with values on it ranging
from [0-1], that is, any point on the circle has a value between 0 and 1. Next, we pick a
favorite hashing function and also scale it from [0-1]. For example, if the hash function has a
range from [0-X], we use the following:

 ringKey= hash(key) % X

Using this function, we can map machines (instances) and objects (using the keys) on the
[0-1] range.

If we have three machines, we use the modified hash function to map each machine to a
point on the circle:

Now, we can see that the 0-1 range has been split into intervals among the machines!
Suppose we have a key-value pair in the hash table, we need to do two things:

Use the modified hash function to locate the key on the circle
Find the first machine that appears clockwise from that point and store the key
there

Going Distributed Chapter 5

[172]

This is demonstrated in the following diagram: KeyX maps to a point and the machine
closest from the clockwise side in machine 3. Hence KeyX is assigned to machine 3:

From a programming perspective, the find closed machine clockwise is easily achieved by
storing the point values of the machines in a fashion that is easy to find "the next higher
number after y." One way is to use a linked list of machine hash values in sorted order. To
find the assignment, just walk this list (or use binary search) to find the first machine with a
hash value greater than, or equal to, the hash of the key. We can make this a circular list so
that, if no machine with "larger key" is found, the computation wraps around, and the first
server in the list is assigned.

Now, let's say we add one more machine to the cluster:

Going Distributed Chapter 5

[173]

As you can see, most of the assignments are not affected by this change—in contrast to the
naive hashing approach, where nearly every assignment changes. The only reassignment
happens between the machine that was originally in the clockwise direction and the new
one that was provisioned.

To smooth out irregularities in the distribution of the hash function, instead of one point on
the ring, each machine is assigned a set of points (called vnodes). The following diagram
depicts the scheme:

Courtesy of http://efcasado.github.io/riak-core_intro/

There have been recent improvements in consistent hashing to make it load-aware. One
such algorithm is Consistent Hashing with Bounded Loads: https:/ ​/​research.
googleblog.​com/​2017/ ​04/ ​consistent- ​hashing- ​with- ​bounded- ​loads. ​html.

https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html

Going Distributed Chapter 5

[174]

It uses a uniformity parameter (ε) that is greater than 1 and controls how much imbalance
there can be in terms of load (number of keys at each server). For example, if ε = 1.5, no
server will get more than 150% of the average load. The algorithm's key modification for
consistent hashing is to just move on to the next node on the ring if the closed node does not
been the balancing factor. With large ε values, the algorithm becomes equivalent to original
consistent hashing, however as it comes closer to 1, the distribution is more uniform but
involves more rebalancing (fewer characteristics of consistent hashing). You can find the Go
implementation of this paper at https:/ ​/​github. ​com/ ​lafikl/ ​consistent.

Sometimes, in P2P networks, the overlay can become hierarchical, with Superpeers:

These Superpeers are responsible for communication between the inner cluster; they also
peer with other Superpeers to structure interactions. One example of this type of
architecture is content-delivery networks (CDNs). Each edge server here is a peer.

Distributed computations
Sometimes, your application may need to work with data that cannot be managed easily
with classical databases. You might also need to perform a variety of
computations/projections on the data, and maintaining an index for each column is not
feasible/efficient. Google pioneered a new way of solving such computations by
distributing computation—so that the same code can work with different data on a set of
commodity machines. This is called MapReduce.

https://github.com/lafikl/consistent
https://github.com/lafikl/consistent
https://github.com/lafikl/consistent
https://github.com/lafikl/consistent
https://github.com/lafikl/consistent
https://github.com/lafikl/consistent
https://github.com/lafikl/consistent
https://github.com/lafikl/consistent
https://github.com/lafikl/consistent
https://github.com/lafikl/consistent
https://github.com/lafikl/consistent

Going Distributed Chapter 5

[175]

MapReduce defines the overall processing in two parts/functions, both of which take
key/value pairs as input and give them out as output. The functions are as follows:

Map: Takes an input key/value pair and generates a set of intermediate
key/value pairs (which can be empty). For example, the Map function might
create a histogram (mapping of word to its count) within a page of a document.
Reduce: Gets the intermediate keys and a list of all associated values that were
generated in the Map step—that is, all of the intermediate values that have the
same key are aggregated into a list. In the word count example, each Reduce
instance will get the word as the key and a list of count in each page of the
document.

The flow is shown as follows:

Going Distributed Chapter 5

[176]

The Google framework had the Google File System (GFS) and a distributed NoSQL
database, called BigTable, as supporting casts in the MapReduce framework. The
distributed MapReduce computation is implemented using a master/slave architecture—a
master assigns tasks and controls execution on a set of slave machines.

The preceding diagram illustrates the word count example we discussed. The input
document is stored in GFS and split into chunks. The master kicks things off by sending the
code of the map and reduce functions to all the workers. It then spawns Map tasks on the
worker, which generate the intermediate KV pairs in files. Then, the Reduce tasks are
spawned, which take the intermediate files and write the final output.

The Apache foundation has created an open source version of this paradigm, called
Hadoop. It uses the Hadoop Distributed File System (HDFS), instead of GFS and YARN.
Yet Another Resource Negotiator (YARN) is Hadoop's cluster execution scheduler. It
spawns/allocates a number of containers (processes) on the machines in the cluster and
allows one to execute arbitrary commands on them. HBase is the equivalent for BigTable.
There are many higher-level projects on top of Hadoop—for example, Hive can run SQL-
like queries by converting them into MapReduce functions.

Though the MapReduce framework has a simple programming model and has met its
objective of crunching big data easily, it's not applicable if you have real-time response
requirements. There are two reasons for this:

Hadoop was initially designed for batch processing. Things such as scheduling,
code transfers, and process (Mappers/Reducers) setup and teardown mean that
even the smallest computations do not finish in less than seconds.
The HDFS is designed for high throughput data I/O rather than high-
performance. Data blocks in HDFS are very large and the IOPS are about 100 to
200 MB.

One way of optimizing on the disk IO is to store the data in memory. With a cluster of
machines, the memory size of an individual machine is no longer a constraint.

Going Distributed Chapter 5

[177]

In-memory computing does not mean that the entire dataset should be in memory; even
caching frequently used data can significantly improve the overall job execution time.
Apache Spark is built on this model. Its primary abstraction is called Resilient Distributed
Dataset (RDD). This is essentially a batch of events that can be processed together. In a
model similar to Hadoop, there is a main program (driver) that coordinates computation by
sending tasks to executor processes running on multiple worker nodes:

Reference: https://spark.apache.org/docs/latest/cluster-overview.html

Event-driven architecture (EDA)
A monolithic application typically has a single compute code base accessing a single
relational database with Atomicity, Consistency, Isolation, and Durability (ACID)
semantics. As a result, typically, multi-table updates triggered by external requests are easy
to do by issuing the update statements under a transaction (Chapter 8, Modeling Data,
covers these concepts in detail). When this monolith gets decomposed into microservices,
each microservice gets its own database (to avoid coupling). Distributed transactions are
possible, but avoidable due to following reasons:

They can take much longer to converge and are more error-prone than
transactions against a single database
All microservices may not have a relational database—they pick what suits their
use cases best

Going Distributed Chapter 5

[178]

Event-driven architecture (EDA) promotes an architectural paradigm where behavior is
composed by reacting to events. Here, events imply a significant change in state—for
example, when a customer checks in their hotel, the state of that object changes from booked
to consumed. This may trigger multiple reactions in the system, from reconciliation of
payment with the Seller (hotel owner) to sending an email to the customer asking them to
provide feedback.

A schematic of a typical web application that uses EDA is shown here:

Here, the messaging bus serves as the event delivery mechanism. Services listen on Topics
in the message queue, consume new messages, and then reacts to them. Messaging is
covered in detail in Chapter 6, Messaging. The main advantage of this paradigm is that
components are loosely coupled—they don't need to explicitly refer to each other. If the
behavior needs to be extended so that new systems can react to events, the original
plumbing and existing consuming components are unaffected.

Going Distributed Chapter 5

[179]

Another application of this pattern is to prepare Materialized Views. The context here is the
following—user-request fulfilment is enabled by multiple distributed services, however the
system needs to present a view about the overall request. For example, in the hotel booking
flow, the user would like to see their booking as it progresses through various states, such
as INITIAL, PAYMENT_MADE, and BOOKING_CONFIRMED, along with ancillary
details such as the check-in time at the hotel. All this data is not available with one service,
thus to prepare the view, one naive approach might be to query all the services for the data
and compose the data. This is not always optimal since the service usually models data in
the format that it requires it, not this third-party requirement. The alternative is, in advance,
to pre-populate the data for the view in a format best suited to the view. Here is an
example:

This pattern allows the decoupling promised by microservices, while still allowing the
composition of rich cross-cutting views.

There are still things to consider there in terms of consistency—for example, what happens
if the Booking Service updates the database, but before it can send out an event on the
messaging bus it crashes? For the preceding materialized view use case, you can think of
building reconciliation strategies, but the solution won't scale. The trick is to have an Event
table in the local microservice database, which stores the intent to send a message. The
update to the main table and this Event table can be atomic (using transactions). There is
another background worker/thread that takes data from the Event table and actually fulfils
the intent of sending the message:

Going Distributed Chapter 5

[180]

The preceding approach is generally called the event sourcing paradigm. The main
philosophy behind the pattern is to model data operations as a sequence of events in an
append-only log, rather than the absolute values. The current state is composed only when
needed and is easy to do—just take the latest update, for example. Besides allowing for the
efficient computation of varied goals, another key advantage of the event sourcing model is
that, since it persists events rather than domain objects, it mostly avoids the
object‑relational impedance mismatch problem (https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​Object-
relational_​impedance_ ​mismatch).

In case the application cannot be rewritten to source events, an alternative approach is to
mine the database updates as sources of events and then use the updates as triggers to
generate messages.

There is a tradeoff in terms of increased complexity with event sourcing.

The CQRS (Command and Query Responsibility Segregation) pattern needs to be followed.
CQRS mean splitting application logic into two parts: the command side handles data
updates, and the query side handles reads. The command side of the code does not care
about the queries—it just sends the changes of the data as events. On the read side, these
events are curated in the manner best suited for read (materialized views).

The consistency of different/distributed derived results is not guaranteed at all times.
However, eventually, all derived results will be consistent. Thus, the applications should be
able to handle eventual consistency (the BASE consistency model described in the
Consistency subsection).

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

Going Distributed Chapter 5

[181]

The Actor model
A specific variant of EDA is called the Actor model. Here, Actors refer to services that do
the following:

Abstract the level, which indicates a primitive unit of computation
Encapsulate state

These Actors have mailboxes, where messages can be posted. The Actor sequentially takes
each message from the mailbox and performs an action corresponding to the message. Each
Actor has also some internal state that can affect the response to the messages.

Of course, there is more than one Actor and they communicate with each other
asynchronously using messages. The overall system behavior is defined by these
interactions and the processing by the Actors.

There are differences between this and the channel-goroutine semantics:

Each Actor is uniquely identified by its mailbox. So, when someone is sending a
message, it is intended to be processed by a specific Actor. In a contract, a
channel is a generic pipe. More than one goroutine can listen on the pipe.
The channels are in-memory. Mailboxes and generally cross-machine.

The actor model also follows the divide-and-conquer principle, and breaks up tasks until
they are small enough to be handled by one sequential piece of code. The system can be
reasoned about in terms of the messages exchanged. This is similar to OO programming,
with the added powerful benefit that failure paths and actors can be different from the
normal path. That way there is more freedom in handling unhappy paths. Another key
advantage with other messaging systems is that both producers and consumers don't need
to be alive at the same time, nor be operating at the same speed.

Generally, one actor assumes the role of a supervisor for a task and monitors the execution
of the tasks in other actors. In case of risky or long-winded tasks, an Actor may spawn child
Actors to do the sub-tasks and relegate itself to monitor the liveliness of the distributed
computation among the children.

The Channel-Goroutine model is closer to the Communicating Sequential Processes
(CSP), described by Hoare.

Erlang is the a famous example of languages that espouse this architecture style.

Going Distributed Chapter 5

[182]

Stream processing
There are a few extensions to the EDA architecture paradigm for real-time processing. To
evaluate and differentiate between them, let's consider a sample use case:

On our travel website, we want to know the number of visitors in the last 30 minutes and
get a notification when this number crosses a threshold (say, 100,000 visitors). Let's assume
that each visitor action causes an event.

The first (and most straightforward) application of the Distributed Computation model is to
have Hadoop do the counts. However, the job needs to finish and restart within 30 minutes.
With the Map-Reduce paradigm, such real-time requests can lead to brittle systems—they
will break if the requirements change slightly, parallel jobs start executing, or when the size
of the data exponentially grows. You can use Apache Spark to improve performance
through in-memory computation.

However, these approaches don't scale, as their main focus is batching (and throughput
optimization) rather than low-latency computation (which is needed to generate timely
notifications in the preceding use case). Essentially, we want to process data as soon as it
comes in, rather than batching events. This model is called stream processing.

The idea here is to create a graph of operators and then inject events into this processing
graph. Processing can involve things such as event enrichment, group-by, custom
processing, or event combination. Apache Storm is an example of a stream processing
framework. A Storm program is defined in terms of two abstractions: Spouts and Bolts. A
spout is a stream source (say, a Kafka Topic). A Bolt is a processing element (logic written
by the programmer) that works on one or more spouts. A Storm program is essentially a
graph of spouts and bolts, and is called a Topology.

Kafka streams is another framework that is built-in in the latest Kafka version (Kafka is
discussed in detail in Chapter 6, Messaging) and allows per-event computation. It uses the
Kafka partitioning model to partition data for processing it, enabled by an easy-to-use
programming library. This library creates a set of stream tasks and assigns Kafka partitions
to it for processing. Sadly, at the time of writing, this is not available for Go programs yet.

Apache Samza is another framework for stream processing and uses YARN to spawn
processing tasks and Kafka to provide partitioned data for these tasks. Kasper (https:/ ​/
github.​com/​movio/ ​kasper) is a processing library in Go, and is inspired by Apache Samza.
It processes messages in small batches and uses centralized key-value stores, such as Redis,
Cassandra, or Elasticsearch, for maintaining state during processing.

https://github.com/movio/kasper
https://github.com/movio/kasper
https://github.com/movio/kasper
https://github.com/movio/kasper
https://github.com/movio/kasper
https://github.com/movio/kasper
https://github.com/movio/kasper
https://github.com/movio/kasper
https://github.com/movio/kasper
https://github.com/movio/kasper

Going Distributed Chapter 5

[183]

There are also Complex Event Processing (CEP) engines, which allow users to write SQL-
like queries on a stream of events (say Kafka), with a key objective of millisecond response
time. This pattern was developed initially for stock-market-related use cases. Though CEP
and stream processing frameworks started with different requirements, over time, both
technologies have started to share the same feature sets.

The following diagram summarizes the different stream processing techniques:

Summary
This chapter took a deep dive into distributed systems and their quirks. We looked at
various aspects of consistency and consensus.

In the next chapter, we will look at messaging and integration patterns in more detail. We
will deep-dive into a couple of commonly used messaging systems, and look at coding
various patterns in Go using these messaging systems.

6
Messaging

In the previous chapter, we saw that messaging is a key enabler of communication in
scalable systems. It offers reliable asynchronous communication with one-to-one
communication (queuing) as well as one-to-many (Pub/Sub) models.

In this chapter, we will look at messaging in detail, starting with theoretical constructs and
doing deep-dives into two widely-used systems. We will cover the following topics:

Performance characterization
Broker-based messaging
Apache Kafka deep dive
Brokerless messaging
NSQ deep-dive
Integration patterns

Performance characterization
A messaging system can be judged on its performance in four aspects—scalability,
availability, latency, and throughput. These factors are often at odds with each other, and
the architect often needs to figure what one aspect to compromise to improve the others:

Scalability: This is how the system is able to handle increases in load without
noticeable degradation of the other two factors, latency or availability. Here, load
can mean things such as the number of topics, consumers, producers,
messages/sec, or average message size.
Availability: In a distributed system, a variety of problems can occur at a unit
level (servers, disks, network, and so on). The system's availability is a measure
of how resilient the system is to these failures so that it is available to end users.

Messaging Chapter 6

[185]

Latency: This is how much time it takes for a message to get to a consumer from
a producer.
Throughput: This is how many messages can be processed per second by the
messaging system.

A classic tradeoff is between latency and throughput. To optimize throughput, we can
batch messages and process them together. But this has a very negative effect on latency.

Broker-based messaging
A broker is a component that acts as the intermediary in a messaging system. Here, the
clients connect to the broker and not to each other directly. Whenever clients want to send
and receive messages, they need to specify a mailbox/topic/queue on the broker. Producers
connect to the broker and send messages to a specific queue. Consumers connect to the
broker and specify queue name from which they want to read messages. The broker has the
following key responsibilities:

Maintaining the mapping of queues, producers, and consumers reliably: This
includes storing the messages in a durable format.
Handling message production: This includes storing messages written by the
producers.
Handling message consumption: This means ensuring that consumers reliably
get messages and providing constructs to avoid duplicate messages.
Routing and transformation: Here, the message broker may transform or
maintain multiple copies for each message to enable various topology models,
which will be described in the following sections.

The queuing model
In the standard queuing model, there is a first-in, first-out durable buffer between a
producer and a consumer, as shown in the following diagram:

Messaging Chapter 6

[186]

All producers and consumers connect to a Broker during initialization. consumers
additionally express interest in certain queues by registering for consumption against them.
Whenever a Producer sends a message to a Queue, the message is transported to the broker
and stored in durable storage against the Queue. These messages are delivered to one or
more consumers who have registered for the Queue. If more than one consumer is
registered in the queuing model, each message is delivered to only one consumer, thereby
enabling load-balancing semantics for message consumption and processing.

There are two ways in which consumers can get to the messages:

Pull mode: The messaging client in the consumer periodically polls the broker to
check for any new messages.
Push mode: The consumers register an endpoint (say, an HTTPS URL) and
produced messages are sent to the URL using protocols such as HTTPS POST.

The PULL mode is little wasteful, as there might not be messages at every pull. On the other
hand, the PUSH mode requires consumers to have endpoints reachable by the broker, which
is difficult to engineer through network firewalls.

Messaging Chapter 6

[187]

The Pub/Sub model
The major difference between the queuing model and the Pub/Sub model is that, for the
Pub/Sub model, each consumer gets a copy of the message, rather than just one of the
consumers. This can be understood with the following diagram:

As you can see, Consumer 1 and Consumer 2 both get copies of the m1 and m2 messages.

This model is useful when you want a bunch of consumers to work on the same messages,
which is usually the norm in event-driven architecture (EDA), which we saw previously.

One thought that might come to mind is, does this mean that load-balancing can't be done
in a Pub/Sub setup? Won't it interfere with scalability?

Generally, messaging systems also provide load balancing semantics with Topics using
something called virtual topics (a term used specifically by ActiveMQ, but it's a
functionality that's available in most queuing systems). The scheme is shown in the
following diagram:

Messaging Chapter 6

[188]

As you can see, the Topic still does Pub/Sub type message routing, but each consumer
effectively gets a Subscription Queue. Multiple instances of the consumer can get different
messages, thereby enabling scale-out and load-balancing for the consumer. It should be
noted that the Subscription Queue is created automatically as part of consumers
registering for consumption against a Topic; it doesn't need to be created manually.

Delivery semantics
When writing code that takes messages off a queue and performs some work, it is
important to understand the semantics of message-delivery guarantees.

Messaging Chapter 6

[189]

Acknowledgement
Consider this situation: a Consumer gets a message (m1) but before it can act on it, the
message crashes (or restarts). Hence, m1 is not fully consumed, but from the perspective of
the Broker, it's already delivered. This can be better understood with the following
diagram:

To handle such situations, Broker typically has facilities to allow consumers to
acknowledge messages. Once a message is delivered, the Broker temporarily removes it
from the queue and puts it in some other cold storage. The Consumer is supposed to send
an acknowledgement for each message it consumes. When an acknowledgement for a
message is received, it is removed from the cold storage by the Broker. Also, when sending
a message to a Consumer, the Broker starts a timer for the acknowledgement deadline. If
this time expires, the Broker assumes that the Consumer died while processing and moves
the message from cold storage to the queue.

Does this enable reliable consumption? The acknowledgement model enables three types of
reliable message delivery semantics, which we'll look at now.

Messaging Chapter 6

[190]

At-least-once delivery
With the at-least-once delivery guarantee, the Broker ensures that it will deliver every
required message at least once to the Consumer. Most of the time, a message will be
received only once, but sometimes duplicates might arise. This scenario is described in the
following diagram:

To avoid duplicate processing, the Consumer would need to deduplicate messages on its
side. This is typically done by storing the message IDs in a database. When a message is
about to be processed, this database is consulted to ensure that the message was not
processed earlier. On the other hand, if the message-handling is idempotent, we can just
ignore the duplicate processing.

Messaging Chapter 6

[191]

At-most-once delivery
Sometimes it is essential to avoid sending duplicate messages, such as emails—you don't
want to spam your customer. To enable this, the delivery semantics can be at-most-once.
Not having acknowledgement is one way of enabling at-most-once delivery. However,
since most messaging systems have acknowledgement, another way to achieve this is to
acknowledge the message starting to process it, as shown in the following diagram:

Exactly-once delivery
Exactly-once semantics is the most desirable guarantee, but is impossible to guarantee
without some sort of cooperation between the broker and the consumer. If the broker uses
acknowledgements to producers for publishing message, each message must have unique
IDs for the broker to deduplicate retires.

Messaging Chapter 6

[192]

On the consumer side, deduplication can be used to ensure that duplicate messages are not
processed.

Some message systems, such as Kafka, allow atomic consume-from-one-and-publish-to-n
semantics. This is extremely helpful for EDA architectures and we will look at these in the
Apache Kafka deep-dive section.

Resilience
A lot of things can go wrong with the models described in this section:

The broker can fail, which takes away any messages stored on it. To overcome
this eventuality, generally brokers are deployed in a cluster of redundant
instances. Every message is replicated on a set of machines as part of the write
commit. If a message is replicated onto n brokers, that means the system can
tolerate the failure of n-1 instances.
The producer-to-broker communication can fail, which causes messages to be
lost. This is generally solved by acknowledgements (as seen previously).
Duplicate messages being produced can be avoided by having a sequence
number for messages.
The consumer-to-broker message communication can fail, which causes
messages to be lost. Hence, messages should not be deleted from the Broker,
unless there is an explicit acknowledgement from the consumer that the message
has been processed. As we saw in the Acknowledgement section, when we do the
acknowledgement, it can result in at-least-once or at-most-once semantics.
Exactly-once delivery can be enabled by deduplication on the consumer side and
cooperation between the broker and the consumer.

Many applications also need some atomicity guarantees in terms of read from n queues and
write to m queues. Messaging systems such as Kafka provide transaction constructs to enable
this. We shall see this in detail in the Apache Kafka deep-dive section.

AMQP
AMQP stands for Asynchronous Message Queuing Protocol and is an open standard for
messaging systems. It was initially designed for financial systems (trading and banking)
and as such, over indexes on reliability, scalability, and manageability.

Messaging Chapter 6

[193]

The following are some of the constructs defined by the AMQP specification:

It has a wire-level protocol that describes the packets (frames, in AMQP
parlance) exchanged between brokers, producers, and consumers. There are
nine types of frames defined by the spec, which are concerned with things such
as connection setup/teardown and flow control.
It has a self-describing encoding scheme to describe a range of data types. Also
included are annotations that give entities additional meaning (for example, a
string might be annotated to indicate that it's a URL).

In AMQP, messages are published to exchanges. The messages are then routed to different
queues using rules called as bindings. Consumers fetch messages from queues:

The network is considered unreliable and consumers may fail to process messages. Hence,
the AMQP model has the concept of message acknowledgements: when a message is
delivered to a consumer, the consumer sends an acknowledgement to the broker once it has
consumed the message. This will be the trigger for the broker to remove the message from
the queue. Acknowledgements are generally accompanied by timeouts; if a message is not
acknowledged within a timeout, it is redelivered to the consumer.

Messaging Chapter 6

[194]

The routing algorithm depends on the type of Exchange. Various recipes are available to
enable queuing (one-to-one) or Pub/Sub (one-to-n) behavior. If, for some reason, a message
cannot be routed, it is parked in a special queue called a dead-letter queue. RabbitMQ is an
open source project using AMQP constructs.

The RabbitMQ management plugin provides an HTTP API, a browser-based UI, and a CLI
for management and monitoring. It enables the definition of complex routing topologies
with enterprise-grade security. The downside of the AMQP is that it's throughput is not as
great as Kafka, complexity and extra resource utilization to maintain helper data structures
for the routing metadata.

In terms of throughput, RabbitMQ provides a throughput of about 20,000 messages per
second.

Apache Kafka deep dive
Apache Kafka is a streaming-messaging platform that was first built at LinkedIn but is now
 a first-class Apache project. It offers seamless durable distribution of messages over a
cluster of brokers, and the distribution can scale with load. It is increasingly used in place of
traditional message brokers, such as AMQP, because of its higher throughput, simpler
architecture, load-balancing semantics, and integration options.

Concepts
In Kafka, topic is a formal name for queues where messages are published to and
consumed from. Topics in Kafka offer the virtual topic queuing model described
previously, that is, where there are multiple logical subscribers, each will get a copy of the
message, but a logical subscriber can have multiple instances, and each instance of the
subscriber will get a different message.

Messaging Chapter 6

[195]

A topic is modeled as a partitioned log, as shown here:

Source: http://kafka.apache.org/documentation.html#introduction

New messages are appended to a partition of a log. The log partition is an ordered,
immutable list of messages. Each message in a topic partition is identified by an offset
within the list. The partitions serve several purposes:

A log (topic) can scale beyond the size of a single machine (node). Individual
partitions need to fit on a single machine, but the overall topic can be spread
across several machines.
Topic partitions allow parallelism and scalability in consumers.

Kafka only guarantees the order of messages within a topic partition, and not across
different partitions for the same topic. This is a key point to remember when designing
applications.

Whenever a new message is produced, it is durably persisted on a set of broker instances
designated for that topic partition—called In-Sync Replicas (ISRs). Each ISR has one node
that acts as the leader and zero or more nodes that act as followers. The leader handles all
read and write requests and replicates the state on the follower. There is periodic heart-
beating between the leader and the followers, and if a leader is deemed to be failed, an
election is held to elect a new leader. It should be noted that one node can be a leader for
one topic partition while being a follower for other topic partitions. This allows for the load
to be distributed evenly among the nodes of the cluster.

Messaging Chapter 6

[196]

The messages remain on the brokers for a configurable retention time—which has no
bearing on whether they have been consumed. For example, if the retention policy for a
topic is set to one week, then for a week after the message is published, it's available for
consumption. After this, the message is deleted (and the space reclaimed).

Unlike most other messaging systems, Kafka retains minimal information about consumer
consumption. Clients can remember what offsets they have in each topic partition and
attempt to find it randomly into the log.

Kafka also provides a facility of the brokers remembering, to the offsets for consumers—on
explicit indication by them. This design reduces a lot of the complexity on the broker and
allows for efficient support of multiple consumers with different speeds:

(Source: http://kafka.apache.org/documentation.html#introduction)

Consumer A can consume messages at its own speed, irrespective of how fast Consumer B
is going.

Producers publish messages on specific topics. They can provide a partitioner of their
choice—to pick a partition for each message—or they can choose a default (random/round-
robin) partitioner. Generally, most Kafka clients batch messages at the producer side, so a
write is just storing the message in a buffer. These messages are then periodically flushed to
the brokers.

Messaging Chapter 6

[197]

As described earlier in The Pub/Sub model section, the Kafka topic offers a Pub/Sub queuing
model. So, there can be multiple logical consumers and each will get all of the messages.
However, a logical consumer (say, a microservice) will have more than one instance, and
ideally we would like to load-balance consumption and processing of messages across
these consumer instances. Kafka allows this using a construct called consumer groups.
Each time a consumer registers to a topic for messages, it sends a label (string) describing
the logical consumer (say, service). The Kafka brokers treat each instance having the same
group name to belong to the same logical consumer and each instance gets only a subset of
the messages. Hence, messages will be effectively load-balanced over the consumer
instances.

As described earlier, the topic partitions serve as a unit of parallelism for consumption of
the messages. Let's look at how this happens. When a consumer instance registers for
messages from a topic, it has two options:

Manually register for specific partitions of that topic
Have Kafka automatically distribute topic partitions among the consumer
instances

The first option is simple, and there is a lot of control with the application on who processes
what. However, the second option, called the group coordinator feature, is an awesome
tool to enable scalability and resilience in distributed systems. Here, the consumers don't
specify explicit partitions to consume from, rather the broker automatically assigns them to
consumer instances:

(Source: http://kafka.apache.org/documentation.html#introduction)

Messaging Chapter 6

[198]

In the preceding diagram, the topic has four partitions spread over two servers. Consumer
Group A has two instances, and each has two topic partitions assigned to it. On the other
hand, Consumer Group B has four instances, and each is assigned a topic partition. The
broker (group coordinator feature) is responsible for maintaining membership in the
consumer groups through a heart-beating mechanism with the consumer group instances.
As new consumer group instances come up, the topic partitions are reassigned
automatically. If an instance dies, its partitions will be distributed among the remaining
instances.

Publishing messages
Sarama (https://github.com/Shopify/sarama) is the most widely-used Go client library
for Apache Kafka, written purely in Go. We will be using it to demonstrate various Kafka
interactions.

Producing a message for Kafka involves multiple steps, including figuring out what
partition of a topic the message must go to, finding the Leader for that topic partition, and
transporting the message to that broker (leader) instance. In Sarama, the producer is based
on the pipeline-concurrency pattern, where each message is processed by four structs. Each
struct has a goroutine that implements a stage in the message-publish process, and these
stages are connected by channels.

There are two options for the producer, as described in the following sections.

The AsyncProducer interface
As the name suggests, this is a non-blocking API that routes messages to the broker and
provides signals about what happened to the message asynchronously through two output
channels. Messages are ingested through an input channel. The AsyncProducer interface
is documented in the following code:

type AsyncProducer interface {

 // AsyncClose triggers a shutdown of the producer. The shutdown has
completed
 // when both the Errors and Successes channels have been closed. When
calling
 // AsyncClose, you *must* continue to read from those channels in order
to
 // drain the results of any messages in flight.
 AsyncClose()

https://github.com/Shopify/sarama

Messaging Chapter 6

[199]

 // Close shuts down the producer and waits for any buffered messages to
be
 // flushed. You must call this function before a producer object passes
out of
 // scope, as it may otherwise leak memory. You must call this before
calling
 // Close on the underlying client.
 Close() error

 // Input is the input channel for the user to write messages to that
they
 // wish to send.
 Input() chan<- *ProducerMessage

 // Successes is the success output channel back to the user when
Return.Successes is
 // enabled. If Return.Successes is true, you MUST read from this
channel or the
 // Producer will deadlock. It is suggested that you send and read
messages
 // together in a single select statement.
 Successes() <-chan *ProducerMessage

 // Errors is the error output channel back to the user. You MUST read
from this
 // channel or the Producer will deadlock when the channel is full.
Alternatively,
 // you can set Producer.Return.Errors in your config to false, which
prevents
 // errors to be returned.
 Errors() <-chan *ProducerError
}

The Input() method returns a write-only channel that accepts a pointer to a
ProducerMessage struct. This is the main interface and clients write messages to this
channel (encapsulated in the ProducerMessage struct). The client must read from the
Errors() channel after publishing a message.

To reclaim the producer, we can call Close() or AsyncClose() on a producer to avoid
leaks.

A sample usage of AsyncProducer using select on the various channels is given in the
following code:

package main
import (
 "fmt"

Messaging Chapter 6

[200]

 "github.com/Shopify/sarama"
 "log"
 "os"
 "os/signal"
 "strconv"
 "time"
)

// Toy message that we want to send
type Message struct {
 Who string
 TimeAsString string
}

func main() {

 // Create configuration
 config := sarama.NewConfig()
 // The setting below indicates the level of reliability needed
 // Here we are saying we want all brokers in the ISR to ack
 config.Producer.RequiredAcks = sarama.WaitForAll
 // The total number of times to retry sending a message (default 3).
 config.Producer.Retry.Max = 5

 // you don't need to give a list of all the brokers, just few seeds
which will
 // tell the client about other brokers in the cluster
 brokers := []string{"localhost:9092"}
 asyncProducer, err := sarama.NewAsyncProducer(brokers, config)
 if err != nil {
 // Could not connect
 panic(err)
 }

 defer func() {
 if err := asyncProducer.Close(); err != nil {
 log.Fatalln(err)
 }
 }()

 // Trap SIGINT to break from the loop and clean up.
 signals := make(chan os.Signal, 1)
 signal.Notify(signals, os.Interrupt)
 exitProgram := make(chan struct{})

 // Simple while(1) look to send current time.
 var nPublished, nErrors int
 go func() {

Messaging Chapter 6

[201]

 for {
 time.Sleep(5 * time.Second)

 // construct a message
 body := Message{
 Who: "aProcess",
 TimeAsString: strconv.Itoa(int(time.Now().Unix())),
 }

 // marshall it
 payload, _ := json.Marshal(body)

 msg := &sarama.ProducerMessage{
 Topic: "currentTime",
 Key: sarama.StringEncoder("aKey"),
 Value: sarama.ByteEncoder(payload),
 }
 select {
 case producer.Input() <- msg:
 nPublished++
 fmt.Println("Produce message")
 case err := <-producer.Errors():
 nErrors++
 fmt.Println("Failed to produce message:", err)
 case <-signals:
 exitProgram <- struct{}{}
 }

 log.Printf("Published: %d; Errors: %d\n", nPublished,
nErrors)

 }
 }()

 <-exitProgram // wait here till program gets killed

}

You can also use separate goroutines to range over the Errors and Success channels,
instead of using a select comprehension.

The Sync producer
Samara also has a blocking producer interface to wait until the message is reliably
delivered. Its usage is similar to AsyncProducer, but instead of channels, there is a
blocking SendMessage() method to be called.

Messaging Chapter 6

[202]

The following code snippet illustrates the usage:

package main

import (
 "fmt"
 "github.com/Shopify/sarama"
)

func main() {

 // Config
 config := sarama.NewConfig()
 config.Producer.RequiredAcks = sarama.WaitForAll
 config.Producer.Retry.Max = 5
 config.Producer.Return.Errors = true // For sync producer this needs to
be true
 config.Producer.Return.Success = true // For sync producer this needs to
be true

 // Connect to a Kafka broker running locally
 brokers := []string{"localhost:9092"}
 producer, err := sarama.NewSyncProducer(brokers, config)
 if err != nil {
 panic(err)
 }

 // cleanup
 defer func() {
 if err := producer.Close(); err != nil {
 panic(err)
 }
 }()

 msg := &sarama.ProducerMessage{
 Topic: "currentTime",
 Value: sarama.StringEncoder(strconv.Itoa(int(time.Now().Unix()))),
 }

 partition, offset, err := producer.SendMessage(msg)
 if err != nil {
 fmt.Printf("FAILED to publish message: %s\n", err)
 } else {
 fmt.Printf("message sent | partition(%d)/offset(%d)\n", partition,
offset)
 }
}

Messaging Chapter 6

[203]

Consuming messages
Sarama provides a low-level message-consumption API, but there are higher-level libraries
that provide the group coordination based on the load-balancing described in the Apache
Kafka deep-dive section. The library is called Sarama
(https://github.com/bsm/sarama-cluster).

This library requires Kafka v0.9+ and follows the protocol described
at https://cwiki.apache.org/confluence/display/KAFKA/Kafka+0.9+Co
nsumer+Rewrite+Design.

The main interface is a channel on which messages are received.

A sample program is shown here:

package main
import (
 "fmt"
 cluster "github.com/bsm/sarama-cluster"
 "log"
 "os"
 "os/signal"
)

func main() {

 // setup config, enable errors and notifications
 config := cluster.NewConfig()
 config.Consumer.Return.Errors = true
 config.Group.Return.Notifications = true

 // specify Broker co-ordinates and topics of interest
 brokers := []string{"localhost:9092"}
 topics := []string{"topic_a", "topic_b"}

 // connect, and register specifying the consumer group name
 consumer, err := cluster.NewConsumer(brokers, "my-consumer-group",
topics, config)
 if err != nil {
 panic(err)
 }
 defer consumer.Close()

 // process errors
 go func() {
 for err := range consumer.Errors() {

https://github.com/bsm/sarama-cluster
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+0.9+Consumer+Rewrite+Design
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+0.9+Consumer+Rewrite+Design

Messaging Chapter 6

[204]

 log.Printf("Error: %s\n", err.Error())
 }
 }()

 // process notifications
 go func() {
 for ntf := range consumer.Notifications() {
 log.Printf("Rebalanced: %+v\n", ntf)
 }
 }()

 // process messages
 for msg := range consumer.Messages() {
 fmt.Fprintf(os.Stdout, "%s-%d-%d-%s-%s\n",
 msg.Topic,
 msg.Partition,
 msg.Offset,
 msg.Key,
 msg.Value) // <- Actually process message here

 consumer.MarkOffset(msg, "") // Commit offeset for this message

 }
}

Most of the code before the for loop is setup code. The main consumption happens in the
iteration over the channel returned by consumer.Messages(). Within this loop, whenever
a new message is available, it will be delivered encapsulated by the msg object. After
processing, the client can use the consumer.MarkOffset() call to commit the offset to
Kafka—hence declaring that the consumer (group) has processed the message and, does
not want to see it again. Typically, a handler function will be used to process the message
and if the handler is successful, only then commit the message. For long-lived processing,
we can ship the msg object itself to a handler function—and the message may be
acknowledged later downstream. The second parameter to consumer.MarkOffset()
indicates consumer state at the time of commit. This can be used as a checkpoint to restore
consumption from a specific point.

Messaging Chapter 6

[205]

Samara has tuneables to ensure that back-pressure can be applied so that consumers can
process data at the rate they are comfortable with. Some of them are as follows:

Config.Consumer.MaxWaitTime: This defines how long the consumer should
wait before going to the Broker for more messages.
Config.ChannelBufferSize: This defines the size of the buffered channels
(input and output).
Config.Consumer.MaxProcessingTime: This defines the time required for
processing message at a consumer.

Stream processing
Goka (https://github.com/lovoo/goka) is a powerful Go stream-processing library that
uses Apache Kafka. It can be used to build streaming patterns such as the CQRS and
event sourcing architectures that we saw in Chapter 5, Going Distributed.

There are three main building blocks for a stream-processing application in Goka: emitters,
processors, and views.

Emitters generate key-value messages into Kafka. For example, this could be a listener on a
database change log and emit the change log as an event. A processor is a set of callback
functions that consume and perform state transformations of messages. Processors are
clustered in groups. As with the consumer group rebalancing feature of Kafka, Goka
distributes topic partitions among processors in a processor group. Each processor group
maintains state in something called agroup table. This is a partitioned key-value table
stored in Kafka itself, with local caching. Views provide read-only access to the group
tables.

The following diagram depicts the abstraction:

Source: https://github.com/lovoo/goka

https://github.com/lovoo/goka

Messaging Chapter 6

[206]

This is an example of a processor that increments the number of messages seen:

func process(ctx goka.Context, msg interface{}) {
 var nMessages int
 if val := ctx.Value(); val != nil {
 nMessages = val.(int)
 }
 nMessages++
 ctx.SetValue(nMessages)
}

The goka.Context parameter passed is the most powerful construct, enabling the saving
of the Group Table and sending messages to other Processors. More details can be found
at https://github.com/lovoo/goka and you can see more examples
at https://github.com/lovoo/goka/tree/master/examples.

Brokerless messaging
There are several advantages to the broker-based model:

There is clear segregation between connected services. The only address a
producer needs to know is that of the Broker.
Producer and consumer lifetimes don't have to overlap. A Producer can send a
message to a broker, die, and then much later a Consumer can come up and read
the message.

There are, however, some drawbacks:

The Broker can become a bottleneck, where all messages need to squeeze
through. This can affect performance.
There is no network I/O which is absolutely necessary.

https://github.com/lovoo/goka
https://github.com/lovoo/goka/tree/master/examples

Messaging Chapter 6

[207]

For example, in a typical EDA architecture with a broker with four processors, we'll get a
communication pattern such as this:

With a central broker, it cannot get more efficient than this. However, if the processors were
allowed to talk to each other, we could have had much more efficient communication and
lower end-to-end latency:

We can still retain some of the benefits of the brokered architecture (such as the isolation
level) with the efficiency of the peer-to-peer architecture, if we let the Broker just act as a
directory service, rather then a message forwarder.

NSQ is a messaging platform (incidentally written in Go), and it's described in the
following section.

NSQ deep-dive
NSQ is a real-time distributed-messaging platform that encourages decentralized
topologies as described in the Brokerless messaging section.

Messaging Chapter 6

[208]

Concepts
An NSQ system consists of the following components:

The virtual topic construct: Topics are the destination for messages being
produced in NSQ. Each topic has one or more Channels, which are the queues
for each consumer, thereby enabling Pub/Sub behavior. Topics and Channels are
implicitly created on first use.
nsqd: This is the main component; it receives, queues, and delivers messages to
clients. It can run as a daemon or can be embedded inside a Go application. This
can run standalone, but is normally configured in a cluster with nsqlookupd.
These instances host multiple Topics (for all connected clients that produced
messages) and Channels for all the Topics. The relationship between Topics,
Channels, and nsqd is depicted in the following diagram:

(Source: http://nsq.io/overview/design.html)

nsqlookupd: This is the daemon that has the overall cluster picture and manages
the topology. Clients query nsqlookupd instances to discover different nsqd
instances that host messages (are the producers) for a specific topic. Its main job
is to provide a directory service where clients (consumers) can look up the
addresses of nsqd instances that host the Topics they are interested in consuming
from.

Messaging Chapter 6

[209]

Each nsqd instance has a long-lived TCP connection to nsqlookupd over which it pushes its
state (such as health or topics). This is collated and then used by nsqlookupd to give the
right set of nsqd instances to clients wishing to consume a specific topic. nsqd and
nsqlookupd instances operate independently, without peer communication. For
nsqlookupd, high availability is achieved by running multiple independent instances.
Clients sum's poll all of their configured nsqlookupd instances and unit the responses.

Clients connect directly to nsqd instances, as shown here:

(Source: http://nsq.io/overview/design.html)

It should be noted that messages for a Topic might be available at more than one nsqd
instances, and a client will connect to all nsqd instances hosting messages for a Topic.

When a client connects to an nsqd instance, the exchange is as follows:

The Client indicates it is ready to receive messages. Instead of a binary signal, the1.
client sends a value, called RDY state, which indicates how many messages the
client is ready to receive.
nsqd sends a message and temporarily moves the data to another local store (if2.
retransmission is needed).
After consumption of the message, the client in the event of a re-queue client3.
replies with a FIN (finish) packet and this message is then dropped by the
producing nsqd instance's channel. If the client had an error, it can request the
message again using a REQ (re-queue) packet.

Messaging Chapter 6

[210]

nsqd runs a timeout after sending a message and, if there is no response, will4.
automatically re-queue the message:

(Source: http://nsq.io/overview/design.html)

NSQ can store messages in memory and flush them to disk based on a configurable
watermark. If durability for all messages is required, this configuration can be set so that
messages are always written to disk. To achieve high availability, clients can write to more
than one nsqd instance (this assumes that consumers are idempotent).

Publishing messages
Go-NSQ is the official Go client for NSQ. It's available
at https://github.com/nsqio/go-nsq.

Here is the NewProducer function:

func NewProducer(addr string, config *Config) (*Producer, error)

It returns an instance of Producer for the specified nsqd address. There is a one-to-one
mapping between an nsqd instance and a client Producer instance. The TCP connection is
managed in a lazy manner (the connect will happen when publish is done).

https://github.com/nsqio/go-nsq

Messaging Chapter 6

[211]

Configuration contains a bunch of tuneables and is created through the NewConfig()
method.

The Producer struct has two methods for publishing messages:

Synchronous publish:

func (w *Producer) Publish(topic string, body []byte) error

Asynchronous publish:

func (w *Producer) PublishAsync(topic string, body []byte, doneChan
chan *ProducerTransaction, args...interface{}) error

This method sends the message asynchronously and returns instantly after calling. The
doneChan channel gets an instance of ProducerTransaction with the args that were
supplied and errors if there are any. The args are used mostly for housekeeping purposes.

The following code snippet demonstrates publishing a message:

package main

import (
 "fmt"
 "github.com/nsqio/go-nsq"
 "log"
)

func main() {

 // Connect
 pCfg := nsq.NewConfig()
 producer, err := nsq.NewProducer("127.0.0.1:4160", pCfg)
 if err != nil {
 log.Fatalf("failed creating producer %s", err)
 }

 // Publish Async
 destinationTopic := "my_topic"
 responseChan := make(chan *ProducerTransaction)
 err = producer.PublishAsync(destinationTopic, []byte("a_message"),
responseChan, "some_args")

 // Check for status
 // Done here inline just for showcase
 status := <-responseChan
 if status.Error != nil {
 log.Printf("Error received %s \n", status.Error.Error())

Messaging Chapter 6

[212]

 } else {
 log.Printf("Success Arg received : %s \n",
status.Args[0].(string)) // should be some_args
 }

}

Consuming messages
The NewConsumer method creates a new instance of NSQ consumer for a given topic. We
need to specify the channel name and pass various tuneables as part of the configuration.
The signature of the method is shown here:

func NewConsumer(topic string, channel string, config *Config) (*Consumer,
error)

The Consumer instance is supplied with a handler that will be executed concurrently
through different goroutines. This handler will be given the messages consumed from the
specified topic/channel. If configured, the Consumer instance will also poll nsqlookupd
instances to discover and manage connections to nsqd instances. This is done by the
ConnectToNSQD() method of the Consumer struct.

The following code snippet shows the basic usage:

package main

import (
 "github.com/nsqio/go-nsq"
 "log"
)

type MyMessageHandler struct {
 totalMessages int
}

func (h *MyMessageHandler) HandleMessage(message *Message) error {
 h.totalMessages++
 log.Printf("Message no %d received, body : %s \n", h.totalMessages,
string(message.Body))
}

func main() {
 config := NewConfig()

 topicName := "my_topic"

Messaging Chapter 6

[213]

 channelName := "my_chan"
 cons, err := NewConsumer(topicName, channelName, config)
 if err != nil {
 log.Fatal(err)
 }

 cons.AddHandler(&MyMessageHandler{})

 // wait for a signal to quit
 sigChan := make(chan os.Signal, 1)
 signal.Notify(sigChan, syscall.SIGINT, syscall.SIGTERM)
 <-sigChan

 // Stop the consumer
 cons.Stop()
 <-cons.StopChan // wait for cleanup

}

You might be wondering how the acknowledgement of the messages happen. By default,
the message is acknowledged when the handler returns. However, this auto-
acknowledgement can be disabled by calling DisableAutoResponse() on the Message
struct object in the handler. We can then call Finish() or Requeue() on the message
object to acknowledge or request retransmission of a message. This is shown in the
following code:

type MyMessageHandler struct {}

func (h *MyMessageHandler) HandleMessage(m *nsq.Message) error {
 m.DisableAutoResponse()
 delegateChannel <- m
 return nil
}

go func() {
 for m := range delegateChannel {
 err := doSomeWork(m) // some long winded tasks
 if err != nil {
 m.Requeue(-1)
 continue
 }
 m.Finish()
 }
}()

cfg := nsq.NewConfig()
cfg.MaxInFlight = 1000 //Maximum number of messages to allow in flight

Messaging Chapter 6

[214]

(concurrency knob)
topicName := "my_topic"
channelName := "my_chan"
cons, err := nsq.NewConsumer(topicName, channelName, cfg)
if err != nil {
 log.Fatalf(err.Error())
}

// the method below is an alternative to AddHandler to enable concurrent
processing
// the second argument is the number of goroutines to spawn for processing
cons.AddConcurrentHandlers(&MyMessageHandler{}, 20)

Integration patterns
The messaging primitives we just looked at can be augmented with various functionalities
to enable complex architectural patterns. In Chapter 5, Going Distributed, we took a look at
the event-driven architecture paradigm. In this this section, we will have a more detailed
look at various patterns of integrating components with messaging.

While these patterns can be implemented, in principle, through durable messaging (Kafka,
NSQ, and so on), we will use use Golang channel primitives to demonstrate integration
patterns.

The request-reply pattern
In this pattern, Service-A (requestor) wants some work from from Service-B (responder),
and there is output expected out of the request. How does Service-B respond, considering
that Service-B might be handling requests for a lot of other services?

The solution is to have the requestor mention the response topic (in this case, the channel)
to the responder. This decouples the responder from requestor. A request message might
look like this:

type Request struct {
 someArg string
 replyTo chan<- Response
}

type Response struct {
 reply string
}

Messaging Chapter 6

[215]

Notice the replyTo channel that the requester is sending along with the message.

The requestor and responder code looks like the following:

func responder(c <-chan Request) {
 for request := range c {
 var resp Response
 resp.reply = "reply-to-" + request.someArg
 request.replyTo <- resp
 }
}

func requestor(c chan<- Request) {
 myChannel := make(chan Response)
 for i := 0; i < 5; i++ {
 c <- Request{fmt.Sprintf("message%d", i), myChannel}
 resp := <-myChannel
 fmt.Printf("request %d, response %s\n", i, resp.reply)
 }

 // cleanup after my work is done
 close(myChannel)
}

func main() {

 requestChannel := make(chan Request)
 go responder(requestChannel)
 go requestor(requestChannel)

 time.Sleep(time.Second * 10)

}

The correlation identifier pattern
In an Event-Driven-Architecture setup, messages might flow through multiple services. In
such an event, it is important that each message has a unique identifier to enable correlation
and debugging in the service's code.

Golang has a variety of libraries that provide GUID-generation:

Use time to enable entropy and to achieve time-clustering
Fill the rest of the ID with random data
Encode GUID as a URL-safe string in a way that allows lexicographic sorting

Messaging Chapter 6

[216]

A summary of the various options is shown in the following table:

Package Sample ID Note

github.com/segmentio/ksuid
0pPKHjWprnVxGH7dEsAoXX2YQvU

4 bytes of time (seconds)
+ 16 random bytes.

github.com/rs/xid
b50vl5e54p1000fo3gh0

4 bytes of time (seconds)
+ 3 bytes of machine IDs
+ 2 bytes of process IDs
+ 3 random bytes.

github.com/kjk/betterguid
-Kmdih_fs4ZZccpx2Hl1

8 bytes of time
(milliseconds) + 9
random bytes.

github.com/sony/sonyflake
20f8707d6000108

It's based on Twitter's
design for generating
IDs for tweets—simple
but the least random.
6 bytes of time (10 ms) +
1 byte sequence + 2
bytes of machine ID.

To enable debugging, it is imperative to log these correlation IDs along
with whatever the log needs to convey.

The pipes and filters pattern
In many requirements, a single event triggers a workflow (or a sequence of processing
steps) as part of the required response to that event. For example, on a ticket payment, we
might have to validate the payment, confirm the booking, and email an invoice. Each of the
individual actions are independent and sometimes form part of multiple workflows. We
need a way to stitch together these processors to enable different workflows.

The pipes and filters architectural pattern aims to provide a solution by dividing a
workflow into a sequence of smaller, independent Processors (called filters). Filters are
connected by messaging channels, called pipes.

https://github.com/segmentio/ksuid
https://github.com/rs/xid
https://github.com/kjk/betterguid
https://github.com/sony/sonyflake

Messaging Chapter 6

[217]

Each filter has a very simple interface—it gets input messages from one inbound pipe and
is supposed to write the output to an output pipe. It encapsulates the processing of the
message internally, and can take more data as part of the context during initialization. The
output pipe of one filter is connected to the inbound pipe of another filter to compose the
workflow.

An example of a workflow that computes the y = x2 + c values is given in the following code.

The emitter filter is the start of the chain, and generates numbers from 0 to a given value.
These numbers then flow to an xSquare filter that squares the value and outputs it to
another pipe. This then goes as input to the addC filter, which does the last part of the
equation processing:

func emitter(till int) <-chan int {
 out := make(chan int)
 go func() {
 for i := 0; i < till; i++ {
 out <- i
 }
 close(out)
 }()
 return out
}

func xSquare(in <-chan int) <-chan int {
 out := make(chan int)
 go func() {
 for x := range in {
 out <- x * x
 }
 close(out) // close forward
 }()
 return out
}

func addC(in <-chan int, c int) <-chan int {
 out := make(chan int)
 go func() {
 for x := range in {
 out <- x + c
 }
 close(out) // close forward
 }()
 return out
}

func main() {

Messaging Chapter 6

[218]

 // y = x*x + c
 out := addC(
 xSquare(emitter(3)),
 5)

 for y := range out {
 fmt.Println(y)
 }

}

Once this is coded, it is easy to extend this to say y = x4 + c—see the following code:

 // y = x*x*x*x + c

 out1 := addC(
 xSquare(xSquare(emitter(3))),
 5)

 for y := range out1 {
 fmt.Println(y)
 }

This will print the following:

5
6
21

The content-based router pattern
Often, in the pipes and filter pattern, we come across use cases where a message's
destination is not always fixed but actually depends on the context in the message. For
example, we might have different destination topics for with different hotels and flights
processing (viewed) in a travel websites. The content-based router pattern examines the
message content and routes the message based on the data/metadata contained in the
message.

Messaging Chapter 6

[219]

The routing function can be a brittle point of the system architecture and can be a
placeholder for miscellaneous logic and frequent changes. One way to overcome this is to
use a rules-based engine to decide on message routes. Govaluate
(https://github.com/Knetic/govaluate) is a good rules-based evaluation framework that
can be used to this end:

Source: http://camel.apache.org/dynamic-router.html

The fan-in pattern
There is a requirement to source messages from multiple sources and do some processing.
It is not guaranteed which source will have a message ready at a given time. If we were to
process all sources in a loop, the loop will block for a source that does not have a message.
It is possible to check availability and add timeouts, but this causes extra complications in
the code.

The ideal solution is to merge the messages into one fanIn channel, which can then be
used for processing. The following code snippet demonstrates this pattern:

func main() {
 c := fanIn(emitter("Source1"), emitter("Source2"))

 for i := 0; i < 10; i++ {
 fmt.Println(<-c) // Display the output of the FanIn channel.
 }

https://github.com/Knetic/govaluate

Messaging Chapter 6

[220]

}

// this combines the sources to a Fan-In channel
func fanIn(input1, input2 <-chan string) <-chan string {
 c := make(chan string) // The FanIn channel

 // to avoid blocking, listen to the input channels in separate
goroutines
 go func() {
 for {
 c <- <-input1 // Write the message to the FanIn channel,
Blocking Call.
 }
 }()

 go func() {
 for {
 c <- <-input2 // Write the message to the FanIn channel,
Blocking Call.
 }
 }()

 return c
}

// dummy function for a source
func emitter(name string) <-chan string {
 c := make(chan string)

 go func() {
 for i := 0; ; i++ {
 c <- fmt.Sprintf("[%s] says %d", name, i)
 time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond)
// Sleep for some time
 }
 }()

 return c
}

We could have also used the select keyword for doing the fanIn and, in fact, this is
more idiomatic Go. The fanIn with select looks like this:

func fanInSelect(input1, input2 <-chan string) <-chan string {
 out := make(chan string)
 go func() {
 for {
 select {

Messaging Chapter 6

[221]

 case in := <-input1:
 out <- in
 case in := <-input2:
 out <- in
 }
 }
 }()
 return out
}

The fanIn pattern can be combined with the request-reply pattern to enable sequencing
between the input of the fanIn channel. After sending a message, each source would block
on its own Boolean channel, which is passed as part of the message to the fanIn channel.
The Source is then effectively stalled until the fanIn processor unblocks it by signaling on
the channel.

The fan-out pattern
Besides routing messages as a whole, a router can split messages and then give them to
different components for processing. This is demonstrated by the following code snippet:

type Message struct {
 body string
 key int
}

func main() {
 evenPipe, oddPipe := fanOut(emitter())
 sink("even", evenPipe)
 sink("odd", oddPipe)

 time.Sleep(10 * time.Second)

}

// this combines the sources to a Fan-In channel
func fanOut(input <-chan Message) (<-chan Message, <-chan Message) {
 even := make(chan Message) // The fan-out channels
 odd := make(chan Message) // The fan-out channels

 // spawn the fan-out loop
 go func() {
 for {
 msg := <-input
 if msg.key%2 == 0 {

Messaging Chapter 6

[222]

 even <- msg
 } else {
 odd <- msg
 }
 }
 }()

 return even, odd
}

// dummy function for a source
func emitter() <-chan Message {
 c := make(chan Message)

 go func() {
 for i := 0; ; i++ {
 c <- Message{fmt.Sprintf("Message[%d]", i), i}
 time.Sleep(time.Duration(rand.Intn(1000)) *
time.Millisecond) // Sleep for some time
 }
 }()

 return c
}

func sink(name string, in <-chan Message) {
 go func() {
 for {
 msg := <-in
 fmt.Printf("[%s] says %s\n", name, msg.body)
 }
 }()
}

The topology consists of an emitter that connects to a fanOut component, which
multiplexes the output onto two output channels based on the key in the Message body
(this snippet is also an example of the Content-Based Router pattern).

The background worker pattern
Sometimes a part of message processing doesn't need to produce any output that is
immediately needed. For example, when a ticket is booked and the payment is made, it's
OK to get Ticket booked successfully! to the user, while sending them a detailed itinerary
through email; we don't need to block the client on the book ticket API until the email is sent.

Messaging Chapter 6

[223]

The background worker pattern solves such situations by enabling a component to delegate
work to other components that work in the background.

The worker.go and worker_test.go file (https:/ ​/​github. ​com/ ​cookingkode/ ​worker) is
an example of a generic framework where woker goroutines accept work of the following
type:

type Work struct {
 Key string
 Args interface{}
}

The framework uses the key to distribute the Work messages to a set of background
workers.

A background worker can be spawned off from a handler function, which takes the work
object as a parameter:

func sampleHandler(work *Work) {
 fmt.Printf("Dummy Handler \t")
 fmt.Printf("Work :: %v : %v\n", work.Key, work.Args)
}

A driver program can then spawn workers and assign work:

func Driver () {
 // Create 4 workers of
 w := NewWorker(4, sampleHandler)
 w.StartWork()

 // give some work to the workers
 dumbWork := &Work{Key: "hi", Args: "there",}

 w.Push(dumbWork)
 w.Push(dumbWork)

 time.Sleep(6000 * time.Millisecond)
 // By this time sampleHandler should have printed twice

 // Stop
 w.StopWork()
}

https://github.com/cookingkode/worker
https://github.com/cookingkode/worker
https://github.com/cookingkode/worker
https://github.com/cookingkode/worker
https://github.com/cookingkode/worker
https://github.com/cookingkode/worker
https://github.com/cookingkode/worker
https://github.com/cookingkode/worker
https://github.com/cookingkode/worker
https://github.com/cookingkode/worker
https://github.com/cookingkode/worker

Messaging Chapter 6

[224]

Summary
In this chapter, we learned about some messaging theory and Apache Kafka and NSQ.
Messaging plays a key role in building microservices. We also describeed various
messaging patterns like request-reply, fanout, pipes-and-filters with working code.

In the next chapter, we will learn about building APIs.

7
Building APIs

Services rarely operate in isolation. They interact with one another over the network to
enable macro behavior. Using a specific (often standardized) protocol, data is exchanged at
specific endpoints. There are two forms to this communication:

Using an Application Programming Interface (API)—a Request/Response
model over a network protocol such as Hypertext Transfer Protocol (HTTP)
Using messaging—where services exchange messages to exchange data

Messaging is covered in Chapter 6, Messaging. This chapter focuses on the first model of
communication.

Endpoints
In the API model, whenever a service needs something, it makes a network call to a known
endpoint with a request and gets a response back. The service making the call is frequently
called the client, and the other is the server. It should be noted that a service can be (and is
frequently) both a client and a server in the context of different interactions.

Building APIs Chapter 7

[226]

Networking basics
To enable communication over a network, a set of rules for data exchanges is imperative.
Such rules are typically standardized through protocols and grouped into various
layers—each layer of the communication stack dealing with a specific charter. The
following diagram depicts the traditional networking layers and related protocols:

Most API network communication occurs over Transmission Control Protocol (TCP).
Here, before the actual data exchange, the client needs to make a connection to the server.
To do this, the client needs to know the following:

The IP address of the machine hosting the service.1.
The network port on which the service is listening to requests.2.
After the network connection is set up, the client will need some application3.
layer specifics to perform the communication, including the following:

An application protocol specific endpoint (for example, a URL in the
case of HTTP)
The data contract—what date is needed, the serialization format, and
so on

Service discovery
The first step in performing communication is figuring out the endpoints. This process is
called service discovery. This is complicated by the following facts:

The endpoint addresses (for example, IP addresses) are generally dynamic and
change frequently.
Services are generally deployed in a cluster of redundant instances, so there is
more than one instance (endpoint) that can service a request.
The number of instances changes with time—autoscaling according to the load.

Building APIs Chapter 7

[227]

There are essentially two ways of doing the service discovery, which are as follows:

Server-side service discovery
Client-side service discovery

Server-side service discovery
As already described, services are deployed in clusters, and clients generally do not (and
should not) care about which specific instance of the service is honoring the request. In a
server-side service discovery architecture, such a cluster is fronted by a Load Balancer (LB),
which takes a request and routes it to an appropriate service instance, as shown in the
following diagram:

Building APIs Chapter 7

[228]

Generally the LB has a set of Virtual IP Addresses (VIPs), one for each service. This is a
collective network (IP layer) endpoint for the service. There is a static list of backend
instances against this VIP, and the LB multiplexes the requests from clients onto the set of
the backend instances. Even though this list is static, there are various mechanisms to
enable automatic reconfiguration, for example, when instances come up and go.

A popular open source LB is NGINX (https:/ ​/ ​www.​nginx. ​com/​). It is designed for high
performance and extensibility. It consists of a limited set of worker processes (usually one
per CPU core) that route requests using non-blocking event-driven I/O (using the non-
blocking provisions of the native kernel such as epoll and kqueue). The following
diagram depicts the architecture of a worker process, and more information can be found at
https:/​/​www.​nginx. ​com/ ​blog/ ​inside- ​nginx- ​how- ​we- ​designed- ​for- ​performance- ​scale/ ​)

The NGINX configuration of backend instances is static, but a dynamic configuration can
be built in using ancillary components, such as the Consul Template. Essentially, these
solutions watch for events about new or dead instances, rewrite the NGINX configuration
file, and gracefully restart the NGINX processes.

https://www.nginx.com/
https://www.nginx.com/
https://www.nginx.com/
https://www.nginx.com/
https://www.nginx.com/
https://www.nginx.com/
https://www.nginx.com/
https://www.nginx.com/
https://www.nginx.com/
https://www.nginx.com/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/

Building APIs Chapter 7

[229]

For connecting to a service, clients usually start with the advertised URL, which is then
converted by a Domain Name Service (DNS) to the VIP of the service. Clients then use this
VIP and the advertised service port to initiate the connection.

The LB also frequently hosts a health-check functionality, to figure out the right set of
backend instances. Instances that don't periodically check-in are declared unhealthy and
removed from the VIP's backend instance set.

In some cases it might be necessary for a client to continue interactions
with a specific service instance during the course of a user session. One of
the reasons for doing this might be performance (the state needed for
responding to requests might be cached at that instance). This feature is
supported by most LBs using sticky sessions. Here, the clients pass in an
identifier (frequently a cookie), which the LB uses for routing, instead of
the default random routing method.

There are a few key advantages of server-side service discovery, including the following:

Clients don't need to know about the service instances
High availability and fault tolerance is easily enabled

There are few disadvantages:

The LB can be a Single Point of Failure (SPOF) and needs engineering for
resiliency
The clients cannot choose a specific service instance, if for some reason they feel
this will be better

Building APIs Chapter 7

[230]

Client-side service discovery
In client‑side discovery, the client is responsible for determining the endpoints of available
service instances and then routes requests to them. The client queries a service registry,
which is a database of available service instances, and then routes requests to an instance
that it feels is the best option. This could be as simple as a round-robin load balancing
algorithm or a more complex one, which takes things like server instance network round-
trip-time and so on. Every server instance connects to the service registry on startup. It also
periodically updates its health status with the registry. The architecture is described in the
following diagram:

As you can see, we need a special registry-aware HTTP client, which can manage
connections to multiple server instances and route requests.

Building APIs Chapter 7

[231]

Netflix Eureka is a service registry in the Netflix OSS stack, and Netflix Ribbon is an IPC
client, written in Java, that works with Eureka to load balance requests across service
instances. Non-Java apps can interact with Eureka using its REST API. In Golang, https:/ ​/
github.​com/​hudl/ ​fargo is a client that does this. It can register an instance with Eureka,
enable check instance health (using heartbeats), and also query Eureka for the set of
instances for an application. The load balancing algorithm currently implemented is
random. To connect to Eureka and get a list of apps and instances, use the following:

c = fargo.NewConn("http://127.0.0.1:8080/eureka/v2")
c.GetApps() // returns a map[String]fargo.Application

A service instance can register its help with Eureka using the following:

c.UpdateApp(&app)

Consul (https:/​/​www. ​consul. ​io/ ​) is another open source service discovery platform. It
organizes services in a service catalog and provides a DNS and HTTP API interface on top
of it. It monitors registered service instances and manages a healthy set for each service.
The Catalog.Services method (https:/ ​/​godoc. ​org/ ​github. ​com/ ​hashicorp/ ​consul/
api#Catalog.​Services) can be used to query the instances for a service as described here:
https:/​/​www.​consul. ​io/ ​api/ ​catalog. ​html. The QueryOption parameter can be used to
tweak the nodes the client is interested in, for example using QueryOptions{Near:
"_agent"} will result in Consul returning the closest node to the client first (closed in
terms of least network latency).

Data serialization
This section provides a quick primer on the three main data serialization options: XML,
JSON, and Google Protocol Buffers (Protobuf). It also provides benchmarking on
serialization/deserialization on these and other (less used) formats.

XML
Extensible Markup Language (XML) is a standard for defining a serializable format, which
allows a producer to encode data in a text format, without having to define explicit
contracts with all consumers. It is derived from Standard Generalized Markup Language
(SGML), and is language-independent.

https://github.com/hudl/fargo
https://github.com/hudl/fargo
https://github.com/hudl/fargo
https://github.com/hudl/fargo
https://github.com/hudl/fargo
https://github.com/hudl/fargo
https://github.com/hudl/fargo
https://github.com/hudl/fargo
https://github.com/hudl/fargo
https://github.com/hudl/fargo
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://godoc.org/github.com/hashicorp/consul/api#Catalog.Services
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html
https://www.consul.io/api/catalog.html

Building APIs Chapter 7

[232]

The following XML snippet describes a hotel object:

<?xml version="1.0" encoding="UTF-8"?>
<root>
 <city>New York</city>
 <name>Taj</name>
 <no_rooms>3</no_rooms>
</root>

An XML document can be hierarchical. The following snippet describes a hotel chain:

<?xml version="1.0" encoding="UTF-8"?>
<root>
 <chain>
 <element>
 <city>New York</city>
 <name>Taj</name>
 <no_rooms>3</no_rooms>
 </element>
 <element>
 <city>New Jersey</city>
 <name>Leela</name>
 <no_rooms>5</no_rooms>
 </element>
 </chain>
</root>

XML documents have a schema and there is a standard called XML Schema Definition
(XSD) to describe it. This allows easy communication of contracts as well as validation of
documents against a schema.

JSON
JavaScript Object Notation (JSON) is a lightweight data format that is based on how
JavaScript represents objects. It is officially defined in RFC 4627.

An object is the simplest entity in JSON, and the following snippet is an example:

{
 "name": "Taj",
 "city": "New York",
 "no_rooms": 3
}

Building APIs Chapter 7

[233]

It has three fields with specific values. The field names are always strings, while the values
can be of different types such as integer, float, string, and so on.

JSON also has the concept of arrays. So a hotel chain can be described as follows:

{ "chain": [{
 "name": "Taj",
 "city": "New York",
 "no_rooms": 3
 },
 {
 "name": "Leela",
 "city": "New Jersey",
 "no_rooms": 5
 }
]
}

Like XML, JSON is self-describing and hierarchical, and can be parsed into an object at
runtime. There is a standard for schema definition called JSON Schema, but it is not as
widely used as XSDs.

Protobuf
Protobuf (or Protocol Buffers) is a language-neutral serialization format invented at Google.
Each protocol buffer message is a small logical record of information, containing a series of
name-value pairs. Unlike XML or JSON, here you first define the schema in a .proto file.
The following is a .proto file describing a hotel object:

message Hotel {
 required string name = 1;
 required string city = 2;
 optional int no_rooms = 3;
}

Each message type is a list of numbered fields, and each field has a type and a name. After
defining the .proto file, you run the protocol buffer compiler to generate code for the
object (in the language of your choice), with get/set functions for the fields, as well as
object serialization/deserialization functions.

Building APIs Chapter 7

[234]

Performance
Different serialization formats have different characteristics in terms of
serialization/deserialization of objects. This can play an impactful role in overall
performance of your system, especially in microservice architecture, where a single user
request is handled by multiple services communicating to each over over APIs or
messaging using serialized objects.

The https:/​/​github. ​com/ ​alecthomas/ ​go_ ​serialization_ ​benchmarks page is a good store
for related benchmarks on various serialization formats. Generally, formats that generate
code from schema files (such as Protobufs) perform better than generic schema such as
JSON, which need to use reflection to figure out object layout (fields and type). These types
of serialization formats are, however, slightly more difficult to debug. For example, you
can't just do a simple curl request to get the data; you would need a decoder with the
deserialization to make sense of the encoded data.

Representational State Transfer (REST)
We have seen how service discovery can be used to get the set of instances for a service,
and how data can be serialized for transport between the client and the server. Let's now
look at one of the most popular options of interaction between the client and any instance.

Concepts
REST, or Representational State Transfer, is an architectural style for API interactions over
HTTP. It is an application-level standard for the communication between the client and the
server and is characterized by statelessness and clear client-server separation of concerns.

The key abstraction in this style is that of resource, which can be anything: a document, a
ticket, a user, a collection of other resources, and so on. In a RESTful service, the interface
consists of a hierarchical set of resources and methods defined for each of them to enable
state transfer. Each resource has an unique ID, which identifies it. The transfer can be from
the server to the client (get information) or from the client to the server (set information).
The GET HTTP verb is analogous to what happens when a person clicks a link on a website.
The entire content at the URL, which describes that object, is transferred from the server to
the client and rendered in the browser.

https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/alecthomas/go_serialization_benchmarks

Building APIs Chapter 7

[235]

Nearly all RESTful APIs use HTTP as a transport layer. Each resource gets a Uniform
Resource Identifier (URI). The HTTP verbs such as GET, POST, PUT, DELETE, and PATCH
serve as methods on the resource.

For example, the following is a simplified API example for hotels:

URI Verb Meaning

/hotels GET
Get a list of all hotels on the website. At a minimum, this would
typically be a JSON array with a tuple for each hotel, including the
URI of the hotel, a unique ID, and probably the display name.

/hotels POST
Creates a new hotel. Will take all the attributes needed to create a
new hotel.

/hotels/<id> GET
Get information (all attributes) about a specific hotel, whose
identifier is <id>.

/hotels/<id> DELETE Delete the hotel with the specified ID.

/hotels<id> PUT
Updates the attributes of a hotel. Takes the same parameters as
create (POST).

Constraints
The term REST was introduced and defined in 2000 by Roy Fielding in his doctoral
dissertation. The major focus on that paper was a set of constraints on an API aspiring to be
RESTful. The main constraints are described in the following sections.

Client-server model
This constraint indicates the separation of concerns between the client (the View/Display
aspects) and the business logic part. By separating these two, the user interface becomes
portable/replaceable and the backend gets simplified.

Stateless
This constraint mandates that each request from client to server must contain all of the
information necessary to process it. The server cannot store context across requests. This
also implies that the session state (required for stateful processing of user interactions) is
kept entirely on the client side and transported to the server on each request.

Building APIs Chapter 7

[236]

Statelessness improves visibility, reliability, and scalability of the system. Visibility is
improved because a monitoring system just has to look at a single request in isolation to
understand the request. As we see in Chapter 9, Anti-Fragile Systems, reliability is
improved because a single server going down does not lose information; the request can be
retried. Scalability is improved because the server instances can be increased or decreased
as per the load and that the client requests can be served by any of the instance.

Like most architectural choices, there is a trade-off here. Statelessness makes the
communication between client and server carry repetitive information and is therefore
possibly more chatty. This design choice also means that user behavior is controlled at the
client side, thus multiple clients will have to code this consistently.

Cacheability
In order to overcome the network efficiency limitation described previously, the cache
construct was added. Essentially, the server can label each response as either cacheable or
non-cacheable. If a response is cacheable, then the client can cache and reuse the response
for future requests. To avoid stale data, generally a Time-To-Live (TTL) is added to cached
data, so that it can be invalidated after the specified time.

Uniform interface
The REST paradigm promotes a uniform interface for all interactions between the client and
the server. As described earlier, the key abstraction is the resource. A resource is identified
by a unique hierarchical name, and can have multiple representations.

The key advantage of such representation is that it provides representation generality for a
wide variety of information without having to specify the implementation/type that might
not add value (and complicate) the resource definition. This also allows late binding of the
reference to a resource representation through content negotiation, thus one client can
request a JSON representation of a resource, whereas another can request an XML version.

Richardson Maturity Model
The Richardson Maturity Model is a measure of how RESTful an API definition is. It
defines four levels (0-3), where level 3 designates the most RESTful API.

Building APIs Chapter 7

[237]

Level 0 – swamp of POX
At level 0, the API uses the implementing protocol (normally HTTP, but it doesn't have to
be) like a transport protocol. There is no effort to utilize the protocol to indicate state; it is
just used to pass requests and responses back and forth. The system typically has one entry
point (URI) and one method (normally POST in the case of HTTP). For the hotels API, this
means that the URL would be /hotels and all APIs would be POST to that, with the
payload carrying more information about the request type and related data. Examples
include SOAP and XML-RPC

Level 1 – resources
Here, the API distinguishes between multiple resources using different URLs. However,
there is still typically only one method (POST) of interaction. This is better than the previous
level because now there is a hierarchical definition of resources. Instead of going through
/hotels, now the API assigns IDs to each hotel and uses that to see which hotel the request
is for, so the API will have URLs of the /hotels/<id> form.

Level 2 – HTTP verbs
This level indicates that the API uses protocol properties (namely, HTTP verbs) to define the
nature of the API. Thus GET is used for a read, POST is used to create a new resource, PUT to
update a resource, and DELETE to of course delete the resource. The API also uses standard
responses code such as 200 (OK) and 202 (ACCEPTED) to describe the result of the
request.

Generally, most REST API implementations are at this level.

Level 3 – hypermedia controls
Level 3, the highest level, uses Hypertext As The Engine Of Application State
(HATEOAS) to allow clients to deal with discovering the resources and the identifiers. For
example, let's say we get details about a hotel (xyz) using the following API request:

GET /hotels/xyz

Building APIs Chapter 7

[238]

The preceding request will return a response of the following type:

{
 "city": "Delhi",
 "display_name": "Hotel Xyz",
 "star_rating": 4,
 "links": [
 {
 "href": "xyz/book",
 "rel": "book",
 "type": "POST"
 },
 {
 "href": "xyz/rooms",
 "rel": "rooms",
 "type": "GET"
 }
]
}

The response, besides giving details about the hotel (as per level 2), also gives information
to the client about which operations can be done against the resource and how they should
be done. For example, GET on /hotels/xyz/rooms will get information about available
rooms in the hotels. Thus the client does not need to hardcode every resource
representation, but rather can infer new resources and operations through the resource
hierarchy. This is a form of code-on-demand.

The rel attributes define the relation-type for the HATEOAS links. Some are predefined
(and one should not change their behavior), while some can be application-defined. The
following are related links:

IANA—link relation: http:/ ​/ ​www.​iana. ​org/ ​assignments/ ​link- ​relations/
link-​relations. ​xml

HTML5 specification—links: http:/ ​/​www. ​w3. ​org/ ​TR/​html5/ ​links. ​html

RFC 5988—web linking: http:/ ​/​tools. ​ietf. ​org/​html/ ​rfc5988

http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://www.w3.org/TR/html5/links.html
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988

Building APIs Chapter 7

[239]

Building a REST service using Gin
In this section, we will use the design patterns already described to build a REST API in
Golang. It's relatively straightforward to set up a web server using the Golang net/http
package in the standard library. A hello world program is described as follows:

package main

import (
 "fmt"
 "log"
 "net/http"
)

func main() {
 // setup router
 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 log.Println("path", r.URL.Path)
 fmt.Fprintf(w, "pong! on %sn", r.URL.Path)
 })

 // listen and serve
 err:= http.ListenAndServe(":9090", nil)
 if err != nil {
 log.Fatal("ListenAndServe: ", err)
 }
}

It sets up a handler at a specific URL path, which takes in the request pointer and a
response writer.

The ListenAndServe() method does the following:

Instantiates an Http server
Calls net.Listen("tcp", addr) to listen on TCP for the defined port (here
9090)
Starts a loop and accept requests in the loop body
Starts a Goroutine for every request
Reads the request data
Searches for the handler for that URL, and executes the code there

Building APIs Chapter 7

[240]

The crux of any Go web application is the ability to serve each request as a separate
Goroutine, as shown in the following diagram:

This ability increases the scalability and resource-efficiency of the server immensely.

Building APIs Chapter 7

[241]

Gin introduction
The Go stdlib library is powerful, but for real-world products, a lot of additional
requirements in terms of middleware, routing, persistence, and so on crop up. It is
advisable to use a suitable web framework as guiding rails for your API project. One
popular framework is Gin. Some of its features are the following:

Radix tree-based Go (Golang) routing
Small memory footprint and predictable performance due to controlled
engineering (in terms of memory allocations)
Middleware framework where various middleware can be chained before the
final handler
Panic recovery during request handling
Route grouping, with various middleware on different URL route hierarchies
JSON validation
Error management

Sample application
We will use the hotels API example described earlier and build a fully working version. To
reiterate, the specific APIs would be as follows:

URI Verb Meaning

/hotels GET
Get a list of all hotels on the website. At a minimum, this would
typically be a JSON array with a tuple for each hotel, including the
URI of the hotel, a unique ID, and probably the display name.

/hotels POST
Creates a new hotel. Will take all the attributes needed to create a
new hotel.

/hotels/<id> GET
Get information (all attributes) about a specific hotel, whose
identifier is <id>.

/hotels/<id> DELETE Delete the hotel with the specified ID.

/hotels<id> PUT
Updates the attributes of a hotel. Takes the same parameters as
create.

Generally, such a Create Read Update Delete (CRUD) app would use a database for
persistence. But to keep things straightforward, we will use an in-memory Golang map.
This will, of course, not work with more than one instance, but serves the purpose of
describing the RESTful API.

Building APIs Chapter 7

[242]

The following code uses the map repository in a non-thread-safe manner.
Maps should be protected with a Mutex for concurrent access in real-life
code.

Router
The heart of the program is an API router, which multiplexes different URLs (and verbs) to
specific handlers. Please see the next section (Higher level patterns) for more description of
the router. This part looks like the following:

package main

import (
 "fmt"
 "github.com/gin-gonic/gin"
 "net/http"
)

func main() {
 router:= gin.Default()
 v1:= router.Group("/v1/hotels")
 {
 v1.POST("/", createHotel)
 v1.GET("/", getAllHotels)
 v1.GET("/:id", getHotel)
 v1.PUT("/:id", updateHotel)
 v1.DELETE("/:id", deleteHotel)
 }
 router.Run()
}

As you can see, there is a router group called v1. This defines a specific API version and
encompasses five routes. Versioning your API is always a good idea, as your contract will
churn and not all your clients will move to the latest version at the same time.

The handlers use the HTTP verb-based method on the RouterGroup object returned by the
router.Group() method and map a specific URL to a handler. Note that the URLs here
are relative to the URL mentioned at the group level.

The /:id path indicates that id should be the path parameter; that is, any string will match
at this place in the URL, and the specific string that matches will be available in the
assigned handler. We shall see how to use this in the Read subsection.

Building APIs Chapter 7

[243]

Create
Before looking at what createHotel does, lets define a Hotel object. Again, using the
example described previously, along with the HATEOAS links, our hotel type looks as
follows:

type Hotel struct {
 Id string `json:"id" binding:"required"`
 DisplayName string `json:"display_name" `
 StarRating int `json:"star_rating" `
 NoRooms int `json:"no_rooms" `
 Links []Link `json:"links"`
}

// HATEOAS links
type Link struct {
 Href string `json:"href"`
 Rel string `json:"rel"`
 Type string `json:"type"`
}

Hotel struct defines basic metadata about the hotel. Links struct defines the
HATEOAS links.

We also define an in-memory repository to contain the hotels. As discussed earlier, this
should really be a DB interface, but the map abstracts out the DB-related complexity to
allow us to focus on the API aspects:

var (
 repository map[string]*Hotel
)

func init() {
 repository = make(map[string]*Hotel)
}

Now, on to createHotels:

func createHotel(c *gin.Context) {
 var hotel Hotel
 if err:= c.ShouldBindJSON(&hotel); err == nil {
 // add HATEOS links
 hotel.generateHateosLinks(c.Request.URL.String())
 // add hotel to repository
 repository[hotel.Id] = &hotel

 //return OK

Building APIs Chapter 7

[244]

 c.JSON(http.StatusAccepted, gin.H{"status": "created"})
 } else {
 // some params not correct
 c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
 }
}

This uses the ShouldBindJSON method of the Gin request Context object to validate and
parse/deserialize the request body to get a Hotel object. If there is an error, we return
http.StatusBadRequest, which is HTTP code 400. This indicates that there was
something wrong in the request (details in RFC 7231, 6.5.1). If we are able to get the Hotel
object, then we just store it in the map repository and return http.StatusAccepted (HTTP
code 202).

Not all the attributes of the Hotel object are required for creating the object, and
specifically the HATEOAS links won't be present (the client won't know how they are
formulated). The generateHateosLinks() method generates these links (for now just a
booking link), as demonstrated by the following code:

func (h *Hotel) generateHateosLinks(url string) {
 // Book url
 postLink:= Link{
 Href: url + "book",
 Rel: "book",
 Type: "POST",
 }

 h.Links = append(h.Links, postLink)
}

This takes the URL and appends book to allow HATEOS links of the following type:

"links": [
 {
 "href": "xyz/book",
 "rel": "book",
 "type": "POST"
 }]

To create a hotel, we can use a CURL request like so:

curl -d '{"id":"xyz", "display_name":"HotelXyz", "star_rating":4,
"no_rooms": 150}' -H "Content-Type: application/json" -X POST
127.0.0.1:8080/v1/hotels

Building APIs Chapter 7

[245]

Read
After creating, of course, the next step would be to retrieve the created hotels. There are two
APIs here:

GET /v1/hotels: Returns all the hotels that we have
GET /v1/hotels/<id>: Returns data about a specific hotel

The getHotel() method retrieves information about a specific hotel, whose ID is given in
the path parameter defined. The code is pretty straightforward:

func getHotel(c *gin.Context) {
 // get ID from path param
 hotelId:= c.Param("id")

 // get hotel object from repository
 hotel, found:= repository[hotelId]
 fmt.Println(hotel, found, hotelId)
 if !found {
 c.JSON(http.StatusNotFound, gin.H{"status": "hotel with id not
found"})
 } else {
 c.JSON(http.StatusOK, gin.H{"result": hotel})
 }

}

The Param() method of the Gin request Context object gives the path parameter named
as :id. So for example, if the URL is /v1/hotels/abc, then the value of hotelId will be
abc, since the getHotel() handler is defined for the /v1/hotels/:id path, where ID is
the path parameter.

The rest of the code is pretty self-explanatory. If a hotel with the ID is not found then HTTP
status code 404 (http.StatusNotFound) is returned. Otherwise, the Hotel object is
serialized to JSON and sent to the client.

The API call looks like this:

curl 127.0.0.1:8080/v1/hotels/xyz

Building APIs Chapter 7

[246]

And the response is as follows:

{
 "result":{
 "xyz":{
 "id":"xyz",
 "display_name":"HotelXyz",
 "star_rating":4,
 "no_rooms":150,
 "links":[
 {
 "href":"/v1/hotels/book",
 "rel":"book",
 "type":"POST"
 }
]
 }
 }
}

Note the HATEOAS links that had been populated in the create handler.

Now, let's look at the getAllHotels() method. It just dumps the repository into a JSON
map. The code for it is as follows:

func getAllHotels(c *gin.Context) {
 c.JSON(http.StatusOK, gin.H{"result": repository})
}

One can call this API as follows:

curl 127.0.0.1:8080/v1/hotels

This will return a JSON map of all hotels:

{
 "result":{
 "xyz":{
 "id":"xyz",
 "display_name":"HotelXyz",
 "star_rating":4,
 "no_rooms":150,
 "links":[
 {
 "href":"/v1/hotels/book",

Building APIs Chapter 7

[247]

 "rel":"book",
 "type":"POST"
 }
]
 }
 }
}

Update
We are using the standard of having the PUT method perform an update for an object (well,
some people may contest this). The updateHotel() handler is defined for the exact same
path as GET for read, but for the PUT method. The code for the handler is as follows:

func updateHotel(c *gin.Context) {
 // get hotel object from repository
 hotelId:= c.Param("id")
 hotel, found:= repository[hotelId]
 if !found {
 c.JSON(http.StatusNotFound, gin.H{"status": "hotel with id not
found"})
 } else {
 //update
 if err:= c.ShouldBindJSON(&hotel); err == nil {
 repository[hotel.Id] = hotel

 //return OK
 c.JSON(http.StatusOK, gin.H{"status": "ok"})
 } else {
 // some params not correct
 c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
 }
 }

}

If a hotel with the id is not found in the repository, the code bails out and returns HTTP
status code 404 (http.StatusNotFound). Otherwise, we take the updates and store
the modified object in the repository.

Building APIs Chapter 7

[248]

For example, we can make the following API call to update the star rating of the hotel we
have created:

curl -d '{"id":"xyz", "star_rating":5}' -H "Content-Type:
application/json" -X PUT 127.0.0.1:8080/v1/hotels/xyz

Delete
The delete handler is also defined for the same paths as read and update. The code is
pretty straightforward:

func deleteHotel(c *gin.Context) {
 hotelId:= c.Param("id")
 _, found:= repository[hotelId]
 if !found {
 c.JSON(http.StatusNotFound, gin.H{"status": "hotel with id not
found"})
 } else {
 delete(repository, hotelId)
 //return OK
 c.JSON(http.StatusOK, gin.H{"status": "ok"})
 }
}

If a hotel with the id is not found, then we return 404 (http.StatusNotFound), or else we
delete it from the map and return HTTP status code 200 (http.StatusOK).

GraphQL
The REST API paradigm is very elegant, and it is easy to model most real-world use cases
with little difficulty. However, for the modern fast-paced web development needs, the rigid
server-defined endpoints and schema can be a drag on developer productivity. Also, as
discussed previously, the standard is not really network-efficient, especially if the client
needs just a subset of the resource attributes. For example, let's say we are developing a
mobile app, that has a search results page. Here, we don't want to get all the attributes of
the hotels, since we may not have the screen real estate (or usability) to show all the data.
To engineer this with a REST API, one needs to have a set URL and schema that gives all
the hotels. However, if the app is deployed on a "tab", we may want to show slightly more
information than on an app form factor. We can accomplish this by having another resource
or having some query parameter to indicate form factor, but both are not necessarily clean.
There still would be coupling of client needs and server code.

Building APIs Chapter 7

[249]

Schema
To get around the limitations described, Facebook developed a new way of doing APIs
called GraphQL. It is an API whose style is more compatible with database query
constructs, with schemas for different types and a runtime for executing queries and
mutations.

GraphQL uses the Schema Definition Language (SDL) to define the schema of various
types in the API, as follows:

type Hotel {
 id: String!
 displayName: String!
 city: String !
 noRooms: Int
 starRating: Int
}

This is the schema for a hotel. It has four fields: id, displayName, noRooms, and
starRating, each with a description of its primitive type. The ! symbol indicates that the
field is mandatory.

It is also possible to describe relationships between types. So we can have HotelChain,
which has a set of hotels:

type HotelChain {
 name: String!
 hotels: [Hotel!]!
 }

Here the square bracket indicate an array.

Note that github.com/graphql-go/graphql provides support for graphql in Golang.
The following code snippet shows how to define a Golang struct and an equivalent type
in graphql:

type Hotel struct {
 Id string `json:"id"`
 DisplayName string `json:"displayName"`
 City string `json:"city"`
 NoRooms int `json:"noRooms"`
 StarRating int `json:"starRating"`
}

// define custom GraphQL ObjectType `hotelType` for our Golang struct
`Hotel`

Building APIs Chapter 7

[250]

// Note that
// - the fields map with the json tags for the fields in our struct
// - the field types match the field type in our struct
var hotelType = graphql.NewObject(graphql.ObjectConfig{
 Name: "Hotel",
 Fields: graphql.Fields{
 "id": &graphql.Field{
 Type: graphql.String,
 },
 "displayName": &graphql.Field{
 Type: graphql.String,
 },
 "city": &graphql.Field{
 Type: graphql.String,
 },
 "noRooms": &graphql.Field{
 Type: graphql.Int,
 },
 "starRating": &graphql.Field{
 Type: graphql.Int,
 },
 },
})

Once we have the types, we can then define a schema, with root query and mutation
structures:

// define schema, with our rootQuery and rootMutation
var schema, schemaErr = graphql.NewSchema(graphql.SchemaConfig{
 Query: rootQuery,
 Mutation: rootMutation,
})

We shall see more details on the rootQuery and rootMutation structures later. This now
defines the complete schema needed.

Endpoints
When working with REST APIs, each resource has a specific endpoint. This endpoint has
multiple methods (verbs) which give/take data in a specific manner to enable behavior.
However, the approach in GraphQL is the exact opposite. There is typically only a single
endpoint. The structure of the data is not fixed; instead, the protocol is totally driven by the
client. For example, in retrieving data, the client specifies exactly what it needs.

Building APIs Chapter 7

[251]

In Golang, we generally hook up the graphql endpoint as an HTTP handler, as follows:

http.HandleFunc("/graphql", func(w http.ResponseWriter, r *http.Request) {
 fmt.Println("[in handler]", r.URL.Query())
 result:= executeQuery(r.URL.Query()["query"][0], schema)
 json.NewEncoder(w).Encode(result)
 })

 fmt.Println("Graphql server is running on port 8080")
 http.ListenAndServe(":8080", nil)

Here executeQuery() is a helper function, which uses the graphql-go.Do() function to
handle the graphql queries, using our preceding schema definition:

func executeQuery(query string, schema graphql.Schema) *graphql.Result {
 result:= graphql.Do(graphql.Params{
 Schema: schema,
 RequestString: query,
 })
 if len(result.Errors) > 0 {
 fmt.Printf("wrong result, unexpected errors: %v", result.Errors)
 }
 return result
}

Queries
Lets, look at how retrieving data works in GraphQL. The following snippet is a sample
query for all hotels in our systems, and moreover just the IDs of the hotels. This will be sent
from the client to the server:

{
 allHotels {
 id
 }
}

The allHotels field in this query is called the root field of the query. Everything under
the root field is the payload of the query.

Building APIs Chapter 7

[252]

The server will respond with a JSON detailing all the hotels, ids in the database, like so:

{
 "allHotels": [
 { "id": "xyz" },
 { "id": "abc" },
 { "id": "pqr" }
]
}

If the client needs the display name (or any other field), it has to ask for it explicitly in the
query, like so:

{
 allHotels {
 Id
 displayName
 }
}

This exact specification of fields is possible even for nested fields. Thus, to get the name of
the hotel chain and the display name of each hotel in the chain, the following query will
work:

{
 allHotelsinChain {
 name
 hotels {
 displayName
 }
 }
}

Queries are explicitly specified by the root field name, and also can take arguments as
follows:

{
 allHotels (city: Delhi) {
 id
 displayName
 }
}

The preceding is a query that takes the city name as an argument, and returns all the hotels
in a specific city, and the ID and the display name for each hotel.

Building APIs Chapter 7

[253]

In graphql-go, the rootQuery structure that we defined previously handles all the
queries. We create it using the graphql.NewObject() function. This creates a graphql-
go terminology object that has fields, a name, and a resolver function, which describes what
to do when such an object is invoked:

var rootQuery = graphql.NewObject(graphql.ObjectConfig{
 Name: "RootQuery",
 Fields: graphql.Fields{

 "hotel": &graphql.Field{
 Type: hotelType,
 Description: "Get a hotel with this id",
 Args: graphql.FieldConfigArgument{
 "id": &graphql.ArgumentConfig{
 Type: graphql.String,
 },
 },
 Resolve: func(params graphql.ResolveParams)
 (interface{}, error) {
 id, _:= params.Args["id"].(string)
 return hotels[id], nil
 },
 },
 },
})

Here we describe a query that takes in the hotel ID and gives the hotel object from an in-
memory map called hotels. In real life, of course, one would use a database to store and
retrieve entities, but the map serves the purpose of simplifying things and helping us to
focus on the API semantics. Like the example in the REST API section, map is just a global
variable:

// repository
var hotels map[string]Hotel

func init() {
 hotels = make(map[string]Hotel)
}

Building APIs Chapter 7

[254]

The following CURL request demonstrates how to query a hotel with a specific ID:

curl -g
'http://localhost:8080/graphql?query={hotel(id:"XVlBzgba"){displayName,city
,noRooms,starRating}}'

See the following mutation example for actually creating hotel objects.

Mutations
Besides retrieving data, APIs also need to support changes or mutations to the data. There
generally are three kinds of mutations:

Creation of new data
Update for existing data
Deletion of data

Mutations follow the general structure of queries:

mutation {
 createHotel(name: "Taj", noRooms: 30) {
 id
 }
}

Here the mutation has a createHotel root field, and it identifies the mutation uniquely.
We are giving it the name and noRooms parameters, with the Taj and 30 values
respectively. Like a query, the payload here describes what we want in terms of the
properties of the newly created object; here we are asking for the ID of the new person.

Continuing with our hotel example in graphql-go, the mutation root object defines all the
various mutations (update, create, delete, and so on). For example, a simple create mutation
is defined as follows:

// root mutation
var rootMutation = graphql.NewObject(graphql.ObjectConfig{
 Name: "RootMutation",
 Fields: graphql.Fields{
 "createHotel": &graphql.Field{
 Type: hotelType,
 // the return type for this field
 Description: "Create new hotel",

Building APIs Chapter 7

[255]

 Args: graphql.FieldConfigArgument{
 "displayName": &graphql.ArgumentConfig{
 Type: graphql.NewNonNull(graphql.String),
 },
 "city": &graphql.ArgumentConfig{
 Type: graphql.NewNonNull(graphql.String),
 },
 "noRooms": &graphql.ArgumentConfig{
 Type: graphql.NewNonNull(graphql.Int),
 },
 "starRating": &graphql.ArgumentConfig{
 Type: graphql.NewNonNull(graphql.Int),
 },
 },
 Resolve: func(params graphql.ResolveParams)
 (interface{}, error) {
 // marshall and cast the argument value
 displayName, _:=
 params.Args["displayName"].(string)
 city, _:= params.Args["city"].(string)
 noRooms, _:= params.Args["noRooms"].(int)
 starRating, _:= params.Args["starRating"].(int)

 // create in 'DB'
 newHotel:= Hotel{
 Id: randomId(),
 DisplayName: displayName,
 City: city,
 NoRooms: noRooms,
 StarRating: starRating,
 }
 hotels[newHotel.Id] = newHotel

 // return the new Hotel object
 return newHotel, nil
 },
 },
 },
})

Here we use the preceding map described to store the hotel object, after generating an ID
for hotel. The ID is generated using the randomId() helper function:

// Random ID Generator
var letterRunes =
[]rune("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ")

func randomId() string {

Building APIs Chapter 7

[256]

 b:= make([]rune, 8)
 for i:= range b {
 b[i] = letterRunes[rand.Intn(len(letterRunes))]
 }
 return string(b)
}

Note that this is not a good way of generating IDs—one big reason is the possibility of
collisions. Generally when a DB is used, the ID is autogenerated as the primary key of the
object.

The following CURL request shows how to create a hotel using the preceding definition:

curl -g
'http://localhost:8080/graphql?query=mutation+_{createHotel(displayName:"Ho
telX",city:"NY",noRooms:300,starRating:5){id}}'

Subscriptions
Using subscriptions, a client an can get updates on different events. The client holds a
persistent connection to the server and the server streams data to the client.

For example, if we want to know of newly created hotels as a client, it can send a
subscription like so:

subscription {
 newHotel {
 name
 id
 }
}

After this, a connection is opened between them. Then, whenever a new mutation is
performed that creates a hotel, an event in the following form is streamed to the interested
client:

{
 "newHotel": {
 "name": "Taj",
 "id": cdab123
 }
}

Building APIs Chapter 7

[257]

Higher-level patterns
Now that we have seen various API paradigms, let's discuss high-level patterns of API
design. Some of these patterns deal with solving common concerns across a set of instances.
Others describe a design pattern for structuring code in an API server.

Model-View-Controller (MVC)
The MVC design pattern is the most used pattern for designing API systems. The main idea
behind MVC is separated presentation (https:/ ​/​martinfowler. ​com/​eaaDev/
SeparatedPresentation. ​html), where the architect endeavors to make a clear division
between domain objects which model the real world and presentation objects which are the
visual representation elements (or the GUI). This pattern defines clear responsibilities for
each component:

Let's have a look at each component in detail:

Model:
Manages the application state and exposes data entities
Encapsulates business logic that governs that data, such as
accessibility rules

https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://martinfowler.com/eaaDev/SeparatedPresentation.html

Building APIs Chapter 7

[258]

Responsible for persistence
Not coupled with UI or presentation, and can be used with
different user interfaces

View:
Responsible for user interface
Handles rendering of information and user actions
Not stateful
Generally is very configurable with templates

Controller:
Serves the role of the intermediary between the model and view
components
Responsible for updating views on changes in the model
Responsible for orchestrating model updates based on user
interactions
Generally hosts business logic around functionality

In traditional web applications, the view consisted mostly of templates that take some
parameters, render something like a HTML page, and then send to a dumb client like a
browser. However, with the advent of rich clients in modern applications, the view is
increasingly embodied on the client side. It is either the mobile app or smart JavaScript
code that renders UI elements and interacts with the backend using APIs. The UI code itself
often follows MVC pattern variations: one common variation is the Model-View-
ViewModel (MVVM) pattern, where the ViewModel is a semantic definition of the user
interface, and the view is more concerned with actual GUI/ UX specifics/bindings to a
specific UI form factor.

For designing backend APIs, most languages have support of web frameworks where the
key feature is an HTTP router that essentially maps a request URL (or a prefix of the URL)
to a handler function—the controller. We already saw how this works in the Gin
framework. High performance routers like than in Gin or httprouter (another popular
router in Golang) are based on Radix trees (compact prefix trees), and essentially the URL
walks through the tree to figure out the handler.

One might wonder why not to use a HashMap for the router; well, to
allow for path parameter (for example, /v1/hotels/:id/book). Using
the tree to navigate allows us to assign-and-jump URL segments with
path parameters to get to the required handler. Generally there is a router
instance for each method, for efficient representation of the router.

Building APIs Chapter 7

[259]

The controller generally defines logic to understand path/query parameters and interacts
with the model. It hosts the main application business logic on how the API handling needs
to be done. Generally, a web framework gives a specific format for the controller, so that
the developer writing the controller for an API can access context such as the query
parameters, the request body, and so on. Sometimes a set of handlers need to do similar
things (for example, authorization), and such processing is generally done
through middleware in the web framework. The applicable processing is done at the start
or the end of each request processing for a specific handler.

The model components define the entities (typically structs) in Golang, the helper get/set
methods, the persistence, and the business logic in terms of accessibility and so on. One
way of enabling persistence is using Object Relational Models (ORMs), which help in
mapping Golang structures into/from how the data is represented in the database. We shall
look at ORMs and persistence in more detail in Chapter 8, Modeling Data.

Load balancing health checks
Services are generally deployed in clusters of redundant instances (for reliability and
scalability, as described in Chapter 4, Scaling Applications, and Chapter 9, Anti-Fragile
Systems). It is important for only clients to access health instances, to avoid service
unavailability issues.

Health checks help in this regard. Generally, the pattern calls for each service instance to
perform a deep health check (that is, check all subsystems) and tell the LB or the service
registry about the instance health. Generally, the LB or the service registry has an agent
which makes a call to each service backend instance and expects a response within a given
time. To ensure good performance (low latency) for the health check API, one can make the
actual deep health check asynchronous to the health URL API response.

API gateway
Typically in a microservice architecture, the granularity of APIs provided by individual
microservices is often different than what a client needs. Also the set of microservices
changes frequently. In such a scenario, clients don't want an overhead of coordinating and
processing/consolidating API responses from multiple services. Also, modern applications
have multiple user interfaces, with different requirements and network performances. For
example, a desktop client (including a browser) will typically show a richer interface and
have access to a stable network connection. On the other hand, mobile applications have
limited screen real estate and also have to deal with slower/more finicky mobile networks.

Building APIs Chapter 7

[260]

The API gateway pattern provides a solution for this, by implementing a single entry point
for all the backend services. At the least, it performs routing of specific URLs to a backend
service, and provides common features such as authentication, throttling, and so on.

Some may also implement complex features such as aggregation (call multiple services and
compose a consolidated response).

The pattern is depicted here:

One problem that people saw with a single point of API aggregation is that different clients
often have very different interaction models. The general-purpose API gateway becomes an
anti-pattern, as there is no segregation of concerns. It also leads to development bottlenecks
for rolling out new features, as now rollouts have to coordinate with this central team, and
as all changes are made to the same artifact.

Building APIs Chapter 7

[261]

One solution to this problem is to have one API gateway for each frontend—what is called
the Backend For Frontend (BFF) pattern. Each BFF is specific to a client (user experience)
and will typically be maintained by the same team as the client. Thus you get both of the
following advantages:

A lot of the heavy lifting in terms of API calling and aggregation moves to the
backend as in the API gateway pattern.
There is no coupling of concerns in one monolithic code base.

The pattern is illustrated as follows:

As you can see, there is often a shared library to host common code with only the client/UI
specifics being different in each BFF service.

Building APIs Chapter 7

[262]

Sometimes, an aggregation can be very complex and have lots of use cases. In such a case,
it's best to factor out a separate aggregation service. In our travel website example, search
would be such a use case. In this case, the architecture would look as follows:

Go kit
In the Java/Scala ecosystem, there are a lot of frameworks that help in building API-based
solutions. Examples include the Netflix OSS stack and the Twitter Finangle. Go kit (https:/
/​gokit.​io/​) is a collection of packages that together give a slightly opinionated framework
for quickly building a service-oriented architecture.

https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/

Building APIs Chapter 7

[263]

Go kit enforces separation of concerns through a decorator design pattern. It is organized in
three main layers (with some sub-layers):

Transport layer
Endpoint layer
Service layer

This is shown in the following diagram:

Reference: http://gokit.io/faq/#introduction-mdash-understanding-go-kit-key-concepts

The transport layer defines the bindings and implements protocol specifics of various
transports such as HTTP and gRPC (Google RPC).

The innermost service layer is where the business logic is implemented in a transport-
agnostic fashion. Reminiscent of the Java world, one defines an interface for the service and
provides an implementation. This provides another layer of decoupling and ensures that
contract and implementation are not muddled together and are clearly maintained
separately. One can write service middleware to provide cross-cutting functionality, such
as logging, analytics, instrumentation, and so on.

Building APIs Chapter 7

[264]

The middle endpoint layer is somewhat equivalent to the controller in the MVC pattern. It
is the place where the service layer is hooked up, and the safety and anti-fragile logic is
implemented.

Let's take an example of a service that counts vowels in a string. Let's start with our service
implementation:

// CountVowels counts vowels in strings.
type VowelsService interface {
 Count(context.Context, string) int
}

// VowelsService is a concrete implementation of VowelsService
type VowelsServiceImpl struct{}

var vowels = map[rune]bool{
 'a': true,
 'e': true,
 'i': true,
 'o': true,
 'u': true,
}

func (VowelsServiceImpl) Count(_ context.Context, s string) int {
 count:= 0
 for _, c:= range s {
 if _, ok:= vowels[c]; ok {
 count++
 }
 }

 return count
}

The service has an interface that essentially takes a string and returns the number of vowels
in it. The implementation uses a lookup dictionary and counts vowels in the string.

Next, we define the input and output response formats for our service:

// For each method, we define request and response structs
type countVowelsRequest struct {
 Input string `json:"input"`
}

type countVowelsResponse struct {
 Result int `json:"result"`
}

Building APIs Chapter 7

[265]

Using this, we can now define Endpoint:

// An endpoint represents a single RPC in the service interface
func makeEndpoint(svc VowelsService) endpoint.Endpoint {
 return func(ctx context.Context, request interface{}) (interface{},
error) {
 req:= request.(countVowelsRequest)
 result:= svc.Count(ctx, req.Input)
 return countVowelsResponse{result}, nil
 }
}

Till now, we have not defined how the data will reach or be available from
the endpoint.

Finally, we hook up the endpoint using a transport of our choice. In the following example,
we use HTTP as the transport:

func main() {
 svc:= VowelsServiceImpl{}

 countHandler:= httptransport.NewServer(
 makeEndpoint(svc),
 decodecountVowelsRequest,
 encodeResponse,
)

 http.Handle("/count", countHandler)
 log.Fatal(http.ListenAndServe(":8080", nil))
}

func decodecountVowelsRequest(_ context.Context, r *http.Request)
(interface{}, error) {
 var request countVowelsRequest
 if err:= json.NewDecoder(r.Body).Decode(&request); err != nil {
 return nil, err
 }
 return request, nil
}

func encodeResponse(_ context.Context, w http.ResponseWriter, response
interface{}) error {
 return json.NewEncoder(w).Encode(response)
}

Building APIs Chapter 7

[266]

It uses JSON for the serialization format and uses the standard net/http package to define
a HTTP server.

The preceding simple example was intended to give a minimal working example of Go kit.
There are many more rich constructs such as middleware; for more details, please refer
to https:/​/​gokit. ​io/ ​.​

Summary
In this chapter, we looked at REST and GraphQL API models in detail. We built real-life
services using the principles and applicable constructs/libraries in Golang. We also looked
at a popular full-featured API framework called Go kit.

In the next chapter, we will be introducing the entity-relationship, way of modeling data,
describing various persistence stores. We will also take a deep dive into MySQL, Redis, and
Cassandra.

https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/

8
Modeling Data

The most valuable asset in today's businesses is data, but data needs to be ingested and
structured properly to be of maximum value. This chapter discusses how to model entities,
their relationships, and repositories. We will also deep-dive into a few popular data stores,
including using them in Golang to demonstrate the principles of data modeling.

In this chapter, we will cover the following topics:

Entity-relationship modeling
Engineering various consistency guarantees
Relational data modeling and a hands-on deep-dive into MySQL
Key value stores and a hands-on deep-dive into Redis
Columnar stores and a hands-on deep-dive into Cassandra
Patterns for scaling data stores

Entities and relationships
During requirements analysis, we identify key objects (things of interest) around which the
system is designed. In database parlance, these are called entities. They are objects that
are capable of independent existence and that can be uniquely identified. While in object-
oriented design the focus is on modeling behavior, entity-relationship modeling is
concerned more with attributes and the relationships of entities. In entity-relationship
analysis, the relationships are derived from static attributes rather than
behavior/interactions, as in the case of object-oriented analysis.

Modeling Data Chapter 8

[268]

Entities can be usually identified from the nouns in the requirements. For example, in the
travel website, a Hotel is a key entity. Requirement analysis gives us insights into the
attributes of the entities. For example, the Hotel entity might have the following attributes:

A relationship defines how two entities are related to one another. They can usually be
identified from the verbs, linking two or more nouns. For example, a Hotel can have more
than one Room, each of which can be reserved at a specific date range—this implies the
following relationships:

Diagrams such as the preceding one are called entity-relationship diagrams. It documents
and helps to visualize how data is structured in the system.

The entities and the relationships are still at a conceptual level at early stages of
requirement. However, as engineering progresses, these get crystallized into storage
engine-specific databases, schemas, and other constructs. Also, as our understanding of the
domain increases, the initial data design might undergo iterations, including the following:

Generalization: Formation of entity hierarchies to delineate various related
entities
Normalization: Removing redundancy in the modeled entities (we'll learn about
this in detail in the Relational model section)
Denormalization: Figuring out that redundancy is required and can help in
increasing performance in certain use cases (covered in much more detail in the
Scaling data section)
Constraints/business rules: Governance on what values entity attributes can
take and the relationships between entities
Object relational mapper: Mapping of objects in the computation space with the
entities persisted in the storage system

Modeling Data Chapter 8

[269]

Consistency guarantees
Besides modeling entities and their relationships, a key design choice in terms of
consistency guarantees that the persistence layer (database) needs to give to the application.
If a use case involves modifications of two or more entities, these guarantees from the
storage system play a pivotal role in system architecture and SLAs. For example, consider
the account transfer use case for a Banking application. After the transfer is done, the net
debit/credit amounts should tally—no matter what happens in terms of infrastructure
failure. Such logical units of work (debit from account x and credit to account y) are called
transactions.

Let's look at some guarantees that databases (and storage systems in general) provide for
transactions.

ACID (Atomicity, Consistency, Isolation,
Durability)
ACID is a mnemonic for Atomicity, Consistency, Isolation, Durability. It represents one of
the most widely supported (and needed!) set of guarantees from storage systems that
involve transactions. An ACID-compliant database provides an environment where a high
level of consistency can be engineered without complicating the application. This concept is
standardized by the ISO (ISO/IEC 10026-1:1992 Section 4). Let's look at each guarantee in
detail.

Atomicity
A transaction is atomic if it takes place entirely or doesn't happen at all. In no situation is
the database left in a half-modified inconsistent state. The application code can issue read
and write operations for a transaction within a session and either commit (make all the
changes applicable and visible) or abort (none of the changes are made). Even if the
applicable instance or the database instance that was performing the read/write crashes, the
transaction stalls and is recovered later on, but never is the atomic constraint violated.

Modeling Data Chapter 8

[270]

Let's see an example of atomicity. Consider the following simplistic pseudocode, which
transfers $100 from account abc to xyz:

amountToTransfer:= 100
beginTransaction()
srcValue:= getAccountBalance('abc')
srcValue:= srcValue - amountToTransfer
dstValue:= getAccountBalance('xyz')
dstValue:= dstValue + amountToTransfer
commitTransaction()

If the balances in the abc and xyz accounts were $200 and $300, respectively, then after the
transaction commits, the state will be $100 and $400, respectively. If there is a crash or the
application encounters an error, the transaction will roll back and the balances will stay at
the original amounts—$200 and $300, respectively.

Consistency
A storage systems enforces consistency on the transactions by ensuring that at the end of
any transaction the system is in a valid state. If the transaction completes successfully, then
all constraints defined in the storage system will stay applicable and the system will be in a
valid state. If any error occurs in the transaction and there is a rollback, then the system is
left in the original consistent state.

Again, as an example, let's take the account-transfer system. There is a constraint defined
that there will be no overdraft—that is, the account balance will never be less than zero. If a
transfer is initiated and in the preceding example, the abc account balance is $50, then the
transaction will be aborted and rolled back because committing the transaction will leave
the system in an inconsistent state—where the integrity or business constraints are violated.

Isolation
The isolation property guarantees that transactions do not contend with each other.
Whenever there are parallel transactions working on shared entities, the systems exposes a
consistent view of the system for all the transactions.

Modeling Data Chapter 8

[271]

Let's start the discussion by analyzing the different effects of concurrent transactions:

Lost updates: Consider two transactions that update an entity independently. In
this case, one transaction will finish after another and the last transaction update
will overwrite the previous one. For example, if an online editor modifies two
transactions for the same document for two authors, then the last update will
overwrite the updates of the original author—even though they might be
working on totally different pages! To avoid this, the transaction could have
locked the document as a whole so as to serialize access during modification.
Dirty reads: If a transaction is allowed to read the modified (but not yet
committed) value of some entities, then its logic is working with input that is still
dirty, which means not committed. If the other transaction rolls back, then this
transaction might leave the system in an undesirable state. Continuing with the
example of the online editor, a second transaction (author) starts authoring the
documentation that is being modified by a current transaction (author). The
second transaction makes a copy of the modifications at that point in time and
updates the second author's changes on top of it. Meanwhile, the first transaction
rolls back (or changes some earlier data) and now the document that the second
transaction will commit will be in a half-and-half state. This problem could be
avoided if, when a read occurred, the transaction was blocked until the
competing earlier transaction finished.
Non-repeatable reads: Here, a transaction reads an entity more than once during
its lifetime and each time the data returned is different—even though the
transaction did not modify anything. This differs from dirty reads in that the
changed data might be due to a committed transaction. Nevertheless, this
phenomena might lead to erroneous computation. This type of problem can be
avoided if all writers to an entity are blocked until concurrent transactions with
readers of that entity are finished.
Phantom reads: These occur when an entity that is being read in one transaction
is deleted in another transaction. This can also occur when a transaction is
working with a range of entities (documents by a specific author) and this range
changes due to an insert. Again, this problem is solved by blocking transactions
that modify an entity that is being currently read by other transactions.

Modeling Data Chapter 8

[272]

ISO has defined different levels of isolation guarantees, and each specifies the degree to
which one transaction must be isolated from other transactions. Here, isolation refers to the
concurrency effects we just looked at. The levels and their implication on the concurrency
effects are defined as follows:

Isolation level Dirty reads Non-repeatable reads Phantom reads
Read uncommitted Yes Yes Yes
Read committed No Yes Yes
Repeatable No No Yes
Snapshot No No No
Serializable No No No

Essentially, the isolation levels control the following:

When, during a transaction (T1), a read occurs on entities that are being modified
by another transaction (T2).
The T2 read is blocked until the competing T2 transaction finishes (exclusive
lock).
The T1 read gets the value that was committed before T2 started.
T1 reads the modified (but not yet committed) values by T2—there is no
blocking.
A more permissive isolation level increases the amount of concurrency in the
system (thereby improving things such as throughput, responsiveness, and
scalability) but there could be consistency issues, such as reading data that is not
yet committed or writes that are lost (lost updates). On the other hand, a more
restrictive (or higher) isolation level gives a much more stringent version of
consistency but reduces the amount or concurrency (more blocking) and requires
more system resources.
Note that the serializable and snapshot isolation level provide the same isolation
guarantee—but there is a difference in how it's achieved in full. In the serializable
isolation level, there is an exclusive range lock on all the entities involved in the
transaction. As opposed to this, with the snapshot isolation level, there is a copy
(snapshot) of all the entities involved in the transaction, and read/writes work
against these copies (version). During commit time, the storage system does the
same consistency checks, but because competing transactions are not blocked, the
snapshot isolation level gives a higher level of concurrency, albeit at the cost of
more storage/resources.

Modeling Data Chapter 8

[273]

Note that choosing a transaction isolation level does not affect the write
locks that are acquired to perform data modifications. Here, the
transaction always gets an exclusive lock on any data it modifies and
holds that lock until the transaction completes—regardless of the isolation
level.

Durability
A transaction is durable if, after it's committed, the changes to the storage systems are
persistent, irrespective of hardware reboots. So, if the storage system maintained data in
memory, this guarantee would not be met, since on restart the storage system would lose
the data. Durability generally also involves keeping a transaction log so that even in the
case of disk failures, the logs could be replayed to bring the system to a consistent state.

BASE (Basically Available, Soft state, Eventual
consistency)
In 2000, Eric Brewer presented the CAP theorem to the world in his keynote speech at the
ACM Symposium on the Principles of Distributed Computing. The theorem states that in
the presence of a network partition, the system design can either provide availability or
consistency. We shall dig deeper into the CAP theorem in Chapter 5, Going Distributed, but
the immediate implications for storage systems are that for a distributed system providing
ACID compliance is tough to engineer and does not scale well.

To overcome this, some modern storage systems offer an alternative model of consistency,
called BASE—short for Basically Available, Soft state, Eventual consistency. Let's look at
what this means:

Basically Available: This system guarantees the availability that there will be a
response to a request, but the response might not be consistent at all times.
Soft state: The state of the system could change over time, even when there is no
external input.
Eventual consistency: The system will eventually become consistent. Generally,
this happens when various concurrent operations are reconciled and a steady
state is reached.

Modeling Data Chapter 8

[274]

Relational model
The most common way of storing data is based on the notion of a relational model—an idea
introduced by Dr. Edgar Codd in the early 1970s. Here, an entity is stored as a tuple (or
row) of attributes (or columns). A database is simply a set of rows, all of which have the
same set of columns (or schema). Tables are defined using a static data schema; relations
between entities are modeled by foreign keys or relationship tables; rows from different
tables can be referenced using foreign keys.

There are many ways of representing the conceptual data model presented earlier.
However, not all representations are efficient for all use cases. To enable figuring out an
optimal relational structure, Dr. Codd expressed a series of progressively more restrictive
constraints on the structure of data. With each level of constraint/rules, the amount of
redundancy in the representation will be reduced. This process of introducing constraints
and refactoring the structure to reduce redundancy is called normalization, and each level
is called a normal form. Let's look at the various forms.

The first normal form
A table is said to be in 1NF (first normal form) if the following constraints hold:

Each column must have a single value
Columns must have unique names
Each column must have attributes of the same data type
No two rows can be identical

The constraint here is that every attribute (column) should be a single-valued attribute.

For example, the following hotel reservations table violates the first normal form because
there is more than one phone number in the phone column:

Room
ID

Hotel
ID Date Hotel name Hotel

description Phone Star
rating

Free to
cancel

User
ID

1 12321 01/01/2018
FairField
Marriot
SFO

Five-star hotel
suitable for
leisure and
business travelers

+1-408-123123 5 No abc

Modeling Data Chapter 8

[275]

1 12321 01/02/2018
FairField
Marriot
SFO

Five-star hotel
suitable for
leisure and
business travelers

+1-408-123123 5 No pqr

2 12321 01/01/2018
FairField
Marriot
SFO

Five-star hotel
suitable for
leisure and
business travelers

+1-408-123123 5 No xyz

1 456 01/01/2018
Holiday
Inn Menlo
Park

Affordable
business hotel

+1-408-123789
+1-408-123456 4 Yes zzz

To be in the first normal form, the table would have to restructured as follows:

Room
ID HotelId Date HotelName HotelDescription Phone Star

rating FreeCancel Userid

1 12321 01/01/2018 FairField
Marriot SFO

Five-star hotel
suitable for leisure
and business
travelers

+1-408-123123 5 No abc

1 12321 01/02/2018 FairField
Marriot SFO

Five-star hotel
suitable for leisure
and business
travelers

+1-408-123123 5 No pqr

2 12321 01/01/2018 FairField
Marriot SFO

Five-star hotel
suitable for leisure
and business
travelers

+1-408-123123 5 No xyz

1 456 01/01/2018 Holiday Inn
Menlo Park

Affordable business
hotel +1-408-123456 4 Yes zzz

1 456 01/01/2018 Holiday Inn
Menlo Park

Affordable business
hotel +1-408-123789 4 Yes zzz

The first normal form eliminates the phenomenon of repeating groups—it is a set of
attributes that can take multiple values for a given occurrence of an entity type.

The second normal form
The primary key—a set of attributes that uniquely identity the row—for the hotel is
RoomId, HotelId, and Date. In the preceding table, we can see that there is a lot of
repetition of data. For example, HotelDescription only depends on HotelId and not on
other attributes of the reservation. The problem with this repetition is that any
mistake/change in the description would need to change in a lot of places.

Modeling Data Chapter 8

[276]

To avoid this redundancy, Codd's second constraint states that, "Each attribute must be
dependent on the entire primary key."

To enable this, the table must be refactored into two tables, as follows:

Reservations:

Room
Id HotelId Date Userid

1 12321 01/01/2018 abc

1 12321 01/02/2018 pqr

2 12321 01/01/2018 xyz

1 456 01/01/2018 zzz

Hotels:

HotelId HotelName HotelDescription Phone Star
rating FreeCancel

12321
FairField Marriot
SFO

Five-star hotel suitable for
leisure and business travelers +1-408-123123 5 No

12321
FairField Marriot
SFO

Five-star hotel suitable for
leisure and business travelers +1-408-123123 5 No

12321
FairField Marriot
SFO

Five-star hotel suitable for
leisure and business travelers +1-408-123123 5 No

456
Holiday Inn
Menlo Park Affordable business hotel +1-408-123456 4 Yes

456
Holiday Inn
Menlo Park Affordable business hotel +1-408-123789 4 Yes

Now, with this schema, the reservations table has much less redundant information and all
the non-key fields are dependent on the primary key.

Modeling Data Chapter 8

[277]

The third normal form
A little bit of domain investigation reveals that the FreeCancellation column depends
on the StartRating one—five-star hotels don't offer free cancellation, but others do. The
fact that the free cancellation option is mentioned in the database as opposed to hardcoding
in the code is good design—it makes changes to this policy easier, without
touching/releasing code. However, the repetition of information does introduce
redundancy. It can also lead to consistency issues—say that four-star hotels also stop
offering free cancellations; it's much better to model this relationship separately.

Codd's third constraint states that, "Each attribute must be dependent only on the primary
key." To enable this, we refactor the hotels table further, as follows:

Hotels:

HotelId HotelName HotelDescription Phone Star
rating

12321 FairField Marriot SFO Five-star hotel suitable for leisure
and business travelers +1-408-123123 5

12321 FairField Marriot SFO Five-star hotel suitable for leisure
and business travelers +1-408-123123 5

12321 FairField Marriot SFO Five-star hotel suitable for leisure
and business travelers +1-408-123123 5

456
Holiday Inn Menlo
Park Affordable business hotel +1-408-123456 4

456
Holiday Inn Menlo
Park Affordable business hotel +1-408-123789 4

Cancellation policy:

Star rating FreeCancel
5 No
4 Yes
3 Yes
2 Yes
1 Yes

Modeling Data Chapter 8

[278]

The Boyce-Codd normal form
So far, the forms we have discussed have focused on relationships between key and non-
key attributes. We have reduced redundancy by ensuring that each attribute depends on
the whole primary key and nothing else.

But it is possible in some cases that there might be dependencies within parts of a
compound key. The next constraint states, "No part of the primary key may be dependent
on another part of the primary key."

For example, say our flight reservation table had the following structure:

FlightNo Airline Date UserId Seat
AN-501 Emirates 01/01/2018 abc 5A
SQ-502 Singapore Airlines 01/01/2018 pqr 42B
SQ-502 Singapore Airlines 02/01/2018 xyz 5C
SQ-503 Singapore Airlines 03/01/2018 xyx 4C

Here, the primary key is defined as a compound key consisting of FlightNo, Airline, and
Date. But it was seen that the airline's name can be inferred from FlightNo. Thus, part of
the primary key is dependent on the other attributes. To enable BCNF, we refactor this
table into two:

Reservations:

FlightNo Date UserId Seat
AN-501 01/01/2018 abc 5A
SQ-502 01/01/2018 pqr 42B
SQ-502 02/01/2018 xyz 5C
SQ-503 03/01/2018 xyx 4C

FlightDetails:

FlightNo Airline
AN-501 Emirates
SQ-502 Singapore Airlines
SQ-502 Singapore Airlines
SQ-503 Singapore Airlines

Modeling Data Chapter 8

[279]

The fourth normal form
The first four forms (the first through third, and Boyce Codd) apply structural constraints
that allow one to assert compliance. The fourth normal form, on the other hand, is a little
more subtle.

To demonstrate, consider that we will be building a holidays feature on a travel website.
Holidays mean a combination of activities and hotels. To model this, a table is created that
defines all the destinations in which holidays are possible and the options that are
available:

Destination HotelId ActivityId
Singapore ABxx2 124

Singapore ABxx2 567

Singapore Psawe212 124

Dubai sa0943 124

Dubai we1321 124

This table documents all the possible activities/hotels options available at a destination.

The redundancy observed here is that there are multivalued dependencies. This is a type of
dependency that exists between two attributes when, for each value of the first attribute,
there is one or more associated values of the second attribute. For example, the fact that
activityid=124 (snorkeling) is available in Singapore is stored more than once.

The fourth constraint states, "There may be no independent sets of dependencies within a
primary key." This leads to the fourth normal form. To move the model to the fourth
normal form, the preceding table can be decomposed into two tables:

HolidayActivities:

Destination ActivityId
Singapore 124

Singapore 567

Dubai 124

Modeling Data Chapter 8

[280]

HolidayHotels:

Destination HotelId
Singapore ABxx2

Singapore Psawe212

Dubai sa0943

Dubai we1321

SQL
Structured Query Language (SQL) has established itself as generic data definition,
manipulation, and query language for relational data. It has been adopted by almost all
relational database management systems. Besides constructs on inserting, updating,
retrieving, and deleting data, the constructs also define transactional constructs to ensure
ACID semantics and do joins (see the Views section).

A detailed description of SQL is outside the scope of this book. To learn more about SQL,
try doing a quick Google search for SQL syntax and tutorials, or consult any of the many
books on the subject.

Indices
The main goal of a database is to persist data on the disk. However, we do need to search
and retrieve data efficiently from what we have stored. A database index is a data structure
that helps in quickly locating data with specific attributes (keys). Most index
implementations use balanced N-ary tree variants, such as the B+ tree to implement the
index efficiently.

A B+ tree is an N-ary tree, like a B tree, but the difference is that the data structure contains
only the keys—the values are stored externally. The primary value add of the B+ tree over a
binary tree is the high fanout (pointers to child nodes) at each node. This allows for more
efficient searches in the keyspace. This is crucial for databases, as more searches means
more I/O operations (which are much more expensive than memory accesses). The reason
for storing only keys (which is the difference between a B tree and a B+ tree) is that it allows
much more search information to be packed into one disk block—thereby improving cache
efficiency and reducing I/O operations on disks. The leaves of the B+ tree are often linked
with one another to form a linked list; this enables efficient range queries or ordered
iterations.

Modeling Data Chapter 8

[281]

The following diagram shows a B+ tree with a maximum degree of 3, and 6 keys inserted:

For more details, please refer to http:/ ​/​www. ​cburch. ​com/ ​cs/ ​340/​reading/ ​btree/ ​index.
html.

Views
Relational theory includes a construct for the combination of tables (relations) to arrive at a
view of the data. A view is nothing but a relation that is assembled from others. Since this is
derived data, the rules of normalization do not have to apply. Views are constructed using
joins on a table.

The SQL JOIN clause is used to combine rows from two or more tables, based on a common
column. Different type of joins produce different views. To demonstrate this, consider two
normalized tables about reservations and customers:

Reservations:

ReservationId CustomerId Date
123123 axy 01/02/2018
123124 axy 01/03/2018
123125 pqr 02/02/2018
123126 xyz 03/02/2018
123127 abc 03/02/2018

http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html
http://www.cburch.com/cs/340/reading/btree/index.html

Modeling Data Chapter 8

[282]

Customers:

CustomerId CustomerName Phone
axy Alex Hales +1-408-123421
pqr Chris Call +1-408-723777
xyz Stuart Broad +1-408-888213
yyy Chris Gayle +1-408-666999

The CustomerId column is shared between the two tables and serves as
the common mapping column. To demonstrate different types of joins,
there are deliberate discrepancies between the two tables.

Inner join
The inner join is a set intersection and is the default behavior. This join returns rows that
have matching values in both tables:

The following query does an inner join:

SELECT Reservations.ReservationId,
Customers.CustomerName,Reservations.Date
 FROM Orders
 INNER JOIN Customers
 ON Orders.CustomerID=Customers.CustomerID;

Modeling Data Chapter 8

[283]

It produces the following result:

ReservationId CustomerName Date
123123 Alex Hales 01/02/2018
123124 Alex Hales 01/03/2018
123125 Chris Call 02/02/2018
123126 Stuart Broad 03/02/2018

Only rows present in both tables are returned.

Left outer join
In this join, all the records from the table mentioned on the left are returned, along with
matched records from the right table. Absent values are null:

The follow query does a left join:

SELECT Reservations.ReservationId, Customers.CustomerName,Reservations.Date
FROM Orders
LEFT JOIN Customers
ON Orders.CustomerID=Customers.CustomerID;

Modeling Data Chapter 8

[284]

It produces the following result:

ReservationId CustomerName Date
123123 Alex Hales 01/02/2018
123124 Alex Hales 01/03/2018
123125 Chris Call 02/02/2018
123126 Stuart Broad 03/02/2018
123127 NULL 03/02/2018

Right outer join
This is the counterpart to a left join—it returns all records from the right table and the
matched records from the left table. The result is null from columns of the left table, when
there is no match:

The follow query does a right join:

SELECT Reservations.ReservationId, Customers.CustomerName,Reservations.Date
FROM Orders
RIGHT JOIN Customers
ON Orders.CustomerID=Customers.CustomerID;

It produces the following result:

ReservationId CustomerName Date
123123 Alex Hales 01/02/2018
123125 Chris Call 02/02/2018
123126 Stuart Broad 03/02/2018
Null Chris Gayle NULL

Modeling Data Chapter 8

[285]

Full outer join
This type of join does a set union on the two tables. It returns all rows where there is a
match in either the left or the right table rows:

The follow query does a right join:

SELECT Reservations.ReservationId, Customers.CustomerName,Reservations.Date
FROM Orders
FULL OUTER JOIN Customers
ON Orders.CustomerID=Customers.CustomerID;

It produces the following result:

ReservationId CustomerName Date
123123 Alex Hales 01/02/2018
123125 Chris Call 02/02/2018
123126 Stuart Broad 03/02/2018
Null Chris Gayle Null
123127 Null 03/02/2018

Modeling Data Chapter 8

[286]

MySQL deep-dive
MySQL is an open source relational database management system. Its unique design
characteristic is the separation of query processing and other server tasks from the storage
engine (which is responsible for data storage and retrieval). This separation of concerns lets
you to trade off various features without changing your data model. The architecture is
depicted here and described in the following sections:

Connection management
Each client connection gets its own thread within the MySQL process. All the client queries
are handled by that thread. The threads are pooled for efficiency. Authentication is based
on the username and password. X.509 certificates can also be used across an SSL
connection. Once a client has been authenticated, the server verifies whether the client has
the right authorization for the query.

Modeling Data Chapter 8

[287]

Query execution
After connection management, the next component involved is the query cache. This stores
the result sets of read (SELECT) statements that have executed in the recent past. Before
further processing, if there is a cache hit, results are returned from the cache itself.

MySQL parses queries to create an internal structure called the parse tree, and then
performs query planning and optimization on it. These include rewrites, choosing indexes,
choosing the order in which it will read tables, and so on. A pass hints to the optimizer
through special keywords in the query.

The optimizer component is also responsible for the EXPLAIN feature, which helps
developers in figuring out how a query is performing. Using EXPLAIN is as simple as
prefixing the EXPLAIN keyword to the query:

EXPLAIN SELECT * FROM hotel_reservations LIMIT 10;

It produces the following output:

********************** 1. row **********************
 id: 1
 select_type: SIMPLE
 table: hotel_reservations
 type: ALL
 possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 2
 Extra:
 1 row in set (0.00 sec)

There is a wealth of information in the output, the most important of which is described
here:

id: An identifier for each SELECT within the query. This is relevant for nested
queries.
select_type: The type of SELECT query. Possible values are as follows:

Simple: The query is a simple SELECT query without any
subqueries or UNION
Primary: The SELECT is in the outermost query in a JOIN
Derived: The SELECT is part of a subquery within a FROM clause

Modeling Data Chapter 8

[288]

Subquery: It is the first SELECT in a subquery
Dependent subquery: This is a subquery that is dependent upon
on outer query
Uncachable subquery: It is a subquery that is not cacheable (there
are certain conditions for a query to be cacheable)
Union: The SELECT is the second or later statement of a UNION
Dependent union: The second or later SELECT of a UNION is
dependent on an outer query
Union result: The SELECT is a result of a UNION

type: This is one of the most important fields and describes how MySQL plans to
join the tables used. This can be used to infer missing indexes and/or whether the
query needs redesign. Important values are as follows:

const: The table has only one matching row, which is indexed.
This enables the fastest join since the value has to be read once, and
can effectively be treated as a constant when joining other tables.
eq_ref: All parts of an index are used by the join, and the index is
a PRIMARY KEY or UNIQUE NOT NULL. This is the next best
possible execution plan for a query.
ref: All of the matching rows of an indexed column are read for
each combination of rows from the previous table. This type of join
appears for indexed columns compared using the = or <=>
operators.
fulltext: The query uses a FULLTEXT search index—this is used
for information retrieval in TEXT fields.
index_merge: The join uses a list of indexes to produce the result
set. The key column of the EXPLAIN output will contain the keys
used.
unique_subquery: An IN subquery returns only one result from
the table and makes use of the primary key.
index_subquery: The same as unique_subquery, but returns
more than one result row.
range: An index is used to find matching rows in a specific range,
typically when the key column is compared to a constant using
operators, such as BETWEEN, IN, >, and >=.
index: The entire index is scanned.

Modeling Data Chapter 8

[289]

all: The entire table is scanned. This is the worst join type and
indicates a lack of appropriate indexes.
possible_keys: Shows the keys that can be (but may not be used
in the actual execution) used by MySQL to find rows from the
table. If the column is NULL, it indicates that no relevant indexes
could be found.
key: Indicates the actual index used by MySQL. The optimizer
always looks for an optimal key that can be used for the query, and
sometimes it may figure out some other keys that are not listed in
possible_key but are more optimal.
rows: Lists the number of rows that were examined to execute the
query. This is another important column worth focusing on for
optimizing queries, especially for queries that use JOIN and
subqueries.
Extra: Contains additional information regarding the query
execution plan. Values such as using temporary and using filesort in
this column may indicate a troublesome query. For a complete list
of possible values and their meanings, refer to the MySQL
documentation (https:/ ​/​dev. ​mysql. ​com/ ​doc/ ​refman/ ​5. ​6/​en/
explain- ​output. ​html#explain- ​extra- ​information).

To demonstrate how EXPLAIN can be used to help with debugging, consider the following
query:

EXPLAIN SELECT * FROM
hotel_reservations r
INNER JOIN orders o ON r.reservationNumber = o.orderNumber
INNER JOIN customers c on c.id = o.customerId
WHERE o.orderNumber = PQR1111

This will produce the following output:

********************** 1. row ********************
id: 1
select_type: SIMPLE
table: c
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 70
Extra:

https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information
https://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information

Modeling Data Chapter 8

[290]

********************** 2. row ********************
id: 1
select_type: SIMPLE
table: o
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 210
Extra: Using join buffer
********************** 3. row ********************
id: 1
select_type: SIMPLE
table: r
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 3000
Extra: Using where; Using join buffer
3 rows in set (0.00 sec)

The preceding results indicate a bad query. The join type is shown as ALL (the worst) for all
tables—this means that MySQL was unable to identify any indexes to help with join. The
rows column shows that the DB had to scan all of the records of each table for query. This
means that for executing the query, it will read 70 × 210 × 3,000 = 44,100,000 rows to find
the matching results. This is very bad performance and will degrade as the data size grows.
An obvious way to help this query is to add indices, like so:

ALTER TABLE customers
ADD PRIMARY KEY (id);
ALTER TABLE orders
ADD PRIMARY KEY (orderNumber),
ADD KEY (customerId);
ALTER TABLE hotel_reservations
ADD PRIMARY KEY (reservationNumber);

This will enable MySQL to utilize indices and avoid extended table reads.

Modeling Data Chapter 8

[291]

Storage engines
MySQL stores each database as a subdirectory of the MySQL data directory in the
filesystem. The MySQL architecture component responsible for this maintenance is called
the storage engine. The ACID compliance is also primarily driven by this layer. It is a
pluggable architecture that allows different plugins of different storage engines, as
described in the following sections.

InnoDB
InnoDB is the default transactional storage engine for MySQL and the most
important/widely used engine plugin. It's fully ACID-compliant with support for
transactions. Its performance and automatic crash-recovery make it popular for non-
transactional storage needs, too. You should use InnoDB for your tables unless you have a
compelling reason to use a different engine.

InnoDB stores its data in a series of one or more data files that are collectively known as a
tablespace. Each tablespace contains pages (blocks), extents, and segments. The InnoDB
implementation includes a bunch of optimizations, including read-ahead for prefetching
data from disk, an adaptive hash index that automatically builds hash indexes in memory
for very fast lookups, and an insert buffer to speed up writes:

Modeling Data Chapter 8

[292]

InnoDB defaults to the REPEATABLE READ isolation level, and uses Multiversion
Concurrency Control (MVCC) to achieve high concurrency. For each row, the engine
stores two additional/hidden fields that record when the row version and when it was
deleted/expired. A system-wide number for each transaction is used to identify the version
(rather than using timestamps). Thus, for REPEATABLE READ and the isolation level, the
following apply to each operation:

When a transaction starts, a new transaction ID is generated.
SELECT: The engine examines each row to ensure that it meets two criteria:

InnoDB must find a version of the row that is less than or equal to
the current transaction ID. This ensures that either the row existed
before the transaction began, or the transaction created or altered
the row.
The row's deletion version must be null or greater than the
transaction's version. This ensures that the row was available (not
deleted) when the the transaction started.

INSERT: The transaction ID is stored in the version ID with the new row.
DELETE: The transaction ID is stored as the row's deletion ID.
UPDATE: InnoDB creates a new copy of the row, and uses the transaction ID as
the version number for the new row.

The advantage of MVCC is the increased concurrency. The drawback is the additional
storage and maintenance work.

MyISAM
This is the original, and oldest, storage engine included in MySQL. It does not support
transactions. Its design is optimized more for speed and compact data storage, and is much
simpler than that of InnoDB. The index structure is essentially a list of offsets within the
data file. Inserts are just appends to the data file. However, deletes and updates are not so
straightforward, since they can leave holes in, or fragment, the data file.

MyIASM does have some severe scalability limitations—the most important ones being the
following:

Key cache: Mutexes guard the key cache and serialize access to it.
Table locking: Readers obtain read locks on all tables they need to read. Writers
obtain exclusive (write) locks. Essentially, only one session is allowed to update a
table at a time, forcing a huge serialization bottleneck for updates.

Thus, it's pretty ineffective for even moderate write loads.

Modeling Data Chapter 8

[293]

Other plugins
MySQL has a variety of other storage engines either for experimental or specialized use
cases. Some of them are listed here:

The archive engine: Archive is not a transactional storage engine, but simply
optimized for high-speed inserting and compressed storage. This supports only
INSERT and SELECT queries, and it does not support indexes until MySQL 5.1.
It's much more IO efficient compared to MyISAM. Archive tables are thus best
for logging and data acquisition.
The CSV engine: The CSV plugin can use comma-separated values (CSV) files
as tables. However, indexes on the files are not supported. CSV tables are thus
useful as a data interchange format, since the tables can be constructed from CSV
files automatically, while also allowing access to the files from other programs.
The memory engine: This plugin (formerly called HEAP tables) stores data in
memory and thus is good when you need fast access to data, and durability after
restart is not that important. They are useful as lookup/map tables, but generally
it's advisable to use key-value stores for these use cases.

High availability/scalability
MySQL has a feature called partitioning, where data of a table is transparently split across
multiple physical databases, called partitions/fragments. By default, the table's Primary Key
MD5 hash is used for partitioning amount the fragments. If a transaction or query needs to
access data from multiple fragments, then one of the nodes takes on the role of the
transaction coordinator and coordinates work on the other nodes. This coordinator also
combines results before forwarding to the application.

A typical high-availability configuration includes a master database that handles data write
operations and is replicated to multiple slaves that handle all read operations. The master
server continually pushes binlog events (which describe the changes) to connected slaves.
In the event of master failure, a slave can be promoted to become the new master. The
replication here is asynchronous.

MySQL Cluster is another alternative to the master-slave architecture and allows a set of
nodes to serve both reads and writes. MySQL Cluster is implemented through the NDB or
NDBCLUSTER storage engine (NDB stands for Network Database). There are some known
limitations, described
here: https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-limitations.html.

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-limitations.html

Modeling Data Chapter 8

[294]

Object Relational Mappers (ORMs)
While the application code can certainly interact with the database using SQL statements,
you needs to be careful to ensure that the DB interactions are not strewn across the
application layers. The Data Access Layer (DAL) is a layer that should be responsible for
handling entities and their interactions with the database. The rest of the application is
abstracted from the DB interaction details.

Objects Relational Mappers (ORMs) are a special form of DAL, which translate DB
entities into objects. Generally this is done seamlessly behind the scenes via generic glue
code.

GORM is the most popular Go ORM out there. To install it, we run the following
command:

go get "github.com/jinzhu/gorm"

To use GORM, you must also specify the database to be used along with the drivers and
dialect. Thus, the GORM import inside your application would be as follows:

import (
 _ "github.com/go-sql-driver/mysql"
 "github.com/jinzhu/gorm"
 _ "github.com/jinzhu/gorm/dialects/mysql"
)

To connect to the database, the code for mysql would be something similar to the
following:

db, err:= gorm.Open("mysql",
"root:@tcp(127.0.0.1:3306)/users?charset=utf8&parseTime=True")
if err != nil {
 panic("failed to connect database")
}

Note the parseTime flag – this is used to enable gorm to translate MySQL
DateTime fields to the Golang Time struct.Once connected the
db handle can be used to perform operations.

Modeling Data Chapter 8

[295]

Before looking at the operations, let's see what an entity that is managed by GORM looks
like. It's a normal Go struct, which embedded the GORM gorm.Model struct. This base
struct provides some standard fields, such as timestamps, as shown in the following
example. Let's define a User entity/model:

type User struct {
 gorm.Model
 Name string
 Age uint
}

GORM has a migration feature that allows the DB structure to be in sync with the entity
definition. While this is cool in dev, generally it is not advisable to use this in production
for fear of unchecked/unwanted DB changes, which can cause data loss. But since this is a
dev example, we can initiate schema migration via the following code:

// Migrate the schema
db.AutoMigrate(&User{})

This will create a table called users, as follows:

+------------+------------------+------+-----+---------+----------------+
| Field | Type | NULL | Key | Default | Extra |
+------------+------------------+------+-----+---------+----------------+
id	int(10) unsigned	NO	PRI	NULL	auto_increment
created_at	timestamp	YES		NULL	
updated_at	timestamp	YES		NULL	
deleted_at	timestamp	YES	MUL	NULL	
name	varchar(255)	YES		NULL	
age	int(10) unsigned	YES		NULL	
+------------+------------------+------+-----+---------+----------------+

Note the id, created_at, updated_at, and deleted_at (for soft delete)
timestamps. They are the additional fields inherited from gorm.Model.
The name of the table is inferred from the struct name—it is the plural of
the model name after translating the camel case to using underscore. For
example, if the model name was UserModel, the table name would have
been user_models.

Now that we have our database, we can create the following user:

 // Create
 db.Create(&User{Name: "James Bond", Age: 40})

Modeling Data Chapter 8

[296]

This will insert a record in the database through a SQL query:

INSERT INTO users (name,age) VALUES ('James Bond',40);

We can query the database using various fields:

 // Read
 var user User
 db.First(&user, 1) // find user with id 1
 fmt.Println(user)

 db.First(&user, "Name = ?", "James Bond") // find James Bond
 fmt.Println(user)

This will translate to SQL queries:

SELECT * FROM users WHERE name='James Bond' limit 1;

Entities can be updated as follows:

 // Update - update Bond's age
 db.Model(&user).Update("Age", 41)

This will update the entity as well as the database.

Deletion is somewhat quirky in GORM. The main API is straightforward:

 // Delete - delete user
 db.Delete(&user)

However, if the entity has the deleted_at field, then rather than deleting the entry,
GORM will just set the deleted_at value to the current time. These records will be
skipped for reads done via GORM. So, the preceding select query is really as follows:

SELECT * FROM users WHERE name='James Bond' AND deleted_at IS NULL limit
1;

To actually delete from the database, you can use the Unscoped API:

db.Unscoped().Delete(&user)

The whole hello world program that writes, reads, and deletes is described as follows:

package main
import (
 "fmt"
 _ "github.com/go-sql-driver/mysql"
 "github.com/jinzhu/gorm"
 _ "github.com/jinzhu/gorm/dialects/mysql"

Modeling Data Chapter 8

[297]

)
type User struct {
 gorm.Model
 Name string
 Age uint
}
func main() {
 db, err:= gorm.Open("mysql",
"root:@tcp(127.0.0.1:3306)/users?charset=utf8&parseTime=True")
 if err != nil {
 panic("failed to connect database")
 }
 defer db.Close()
 // Migrate the schema
 db.AutoMigrate(&User{})
 // Create
 db.Create(&User{Name: "James Bond", Age: 40})
 // Read
 var user User
 db.First(&user, 1) // find user with id 1
 fmt.Println(user)
 db.First(&user, "Name = ?", "James Bond") // find James Bond
 fmt.Println(user)
 // Update - update Bond's age
 db.Model(&user).Update("Age", 41)
 fmt.Println(user)
 // Delete - delete user
 db.Delete(&user)
}

This program will not delete the James Bond entry, since Delete() is just a soft delete.
After the program is run, the DB will have the following entry:

mysql> SELECT * FROM users WHERE name='James Bond' ;
+----+---------------------+---------------------+---------------------+---
---------+------+
| id | created_at | updated_at | deleted_at |
name | age |
+----+---------------------+---------------------+---------------------+---
---------+------+
| 5 | 2018-05-06 08:44:22 | 2018-05-06 08:44:22 | 2018-05-06 08:44:22 |
James Bond | 41 |
+----+---------------------+---------------------+---------------------+---
---------+------+
1 row in set (0.01 sec)

Modeling Data Chapter 8

[298]

GORM has support for transactions. For example, the following code will either create both
userA and userB, or will not create either user:

func createTwoUsers(db *gorm.DB) {
 userA:= User{Name: "UserA", Age: 20}
 userB:= User{Name: "UserB", Age: 20}

 tx:= db.Begin()
 if err:= tx.Create(&userA).Error; err != nil {
 tx.Rollback()
 }
 if err:= tx.Create(&userB).Error; err != nil {
 tx.Rollback()
 }

 //commit!
 tx.Commit()
}

GORM also has support for relationships, which translates object relationships onto the DB
structure. Relationships can be belongs-to, one-to-one, one-to-many, and many-to-many.
For example, the following program defines a belongs-to relationship between a hotel and a
hotel chain:

package main

import (
 _ "fmt"
 _ "github.com/go-sql-driver/mysql"
 "github.com/jinzhu/gorm"
 _ "github.com/jinzhu/gorm/dialects/mysql"
)

type HotelChain struct {
 gorm.Model
 Name string
}

type Hotel struct {
 gorm.Model
 Name string
 NoRooms uint
 Chain HotelChain `gorm:"foreignkey:ChainId"` // use ChainId as foreign
key
 ChainId uint
}

Modeling Data Chapter 8

[299]

func main() {
 db, err:= gorm.Open("mysql",
"root:@tcp(127.0.0.1:3306)/users?charset=utf8&parseTime=True")
 if err != nil {
 panic("failed to connect database")
 }
 defer db.Close()

 // Migrate the schema
 db.AutoMigrate(&HotelChain{})
 db.AutoMigrate(&Hotel{})
 db.Model(&Hotel{}).AddForeignKey("chain_id", "hotel_chains(id)",
"CASCADE", "CASCADE")
 // Create some entities and save
 taj:= HotelChain{Name: "Taj"}
 db.Save(&taj)
 vivanta:= Hotel{Name: "Vivanta by the sea", NoRooms: 400, Chain: taj}
 db.Save(&vivanta)
}

AddForeignKey() is needed since the foreign key index and constraints
are not set by GORM. It's an open issue.

Key/value stores
Modern systems demand a lot from the storage systems. There is a need to scale storage
systems in terms of queries per second (QPS), the number of concurrent connections, the
size of the data, and so on. Also, many applications need ultra-fast requests for a few use
cases. While relational systems have, and continue to provide, a reliable persistence
technology, the traditional scale-up approach, that is, using better hardware equipment, is
not able to keep up with requirements. It is extremely difficult to provide ACID semantics
in distributed systems, making scale-out for relational databases a difficult task. Note that
there are mechanisms such as distributed transactions, but using them is very complex and
they generally lead to very fragile systems. Joins are particularly inefficient in distributed
databases. In single-instance databases, joins are efficiently handled using indices and data
locality. In distributed nodes, joins will need movement of data across the network to
execute the necessary comparison operations. These inefficiencies cause distributed joins to
be a inefficient compared to single-node systems.

We will do a deep-dive on scaling data later in this chapter, but in this section we wil
introduce a new class of storage systems, called key-value stores.

Modeling Data Chapter 8

[300]

Concepts
The idea of key/value-based storage systems is similar to the concept of hash tables in
programming languages. Like in the relational model, entities are stored as tuples, but with
just one key that can uniquely identify the tuple. Relationships are not maintained at the
storage level. The Value part of the tuple is pretty much opaque to the storage system.

The advantage with these reduced constraints is the scalability of the system. Using
concepts such as distributed hash tables, the data space can now be sharded across multiple
instances easily. Reads/writes need to go to only one shard (node) since there are no
relationships that could affect other tuples. Scale-out can be easily handled by an efficient
redistribution of tuples across new nodes. Another advantage of these systems is
performance—they are generally a magnitude of times faster than relational systems. We
will look at distributed hash tables in detail in the Scaling data section.

A variant of the key-value store is document stores. Here, the data has a structure—usually
XML or JSON. However, these systems allow documents of varying schemas to be stored in
the same database. This allows storage of things such as optional columns for entities.
These values are referred to as documents, hence the name. Compared to key/value stores,
document stores allow for more complex queries, and aggregations over documents.

In the next section, we will do a deep-dive into a very popular key-value store, called
Redis.

Redis deep-dive
Redis is an open source key/value store that primarily stores data in-memory, but offers
options for persistence. Besides plain key-value maps, Redis also offers advanced
constructs, such as data structures and publish/subscribe message channels.

Architecture
The Redis server is a single-threaded program written in C, which uses epoll/kqueue to
enable asynchronous IO. You might wonder whether a single-threaded system can scale,
but oh boy does Redis scale! The key insight here is that for storage systems, the CPU is
rarely the bottleneck—most of the time is spent in I/O (network or storage). Kernel
constructs such as epoll/kqueue allow application programs to initiate I/O and not get
blocked by the operation. This way, a single thread can multiplex a lot of I/O operations.

Modeling Data Chapter 8

[301]

The single-threaded architecture also provides one key benefit—no race conditions. Since
there aren't multiple threads, there is no need for synchronization. This means that there
are no lock contentions or nasty deadlocks.

The performance of the architecture can be seen from the benchmark shared by Jak Sprats
on the Redis group (http:/ ​/​nosql. ​mypopescu. ​com/ ​post/ ​1078083613/ ​redis- ​a-
concurrency-​benchmark):

The x axis is the number of concurrent requests and the y axis is the performance in terms
of QPS. The benchmark shows a performance of 90,000 QPS with 26,000 concurrent
requests!

More benchmarks are detailed here: https://redis.io/topics/benchmarks.

Data structures
Redis has a wealth of data structures, but not maps. Here is a non-exhaustive list of the data
structures:

Lists: Essentially a linked lists of string elements with elements in the order of
insertion (first in, first out).
Sets: Collections of unique, unsorted string elements.

http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
http://nosql.mypopescu.com/post/1078083613/redis-a-concurrency-benchmark
https://redis.io/topics/benchmarks

Modeling Data Chapter 8

[302]

Sorted sets: A data structure similar to sets, but where every string element is
associated with a score—which is a floating number. The elements inside the
sorted set can be accessed (iterator) in order of the score. This allows use cases of
leader board, such as "Top-10 performing hotels."
Hashes: These are maps with an additional level of fields and associated values.
This allows a partial update of the value (just a field) and efficient retrieval (all
the fields of the hash).
Bitmap: Bit arrays with constructs to set/clear individual bits, count all bits set to
1, find the first set bit, and so on.
HyperLogLogs: HyperLogLog is a probabilistic data structure that can efficiently
estimate the cardinality of a set. We will look at probabilistic data structures in
detail later in the chapter.
Pub/sub: This construct allows clients to send (publish) messages to an abstract
channel and other clients (subscribers) to consume messages from the channels.
Details of this paradigm are captured in Chapter 6, Messaging. It should be noted
that there is no storage of messages—only those subscribers who are currently
listening get published messages.

For more details, refer to https:/ ​/​redis. ​io/​commands.

Persistence
Persistence in Redis is achieved either using snapshots or by journaling.

Snapshotting means periodic writes of all objects in memory to disk to files, called RBD
files. By default, the periodicity values are one of the following:

10,000 changes in 60 seconds
10 changes in 5 minutes
1 change in 15 minutes

https://redis.io/commands
https://redis.io/commands
https://redis.io/commands
https://redis.io/commands
https://redis.io/commands
https://redis.io/commands
https://redis.io/commands
https://redis.io/commands
https://redis.io/commands

Modeling Data Chapter 8

[303]

When a write to disk is needed, Redis forks a child process for the save and this process is
responsible for serializing all the data in memory, writing the serialized data to a temporary
file, and renaming the temporary file to the actual one. While the fork may seem expensive,
it's not due to the copy-on-write semantics offered by most operating systems. A page will
be duplicated only when there are changes to it either in the parent or child process. When
a fork happens, in many OSes, such as Linux, the kernel cannot predict the actual space
needed, just the worst case that all pages will be duplicated. Some OSes, such as Linux,
will, by default, fail the fork if there is not as much free RAM as all the parent memory
pages. In Linux this can be turned off with the overcommit_memory setting, and this is
necessary for Redis, which hogs a lot of memory.

The other approach—journaling—works by logging every write operation done by the
server. The logins are done by appending to a file—which is very efficient. The log can be
replayed at server startup to reconstruct the original dataset. This mode is called the
append-only file (AOF) mode.

The AOF mode provides more reliability but at a performance cost, since now all writes
must be logged to disk. The default fsync policy is flushed every one second—but this
comes with the risk of losing data. If, to avoid this, the setting is changed to fsync at every
write, the performance of writes will be significantly slower. Another disadvantage of AOF
is that for use cases such as counters, the file can get big very fast with very little value (the
old counter values are not needed!).

I generally recommend you don't enable persistence but rather use high-availability
solutions (described in the Clustering section). Also, data that is a single source of truth
should ideally not be stored in Redis.

This is not the only persistence done by Redis. It includes a hand-coded
virtual-memory manager, which works for the same use cases as OS
virtual memory swap (move unused memory parts to the disk to free up
memory). It's described here: http:/ ​/​oldblog. ​antirez. ​com/ ​post/ ​redis-
virtual- ​memory- ​story. ​html by Salvatore Sanfilippo (the creator of
Redis), with explanations on why the OS virtual memory management
was not good enough for Redis.

http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html
http://oldblog.antirez.com/post/redis-virtual-memory-story.html

Modeling Data Chapter 8

[304]

Clustering
Redis supports master-slave replication. A single master Redis server can have multiple
Redis servers as slaves. Sentinel is a tool that provides HA using this base replication
construct. It has features for the following:

Monitoring: Ensures all Redis instances are working as expected.
Notification: Notes whether something is wrong with any of the Redis instances.
Automatic failover: If a master is not working as expected, Sentinel can promote
a slave to a master and reconfigure the other slaves to use the new master.
Configuration provider: Sentinel acts as a source of authority for clients' service
discovery; clients connect to Sentinels in order to ask for the address of the
current Redis master.

For more information, check out the following resources:

https:/​/ ​redis. ​io/ ​topics/ ​sentinel

Go Redis client support for Sentinel: https:/ ​/​github. ​com/​mediocregopher/
radix.​v2/ ​tree/ ​master/ ​sentinel

Very recently, Redis has also launched Redis Cluster. Here, keys are distributed across a set
of nodes, with automatic rebalancing as new nodes are added/removed. The distribution is
achieved by partitioning the keyspace, which is split into 16,384 slots, where each slot can
be hosted on one of the Redis nodes. Specialized clients are needed to connect to the cluster,
and each client has a topology mapping of shard-to-Redis-node instances. High availability
is achieved by replicating data on more than one shard node. There are some limitations
with Redis Cluster. More information is available at https:/ ​/​redis. ​io/ ​topics/ ​cluster-
tutorial.

Use cases
Redis can be used for multiple use cases; some are described here:

Session cache: One of the most common use cases of Redis is to store sessions,
generally as hashes. The reason for this is that user sessions generally have a lot
of I/O, since every API request from the user needs the session and often results
in some updates. Keeping the sessions in a database is an option, but the
performance characteristics don't make for good API performance. Redis is
perfect for this use case, since the session information, though important, is not
absolutely important. Thus, durability is not that big of a concern.

https://redis.io/topics/sentinel
https://redis.io/topics/sentinel
https://redis.io/topics/sentinel
https://redis.io/topics/sentinel
https://redis.io/topics/sentinel
https://redis.io/topics/sentinel
https://redis.io/topics/sentinel
https://redis.io/topics/sentinel
https://redis.io/topics/sentinel
https://redis.io/topics/sentinel
https://redis.io/topics/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://github.com/mediocregopher/radix.v2/tree/master/sentinel
https://redis.io/topics/cluster-tutorial
https://redis.io/topics/cluster-tutorial
https://redis.io/topics/cluster-tutorial
https://redis.io/topics/cluster-tutorial
https://redis.io/topics/cluster-tutorial
https://redis.io/topics/cluster-tutorial
https://redis.io/topics/cluster-tutorial
https://redis.io/topics/cluster-tutorial
https://redis.io/topics/cluster-tutorial
https://redis.io/topics/cluster-tutorial
https://redis.io/topics/cluster-tutorial
https://redis.io/topics/cluster-tutorial

Modeling Data Chapter 8

[305]

Application cache: Redis can serve as an external cache for data that is otherwise
in a database. This allows applications to store/access frequently accessed or
rarely changing data from the cache and not incur the performance penalty of the
usually slower database.
Distributed lists: If you want to maintain lists, such as like newest items, across
multiple application instances, the list data structure of Redis is a perfect
fit. LPUSH/RPUSH can be used to push items at the head or tail of the list,
respectively. Other commands, such as LTRIM/RTRIM, can be used to prune the
lists.
Keeping stats: Redis offers easy engineering of distributed counters. The INCRBY
command can be used to increment counters atomically, while others, such as
GETSET, allow for clearing of counters.
Queues and Pub/Sub: Redis queues and pub/sub channels can be used to
exchange messages, enabling features such as background workers.

Golang usage
Taking a pause from the theory, let's look at how we can use Redis in Go. At the time of
writing this book, there are two main Redis clients in Go:

Redigo (https:/ ​/ ​github. ​com/ ​garyburd/ ​redigo) provides a print-like API for
Redis commands. It also supports pipelining, publish/subscribe, connection
pooling, and scripting. It's easy to use and the reference is located at https:/ ​/
godoc.​org/ ​github. ​com/ ​garyburd/ ​redigo/ ​redis.
Radix (https:/ ​/ ​github. ​com/ ​mediocregopher/ ​radix. ​v2) provides easy-to-use
packages for most Redis commands, including pipelining, connection pooling,
publish/subscribe, and scripting, but it also provides clustering support. The
Radix.v2 package is broken into six sub-packages (cluster, pool, pubsub, Redis,
sentinel, and util).

As an example, we will take a feature where we want to maintain likes about a hotel in
Redis. The following struct defines the entity we want to model:

type Hotel struct {
 Id string
 Name string
 City string
 StarRating int
 Likes int
}

https://github.com/garyburd/redigo
https://github.com/garyburd/redigo
https://github.com/garyburd/redigo
https://github.com/garyburd/redigo
https://github.com/garyburd/redigo
https://github.com/garyburd/redigo
https://github.com/garyburd/redigo
https://github.com/garyburd/redigo
https://github.com/garyburd/redigo
https://github.com/garyburd/redigo
https://github.com/garyburd/redigo
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://godoc.org/github.com/garyburd/redigo/redis
https://github.com/mediocregopher/radix.v2
https://github.com/mediocregopher/radix.v2
https://github.com/mediocregopher/radix.v2
https://github.com/mediocregopher/radix.v2
https://github.com/mediocregopher/radix.v2
https://github.com/mediocregopher/radix.v2
https://github.com/mediocregopher/radix.v2
https://github.com/mediocregopher/radix.v2
https://github.com/mediocregopher/radix.v2
https://github.com/mediocregopher/radix.v2
https://github.com/mediocregopher/radix.v2
https://github.com/mediocregopher/radix.v2
https://github.com/mediocregopher/radix.v2

Modeling Data Chapter 8

[306]

Here, we will use the Radix client. To install it, use the following command:

go get github.com/mediocregopher/radix.v2

The first step is, of course, connecting. This can be done as follows:

 conn, err:= redis.Dial("tcp", "localhost:6379")
 if err != nil {
 panic(err)
 }
 defer conn.Close()

The code connects to localhost. Of course, in production code, you should take this value as
a configuration item.

Next, let's look at how we can save a hotel entity in Redis. The following code takes a hotel
and saves it in Redis:

func setHotel(conn *redis.Client, h *Hotel) error {
 resp:= conn.Cmd("HMSET",
 "hotels:"+h.Id,
 "name", h.Name,
 "city", h.City,
 "likes", h.Likes,
 "rating", h.StarRating)
 if resp.Err != nil {
 fmt.Println("save err", resp.Err)
 return resp.Err
 }

 return nil
}

As you can see, we are using the hashes data structure to store likes. This is because we
know that the likes attribute will be independently incremented. HMSET is a multiple set for
the hash object. Each hotel is identified by the string with the concatenation of "hotels" with
the id of the hotel.

The following code gets a hotel with a specific hotel from Redis:

func getHotel(conn *redis.Client, id string) (*Hotel, error) {
 reply, err:= conn.Cmd("HGETALL", "hotels:"+id).Map()
 if err != nil {
 return nil, err
 }

 h:= new(Hotel)
 h.Id = id

Modeling Data Chapter 8

[307]

 h.Name = reply["name"]
 h.City = reply["city"]
 if h.Likes, err = strconv.Atoi(reply["likes"]); err != nil {
 fmt.Println("likes err", err)
 return nil, err
 }
 if h.StarRating, err = strconv.Atoi(reply["rating"]); err != nil {
 fmt.Println("ratings err", err)
 return nil, err
 }

 return h, nil
}

Here, we are using the HGETALL command to get all of the fields of a hash. Then, we use the
Map() method of the response object to obtain a map of field names to the values. We then
construct a hotel object from the individual fields.

Now, coming to the likes, which is a key method that required is to increment counts of a
hotel. Along with maintaining counts, we also have a requirement of determining the most-
liked hotels. To enable the latter requirement, we use a sorted-set dataset. The first code
snippet implements a like for a hotel:

unc incrementLikes(conn *redis.Client, id string) error {

 // Sanity check to ensure that the hotel exists!
 exists, err:= conn.Cmd("EXISTS", "hotels:"+id).Int()
 if err != nil || exists == 0 {
 return errors.New("no such hotel")
 }

 // Use the MULTI command to inform Redis that we are starting a new
 // transaction.
 err = conn.Cmd("MULTI").Err
 if err != nil {
 return err
 }

 // Increment the number of likes for the hotel. in the album hash by 1.
 // Because we have initiated a MULTI command, this HINCRBY command is
queued NOT executed.
 // We still check the reply's Err field to check if there was an error
for the queing
 err = conn.Cmd("HINCRBY", "hotels:"+id, "likes", 1).Err
 if err != nil {
 return err
 }

Modeling Data Chapter 8

[308]

 // Now we increment the leaderboard sorted set
 err = conn.Cmd("ZINCRBY", "likes", 1, id).Err
 if err != nil {
 return err
 }

 // Execute both commands in our transaction atomically.
 // EXEC returns the replies from both commands as an array
 err = conn.Cmd("EXEC").Err
 if err != nil {
 return err
 }
 return nil
}

This uses the MULTI option of redis to start a transaction and update both the likes for a
hotel and the likes sorted set atomically.

The following code snippet gets the top-three liked hotels:

func top3LikedHotels(conn *redis.Client) ([]string, error) {
 // Use the ZREVRANGE command to fetch the hotels from likes sorted set
 // with the highest score first
 // The start and stop values are zero-based indexes, so we use 0 and 2
 // respectively to limit the reply to the top three.

 reply, err:= conn.Cmd("ZREVRANGE", "likes", 0, 2).List()
 if err != nil {
 return nil, err
 }

 return reply, nil

}

The ZREVRANGE command returns the sorted set members in reverse order of rank. Since it
returns an array response, we use the List() helper function to convert the response to
[]string.

Modeling Data Chapter 8

[309]

Wide column stores
Wide column stores, or column-oriented database systems, are storage systems that store
data by columns rather than by rows. For example, consider the following simple table:

FirstName LastName Age
John Smith 42
Bill Cox 23
Jeff Dean 35

In an RBDMS, the tuples would be stored row-wise, so the data on the disk would be stored
as follows:

John,Smith,42|Bill,Cox,23|Jeff,Dean,35

In online-transaction-processing (OLTP) applications, the I/O pattern is mostly reading
and writing all of the values for entire records. As a result, row-wise storage is optimal for
OLTP databases.

In a columnar database however, all of the columns are stored together. So, the tuples
would be stored as follows:

John,Bill,Jeff|Smith,Cox,Dean|42,23,35

The advantage here is that if we want to read values such as FirstName, reading one disk
block reads a lot more information in the row-oriented case. Another advantage, since each
block holds the similar type of data, is that we can use efficient compression for the block,
further reducing disk space and I/O.

Such databases are useful in analytics explanations. Examples include Amazon Redshift
and Vertica. The details are outside the scope of this book.

Modeling Data Chapter 8

[310]

Column family stores
An increasing prevalent new family of stores are column family stores, which partition
rows so that a table can stride across multiple machines. On each machine, the row data is
structured as a multidimensional sorted map. The distribution helps in scaling the store to a
large amount of data, while the sorted attribute helps in doing things such as range scans.
This design was first promulgated by the Google BigTable team (https:/ ​/​ai. ​google/
research/​pubs/​pub27898).

In the following sections, we will take a detailed look at an example: Cassandra.

Cassandra deep-dive
Apache Cassandra is an open source implementation of the BigTable idea, but with other
constructs as well. For example, it also incorporates several design principles of Amazon's
Dynamo for fault-tolerance and data replication. Cassandra was developed at Facebook,
but has been released as open source.

The following sections describe the Cassandra internals, and then we will write Go code to
use Cassandra.

Data distribution
One simple way of partitioning rows over a set of nodes is to use hashing. You can pick a
hash function, and use something such as hash(key_x) % n_nodes to get the node that
would store the data for key_x. The problem with this scheme is that adding/deleting
nodes would mean that the hash(key_x) % n_nodes values would change for pretty
much all the keys, and thus cluster scaling would mean moving around a lot of data.

To get around this, Cassandra uses a concept called consistent hashing. We had looked at
consistent hashing in Chapter 5, Going Distributed. Here is a quick recap:

Consider a circle with values on it ranging from [0-1], that is, any point on the circle has a
value between 0 and 1. Next, we pick a favorite hashing function and also scale it from
[0-1]. For example, if the hash function has a range from [0-X], we use the following
function:

ringKey= hash(key) % X

Using this function, we can map machines (instances) and objects (using the keys) on the
[0-1] range.

https://ai.google/research/pubs/pub27898
https://ai.google/research/pubs/pub27898
https://ai.google/research/pubs/pub27898
https://ai.google/research/pubs/pub27898
https://ai.google/research/pubs/pub27898
https://ai.google/research/pubs/pub27898
https://ai.google/research/pubs/pub27898
https://ai.google/research/pubs/pub27898
https://ai.google/research/pubs/pub27898
https://ai.google/research/pubs/pub27898
https://ai.google/research/pubs/pub27898
https://ai.google/research/pubs/pub27898

Modeling Data Chapter 8

[311]

If we have three machines, we use the modified hash function to map each machine to a
point on the circle:

Now, we can see that the 0-1 range has been split into intervals among the machines.
Suppose we have a key-value pair in the hash table. We need to do two things:

Use the modified hash function to locate the key on the circle.
Find the first machine that appears clockwise from that point and store the key
there.

This is demonstrated in the following diagram:

Modeling Data Chapter 8

[312]

KeyX maps to a point and the machine closest from the clockwise side in machine 3. Hence,
KeyX is assigned to machine 3.

From a programming perspective, find closed machine clockwise is easily achieved by storing
the point values of the machines in a fashion that is easy to find the next highest number after
y. One way is to use a linked list of machine hash values in a sorted order and to find the
assignment. Just walk this list (or use binary search) to find the first machine with a hash
value greater than, or equal to, the hash of the key. We can make this a circular list so that,
if no machine with a "larger key" is found, the computation wraps around, and the first
server in the list is assigned.

Now, let's say we add one more machine to the cluster, like so:

As you can see, most of the assignments are not affected by this change, which is in contrast
to the naive hashing approach, where nearly every assignment changes. The only
reassignment happens between the machine that originally was in the clockwise direction
and the new one that was provisioned.

The partitioner in Cassandra is used to generate the token (equivalent to the hash in the
preceding description) and thus is key to figuring out which node to go to for a given key.
The default partitioner uses MurmurHash to compute hash values.

One issue with consistent hashing is that it is possible to have an unequal distribution of
load – some machines might have more data or be busier than others. To overcome this,
Cassandra (in v1.2) introduced the virtual nodes concept. The following diagram depicts
this scheme:

Modeling Data Chapter 8

[313]

Here, instead of actual machines, a set of virtual nodes are assigned on the hash ring, and
each machine gets an equal (but random) portion of vnodes.

Cassandra stores replicas on multiple nodes to ensure reliability and fault-tolerance. The
number of actual copies is determined by the replication factor tuneable. How the replica
nodes are chosen depends on the configured replication strategy. In the SimpleStrategy,
once a node is found on the hash ring, the walk continues until the required number of
replica nodes is found. More involved strategies consider rack, datacenter, and other
properties of nodes, so that all replicas don't fall in to a single fault domain.

Whenever there is replication, there is a question of consistency. Cassandra delegates the
consistency options to the clients via tunable consistency. Clients can select quorum levels
for read/writes—choosing the right consistency value for each use case.

Modeling Data Chapter 8

[314]

Write paths
Cassandra is masterless—there are no primary and secondary nodes/replicas. A client can
connect with any node in the Cassandra cluster. Once connected, the node acts as the
coordinator and drives the required interactions with the rest of the cluster on behalf of the
client.

On a single node, Cassandra uses log-structured merge trees to store data. The life cycle of
a write is as simple as updating an in-memory table of row/column values and writing to a
commit log (so that durability is retained):

Periodically, the in-memory table (called memtable) is flushed to disk and the data is
converted into SSTable format—where the keys are stored in sorted form. Obviously, this
will lead to a large number of SSTables. To keep things sane, Cassandra does compaction,
where multiple SSTables are merged into a single big one. Since each SSTable has keys in
sorted order, the compaction operation is as efficient as a merge of multiple sorted lists.
There are various algorithms for compaction—each to optimize for specific things, such as
disk IO or read performance.

Modeling Data Chapter 8

[315]

Read paths
The read path is not necessarily as efficient as the write path. To get the required columns
for row, the read might need to get data from the memtable and various SSTables that
might have different parts of the data. The read is effectively a merge across all these data
structures:

There are ancillary data structures, such as bloom filters, which help in figuring out
whether an SSTable contains a given row, thereby avoiding reading (expensive disk I/O)
for each SSTable. Compaction also helps read performance since the number of SSTables
to be compared is reduced. The SSTable format includes an offset lookup, which helps in
figuring out the offset within the SSTable file for a given key.

Golang usage
gocql (https:/​/ ​github. ​com/ ​gocql/ ​gocql) is a fast, popular Cassandra Go client that uses
the native transport for communication with the Cassandra servers. Its various features are
documented here: http:/ ​/​gocql. ​github. ​io/​. We are going to use it to demonstrate
Cassandra usage in Go. You can install it using the following command:

go get github.com/gocql/gocql

https://github.com/gocql/gocql
https://github.com/gocql/gocql
https://github.com/gocql/gocql
https://github.com/gocql/gocql
https://github.com/gocql/gocql
https://github.com/gocql/gocql
https://github.com/gocql/gocql
https://github.com/gocql/gocql
https://github.com/gocql/gocql
https://github.com/gocql/gocql
https://github.com/gocql/gocql
http://gocql.github.io/
http://gocql.github.io/
http://gocql.github.io/
http://gocql.github.io/
http://gocql.github.io/
http://gocql.github.io/
http://gocql.github.io/
http://gocql.github.io/
http://gocql.github.io/
http://gocql.github.io/

Modeling Data Chapter 8

[316]

Let's continue with our employee example. We want to persist the following struct in
Cassandra:

type User struct {
 Id gocql.UUID
 FirstName string
 LastName string
 Age int
}

Here, ID is an UUID—each employee's unique ID in the system. The data type is borrowed
from the gocql package.

To manage Cassandra, we use the cqlsh client. The first thing we do is create a keyspace in
Cassandra. A keyspace is the equivalent of a database in the relational world. To do this,
type the following at the cqlsh prompt:

CREATE KEYSPACE roster WITH replication = {'class': 'SimpleStrategy',
'replication_factor': 1};

We can passing on tuneables about replication here.

Next, we create a table, called employees, in this keyspace:

create table employees (
id UUID,
firstname varchar,
lastname varchar,
age int,
PRIMARY KEY(id)
);

Now that Cassandra is prepped, let's write some Go code. The first thing to do is connect to
the cassandra cluster. The following code accomplishes this:

// connect to the cluster
cluster:= gocql.NewCluster("127.0.0.1")
cluster.Keyspace = "roster"
session, _:= cluster.CreateSession()
defer session.Close()

Modeling Data Chapter 8

[317]

The gocql.NewCluster() method takes the IP address(es) or hostname(s) of some of the
nodes in the Cassandra clusters and lets the client discover the cluster topology. Next, using
the cluster information, we create a session that will be used for doing the rest of the I/O.

Now, let's create a user and insert it into Cassandra:

// generate a unique id for the user
id:= gocql.TimeUUID()
// create the employee in memory
newEmployee:= User{
 Id: id,
 FirstName: "James",
 LastName: "Bond",
 Age: 45,
}
// insert the employee
if err:= session.Query("INSERT INTO employees (id, firstname, lastname,
age) VALUES (?, ?, ?, ?)",
 newEmployee.Id,
 newEmployee.FirstName,
 newEmployee.LastName,
 newEmployee.Age).Exec(); err != nil {
 fmt.Println("insert error")
 log.Fatal(err)
}

The session.Query() method takes a straight CQL string. The question marks (?)
indicate positional parameters (as in standard SQL). These are substituted with the values
given.

The following code shows the read and verifies that the employee was indeed inserted:

// Use select to get the employee we just entered
var userFromDB User

if err:= session.Query("SELECT id, firstname, lastname, age FROM
employees WHERE id=?", id).Scan(&userFromDB.Id, &userFromDB.FirstName,
&userFromDB.LastName, &userFromDB.Age); err != nil {
 fmt.Println("select error")
 log.Fatal(err)
}
fmt.Println(userFromDB)

Modeling Data Chapter 8

[318]

This should print the James Bond employee and show that the data was inserted correctly.

Next, we update the data:

// Update James's Bond's age
if err:= session.Query("UPDATE employees SET age = 46 WHERE id = ?",
id).Exec(); err != nil {
 fmt.Println("udpate error")
 log.Fatal(err)
}

We can see that James Bond is indeed grown a year older by doing a read:

var newAge int
// Select and show the change
iter:= session.Query("SELECT age FROM employees WHERE id = ?", id).Iter()
for iter.Scan(&newAge) {
 fmt.Println(newAge)
}
if err:= iter.Close(); err != nil {
 log.Fatal(err)
}

This should print 46.

Finally, we delete James Bond from our employee roster:

// Delete the employe
if err:= session.Query("DELETE FROM employees WHERE id = ?", id).Exec();
err != nil {
 fmt.Println("delete error")
 log.Fatal(err)
}

Patterns for scaling data performance
So far, we have looked at various fundamental methods of modeling data. In some cases,
we need to make a few tweaks to the canonical way of interacting with data to enable
performance of a few use cases. This section talks about these types of patterns.

Modeling Data Chapter 8

[319]

Sharding
A singleton database, however beefy, has limitations in terms of storage space and compute
resources. A single server is also not great in terms of availability. Storage systems such as
Cassandra distribute data by partitioning data opaquely. However, many systems
(including most RDBMS systems) don't partition data internally.

The solution is sharding. This refers to dividing the data store into a set of horizontal
partitions or shards. Each shard has the same schema, but holds its own distinct set of rows.
Thus, each shard by itself is a database. The application (or driver) knows how to route
requests for specific data onto certain shards. The benefits are as follows:

The system can be scaled by adding additional shards/nodes
Load is balanced across shards, thereby reducing contention for resources
Intelligent placement strategies can be employed to locate data close to the
computes that need it

In the cloud, shards can be located physically close to the users that'll access the data – this
can improve scalability when storing and accessing large volumes of data.

Distributing data is not that tough. If specific affinity is not required, distribution can be
done via a hash function. However, the challenge is in the redistribution of data when the
topology changes, as described in the Cassandra deep-dive section. There are three main
approaches to solve the lookup problem:

Consistent Hashing: We covered this in the Cassandra cluster earlier.
Client-side Routing: Clients have a lookup map to figure out which shard (node)
hosts a particular key (hash). Whenever there is a topology change, the clients get
updated maps. Redis Cluster does sharding in this way.
Brokered Routing: There is a central service that takes IO requests and routes
them to the appropriate shard based on a topology map. MongoDB sharding
follows this approach.

Denormalization
The normalization process aims to remove redundancy in the modeled data. This leads to
efficient updates, where writes don't need to update data at many places for overall
consistency and data integrity.

Modeling Data Chapter 8

[320]

However, there are limitations to this approach. One major limitation is performance:
certain reads many need so many database operations (joins, scans, and so on) that they
become computationally intractable. For example, let's say we have a use case of having
resellers on the travel website. These people would take inventory and do bookings for
customers as normal travel agents, in lieu of fees (paid at the end of every month) from the
travel website. Let's say the bookings are modeled as follows:

Bookings:
BookingId
Date
SKU
ResellerId
Amount
Fee

Resellers:
ResellerId
Name
Address

Here, the ResellerID in the bookings table is a foreign key to the resellers table. Whenever
a booking is done, the ResellerId and the applicable fees are populated by the booking
DB transaction.

Now, there is a new requirement for an agent to figure out the total fees due to him in the
current month. This can be engineered by doing a GROUP BY ResellerID on the bookings
table, scanning for the required time range, and then doing a summation of the fees.
However, this performance might not be acceptable and based on the isolation levels
defined might cause bottlenecks in the write (business critical) path. One way to solve this
problem is to maintain a count of fees due for the current month in the resellers table itself,
like so:

ResellerId
Name
Address
Fees due

Modeling Data Chapter 8

[321]

Every time a booking is made, the DB transaction adds the fees of the current booking to
the fees due column; getting the current fees due is a matter of a simple table lookup. The
trade-off we made, of course, is that the write path needs to do a bit more work in
maintaining this aggregated data. In many cases, this trade-off is very much a sane choice.

It is important that the update for the denormalized schema happens in a
transaction.

Another reason we might want to do denormalization is to maintain history of the change.
Normalized schema retain the current state of the system, and many times a use case calls
for a change log. Denormalization helps here by maintaining the changes made in a separate
model from the current state of data.

Materialized views
What happens when read performance is needed on many more counters, such as a fees due
one? You can make the write transaction fatter by keeping the multiple denormalized tables
updated, but at some point the overhead is going to be overbearing. Also, the counter or
view needed of the data might have a business domain that is distinct from the one in which
the event originally happened. Thus, trying to update all views might lead to a breach of
the separation of concerns principle.

An alternative pattern to handle this situation is event sourcing and materialized views.

In event sourcing, the service doing the business transaction emits an event describing the
change. In the case of the preceding Booking example, it can be a Booking Event. This event
is sent out on a messaging Topic, thus employing a PubSub mechanism to broadcast the
event to whoever is interested.

Materialized Views refers to utilizing the event and then constructing an
aggregated/consolidated view, which is necessary to power a specific use case. To put it in
another way, the data is materialized in a way best suited to a specific view. In the Booking
example, another way to source the Fees due might be to have a separate service host the
Fees Due API/view and construct the fees for each reseller based on the booking event. Let's
say there are new requirements, say, bookings done in the last 10 minutes—then such a use
case can be satisfied by a new API, which uses the same Booking event.

The trade-off in Materialized View versus denormalization is that one loses temporal
consistency—the system eventually becomes consistent. The benefit is, of course, the
extensibility of the solution.

Modeling Data Chapter 8

[322]

Summary
In this chapter, we covered entity modeling, consistency guarantees, and looked at various
database options. We did a deep-dive into MySQL, Cassandra, and Redis, and wrote Go
code to get a hands-on perspective on how to use them to model data. We ended this
chapter with a section on patterns to handle data performance when scaling.

In the next chapter, we will look at building highly reliable, fault-tolerant systems.

9
Anti-Fragile Systems

In Nassim Taleb's book Antifragile, he discusses behavior in complex systems and classifies
them into three types:

Fragile: These systems shatter when exposed to medium amounts of stress.
Robust/Resilient: These systems are better than Fragile at handling stress, but
are still vulnerable to low-probability failures.
Antifragile: These systems have the thickest skin, and actually get stronger
under stress. An example of this is the human body—when stressed at the right
levels, muscles/bones get stronger:

(Source: https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/)

Anti-Fragile Systems Chapter 9

[324]

Software systems play a vital aspect in everyday life; consumers expect systems to be
always on. A great deal of the architect's brain cycles is spent on ensuring reliability and
fault-tolerance, which is the ability for a system to remain operational in the face of a few
individual components failing. The cost of not meeting these expectations would be
crippling to the business. Every minute of downtime translates to dollars in lost revenue,
not to mention negative customer impressions.

Failures can crop up for various reasons; they manifest themselves not just due to coding
bugs (such as memory leaks), but also due to infrastructure issues (such as disks
failing). Modern software systems often end up depending on each other and external
entities, so designing reliable systems gets even tougher.

Often, systems don't perform as expected, especially if stressed. This chapter explores
architecting anti-fragile systems that thrive under stress; we will cover the following topics:

Reliability metrics
Engineering reliability—architecture patterns for ensuring high-availability
Verification of reliability—ensuring that the system is tested for resiliency
through unit tests, integration test, load tests, and chaos-testing
Building resilience for dependencies
Datacenter resilience

Let's begin our journey by taking a more formal look at what we mean by reliability. After
that, we will look at what it means to make a service resilient, and then move on and look
at a set of systems and dependents, and how we can engineer antifragility in the overall
product.

Reliability metrics
IEEE defines software reliability as the probability of failure-free software operation for a
specified period of time in a given environment. Building reliability into software first
necessitates defining the metrics by which we will measure reliability, so that we know the
current state and we can measure the effect of any changes. Different people have different
viewpoints on what reliability in a software system means:

Conforms to requirements
Whether the system actually fulfils its purpose
User satisfaction

Anti-Fragile Systems Chapter 9

[325]

It is useful to take all these perspectives into account when considering how reliable a
system is and how it can get better. There are various metrics to measure the reliability of a
software system, and they can be broadly classified as dynamic and static.

Dynamic metrics
Dynamic Metrics have the following characteristics:

Mean Time To Failure (MTTF): MTTF is defined as the time interval between
the successive failures. An MTTF of 200 means that 1 failure can be expected
every 200 time units.
Availability: A measure of how long a service has been working without a fault.
An availability of 0.995 means that in every, 1000 time units, the system is likely
to be available for 995 of these. The percentage of time that a system is available
for use, taking into account planned and unplanned downtime. If a system is
down an average of 4 hours out of 100 hours of operation, then its availability is
96%.
Service-level agreements (SLA): These are definitions on how well the system is
performing. An example of such a metric is API response latency; here clients
expect a guarantee on the upper limit of the response time for various APIs.
Robustness: The extent to the system tolerates unexpected inputs, scenarios, and
problems.
Consistency and precision: The extent to which software is consistent and gives
results with precision.
Customer satisfaction/Net Promoter Score (NPS): This is the most important of
all metrics and defines how well the system is serving its objective. Satisfaction
with the overall reliability and quality of the system is usually obtained through
various methods of customer survey on either a 5-point or 10-point scale.

Anti-Fragile Systems Chapter 9

[326]

Static metrics
These metrics typically measure the code quality and provide an indication of its reliability.
Generally, metrics under static metrics include the following:

Cyclomatic complexity: This is a quantitative measure of the complexity of a
program. It is derived from the number of linearly independent paths through a
program's source code. Generally, complex programs are much harder to
engineer reliability into.
Defect amount and rate: How many open defects are there against the
production system? How many bugs are created with 100 lines of code?
Review/QC rejects: This metric defines how many times a code check-in is
rejected by code reviewers or QC. This is a good indicator of the quality of the
code written by the developers.
Testability: The amount of effort required to test the system and ensure that it
performs its intended functions.
Maintainability: The effort required to locate and fix an error during regular
maintenance.

With this context, let's look at multiple facets of reliability in a modern microservices
architecture.

Engineering reliability
As a quick recap from Chapter 5, Going Distributed, we saw that microservices interact with
one another over the network using either APIs or Messaging. The basic idea is that, using a
specific protocol, microservices will exchange data in a standardized format over the
network to enable macro-behavior and fulfill the requirement. There are multiple places
where things can go wrong here, as shown in the following diagram:

Anti-Fragile Systems Chapter 9

[327]

Preceding diagram is described as follows:

A service may go down either during the service of a request from the client, or
when it's idle. The service may go down because the machine went down
(hardware/hypervisor errors) or because there was an uncaught exception in the
code.
A database hosting persistent data may go down. The durable storage might get
corrupted. The DB can crash in the middle of a transaction!

Anti-Fragile Systems Chapter 9

[328]

A service may spawn an in-memory job, respond with OK to the client, and then
go down, removing any reference to the job.
A service may consume a message from the broker but may crash just before
acting on it.
The network link between two services may go down or be slow.
A dependent external service may start acting slow or start throwing errors.

Reliability in a system is engineered at multiple levels:

Individual services are built as per the specification and work correctly
Services are deployed in a high-availability setup so that a backup/alternate
instance can take the place of an unhealthy one
The architecture allows the composite of individual services to be fault-tolerant
and rugged

We will look at dependency management in couple of the Dependencies and Dependency
resilience section. For the rest, we will cover engineering reliability in the following
subsections.

Rugged services
The building blocks of a resilient architecture are the services themselves. If they are not
built to last, then all other aspects don't help much. Building resilient services involves two
things:

The service is built to the expected specs. This is covered in the Reliability
verification section.
The service does not have any local state.

As we saw in Chapter 4, Scaling Applications, having stateless computation is the key to
scalability. Not having local state is also important in terms of building resilience in the
system. A stateless app can be deployed in a cluster of redundant service instances, any
request can be serviced by any of the available instances. On the other hand, if the service is
designed to have local state, the failure one instance brings can cause outage at the system
level (albeit to a subset of the customers). A common way in which local state crops up is
when then is an it's in-memory store for cache or for user sessions. To enable resilience,
such state should be externalized, say, in a store such as Redis (Redis resiliency is covered
in detail in Chapter 8, Modeling Data).

Anti-Fragile Systems Chapter 9

[329]

With these expectations on individual services in place, the architect can have a system-
wide lens to ensure that the system consists of multiple services, and the multiple instances
of each service itself are resilient.

High availability
Would you go live with your service running on a single machine? Of course not! The
machine going down, or a disk failing on the server, will bring down the entire service and
affect customers. The machine becomes a single point of failure (SPOF):

(Source: http://timkellogg.me/blog/2013/06/09/dist-sys-antipatterns)

Anti-Fragile Systems Chapter 9

[330]

Single points of failure can be removed by engineering redundancy—which means having
multiple instances of the service/resource. Redundancy can be architected in two modes:

Active Mode: If, as described in service-level reliability engineering, the service
is stateless, redundancy is easily achieved by having multiple instances. If one
fails, that load/traffic can be diverted to another healthy instance. We will see
how this is done in the Routing and health section.
Standby Mode: For stateful resources (such as databases), just having multiple
instances is not sufficient. In this mode, when a resource fails, functionality is
recovered on a secondary instance using a process called failover. This process
will typically require some time, in order for the backup instance to gain
state/content—but during this time, there will be unavailability. It is possible to
minimize this time by having the secondary resource pre-launched but in a
dormant state, and having state/context-sharing between the active and standby
instance.

A system is said to be highly available when it can withstand the failure of an individual
component (servers, disks, network links). Running multiple instances is not enough to
build fault-tolerance. The key to the high availability of the system is that failures in
individual instances don't bring down the whole system. This mandates reliable routing of
requests to a healthy instance so that unhealthy instances don't get production traffic and
compromise the health of the service as a whole.

To detect faults, you first need to find a measure of health. Health is relevant both at the
host (or instance) level and the overall service level. A service is typically deployed with
multiple instances behind a virtual IP (VIP) supported by a load balancer (LB). The LB
should route requests to only those service instances that are healthy—but how does the LB
know about instance health? Generally, there are periodic health check pings to a
designated URL on the service (/health). If the instance responds with a normal response,
we know it's healthy, otherwise it should be booted out of the pool maintained by the LB
for that VIP. These checks run in the background periodically.

Many developers do engineer the /health URL, but hardcode a 200 OK response. This
isn't a great idea. Ideally, the service instance should collect metrics about various
operations and errors in the service and the health response handler should analyze these
metrics to get a measure of the instance's health.

Anti-Fragile Systems Chapter 9

[331]

Network health is usually monitored and made resilient by the networking protocols such
as IP and TCP. They figure out optimal routes across redundant links and handle faults
such as dropped, out-of-order, or duplicate packets.

This section assumes the server-side discovery of instances. As we saw in
Chapter 5, Going Distributed, client-side service discovery is also possible.
It comes with its own high-availability solutions, but these are outside the
scope of this book.

Messaging
A reliable message delivery platform is the key to engineering a data pipeline in a
microservices architecture. Once a message is received by a messaging solution (brokers), it
should guarantee the following:

The loss of a single broker instance does not affect the availability of the message
for consumers.
If producers and consumers experience outages/restarts, certain delivery
semantics are honored. Generally, the semantics are as follows:

At-least-once delivery: The messaging system guarantees that a
message is delivered at least once to a consumer. It is possible that
duplicate messages are received, and the consumer is responsible
for the deduplication of messages.
At-most-once delivery: The messaging solution guarantees that
messages are delivered at most once. Some messages might get
dropped.
Exactly-once delivery: A message is guaranteed to be delivered
exactly once for each consumer. Generally, this guarantee is
difficult to engineer without some sort of consumer-
broker coordination.

Anti-Fragile Systems Chapter 9

[332]

To build reliability, a key messaging design pattern is called the competing consumers
pattern. Multiple concurrent consumers can consume messages from the same topic,
thereby enabling redundancy—as shown here:

Besides the resiliency and availability benefit, such a pattern also enables the system to
work at a higher throughput, and improves scalability (since the number of consumers can
be increased/decreased on demand).

Another advantage of message-based interaction is the shock absorber behavior that
queues bring in. With an API-based interaction, the consumer has to consume requests at
the same rate at which the producer is making them. This impedance matching of all
producers and consumers can be difficult to engineer in a non-trivial architecture. Message
queues act as a buffer between the producer and the consumer, so that consumers can work
at their own pace. The queues also smooth out intermittent heavy loads that otherwise
could have caused failures.

Messaging architectures and related resiliency patterns are covered in detail in Chapter 6,
Messaging.

The asynchronous computation pattern
Consider a typical sequence of an API flow:

Client calls service: POST/dosomework.1.
Service spawns a goroutine to handle the API request.2.
The API processing is involved and takes some time. The handler also needs to3.
call an external dependency (DependencyI) to get the work done.
The client waits for the service to finish the work.4.

Anti-Fragile Systems Chapter 9

[333]

What can go wrong here? Well, multiple things! Consider the following:

The client service interconnect network might experience a discontinuity. The
client's socket will be closed and it will most likely retry. This is especially
common if the communication is happening over the internet/WAN.
If the client retry occurs, the Service might have already progressed in handling
of /dosomework. Database entries might have been created, hotels booked, and
so on. The service needs to ensure that such handling is idempotent!
DependencyI might be down—or worse, take a long time to respond. In this
case, if the client retries, DependencyI will also need to be idempotent.
Since /dosomework takes some time, and the client is waiting for the response,
the web service serving the request will need to exclusively assign resources
while the operation is in progress.

Machines/networks can often go down. It is important that the software architecture is
resilient to such failures and provides efficiency and consistency guarantees. One way to
solve this issue is to have an async architecture. The service can just log (in durable storage)
that such-and-such client requires /dosomework, and responds with a job ID. A bunch of
background workers can then pick up this job and fulfill it. The client can gauge the
progress of the job through a separate URL. This architecture pattern is depicted here:

Messaging systems such as Kafka (covered in detail in Chapter 6, Messaging) lend
themselves well to performing this log-a-job pattern.

Anti-Fragile Systems Chapter 9

[334]

A well-documented example of this architecture is the grep-the-web sample architecture for
AWS, as described by Jeff Barr in his whitepaper (https:/ ​/​aws. ​amazon. ​com/​blogs/ ​aws/
white-​paper-​on/​):

(Source: https://aws.amazon.com/blogs/aws/white-paper-on/)

This problem statement is to build a solution that runs a regular expression against millions
of documents from the web and returns the results that match the query. The operation is
meant to be long-running and involve multiple stages. Also, the deployment is assumed to
be an elastic one in the cloud—where machines (virtual machines (VMs)) can do down
without being noticed. As shown in the preceding diagram, the solution architecture
consists of the following:

Launch Controller: This service takes a grep job and spawns/monitors the rest of
the services in the pipeline. The actual grep is done by MapReduce jobs using
Hadoop.
Monitoring Controller: It monitors the MapReduce job, updates the status in the
Status DB, and writes the final output.
Status DB: All services update the current stage, status, and metrics of the
pipeline for each job in this DB.

https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/
https://aws.amazon.com/blogs/aws/white-paper-on/

Anti-Fragile Systems Chapter 9

[335]

Billing Controller: Once a Job is scheduled, it's also provisioned for billing
through the Billing Queue and the Billing Controller. This service has all the
knowledge of how to bill the customer for each job.
Shutdown Controller: Once a job is finished, the Monitoring Controller
enqueues a message in the Shutdown Queue, and this triggers the Shutdown
Controller to clean up after the job is down.

Here are some salient features of the architecture:

The architecture follows the async design pattern.
The system is tolerant of machine failures. A job stage carries on from the stage
where the job failed.
There is no coupling between the services (controllers). If needed, behavior can
be extended by plugging in new queues and controllers, with a high level of
confidence that the current processing won't break.
Each stage (controller) of the job can be independently scaled.

The orchestrator pattern
The grep-the-web architecture is an implementation of the orchestrator pattern. This
pattern is generally used for application workflows, which involve a number of steps, some
of which are long-winded, or which might access remote services. The individual steps are
generally independent of each other, but need to be orchestrated by some application logic.

The solution consists of the following roles:

Scheduler: The orchestrator sets up the workflow graph of various steps to be
performed and initiates the processing. This component is responsible for
spawning Agents and passing on any parameters needed for each Agent.
Agent: This is a container for running each step, and usually involves calling
external services to perform the required step in the workflow. It generally
employs the Hystrix pattern (see the Dependency resilience section) to ensure
that it is insulated from the vagaries of the external service. There is typically one
Agent spawned for each step.

Anti-Fragile Systems Chapter 9

[336]

Supervisor : This monitors the status of the various steps being performed. It
also ensures that the tasks run to completion and reconciles any failures that
might occur. Periodically, this service also records the state of the workflow, such
as not yet started, or step X running. It can also time individual steps to ensure that
they finish within a certain budget. If it detects any agent to have timed out or
failed, it arranges for a fallback action from that agent. Note that the actual
fallback action has to be implemented by the agent; the supervisor just requests
that the action be performed.

Generally, communication between these components happens through messaging queues.
Often, the scheduler and supervisor roles are implemented in one orchestrator component.

The compensating-transaction pattern
A question arises in such a scenario, let's say the services want to have some sort of
transactional semantics—either all the services finish successfully or none do. To keep
things simple, let's assume that isolation (simultaneous operations not seeing intermediate
state) is not required. This is a common use case for complex workflows (say, the
fulfillment of booking on our travel website), where multiple actions need to happen with a
possible modification of different data stores. In such scenarios, providing strong
consistency semantics will not be scalable due to the distributed nature of the environment
and contention due to the scale, and hence the architecture follows the async pattern. With
this eventual consistency model, while these stages are being performed, the aggregate
view of the system state might be inconsistent. However, when the stages are completed, all
the services and data stores are consistent.

So, back to the original question—what happens if one service fails? How do the other
services roll back their updates? A couple of immediate thoughts should spring into the
mind of the astute architect:

 To honor the separation of concerns principle, the only component that can
handle the undo is the service itself.
The undo architecture should not add extra constraints to the scalable
architecture. Therefore a central undo service won't be that great, since it would
defeat the purpose of a distributed solution that can be composed of various
stages.

Anti-Fragile Systems Chapter 9

[337]

The solution is for each service to implement compensating transactions. When performing
this compensating transaction, the service rolls back the effects of the original operation.
The rollbacks are typically also implemented through a queue, but here the messages are
from the reverse direction. This pattern is similar to the one called Sagas by Clemens
Vasters, in his blog (http:/ ​/ ​vasters. ​com/ ​clemensv/ ​2012/ ​09/ ​01/ ​Sagas. ​aspx); it's depicted
in the following diagram:

The compensation-transaction messages typically carry an identifier of the operation that
needs to be rolled back, with the following expectations:

The ID is common across all services.
Each service knows what is to be done for undo, and maintains a database of job
containing parameters for the undo.

It should be noted that the compensating-transaction logic cannot trivially replace the
current state with the state at the time before the operation, since it might overwrite other
operations that may have subsequently happened. For example, if a service is maintaining
the number of requests in the grep-the-web example, it won't manage a DB, as follows:

Job ID Count
job-id-123 44

Instead, here is a better way of storing parameters to enable the undo, which in this case
can be the delta that the job did:

Job ID Delta
job-id-123 +2

http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://vasters.com/clemensv/2012/09/01/Sagas.aspx

Anti-Fragile Systems Chapter 9

[338]

This is the crux of the compensation in the compensating-transactions pattern.

This pattern assumes that the roll forward and rollback steps are
idempotent. Messaging solutions generally implement at-least-once
semantics and duplicate messages often crop up. The services utilizing
this pattern should deduplicate messages before performing any
operation.

The pipes and filter pattern
A simplified version of the orchestrator pattern is the pipes and filter pattern. This pattern
extends the familiar Unix paradigm of simple-services-connected-by-smart-pipes to
distributed systems.

This pattern decomposes a task that involves complex processing into a series of separate
filters, which are connected by a messaging infrastructure, called pipes. Generally, each
filter is a service with a specific contract—in terms on the expected input format. These
filters can be reused so that more than one task can use the same filter to perform a specific
action. This helps to avoid duplicating code, and makes it easy to handle changes in
requirements by adding or removing filters from an org-wide set of the filter library. For
more information, you can refer to https:/ ​/ ​docs. ​microsoft. ​com/​en- ​us/ ​azure/
architecture/​patterns/ ​pipes- ​and- ​filters:

https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters

Anti-Fragile Systems Chapter 9

[339]

Hotspots
Every service has a breaking point—a maximum load for which it was designed. If the load
exceeds this, the service can become unreliable. In a microservices architecture, requests are
fulfilled by multiple services working in conjunction. This can cause hot spots on specific
utility services, which are used by more than one service. A classic case is a User Account
Service, which is the repository for all user-level data. For example, in the following
diagram, the User Account Service is called by multiple services, for user-related
information, and this service becomes a hotspot:

One solution to the problem is to carry the required data in every service call, like so:

The tradeoff here is the increased amount of data that is carried in each microservice call.

Anti-Fragile Systems Chapter 9

[340]

The sidecar pattern
Many services need ancillary functionalities, such as monitoring, logging, or configuration.
One choice is to implement these inside the main application code base, but then there are a
few concerns:

Our single-purpose principle is compromised. Changes will creep into the
application for requirements that are not directly related to the responsibility of
the service.
Any bugs/crashes in any of the components will cause outages in the service.
These components need to be built in the same language/runtime as the the main
application. If there are readily available solutions, in different forms, they can't
be directly reused.

The Sidecar pattern proposes an alternative—colocate these ancillary tasks with the main
service, but host them inside in their own process or container, rather than in-process with
the main application. The name comes from the similarity of how the sidecar services are
deployed with the main application to how a sidecar is attached to a motorcycle.

The advantages of using a sidecar pattern include the following:

Independence from its primary application in terms of runtime and
programming language, thus enabling reuse
Locality: Results in reduced communication latency as well as efficient sharing of
resources, such as files
Resiliency: Any sidecar that goes down does not bring down the main
application

The sidecar pattern is often employed with container-based deployments, and these are
usually referred to as sidecar/sidekick containers.

Anti-Fragile Systems Chapter 9

[341]

Throttling
The load on a service can vary over time (time of the day/year) as user behavior and the
number of active users vary. Sometimes, there might be unexpected bursts or ramps in
traffic. Every service is built and deployed with a specific load capacity in mind. If the
processing requests exceed this capacity, the system will fail.

There are two options in terms of solving for a high load:

When the load is genuine, we increase capacity (the number of servers, service
instances, network capacity, DB nodes, and so on) to meet the increased traffic.
 When the load is not genuine/business critical, analyze and control the requests,
that is, throttle the request.

Some throttling strategies include the following:

Rejecting requests from an individual user whose crossed the assigned quota
(say, making more than n requests/second to a specific API). This requires the
system to meter the use of resources for each tenant per resource. A common
way to implement throttling is to do it at the load-balancer level. For example,
Nginx uses the Leaky Bucket algorithm for rate-limiting requests. Rate-limiting is
configured with two main directives: limit_req_zone and limit_req. The
first parameter defines what resource we are limiting and the throttle. The other
directive is used in location blocks to actually implement the throttling. See
https:/​/ ​www. ​nginx. ​com/ ​blog/ ​rate- ​limiting- ​nginx/ ​ for more details.

https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/

Anti-Fragile Systems Chapter 9

[342]

The objective of a leaky bucket algorithm is to smooth out a variable/burst rate of
input to produce a steady output rate so that the capacity of the target resource is
not exceeded. At a high level, implementation can be thought of a FIFO queue
where the incoming requests are stored. At a set clock tick, n requests are
dequeued and sent to the service for processing—here, n is the target output rate
we are aiming for. We can add more intelligence to this basic concept by
factoring things such as effort estimate for each request, rather than blindly
taking in a set number of requests at each clock tick. The algorithm is described
in the following diagram:

Disabling or degrading a specific functionality so that instead of the whole
service going down, a graceful degrade happens. For example, for a video
streaming service, if the link is bad, a switch to a lower resolution can be made.
Using message-based queues to stagger the load and make computation
asynchronous (delayed).

Anti-Fragile Systems Chapter 9

[343]

Versioning
The last aspect of reliability is engineering for continuous evolvement of the microservices.
Often, services have multiple clients and refactoring drives. During this course, the
advertised contract (or spec) of the service changes. However, not all clients can move to
the new version of the contract at the same time. Improper updates/deprecation of
APIs/contracts is an often-ignored cause of instability and unreliability in microservice-
based architectures.

The way to insulate your clients is through proper versioning of the APIs. Generally, this
happens by adding a version number to the API URLs, like so:

/v1/hotels/add
/v1/hotels/search
/v1/hotels/<hotel_id>
/v1/hotels/<hotel_id>/book
..

When a new contract is needed to be deployed, we just upgrade the version and deploy
the new routes effectively to the web servers and LBs. It is necessary for all the versions to
be served from the same set of web server instances; the LB can route old versions to an
older deployment so that the new code does not need to carry the baggage of old code.

In the next section, we will study reliability verification and the types of tests involved in it.

Reliability verification
As we saw in Chapter 1, Building Big with Go, a contract for a service is a definition of
various operations that the service provides, with a clear definition of output for a set of
expected input. This is also sometimes called the spec (short for specification). The spec
might also include non-functional requirements, such as expected budgets for latencies of
specific APIs and the expected throughput for which the service guarantees the response
times.

Anti-Fragile Systems Chapter 9

[344]

The following diagram shows a relative graph of the costs of bugs at various stages of the
software life cycle:

Source: http://jonkruger.com/blog/2008/11/20/the-relative-cost-of-fixing-defects/

As changes are made to the service, it must guarantee that the contract is always honored.
Generally, the contracts flux, with an addition in functionality, but they should be
backward compatible (ideally). A service designed in this manner will enable a robust
architecture, while also allowing for the feature velocity that the business demands.

The goal of verifying service-level quality attributes is to first ensure that none of its
advertised contracts (functional as well as non-functional) are broken. This validation is
done via a regression test suite. This suite is best described by Mike Cohen's test pyramid
diagram:

Anti-Fragile Systems Chapter 9

[345]

Source: https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid

The tests at the bottom of the pyramid focus more on code constructs; that is, making sure
that individual modules are working as expected. The test higher up, and verifies the
behavior from the user's perspective.

The key to finding bugs for a service early is having a regressions test suite that can be run
early and often to ensure quality.

The constituents of a regression suite include the following:

Unit tests
Integration tests
Performance tests

We will learn about each of these tests in detail in the following sections.

Unit tests
The scope of unit testing is to test individual modules (classes/functions) of the service.
These are generally supported by a variety of frameworks (most of which are language-
specific). Golang has a very powerful, in-built testing framework, as we saw in Chapter 1,
Building Big with Go. Also, even though it is a strongly-typed language, packages such as
reflect (reflect.DeepEqual) allow one to do a deep comparison of arbitrary data, such as
expected versus got.

Anti-Fragile Systems Chapter 9

[346]

The units tests need two accompanying frameworks:

Mock/Stub: When testing a specific module, we need other downstream-
dependent components to fulfill behavior. Sometimes calling the live component
may not be possible (sending an email via a live email service may not be an
option, as we want to avoid annoying customers with spam). We should either
mock or stub out the dependent modules so that we can exercise the code
through various interesting paths. There is a subtle difference between mocks
and stubs: mocks generally take a specification of what output to generate based
on specific input. Stubs, on the other hand, are just canned answers. In the case of
Golang, we saw in Chapter 2, Packaging Code, these can be done via service
mocks or build flags. Another way to do it is using the go-mock package
(https:/ ​/ ​github. ​com/ ​golang/ ​mock_​). This package inspects source code and
generates mock implementations for them.
Automation: These should be automated so that they can be run on every
commit, thereby solving bugs at the earliest possible stage. The Golang testing
package (https:/ ​/​golang. ​org/ ​pkg/​testing/ ​) provides comprehensive support
for automated tests.

Your unit tests should run very fast. On normal developer machines, you can easily run
thousands of unit tests within a few minutes. It is important to keep each test focused on
small pieces of code, running in isolation.

Test-driven development (TDD) encourages taking this to the next level by writing unit
tests even before writing code. The UTs guide the developer on what is missing during the
development sprints.

A common issue with unit tests is they are tightly coupled to the implementation of the
tested function that is implemented. This means that slight changes in the code need
changes in the unit tests. The behavior-driven development (BDD) test tries to address this
problem by focusing tests on behavior rather than implementation. BDD tests are written in
a domain-specific language (DSL), which is more of the English prose style than other
types of tests. GoConvey (http:/ ​/ ​goconvey. ​co/​) is an excellent package for Go-based BDD
tests. It builds on Go's native testing and coverage frameworks and adds a new layer of
expressive DSL to write tests cases. It also has a UI for a better visualization of test results:

https://github.com/golang/mock_
https://github.com/golang/mock_
https://github.com/golang/mock_
https://github.com/golang/mock_
https://github.com/golang/mock_
https://github.com/golang/mock_
https://github.com/golang/mock_
https://github.com/golang/mock_
https://github.com/golang/mock_
https://github.com/golang/mock_
https://github.com/golang/mock_
https://github.com/golang/mock_
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
http://goconvey.co/
http://goconvey.co/
http://goconvey.co/
http://goconvey.co/
http://goconvey.co/
http://goconvey.co/
http://goconvey.co/
http://goconvey.co/

Anti-Fragile Systems Chapter 9

[347]

Integration tests
Once a service has been verified in isolation, it should be tested along with its dependents
in a specific integration or stage environment. Services are rarely used in isolation, and
these tests verify that the new build works in conjunction with other dependents. The test
cases here should be at the system level and ensure that all the services work together to
fulfill the desired behavior as per the requirements. This setup also typically uses
production replicas of data stores. This is another place where bugs can be caught before
going live.

The testing boundary here is generally the APIs that interact with the UI. The tests start
with exercising the APIs at this Facade and validates end-to-end behavior.

Since these tests are higher up in the test pyramid, they focus on more business-related
interactions. So, unit tests are more like this:

addTwo(x,y) should return 5, if x is 3 and y is 2

Anti-Fragile Systems Chapter 9

[348]

Integration tests are more like the following:

given user is logged in
and user clicks on a hotel search listing item "x"
then the user should navigates to the product details page of "x"
when user clicks the "book" button
then price check should happen with backend
then user should navigate to booking page

UI tests
Many applications have some sort of user interface, typically a web page or mobile app.
These sets of tests validate the system as an end user would use it. In a way, these tests are
related to integration tests, but are generally applicable for the facade-level services that
directly interact with the clients (apps, web pages, and so on). The test cases are derived
from the requirements (user stories) and try out all scenarios that the user would
experience on the real app. These tests are generally run with the backend services in the
stage environment.

There are many frameworks, such as Selenium, that help in automating these tests. We will
not go into detail here as they are outside the scope of this book.

Performance tests
The goal of performance testing is to ensure that the non-functional performance
requirements of the product are met. This generally translates to the following:

Latency: The application should respond quickly, as described in the latency
SLAs for various operations.
Scalability: The application should handle the maximum prescribed user, and
yet maintain the latency characteristics described previously.
Stability: The application should be stable under varying load and load ramps.

There are various types of tests that ensures the preceding goals:

Load/Stress tests: These check the application's ability to perform under various
levels of loads (requests per second). The objective is to measure latency and the
stability of the system under various conditions of load or stress.

Anti-Fragile Systems Chapter 9

[349]

Volume-testing: Under Volume-testing, a large amount of data is populated in a
database and the overall software system's behavior is monitored. The objective
is to check the software application's performance under varying database
volumes. These tests bring out issues with database modeling, such as an index
not created on often-queried columns.
Scalability Tests: The objective of scalability testing is to determine the software
application's effectiveness in scaling-up to support an increase in the user load. It
helps to plan addition to your software system. The tests aim to identify scaling
bottlenecks and typically measure time to handle a request as a function of load,
as depicted in the following diagram:

Endurance testing: This test is performed to ensure that the software can handle
the expected load over an extended period of time.
Spike testing: It tests the software's behavior for sudden large spikes in the load.
Generally, steep ramps in load can bring out issues that are different from
endurance tests (constant load).

Anti-Fragile Systems Chapter 9

[350]

The following diagram illustrates the various tests we just discussed:

Chaos-engineering
Chaos-engineering is a technique that's used to evaluate systems for fragility and building
constructs to help a system survive such chaos. Instead of waiting for things to break at the
worst possible time, chaos-engineering believes in proactively injecting/crafting failures in
order to gauge how the system behaves in these scenarios. Thus, disaster striking is not a
once-in-a-blue-moon event- it happens every day! The aim is to identify weaknesses before
they manifest in surprising aberrant behaviors. These weaknesses could be things such as
the following:

Improper fallback settings (see the Dependency resilience section)
Retry thundering herds from incorrectly set timeouts
Dependencies that are not resilient
Single Points of Failure
Cascading failures

Anti-Fragile Systems Chapter 9

[351]

Once identified, with proper telemetry in place, these weaknesses can be fixed before they
bring customers in production. Having done a dry-run of actual disasters results in
tremendous confidence in production systems.

Netflix is the pioneer in Chaos-Engineering and its Simian Army tool suite offers
implementations to enable the required chaos. This facilitates the following Chaos-
engineering process:

Define normal behavior via a set of metrics—these could be CPU/memory1.
utilization, response time, or error rates.
Prepare a control group (no chaos) and an experimental group (where the Simian2.
Army will reign). The hypothesis is that normal behavior will be observed in
both groups.
Introduce chaos by simulating failure events, such as server crashes, disk3.
malfunctions, or network partitions.
Verify the hypothesis that the control and experimental group both show normal4.
behavior.

Some of the tools (monkeys) in the Simian Army are as follows:

Chaos Monkey: Randomly disables production instances to make sure that
redundancy and failure-tolerance are working as expected.
Latency Monkey: Induces artificial delays and network partitions between client
services and between services.
Conformity Monkey: Finds instances that don't adhere to best practices and
shuts them down.
Doctor Monkey: Does the health checks that run on each instance and reclaims
unhealthy instances.
Janitor Monkey: Searches for unused resources and disposes them, thereby
reducing clutter.
Security Monkey: An extension of Conformity Monkey, it finds security
violations or vulnerabilities (such as improperly-configured AWS security
groups), and terminates the non-conforming instances. Another important role of
this component is to ensure that all that SSL certificates are valid and do not need
immediate renewal.
Chaos Gorilla: Similar to Chaos Monkey, but simulates an outage of an entire
Amazon availability zone, thereby verifying cross-geo high-availability.

For more details can be found here: https:/ ​/​github. ​com/ ​Netflix/ ​SimianArmy/ ​.

https://github.com/Netflix/SimianArmy/
https://github.com/Netflix/SimianArmy/
https://github.com/Netflix/SimianArmy/
https://github.com/Netflix/SimianArmy/
https://github.com/Netflix/SimianArmy/
https://github.com/Netflix/SimianArmy/
https://github.com/Netflix/SimianArmy/
https://github.com/Netflix/SimianArmy/
https://github.com/Netflix/SimianArmy/
https://github.com/Netflix/SimianArmy/
https://github.com/Netflix/SimianArmy/
https://github.com/Netflix/SimianArmy/

Anti-Fragile Systems Chapter 9

[352]

Dependencies
Services are rarely exists in isolation; they have dependencies, both upstream and
downstream. Every server will receive requests from clients (either UI or other services)
that are counting on the service to honor the advertised contract and to live up to its SLAs.
Each service also has a bunch of downstream dependencies (other services) that it depends
on to get work done.

To understand the impact of dependencies on the overall system's, reliability, let's consider
the Hotel Search service in the travel website we are building. Let's say we have built it to
very high reliability levels (as described in the previous section) and we have an uptime
requirement of four-nines (99.99% availability) to the clients. Now, the Hotel Search service
depends on several other microservices, such as the Pricing Engine, Catalog Service, and
Wallet, to display the hotel search results. When a request is received by the Hotel Search
service, it makes calls to all these downstream dependencies to get the data needed to fulfill
the request. Now, each of the dependent services may in turn have other dependencies and
thus the dependency graph for services can get complicated very quickly.

In big software systems, such dependency graphs can get quite complicated, as shown here:

Image credit: Appcentrica

Anti-Fragile Systems Chapter 9

[353]

Building resilience in such systems means that we need to plan for dependency failures and
mitigation plans so that we can mitigate protect against those failures.

Failure multiplication
Dependencies don't come for free. Even if all of the individual services are built to a very
high quality, the reliability of the whole falls below the reliability of an individual service.
For example, if the Hotel Search service is dependent on 5 other services (for simplicity, we
will prune the dependency graph here), and it is built to 99.99%, availability, the actual
availability of the overall Hotel Search feature is 99.99% which translates to about 99.94%.
To consider the impact, lets see what 99.99% uptime means in terms of availability:

Daily: 8.6 seconds
Weekly: 1 minute 0.5 seconds
Monthly: 4 minutes 23.0 seconds
Yearly: 52 minutes 35.7 seconds

 With 99.94%, the availability is as follows:

Daily: 51.8 seconds
Weekly: 6 minutes 2.9 seconds
Monthly: 26 minutes 17.8 seconds
Yearly: 5 hours 15 minutes 34.2 seconds

This means that with just five dependents, all of a high quality, the overall system degrades
with an extra five hours of downtime per year.

With this impact in mind, let's look at mitigation strategies. But before that, there is another
interesting issue that service dependencies bring out.

Anti-Fragile Systems Chapter 9

[354]

Cascading failures
Most software systems start simple. They are built as an all-in-one monolithic app, with
modules packaging various code components. All packages are linked together in one big
binary. Such a typical early version system is depicted in the following diagram:

It takes requests and performs something of value using three components
(modules/building blocks). These interactions are shown in the following diagram; the
numbers describe the sequence of things that happen to fulfill a request.

However, as the system evolves and features get added in, there comes a time where we
need to make calls to an external service (a dependent). Now, this external service can fail
for multiple reasons that are outside our control, and obviously this will cause our
application requests to fail:

Anti-Fragile Systems Chapter 9

[355]

But consider what happens if the external service is just slow to respond. Here, the client
and all resources in the original service are waiting for the request to complete, and this will
impact on new requests, which may not even need the failing service. This is most evident
in languages/runtimes such as Java or Tomcat, where each request effectively has a thread
allocated, and if the client times out and retries for the slow request, we can very quickly
degenerate to a situation such as this:

Anti-Fragile Systems Chapter 9

[356]

With increasing complexity and feature requests, the team decides to decompose the
monolith into microservices. But this amplifies the problem! See the following diagram:

Today's systems are interconnected like never before, and with microservices, new services
crop up at regular intervals of time. This means that the overall system will always be
evolving—it is in a state of continuous change. In addition, in today's fast-paced
development cycles, features will be added every day, and there are deployments multiple
times in a day. This velocity, however, brings in greater risk of things going wrong and a
fault in a specific service can cascade up to dependent services and bring multiple other
parts of the systems down.

 To guard against this catastrophe, and to build anti-fragile systems, the architect needs to
apply specific design patterns when engineering such systems. The following section goes
into detail on achieving resilience in such distributed systems.

Anti-Fragile Systems Chapter 9

[357]

Dependency resilience
The key to engineering resilience is to understand that there is no fault prevention—we
should design to handle failures. Protecting the system's SLAs means building insulation to
the faults that can happen to dependencies. In our design, we need to do the following:

Be nice to the broken service: If the dependent service is down, we should not
bombard it with more requests, thus allowing it time to recover.
Gracefully degrade: Our clients should get a clear and timely error message
Provision monitoring/alerts: We should be able to monitor the health of our
dependents in the same way as we do monitoring of our own systems.

Though this sounds daunting, the good folks at Netflix have architected a comprehensive
solution to enable applications to build such resilience. It's called Hystrix, and we will
discuss it now.

An introduction to Hystrix
The problems just described were noticed at Netflix; the engineering team there developed
a set of design patterns (and implementations in Java) called Hystrix to solve
these problems.

The key idea is to wrap the dependency calls in command objects from Netflix. In Java,
these commands are executed off the main request handling thread and delegated to a
dependency-specific thread pool. This allows the Bulk heading of requests, that is,
Dependency X down will only block all threads of the thread pool allocated to
dependency-x. Other resources will be insulated and other requests that don't involve
dependency-x can continue to be handled.

Anti-Fragile Systems Chapter 9

[358]

This is depicted in the following diagram:

(Source: Netflix blog)

Anti-Fragile Systems Chapter 9

[359]

A dependency that responds slowly or with variable latencies is much worse than a service
that fails fast, as the former causes resources to be hogged while waiting. To avoid this, the
Hystrix set of patterns includes the Timeout concept. Each dependency is configured with a
timeout (typically the 99.5 percentile of expected response latency) so that there is a worst-
case time for which resources are blocked for a down service. If the timeout occurs before
the service responds, then failure of the dependency is assumed.

The following sections cover Hystrix in detail.

Hystrix – fallback
A question that arises is what is to be done when a service is down (returns error or
timeouts). Of course, the original required functionality cannot be executed. Hystrix
recommends having a fallback configured for each dependency. What a fallback does, of
course, varies from case to case and depends on the requirements. There are a few generic
strategies, though:

Alternate Service: If the main service endpoint is down, a backup service might
be called. For example, if the Google search service is down, maybe we can call
the Bing version.
Queue: If the operation calls for the dependency to do some work, and the
output of the work is not necessary for the request to be completed, then the
request can be put in a durable queue for retry later. One example is sending an
email for Booking. If the Email service is down, we can queue a request for the
Email in something such as Kafka.
Cache: If a response is needed from the dependent, another strategy is to cache
data from previous responses. This type of caching is called defensive caching. The
cache key generally includes the dependent service identifier, the API on that
dependent service, and the parameters for that API. To keep the cache from
exploding in terms of space requirements, strategies such as Least-Recently Used
(LRU) can be employed. Here, when space budgets are breached, the least-
recently-used item in the cache is reclaimed.

Anti-Fragile Systems Chapter 9

[360]

Hystrix – circuit breaker
Another important pattern in Hystrix is that of a circuit breaker. The key idea is for a
service to fail fast if a dependent resource is not available, as opposed to waiting for a
timeout/error for each service invocation during the period in which the dependent
resource is down. The name comes from the familiar pattern of a circuit opening under a
high load to protect internal resources. When requests start to fail for a dependent service,
the hystrix library keeps count of the number of failures within a time window. If the
failures are greater than a threshold (n number of failed requests within a given time or
requests taking too long), the circuit for that dependency is moved to the Open state. In this
state, all requests are failed. Periodically, after some configured amount of time, a single
request is let through (Half-Open state). If the request fails, the circuit breaker returns to
Open. If the request succeeds, the circuit breaker transitions to Closed and operations
continue normally. To summarize, the states of the circuit can be in the following states:

Closed: Operations that involve the dependency can happen normally.
Open: Whenever a failure has been detected, the circuit opens, making sure that
the service short-circuits requests involving the dependency and responds
immediately.
Half-open: Periodically, the circuit breaker lets a request pass through to gauge
the health of the dependent service.

The circuit breaker workflow and fallback interactions are depicted here:

(Reference: Netflix blog)

Anti-Fragile Systems Chapter 9

[361]

Hystrix in Golang
In Go, the thread-hogging of requests of the Java/Tomcat world is not really a concern,
since the web frameworks use goroutine(s) to service requests rather than dedicated
threads. Goroutines are much more lightweight than threads, thus the problem solved by
the Bulkhead Pattern is less of an issue. But, still the Hystrix solution is vital to enable fail-
fast and circuit breaker behavior.

The most-used Golang library for Hystrix at the time of writing is https:/ ​/​github. ​com/
afex/​hystrix-​go/ ​. The following is the 'hello world' snippet of using the library:

import "github.com/afex/hystrix-go/hystrix"

errors := hystrix.Go("a_command", func() error {
 // talk to other dependent services
 // return the error if one occurs
 return nil
}, func(err error) error {
 // do fallback action here
 return nil
})

Calling hystrix.Go is like launching a goroutine, and it returns a channel or error (errors)
in the preceding snippet. Here, the first closure function is the Command Object, and this
performs the actual interactions with the dependent service. If there is an error, the second
closure function is called with the error code returned by the first command function.

Values can be returned from the Command using channels, like so:

out := make(chan string, 1)
errors := hystrix.Go("a_command", func() error {
 // talk to other dependent services
 // return the error if one occurs
 output <- "a good response"
 return nil
}, func(err error) error {
 // do fallback action
 output <- "fallback here"
 return nil
})

https://github.com/afex/hystrix-go/
https://github.com/afex/hystrix-go/
https://github.com/afex/hystrix-go/
https://github.com/afex/hystrix-go/
https://github.com/afex/hystrix-go/
https://github.com/afex/hystrix-go/
https://github.com/afex/hystrix-go/
https://github.com/afex/hystrix-go/
https://github.com/afex/hystrix-go/
https://github.com/afex/hystrix-go/
https://github.com/afex/hystrix-go/
https://github.com/afex/hystrix-go/
https://github.com/afex/hystrix-go/

Anti-Fragile Systems Chapter 9

[362]

Then, the client code can do a select comprehension over both the output and the errors,
like so:

select {
 case ret := <-out:
 // success
 // process the return value
case err := <-errors:
 // failure
 // handle failure
}

You can configure settings, such as timeout and maximum concurrent requests for each
command, using a separate API, like so:

hystrix.ConfigureCommand("a_command", hystrix.CommandConfig{
 Timeout: 1000,
 MaxConcurrentRequests: 100,
 ErrorPercentThreshold: 25,
})

The CommandConfig struct is defined as follows:

type CommandConfig struct {
 Timeout int `json:"timeout"`
 MaxConcurrentRequests int `json:"max_concurrent_requests"`
 RequestVolumeThreshold int `json:"request_volume_threshold"`
 SleepWindow int `json:"sleep_window"`
 ErrorPercentThreshold int `json:"error_percent_threshold"`
}

The various tuneables are as follows:

Tunables Description
Timeout How long to wait for a command to complete in milliseconds.

MaxConcurrentRequests
How many instances of this command can run at the same
time.

RequestVolumeThreshold
The minimum number of requests that must happen before a
circuit can be tripped due to health.

SleepWindow
The time to wait after a circuit opens before going to the half-
open state (to test for recovery).

ErrorPercentThreshold
The percentage threshold of the number of errors to cause the
circuit to open.

Anti-Fragile Systems Chapter 9

[363]

Hystrix monitoring
Hystrix has a comprehensive solution for aggregating streams of metrics from each service
and monitoring and visualization of the stats thereof. There are companion projects such
as Turbine, which enables event-stream aggregations and dashboards to monitor various
commands in a single view, as shown in the following diagram:

(Source: https://github.com/Netflix/turbine/wiki)

Anti-Fragile Systems Chapter 9

[364]

Turbine's architecture is depicted here:

With hystrix-go, it is easy to set up the plumbing to send the streams of server-sent event
(SSE) JSON that form the transport of the stats. All that you need to do is register the event-
stream HTTP handler on a port and launch it in a goroutine. Then Turbine, needs to be
configured to plug into this endpoint, and subsequently Hystrix Dashboard, to point to the
Turbine instance. Once this is done, the graphs and stats, such as the one depicted in the
preceding diagram will start showing. Here is the sample code to launch a stream handler:

hystrixStreamHandler := hystrix.NewStreamHandler()
hystrixStreamHandler.Start()
go http.ListenAndServe(net.JoinHostPort("", "81"), hystrixStreamHandler)

Database-level reliability
The system would be of little use if durable data is not stored in a resilient and consistent
manner. There are various levels of consistency in databases. This topic is covered in detail
in Chapter 8, Modeling Data.

Anti-Fragile Systems Chapter 9

[365]

Datacenter-level reliability
What happens if the entire datacenter goes down? To be prepared for this eventuality, you
need to run your application cluster in more than one datacenter, and ensure that both
deployments are in sync in terms of data. Building such architectures is typically under the
purview of business continuity planning (BCP) and disaster recovery (DR).

A common way to have DNS switch between deployments in two datacenters. A DNS
name, such as www.mysite.com, resolves to a VIP of 4.4.4.4 with a specific time-to-live
(TTL). This layer can be made intelligent and, in the case of a datacenter outage, repoint the
DNS name to a backup VIP, say 5.5.5.5. For doing this we need the deployments to
happen in both datacenters and that the data is replicated (usually asynchronously)
between the deployments. This scheme is described in the following diagram:

The following sections cover some of the attributes of these systems.

Anti-Fragile Systems Chapter 9

[366]

Consistency
There is no silver bullet for enabling consistency in such a distributed architecture. In fact,
there are multiple flavors of consistencies:

Weak: This is a best-effort consistency. There are no guarantees on the durability
of the data. One example is cache stores—they are rarely replicated across
datacenters. Applications that are well-suited to this model include video
streaming and VOIP.
Eventual: Here, the system eventually reaches a state of consistency. However, at
a few given instances, each datacenter might have old data. DNS changes
propagation, SMTP, and Amazon S3 are all examples of applications that use this
mode. With this consistency model, there is no guarantee that a read
immediately after a write will see the new value, but eventually all the
deployments get the new value and reads would be consistent across.
Strong: This is the highest level of consistency. All reads, irrespective of the
location, immediately reflect a committed write. Transactional systems typically
need these guarantees.

When designing a solution, we also need to consider three key design objectives:

The recovery-time objective (RTO): The goal for the maximum time a restore
operation should take after a disaster happens. It is the time that's acceptable in
terms of business loss, for a specific feature system to be down.
The recovery-point objective (RPO): The amount of data loss that is acceptable
after a disaster has occurred. In most DR situations, data loss is not completely
avoidable, but this metric for a feature indicates business impact of data loss for a
feature.
Operation latency: The acceptable latency times for various operations in a
feature.

To consider the tradeoffs between these objectives, consider a simple feature where an API
store updates to a User Profile in the DB. To enable DR resilience, this update needs to be
replicated to the backup/other datacenter. There are few options here:

Return OK to the client only when the write happens, both in the main
datacenter as well as the remote datacenter. This brings about a strong consistent
behavior, and minimizes the RPO. However, cross-datacenter writes can take a
long time, and the Operation Latencies will significantly increase if we go down
this route.

Anti-Fragile Systems Chapter 9

[367]

Return OK when the write succeeds in the main datacenter. Ensure
asynchronous replication to the remote datacenter, using mechanisms such as
MySQL binary log replication. Here, the write finishes quickly, however it is
possible that the datacenter goes down before the async write is made available
in the remote datacenter.
Instead of the two preceding extremes, the system can make a quick note in the
remote datacenter about the write (and in a transaction log) and return OK to the
client. Here, the operational latency is not compromised as much as in Option A,
and the RPO guarantees are also good. But it might take more time for the
system to come up and be primary as it replays the log to bring itself into a
consistent state, thus increasing RTO.

Thus, each resource/feature/service needs to be looked in isolation and questions need to be
asked to figure out the relative importance of RPO versus RTO versus Operation time.
These questions could take the following forms:

Is data from 10 minutes ago tolerable for customers?
Is it OK for the service to be down for 5 minutes while we build consistency in
the data?

Based on the answers, the design evolves toward improving performance or consistency.

Routing and cutover
When disaster does strike, we need traffic to be routed to the backup datacenter. The
Service-Level Reliability pattern of having a load-balancer and multiple instances behind it
with health checks will not work here. A more scalable option is to use the DNS-based
failover. As a quick recap, DNS maps a URL to a VIP (for a load-balancer) through its
records. It is possible, and normal, to have multiple VIPs against a URL, and typically
strategies such as round-robin routing are used; the DNS name server will hand out a
different VIP each time for a resolution request. This can be augmented so that the DNS
service monitors the health of each datacenter VIP and, if the instance is deemed unhealthy,
remove it from the set of records. This works particularly well if the system is deployed in a
cloud environment, such as AWS, which has an in-built DNS server, such as Route 53. This
can monitor health not just from /health endpoints, but also from logs and metrics from
individual services.

We will look at deployment topologies in more detail in Chapter 11, Planning for
Deployment.

Anti-Fragile Systems Chapter 9

[368]

Summary
In this chapter, we explored various facets of building resilient systems, from ruggedizing
individual services to building high availability. All of these need to work together to
enable systems that thrive under stress.

In the next chapter, we will look at a case study and build an end-to-end travel website!

10
Case Study – Travel Website

To perceive architecture, you need a big real-life system. Without this, there is a risk of
readers getting lost in the details. They might understand how to employ specific
techniques and Go constructs, but they may not have clarity in figuring out and analyzing
coarser building blocks. To avoid this, we will use an online travel website as a problem
statement so that we can employ multiple techniques we have learned so far and build a
real-life product.

The product
We will be building parts of an e-commerce website that deals with travel. Examples of real
world-related products include Booking.com and Expedia. The site will be a marketplace:
the company will not own any inventory; rather, it is a place where travel-product sellers
and buyers will connect. Let's start detailing the requirements by starting out with listing
the actors involved.

Actors
The website will deal the following types of people:

Customers: Those who want to consume travel-related items (flight tickets,
hotels, cabs, and so on).
Sellers: Those who bring inventory to the marketplace. For the case study, we
will assume that the sellers give us an API to pull data off and do our bookings.

Case Study – Travel Website Chapter 10

[370]

Requirements
As mentioned, we will be building a travel marketplace. It will connect the customers and
the sellers. Both parties have varying requirements from the platform, and the marketplace
needs to ensure that both are reasonably satisfied. This diagram describes the product at a
high level:

Let's look at the following points for more clarification between customers and sellers:

Customers should be able to search for hotels and flights. Key functional
requirements include the following:

The ability to show results from various sellers' sources.
Price consistency: Show prices that are close to what the customer
would finally pay.
The ability to see discounts and promotions.

Case Study – Travel Website Chapter 10

[371]

Customers should be able to see personalized prices on the search results screen.
These are essentially markdowns on the standard prices, and the discount is
derived from a loyalty points-based rewards program. For example, if a hotel
reservation is priced at $500, and if the customer's wallet has $100, then the price
shown should be $400.
Customers should be able to book hotels and flights. This involves handling
payments and confirmation from the seller.
Customers should be able to manage their booking, including cancellations.
We should be able to onboard sellers quickly to the platform. It can be assumed
that they give well-defined APIs for searching and booking.
Customers should get an email invoice once they buy something.
Customers should get an email if something goes wrong during booking.
The search on the website needs to be fast. Customers should be able to see initial
results within one second.
Customers should be able to see prices that are close to what they would finally
pay. This means we can't just cache data forever.
Sellers do not offer high Service-Level Agreements (SLAs) to us, since we are
just a fledgling startup. They do however offer good commissions.
Sellers have a look-to-book ratio. They charge us if we do too many searches for
too few bookings.

Data modeling
Before jumping into designing various features, as discussed previously, it is wise to think
about various entities and their relationships. The following table gives an overview of this:

Entity Name Description Relationships

Customer

This is the most important user on the
website. Every customer has a unique
persistent entity that describes things such
as the profile, history of
bookings/interactions, payment
preferences, and so on. When persisting,
this entity has an unique customer ID,
which can be used by other entities to refer
to a specific customer.

Many other entities refer to a
customer entity via the customer
ID attribute (primary key).

Case Study – Travel Website Chapter 10

[372]

Seller

Besides the customer, a seller is the next
most important user on the platform. As
mentioned, sellers can have varied
characteristics. From a software
perspective (of the limited requirements
we have in the case study), the seller is
effectively an API endpoint and a specific
contract.

Many entities refer to a seller. In
the database, these relationships
take the form of a foreign key.
But more interestingly, from the
architecture perspective, we need
to have a proxy for each seller,
which also acts as an adaptor-
interacting with the seller API on
one side and the rest of the travel
website platform on the other
side. There will be more details
on this in the following sections.

SKU

We need to have a unique ID for each item
in our inventory. Although initially it
looks as if the hotels and flights
namespaces are distinct, a decision can be
made to have a unique ID for each item
across verticals.
A Stock-Keeping Unit (SKU) is a standard
term for such an ID. Having this unique ID
across all product lines will future proof
the design for future use cases such as
Vacation (Flights + Hotels).

This will be part of the primary
key for the most of the data
stores. This should not be re-
usable , as there might be
requirements to audit past
transactions.
The SKUs form a hierarchical
structure; specifically, some
SKUs might have a parent SKU.
For example, a hotel will have a
SKU, and its parent SKU will be
the ID of the city in which the
hotel is located.

Date (check
in/check out
to/from
hotel, for
flights)

People want to search and book travel
products on specific dates. The rates and
availability will vary a lot according to the
dates.
RFC 3339 is the standard for describing
dates. It has multiple formats, and we need
to choose something that is easy to model
in persist entities and API exchanges. This
leads to a certain Golang specific
complication, and the solution needs a
wrapper over the standard time. Time
data type. Please see booking section for
details.

Dates are not very interesting
relationship-wise. They are
mostly attributes of other
entities.

Case Study – Travel Website Chapter 10

[373]

Booking

A booking describes an intent to make a
reservation for a flight or a hotel. Doing
the actual reservation can be a
complicated, time-consuming process, and
a booking-persistent entity instance
encapsulates all status about the booking.

Has references to the customer,
SKU, and dates.

Reservation

During the course of making a booking, a
reservation needs to be completed by the
seller. The reservation entity encapsulates
this information.

A booking entity has references
(owns) multiple reservation
instances. For example, a return
flight booking might have flights
from two different sellers, and
thus includes two different
reservations.

Wallet

As described in the requirements, we want
personalized prices driven by a loyalty-
rewards program. Essentially, whenever a
booking is made, certain points get
credited. The customer can utilize these
points in making future bookings. The
wallet balance is used for marked down in
the search results page.

This can be modeled as an
amount per customer. Besides
the scalar value, we should also
store individual transactions,
essentially a ledger of the debits
and credits to a wallet account.
Though the later is not strictly
mandated by the requirements,
doing so would allow us to
perform audits easily and handle
related future requirements.

High-level architecture
It is a microservices-based approach, with both messaging and API calls. As discussed in
Chapter 8, Modeling Data, messaging systems allow scalability and resiliency. Service-to-
service API calls are useful when a quick/in-line response is needed.

Case Study – Travel Website Chapter 10

[374]

The high-level solution architecture is described in the following diagram:

The following sections describe the search and booking services in detail.

Search
The search functionality is the first product feature that the customers will see. If the
experience is not good, an immediate impact will be seen on the business. As described, the
top key requirements of search are performance and personalization. Another requirement
is to ensure that we don't incur high costs from the sellers, considering the look-to-book
ratio. Let's look at how we can engineer the same.

In general, for the search, the inputs are going to be places and dates. Specifically for flights,
the search inputs will be as follows:

The onward date. The return date would be optional (only for return flights).
The source and destination places (airports).

Case Study – Travel Website Chapter 10

[375]

Whereas, for hotels the search parameters would include the following:

The check-in and check-out date
The city/country/hotel name where the room is desired

Generally, travel websites take the number of passengers as well. But since this does not
affect the architecture drastically, it is ignored for the purpose of the solution engineering of
this case study.

For both flights and hotels, the search response consists of the following:

A Static listing: This is the elements of the catalog that match the query. The
catalog is essentially a dictionary of items available. For flights, this is a cache of
flight details (flight names, aircraft types, services offered, and so on) between
any two airports. Here, the actual source of truth are the external sellers.
Similarly, for hotels, the catalog contains content on the room types, images,
ratings, and so on.
A dynamic part: This is the prices for each element in the listing. Here, the prices
vary based on the context (who's searching, when, whether there are discounts,
and so on). You generally want the newest price available, so we need to cache
prices less aggressively than the static listings. However, we also want to
optimize look-to-book penalties, so our cache TTLs here have to be smart, as
discussed in the following section.

Flights
As described previously, the search key for flights would be source and destination
airports, along with the dates. These would be used by customers while searching.

To ensure that performance and cost (look-to-book ratio) requirements are met, we need to
ingest data from the sellers into our system, rather than hit the Seller Search APIs
indiscriminately on demand. As part of ingestion, we need to store data in the same format
to enable efficient searches.

Case Study – Travel Website Chapter 10

[376]

One of the main microservices inside flight search is the Flights Catalog. This is the
repository of all static content about the flight (aircraft types, services available in-flight,
logos, and so on). The high-level design for the same is shown in the following diagram:

As you can see, there are multiple ingestors that take listing information from the external
sellers and then do a transformation process on it before indexing the same in Elasticsearch.
For example, a few sellers might be giving data in an XML-based API, while others might
have a JSON-based API. Some sellers might have time mentioned in UTC, while others
might be giving the time zone along with the time. We need to ensure that all such quirks
are abstracted from the rest of the system. Some sellers offer a pull-based model; that is, we
need to hit an API to get details. Other sellers offer systems which push data (for example,
via webhooks) whenever there is a change in price or inventory. The pull-based model
requires slightly more engineering, as we need to schedule refresh polls for various listings
that are needed for the catalog.

Each seller has a specific ingestor dedicated to it. This code understands the specifics of the
Seller API and transforms the data into the canonical format stored by the catalog and the
rest of the travel website. This adaptor design pattern also helps us in onboarding new
sellers to the platform in a fast and a reliable manner. You just needs to implement the
travel website side contract using the new seller APIs and—voila!—the seller is integrated.

Case Study – Travel Website Chapter 10

[377]

An important aspect to note in the Flights Catalog is that only the static data is ingested, not
the prices. This is because of the following:

The prices can be very volatile (see the following). They need a different
storage/invalidation mechanism.
The flight prices are generally available via a separate API with stringent
throttling limits.

To simplify the processing of the keys, we can concatenate the source, destination, and
dates into a string (a simple join of the string). This key is then used for ingesting listings
(routes) and for the actual search. Such design choices help in keeping the rest of the code
simple. You should take time to explore the entities in the domain and figure out such
modeling constructs before jumping into implementation.

The transformations done by the ingestor. For the static content, include adding keywords
to aid conceptual search. This is important since many places/things have multiple names
that mean the same thing. For example, NY and New York mean the same place. One ML
model that helps in a conceptual search is word2vec. It was developed at Google and
essentially is a two-layer neural network that maps each word to a vector space (of a large
number of dimensions) such that words that share context (for example, are found in
similar phrases) are in closer proximity than others. The latter is called word embedding
and is an efficient way to map words to vectors so that words that are conceptually similar
are closer and have vectors which are close in the n-dimensional space of the word
embedding. This is well depicted through the following diagram:

Case Study – Travel Website Chapter 10

[378]

In a search, you might have multiple ML models to enrich the raw data in different ways.
Also, at any point in time, you might be evaluating more than one version of a model. The
key to abstracting the rest of the system from these specifics is to have a framework where
your data scientists can iterate and deploy new models, while the rest of the ingestion
pipeline remains the same.

After all the transformations, the data is stored into Elasticsearch. This essentially is a
distributed collection of Lucene indices (each index is spread over multiple nodes (shards)
in the cluster). The listings are converted to JSON documents before being ingested into
Elasticsearch (https://github.com/olivere/elastic) is the most popular Elasticsearch
client in Go.

Our main usecase here is n-gram-based queries of various attributes listed in the document
using an inverted index . Along the search, we can rank documents that match using
various pluggable similarity functions; one popular/simple one being Term
Frequency–Inverse Document Frequency (TF–IDF). Here, TF is the number of times the
query keyword is mentioned in a listing, while IDF is one the number of listings in which
this keyword is mentioned. Specifically, the formula is this:

Wt,d = TF t,d * log (N / DFt)

Consider the following:

TF t,d = number of occurrences of the term t in the document d
DFt = number of documents containing the term t
N = total number of documents

The higher the Wt,d score, the more relevant the listing is for the keyword. Elasticsearch
provides a REST API for searching in the inverted index. The Catalog API provides a thin
wrapper on top and performs ancillary tasks such as authentication.

https://github.com/olivere/elastic
https://github.com/olivere/elastic

Case Study – Travel Website Chapter 10

[379]

As described, the flight prices need to be cached to avoid hitting the throttling limits of
sellers. However, we need to scale the TTLs appropriately. To engineer a good solution, we
need to understand the domain/business quirks. A search for a flight that is ahead in the
future (say, three months) is unlikely to change in the next three days. However, a search
for the same day or the next day is going to return prices that are very volatile. Thus, prices
for the same/next days should be cached for a very short time. This intelligent scaling of
TTLs helps us manage the price variability in the system.

Besides the regular prices, we also have requirements for the personalization of prices—this
could be in terms of discount coupons, promotion campaigns, wallets, and so on. An
important insight here is that we need not cache just prices; in fact, we should cache as
much aggregated response as possible. If you look at the previous discussion, the only
thing we cannot cache is the wallet markdown (since the amount in the wallet can be
utilized in many places). Thus, we can cache the aggregated response with a smart TTL,
and then on every search call the wallet service to get the amount available for a
markdown.

We can use Redis for the key-value store. This is a very efficient way of doing TTL-based
KV lookups. The reason for high-performance in Redis is that it stores data in memory. A
question that might be asked is this: Won't it be a risk to maintain data in memory? As we saw
in Chapter 8, Modeling Data, Redis can be clustered for high availability. Thus, we can
survive single machine downtime. Besides, this store is just a cache and not the final source
of truth; thus, it's OK to optimize for performance, at the price of not being totally durable.

As flights get booked, we need to invalidate the cache after a certain threshold so that the
price/availability information is not stale. This will be driven by messages from the Booking
Service, as described in the Reservation section.

Case Study – Travel Website Chapter 10

[380]

The high-level search design is depicted in the following diagram:

For the messaging (Kafka) part, please refer to the Reservation section.

The main component is the Flights Search service. It is responsible for making multiple
computations/API calls, most of which are concurrent and can be parallelized. The parallel
calls include other services such as Sellers, Wallet, Redis cache, and so on. Golang is perfect
for modeling such concurrency:

Case Study – Travel Website Chapter 10

[381]

However, we need to develop a framework that allows developers not to worry about the
the boilerplate code and just focus on the business logic.

An example generic framework, CommandTree, is described next (the code is at https:/ ​/
github.​com/​cookingkode/ ​worktree). This framework allows the coding of such workflows
in a MapReduce paradigm. The leaves of the tree are mappers, which kickstart the
processing by producing some data (in this context, by making API) and transform the data
into a generic format. The internal nodes are reducers, which run some sort of function on
the data and then pass on the output upstream. Finally, the root of the tree has the
aggregated final result.

The core of the library is the CommandTree data structure, which is based on the composite
design pattern. It also leverages the fact that in Go, functions are first-class objects. The
struct definition is given here:

type CommandTree struct {
 Reducer func(inp []interface{}) interface{}
 LeafFunctions []func(inp interface{}) interface{}
 LeafFunctionsInput []interface{}
 nChildren int
 LeafFunctionsOutput []interface{}
}

https://github.com/cookingkode/worktree
https://github.com/cookingkode/worktree
https://github.com/cookingkode/worktree
https://github.com/cookingkode/worktree
https://github.com/cookingkode/worktree
https://github.com/cookingkode/worktree
https://github.com/cookingkode/worktree
https://github.com/cookingkode/worktree
https://github.com/cookingkode/worktree
https://github.com/cookingkode/worktree

Case Study – Travel Website Chapter 10

[382]

The Leaf entities are the children of the node, and are mapper functions, and the data that is
needed for those functions. There is a method called AddMapper to add mappers to a
CommandTree object, as defined in the following code snippet:

func (t *CommandTree) AddMapper(f func(inp interface{}) interface{}, input
interface{}) int {
 t.LeafFunctions = append(t.LeafFunctions, f)
 t.LeafFunctionsInput = append(t.LeafFunctionsInput, input)
 temp := t.nChildren
 t.nChildren += 1
 return temp
}

All AddMapper() clients add a multiple child mappers, it's functions, and the input data.

The reducer is essentially a reference to a function that takes all the output of the mapper
functions and produces a final output for this CommandTree. A particular SKU can be
available from more than one seller. In such a case, we should choose which seller to show
the SKU from. A reducer is a place that can host such logic. The client of the CommandTree
library can attach any function that matches the ' func(inp []interface{})
interface{}' signature using the following helper method:

func (t *CommandTree) AddReducer(f func(inp []interface{}) interface{}) {
 t.Reducer = f
}

You can kick out the processing (execution of mappers and the reducer) of the
CommandTree through the Run() method. This spawns a goroutine for each mapper,
aggregates the data over a channel, and then finally runs the reducer to give the final
output. There is a fair bit of wrapper code to enable this:

// Wrapper struct for the results returned by the Mapper
type ResultFunction struct {
 Child int // The index into the LeafFunctions array, to identify the
Mapper
 Result interface{} // Generic result of the mapper function
}

// Wrapper function for the Mapper function so that it can be spawned as
goroutine
// It take reference to the result channel and send the Mapper function
output on
// the same channel after wrapping it with ResultFunction - to identify the
mapper // function
func wrap(c chan ResultFunction, child int, todo func(inp interface{})
interface{}, inp interface{}) {

Case Study – Travel Website Chapter 10

[383]

 var result ResultFunction
 startTime := time.Now()
 result.Result = todo(inp)
 endTime := time.Now()
 log.Println("WRAP TOTAL ", endTime.Sub(startTime))
 result.Child = child
 c <- result
}

func (t *CommandTree) Run(_ interface{}) interface{} {
 channel := make(chan ResultFunction, t.nChildren)
 defer close(channel)
 t.LeafFunctionsOutput = make([]interface{}, t.nChildren)
 for i, f := range t.LeafFunctions {
 go wrap(channel, i, f, t.LeafFunctionsInput[i])
 }

 remaining := t.nChildren
 for remaining > 0 {
 result := <-channel
 remaining -= 1
 t.LeafFunctionsOutput[result.Child] = result.Result
 }
 return t.Reducer(t.LeafFunctionsOutput)
}

The key to composition is the fact that the Run() method can itself be a mapper to another
CommandTree object. This is the specific reason for the Run() signature to be as it is—the
input of this function is just a dummy, and should be given as nil, as shown here:

// Since the input is a generic interface , one way of passing multiple
parameters
// is a compound structure
type TwoArgs struct {
 X int
 Y int
}

// A Mapper, which returns the Product of X and Y
func mult(i interface{}) interface{} {
 args := i.(TwoArgs)
 return args.X * args.Y
}

// A Mapper, which returns the Sum of X and Y
func sum(i interface{}) interface{} {
 args := i.(TwoArgs)
 return args.X + args.Y

Case Study – Travel Website Chapter 10

[384]

}

// A Reducer which just sums the child mapper outputs
func merge(results []interface{}) interface{} {
 var sum int
 for _, x := range results {
 sum += x.(int)
 }
 return sum
}

// Finally the usage of a two level work tree
func main() {
 level2 := worktree.CommandTree{}
 level2.AddMapper(mult, TwoArgs{2, 3})
 level2.AddMapper(mult, TwoArgs{2, 2})
 level2.AddReducer(merge)
 level1 := worktree.CommandTree{}
 level1.AddMapper(level2.Run, nil) // ← when nesting use nil for Run
 level1.AddMapper(sum, TwoArgs{2, 2})
 level1.AddReducer(merge)
 fmt.Println(level1.Run(nil).(int)) // ← execute the whole tree}
}

This framework allows the search service to reduce the amount of boilerplate code and, as
we see next, this is re-usable, even in the hotels search.

We need an ability to isolate business rules and yet run them on every fresh ingestion of
prices. This brings us to another interesting aspect of the design: the rules engine. This
allows definition of various rules in text, such as format. The rules here can be used to
augment code that calculates things such as Cache TTL and the amount of discount to be
offered. https:/​/​github. ​com/ ​Knetic/ ​govaluate is a good option for the rules engine
library. An example of rules is shown in the following code:

bookingErrorsExpression, err :=
govaluate.NewEvaluableExpression("(bookingErrors * totalNoBoookings / 100)
>= 90");
inputs := make(map[string]interface{})
inputs["bookingErrors"] = 96;
inputs["totalNoBoookings"] = 100;
bookingErrorsCrossedThreshold, err :=
bookingErrorsExpression.Evaluate(inputs);
// bookingErrorsCrossedThreshold will now set to "true"

https://github.com/Knetic/govaluate
https://github.com/Knetic/govaluate
https://github.com/Knetic/govaluate
https://github.com/Knetic/govaluate
https://github.com/Knetic/govaluate
https://github.com/Knetic/govaluate
https://github.com/Knetic/govaluate
https://github.com/Knetic/govaluate
https://github.com/Knetic/govaluate
https://github.com/Knetic/govaluate
https://github.com/Knetic/govaluate

Case Study – Travel Website Chapter 10

[385]

The low-level design needs to figure out exactly what part of the computation has to be
structure via configurable expressions (rule engine) and what part is best done explicitly in
code. A common design flaw is over-reliance on rules; trying to map each computation into
a rule can be inefficient, and this can lead to complexity. You need to judiciously evaluate
what computation needs to be generic/configurable and what is best written as simple,
straightforward code.

On the website, the search box essentially will be as follows:

Enter the source city/airport:
Enter the destination city/airport:
Onward date:
Return date (optional for return ticket):
Number of passengers:

The search key is the concatenation of the source, destination, and date of travel. For return
tickets, the source/destination values are exchanged, and the return date is used as the date
to form the search key. This search key is then sent to the Flights Search API, which uses the
CommandTree pattern discussed previously to build out the computation tree. The mappers
here would be calls to the catalog service and Redis. If there is a cache missing, then calls
need to go to the sellers for price/availability information. The Flights Search service will
then return the reduced value at the root as the API response, after serializing to JSON.

The aggregate response would have to be augmented with the response of
the wallet service so that the final markdown price can be shown on the
UI. The wallet service can never be cached; this is to avoid giving
discounts that cannot be reconciled.

Hotels
Searching for a hotel is similar to searching for a flight. Customers will search for hotels in a
specific city, or they can directly give the hotel name. Thus, we want to have a catalog that
can serve hotels based on more than one keyword in the listings. Elasticsearch is able to
handle this, and thus we can continue to use it as the key datastore for a hotel's static
listing.

Case Study – Travel Website Chapter 10

[386]

One of the main difference in a hotels search is the way the sellers structure prices.
Hoteliers price each room on a specific day, and the customer query can be across a range
of check-in and check-out dates. The naive search algorithm will just get the rates for dates
between the check-in and check-out dates from the datastore and sum the rates to get the
final value. However, in the case of a hotels search in a city, doing this for each hotel in the
city being searched will not scale to the required performance numbers. Thus, while
caching is needed, the caching solution has to be intelligent in a slightly different way than
the flights one. The trick to good performance is pre-computing the total price for all most
frequently used check-in/check-out day combinations. This has to be done at the time of
ingestion of prices from the sellers. The astute reader may reason that the pre-computation
will lead to a large number of writes amplification. Thus, we need a storage solution for the
price store, which has good write performance.

Cassandra is just the right tool for the job. However, we need to model the data carefully.
As we have seen, Cassandra is a partitioned data store, and the key to good read
performance is to avoid scatter-gather for queries. In the hotel-search context, queries are
for a specific city or hotel name. Thus, we can optimize the price store to serve for a whole
city. The city becomes the partition key for our Cassandra column family. The data model
looks like the following:

Field/Column Meaning

SKU
Unique ID for a hotel or city. This is the partition key and is used to
distribute the information between nodes of the Cassandra cluster.

CheckInDate
The check-in date. This is first part of the clustering/sorting of the
table/column family. This allows efficient search for a given check-in date
for a specific hotel or city.

CheckOutDate

The check-out date. This is second part of the clustering/sorting of the
table/column-family. On a specific node, the data is first sorted on the
check-in date and then on the check-out date. Thus, this allows an efficient
search for a given check-in date for a specific hotel or city.

ParentSKU For a hotel, this is the city. For a city, this is null.

RoomId
A unique identifier for a room. Elasticsearch will contain static information
about a room including images and so on.

BasePrice The base price of the room.
Taxes The taxes on the room.

Case Study – Travel Website Chapter 10

[387]

Thus, the primary key for the store will be (SKU, CheckInDate, CheckOutDate). As
described, this compound key means that SKU will be the partition key while
CheckInDate, and CheckOutDate will be the clustering keys.

Microservices allow individual services to be polyglot in terms of the
infrastructure. While this freedom is good, it is important to restrict the
platform footprint to a few recipes for each infrastructure building block
(DB, messaging, and so on). This helps in many ways, including allowing
people to apply learning across teams and having holistic monitoring
systems in production.

On the website, the search box essentially will display the following set of information:

Enter name of city or hotel
Check-in date
Check-out date

Once the user enters the details, the frontend will make a call to the Hotel Search Service,
which in turn will hit the catalog and the price store in parallel. The catalog will return
static details about the entity (city or hotel), the details being things such as rooms, URLs
for images, and so on. The price store, as described, returns pricing information. The search
service merges both responses (this becomes efficient, as both the catalog and the price
store will return data as a map keyed by RoomId) and present the combined information to
the frontend (UI).

Since the price store caches only the most frequently used check-in/check-out day
combination, it is possible that the query needs to be served by sourcing data from the
seller itself. This of course would not be as performant as the results from the price store,
but since we cannot efficiently store all possible combinations of check-in/check-out day,
this tradeoff is necessary.

Besides this, as we discussed for the flights search, calls are made to the wallet service to get
the applicable amount for price personalization.

Case Study – Travel Website Chapter 10

[388]

The high-level hotel search architecture is summarized in the following diagram:

Booking
The booking flows have very different characteristics and requirements than Search. More
than performance, reliability is the main requirement here. If the customer has made a
payment, then they should get the reservation. The good thing, though, is that booking is
always a fraction of your searches, so you do not have the stringent performance
requirements that we saw for Search.

Additionally, there is a workflow associated with booking. Once the payment is made, the
system needs to make a reservation with the seller, email the customer, and so on. We will
be designing an Event-Driven Architecture (EDA) pattern to handle booking. The flow
should be similar to flights and hotels, so we can deep-dive into the hotels' booking flow to
glean insights.

Case Study – Travel Website Chapter 10

[389]

The high-level architecture is depicted through the following diagram:

The backbone of the architecture is the messaging layer. In the example implementation
here, we will be using Kafka. It is responsible for relaying messaging between various
microservices that drive various stages of the booking process. The following sections will
go into this in detail.

Payment
When the customer clicks on Book on the website, they first need to do the payment. This is
a substantially complicated/cohesive task and is best done by a separate microservice
Payment Service, in our case.

Case Study – Travel Website Chapter 10

[390]

The following sequence diagram describes the flow involved in the common case of using a
credit card for the payment:

Let's look at the following steps:

When the customer clicks on the Book button on the search results page, the1.
MakePayment API of the Payment Service (SKU) is called. The API parameters
describes the SKU (which hotel, flight) and the amount.
The Payment Service makes a note of the in-flight Payment in its DB and then2.
redirects the UI to the Payment Gateway, along with a callback URL. The
Payment Gateway is very specialized software and is generally an external
service.
The payment gateway converts the message to a standard format and then3.
forwards the transaction information to the payment processor used by the travel
website, the acquiring bank. This is the bank with which the website has made an
account to handle payments.
The payment processor of the acquiring bank forwards the information to the4.
card association (for example, Visa/MasterCard/American Express), and the card
association in turn sends the transaction to the customer's card's issuing bank
(the bank that issued the card to the customer).
The issuing bank receives the credit card information, verifies that the debit can5.
be made, and then sends back an authorization or declines back to the credit card
association.
The credit card association forwards the response to the acquiring bank, which in6.
turn forwards it to the Payment Gateway.

Case Study – Travel Website Chapter 10

[391]

The payment gateway receives the response, and then fires a callback that was7.
given at the time of the initial redirection. This allows the payment service to
know the payment status. If the Credit Card was authorized, then the payment
service makes an API call to the booking service to create a reservation (see the
Reservation section).
The UI is then redirected back to the payments page, and, subsequently, if the8.
card was authorized, the customer is taken to the reservation screen. If there as a
decline, the customer is given an appropriate error message.

Reservation
Once the payment callback is fired, we need to create a reservation entity in our booking
database. The booking workflow will go through various stages, and this persistent entity
will be responsible for maintaining the reservation status for all the microservices involved
in the workflow.

The booking service is a REST API, and we will implement it using Gin (which we covered
in Chapter 5, Going Distributed). The createReservation API, which is called during the
Payment Callback, is defined in the following code:

func createReservation(c *gin.Context) {
 var (
 reservationDTO HotelReservationDTO
 err error
)

 if err = c.ShouldBindJSON(&reservationDTO); err == nil {
 fmt.Printf("In createReservation : %+v\n", reservationDTO)
 err = persistReservation(&reservationDTO)
 sendMessageToPerformBooking(&reservationDTO)
 //return OK
 c.JSON(http.StatusAccepted, gin.H{"status": "created"})
 }

 if err != nil {
 // some inputs parameters are not correct
 c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
 }
}

Case Study – Travel Website Chapter 10

[392]

The HotelReservationDTO is a data-transfer object and represents an object that the client
and server understand. It describes the details of the reservation:

type HotelReservationDTO struct {
 CustomerId uint `json:"customer_id" `
 PaymentIdentifier uint `json:"payment_identifier" `
 SKU uint `json:"entity_id" `
 RoomId uint `json:"room_id" `
 CheckIn ReservationTime `json:"check_in" gorm:"type:datetime"`
 CheckOut ReservationTime `json:"check_out" gorm:"type:datetime"`
}

You might be wondering why we used ReservationTime instead of the standard
time.Time, well, ReservationTime is just a simple wrapper over time.Time and this is
needed so that the encoding/JSON package can understand how exactly to
serialize/deserialize the time. Currently, the package only accepts time in a specific format
of RFC3339 (for example, "2018-11-01T22:08:41+00:00"), and this is unnecessarily
inconvenient for us, where we want to give a date such as 2018-12-07. The workaround in
Golang is the wrapper struct, as shown here:

const reservationDateFormat = "2006-01-02"

type ReservationTime time.Time

func (t *ReservationTime) UnmarshalJSON(bytes []byte) error {
 rawT, err := time.Parse(reservationDateFormat, strings.Replace(
 string(bytes),
 "\"",
 "",
 -1,
))
 if err != nil {
 return err
 }
 *t = ReservationTime(rawT)
 return nil
}

func (t *ReservationTime) MarshalJSON() ([]byte, error) {
 buf := fmt.Sprintf("\"%s\"",
time.Time(*t).Format(reservationDateFormat))
 return []byte(buf), nil
}

Case Study – Travel Website Chapter 10

[393]

From the preceding code, it functions as follows points:

It creates the reservation entity in the database using persistReservation().
It then sends a Kafka message to the Seller Proxy to actually perform the booking
using sendMessageToPerformBooking().

For persistence, we will use MySQL as the relational database. To avoid boiler plate code,
we will use an Object Relational Mapper (ORM), specifically gorm (https:/ ​/​github.
com/​jinzhu/​gorm). The persistReservation() function is defined here:

func persistReservation(res *HotelReservationDTO) error {
 // Note the use of tx as the database handle once you are within a
transaction
 tx := db.Begin()
 defer func() {
 if r := recover(); r != nil {
 tx.Rollback()
 }
 }()

 if tx.Error != nil {
 return tx.Error
 }

 //TODO : Check that there is no overlapping reservation
 if err := tx.Create(&HotelReservation{
 CustomerId: res.CustomerId,
 PaymentIdentifier: res.PaymentIdentifier,
 SKU: res.SKU,
 RoomId: res.RoomId,
 CheckIn: time.Time(res.CheckIn),
 CheckOut: time.Time(res.CheckOut),
 Id: makeId(res),
 Status: Initial}).Error; err != nil {
 tx.Rollback()
 return err
 }

 fmt.Println("created hotel reservation..")

 // update the entry for availability threshold
 var threshold AvailabilityThreshold
 tx.Where("entity_id = ? AND room_id = ?", res.SKU,
res.RoomId).First(&threshold)

 fmt.Printf("\nthreshold = %+v\n", threshold)
 tx.Model(&threshold).Where("id = ?", threshold.ID)

https://github.com/jinzhu/gorm
https://github.com/jinzhu/gorm
https://github.com/jinzhu/gorm
https://github.com/jinzhu/gorm
https://github.com/jinzhu/gorm
https://github.com/jinzhu/gorm
https://github.com/jinzhu/gorm
https://github.com/jinzhu/gorm
https://github.com/jinzhu/gorm
https://github.com/jinzhu/gorm

Case Study – Travel Website Chapter 10

[394]

 .Update("availability", threshold.Availability-1)

 // NOTE : availability is just a threshold for update here.
 // Even if availability is 0, reservation is forwarded to the Seller
 // And availability >0 in thresholds DB is not a guarantee of
reservation
 if threshold.Availability <= 1 {
 // we have reached threshold
 sendInvaliationMessageToPriceStore(threshold.SKU, threshold.RoomId)
 }
 return tx.Commit().Error
}

It kickstarts things by starting a transaction. This is important because we will be updating
more than one table, and we need ACID semantics. The two main tables being updated are
these:

Name Utility Schema

hotel_reservations

Details about a
reservation,
including the
status.

availability_thresholds

Hold
triggers—when
the availability
trigger is fired,
the caches in
the price store
need to be
invalidated, to
avoid stable
data.

The availability_thresholds table is one way to keep the price store caches fresh.
After a few bookings are made, the booking service sends a message to the price store . The
price store will then drop caches for which the availability threshold (the availability
field) reached 0. Once fresh data is loaded, the price store service will send another
message to the booking service, to update availability.

Case Study – Travel Website Chapter 10

[395]

When the reservation is inserted, a key attribute is the status. In the preceding code, the
status is in the initial state, but as the workflow progresses, then the status evolves. The
status is modeled as an enum:

type Status int

const (
 Initial Status = 0
 BookingMade Status = 1
 EmailSent Status = 2
)

The sendMessageToPerformBooking() sends a Kafka message to create_booking
topic, to enable the next stage of the workflow: the seller proxy. This is explained through
the following code:

func sendMessageToPerformBooking(reservationDTO *HotelReservationDTO) {
 log.Println("sending message to kickstart booking for ",
reservationDTO)
 bytes, err := json.Marshal(reservationDTO)
 if err != nil {
 log.Println("error sending message to Kafka ", err)
 return
 }

 // We are not setting a message key, which means that all messages will
 // be distributed randomly over the different partitions.
 msg := &sarama.ProducerMessage{
 Topic: "create_booking",
 Value: sarama.ByteEncoder(bytes),
 }
 partition, offset, err := kafkaProducer.SendMessage(msg)
 if err != nil {
 fmt.Printf("FAILED to publish message: %s\n", err)
 } else {
 fmt.Printf("message sent | partition(%d)/offset(%d)\n", partition,
offset)
 }
}

Case Study – Travel Website Chapter 10

[396]

The seller proxy microservice takes this message sent by the
sendMessageToPerformBooking() and does the actual booking with the seller. The
Seller Proxy code starts off by doing a few initializations, the main one being registering as
a consumer on the create_booking topic.

We use the Sarama cluster (https:/ ​/ ​github. ​com/ ​bsm/ ​sarama- ​cluster) library to use the
Kafka high level consumer API. The brokers heartbeat individual consumer instance and
distribute partitions of the Kafka topic to healthy instances. The init() code is as follows:

func init() {
 // setup config, enable errors and notifications
 config := cluster.NewConfig()
 config.Consumer.Return.Errors = true
 config.Group.Mode = cluster.ConsumerModePartitions
 config.Group.Return.Notifications = true

 // specify Broker co-ordinates and topics of interest
 // should be done from config
 brokers := []string{"localhost:9092"}
 topics := []string{"create_booking"}

 // trap SIGINT to trigger a shutdown.
 signals = make(chan os.Signal, 1)
 signal.Notify(signals, os.Interrupt)

 // connect, and register specifiying the consumer group name
 consumer, err := cluster.NewConsumer(brokers, "booking-service",
topics, config)
 if err != nil {
 panic(err)
 }

 // process errors
 go func() {
 for err := range consumer.Errors() {
 log.Printf("Error: %s\n", err.Error())
 }
 }()

 // process notifications
 go func() {
 for ntf := range consumer.Notifications() {
 log.Printf("Rebalanced: %+v\n", ntf)
 }
 }()

 //start the listener thread

https://github.com/bsm/sarama-cluster
https://github.com/bsm/sarama-cluster
https://github.com/bsm/sarama-cluster
https://github.com/bsm/sarama-cluster
https://github.com/bsm/sarama-cluster
https://github.com/bsm/sarama-cluster
https://github.com/bsm/sarama-cluster
https://github.com/bsm/sarama-cluster
https://github.com/bsm/sarama-cluster
https://github.com/bsm/sarama-cluster
https://github.com/bsm/sarama-cluster
https://github.com/bsm/sarama-cluster
https://github.com/bsm/sarama-cluster

Case Study – Travel Website Chapter 10

[397]

 go handleCreateBookingMessage(consumer)
}

The actual work is done by the handleCreateBookingMessage() function, which is
spawned as a go routine at the end:

func handleCreateBookingMessage(consumer *cluster.Consumer) {
 for {
 select {
 case partition, ok := <-consumer.Partitions():
 if !ok {
 panic("kafka consumer : error getting paritions..")
 }
 // start a separate goroutine to consume messages
 go func(pc cluster.PartitionConsumer) {
 for msg := range pc.Messages() {
 var reservationDTO HotelReservationDTO
 if err := json.Unmarshal(msg.Value, &reservationDTO);
err != nil {
 fmt.Println("unmarshalling error", err)
 // Commit even on error to avoid poison pills
 consumer.MarkOffset(msg, "")
 continue
 }

 // make actual booking with seller - here :)

 // update status in DB
 updateReservationStatus(&reservationDTO, BookingMade)
 fmt.Printf("processed create booking message %s-%d-%d-
%s-%s\n",
 msg.Topic,
 msg.Partition,
 msg.Offset,
 msg.Key,
 msg.Value) // <- Actually process message here
 consumer.MarkOffset(msg, "") // Commit offeset for this
message
 }
 }(partition)

 case <-signals:
 fmt.Println("consumer killed..")
 return
 }
 }
}

Case Study – Travel Website Chapter 10

[398]

It listens to incoming Kafka messages and when a message is received, and it does the
following:

De-serializes the payload
Makes the actual reservation with the seller
Updates the status in the hotel_reservations DB using
updateReservationStatus(&reservationDTO, BookingMade)

Marks the message as read

Although not shown, on a successful booking, it will also put a trigger message for the
mailer service, which will notify the customer of the successful booking.

Summary
The Travel Search feature is slightly different for both flights and hotels. But by extracting
common elements such as WorkTree and Listing Ingestor Lib, we can leverage coding done
at one place in other places.

In the booking design, we saw how the EDA pattern helps us cleanly segregate various
workflows. We use a persistent queue such as Kafka instead of channels, because we want
resiliency of instances going down. The workflow can take a long time, and we don't want
a bad customer experience, such as a missed booking, due to transient infrastructure blips.

In the next chapter, we will look at the deployment details of Golang applications.

11
Planning for Deployment

Now that your application is ready, you want to deploy it so that customers can access it.
However, you don't do a deployment that is fragile or else the inevitable
hardware/software glitches will affect customer experience. You want to be able to be able
to reliably deploy new features and fix bugs in production, while minimizing the amount of
time spent or mistakes made.

This chapter discusses deployment architectures that enable resilient architecture,
scalability, and high-feature velocity. It starts by laying out the landscape of typical
production setups, and then goes into the details of building continuous integration and
deployment pipelines. We'll also look at the following:

Deployment architecture for modern apps
Continuous Integration/Continuous Delivery pipelines
Monitoring solutions
Cloud platforms
Security considerations

Planning for Deployment Chapter 11

[400]

Deployment architecture
A deployment architecture is a mapping of the system architecture to a physical
environment. This environment consists of machines that run code, load balancers,
databases, network elements, and so on. The mapping of a logical architecture and software
artifacts to a deployment involves the following:

Defining what infrastructure components are needed
Defining the environments needed
Sizing analysis for each environment: Estimating the number and characteristics
of the resources needed for an efficient environment
Management strategies: A pipeline that defines how new code gets deployed in
an environment

This section discusses the typical components, configurations, and environments of
production systems.

Components
A typical software system rarely consists of just the code. Engineering non-trivial systems
means working with a wide variety of system components.

The following diagram describes typical components in a modern microservices
architecture deployment:

Planning for Deployment Chapter 11

[401]

The following sections describe each component in more detail.

Planning for Deployment Chapter 11

[402]

Computes
We need compute hardware (CPU and memory) to run the code. This section describes the
various choices available for computes.

Physical Servers
Early architectures deployed code on physical servers. Each server was arranged in a rack
with a switch and a storage array:

The components of a rack (server blades, network switches, and so on) are often classified
in terms of their sizes or Rack Unit. This is a unit of measure used to describe the height of a
device mounted in a 19-inch rack or a 23-inch rack and is approximately 44.45 mm (1.75
inches) high. Device form factors are often in terms of multiples of rack units (1U, 2U, and
so on).

Physical servers provide the best performance for hardware, however, they are difficult to
manage, are often unevenly utilized, and don't really have scalability (scaling here implies
buying new hardware).

Virtual machines
Virtualization refers to technology that simulates hardware, such as CPU/memory on top of
actual hardware, hence creating multiple virtual machines on top of actual hardware. The
underlying hypervisor layer traps instructions that are privileged and/or go to shared state
and simulate isolated environments for each virtual machine.

Planning for Deployment Chapter 11

[403]

Virtualization enables multiple benefits, including the following:

Better hardware resource utilization
Allowing you to save/restore the state of a machine
Easier maintenance, including features such as the migration of virtual machines
from one physical host to another, allowing for easier maintenance of physical
hardware
Allowing applications that run on different operating systems to be deployed on
standard hardware

There are many virtualization vendors including the following:

Microsoft Hyper-V
Linux Kernel Virtual Machine (KVM), Qemu, and related ecosystems such
as Openstack
Citrix Xenserver

Containers
Virtual machines work by packaging the application and the operating system. This makes
the packages (referred to generally as images) pretty fat. It also is pretty inefficient since
there are multiple operating systems running on top of the actual "host" OS.

Containers enable isolation at an OS level, using constructs such as the following:

Quota allocation and the enforcement of resources, for example, CPU, memory,
block I/O, and network
Namespace isolation functionality that provides each container with an isolated
view of the operating environment, including filesystem, process trees, user IDs,
and so on

This isolation mechanism is much more efficient than the guest operating system concept in
virtual machines. This enables the deployment of a lot of containers onto a single computer.

Containers initially lacked a standard packaging system. Docker solved this problem by
providing a standard for packaging, a runtime (daemon), and tools (client) for packaging,
managing and distributing containerized applications. The packaging format is called an
image. It essentially is a template listing instructions for creating a container. Very often
images are derived from another image and list specific customization from the base image.

Planning for Deployment Chapter 11

[404]

For example, one can have an image that is based on a CentOS and installs Nginx and the
application. Docker also has the concept of a registry, which is a repository of Docker
images. Docker Hub and Docker Cloud are public registries that anyone can use, but one
can also run their own private registry for images within an organization, as shown in the
following diagram:

Reference: https://docs.docker.com/engine/docker-overview/#docker-architecture

While containers are cool, managing them at scale requires specialized solutions. There are
many options for orchestrating containers. Kubernetes, Mesos, and Docker Swarm are some
of the popular solutions.

Compute Attributes
As described previously, computes could be virtual machines or containers. The important
attributes of compute instances include the following:

Computing power: The number and speed of CPUs and cores
The amount/configuration of RAM and cache
The type and size of persistent storage (disks)
Virtualized/physical machines or containers

Planning for Deployment Chapter 11

[405]

Besides the hardware characteristics, we also need to define what other services need to run
on the instance. These ancillary programs include the following:

Process monitoring components such as supervisors
Sidecar components, which allow connections to remove services via proxies
Log ingestors, components that ship logs to centralized setups such as Splunk
(see the Monitoring section)

Storage
Datacenter storage technology has three main flavors:

Direct Attached Storage (DAS): This is the traditional storage solution, where
disks are attached directly to servers. Access is generally arbitrated by an
intelligent controller.
Network Attached Storage (NAS): Here storage is essentially at a filesystem
level and is shared between multiple servers using some sort of networking
protocol. The remote filesystem is "mounted" at a specific location in the server
operating system's filesystem tree. Two common NAS protocols are NFS
(Network File System) and CIFS (Common Internet File System). CIFS requires
a dedicated separate storage server which all of the other servers to connect in
order to access the data. Besides allowing for the sharing of data, the key
advantages of NAS are as follows:

More efficient utilization of available storage capacity
Centralized management

Storage Area Networks (SAN): Just like NAS, an SAN offers shared storage.
However, SANs provide block-level access instead of sharing filesystems. This
means file sharing is not possible, but the other advantage of efficient utilization
is retained. SANs sometimes use specialized networking (such as Fibre Channel)
in addition to the storage servers. The iSCSI protocol is a SAN solution that uses
existing Ethernet devices and IP protocols, hence enabling a cost-effective SAN
solution.

Planning for Deployment Chapter 11

[406]

Networking
Networking design is a critical element of the data center architecture and hence the
deployment architecture. Networking in data centers is generally based on a layered
design, as shown in the following diagram:

Planning for Deployment Chapter 11

[407]

The Core layer provides a high-speed packet switching backplane for all flows going in and
out of the data center. Access routers/switches, in addition to doing fault-tolerant routing,
provide additional functionalities such as spanning tree processing, firewalls, intrusion
detection, and SSL offload. The Access layer consists of Top-of-the-Rack (ToR) switches,
which connect the actual servers to the networks. As you can see, there is a lot of
redundancy in the wiring to avoid single points of failure. The routing protocols ensure
that the redundant links are efficiently and correctly used.

Besides the hardware elements, there is a logical grouping of networking elements.
Typically, in three-tier applications, the network is also segmented into three tiers (web,
application, and database). This allows—among other things—restriction of network access
across tiers. In today's environment, this logical architecture is implemented using Virtual
Networks (VLAN), where multiple L2 isolation domains are implemented on top of the
same physical networking infrastructure. Security Groups define which ports are allowed
in and out of the network segments.

Load Balancers
A Load Balancer (LB) is a device which distributes incoming API requests to multiple
computing resources (instances). It is able to do the following:

Handle more work than what a single instance is capable of
Increase reliability and availability through redundancy
Gracefully upgrade code in instances with zero downtime

LBs can work either at the Transport or Application layers of the networking stacks. The
different levels are as follows:

HTTP: Here the LB routes HTTP requests to a set of backend instances. The
routing logic is typically based on URLs but can also use other characteristics of
the requests (User Agent, Headers, and so on). The LB typically sets some
standard headers such as the X-Forwarded-For, X-Forwarded-Proto, and X-
Forwarded-Port headers to give the backends information about the original
request.

Planning for Deployment Chapter 11

[408]

HTTPS: HTTPS is very similar to HTTP, but the key difference is that, to be able
to route requests on HTTP headers/components, SSL needs to be terminated. One
the payload is decrypted and inspected for routing, the requests to the backend
can either be encrypted through HTTPS or HTTP. This mandates that we must
deploy an SSL/TLS certificate on the LB. The SSL and TLS protocols use X.509
certificates to authenticate both the client and the backend application. These
certificates are a form of digital identity and are issued by a certificate authority
(CA). The certificates typically contain information such as a public key for
encryption, a validity period, a serial number, and the digital signature of the
issuer. Managing certificates becomes a key maintenance activity for the SSL
termination.
TCP: Traffic can also be routed at the TCP level. A typical example might be
connecting to a set of redundant caches.
User Datagram Protocol (UDP): This is similar to TCP load balancing but more
rarely used. Typical use cases might be protocols such as DNS and syslogd,
which use UDP.

Depending on the level at which the LB is operating, different routing strategies are
possible, including the following:

Direct routing: Essentially just change the L2 network address and redirect the
packet to the backend. This has huge performance benefits as the LB does very
little work and the return traffic (from the backend to the client) can happen
without the LB in between. This however requires the LB and backend servers to
be on the same L2 network
Network Address Translation (NAT): Here the L3 address are rewritten and the
LB stores a mapping so that the return traffic can be redirected to the correct
client.
Terminate and Connect: For most application-level load balancers, operating at
the packet level is very difficult. So they terminate the TCP connection, read the
data, store the payload across packets, and then, after enough information is
available to make routing decisions, forwards the data to to a "backend" server
via another set of sockets.

Planning for Deployment Chapter 11

[409]

Each service (microservice) has a specific endpoint, typically a fully qualified domain
name (FQDN). A Domain Name Server (DNS) identifies the IP address for this instance.
Typically this IP address is a virtual IP address (VIP) and identifies a set of instances (each
having an actual IP address). The application level (L7) LB is the place where one
provisions the VIP for each service.

Load balancers should only forward traffic to healthy backend servers. To gauge health,
typically backend services are expected to expose an endpoint which the LB can query for
instance health.

A typical production setup consists of a combination of L4 (TCP) and L7 (HTTP) load
balancers with a layer of machines terminating SSL, as described in the previous diagram.

API Gateways
APIs are the lingua franca of modern applications. With a microservices-based architecture,
there are multiple services whose aggregated whole is the API set of the application. An
API Gateway is the "front door" to this set of APIs .

API gateway responsibilities include the following:

Authorization and access control: Ensures that only authorized applications are
accessing the APIs
Quotas/throttling: Enables quotes and rate limits for specific APIs from specific
clients
Monitoring
API version management
Reducing chattiness in a microservices architecture: Enables clients to call one
endpoint, which, internally, can orchestrate across multiple backend
microservices

Planning for Deployment Chapter 11

[410]

There is a feature overlap between LBs and API gateways. Generally, the former focus more
on efficient routing and the latter are more feature rich. We already had an detailed look at
an API gateway in Chapter 7, Building APIs. The following diagram provides a quick
recap:

Reverse proxies
The major objective of reverse proxies is to put some functionality in between the request
and the server/backend code. The functionality can be things such as SSL termination
(HTTPS) or often caching.

Varnish is a HTTP proxy that is focused on caching. It gets the requests from clients and
tries to answer them from its own cache. If Varnish cannot find a response from the cache,
the request is forwarded to the backend server. Once the backend server responds, the
answer can be cached before forwarding the same to the client. Varnish decides whether or
not to cache the response based on the Cache-Control HTTP response header.

Planning for Deployment Chapter 11

[411]

The performance benefit of Varnish can be quite dramatic, with response times often in
microseconds.

Messaging brokers
As discussed in Chapter 6, Messaging, message exchange between services is a key building
block for resilient, high-throughput architectures. Brokers are components that host the
messages and perform the routing between producers and consumers. One example is
Kafka message brokers.

When deploying brokers, it is essential to have a good estimate of the messages-per-second
needed for each Topic. This enables us to compute configurations such as the CPU/memory
requirements of the brokers and the storage needed for hosting messages.

Another common configuration is the replication factor, which defines the number of nodes
on which the message is replicated on. This, in turn, defines how many node failures the
Topic can survive and still be able to serve messages to consumers. However, to achieve
such reliability, the nodes need to straddle different fault domains. Here, fault domain
refers to a group of nodes, which share a common power source and network switch.

Some brokers such as Kafka contain complicated features, such as Group Co-ordinator,
which enables highly available message consumption. However, in order to get this right,
we need to define tuneables such as heartbeat timeouts (between the brokers and the
consumers) correctly.

Environments
The individual components described previously combine together to form an
"environment." The most important one is the production environment. This is the one that
fulfills requests from the customers. However, there needs to be parallel environments for
multiple development efforts.

A modern system goes through constant churn in terms of features/requirements and
releases happen often. It is important to test the releases in a controlled environment before
they get to production. This ensures that software bugs/regressions are not caught by
customers first. This is known as a QA environment. Generally, the QA environment is
much leaner than the production one. This is generally the first place multiple services
integrate with each other, in order to fulfill a specific feature.

Planning for Deployment Chapter 11

[412]

Sometimes the lean QA environment is not good enough to verify the non-functional
requirements of the system. It is important to characterize performance of a specific release
and ensure that new code has not caused performance regressions. This kind of testing
generally involves a lot of load. Hence, it needs an environment close to production (or
scaled appropriately so as to predict actual production performance). Hence, a performance
test is generally performed in a separate environment. To save costs, this environment is
generally virtual and decommissioned when not used.

There are many variations on this basic recipe of a deployment environment. One popular
combination is called blue-green deployment. Here, two identical production environments
(called Blue and Green) are maintained simultaneously. At any given time, only one of the
environments (say Blue) takes live production traffic. New deployments go to the other
cluster (say Green). Once the new deployment is vetted, the live/standby environments get
flipped at the load balancer level. This technique has a couple of key benefits:

Almost zero downtime as the new deployment happens on a totally different
cluster
If there is an issue in the current live environment, the last stable environment is
available on hot-standby

The flipside of this strategy is the cost in maintaining two production-grade environments.

The following diagram depicts the Blue-Green deployment strategy:

Planning for Deployment Chapter 11

[413]

Capacity Planning and Sizing
Capacity planning (or sizing) of an environment is the process of determining the number
and configurations of various components in an environment, so that the system
requirements and business goals are satisfied with the required SLAs. This is not an exact
science but rather its rough calculations with input from required SLAs, past design
experience, domain knowledge, and applied creative thinking.

For computes, the main resources are CPUs and memory. The domain knowledge and
system design indicate how much of these resources are needed for a single request:

Is the API handling resource intensive? If yes, then more core CPUs might be
needed.
Is the API handling IO bound? If yes, then ancillary hardware like DMA will
probably impact performance (rather than larger cores).
If there is a lot of in-memory caching or recursion, then memory requirements
might be large.

With these inputs one can characterize how much a single instance (of specified
specifications) can serve in terms of requests per second. Once we know that each instance
can handle x requests/sec and the SLA required from the service is y requests/sec, then the
total number of instances can be easily found out using ceil(y/x).

As described in Chapter 8, Modeling Data, databases come in various forms and shapes.
However, there are a few general considerations for production deployment:

High availability: Ensure that no DB instance is a single point of failure.
Storage configuration: The DB writes data to the disk. In most modern operating
systems, this path is not as straightforward, and care needs to be taken to ensure
that durability and performance goals are met. This includes various buffer/cache
parameters in the filesystems.
Backup: Most business-critical data is also backed up. This involves periodic
snapshotting and shipping of this snapshot to a remote archive.
CPU/memory requirements: Depending on the number of IO operations to be
supported per second, appropriate CPU and memory needs to be provisioned for
the the database instance.

Planning for Deployment Chapter 11

[414]

Compliance and access control: Production data needs to be appropriately
secured such that only only a limited required set of users have read/write access
to the databases. Some data might be needed to be kept encrypted (privacy
concerns).
Scripting of creation/modification of the database entities (tables, views,
procedures, and so on) and having the scripts in source control.

Golang is much more resource efficient than other languages like Java. Thus, even if you
have an existing system that you are migrating, the preceding exercise is fruitful.

Disaster recovery
As discussed in Chapter 9, Anti-Fragile Systems, disaster recovery implies ensuring
business continuity and application availability in the event of a large failure like an entire
data center going down. A failover deployment is kept in near sync with the main
deployment via replication. Each component/service defines how important consistency in
the failover site is. The tradeoff for consistency is the performance/efficiency drop in
shipping data in real time to the failover side. The actual flip happens through DNS
changes. The following diagram from Chapter 9, Anti-Fragile Systems, provides a quick
recap:

Planning for Deployment Chapter 11

[415]

CICD
The continuous integration, continuous delivery (CICD) model was defined by Tim Fitz
in his seminal book Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation in 2010. Essentially, it mandates an automated pipeline which can
take new code, perform required checks/builds, and then deploy it in production. Such a
system is a prerequisite for high-feature velocity development that is typical of most
modern applications.

This section describes the concepts behind CICD. It describes a simple implementation and
then deep dives into Go tooling which can aid in building CICD pipelines.

Overview
The CICD approach advocates the following:

Continuous integration—continuous merging of code across developers, the
automation of unit tests, code packaging, and integration with other systems of
the product/organization
Continuous testing of this integrated product across development milestones
(not just at the end)
Automated build promotion to higher-level environments based on predefined
rules
Continuous release, where promoted builds are deployed automatically to
production environments

The CICD workflow or pipeline defines the various stages and gates for code to reach
production from a dev environment, and offers tooling to automate this process. The
trigger for the whole process is a webhook installed in the source control system (for
example, GitHub). This hook triggers a pipeline, involving a set of processes which take the
code, package it, test it, and deploy it, as show in the diagram:

Planning for Deployment Chapter 11

[416]

Jenkins
Jenkins is an open source automation server written in Java in 2004 by Kohsuke
Kawaguchi. Jenkins can act as the end-to-end CICD orchestrator, which gets triggered from
a commit and is able to build, generate documents, test, package, and, perform staging and
deployment.

This section provides an overview of how to use Jenkins to set up a simple CICD pipeline
for Go deployment with code hosted on GitHub. The Jenkins server will be deployed on a
laptop (with macOS) and the deployment target will be an Ubuntu container.

Sample Code
In order to demonstrate an end-to-end CICD pipeline, one needs to have code to run! For
this example pipeline, we will use a simple Gin-based HTTP serve. The sample code is
shown here:

package main

import (
 "fmt"
 "github.com/gin-gonic/gin"
)

func main() {
 fmt.Println("starting application..")
 // setup and route
 r := gin.Default()
 r.GET("/health", func(c *gin.Context) {
 c.JSON(200, gin.H{
 "status": "ok",
 })
 })

 // listen and serve on 0.0.0.0:9000
 r.Run(":9000")
}

We will trigger builds and deployments from this source directly (https:/ ​/​github. ​com/
cookingkode/​cisample).

https://github.com/cookingkode/cisample
https://github.com/cookingkode/cisample
https://github.com/cookingkode/cisample
https://github.com/cookingkode/cisample
https://github.com/cookingkode/cisample
https://github.com/cookingkode/cisample
https://github.com/cookingkode/cisample
https://github.com/cookingkode/cisample
https://github.com/cookingkode/cisample
https://github.com/cookingkode/cisample

Planning for Deployment Chapter 11

[417]

Installing Jenkins
The official website for Jenkins is https:/ ​/​jenkins. ​io/​ and one can download Jenkins
from there. Once downloaded, one can run it via the java -jar Jenkins.war command.
Once you download and install Jenkins, you can access Jenkins through a web browser
(http://localhost:8080 by default). You should see a screen like the following:

Installing Docker
We need to have a target for deployment. In real life, this would be some sort of image of a
VM/container, but here we will run a Docker container locally and deploy code on it. To
run an Ubuntu container, use the following:

docker run -p 9000:9000 -p 32:22 -it ubuntu /bin/bash

This command will deploy an Ubuntu container and name it Ubuntu. It will also perform a
couple of port mappings to allow for ssh and access to the HTTP server (which runs on port
9000).

https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/

Planning for Deployment Chapter 11

[418]

We will be using SSH to transport artifacts onto the deployment target. Hence, we need to
install the ssh server on the container. One can do this using the following commands:

apt-get update
apt-get install openssh-server
service ssh restart

After this, one needs to generate a key pair on the build server (in this case, the dev laptop)
:

ssh-keygen -t rsa

After this, we need to copy the public key (~/.ssh/id_rsa.pub) contents into
~/.ssh/authorized_keys on the target server (which in this case is the Ubuntu
container). Make sure your .ssh dir has 700 permissions and the authorized_keys file
has 644 permissions.

Setting up Plugins
From here, we need to install some plugins to help with our CICD pipeline. Navigate to
Manage Jenkins | Manage Plugins as we need to download the following:

Planning for Deployment Chapter 11

[419]

These plugins will be used to compile Go code (Go plugin), execute custom scripts for
building (PostBuildScript Plugin), and publish it to a remote server and execute the
commands (the Publish Over SSH plugin). After the plugins finish downloading, we need
to configure them globally. To do this, from the main Jenkins dashboard, navigate to
Manage Jenkins | Global Tool Configuration and search for the Go section and set up the
version:

The next step is to configure our SSH keys for deployment. From the main Jenkins
dashboard, choose Manage Jenkins | Configure System and navigate to the SSH section
and enter the following:

Either the path of the key file or paste the private key content in the Key textbox
The server details

Planning for Deployment Chapter 11

[420]

In the following screenshot, the key is hidden:

Here, since we have mapped port 32 to 22, make sure you go to SSH Servers | Advanced
and set up the SSH Port as 32:

Planning for Deployment Chapter 11

[421]

Once this is done, it is recommended to use the test connection button to ensure
connectivity.

Creating a project
At this stage, we are all set to create a new project for our pipeline. Choose New Item from
the main Jenkins dashboard, give it an appropriate name, and select Freestyle Project. This
type allows us to set up our own workflow. The name is important as it will be the project
binary that is built. After this, set up the Git (GitHub) URL of the sample project:

Planning for Deployment Chapter 11

[422]

In this example, Jenkins is running on a laptop and the code is in GitHub, so we will be
using build triggers rather than triggering the pipeline manually. You can leave the Build
Triggers section empty.

We need to set up the Go version:

With this set, the workflow will download and you can install that version of Go prior to
the builds.

Next, we configure the actual build. We can do this in discrete steps. In this example, we
use just two steps—one to fetch Go and the other to do the build, as shown in the following
screenshot:

Planning for Deployment Chapter 11

[423]

Note that the GOOS=linux GOARCH=38 prefix is needed as my Jenkins
server is on macOS, and I am going to the binary in Ubuntu in the
container.

Planning for Deployment Chapter 11

[424]

After setting up the Build, we need to set up the Post-build Actions. Here, we copy over
the binary (built on the Jenkins build server) and then execute it on the target container:

Finally our project is created.

Running the Build
Once the project is set up correctly, one can navigate to the main dashboard and fire up a
build, as shown in the following screenshot:

Planning for Deployment Chapter 11

[425]

Once the build is successful, one can test that the binary is deployed by navigating to
http://localhost:9000/health and looking at the sample response we coded.

Target Configuration
In the sample, we set up a simple Docker container to host the binary. In real-world
applications, one might need to tune few parameters to ensure correct behavior. This
includes the following:

GOPATH (which should be set to $HOME/go with GVM)
GOBIN (which should be set to $GOPATH/bin)
GOMAXPROCS (to the required number of cores/the parallelism required)

One also needs to ensure that the application process has enough privileges/limits to do its
job. Most operating systems apply a wide variety of limits on various resources that a
process can utilize. These include things like file descriptors, number of open files, and so
on. In Linux, the ulimit tool can be used to check and manage these settings.

Finally, the Go process should be daemonized and set up as a service. For example, in an
OS like Ubuntu this might mean setting up Upstart using a configuration like this one:

start on runlevel [2345]
stop on runlevel [!2345]
chdir /home/user/app
setgid app
setuid app
./app 1>>/var/logs/app.log 2>>/var/logs/apperr.log

Planning for Deployment Chapter 11

[426]

Tooling
In the preceding sample, the CICD pipeline consisted of just doing a build (go get, and
build) and deploy. However, building robust applications requires the CICD pipeline to
perform lot more steps, including tests, code linters, and so on. The Go ecosystem really
shines in this respect and has a plethora of tooling. The following is a brief list of Go tools
which are useful in a CICD setup.

go fmt
The go fmt tool automatically formats Go source code. This includes tabs for indentation
and blanks for alignment. For example, look at the following code snippet:

package main
import "fmt"
// sample code to demo
 // gofmt
 var b int=2;
func main(){
a := 1;
fmt.Println(" a,b : ");
 fmt.Println(a);
fmt.Println(b); }

It will be formatted to the following:

package main

import "fmt"

// sample code to demo
// gofmt
var b int = 2
func main() {
 a := 1
 fmt.Println(" a,b : ")
 fmt.Println(a)
 fmt.Println((b))
}

This happens thanks to Go fmt.

Planning for Deployment Chapter 11

[427]

golint
The goal of the Lint tool is to make sure that the code respects the code style that is put
forth in Effective Go and other public good-coding guidelines. This linter is not part of the
Go tool suite so one needs to install it from https:/ ​/​github. ​com/ ​golang/ ​lint. The usage is
fairly simple:

$golint -set_exit_status $(go list ./...)

The following are some issues that Go Lint catches. By default, golint only prints things
on the console, so a CICD framework cannot easily figure out if there are any issues. The -
set_exit_status option enables the golint return status to be non-zero and thus it
infers errors in code. Some of the errors that golint flags are explored here:

Variable names:

package errors

import fmt

var e = errors.New("error")

func main() {
 fmt.Println ("this program will give a golint error")
}

Here, golint would complain about the naming of variable e ("error var e
should have name of the form errFoo"):

Error returns:

package myapp

func fetchData() (error, string) {
 return nil, ""
}

Last else in a function: Here, golint would complain that the error should be
the last type when returning multiple items:

func IsGreaterThanZero(x int) int {
 if x > 0 {
 return 1
 } else {
 return 0
 }
}

https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint

Planning for Deployment Chapter 11

[428]

Here golint would recommend that you have the last return outside of else.

Unit tests verify the functionality of the application. We have already covered how Go unit
tests are written and the best practises for them. For each .go file, you need to have an
associated _test.go containing the unit tests.

Clang has a detector for uninitialized reads called MemorySanitizer (described at https:/ ​/
clang.​llvm.​org/​docs/ ​MemorySanitizer. ​html). It can be used along with go test with the -
msan flag. The CI framework should run the tests for all the packages with a command
along the lines of this:

$go test -msan -short $(go list ./...)

Along with the status of the unit tests (whether there were any failures), a key metric of
code reliability is code coverage. This indicates the amount of code that has been exercised
by the unit tests. To calculate the code coverage ratio, we can use a script like this one:

$PKGS=$(go list ./...)
$for p in ${PKGS}; do
go test -covermode=count -coverprofile "cov/${package##*/}.cov" "$p" ;
done
$tail -q -n +2 cov/*.cov >> cov/total_coverage.cov
$go tool cover -func=cov/total_coverage.cov

go build
After we have ensured that the code meets the required quality gates, we need to compile it
to make an binary. The Go team has put in special effort to make the builds fast and to
enable cross compilation (as we demonstrated in the previous sample).

Footnote
It is essentially to spend time building a robust CICD pipeline. This allows for rapid
deployments and feature velocity, while maintaining quality gates.

In the sample, we triggered the pipeline manually. However, as described earlier, we
should configure web hooks to trigger the pipeline on code pushes. The GitHub steps for
setting in this are are pretty straight forward. Navigate to the Webhooks & Services tab
and choose Configure Services. Find the Jenkins (GitHub plugin) option and fill it with
the URL to your Jenkins server, which should be something like http://<Name of
Jenkins server>:8080/github-webhook/. Make sure to tick the Active checkbox and
ensure things work by using the Test Hook button:

https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html

Planning for Deployment Chapter 11

[429]

Monitoring
Once your code is deployed, you need to monitor what's going on. This requires upfront
investment in figuring out the monitoring architecture and setting things up so that you are
not blind once the application goes live. Without monitoring, when there are inevitable
outages, your team will have limited insight into what's going on. This will hamper
debuggability and ultimately impact the customer experience.

This is why proper monitoring is essential. There are five aspects to monitoring:

Proper logging
Proper emission of all relevant and important metrics from the application and
infrastructure
Well-designed dashboards that reflect the health of the application
Actionable alerting system on the key metrics measured
Having a production reliability team, which might include a Site Reliability
Engineering (SRE) team and an efficient on-call rotation schedule for all
developers in the team

We shall go into the details of each in the following sections.

Planning for Deployment Chapter 11

[430]

Logs
Logging is the first thing to implement in terms of monitoring. When debugging problems
in applications, developers are mostly involved in coming through the logs to put together
an event chronology of what happened and where things went wrong.

To maximize the benefit of logging, it is important that the logs follow a specific structure
and contain important information, including the following:

A short, crisp description of the event that is being logged.
Relevant data like request ID, user ID, and so on. Things like a username (email),
social security numbers, and customer name should not be logged (or be
masked) to avoid leaking private information about customer.
A timestamp describing the time of occurrence of the event.
An identifier for the thread and host for the instance of the service.
File name, function name, line number.
Important request and response details for all APIs.
Tracing identifiers to identify service requests across microservices.

It is important to have a well thought out level for each log. Some information might be
important in a debug environment, but in production, debug logs will become verbose and
in certain situation create so much noise that the debuggability is hampered. Ideally there
should be three levels:

Debug: Verbose information, useful when analyzing programs in a non-
production environment
Info: Events that are useful for debugging in production
Fatal: A critical failure that requires the program to exit

Go's standard library has a log package: https:/ ​/​golang. ​org/ ​pkg/ ​log/ ​ . It does not
support leveled logging on its own but can be used to create different loggers for each level,
like so:

Debug = log.New(os.Stdout, "DEBUG ", log.LstdFlags)

A common mistake is for the application to concern itself with managing log files. Instead,
each process should write logs unbuffered (as an event stream), to Stdout. During
development, the developer will view the logs in the terminal. In production, it's easy to
redirect the same stream to a file ./my_service 2>> logfile (the default logger in Go
writes to stderr - 2).

https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/

Planning for Deployment Chapter 11

[431]

If the standard log library is unsatisfactory, there are a wide variety of logger libraries
which add functionalities like leveling on top of logs.

A quick note on logging inside packages when you want to ship to multiple developers.
Here, creating a logger instance inside the package is not an good idea, since now the client
application is coupled with the logger library that the package is using. Even worse, if the
final application has many packages, each with a different logger with a different format,
then browsing through the different logs will not be easy—not to mention the unnecessary
bloat of logger libraries. In this case, it would be much more elegant to take a logger as
input from the application (client) code, and the package can just use the logger to emit
events. The client could specify the logger in an initialization function that the library
provides.

Logs from each instance need to be aggregated and available at a central place. A common
architecture for this is called the Elasticsearch, Logstash, Kibana (ELK) stack. Elasticsearch
is an inverted-index database service that is based on the Apache Lucene search engine.
Logstash is an ingestor tool that accepts input from various sources, transforms, and
exports the result to multiple sinks, Elasticsearch in this case. Kibana is a visualization layer
on top of Elasticsearch. Typically, Logstash takes logs from a file and ships them to
Elasticsearch where they are indexed into different indices with the format logstash-
YYYY.MMM.DD. One can use regex closure for search, oo to explore all of the log data from
say June 2018, one could specify the index pattern logstash-2018.06*.

It's important to note that log files can get big very quickly. If they eat up the disk space
then the application might get affected. Thus, it's important to rotate the logs to keep the
most recent ones and discard the old logs. Ingestors like logstash have tuneables to rotate
log files as part of the ingestion process.

Metrics
Key metrics need to be identified and monitored at each service, host, infrastructure, and
support component (such as a database) level. All of these in total should provide necessary
and sufficient information for describing the behavior and health of the system.

These raw metrics can be aggregated and processed to form higher-level metrics. They
should be granular enough so that a developers can know the status of a metrics for a
specific service on a specific host. It should also be possible to have the metrics aggregated
so the metrics for the service are available across all hosts it runs on. For example, it should
be possible to find out the CPU utilization of a service on a specific host and across all hosts
that it is deployed on.

Planning for Deployment Chapter 11

[432]

The following are some of the metrics that can be measured:

Infrastructure

CPU utilization
Memory utilization
Disk utilization
IOPS of storage devices

Application (system level)

Number of goroutines
Heap size
Number of open file descriptors
Number of database connections
Kernel logs

Application (business level)

SLA performance for all API endpoints
API success rates
Business transactions
Errors
Crashes
Application logs

Client

Real User Monitoring
Client-side performance of all API endpoints
Crashes
Client Logs

The ELK stack also provides a component called Metricsbeat, which essentially ships Go
metrics to Elasticsearch. For more details on tuning go apps with Kibana, you can visit
https:/​/​www.​elastic. ​co/ ​blog/ ​monitor- ​and-​optimize- ​golang- ​application- ​by-​using-
elastic-​stack.

Application Performance Monitoring/Dashboards
Dashboards (or APM tools) should provide a single-pane-of-glass view to the health of a
system. This includes the hardware, the application, and related services. Well-designed
dashboards give developers an easy, visual way to detect anomalies in system's health and
behavior.

A popular application monitoring system is Newrelic. It has support for Go. The following
screenshot showcases important metrics that can be gleaned in real time using the plugin:

https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack
https://www.elastic.co/blog/monitor-and-optimize-golang-application-by-using-elastic-stack

Planning for Deployment Chapter 11

[433]

Reference: https://newrelic.com/golang

According to Newrelic, the Go agent has the following abilities:

Viewing the datastore calls and external services your application is accessing
Isolating operations that may be causing bottlenecks in responses
Using deployment markers to view changes in app performance and runtime
behavior between deploys
Writing custom events and building custom dashboards with New Relic Insights

One important feature in dashboards is trend analysis. If we are seeing a graph of the
response time of an API over the last few minutes, it is useful to have an overlay of the
response time of the API—the same time last week for example. This enables developers to
quickly grasp if there is a big anomaly currently for the API.

Most problems are caused by new deployments of code. To help developers quickly isolate
problems in new code, it helps to include information about when a deployment occurred
in the dashboard. The deployment times are shown as clear visual elements (for example,
vertical red lines) in graphs of metrics (over time).

Planning for Deployment Chapter 11

[434]

Alerts
Having dashboards is not enough; we cannot expect developers to constantly monitor
dashboards 24/7. One needs real-time alerting. This means the ability to set thresholds on
metrics and the identification of critical logs/events. As part of the alert setup, we also need
to set up what is considered the communication mechanism for the alert. This mechanism
can vary from a simple email to sophisticated solutions such as PagerDuty.

Breaching of these thresholds could lead to an outage, cause a spike in latency, or somehow
affect customer experience, and hence a notification needs to go out to the relevant teams to
set right the situation. Importantly, the thresholds should be set so that the notification goes
out before a catastrophic situation occurs. There should be sufficient time for the team to
debug and help correct the situation.

Team
There is no point in monitoring or alerts if there is nothing that is done to remediate the
situation. Once an alert has been triggered, a team needs to triage, debug, and resolve each
alert. There are two objectives here:

Immediately bring the production environment to a stable state
Collect all data necessary (if necessary, take out an instance from the production
cluster) to enable effective root cause analysis

The first objective is of the topmost priority. Debugging a down system in production
causes outage extension and inefficient debugging.

To help in production outages, there needs to be step-by-step instructions on how to debug
various situations. This is typically called an on-call runbook. For each alert, the engineer
can consult the runbook to identify known causes of deviations from the norm, how to
correct the situation, and how to debug/collect more information. These runbooks are for
both infrastructure as well as for each service.

Planning for Deployment Chapter 11

[435]

Traditionally, organizations used to have an operations team, which used to do things by
hand. The runbooks described here were more manual commands to run. However, with
increased scale, complexity, and feature-velocity, people realized that such a process does
not scale. Most organizations are moving to the Site Reliability Engineering (SRE) team,
which was first set up by Google. An SRE team is a team of engineers who use software
tooling to manage all the software and infrastructure of the application. Effectively, the
runbooks are automated, so that actions previously done by hand happen automatically.

The SRE team is generally complimented by a set of "on-call" developers from the
individual service teams. These on-call developers are responsible for their services in
production, and do the detailed debugging and L2 support. They work very closely with
the SRE team during production incidents.

While we described a quick introduction of how a DevOps team can be set up, there is still
a lot of details to work out on. The details are, however, out of scope for this book.

Clouds
Cloud computing refers to the ability to provision computing infrastructure and higher-
level services for an application from an external provider over the internet. Companies
offering these multi-tenant computing services are called cloud providers and typically
charge on a pay-per-use basis, thus enabling delivery of infrastructure and services in a
utility model.

In the spirit of service-oriented architecture, cloud computing is packaged in three broad
flavors, which are described next.

Planning for Deployment Chapter 11

[436]

Infrastructure as a Service (IaaS)
Here, the cloud provider gives users direct access to computing resources such as servers,
storage, and networking. Organizations use this and deploy their own technology stack of
this infrastructure. Instead of purchasing hardware outright, users essentially rent
hardware. The computing resources are scalable and one can control the type and number
of instances. The following table gives a sampling of different types of compute instances in
Amazon Web Service (AWS) and the IaaS offering (EC2) and showcases the rich variety
available:

Type Usage Sample
Cconfigurations

T2

Enables burst computing—essentially the user selects a
baseline level of CPU performance with the capability to burst
above the baseline. The ability to burst is controlled by CPU
credits. Every T2 instance regularly gets CPU credits at an
established rate that is based on the size of the instance. The
credits are spent when the instance does actual CPU usage.
These instances are suitable for workloads that do not require
the full CPU consistently, such as developer environments.

t2.nano:
1 vCPU, 0.5G RAM,
3 CPU credits/hour
t2.medium:
2 vCPU, 4G RAM,
24 CPU
credits/hour
t2.2xlarge
8 vCPU, 32G RAM,
81 CPU
credits/hour

M4

M4 instances are general purpose instances based on custom
Intel Xeon E5-2676 v3 Haswell processors (which are optimized
specifically for AWS). These instances are also provided with
enhanced networking, which increases the networking packet
rate by up to four times while guaranteeing reliable latency. An
example use case is mid-tier databases.

m4.large:
2 vCPU, 8G RAM
m4.xlarge
4 vCPU, 16G RAM
m4.16xlarge
64 vCPU,
256GRAM

C4/C5

C4 instances are compute-optimized instances, based on
custom 2.9 GHz Intel Xeon E5-2666 v3 processors, with Intel
Turbo Boost Technology enabled. These instances enable
maximum performance at a given price. They are suitable for
compute-bound applications such as media transcoding,
gaming servers, and so on.

c4.2xlarge:
8 vCPU, 15G RAM
c5.large:
2 vCPU, 4G RAM
c5.4xlarge:
16 vCPU, 32G RAM
c5d.large:
2 vCPU, 4G RAM, 1
x 50 NVMe SSD

Planning for Deployment Chapter 11

[437]

X1/R4

These instances are best suited for large-scale, in-memory
applications and offer the lowest price for a GB of RAM among
AWS EC2 instances. They are intended for hosting in-memory
databases and enterprise solutions such as SAP HANA and so
on. These instances provide 1,952 GB of DDR4 based memory,
eight times the memory provided by any of the AWS EC2
instances. R4 instances support enhanced networking. X1
instances provide SSD storage and are EBS-optimized by
default.

r4.large:
2 vCPU, 15.25 G
RAM
r4.4xlarge:
16 vCPU, 122G
RAM
r4.16xlarge:
64 vCPU, 488G
RAM
X1.32xlarge:
28 vCPU,
1,952GRAm

G2

G2 instances are meant for applications which want to utilize
GPUs, for example modeling, machine learning, rendering,
transcoding jobs, and game streaming.
These instances provide a high-performing NVIDIA GPU with
4 GB of video memory and 1,536 CUDA cores.

g3.8xlarge:
2 GPUs, 32 vCPUs,
244 G RAM

I2, H1

These are storage-optimized instances and offer fast SSD-
backed instance storage. This is the best available storage
option for random unput/output performance and provide
maximum IOPS at a given lowest cost. H1 instances also offer
enhanced networking and are best for use cases like
MapReduce jobs, distributed filesystems such as HDFS,
Apache Kafka, and so on. I2 instances are ideal for NoSQL
solutions like MongoDB, Redis, and so on.

t3.4xlarge:
16 vCPU, 122 G
RAM
h1.2xlarge
8 vCPU, 32 G RAM

Platform as a Service (PaaS)
The Platform as a Service (PaaS) model is a higher-level offering than Iaas, where the cloud
provider offers managed services for building blocks like databases, caches, and so on. This
allows application developers to focus on business use cases without getting bogged down
in infrastructure management. Compared to IaaS, the PaaS components are higher up in the
software stack.

Planning for Deployment Chapter 11

[438]

The advantage of PaaS should be immediately obvious. The software team can immediately
get started with their development, spinning up utilitarian services as needed. Providers
manage everything else, such as software versions, security, operating systems, and
backups. Most of the services are very elastic and can be scaled vertically (for example,
adding more IOPS) or horizontally (adding more numbers) on demand via a management
console. The tradeoffs for PaaS services versus IaaS are listed here:

Generally a higher cost than do-it-yourself solutions
Vendor lock-in: If you code for a specific cloud service, it will be difficult to
migrate the application onto another cloud stack
Limited development setup: Developers generally share dev accounts on the
cloud, because most PaaS services are not deployable on development machines

The following table offers insight into the vast array of AWS-managed services:

Databases

Relational Database Service (RDS) (https:/ ​/​aws. ​amazon. ​com/ ​rds/ ​)is
a managed ACID-compliant relational database-as-a-service (DBaaS) where
the database's resilience, scale, and maintenance are primarily handled by
the platform. RDS offers familiar engines like MySQL, MariaDB,
PostgreSQL, Oracle, Microsoft SQL Server, and also lately a new, MySQL-
compatible internally developed engine called the Amazon Aurora
DB engine. The storage type can be configured from magnetics disks to SSDs.
One important feature that RDS provides is multi-availability zone high-
availablity (replication across infrastructure fault domains).
DynamoDB (https:/ ​/ ​aws. ​amazon. ​com/​dynamodb/ ​) is a multi-
model NoSQL offering from AWS and can be used to model key values,
documents, graphs, and columnar data. It is globally distributed, thus
enabling high availability. Among other cool features, DynamoDB
automatically scales capacity up or down, as the application requests
volume increase or decrease.
AWS Elasticache (https:/ ​/​aws. ​amazon. ​com/ ​elasticache/ ​) is a fully
managed cache services which provides Redis and Memcached
servers/clusters. Using these services absolves users of provisioning
hardware and software for the cache solutions.

https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/

Planning for Deployment Chapter 11

[439]

AWS Redshift (https:/ ​/​docs. ​aws. ​amazon. ​com/ ​redshift/ ​latest/ ​mgmt/
welcome. ​html) is a fully managed elastic data warehouse. Its main
objective is to act as a data lake where all business-relevant data is stored
for long-term storage and enables multiple use cases like business
intelligence and machine learning model training. Users can create
clusters, where each cluster can host multiple databases. Each cluster
comprises a leader node, and a set of compute nodes. The compute nodes
actually host slices which are effectively shards of the data. The leader
node receives queries and commands from client programs, parses them,
and builds an execution plan for each compute node. The Leader creates
compiled code and distributes it to the compute nodes (based on what
data is a resident of each compute node). Once the Compute nodes
processes the relevant code it passes on the results to the Leader node,
which aggregates the result. Redshift stores the data in a columnar format.
This, along with the Massively Parallel Processing (MPP) feature, makes
it optimal for executing OLTP workloads. The compute node slices are
databases based on PostgreSQL. Client applications can communicate with
Redshift using standard open source PostgreSQL JDBC and ODBC drivers

Networking

AWS Virtual Private Cloud (https:/ ​/​aws. ​amazon. ​com/​vpc) is an isolated,
private network perimeter in the cloud. Once users get a VPC, they have
control over their networking environment, including definition of IP
ranges, route tables, subnets, and so on. Using a VPC, one usually creates a
public internet-facing subnet for the web servers and another isolated
subnet which has components like databases or application servers. The
latter subnet does not have access to the internet. One can leverage
multiple layers of security rules including security groups and network
access control lists, to help control access to instances within subnets. The
VPN gateway can be used to bridge external/current networks with the
cloud VPCs. Sometimes the VPN connectivity does not offer the required
bandwidth for interconnection of networks. AWS Direct Connect (https:/
/​aws. ​amazon. ​com/ ​directconnect/ ​) enables dedicated network connection
from the current premises to AWS. AWS CloudFront (https:/ ​/ ​aws.
amazon. ​com/ ​cloudfront) is a content delivery network (CDN) service,
which hosts content such as audio, video, applications, images, and even
API responses close to where the clients are. This leverages the global
AWS infrastructure files. CloudFront is also seamlessly integrated with
other AWS infrastructure offerings like Web Application Firewall (WAF)
and Shield Advanced to help protect applications from more threats, such
as DDoS attacks.

https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://aws.amazon.com/vpc
https://aws.amazon.com/vpc
https://aws.amazon.com/vpc
https://aws.amazon.com/vpc
https://aws.amazon.com/vpc
https://aws.amazon.com/vpc
https://aws.amazon.com/vpc
https://aws.amazon.com/vpc
https://aws.amazon.com/vpc
https://aws.amazon.com/vpc
https://aws.amazon.com/vpc
https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/cloudfront
https://aws.amazon.com/cloudfront
https://aws.amazon.com/cloudfront
https://aws.amazon.com/cloudfront
https://aws.amazon.com/cloudfront
https://aws.amazon.com/cloudfront
https://aws.amazon.com/cloudfront
https://aws.amazon.com/cloudfront
https://aws.amazon.com/cloudfront
https://aws.amazon.com/cloudfront

Planning for Deployment Chapter 11

[440]

API
management

AWS Elastic Load Balancing (https:/ ​/​aws. ​amazon. ​com/
elasticloadbalancing/ ​) is a manager load balancer, which distributes
incoming traffic across multiple backends, such as Amazon EC2 instances,
containers, and IP addresses. It has L7 (application) and L4 (TCP) level
load balancing features and can targets in a VPC.
AWS API gateway (https:/ ​/​aws. ​amazon. ​com/​api- ​gateway) is a hosted
API gateway that enables features like traffic management, authorization
and access control, monitoring, throttling, and version management.
AWS Route 53 (https:/ ​/​docs. ​aws. ​amazon. ​com/ ​Route53/ ​latest/
DeveloperGuide/ ​Welcome. ​html) is a DNS service with additional features
including the health monitoring of backend services.

Orchestration,
management,

and
monitoring

AWS OpsWorks (https:/ ​/​aws. ​amazon. ​com/ ​opsworks/ ​) is a a managed
Chef/Puppet which allows for CICD platforms and enables the automation
of the configuration of the application/servers.
AWS CloudWatch (https:/ ​/​aws. ​amazon. ​com/​cloudwatch/ ​) is a hosted
service for monitoring cloud resources (like Amazon EC2 instances,
Amazon DynamoDB tables, and Amazon RDS DB instances) , as well as
application-level custom metrics and log files. One can also use Amazon
CloudWatch to set alarms and automatically reacts to changes in these
metrics.
AWS X-Ray (https:/ ​/​aws.​amazon. ​com/ ​xray/ ​) provides an end-to-end
view of requests as they travel through different microservices/layers of an
application.
AWS Management Console is a unified console to manage all cloud
infrastructure and services.

Software as a service (SaaS)
Software as a service (SaaS) provides you with a hosted product that is run and managed
by a service provider. With a SaaS offering, you do not have to think about the
infrastructure or even the tech stack of the service; you just need to know how to use it. An
example of a SaaS application is web-based email where you can send and receive emails
without having to install/manage an email server of your own.

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/

Planning for Deployment Chapter 11

[441]

Security
As applications become intertwined with human life and with more and more bad actors
around, the need to secure your applications becomes imperative. A few of the common
security threats are detailed here:

Sensitive data leakage: Some of the data being passed over APIs and stored in
databases can be incredibly sensitive (phone numbers, credit card numbers, and
so on). Hackers might want to steal this data. Besides preventing such theft, there
are often legal regulations on privacy to ensure that data is encrypted at rest and
in transit. Companies can be liable for legal injunction if they allow theft from
their platforms.
Denial of Service: Denial of Service attacks attempt to make applications
unavailable by overwhelming them with fake/spurious traffic. A particularly
nasty form of such an attack is a Distributed Denial of Service (DDos) attack
where the traffic is sourced from multiple sources to avoid detection of the traffic
generation source.
Cross-Site Scripting (XSS): In these attacks, malicious scripts are injected into
otherwise benign and trusted websites, such as in comments on a forum. When
the user clicks on these links, the scripts are executed with the user
authentication information cached in the browser and this can cause malicious
behaviour.
Injection attacks: Attacks such as SQL injection, LDAP injection, and CRLF
injection involve an attacker sending some sort of script inside a form and when
the script runs, it causes commands to execute without proper authorization. The
script could be as destructive as dropping an entire database table.
Weak authentication: Hackers get access to sensitive applications such as
banking websites because the authentication mechanisms are not hardened
enough. Simple authentication mechanisms like passwords can be easily
stolen/inferred.

Planning for Deployment Chapter 11

[442]

Some of the remediation strategies include the following:

Authenticate and authorize all API requests: Authentication is used to reliably
determine the identity of an end user. Authorization refers to the process of
determining what resources only the identified user has access. For APIs, the
authentication mechanism is often a temporal access token, which can be
obtained/refreshed via an external mechanism. This token is sent with each API
request. This token can be processed at the backend and can be used to reliably
infer the identity of the user. Sometimes authorization information (like roles) are
encoded in the token. There are many standards for authorization tokens, and
JWT (JSON Web Tokens) is a popular one. It is based on an open standard (RFC
7519) for securely transmitting information between parties as a JSON object.
This information can be verified and trusted because it is digitally signed, and
thus tampering of the information in transit can be easily caught . JWTs can be
signed using a secret (with the HMAC algorithm) or a public/private key pair.
https:/​/ ​github. ​com/ ​dgrijalva/ ​jwt- ​go is an Golang library for JWT usage.
For sensitive human-consumable applications like banking websites, multi-factor
authentication (MFA) reduces the risk of compromised accounts. Here, besides a
standard username/password authentication, an alternative authentication
mechanism (such as sending a one-time code to a registered phone number) is
used. Thus, even if the password is stolen, access is not granted to the hacker.
Privacy concerns can be mitigated via the encryption of data. HTTPS is the de
facto standard for secure messages and internally uses TLS/SSL to encrypt the
payload. The standard Go library net/http package has
http.ListenAndServeTLS(), which allows HTTPs to serve out of the box
from a Go application. However, a more popular option is to use a sidecar, with
a specialized HTTPS sink-like Caddy or Ngnix, which proxies a Go application.
We already looked at Nginx earler; Caddy (https:/ ​/​caddyserver. ​com/ ​) is an
HTTPS reverse proxy, written entirely in Go. It has some cool features including :

Modern ciphers including AES-GCM, ChaCha, and ECC by
default, balancing security and compatibility.
Man-in-middle detection: Caddy can detect when the client's TLS
connection is likely being intercepted by a proxy, giving you the
ability to act accordingly. Because it's written in Go, its not affected
by memory-safety attacks like Heartbleed.
Mutual authentication: With TLS client authorization support in
Caddy, you can allow only certain clients to connect to your
service. PCI-compliant code.

https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://caddyserver.com/
https://caddyserver.com/
https://caddyserver.com/
https://caddyserver.com/
https://caddyserver.com/
https://caddyserver.com/
https://caddyserver.com/
https://caddyserver.com/

Planning for Deployment Chapter 11

[443]

Key rotation: Caddy rotates TLS session ticket keys by default,
thus helping preserve forward secrecy, as in visitor privacy.
That said, at the time of writing, Nginx is still faster than Caddy.
To see the performance comparison between the two, you can
visit https:/ ​/ ​ferdinand- ​muetsch. ​de/ ​caddy- ​a- ​modern- ​web-
server- ​vs- ​nginx. ​html.

Quotas and throttling: If a typical API has a profile of about two requests per
second (RPS) per user, then a load of 10 RPS from a user can be deemed to be
suspicious. Quotas can be used to ensure that specific users have a set limit, in
terms of the number of requests per second for each API. Throttling also protects
APIs from DOS attacks. Caddy has the http.ratelimit construct to rate-limit
requests from a particular IP address. NginX has a more feature-rich rate limiter,
allowing for the rate limiting of specific geos, headers, and so on (described in
detail at https:/ ​/​www. ​nginx. ​com/​blog/ ​rate- ​limiting- ​nginx/ ​) . The NginX
implementation uses the leaky bucket algorithm for rate limiting, where the
leaky buckets represents a first‑in, first‑out (FIFO) scheduling algorithm.
Using security headers: The HTTP headers have a variety of security-related
headers. For example, the Allowed Hosts header provides a list of fully
qualified domain names (FQDN) that are allowed to serve your site. This
prevents attacks such as DNS cache poisoning .

This section was meant to provide a high level overview of different things to consider in
securing applications. Security is a big area to cover and a detailed treatment is out of the
scope of this book.

Summary
Planning for deployment is a much bigger effort than most people imagine it to be. If we
don't give it enough thought and time, then we risk instability in production. This chapter
introduced the common elements in production, and offered pointers on how to build a
secure/robust code delivery pipeline.

So far in the book, we have covered various aspects of engineering systems in Go, ending
with this chapter on deployments. In the following chapter , we will end the book by
looking at various aspects of migrating non-Go application to Golang.

https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/

12
Migrating Applications

Go is a relatively new language, but it has quickly made a name for itself by being the most
loved and most used language among developers. People love to code in it!

Here is a ranking of the most loved programming languages:

Migrating Applications Chapter 12

[445]

Most wanted ranks can be seen in this illustration:

Reference: https://insights.stackoverflow.com/survey/2018

Considering the excitement, a lot of programming work involves the migration of existing
code. This chapter talks about some of the drivers for migration from other languages, such
as Python and Java. We will cover a few gotchas for developers looking at Go from these
backgrounds. Finally, we will also check out a process for orchestrating the migration
(including strategies for handling generics).

Reasons for migration
In this section, we will look at concerns that people face in various languages and whether
migration to Go can alleviate them.

Python
Python is an interpreted programming language known for its expressiveness and ability to
support high-velocity product development. Its ecosystem also encompasses powerful
frameworks, such as Django, that make building web applications extremely easy and
error-proof. Many studies, such as the one in the following reference, have consistently
shown that Python is more than twice as productive as Java:

Migrating Applications Chapter 12

[446]

Reference: http://www.connellybarnes.com/documents/language_productivity.pdf

That said, Python is not without its quirks. The following list describes some of the
challenges people face when developing with Python:

Performance: Since Python in an interpreted language, computation
performance is generally much slower than code that is compiled to native code,
due to the extra level of indirection. There is also a lot of thread-serialization in
Python programs due to something called the global interpreter lock (GIL). This
is a lock (mutex) inside the Python interpreter and it is needed as the interpreter
is not thread-safe. Without this lock, multiple threads executing inside the
interpreter can cause severe consistency problems. For example, two threads can
simultaneously increment the reference count of the same object, and, due to the
race condition, the count could end up being incremented only once. To avoid
such issues, Python code inside the interpreter is serialized by talking the GIL.
The result is a pretty significant performance hit on multithreaded programs. The
following table shows the performance benchmark results of Python versus Go:

Benchmark Go execution time
(seconds)

Python execution time
(seconds)

Mandelbrot 5.48 279.68
spectral-norm 3.94 193.86
binary-trees 28.80 93.40
n-body 21.37 882.00
k-nucleotide 12.77 79.79

Reference: https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/go-python3.html

Migrating Applications Chapter 12

[447]

There are third-party packages, such as gevent, that tout concurrency, but the
programming model is difficult and they rely on monkey-patching of other libraries, which
may cause unexpected behavior.

Developer-induced complexity: Python is a very dynamic language and
sometimes the freedom causes developers to go overboard and write cute code.
This code, over time, becomes very difficult to read, understand, and maintain.
You cannot understand the code by just reading it; you need to run through
multiple scenarios to get a feel for what's happening. One strange example is the
following snippet, which changes the value to internal keyword True:

>>> True = False
>>> if True == False:
... print "what "
...
what

 Dynamic Typing: The programming freedom offered by Python leads to
another form of complexity: dynamic typing. Consider the following Python
code:

ages = { "Abe" : 10, "Bob" : 11, "Chris" : 12}
def ambiguos_age(name):
 to_ret = "not found"
 try :
 to_ret = ages[name]
 finally:
 return to_ret
print ambiguos_age("Abe")
print ambiguos_age("Des")

Here, the ambiguos_age() function sometimes returns a string and sometimes an integer.
This example might look contrived, but situations such as this can easily arise in production
code where functions are deeply nested. This behavior can then cascade into external
contracts (such as the JSON response of APIs). Now, if you have a typical Android app
(written in Java, which is strongly typed), you will observe the strange behavior of the API
sometimes breaking in deserialization.

Migrating Applications Chapter 12

[448]

There will also be a sense of familiarity for Python programmers. Go can alleviate many of
the concerns here:

The Go programming model epitomizes concurrency and parallelism. Python
programmers immediately feel the freedom to model concurrency inherent in the
problem they are solving.
Go is strongly typed. The ambiguos_age() type of code errors are caught by the
compiler! When I first ported Python code into Go, I was surprised by the
amount of erroneous code that we had out there in production! While being
statically typed, type inference in Go allows brevity, which is something Python
programmers treasure.
A lot of multithreaded code gets easier to read/maintain with channels. It might
take some time to refactor all the mutex lock/unlock-based code into the pipes
and filters model based on channels, but the long term maintenance benefit will
more than pay off the initial cost of porting.
One of the benefits of Python that I (and many other developers) like is the
strong formatting guidelines—in particular, indentation. This allows consistency
in program layout that enables, among other things, faster code reviews. Go is
not as strict in enforcing indentation, although there's the need to start the
bracket on the same line as the start of the block. The go fmt tool comes in handy
to perform automated formatting (including indentation) and can be included in
the Makefile to enforce consistent formatting.

You might be wondering, why are there brackets but no semicolons? And why
can't I put the opening bracket on the next line?

Go uses brackets for statement grouping, a syntax familiar to
programmers who have worked with any language in the C family.
Semicolons, however, are for parsers, not for people, and we wanted to
eliminate them as much as possible. To achieve this goal, Go borrows a
trick from BCPL; the semicolons that separate statements are in the formal
grammar but are injected automatically, without look ahead, by the laxer
at the end of any line that could be the end of a statement. This works
very well in practice but has the effect that it forces a bracket style. For
example, the opening bracket of a function cannot appear on a line by
itself (https:/ ​/​golang. ​org/ ​doc/​faq#semicolons).

https://golang.org/doc/faq#semicolons
https://golang.org/doc/faq#semicolons
https://golang.org/doc/faq#semicolons
https://golang.org/doc/faq#semicolons
https://golang.org/doc/faq#semicolons
https://golang.org/doc/faq#semicolons
https://golang.org/doc/faq#semicolons
https://golang.org/doc/faq#semicolons
https://golang.org/doc/faq#semicolons
https://golang.org/doc/faq#semicolons
https://golang.org/doc/faq#semicolons

Migrating Applications Chapter 12

[449]

There will be some gotchas during migration:

Like most modern languages, Python has exception-handling as a key language
construct. In fact, trying something out and catching an exception using the try-
except construct is idiomatic Python. The Go error-handling is basically return of
errors from the function and expecting the client to handle the error (which may
mean passing it to its own caller). This leads to very verbose error-handling code.
It also can be easy to write code that ignores errors in a function, which could
lead to wrong behavior or even program crashes.
Package-management is also something of a grey area in Go. The Python virtual
environment concept (using venv and a requirements.txt requirements file)
allows easy management of dependencies.

There are upcoming standards, such as Dep and Govendor in the Go
ecosystem, that aim to solve this. As we saw earlier, another easy way to
manage dependencies is by using a vendor directory in your GitHub
repository.

Sometimes Go code is slower than Python. Yes, surprisingly so! A few years
back, the Python simple JSON package was about 5x faster than encoding/JSON
in decoding and about 2-3x faster than encoding/jSON in encoding. This was
because the Python code actually utilized a C extension.

JSON encoding/decoding has gotten faster, and there is a ticket to track
this (https:/ ​/​github. ​com/ ​golang/ ​go/​issues/ ​5683). There are also many
third-party JSON parsers that claim to be much faster (such as https:/ ​/
github. ​com/ ​valyala/ ​fastjson).

Python programmers can get irritated initially that it takes longer to get to
working code (working through all the compiler errors including things such as
unused imports—which many developers feel is overkill as an error). But this is
just an initial feeling, and they quickly understand the long term benefits of
having better-quality code. There are also tools such as goimports (fork of
gofmt), which you can plug into your editor to run as you save a file.

Go marks unused imports as errors to enable build speed and program
clarity. You can read more about this at https:/ ​/​golang. ​org/ ​doc/
faq#unused_ ​variables_ ​and_​imports.

https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/golang/go/issues/5683
https://github.com/valyala/fastjson
https://github.com/valyala/fastjson
https://github.com/valyala/fastjson
https://github.com/valyala/fastjson
https://github.com/valyala/fastjson
https://github.com/valyala/fastjson
https://github.com/valyala/fastjson
https://github.com/valyala/fastjson
https://github.com/valyala/fastjson
https://github.com/valyala/fastjson
http://godoc.org/golang.org/x/tools/cmd/goimports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports
https://golang.org/doc/faq#unused_variables_and_imports

Migrating Applications Chapter 12

[450]

IDE: Python has a variety of IDEs and Go initially did lack good support. Today,
there are many plugins that allow things such as autocomplete. A comprehensive
list of plugins can be found at https:/ ​/​github. ​com/ ​golang/ ​go/ ​wiki/
IDEsAndTextEditorPlugins. The most featureful is the GoLand IDE from
JetBrains (https:/ ​/ ​www. ​jetbrains. ​com/ ​go/ ​).

Java
Java is a strongly typed interpreted programming language created by James Gosling. The
first publicly available version of Java (Java 1.0) appeared in 1995, and since then it's been
the mainstay of enterprise and web programming workloads. In 2006, Sun Microsystems
started to make Java available under the GNU General Public License (GPL) and Oracle
(which bought out Sun) continues this project under the name of OpenJDK.

There are a few reasons for Java's success:

Platform independence: Java source code is compiled (transformed) into
bytecode, which is a target-independent representation of the program. The
bytecode consists of instructions that will be interpreted by the Java virtual
machine (JVM)—JVM is an integral part of the Java platform. This mechanism
makes programs very portable—packaged bytecode (JAR) can run unmodified
on any platform where there is a supported JVM.
Object orientation: Java provides programming constructs to enable object-
oriented programming, including classes, inheritance, polymorphism, and
generics. There is also support for advanced paradigms such as aspect-oriented
programming.
Automatic memory management: Unlike the other prevalent languages at that
time (such as C++), the Java programmer does not need to manage dynamic
memory manually. The JVM tracked memory allocation and freed objects that
had no active pointers to them. This part of the JVM, called the garbage collector,
has gone through multiple iterations to make dynamic memory allocation robust
and minimally invasive.

https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/

Migrating Applications Chapter 12

[451]

Ecosystem: The Java ecosystem has evolved to have incredible libraries that solve
almost any generic problem you might have, including things such as database
drivers, data structures, and threading support. There are sophisticated
dependency management tools too—the most popular one being Maven. It is
essentially a build framework—but not only does it describe how the Java
program is to be built, it also lists its dependencies on other external modules
and components. Besides the names of the dependencies, the versions are also
mentioned. Maven then dynamically downloads Java libraries for these
dependencies from one or more repositories, such as the Maven Central
Repository, and stores them in a local cache. In case you are building a reusable
library of your own, the Maven local can also be updated with JARs of such local
projects. All this enables a comprehensive ecosystem of reusable components and
dependency management.
Application frameworks: The Java ecosystem has pioneered the frameworks
around Inversion of Control (IoC) and Dependency Injection (DI). These
patterns allow the wiring of code dependencies without explicitly mentioning or
instantiating specific implementations.

For example, consider the following snippet of code:

public class ContactsController {
 private ICache contactCache;
 public ContactsController() {
 this.contactCache = new RedisCache();
 }
}

Here, ContactsController is an API provider for contacts, and to do its job, it uses a
cache for the most frequently accessed contacts. The constructor explicitly instances a
RedisCache() implementation for the theCache interface. This unfortunately defeats the
purpose of the ICache abstraction since now ContactsController is coupled with a
specific implementation.

One way to avoid this is for the client that instantiates the ContactsController class to
provide the cache implementation:

public class ContactsController {
 private ICache contactCache;
 public ContactsController(ICache theCache) {
 this.contactCache = theCache;
 }
}

Migrating Applications Chapter 12

[452]

At first glance, this solves the coupling problem. But, in reality, this transfers the burden to
the client. In many cases, the client really does not care what type of cache you use.

The IOC/DI pattern allows the application framework to inject these dependencies, rather
than the preceding two options. Spring is a popular example of such a Java application
framework, and include, besides the DI, and other features such as transactions support,
persistence frameworks, and messaging abstractions. The preceding code can be succinctly
represented in Spring as follows:

public class ContactsController {
 @Autowired
 private ICache contactCache;
 public ContactsController() {
 }
}

Such powerful frameworks make writing large-scale code easy. Here, the @Autowired
Spring annotation searches for a bean (object instance) that matches the definition and
injects its reference into the object of ContactsController (which itself should be
maintained by Spring).

Performance: The JVM continues to be the subject of multiple optimizations to
enable high performance. For example, it contains a Hotspot, just-in-time (JIT)
compiler that translates frequently executed/performance-critical bytecode
instructions into native code instructions. This avoids the slower interpretation
that otherwise would have ensued.
Awesome IDE support, including the open source Eclipse project and the
freemium IntelliJ.

These types of features have made Java one of the predominant languages not just in
backend systems but also in applications (Android).

One question you might have is regarding the name of the IoC pattern. You're probably
wondering, what exactly are we inverting?

To answer the history behind the name, consider the early UI applications. They had a main
program that initialized a bunch of components that drove individual UI elements. The
main program would drive the whole program, plumbing data and control between the
components. This was quite cumbersome coding. After a few years, UI frameworks were
developed that encapsulated the main function, and you as an application developer
provided event handlers for various UI elements.

Migrating Applications Chapter 12

[453]

This increased the productivity of developer as they were now focused on the business
logic rather than coding the plumbing. Essentially, the program control went from the code
that the developer wrote to the framework. This came to be known as IoC.

As with all good things in life, there is a flip side (although some points might be
controversial). There are a few quirks with the Java ecosystem:

Verbosity: Java code tends to be very verbose. Recent inclusions in the language
specification, such as lambdas and related functional programming primitives,
are targeted to alleviate this. But still Java code tends to be very verbose.
Opaqueness: Powerful frameworks sometimes abstract out key aspects. For
example, consider the new, shiny parallel stream feature in Java. It is one of the
features that were added to reduce verbosity. But one gotcha here is that all
parallel streams in the program use the same thread pool
(ForkJoinPool.commonPool). This default causes a scalability bottleneck as all
the parallel streams in the code contend for threads from the same pool!

There is a trick to solve this by defining a custom thread pool, like so:

final List<Integer> input = Arrays.asList(1,2,3,4,5);
 ForkJoinPool newForkJoinPool = new ForkJoinPool(5);
 Thread t2 = new Thread(() -> newForkJoinPool.submit(() -> {
 input.parallelStream().forEach(n -> {
 try {
 Thread.sleep(5);
 System.out.println("In : " +
Thread.currentThread());
 } catch (InterruptedException e) {
 }
 });
 }).invoke());

Complexity/Over-Engineering: Java's powerful constructs, including generics,
can sometimes lead to cute code, which is unmanageable in the long run. This
includes the definition of tall inheritance hierarchies that, besides making code
difficult to read/understand, also make the system brittle due to the fragile base
class problem. Frameworks such as Spring have become so complex that now the
only way to use them reliably is to have a framework-over-the-framework such
as Spring Boot (which gives a set of working libraries with sensible defaults for
various tuneables). This creates a new set of threads to run the data computation
of the stream, but interestingly the common-thread pool is also used along with
the new thread pool.

Migrating Applications Chapter 12

[454]

Deployment Challenges: The amount of resources needed by a Java process is
not always clear. For example, Java developers define the Java heap size using
the -Xmx and -Xms options (where mx is the maximum size of the heap and ms
is the initial size). This heap is used for the allocation of objects within your Java
code. Besides this, there is another heap that the Java process uses! Called the
Native heap, this is the heap used by the JVM for its needs, which includes things
such as JIT and NIO. So you need to carefully profile an application in a specific
deployment context (basically dampening the platform-independence feature).
Developer Productivity: Because of the verbose nature of Java and the need to
deploy/test (the compiler rarely catches interesting bugs), a lot of developer time
is spent orchestrating/waiting for the dev/test cycle. Frameworks such as
Spring Boot have made things better, but still the productivity in no way in the
league of Python or Go. You need active IDE support to have a chance of being
productive.

The primary reasons people want to switch from Java to Go are resource efficiency,
concurrent modeling, and developer productivity. There are many Java purists that still say
Java is for web applications and Go is for system software, but in the world of
microservices and API-driven development, this distinction is quickly disappearing.

As with Python, the journey from Java to Go will not be without its gotchas:

Pointers: Java programmers generally are not used to dealing with pointers.
They often make mistakes when using them—for example when deciding to
passed a variable by reference or by value (in Java, everything is pass by
reference).
Error handling: Similar to Python, error-handling in Go and the lack of try-catch-
finally can make the program verbose. It may also lead to the program working
on the wrong data if errors are not caught for every function in a disciplined
way.
Lack of generics: Java programmers are so used to generics (at least using them,
if not defining them) that it takes time to think in the Go way of doing things.
There will be some time for which developers would feel inhibited.
Lack of Spring-like IoC frameworks: Developers in Go typically define a main
function that initializes and kicks off the computation in the program. You can
engineer the distributed initialization using the init() function, but this
generally leads to race conditions in big programs, so invariably you fall back to
coding the main driver program.

Migrating Applications Chapter 12

[455]

new and make: Though Golang touts simplicity/brevity, sometimes there are
quirks. For example, the built-in new() function can be used to allocate zeroed
storage of a type (new is common keyword in many languages). Go also has the
make() function, which is a special built-in allocation function that is used to
initialize slices, maps, and channels. A common, and deadly, mistake is to use
new instead of make for something, such as a map, which later manifests as a
panic when trying to access the uninitialized map.
Performance: While Go is native and Java is mostly interpreted, there is still not a
sizeable gap in the performance of the programs in both languages yet. This is
because of the 20+ years of performance-engineering that has gone into the JVM
and techniques such as the JIT compilation.

Migration strategy
In the previous section, we saw a few reasons why people might want to migrate to Go.
This section talks about formulating a strategy for such a migration of existing code to Go.

Phase 1 – Learning Go
The first step is to ensure that all developers understand Go. In most projects, there will be
at least a few developers who are not experienced Go programmers. By understand, I mean
not just the theoretical part, but actually trying out various programming constructs to get a
feel for the language. https:/ ​/​tour. ​golang. ​org/ ​ is a good start. Effective Go (https:/ ​/
golang.​org/​doc/​effective_ ​go. ​html) is another good resource for learning about the
language. Besides an introduction, it also talks about best practices (package-naming
convention, state-sharing, and so on).

In addition to learning your way around the language, it is also good to read some non-
trivial Go code. You can find this on a lot of projects in GitHub, including the Docker
source and the standard library. I find the bytes/buffer.go code (https:/ ​/​golang. ​org/
src/​bytes/​buffer. ​go) is particularly well written/documented.

Installing Go on a laptop is easy for all standard distributions. But I recommend using Go
version manager (GVM) to easily allow you to navigate versions/GOROOTs/GOHOMEs.

https://tour.golang.org/
https://tour.golang.org/
https://tour.golang.org/
https://tour.golang.org/
https://tour.golang.org/
https://tour.golang.org/
https://tour.golang.org/
https://tour.golang.org/
https://tour.golang.org/
https://tour.golang.org/
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/src/bytes/buffer.go
https://golang.org/src/bytes/buffer.go
https://golang.org/src/bytes/buffer.go
https://golang.org/src/bytes/buffer.go
https://golang.org/src/bytes/buffer.go
https://golang.org/src/bytes/buffer.go
https://golang.org/src/bytes/buffer.go
https://golang.org/src/bytes/buffer.go
https://golang.org/src/bytes/buffer.go
https://golang.org/src/bytes/buffer.go
https://golang.org/src/bytes/buffer.go
https://golang.org/src/bytes/buffer.go
https://golang.org/src/bytes/buffer.go
https://golang.org/src/bytes/buffer.go

Migrating Applications Chapter 12

[456]

Phase 2 – Piloting a service
Once you understand Go, the next step would be to pilot migration on one of the services in
your application. A common mistake is to take the simplest service as this defeats the
purpose of learning anything from the pilot. You should pick something that clearly
identifies the Go value proposition for your product.

The ideal service should be something that involves a lot of concurrency/orchestration, such
as a web-facade API. They generally also have some persistence, allowing you to
experience first-hand Go workings with DBs/ORMs. An API-based service also allows
phased dial-up of traffic from the old to this new service—for example, in the travel website
example, you can take traffic for hotels in a specific city on this new stack.

Phase 3 – Defining packages
Once you pick the service, the next step is to create the basic project layout and the
packages for the Go port. This should not be too tough, particularly if the current code is
well packaged. Keep an eye out for things such as circular imports. At the end, you should
have a package structure that describes the main components of the service. This is also a
good time to engineer the build harness, including writing the Makefile and architecting
the dependency-management prerequisites.

Phase 4 – Porting main
Now you can port the main part of the service. You should delegate all the details to the
packages, but the main program should spell out the control-flow in the program. For
example, in a REST API service, the main would define the main router, a health check
endpoint, and various router groups (like in Gin) for each resource, where each resource is
inside its own package. Now, finally, you should be able to run your service.

This is also the time to write tests. Since most of the packages are mocked, it is expected
that many tests will fail. This is the central tenet of test-driven development—write tests
first and then code till the tests start passing.

Migrating Applications Chapter 12

[457]

Phase 5 – Porting packages
Phase 4 and Phase 5 need to be done one after the other for each package.

Each package we've defined must now be ported from the original source to Go. This work
can be distributed efficiently among multiple developers, with each team typically working
off its own branch.

There might be a few decisions to make here, especially if the source includes things such
as generics. We should list down the principles before starting coding. For example, for
generics, the options for porting include the following:

Check whether generic classes are really used or can be flattened out. Often, the
generic code is just so that the earlier developer could try out a cool, new trick
they had learned from a blog, rather than a real requirement in the code.
Explode the generics into specific implementations. If the generics class is used
for a few specific purposes, just bite the bullet and create two implementations. A
real-life example can be found in the strings and bytes packages of the standard
library: both have very similar APIs but different implementations.
Engineer the generic nature using an interface. This involves the following:

Listing the set of operations that the generic algorithm or container
needs
Defining an interface with these methods
Implementing the interface for each instantiation of the generic in
the source

Use interface{}, this allows us to store generic types in a reference. If the
original generic does not care about the actual type of the data being stored,
using an interface with a type assertion at the client can lead to generic Go code
(https:/ ​/ ​github. ​com/ ​cookingkode/ ​worktree/ ​blob/ ​master/ ​worktree. ​go). The
downside of this technique is that we lose the compile-time type-checking and
increase the risk of runtime type-related failures.
Use a code generator, there are many tools, such as genny (https:/ ​/​github. ​com/
cheekybits/ ​genny), that take a template and then generate type-specific code.
For example, the following code defines a template for a generic list type:

package list
import "github.com/cheekybits/genny/generic"
//go:generate genny -in=template.go -out=list-unit.go gen "Element=uint"
type Element generic.Type

type ElementList struct {
 list []Element

https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cookingkode/worktree/blob/master/worktree.go
https://github.com/cheekybits/genny
https://github.com/cheekybits/genny
https://github.com/cheekybits/genny
https://github.com/cheekybits/genny
https://github.com/cheekybits/genny
https://github.com/cheekybits/genny
https://github.com/cheekybits/genny
https://github.com/cheekybits/genny
https://github.com/cheekybits/genny
https://github.com/cheekybits/genny

Migrating Applications Chapter 12

[458]

}
func NewElementList() *ElementList {
 return &ElementList{list: []Element{}}
}
func (l *ElementList) Add(v Element) {
 l.list = append(l.list, v)
}
func (l *ElementList) Get() Element {
 r := l.list[0]
 l.list = l.list[1:]
 return r
}

Here, Element is an identifier for the generic type. The Go generate comment causes Go
generate to generate unit-specific code in a separate file, called list-unit.go. The
generated code looks like this:

// This file was automatically generated by genny.
// Any changes will be lost if this file is regenerated.
// see https://github.com/cheekybits/genny
package list
type UintList struct {
 list []uint
}
func NewUintList() *UintList {
 return &UintList{list: []uint{}}
}
func (l *UintList) Add(v uint) {
 l.list = append(l.list, v)
}
func (l *UintList) Get() uint {
 r := l.list[0]
 l.list = l.list[1:]
 return r
}

The client can then use this UintList through a normal import. As seen, code generators
such as this allow you to write effectively generic code.

Migrating Applications Chapter 12

[459]

Phase 6 – Improving computation
In the initial port, the concurrency might not be obvious. You need to carefully
infer/reverse-engineer concurrency/simplification opportunities from the current code. For
example, you might have coded a sequential list of functions that actually don't need to be
executed in the given order, that is, they can be run concurrently. In other cases, you might
have code (such as cleanup) that can be done after the function returns. This can be
efficiently coded using the defer() keyword.

The tests that you wrote in Phase 3 will help you avoid regressions and thus allow you to
experiment with multiple levels of concurrency.

Having seen a strategy for migration, let's look at the final (but actually, the most
important) part of migrating applications—building an awesome team to get the job done.

Building a team
When contemplating the migration of applications, one key concern for management is
availability of talent/developers. Fortunately, Go is a very simple and easy-to-learn
language, and if you have good engineers, they will pick it up quickly. The Phase
1 – Learning Go subsection of the Migration strategy section mentions some learning
resources. In my experience, people get productive within a week of starting hands-on
experiments.

Another good resource is the Go Proverbs list (https:/ ​/ ​go-​proverbs.
github. ​io/ ​). It provides a set of pithy recommendations; some of them,
such as "the bigger the interface, the weaker the abstraction," are pretty
profound.

The flip side is that there is high demand for Go programmers. So once you train them,
remember to keep the developers energized and engaged. When interviewing developers
for the team, what has worked for me is hiring developers who have great basic computer
science skills and programming ability. A knowledge of multithreading, deadlocks, and
synchronization primitives are also essential for non-trivial Go programs. On multiple
occasions, I've found it easy to build a team of developers from non-Go backgrounds, teach
them Go, and then get things done. The following plot shows median salary of developers
using different languages and their programming experience:

https://go-proverbs.github.io/
https://go-proverbs.github.io/
https://go-proverbs.github.io/
https://go-proverbs.github.io/
https://go-proverbs.github.io/
https://go-proverbs.github.io/
https://go-proverbs.github.io/
https://go-proverbs.github.io/
https://go-proverbs.github.io/
https://go-proverbs.github.io/
https://go-proverbs.github.io/

Migrating Applications Chapter 12

[460]

Reference: https:/ ​/​insights. ​stackoverflow. ​com/ ​survey/ ​2018

https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018

Migrating Applications Chapter 12

[461]

Summary
For the almost nine years since its inception, the popularity of Go keeps growing. The
following Google Trends graph is another good indicator of the exponential growth in the
interest of the language:

Reference: https://trends.google.com/trends/explore?date=2009-10-01%202018-07-30&q=golang&hl=en-US

In this chapter, we looked at how you can go about learning Go, building a team, and
migrating applications to Go.

This is the last chapter in our study of Go. I hope you enjoyed reading, and at the very least
got an alternative view of programming. As Alan Perlis said, in the dated-but-relevant
Epigrams of Programming (http:/ ​/ ​pu. ​inf. ​uni- ​tuebingen. ​de/​users/ ​klaeren/ ​epigrams.
html), "A language that doesn't affect the way you think about programming is not worth
knowing."

http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html
http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Serverless Applications with Go
Mohamed Labouardy

ISBN: 9781789134612

Understand how AWS Lambda works and use it to create an application
Understand how to scale up serverless applications
Design a cost-effective serverless application in AWS
Build a highly scalable and fault-tolerant CI/CD pipeline
Understand how to troubleshoot and monitor serverless apps in AWS
Discover the working of APIs and single page applications
Build a production-ready serverless application in Go

https://www.packtpub.com/application-development/hands-serverless-applications-go

Other Books You May Enjoy

[463]

Mastering Go
Mihalis Tsoukalos

ISBN: 9781788626545

Understand the design choices of Golang syntax
Know enough Go internals to be able to optimize Golang code
Appreciate concurrency models available in Golang
Understand the interplay of systems and networking code
Write server-level code that plays well in all environments
Understand the context and appropriate use of Go data types and data structures

https://www.packtpub.com/networking-and-servers/mastering-go

Other Books You May Enjoy

[464]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
abstract factory pattern
 about 75
 implementing 75
ACID
 about 147
 atomicity 147
 consistent 147
 durable 147
 isolated 147
acknowledgement, broker-based messaging
 about 189
 at-least-once delivery 190
 at-most-once delivery 191
 exactly-once delivery 192
Actor model 181
Adaptee 78
adaptor pattern
 about 78
 implementing 79
agents 110
alerts 434
algorithm scalability
 data structures, scaling 111
Amazon Web Service (AWS) 17, 134
Apache Kafka
 about 194
 concepts 194, 195, 197
 messages, consuming 203, 204
 messages, publishing 198
 stream processing 205
Apache Samza 182
API gateway
 about 131
 responsibilities 409
API paradigm

 about 138
 downsides 139
append-only file (AOF) mode 303
Application Performance Monitoring/Dashboards

432, 433
Application Programming Interface (API) 17
architect
 about 9
 coaching 11
 engineering principles 10
 mentoring 11
 requisites 10
 target state, versus current state 12
 technical leadership 11
 technology selection 11
architectural paradigms 15
architecture, of system
 backend piece layer 17
 data store 17
 frontend layer 17
architecture
 about 9
 architectural paradigms 13
asynchronous computation pattern 332, 333, 334
Asynchronous Message Queuing Protocol (AMQP)

193

AsyncProducer interface 198
atomicity 269, 270
Atomicity, Consistency, Isolation, Durability (ACID)

269

AWS API gateway
 reference 440
AWS CloudFront
 reference 439
AWS CloudWatch
 reference 440
AWS Direct Connect

[466]

 reference 439
AWS Elastic Load
 reference 440
AWS Elasticache 438
AWS Management Console 440
AWS OpsWorks
 reference 440
AWS Redshift 439
AWS Route 53
 reference 440
AWS Virtual Private Cloud 439
AWS X-Ray
 reference 440
AWS-managed services 438, 439, 440

B
Backend For Frontend (BFF) pattern 132, 261
background worker pattern 222
Basically Available, Soft state, Eventual

consistency (BASE) 273
behavior-driven development (BDD) 346
behavioral design patterns
 about 86
 Chain of Responsibility pattern 89
 command 86
 mediator pattern 90
 memento pattern 92
 observer pattern 93
 state 100
 strategy 98
 visitor 96
Big-O Complexity 108
Binary Search Tree (BST) 111
Blue-Green deployment strategy 412
booking, travel website case study
 payment 389, 390, 391
 reservation 391, 392, 393, 394, 396
Boyce-Codd normal form 278
bridge pattern
 about 79
 implementing 80
broker-based messaging
 about 185
 advantages 206, 207
 Asynchronous Message Queuing Protocol

(AMQP) 192, 194
 delivery semantics 188
 PubSub model 187, 188
 Queuing model 185, 186
 resilience 192
broker
 about 185
 responsibilities 185
builder pattern 74
business continuity planning (BCP) 365

C
C10K problem 116
Caddy
 reference 442
CAP theorem 152
Cassandra
 about 310, 386
 data distribution 310, 311, 312
 Golang usage 315, 316, 317, 318
 read paths 315
 write paths 314
certificate authority (CA) 408
Chain of Responsibility pattern 89
challenges, microservices
 efficiency 21, 22
 programming complexity 22
Channel-Goroutine model 181
Chaos-engineering 350, 351
CIFS (Common Internet File System) 405
class 40
client-centric consistency models
 about 147, 148
 eventual consistency 149
 strong consistency 148
 weak consistency 149
client-side discovery 143
client-side service discovery 230
cloud computing
 about 435
 Infrastructure as a Service (IaaS) 436
 Platform as a Service (PaaS) 437
clustering
 features 304
code layout

[467]

 high-level structure 57
 working 59
code-on-demand
 reference 238
cohesion 13
column family stores
 about 310
 Cassandra 310
comma-separated values (CSV) 293
command pattern
 about 86, 87
 code 88
CommandTree
 reference 381
common bottleneck sources, of system architecture
 disk related 120
 file descriptor limits 121
 memory usage 122
 networking 120
 operating systems 120
 programming 119
Communicating Sequential Processes (CSP) 33,

181

compensating-transaction pattern 336, 337
Complex Event Processing (CEP) engines 183
components, deployment architecture
 API Gateways 409
 computes 402
 Load Balancer (LB) 407
 messaging brokers 411
 networking 406
 reverse proxies 410
 storage 405
composite pattern 82
composition 45
Composition Over Inheritance 47
compute instances, Amazon Web Service (AWS)
 C4/C5 436
 G2 437
 I2, H1 437
 M4 436
 T2 436
 X1/R4 437
computes
 about 402

 attributes 404
 containers 403
 physical servers 402
 virtual machines 402
concurrent transactions
 dirty reads 271
 lost updates 271
 non-repeatable reads 271
 phantom reads 271
consensus
 about 153
 army generals problem 154
 causality 154, 156
 Leader-election 164
 multi-phase commit 157
 Paxos 160
 Raft 163
consistency guarantees
 about 269
 Atomicity, Consistency, Isolation, Durability

(ACID) 269
 Basically Available, Soft state, Eventual

consistency (BASE) 273
consistency
 about 146, 270
 ACID 147
 CAP theorem 152
 characteristics 146
 client-centric consistency models 147
 storage system-centric consistency model 151
consistent hashing 310
constraints, Representational State Transfer

(REST)
 cacheability 236
 client-server model 235
 stateless 235
 uniform interface 236
Consul
 reference 231
containers 403
content delivery network (CDN) 439
content-based router pattern 218
Continuous Integration / Continuous Deployment

(CICD) 11
continuous integration, continuous delivery (CICD)

[468]

model
 about 415
 footnote 428
 Jenkins 416
 overview 415
 target configuration 425
 tooling 426
contracts 39
Controllers (or Interface Adaptors) layer 15
CORBA 166
correlation identifier pattern 215
coupling 13
Create Read Update Delete (CRUD) 241
creational design patterns
 about 72
 abstract factory 75
 builder 73
 factory method 73
 singleton 77
Cross-Site Scripting (XSS) 441

D
Data Access Layer (DAL) 294
data serialization options
 about 231
 JSON 232
 Protobuf 233
 XML 231
data structures
 bitmap 302
 hashes 302
 HyperLogLogs 302
 lists 301
 probabilistic data structures 114
 profiling 111, 112, 113
 pub/sub 302
 sets 301
 sorted sets 302
data types, Go 26
data
 scaling 115
database-as-a-service (DBaaS) 438
database-level reliability 364
datacenter-level reliability
 about 365

 consistency 366
 cutover 367
 routing 367
deadlocks 23
deadly diamond of death 56
decorator pattern 83
Denial of Service attacks 441
dependencies
 about 352
 cascading failures 354, 355, 356
 failure multiplication 353
Dependency Injection (DI) 451
Dependency Inversion Principle 71
dependency resilience 357
dependency rule 15
deployment architecture
 about 400
 capacity planning 413
 components 400
 environments 411
deployments
 scaling 134
design patterns
 about 66
 behavioral design patterns 86
 creational design patterns 72
 structural design patterns 78
design principles
 about 67
 aspects 66
 Dependency Inversion Principle (D) 72
 Interface Segregation Principle (I) 70
 Liskov Substitution Principle (L) 69
 Open/Closed Principle (O) 68
 Single Responsibility Principle (S) 67
Direct Attached Storage (DAS) 405
disaster recovery (DR) 365, 414
distributed algorithms 109
distributed architectures
 about 165
 Actor model 181
 components 136
 distributed computations 174
 event-driven architecture (EDA) 177
 interconnects 136

[469]

 layered architectures 168
 object-based systems 165
 peer-2-peer (P2P) architecture 169
 stream processing 182
Distributed Component Object Model (DCOM) 166
distributed computations 174, 176, 177
Distributed Denial of Service (DDos) attack 441
distributed system
 generic goals 137
 topology 138
distributed systems quirks
 about 140
 administrator 144
 homogeneous network 145
 infinite bandwidth 142
 reliable network 140
 secure network 142
 topology 143
 zero latency 141, 142
 zero transport cost 144
Docker
 installing 417
Domain Name Server (DNS) 409
Domain Name Service (DNS) 229
Domain Name System (DNS) 149
domain-specific language (DSL) 346
DRY (Don't Repeat Yourself) 64
durability 273
dynamic metrics
 characteristics 325
DynamoDB 438

E
Elasticsearch, Logstash, Kibana (ELK) 431
Elasticsearch
 reference 378
embedding 54
encapsulation 38, 41
endpoints, GraphQL
 mutations 254
 queries 251, 253
 subscriptions 256
endpoints
 about 225
 networking basics 226

 service discovery 226
engineering principles
 A/B testing 11
 high-level design 10
 product velocity 11
 quality attributes 10
engineering reliability
 about 326, 327, 328
 high availability 329, 330
 messaging 331, 332
 rugged services 328
 sidecar pattern 340
 throttling 341, 342
 versioning 343
entities 267
entity-relationship
 about 267, 268
 constraints/business rules 268
 denormalization 268
 generalization 268
 normalization 268
 object relational mapper 268
event-driven architecture (EDA) 178, 179, 180,

187

Event-Driven Architecture (EDA) pattern 388
eventual consistency, client-centric consistency

models
 causal consistency 150
 monotonic read consistency 150
 monotonic write consistency 151
 sequential consistency 149
 session consistency 150
Extensible Markup Language (XML) 231

F
facade design pattern 84
factory method pattern 73
fan-in pattern 219
fan-out pattern 221
file descriptors (FDs) 117
first normal form (1NF) 274
first‑in, first‑out (FIFO) 443
flow control, Go 30
fmt package
 reference 64

[470]

fourth normal form 279
framework 62
fully qualified domain name (FQDN) 409, 443
functions, Go 28

G
garbage collection 35
Garbage Collector (GC) 122
General Public License (GPL) 450
generic strategies, Hystrix
 alternate service 359
 cache 359
 queue 359
genny
 reference 457
Gin
 features 241
 hotels API example 241
 REST service, building 239
git subtree 61
global interpreter lock (GIL) 446
Glow project 110
go build 428
go fmt tool 426
Go kit
 about 262
 layers 263
 reference 262
Go Proverbs list
 reference 459
Go version manager (GVM) 455
go-mock package
 reference 346
go-nsq
 reference 210
Go
 about 24, 444
 concurrency 33, 34, 35
 data types 26
 flow control 30, 31
 functions 28
 garbage collection 35
 Hello World program 26
 languages, migrating to 445
 methods 29

 object-orientation 36
 packages 31
 structures 26
GoConvey
 reference 346
gocql
 reference 315
Goka
 reference 205
Golang library, JWT usage
 reference 442
Golang testing package
 reference 346
golint tool
 about 427
 reference 427
GoMock
 reference 63
Google BigTable team
 reference link 310
Google File System (GFS) 176
gorm
 reference 393
goroutines 34
GraphQL
 about 248
 endpoints 250
 schema 249, 250

H
Hadoop Distributed File System (HDFS) 176
Hello World program 26
higher-level patterns
 about 257
 API gateway 259, 260
 load balancing health checks 259
 Model-View-Controller (MVC) 257
hotels API example
 API router 242
 create handler 243, 244
 delete handler 248
 read handler 245, 246
 update handler 247
hotspots 339
HTML5 specification

[471]

 reference 238
Hypertext As The Engine Of Application State

(HATEOAS) 237
Hypertext Transfer Protocol (HTTP) 138
Hystrix Monitoring 363
Hystrix
 about 140, 357, 359
 circuit breaker 360
 generic strategies 359
 in Golang 361

I
i-table 53
IANA
 reference 238
ID-based selection 164
In-Sync Replicas (ISRs) 195
indices 280, 281
Infrastructure as a Service (IaaS) 436
injection attacks 441
integration patterns
 about 214
 background worker pattern 222
 content-based router pattern 218
 correlation identifier pattern 215
 fan-in pattern 219
 fan-out pattern 221
 pipes and filters pattern 216
 request-reply pattern 214
integration tests 347
Interface Segregation Principle 70
interfaces 50
Interrupt Request handler (IRQ) 120
Inversion of Control (IoC) 451
isolation 270, 271, 272

J
Java virtual machine (JVM) 450
Java, to Go migration 454
Java
 about 450
 quirks 453, 454
 success, reasons 450
JavaScript Object Notation (JSON) 232
Jenkins

 about 416
 build, running 424
 installing 417
 plugins, setting up 418, 419
 project, creating 421, 422
 reference 417
 sample code 416

K
Kafka 182
Kasper
 about 182
 reference 182
key-value stores
 about 299
 concepts 300
 Redis 300
Kik 59

L
layered architectures
 about 168, 169
 Business Logic layer 168
 Data layer 168
 HTTP server layer 168
 Presentation layer 168
Leader
 electing 164
Liskov Substitution Principle 69
Load Balancer (LB) 227, 407
log package
 reference 430
logging 430
logs 430
losing state 124, 126

M
MapReduce
 Map function 175
 Reduce function 175
Massively Parallel Processing (MPP) 439
Mean Time To Failure (MTTF) 325
mediator pattern
 about 90
 code 91

[472]

memento pattern
 about 92
 caretaker 92
 originator 92
memtable 314
messaging brokers 411
messaging paradigm 139
messaging system, semantics
 at-least-once delivery 331
 at-most-once delivery 331
 exactly-once delivery 331
messaging
 asynchronous computation pattern 332, 333,

334

 compensating-transaction pattern 336, 337
 hotspots 339
 orchestrator pattern 335
 pipes and filter pattern 338
methods 29, 40, 48
metrics 431
Metricsbeat 432
microservices
 about 17
 challenges 21
 microservices-based architecture 20
 monolithic architecture 20
 typical initial architecture 17
migration strategy
 about 455
 phases 455, 456, 457, 459
Model-View-Controller (MVC)
 about 257
 controller 258
 model 257
 view 258
Model-View-ViewModel (MVVM) pattern 258
modules
 about 57
 code layout 57
 framework 62
 third-party dependencies 59
monitoring
 about 429
 alerts 434
 Application Performance Monitoring/Dashboards

432, 433
 aspects 429
 logs 430
 metrics 431
 team 434
monoliths 18
multi-factor authentication (MFA) 442
multi-phase commit, consensus
 about 157
 three-phase commit 159
 two-phase commit 158
multi-process mode (MPM) 116
Multiversion Concurrency Control (MVCC) 292
mutex race 164
MyISAM, scalability limitations
 key cache 292
 table locking 292
MySQL, storage engine
 archive engine 293
 CSV engine 293
 memory engine 293
MySQL
 about 286
 connection management 286
 high availability 293
 high scalability 293
 query execution 287, 288, 289
 storage engine 291

N
NDBCLUSTER
 reference 293
Net Promoter Score (NPS) 325
Netflix Eureka 231
Network Attached Storage (NAS) 405
Network Database (NDB) 293
networking
 about 406
 basics 226
Newrelic 432
NFS (Network File System) 405
NGINX
 reference 228
normal form 274
normalization 274

[473]

NSQ
 about 207
 components 208
 concepts 208, 209
 messages, consuming 212, 213
 messages, publishing 210
nsqd 208
nsqlookupd 208

O
Object Management Group (OMG) 166
Object Relational Models (ORMs) 259, 294, 295,

296, 298
object-based systems
 about 165
 features 167
 remote reference layer 166
 stub/skeleton layer 166
 transport layer 166
object-orientation, in Go
 about 36, 40
 embedding 54, 55, 57
 interface 50, 53, 54
 struct 47, 48, 49
 visibility 49, 50
observer design pattern
 about 93, 95
 implementing 94
online-transaction-processing (OLTP) 309
Open/Closed Principle 68
orchestrator pattern
 about 335
 agent 335
 scheduler 335
 supervisor 336
Out Of Memory (OOM) 122

P
packages, Go 31, 32
Pass-By-Reference semantics 48
Pass-By-Value 48
Paxos
 about 160
 phases 160, 162
 references 162

peer-2-peer (P2P) architecture
 about 169, 170, 171, 173, 174
 hybrid 169
 structured P2P 169
performance characterization
 about 184
 availability 184
 latency 185
 scalability 184
 throughput 185
performance tests 348
physical servers 402
pipes and filters pattern 216, 338
Platform as a Service (PaaS)
 about 437
 advantage 438
pointer receiver method 48
polymorphism 43
priority inversion 23
probabilistic data structures 115
producer
 AsyncProducer interface 198
 Sync Producer 201
product, travel website case study
 actors 369
 requisites 370, 371
production deployment
 considerations 413
programming languages
 rankings 444, 445
programming source of bottlenecks
 deadlocks 119
 locks 119
 Reader/Writer locks 119
Protobuf 233
proxy pattern 85
Python, to Go migration 449
Python
 about 445
 challenges, while developing 446, 447

Q
queries per second (QPS) 299
quicksort 107

[474]

R
Radix
 reference 305
Raft 163
receiver 48
recovery-point objective (RPO) 366
recovery-time objective (RTO) 366
Red-Black Tree 112
Redigo
 reference 305
Redis
 about 300
 architecture 300, 301
 clustering 304
 data structures 301
 Golang usage 305, 306
 persistence 302, 303
 use cases 304, 305
Relational Database Service (RDS)
 reference 438
relational model 274
reliability metrics
 about 324
 dynamic metrics 325
 static metrics 326
reliability verification
 about 343, 344
 integration tests 347
 performance tests 348
 UI tests 348
 unit tests 345, 346
Representational State Transfer (REST)
 about 138, 234
 constraints 235
request-reply pattern 214
requests per second (RPS) 443
Resilient Distributed Dataset (RDD) 177
REST (Representational State Transfer) paradigm

126

REST service
 building, Gin used 239
reverse proxies 410
RFC 5988
 reference 238
Richardson Maturity Model

 about 236
 HTTP verbs 237
 hypermedia controls 237
 resources 237
 swamp of POX 237
round-trip-time (RTT) 121
router group 242

S
Sarama cluster library
 reference 396
Sarama
 reference 198
scalability bottlenecks
 about 116
 C10K problem 116
 Thundering Herd problem 118
scaling algorithms
 about 105
 complexity 105, 106, 107, 108
 distributed algorithms 109
scaling data performance
 denormalization 319, 320, 321
 materialized views 321
 patterns 318
 sharding 319
scaling systems
 about 127
 X-axis scaling 128
 Y-axis scaling 129
 Z-axis scaling 133
Schema Definition Language (SDL) 249
search functionality, travel website case study
 flights 375, 376, 377, 379, 380, 382, 385
 hotels 385, 386, 388
second normal form 275, 276
security threats
 about 441
 Cross-Site Scripting (XSS) 441
 Denial of Service 441
 injection attacks 441
 sensitive data leakage 441
 weak authentication 441
sensitive data leakage 441
server-side discovery 143

[475]

server-side service discovery
 about 227
 advantages 229
 disadvantages 229
service discovery
 about 226
 client-side service discovery 230
 server-side service discovery 227
service level agreements (SLAs) 39, 103
Service-level agreements (SLA) 325
service-oriented architecture (SOA) 18
sessions 124
sharding
 brokered routing 319
 client-side routing 319
 consistent hashing 319
sidecar pattern
 about 340
 advantages 340
Simian Army, tools
 Chaos Gorilla 351
 Chaos Monkey 351
 Conformity Monkey 351
 Doctor Monkey 351
 Janitor Monkey 351
 Latency Monkey 351
 Security Monkey 351
single point of failure (SPOF) 329
Single Point of Failure (SPOF) 229
Single Responsibility Principle 67
singleton pattern
 about 77
 implementing 77
Site Reliability Engineering (SRE) 429
software architecture 12
Software as a service (SaaS) 440
space complexity, scaling algorithms 105
Standard Generalized Markup Language (SGML)

231

starvation 23
state design pattern
 about 100
 code 101
 concrete states 101
 context 100

 state 100
State Transfer 126
static metrics 326
Storage Area Networks (SAN) 405
storage engine
 about 291
 InnoDB 291
 MyISAM 292
 other plugins 293
storage system-centric consistency model 151
storage
 Direct Attached Storage (DAS) 405
 Network Attached Storage (NAS) 405
 Storage Area Networks (SAN) 405
strategy pattern 98, 99
stream processing
 about 182
 techniques 183
struct 47
structural design patterns
 about 78
 adaptor 78
 bridge 79
 composite 82
 decorator 83
 facade 84
 proxy 85
Structured Query Language (SQL) 280
Superpeers 174
Sync Producer 201
system architecture
 common bottleneck sources 118

T
tablespace 291
team
 building 459
telescopic constructors 73
Term Frequency–Inverse Document Frequency

(TF–IDF) 378
test-driven development (TDD) 346
testing
 about 62
 tests, structuring 64, 65
tests

 endurance testing 349
 load/stress tests 348
 scalability tests 349
 spike testing 349
 Volume-testing 349
third normal form 277
third-party dependencies 59, 61
three-phase commit
 about 159, 160
 commit phase 159
 pre-commit phase 159
throttling
 about 341
 strategies 341, 342
Thundering Herd problem 118
time complexity, scaling algorithms 105
time-to-live (TTL) 118, 149, 365
tooling, CICD pipeline
 go build 428
 go fmt 426
 golint 427
topic 195
topology 138
transaction log 273
Transaction Manager 147
transactions 269
Transmission Control Protocol (TCP) 226
travel website case study
 booking 388, 389
 data modeling 371, 372, 373
 high-level architecture 373, 374
 product 369
 search functionality 374, 375
two-phase commit
 about 158
 commit phase 158
 disadvantages 158
 prepare phase 158

U
UI tests 348
Uniform Resource Identifier (URI) 235

unique hierarchical name 236
unit tests 345

V
views
 about 281
 full outer join 285
 inner join 282, 283
 left outer join 283, 284
 right outer join 284
virtual IP address (VIP) 409
Virtual IP Addresses (VIPs) 228
virtual machines 402
Virtual Networks (VLAN) 407
virtualization
 benefits 403
 vendors 403
visitor design pattern 95, 97

W
weak authentication 441
Web Application Firewall (WAF) 439
wide column stores 309
word embedding 377
worker process
 reference 228

X
X-axis scaling
 about 128
 limitations 128
XA Resource 148
XML Schema Definition (XSD 232

Y
Y-axis scaling 129, 130, 132

Z
Z-axis scaling
 about 133
 benefits 134
 drawbacks 134

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Building Big with Go
	Problem solving for the big picture
	The role of the architect
	Requirements clarification
	True North
	Technology selection
	Leadership in the kitchen
	Coaching and mentoring
	Target state versus current state

	Software architecture
	Architecture versus design
	What does architecture look like?

	Microservices
	The challenges for microservices – efficiency
	The challenges for microservices – programming complexity

	Go
	Hello World!
	Data types and structures
	Functions and methods
	Flow control
	Packaging
	Concurrency
	Garbage collection
	Object-orientation

	Summary

	Chapter 2: Packaging Code
	Contracts
	Object orientation
	Object orientation in Go – the struct
	Object orientation in Go – visibility
	Object oriented in Go – the interface
	Object oriented in Go – embedding

	Modules
	Code layout
	Third-party dependencies
	Framework

	Testing
	Structuring tests

	Summary

	Chapter 3: Design Patterns
	Design principles
	Single Responsibility Principle (S)
	Open/Closed Principle (O)
	Liskov Substitution Principle (L)
	Interface Segregation Principle (I)
	Dependency Inversion Principle (D)

	Creational design patterns
	Factory method
	Builder
	Abstract factory
	Singleton

	 Structural design patterns
	Adaptor
	Bridge
	Composite
	Decorator
	Facade
	Proxy

	Behavioral design patterns
	Command
	Chain of Responsibility
	Mediator
	Memento
	Observer
	Visitor
	Strategy
	State

	Summary

	Chapter 4: Scaling Applications
	Scaling algorithms
	Algorithm complexity
	Distributed algorithms

	Scaling data structures
	Profiling data structures
	Probabilistic data structures

	Scaling data
	Scalability bottlenecks
	The C10K problem
	The Thundering Herd problem

	Sources
	Programming
	Operating systems
	Memory usage

	Losing state
	Scaling systems
	X-axis scaling
	Y-axis scaling
	Z-axis scaling

	Scaling deployments
	Summary

	Chapter 5: Going Distributed
	Topology
	Distributed system quirks
	The network is reliable
	The latency is zero
	The bandwidth is infinite
	The network is secure
	The topology doesn't change
	There is one administrator
	The transport cost is zero
	The network is homogeneous

	Consistency
	ACID
	Client-centric consistency models
	Strong consistency
	Weak consistency
	Eventual consistency
	Sequential consistency
	Causal consistency
	Session consistency
	Monotonic read consistency
	Monotonic write consistency

	Storage system-centric consistency model
	CAP theorem

	Consensus
	The two generals problem
	Consensus based on time – causality
	Multi-phase commit
	Two-phase commit
	Three-phase commit

	Paxos
	Raft
	Leader-election

	Distributed architectures
	Object-based systems
	Layered architectures
	Peer-2-peer (P2P) architecture
	Distributed computations
	Event-driven architecture (EDA)
	The Actor model
	Stream processing

	Summary

	Chapter 6: Messaging
	Performance characterization
	Broker-based messaging
	The queuing model
	The Pub/Sub model
	Delivery semantics
	Acknowledgement
	At-least-once delivery
	At-most-once delivery
	Exactly-once delivery

	Resilience
	AMQP

	Apache Kafka deep dive
	Concepts
	Publishing messages
	The AsyncProducer interface
	The Sync producer

	Consuming messages
	Stream processing

	Brokerless messaging
	NSQ deep-dive
	Concepts
	Publishing messages
	Consuming messages

	Integration patterns
	The request-reply pattern
	The correlation identifier pattern
	The pipes and filters pattern
	The content-based router pattern
	The fan-in pattern
	The fan-out pattern
	The background worker pattern

	Summary

	Chapter 7: Building APIs
	Endpoints
	Networking basics
	Service discovery
	Server-side service discovery
	Client-side service discovery

	Data serialization
	XML
	JSON
	Protobuf
	Performance

	Representational State Transfer (REST)
	Concepts
	Constraints
	Client-server model
	Stateless
	Cacheability
	Uniform interface

	Richardson Maturity Model
	Level 0 – swamp of POX
	Level 1 – resources
	Level 2 – HTTP verbs
	Level 3 – hypermedia controls

	Building a REST service using Gin
	Gin introduction
	Sample application
	Router
	Create
	Read
	Update
	Delete

	GraphQL
	Schema
	Endpoints
	Queries
	Mutations
	Subscriptions

	Higher-level patterns
	Model-View-Controller (MVC)
	Load balancing health checks
	API gateway

	Go kit
	Summary

	Chapter 8: Modeling Data
	Entities and relationships
	Consistency guarantees
	ACID (Atomicity, Consistency, Isolation, Durability)
	Atomicity
	Consistency
	Isolation
	Durability

	BASE (Basically Available, Soft state, Eventual consistency)

	Relational model
	The first normal form
	The second normal form
	The third normal form
	The Boyce-Codd normal form
	The fourth normal form
	SQL
	Indices
	Views
	Inner join
	Left outer join
	Right outer join
	Full outer join

	MySQL deep-dive
	Connection management
	Query execution
	Storage engines
	InnoDB
	MyISAM
	Other plugins

	High availability/scalability

	Object Relational Mappers (ORMs)

	Key/value stores
	Concepts
	Redis deep-dive
	Architecture
	Data structures
	Persistence
	Clustering
	Use cases
	Golang usage

	Wide column stores
	Column family stores
	Cassandra deep-dive
	Data distribution
	Write paths
	Read paths
	Golang usage

	Patterns for scaling data performance
	Sharding
	Denormalization
	Materialized views

	Summary

	Chapter 9: Anti-Fragile Systems
	Reliability metrics
	Dynamic metrics
	Static metrics

	Engineering reliability
	Rugged services
	High availability
	Messaging
	The asynchronous computation pattern
	The orchestrator pattern
	The compensating-transaction pattern
	The pipes and filter pattern
	Hotspots

	The sidecar pattern
	Throttling
	Versioning

	Reliability verification
	Unit tests
	Integration tests
	UI tests
	Performance tests

	Chaos-engineering
	Dependencies
	Failure multiplication
	Cascading failures
	Dependency resilience
	An introduction to Hystrix
	Hystrix – fallback
	Hystrix – circuit breaker
	Hystrix in Golang
	Hystrix monitoring

	Database-level reliability
	Datacenter-level reliability
	Consistency
	Routing and cutover

	Summary

	Chapter 10: Case Study – Travel Website
	The product
	Actors
	Requirements

	Data modeling
	High-level architecture
	Search
	Flights
	Hotels

	Booking
	Payment
	Reservation

	Summary

	Chapter 11: Planning for Deployment
	Deployment architecture
	Components
	Computes
	Physical Servers
	Virtual machines
	Containers
	Compute Attributes

	Storage
	Networking
	Load Balancers
	API Gateways
	Reverse proxies
	Messaging brokers

	Environments
	Capacity Planning and Sizing
	Disaster recovery

	CICD
	Overview
	Jenkins
	Sample Code
	Installing Jenkins
	Installing Docker
	Setting up Plugins
	Creating a project
	Running the Build

	Target Configuration
	Tooling
	go fmt
	golint
	go build

	Footnote

	Monitoring
	Logs
	Metrics
	Application Performance Monitoring/Dashboards
	Alerts
	Team

	Clouds
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)
	Software as a service (SaaS)

	Security
	Summary

	Chapter 12: Migrating Applications
	Reasons for migration
	Python
	Java

	Migration strategy
	Phase 1 – Learning Go
	Phase 2 – Piloting a service
	Phase 3 – Defining packages
	Phase 4 – Porting main
	Phase 5 – Porting packages
	Phase 6 – Improving computation

	Building a team
	Summary

	Other Books You May Enjoy
	Index

