

Learn Data Structures and
Algorithms with Golang

Level up your Go programming skills to develop faster and
more efficient code

Bhagvan Kommadi

BIRMINGHAM - MUMBAI

Learn Data Structures and Algorithms with
Golang
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Shahnish Khan
Content Development Editor: Zeeyan Pinheiro
Technical Editor: Ketan Kamble
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Alishon Mendonsa
Production Coordinator: Deepika Naik

First published: March 2019

Production reference: 1290319

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-850-1

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author

Bhagvan Kommadi, the founder of Quantica Computacao and Architect Corner, has
around 18 years' experience in the industry, ranging from large-scale enterprise
development to incubating software product startups. He has a master's degree in
Industrial Systems Engineering from the Georgia Institute of Technology (1997) and a
bachelor's degree in Aerospace Engineering from the IIT Madras (1993). He is a member of
the IFX forum and an individual member of Oracle JCP.

He has developed Go-based blockchain solutions in the retail, education, banking, and
financial service sectors. He has experience of building high-transactional applications
using Java, Python, Go, Ruby, and JavaScript frameworks.

About the reviewer
Eduard Bondarenko is a software developer living in Kiev, Ukraine. He started
programming using Basic on a ZX Spectrum many, many years ago. Later, he worked in
the web development domain. He has used Ruby on Rails for over 8 years. Having used
Ruby for a long time, he discovered Clojure in early 2009, and liked the simplicity of the
language. Besides Ruby and Clojure, he is interested in Go and ReasonML development.

I want to thank my wonderful wife, my children, and my parents for all the love, support,
and help they have given me.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Section 1: Introduction to Data Structures and
Algorithms and the Go Language
Chapter 1: Data Structures and Algorithms 7

Technical requirements 8
Classification of data structures and structural design patterns 9

Classification of data structures 9
Lists 10
Tuples 12
Heaps 13

Structural design patterns 15
Adapter 16
Bridge 17

drawShape method 18
drawContour method 19

Composite 20
Decorator 22
Facade 24
Flyweight 28
Private class data 31
Proxy 33

Representation of algorithms 35
Flow chart 35
Pseudo code 36

Complexity and performance analysis 36
Complexity analysis of algorithms 37

Big O notation 38
Linear complexity 39
Quadratic complexity 40
Cubic complexity 41
Logarithmic complexity 42

Brute force algorithms 45
Divide and conquer algorithms 46
Backtracking algorithms 47
Summary 50
Questions and exercises 50
Further reading 51

Chapter 2: Getting Started with Go for Data Structures and Algorithms 52
Technical requirements 53

Table of Contents

[ii]

Arrays 53
Slices 54

The len function 55
Slice function 55

Two-dimensional slices 56
Maps 59
Database operations 60

The GetCustomer method 60
The InsertCustomer method 62

Variadic functions 63
The update operation 64
The delete operation 65

CRUD web forms 66
The defer and panic statements 69

The InsertCustomer method 70
The UpdateCustomer method 70
The DeleteCustomer method 71

CRM web application 71
The Create function 72
The Insert function 72
The Alter function 73
The Update function 73
The Delete function 74
The main method 74

The Header template 75
The Footer template 75
The Menu template 76
The Create template 76
The Update template 76
The View template 77

Summary 79
Questions 79
Further reading 80

Section 2: Section 2: Basic Data Structures and Algorithms
using Go
Chapter 3: Linear Data Structures 82

Technical requirements 82
Lists 83

LinkedList 83
The Node class 83
The LinkedList class 84

The AddToHead method 84
The IterateList method 85
The LastNode method 86
The AddToEnd method 86

Table of Contents

[iii]

The NodeWithValue method 87
The AddAfter method 87
The main method 88

Doubly linked list 89
The NodeBetweenValues method 89
The AddToHead method 90
AddAfter method 91
The AddToEnd method 92
The main method 93

Sets 94
The AddElement method 94
The DeleteElement method 95
The ContainsElement method 96
The main method – contains element 96
The InterSect method 97
The Union method 97
The main method – intersection and union 98

Tuples 99
Queues 100

The New method 101
The Add method 101
The main method – queues 102
Synchronized queue 103

The New method 104
The StartTicketIssue method 105
The EndTicketIssue method 105
The ticketIssue method 106
The StartPass method 106
The EndPass method 106
The passenger method 107
The main method 107

Stacks 108
The New method 109
The Push method 109
The Pop method 110
The main method 111

Summary 111
Questions 112
Further reading 112

Chapter 4: Non-Linear Data Structures 113
Technical requirements 113
Trees 114

Binary search tree 114
The BinarySearchTree class 115

The InsertElement method 115
The insertTreeNode method 116
The inOrderTraverse method 116

Table of Contents

[iv]

The inOrderTraverseTree method 117
The PreOrderTraverseTree method 117
The preOrderTraverseTree method 117
The PostOrderTraverseTree method 118
The postOrderTraverseTree method 118
The MinNode method 118
The MaxNode method 119
The SearchNode method 120
The searchNode method 120
The RemoveNode method 120
The removeNode method 121
The String method 122
The stringify method 122
The main method 123

Adelson, Velski, and Landis (AVL) tree 124
The KeyValue interface 124
The TreeNode class 124

The opposite method 125
The singleRotation method 125
The doubleRotation method 125
The adjustBalance method 126
The BalanceTree method 126
The insertRNode method 127
The InsertNode method 128
The RemoveNode method 128
The removeBalance method 129
The removeRNode method 129
The main method 131

B+ tree 133
B-tree 133
T-tree 133

Tables 134
The Table class 134
The Row class 134
The Column class 134
The printTable method 135
The main method 135

Symbol tables 136
Containers 136

Circular linked list 137
The hash functions 138
Summary 140
Questions 140
Further reading 141

Chapter 5: Homogeneous Data Structures 142
Technical requirements 143
Two-dimensional arrays 143

Row matrix 144
Column matrix 144

Table of Contents

[v]

Lower triangular matrix 145
Upper triangular matrix 145
Null matrix 146
Identity matrix 147
Symmetric matrix 148
Basic 2D matrix operations 148

The add method 148
The subtract method 149
The multiply method 150
The transpose method 151
The determinant method 151
The inverse method 151

Zig-zag matrix 152
Spiral matrix 154
Boolean matrix 156

The printMatrix method 158
The main method 158

Multi-dimensional arrays 159
Tensors 160

Summary 162
Questions 162
Further reading 163

Chapter 6: Heterogeneous Data Structures 164
Technical requirements 164
Linked lists 165

Singly linked lists 165
The CreateLinkedList method 166
The ReverseLinkedList method 166
The main method 167

Doubly linked lists 168
Circular-linked lists 169

The CircularQueue class 169
The NewQueue method 170
The IsUnUsed method 170
The IsComplete method 170
The Add method 171
The MoveOneStep method 171
The main method 171

Ordered lists 172
The ToString method 173
The SortByAge type 174
The Thing class 175

The ByFactor function type 176
The Sort method 176

Thing sorter class 176
The len, swap, and less methods 177
The main method 177

Table of Contents

[vi]

The struct type 179
The multiSorter class 179

The Sort method 180
The OrderBy method 180
The len method 180
The Swap method 180
The less method 181
The main method 181

Unordered lists 183
The UnOrderedList class 184

The AddtoHead method 184
The IterateList method 184
The main method 185

Summary 185
Questions 186
Further reading 186

Chapter 7: Dynamic Data Structures 187
Technical requirements 188
Dictionaries 188

DictVal type 189
Dictionary class 189

Put method 189
Remove method 190
Contains method 190
Find method 191
Reset method 191
NumberOfElements method 191
GetKeys method 192
GetValues method 192
The main method 193

TreeSets 193
InsertTreeNode method 194
Delete method 195
InOrderTraverseTree method 195
The inOrderTraverseTree method 195
PreOrderTraverseTree method 196
The preOrderTraverseTree method 196
Search method 196
The String method 197
The main method 197
Synchronized TreeSets 198
Mutable TreeSets 199

RemoveNode method 199
Treeset.bst 200

Sequences 200
Farey sequence 200

String method 201

Table of Contents

[vii]

The g method 201
The main method 202

Fibonacci sequence 203
FibonacciNumber method 204
Main method 204

Look-and-say 205
Thue–Morse 207

Summary 209
Questions 209
Further reading 210

Chapter 8: Classic Algorithms 211
Technical requirements 212
Sorting 212

Bubble 212
Selection 214

The swap method 215
The main method 215

Insertion 216
InsertionSorter method 217
The main method 217

Shell 218
The power method 219
The main method 220

Merge 220
MergeSorter method 221
JoinArrays method 222
The main method 222

Quick 223
The divideParts method 224
The swap method 225
The main method 225

Searching 226
Linear 227
Binary 228
Interpolation 229

Recursion 231
Hashing 232

The CreateHashMutliple method 233
The XOR method 233
The main method 234

Summary 234
Questions 235
Further reading 235

Table of Contents

[viii]

Section 3: Section 3: Advanced Data Structures and
Algorithms using Go
Chapter 9: Network and Sparse Matrix Representation 237

Technical requirements 238
Network representation using graphs 238

The Link class 239
The NewSocialGraph method 239
The AddLink method 239
The PrintLinks method 240
The main method 240
Test 241

Representing a social network 242
The NewSocialGraph method 243
The AddEntity method 243
The AddLink method 244
The PrintLinks method 244
The main method 245

Map layouts 246
The MapLayout class 247

The NewMapLayout method 247
The AddPlace method 247
The AddLink method 248
 The PrintLinks method 248
The main method 249
Test 250

Knowledge graphs 251
The KnowledgeGraph class 252

The NewKnowledgeGraph method 252
The AddClass method 252
The AddLink method 253
The PrintLinks method 253
The main method 254
Test 255

Sparse matrix representation using a list of lists 256
SparseMatrix class 257

The Shape method 257
The NumNonZero method 257
The LessThan method 257
The Equal method 258
The GetValue method 258
The SetValue method 259
The NewSparseMatrix method 260
The main method 260

Summary 261
Questions 261
Further reading 262

Chapter 10: Memory Management 263

Table of Contents

[ix]

Technical requirements 263
Garbage collection 264

The ReferenceCounter class 265
The newReferenceCounter method 265

The Stack class 266
The Stack class – a new method 266
The main method 267

Reference counting 268
Simple reference counting 268
Deferred reference counting 270
One-bit reference counting 270
Weighted reference counting 270

The mark-and-sweep algorithm 271
The generational collection algorithm 272

Cache management 273
The CacheObject class 274

The IfExpired method 274
The Cache class 275

The NewCache method 275
The GetObject method 275
The SetValue method 276

The main method 276
Space allocation 277

Pointers 278
The addOne method 279
The main method 279

Concepts – Go memory management 280
Profiling 280

Summary 281
Questions 282
Further reading 282

Appendix A: Next Steps 283
Technical requirements 283
Learning outcomes 283

Key takeaways 284
Next steps 284

Chapter 1 – Data Structures and Algorithms 284
Chapter 2 – Getting Started with Go for Data Structures and Algorithms 285
Chapter 3 – Linear Data Structures 285
Chapter 4 – Non-Linear Data Structures 285
Chapter 5 – Homogeneous Data Structures 286
Chapter 6 – Heterogeneous Data Structures 287
Chapter 7 – Dynamic Data Structures 287
Chapter 8 – Classic Algorithms 288
Chapter 9 – Network and Sparse Matrix Representation 288
Chapter 10 – Memory Management 289

Table of Contents

[x]

Tips and techniques 290
Using channel with a timeout interval 290
Using context instead of channel 292
Logging with the line number 293
Go tool usage 295
Go environment variables 295
Test table 296
Importing packages 297
Panic, defer, and recover 297

Other Books You May Enjoy 299

Index 302

Preface
Learn Data Structures and Algorithms with Go covers topics related to simple and advanced
concepts in computer programming. The primary objective is to choose the correct
algorithm and data structures for a problem. This book explains the concepts for comparing
algorithm complexity and data structures in terms of code performance and efficiency.

Golang has been the buzzword for the last two years, with tremendous improvements
being seen in this area. Many developers and organizations are slowly migrating to Golang,
adopting its fast, lightweight, and inbuilt concurrency features. This means we need to have
a solid foundation in data structures and algorithms with this growing language.

Who this book is for
This comprehensive book is for developers who want to understand how to select the best
data structures and algorithms that will help to solve specific problems. Some basic
knowledge of Go programming would be an added advantage.

This book is for anyone who wants to learn how to write efficient programs and use the
proper data structures and algorithms.

What this book covers
Chapter 1, Data Structures and Algorithms, focuses on the definition of abstract data types,
classifying data structures into linear, non-linear, homogeneous, heterogeneous, and
dynamic types. Abstract data types, such as container, list, set, map, graph, stack, and
queue, are presented in this chapter. This chapter also covers the performance analysis of
data structures, as well as the correct choice of data structures and structural design
patterns.

Chapter 2, Getting Started with Go for Data Structures and Algorithms, covers Go-specific data
structures, such as arrays, slices, two-dimensional slices, maps, structs, and channels.
Variadic functions, deferred function calls, and panic and recover operations are
introduced. Slicing operations, such as enlarging using append and copy, assigning parts,
appending a slice, and appending part of a slice, are also presented in this chapter.

Preface

[2]

Chapter 3, Linear Data Structures, covers linear data structures such as lists, sets, tuples,
stacks, and heaps. The operations related to these types, including insertion, deletion,
updating, reversing, and merging are shown with various code samples. In this chapter, we
present the complexity analysis of various data structure operations that display accessing,
search, insertion, and deletion times.

Chapter 4, Non-Linear Data Structures, covers non-linear data structures, such as trees,
tables, containers, and hash functions. Tree types, including binary tree, binary search tree,
T-tree, treap, symbol table, B- tree, and B+ tree, are explained with code examples and
complexity analysis. Hash function data structures are presented, along with examples in
cryptography for a variety of scenarios, such as open addressing, linear probing, universal
hashing, and double hashing.

Chapter 5, Homogeneous Data Structures, covers homogeneous data structures such as two-
dimensional and multi-dimensional arrays. Array shapes, types, literals, printing,
construction, indexing, modification, transformation, and views are presented together
with code examples and performance analysis. Matrix representation, multiplication,
addition, subtraction, inversion, and transpose scenarios are shown to demonstrate the
usage of multi-dimensional arrays.

Chapter 6, Heterogeneous Data Structures, covers heterogeneous data structures, such as
linked lists, ordered, and unordered lists. We present the singly linked list, doubly linked
list, and circular linked list, along with code samples and efficiency analysis. Ordered and
unordered lists from HTML 3.0 are shown to demonstrate the usage of lists and storage
management.

Chapter 7, Dynamic Data Structures, covers dynamic data structures, such as dictionaries,
TreeSets, and sequences. Synchronized TreeSets and mutable TreeSets are covered in this
chapter along with Go code exhibits. Sequence types including Farey, Fibonacci, look-and-
say, and Thue-Morse, are discussed with Go programs. This chapter also explains the usage
anti-patterns of dictionaries, TreeSets, and sequences.

Chapter 8, Classic Algorithms, covers pre-order, post-order, in-order, level-order tree
traversals and linked list traversals. Sorting algorithms, such as bubble, selection, insertion,
shell, merge, and quick are explained with code exhibits. Search algorithms, as well as
linear, sequential, binary, and interpolation methods, are also covered in this chapter.
Recursion and hashing are shown by means of code samples.

Chapter 9, Network and Sparse Matrix Representation, covers data structures such as graphs
and lists of lists. Different use cases from real-life applications, such as social network
representation, map layouts, and knowledge catalogs, are shown with code examples and
efficiency analysis.

Preface

[3]

Chapter 10, Memory Management, covers dynamic data structures, such as AVL trees and
stack frames. Garbage collection, cache management, and space allocation algorithms are
presented with code samples and efficiency analysis. Garbage collection algorithms, such as
simple/deferred/one-bit/weighted reference counting, mark and sweep, and generational
collection, are explained with an analysis of their advantages and disadvantages.

Appendix, Next Steps, shares the learning outcomes for the reader arising from the book. The
code repository links and key takeaways are presented. References are included for the
latest data structures and algorithms. Tips and techniques are provided to keep yourself
updated with the latest on data structures and algorithms.

To get the most out of this book
The knowledge we assume is basic programming in a language and mathematical skills
related to topics including matrices, set operations, and statistical concepts. The reader
should have the ability to write pseudo code based on a flowchart or a specified algorithm.
Writing functional code, testing, following guidelines, and building a complex project in
the Go language are the prerequisites that we assume in terms of reader skills.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[4]

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Learn- ​Data- ​Structures- ​and- ​Algorithms- ​with- ​Golang. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/9781789618501_ColorImages

.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Let's take a look at the len function in the next section."

A block of code is set as follows:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main

// importing fmt package
import (
 "fmt"
)
// main method
func main() {
 fmt.Println("Hello World")
}

Any command-line input or output is written as follows:

go build
./hello_world

https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789618501_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789618501_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789618501_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789618501_ColorImages.pdf

Preface

[5]

Bold: Indicates a new term, an important word, or words that you see on screen.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Introduction to Data
Structures and Algorithms and

the Go Language
We will be introducing the abstract data types, definition, and classification of data
structures. Readers will be well-versed with performance analysis of algorithms and
choosing appropriate data structures for structural design patterns after reading this part.

This section contains the following chapters:

Chapter 1, Data Structures and Algorithms
Chapter 2, Getting Started with Go for Data Structures and Algorithms

1
Data Structures and Algorithms

A data structure is the organization of data to reduce the storage space used and to reduce
the difficulty while performing different tasks. Data structures are used to handle and work
with large amounts of data in various fields, such as database management and internet
indexing services.

In this chapter, we will focus on the definition of abstract datatypes, classifying data
structures into linear, nonlinear, homogeneous, heterogeneous, and dynamic types.
Abstract datatypes, such as Container, List, Set, Map, Graph, Stack, and Queue, are
presented in this chapter. We will also cover the performance analysis of data structures,
choosing the right data structures, and structural design patterns.

The reader can start writing basic algorithms using the right data structures in Go. Given a
problem, choosing the data structure and different algorithms will be the first step. After
this, doing performance analysis is the next step. Time and space analysis for different
algorithms helps compare them and helps you choose the optimal one. It is essential to
have basic knowledge of Go to get started.

In this chapter, we will cover the following topics:

Classification of data structures and structural design patterns
Representation of algorithms
Complexity and performance analysis
Brute force algorithms
Divide and conquer algorithms
Backtracking algorithms

Data Structures and Algorithms Chapter 1

[8]

Technical requirements
Install Go version 1.10 from https:/ ​/ ​golang. ​org/ ​doc/​install for your operating system.

The code files for this chapter can be found at the following GitHub URL: https:/ ​/​github.
com/​PacktPublishing/ ​Learn- ​Data- ​Structures- ​and-​Algorithms- ​with- ​Golang/ ​tree/
master/​Chapter01.

Check the installation of Go by running the hello world program at https:/ ​/ ​github. ​com/
PacktPublishing/​Learn- ​Data- ​Structures- ​and- ​Algorithms- ​with- ​Golang/ ​tree/ ​master/
hello_​world:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main

// importing fmt package
import (
 "fmt"
)
// main method
func main() {
 fmt.Println("Hello World")
}

Run the following commands:

go build
./hello_world

The following screenshot displays the output:

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Go/tree/master/ch1
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/hello_world

Data Structures and Algorithms Chapter 1

[9]

Let's take a look at the classification of data structures and structural design patterns in the
next section.

Classification of data structures and
structural design patterns
You can choose a data structure by using classification. In this section, we discuss data
structure classification in detail. The design patterns related to the data structure are
covered after the classification.

In the next section, we'll take a look at classification of data structures.

Classification of data structures
The term data structure refers to the organization of data in a computer's memory, in order
to retrieve it quickly for processing. It is a scheme for data organization to decouple the
functional definition of a data structure from its implementation. A data structure is chosen
based on the problem type and the operations performed on the data.

If the situation requires various datatypes within a data structure, we can choose
heterogeneous data structures. Linked, ordered, and unordered lists are grouped as
heterogeneous data structures. Linear data structures are lists, sets, tuples, queues, stacks,
and heaps. Trees, tables, and containers are categorized as nonlinear data structures. Two-
dimensional and multidimensional arrays are grouped as homogeneous data structures.
Dynamic data structures are dictionaries, tree sets, and sequences.

Data Structures and Algorithms Chapter 1

[10]

The classification of Data Structures is show in the following diagram:

Let's take a look at lists, tuples and heaps in the next sections.

Lists
A list is a sequence of elements. Each element can be connected to another with a link in a
forward or backward direction. The element can have other payload properties. This data
structure is a basic type of container. Lists have a variable length and developer can remove
or add elements more easily than an array. Data items within a list need not be contiguous
in memory or on disk. Linked lists were proposed by Allen Newell, Cliff Shaw, and Herbert
A. Simon at RAND Corporation.

Data Structures and Algorithms Chapter 1

[11]

To get started, a list can be used in Go, as shown in the following example; elements are
added through the PushBack method on the list, which is in the container/list
package:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main

// importing fmt and container list packages
import (
 "fmt"
 "container/list")

// main method
func main() {
 var intList list.List
 intList.PushBack(11)
 intList.PushBack(23)
 intList.PushBack(34)

 for element := intList.Front(); element != nil; element=element.Next()
{
 fmt.Println(element.Value.(int))
 }
}

The list is iterated through the for loop, and the element's value is accessed through the
Value method.

Run the following commands:

go run list.go

The following screenshot displays the output:

Data Structures and Algorithms Chapter 1

[12]

Let's take a look at Tuples in the next section.

Tuples
A tuple is a finite sorted list of elements. It is a data structure that groups data. Tuples are
typically immutable sequential collections. The element has related fields of different
datatypes. The only way to modify a tuple is to change the fields. Operators such as + and *
can be applied to tuples. A database record is referred to as a tuple. In the following
example, power series of integers are calculated and the square and cube of the integer is
returned as a tuple:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main

// importing fmt package
import (
 "fmt"

)
//gets the power series of integer a and returns tuple of square of a
// and cube of a
func powerSeries(a int) (int,int) {

 return a*a, a*a*a

}

The main method calls the powerSeries method with 3 as a parameter. The square and
cube values are returned from the method:

// main method
func main() {

 var square int
 var cube int
 square, cube = powerSeries(3)

 fmt.Println("Square ", square, "Cube", cube)

}

Data Structures and Algorithms Chapter 1

[13]

Run the following commands:

go run tuples.go

The following screenshot displays the output:

The tuples can be named in the powerSeries function, as shown in the following code:

func powerSeries(a int) (square int, cube int) {

 square = a*a

 cube = square*a
 return

}

If there is an error, it can be passed with tuples, as shown in the following code:

func powerSeries(a int) (int, int, error) {

 square = a*a

 cube = square*a
 return square,cube,nil

}

Heaps
A heap is a data structure that is based on the heap property. The heap data structure is
used in selection, graph, and k-way merge algorithms. Operations such as finding,
merging, insertion, key changes, and deleting are performed on heaps. Heaps are part of
the container/heap package in Go. According to the heap order (maximum heap)
property, the value stored at each node is greater than or equal to its children.

Data Structures and Algorithms Chapter 1

[14]

If the order is descending, it is referred to as a maximum heap; otherwise, it's a minimum
heap. The heap data structure was proposed by J.W.J. Williams in 1964 for a heap sorting
algorithm. It is not a sorted data structure, but partially ordered. The following example
shows how to use the container/heap package to create a heap data structure:

//main package has examples shown
//in Hands-On Data Structures and algorithms with Go book
package main

// importing fmt package and container/heap
import (
 "container/heap"
 "fmt"
)
// integerHeap a type
type IntegerHeap []int

// IntegerHeap method - gets the length of integerHeap
func (iheap IntegerHeap) Len() int { return len(iheap) }

// IntegerHeap method - checks if element of i index is less than j index
func (iheap IntegerHeap) Less(i, j int) bool { return iheap[i] < iheap[j] }
// IntegerHeap method -swaps the element of i to j index
func (iheap IntegerHeap) Swap(i, j int) { iheap[i], iheap[j] = iheap[j],
iheap[i] }

IntegerHeap has a Push method that pushes the item with the interface:

//IntegerHeap method -pushes the item
func (iheap *IntegerHeap) Push(heapintf interface{}) {

 *iheap = append(*iheap, heapintf.(int))
}
//IntegerHeap method -pops the item from the heap
func (iheap *IntegerHeap) Pop() interface{} {
 var n int
 var x1 int
 var previous IntegerHeap = *iheap
 n = len(previous)
 x1 = previous[n-1]
 *iheap = previous[0 : n-1]
 return x1
}

// main method
func main() {
 var intHeap *IntegerHeap = &IntegerHeap{1,4,5}

Data Structures and Algorithms Chapter 1

[15]

 heap.Init(intHeap)
 heap.Push(intHeap, 2)
 fmt.Printf("minimum: %d\n", (*intHeap)[0])
 for intHeap.Len() > 0 {
 fmt.Printf("%d \n", heap.Pop(intHeap))
 }
}

Run the following commands:

go run heap.go

The following screenshot displays the output:

Let's take a look at structural design patterns in the next section

Structural design patterns
Structural design patterns describe the relationships between the entities. They are used to
form large structures using classes and objects. These patterns are used to create a system
with different system blocks in a flexible manner. Adapter, bridge, composite, decorator,
facade, flyweight, private class data, and proxy are the Gang of Four (GoF) structural
design patterns. The private class data design pattern is the other design pattern covered in
this section.

We will take a look at adapter and bridge design patterns in the next sections.

Data Structures and Algorithms Chapter 1

[16]

Adapter
The adapter pattern provides a wrapper with an interface required by the API client to link
incompatible types and act as a translator between the two types. The adapter uses the
interface of a class to be a class with another compatible interface. When requirements
change, there are scenarios where class functionality needs to be changed because of
incompatible interfaces.

The dependency inversion principle can be adhered to by using the adapter pattern, when a
class defines its own interface to the next level module interface implemented by an
adapter class. Delegation is the other principle used by the adapter pattern. Multiple
formats handling source-to-destination transformations are the scenarios where the adapter
pattern is applied.

The adapter pattern comprises the target, adaptee, adapter, and client:

Target is the interface that the client calls and invokes methods on the adapter
and adaptee.
The client wants the incompatible interface implemented by the adapter.
The adapter translates the incompatible interface of the adaptee into an interface
that the client wants.

Let's say you have an IProcessor interface with a process method, the Adapter class
implements the process method and has an Adaptee instance as an attribute. The
Adaptee class has a convert method and an adapterType instance variable. The
developer while using the API client calls the process interface method to invoke
convert on Adaptee. The code is as follows:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt package
import (
 "fmt"
)
//IProcess interface
type IProcess interface {
 process()
}
//Adapter struct
type Adapter struct {
 adaptee Adaptee
}

Data Structures and Algorithms Chapter 1

[17]

The Adapter class has a process method that invokes the convert method on adaptee:

//Adapter class method process
func (adapter Adapter) process() {
 fmt.Println("Adapter process")
 adapter.adaptee.convert()
}
//Adaptee Struct
type Adaptee struct {
 adapterType int
}
// Adaptee class method convert
func (adaptee Adaptee) convert() {
 fmt.Println("Adaptee convert method")
}
// main method
func main() {
var processor IProcess = Adapter{}
processor.process()
}

Run the following commands:

go run adapter.go

The following screenshot displays the output:

Let's take a look at Bridge pattern in the next section.

Bridge
Bridge decouples the implementation from the abstraction. The abstract base class can be
subclassed to provide different implementations and allow implementation details to be
modified easily. The interface, which is a bridge, helps in making the functionality of
concrete classes independent from the interface implementer classes. The bridge patterns
allow the implementation details to change at runtime.

Data Structures and Algorithms Chapter 1

[18]

The bridge pattern demonstrates the principle, preferring composition over inheritance. It
helps in situations where one should subclass multiple times orthogonal to each other.
Runtime binding of the application, mapping of orthogonal class hierarchies, and platform
independence implementation are the scenarios where the bridge pattern can be applied.

The bridge pattern components are abstraction, refined abstraction, implementer, and
concrete implementer. Abstraction is the interface implemented as an abstract class that
clients invoke with the method on the concrete implementer. Abstraction maintains a has-
a relationship with the implementation, instead of an is-a relationship. The has-
a relationship is maintained by composition. Abstraction has a reference of the
implementation. Refined abstraction provides more variations than abstraction.

Let's say IDrawShape is an interface with the drawShape method. DrawShape implements
the IDrawShape interface. We create an IContour bridge interface with
the drawContour method. The contour class implements the IContour interface. The
ellipse class will have a, b , r properties and drawShape (an instance of DrawShape). The
ellipse class implements the contour bridge interface to implement
the drawContour method. The drawContour method calls the drawShape method on
the drawShape instance.

The following code demonstrates the bridge implementation:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt package
import (
 "fmt"
)
//IDrawShape interface
type IDrawShape interface {
 drawShape(x[5] float32,y[5] float32)
}
//DrawShape struct
type DrawShape struct{}

drawShape method
The drawShape method draws the shape given the coordinates, as shown in the following
code:

// DrawShape struct has method draw Shape with float x and y coordinates
func (drawShape DrawShape) drawShape(x[5] float32, y[5] float32) {
 fmt.Println("Drawing Shape")
}

Data Structures and Algorithms Chapter 1

[19]

//IContour interace
type IContour interface {
 drawContour(x[5] float32 ,y[5] float32)
 resizeByFactor(factor int)
}
//DrawContour struct
type DrawContour struct {
 x[5] float32
 y[5] float32
 shape DrawShape
 factor int
}

drawContour method
The drawContour method of the DrawContour class calls the drawShape method on the
shape instance, this is shown in the following code:

//DrawContour method drawContour given the coordinates
func (contour DrawContour) drawContour(x[5] float32,y[5] float32) {
 fmt.Println("Drawing Contour")
 contour.shape.drawShape(contour.x,contour.y)
}
//DrawContour method resizeByFactor given factor
func (contour DrawContour) resizeByFactor(factor int) {
 contour.factor = factor
}
// main method
func main() {
var x = [5]float32{1,2,3,4,5}
var y = [5]float32{1,2,3,4,5}
var contour IContour = DrawContour{x,y,DrawShape{},2}
contour.drawContour(x,y)
 contour.resizeByFactor(2)
}

Run the following commands:

go run bridge.go

Data Structures and Algorithms Chapter 1

[20]

The following screenshot displays the output:

We will take a look at Composite, Decorator, Facade and Flyweight design patterns in the
next sections.

Composite
A composite is a group of similar objects in a single object. Objects are stored in a tree form
to persist the whole hierarchy. The composite pattern is used to change a hierarchical
collection of objects. The composite pattern is modeled on a heterogeneous collection. New
types of objects can be added without changing the interface and the client code. You can
use the composite pattern, for example, for UI layouts on the web, for directory trees, and
for managing employees across departments. The pattern provides a mechanism to access
the individual objects and groups in a similar manner.

The composite pattern comprises the component interface, component class, composite,
and client:

The component interface defines the default behavior of all objects and behaviors
for accessing the components of the composite.
The composite and component classes implement the component interface.
The client interacts with the component interface to invoke methods in the
composite.

Let's say there is an IComposite interface with the perform method and
BranchClass that implements IComposite and has the addLeaf, addBranch, and
perform methods. The Leaflet class implements IComposite with the perform
method. BranchClass has a one-to-many relationship with leafs and branches.
Iterating over the branch recursively, one can traverse the composite tree, as shown in the
following code:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt package

Data Structures and Algorithms Chapter 1

[21]

import (
 "fmt"
)
// IComposite interface
type IComposite interface {
 perform()
}
// Leaflet struct
type Leaflet struct {
 name string
}
// Leaflet class method perform
func (leaf *Leaflet) perform() {
fmt.Println("Leaflet " + leaf.name)
}
// Branch struct
type Branch struct {
 leafs []Leaflet
 name string
 branches[]Branch
}

The perform method of the Branch class calls the perform method on branch and leafs,
as seen in the code:

// Branch class method perform
func (branch *Branch) perform() {
fmt.Println("Branch: " + branch.name)
 for _, leaf := range branch.leafs {
 leaf.perform()
 }
for _, branch := range branch.branches {
 branch.perform()
 }
}
// Branch class method add leaflet
func (branch *Branch) add(leaf Leaflet) {
 branch.leafs = append(branch.leafs, leaf)
}

As shown in the following code, the addBranch method of the Branch class adds a new
branch:

//Branch class method addBranch branch
func (branch *Branch) addBranch(newBranch Branch) {
branch.branches = append(branch.branches,newBranch)
}
//Branch class method getLeaflets

Data Structures and Algorithms Chapter 1

[22]

func (branch *Branch) getLeaflets() []Leaflet {
 return branch.leafs
}
// main method
func main() {
var branch = &Branch{name:"branch 1"}
var leaf1 = Leaflet{name:"leaf 1"}
var leaf2 = Leaflet{name:"leaf 2"}
var branch2 = Branch{name:"branch 2"}
branch.add(leaf1)
branch.add(leaf2)
branch.addBranch(branch2)
branch.perform()
}

Run the following commands:

go run composite.go

The following screenshot displays the output:

Let's take a look at Decorator pattern in the next section.

Decorator
In a scenario where class responsibilities are removed or added, the decorator pattern is
applied. The decorator pattern helps with subclassing when modifying functionality,
instead of static inheritance. An object can have multiple decorators and run-time
decorators. The single responsibility principle can be achieved using a
decorator. The decorator can be applied to window components and graphical object
modeling. The decorator pattern helps with modifying existing instance attributes and
adding new methods at run-time.

Data Structures and Algorithms Chapter 1

[23]

The decorator pattern participants are the component interface, the concrete component
class, and the decorator class:

The concrete component implements the component interface.
The decorator class implements the component interface and provides
additional functionality in the same method or additional methods. The
decorator base can be a participant representing the base class for all decorators.

Let 's say IProcess is an interface with the process method. ProcessClass implements
an interface with the process method. ProcessDecorator implements the process
interface and has an instance of ProcessClass. ProcessDecorator can add more
functionality than ProcessClass, as shown in the following code:

//main package has examples shown
 // in Hands-On Data Structures and algorithms with Go book
 package main
// importing fmt package
 import (
 "fmt"
)
// IProcess Interface
 type IProcess interface {
 process()
 }
//ProcessClass struct
 type ProcessClass struct{}
//ProcessClass method process
 func (process *ProcessClass) process() {
 fmt.Println("ProcessClass process")
 }
//ProcessDecorator struct
 type ProcessDecorator struct {
 processInstance *ProcessClass
 }

In the following code, the ProcessDecorator class process method invokes the process
method on the decorator instance of ProcessClass:

 //ProcessDecorator class method process
 func (decorator *ProcessDecorator) process() {
 if decorator.processInstance == nil {
 fmt.Println("ProcessDecorator process")
 } else {
 fmt.Printf("ProcessDecorator process and ")
 decorator.processInstance.process()
}

Data Structures and Algorithms Chapter 1

[24]

 }
//main method
 func main() {
var process = &ProcessClass{}
var decorator = &ProcessDecorator{}
decorator.process()
decorator.processInstance = process
decorator.process()
}

Run the following commands:

go run decorator.go

The following screenshot displays the output:

Let's take a look at Facade pattern in the next section.

Facade
Facade is used to abstract subsystem interfaces with a helper. The facade design pattern is
used in scenarios when the number of interfaces increases and the system gets complicated.
Facade is an entry point to different subsystems, and it simplifies the dependencies
between the systems. The facade pattern provides an interface that hides the
implementation details of the hidden code.

A loosely coupled principle can be realized with a facade pattern. You can use a facade to
improve poorly designed APIs. In SOA, a service facade can be used to incorporate changes
to the contract and implementation.

Data Structures and Algorithms Chapter 1

[25]

The facade pattern is made up of the facade class, module classes, and a client:

The facade delegates the requests from the client to the module classes. The
facade class hides the complexities of the subsystem logic and rules.
Module classes implement the behaviors and functionalities of the module
subsystem.
The client invokes the facade method. The facade class functionality can be
spread across multiple packages and assemblies.

For example, account, customer, and transaction are the classes that have account,
customer, and transaction creation methods. BranchManagerFacade can be used by the
client to create an account, customer, and transaction:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt package
import (
 "fmt"
)
 //Account struct
 type Account struct{
id string
accountType string
}
//Account class method create - creates account given AccountType
func (account *Account) create(accountType string) *Account{
 fmt.Println("account creation with type")
 account.accountType = accountType
return account
}
//Account class method getById given id string
func (account *Account) getById(id string) *Account {
 fmt.Println("getting account by Id")
 return account
 }

The account class has the deleteById method, which is used to delete an account with a
given ID, as shown in the following code:

 //Account class method deleteById given id string
 func (account *Account) deleteById(id string)() {
 fmt.Println("delete account by id")
 }
//Customer struct
 type Customer struct{

Data Structures and Algorithms Chapter 1

[26]

 name string
 id int
 }

In the following code, the customer class has a method that creates a new customer with
name:

//Customer class method create - create Customer given name
 func (customer *Customer) create(name string) *Customer {
 fmt.Println("creating customer")
 customer.name = name
 return customer
 }
//Transaction struct
 type Transaction struct{
 id string
 amount float32
 srcAccountId string
 destAccountId string
 }

As shown in the following code, the transaction class has the create method for
creating a transaction:

//Transaction class method create Transaction
 func (transaction *Transaction) create(srcAccountId string, destAccountId
string,amount float32) *Transaction {
 fmt.Println("creating transaction")
 transaction.srcAccountId = srcAccountId
 transaction.destAccountId = destAccountId
 transaction.amount = amount
 return transaction
 }
 //BranchManagerFacade struct
 type BranchManagerFacade struct {
 account *Account
 customer *Customer
 transaction *Transaction
 }
//method NewBranchManagerFacade
 func NewBranchManagerFacade() *BranchManagerFacade {
 return &BranchManagerFacade{ &Account{}, &Customer{}, &Transaction{}}
 }

Data Structures and Algorithms Chapter 1

[27]

BranchManagerFacade has the createCustomerAccount method, which calls
the create method on the customer class instance, as shown in the following code:

//BranchManagerFacade class method createCustomerAccount
 func (facade *BranchManagerFacade) createCustomerAccount(customerName
string, accountType string) (*Customer,*Account) {
 var customer = facade.customer.create(customerName)
 var account = facade.account.create(accountType)
 return customer, account
 }
 //BranchManagerFacade class method createTransaction
 func (facade *BranchManagerFacade) createTransaction(srcAccountId string,
destAccountId string, amount float32) *Transaction {
var transaction =
facade.transaction.create(srcAccountId,destAccountId,amount)
 return transaction
}

The main method calls the NewBranchManagerFacade method to create a facade. The
methods on facade are invoked to create customer and account:

//main method
func main() {
 var facade = NewBranchManagerFacade()
 var customer *Customer
 var account *Account
 customer, account = facade.createCustomerAccount("Thomas Smith",
 "Savings")
 fmt.Println(customer.name)
 fmt.Println(account.accountType)
 var transaction = facade.createTransaction("21456","87345",1000)
 fmt.Println(transaction.amount)
}

Run the following commands:

go run facade.go

The following screenshot displays the output:

Data Structures and Algorithms Chapter 1

[28]

Let's take a look at Flyweight pattern in the next section.

Flyweight
Flyweight is used to manage the state of an object with high variation. The pattern allows
us to share common parts of the object state among multiple objects, instead of each object
storing it. Variable object data is referred to as extrinsic state, and the rest of the object state
is intrinsic. Extrinsic data is passed to flyweight methods and will never be stored within it.
Flyweight pattern helps reduce the overall memory usage and the object initializing
overhead. The pattern helps create interclass relationships and lower memory to a
manageable level.

Flyweight objects are immutable. Value objects are a good example of the flyweight pattern.
Flyweight objects can be created in a single thread mode, ensuring one instance per value.
In a concurrent thread scenario, multiple instances are created. This is based on the equality
criterion of flyweight objects.

The participants of the flyweight pattern are the FlyWeight interface,
ConcreteFlyWeight, FlyWeightFactory, and the Client classes:

The FlyWeight interface has a method through which flyweights can get and act
on the extrinsic state.
ConcreteFlyWeight implements the FlyWeight interface to represent
flyweight objects.
FlyweightFactory is used to create and manage flyweight objects. The client
invokes FlyweightFactory to get a flyweight object. UnsharedFlyWeight can
have a functionality that is not shared.
Client classes

Let's say DataTransferObject is an interface with the getId method.
DataTransferObjectFactory creates a data transfer object through
getDataTransferObject by the DTO type. The DTO types are customer, employee,
manager, and address, as shown in the following code:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
 package main
// importing fmt package
 import (
 "fmt"
)
 //DataTransferObjectFactory struct

Data Structures and Algorithms Chapter 1

[29]

 type DataTransferObjectFactory struct {
 pool map[string] DataTransferObject
 }
//DataTransferObjectFactory class method getDataTransferObject
 func (factory DataTransferObjectFactory) getDataTransferObject(dtoType
string) DataTransferObject {
var dto = factory.pool[dtoType]
if dto == nil {
fmt.Println("new DTO of dtoType: " + dtoType)
 switch dtoType{
 case "customer":
 factory.pool[dtoType] = Customer{id:"1"}
 case "employee":
 factory.pool[dtoType] = Employee{id:"2"}
 case "manager":
 factory.pool[dtoType] = Manager{id:"3"}
 case "address":
 factory.pool[dtoType] = Address{id:"4"}
 }
dto = factory.pool[dtoType]
}

 return dto
 }

In the following code, the DataTransferObject interface is implemented by the
Customer class:

// DataTransferObject interface
 type DataTransferObject interface {
 getId() string
 }
 //Customer struct
 type Customer struct {
 id string //sequence generator
 name string
 ssn string
 }
 // Customer class method getId
 func (customer Customer) getId() string {
 //fmt.Println("getting customer Id")
 return customer.id
}
 //Employee struct
 type Employee struct {
 id string
 name string
 }

Data Structures and Algorithms Chapter 1

[30]

 //Employee class method getId
 func (employee Employee) getId() string {
 return employee.id
 }
 //Manager struct
 type Manager struct {
 id string
 name string
 dept string
 }

The DataTransferObject interface is implemented by the Manager class, as shown in the
following code:

//Manager class method getId
 func (manager Manager) getId() string {
 return manager.id
 }
 //Address struct
 type Address struct {
 id string
 streetLine1 string
 streetLine2 string
 state string
 city string
}
//Address class method getId
 func (address Address) getId() string{
 return address.id
 }
 //main method
 func main() {
 var factory =
DataTransferObjectFactory{make(map[string]DataTransferObject)}
 var customer DataTransferObject =
factory.getDataTransferObject("customer")
 fmt.Println("Customer ",customer.getId())
 var employee DataTransferObject =
factory.getDataTransferObject("employee")
 fmt.Println("Employee ",employee.getId())
 var manager DataTransferObject = factory.getDataTransferObject("manager")
 fmt.Println("Manager",manager.getId())
 var address DataTransferObject = factory.getDataTransferObject("address")
 fmt.Println("Address",address.getId())
 }

Data Structures and Algorithms Chapter 1

[31]

Run the following commands:

go run flyweight.go

The following screenshot displays the output:

We will take a look at Private class and Proxy data patterns in the next sections.

Private class data
The private class data pattern secures the data within a class. This pattern encapsulates the
initialization of the class data. The write privileges of properties within the private class are
protected, and properties are set during construction. The private class pattern prints the
exposure of information by securing it in a class that retains the state. The encapsulation of
class data initialization is a scenario where this pattern is applicable.

Account is a class with account details and a customer name. AccountDetails is the
private attribute of Account , and CustomerName is the public attribute. JSON marshaling
of Account has CustomerName as a public property. AccountDetails is the package
property in Go (modeled as private class data):

//main package has examples shown
 // in Hands-On Data Structures and algorithms with Go book
 package main
// importing fmt and encoding/json packages
import (
 "encoding/json"
 "fmt"
)
 //AccountDetails struct
 type AccountDetails struct {
 id string
 accountType string
 }
 //Account struct

Data Structures and Algorithms Chapter 1

[32]

 type Account struct {
 details *AccountDetails
 CustomerName string
 }
 // Account class method setDetails
 func (account *Account) setDetails(id string, accountType string) {
account.details = &AccountDetails{id, accountType}
}

As shown in the following code, the Account class has the getId method, which returns
the id private class attribute:

//Account class method getId
 func (account *Account) getId() string{
return account.details.id
 }
 //Account class method getAccountType
 func (account *Account) getAccountType() string{
return account.details.accountType
 }

The main method calls the Account initializer with CustomerName. The details of the
account are set details with the setDetails method:

// main method
 func main() {
var account *Account = &Account{CustomerName: "John Smith"}
 account.setDetails("4532","current")
jsonAccount, _ := json.Marshal(account)
 fmt.Println("Private Class hidden",string(jsonAccount))
fmt.Println("Account Id",account.getId())
fmt.Println("Account Type",account.getAccountType())
}

Run the following commands:

go run privateclass.go

The following screenshot displays the output:

Data Structures and Algorithms Chapter 1

[33]

Let's take a look at Proxy pattern in the next section.

Proxy
The proxy pattern forwards to a real object and acts as an interface to others. The proxy
pattern controls access to an object and provides additional functionality. The additional
functionality can be related to authentication, authorization, and providing rights of access
to the resource-sensitive object. The real object need not be modified while providing
additional logic. Remote, smart, virtual, and protection proxies are the scenarios where this
pattern is applied. It is also used to provide an alternative to extend functionality with
inheritance and object composition. A proxy object is also referred to as a surrogate, handle,
or wrapper.

The proxy pattern comprises the subject interface, the RealSubject class, and the Proxy
class:

Subject is an interface for the RealObject and Proxy class.
The RealSubject object is created and maintained as a reference in the Proxy
class. RealSubject is resource sensitive, required to be protected, and expensive
to create. RealObject is a class that implements the IRealObject interface. It
has a performAction method.
VirtualProxy is used to access RealObject and invoke the performAction
method.

The following code shows an implementation of proxy pattern:

 //main package has examples shown
 // in Hands-On Data Structures and algorithms with Go book
 package main
// importing fmt package
 import (
 "fmt"
)
 //IRealObject interface
 type IRealObject interface {
 performAction()
 }
 //RealObject struct
 type RealObject struct{}
RealObject class implements IRealObject interface. The class has method
performAction.
 //RealObject class method performAction
 func (realObject *RealObject) performAction() {
 fmt.Println("RealObject performAction()")

Data Structures and Algorithms Chapter 1

[34]

 }
 //VirtualProxy struct
 type VirtualProxy struct {
 realObject *RealObject
 }
 //VirtualProxy class method performAction
 func (virtualProxy *VirtualProxy) performAction() {
 if virtualProxy.realObject == nil {
 virtualProxy.realObject = &RealObject{}
 }
 fmt.Println("Virtual Proxy performAction()")
 virtualProxy.realObject.performAction()
 }
 // main method
 func main() {
 var object VirtualProxy = VirtualProxy{}
 object.performAction()
 }

Run the following commands:

go run virtualproxy.go

The following screenshot displays the output:

Now that we know the classification of data structures and the design patterns used, let's
go ahead and take a look at the representation of algorithms.

Data Structures and Algorithms Chapter 1

[35]

Representation of algorithms
A flow chart and pseudo code are methods of representing algorithms. An algorithm shows
the logic of how a problem is solved. A flow chart has different representation symbols
such as Entry, Exit, Task, Input/Output, Decision Point, and Inter Block. A structured
program consists of a series of these symbols to perform a specific task. Pseudo code has
documentation, action, and flow control keywords to visualize an algorithm. The
documentation keywords are TASK and REM. SET, PUT, and GET are the action
keywords.

Let's take a look at the different representations of algorithms, that is, flow charts and
Pseudo code in the next sections.

Flow chart
The flow control keywords are SET, LOOP, (WHILE, UNTIL), REP, and POST. The
following flow chart shows a formula or an algorithm to calculate the dividend given a
number of shares, the face value, and the dividend percentage. The start and end are the
Entry and Exit symbols. The input number of shares, share face value, and dividend
percentage use the Input symbol. The compute dividend and output dividend use the Task
symbol and Output symbol respectively:

Data Structures and Algorithms Chapter 1

[36]

 In the next section, we'll take a look at pseudo code, representation of algorithms.

Pseudo code
Pseudo code is a high-level design of a program or algorithm. Sequence and selection are
two constructs used in pseudo code. Pseudo code is easier than a flow chart visualizes the
algorithm while pseudo code can be easily modified and updated. Errors in design can be
caught very early in pseudo code. This saves the cost of fixing defects later.

To give an example, we want to find the max value in an array of length n. The pseudo code
will be written as follows:

maximum(arr) {
 n <- len(arr)
 max <- arr[0]
 for k <- 0,n do {
 If arr[k] > max {
 max <- arr[k]
 }
 }
 return max
}

Now that we know the different ways to represent the algorithm, let's take a look at how
we can monitor its complexity and performance in the next section.

Complexity and performance analysis
The efficiency of an algorithm is measured through various parameters, such as CPU time,
memory, disk, and network. The complexity is how the algorithm scales when the number
of input parameters increases. Performance is a measure of time, space, memory, and other
parameters. Algorithms are compared by their processing time and resource consumption.
Complexity measures the parameters and is represented by the Big O notation.

Data Structures and Algorithms Chapter 1

[37]

Complexity analysis of algorithms
The complexity of an algorithm is measured by the speed of the algorithm. Typically, the
algorithm will perform differently based on processor speed, disk speed, memory, and
other hardware parameters. Hence, asymptotical complexity is used to measure the
complexity of an algorithm. An algorithm is a set of steps to be processed by different
operations to achieve a task. The time taken for an algorithm to complete is based on the
number of steps taken.

Let's say an algorithm iterates through an array, m, of size 10 and update the elements to
the sum of index and 200. The computational time will be 10*t, where t is the time taken to
add two integers and update them to an array. The next step will be printing them after
iterating over an array. The t time parameter will vary with the hardware of the computer
used. Asymptotically, the computational time grows as a factor of 10, as shown in the
following code:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt package
import (
 "fmt"
)
// main method
func main() {
 var m [10]int
 var k int
for k = 0; k < 10; k++ {
 m[k] = k + 200
fmt.Printf("Element[%d] = %d\n", k, m[k])
 }
}

Run the following commands:

go run complexity.go

Data Structures and Algorithms Chapter 1

[38]

The following screenshot displays the output:

Let's take a look at the different complexity types in the next sections.

Big O notation
The T(n) time function represents the algorithm complexity based on Big O notation. T(n) =
O(n) states that an algorithm has a linear time complexity. Using Big O notation, the
constant time, linear time, logarithmic time, cubic time, and quadratic time complexity are
different complexity types for an algorithm.

Linear time, O(n), is used as a measure of complexity in scenarios such as linear search,
traversing, and finding the minimum and maximum number of array elements. ArrayList
and queue are data structures that have these methods. An algorithm that has logarithmic
time, O(log n), is a binary search in a tree data structure. Bubble sort, selection sort, and
insertion sort algorithms have complexity of quadratic time, O(n2). Big Omega Ω and big
Theta Θ are notations for the lower and upper bounds for a particular algorithm.

The worst case, best case, average case, and amortized run-time complexity is used for
analysis of algorithms. Amortized run-time complexity is referred to as 2n. Asymptotically,
it will tend to O(1).

Big O notation is also used to determine how much space is consumed by the algorithm.
This helps us find the best and worst case scenarios, relative to space and time.

Let's take a look at linear complexity in the next section.

Data Structures and Algorithms Chapter 1

[39]

Linear complexity
An algorithm is of linear complexity if the processing time or storage space is directly
proportional to the number of input elements to be processed. In Big O notation, linear
complexity is presented as O(n). String matching algorithms such as the Boyer-Moore and
Ukkonen have linear complexity.

Linear complexity, O(n), is demonstrated in an algorithm as follows:

//main package has examples shown
// in Go Data Structures and algorithms book
package main
// importing fmt package
import (
 "fmt"
)
// main method
func main() {
 var m [10]int
 var k int
for k = 0; k < 10; k++ {
 m[k] = k * 200
fmt.Printf("Element[%d] = %d\n", k, m[k])
 }
}

Run the following commands:

go run linear_complexity.go

The following screenshot displays the output:

Data Structures and Algorithms Chapter 1

[40]

Let's take a look at quadratic complexity in the next section.

Quadratic complexity
An algorithm is of quadratic complexity if the processing time is proportional to the square
of the number of input elements. In the following case, the complexity of the algorithm is
10*10 = 100. The two loops have a maximum of 10. The quadratic complexity for a
multiplication table of n elements is O(n2).

Quadratic complexity, O(n2), is shown in the following example:

//main package has examples shown
// in Go Data Structures and algorithms book
package main
// importing fmt package
import (
 "fmt"
)
// main method
func main() {
 var k,l int
 for k = 1; k <= 10; k++ {
 fmt.Println(" Multiplication Table", k)
 for l=1; l <= 10; l++ {
 var x int = l *k
 fmt.Println(x)
 }
 }
}

Run the following commands:

go run quadratic_complexity.go

Data Structures and Algorithms Chapter 1

[41]

The following screenshot displays the output:

Let's take a look at cubic complexity in the next section.

Cubic complexity
In the case of cubic complexity, the processing time of an algorithm is proportional to the
cube of the input elements. The complexity of the following algorithm is 10*10*10 = 1,000.
The three loops have a maximum of 10. The cubic complexity for a matrix update is O(n3).

Cubic complexity O(n3) is explained in the following example:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt package
import (
 "fmt"
)
// main method
func main() {
var k,l,m int
var arr[10][10][10] int

Data Structures and Algorithms Chapter 1

[42]

 for k = 0; k < 10; k++ {
for l=0; l < 10; l++ {
for m=0; m < 10; m++ {
arr[k][l][m] = 1
fmt.Println("Element value ",k,l,m," is", arr[k][l][m])
}
}
}
}

Run the following commands:

go run cubic_complexity.go

The following screenshot displays the output:

Let's take a look at logarithmic complexity in the next section.

Logarithmic complexity
An algorithm is of logarithmic complexity if the processing time is proportional to the
logarithm of the input elements. The logarithm base is typically 2. The following tree is a
binary tree with LeftNode and RightNode. The insert operation is of O(log n) complexity,
where n is the number of nodes.

Data Structures and Algorithms Chapter 1

[43]

Logarithmic complexity is presented as follows:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt package
import (
 "fmt"
)
// Tree struct
type Tree struct {
 LeftNode *Tree
 Value int
 RightNode *Tree
}

As shown in the following code, the Tree class has the insert method, which inserts the
element given m is the integer element:

// Tree insert method for inserting at m position
func (tree *Tree) insert(m int) {
 if tree != nil {
if tree.LeftNode == nil {
tree.LeftNode = &Tree{nil,m,nil}
 } else {
 if tree.RightNode == nil {
 tree.RightNode = &Tree{nil,m,nil}
 } else {
if tree.LeftNode != nil {
tree.LeftNode.insert(m)
} else {
tree.RightNode.insert(m)
}
}
}
} else {
tree = &Tree{nil,m,nil}
 }
}
//print method for printing a Tree
func print(tree *Tree) {
 if tree != nil {
fmt.Println(" Value",tree.Value)
 fmt.Printf("Tree Node Left")
 print(tree.LeftNode)
 fmt.Printf("Tree Node Right")
 print(tree.RightNode)
 } else {

Data Structures and Algorithms Chapter 1

[44]

 fmt.Printf("Nil\n")
 }
}

The main method calls the insert method on tree to insert the 1, 3, 5, and 7 elements, as
shown in the following code:

// main method
func main() {
 var tree *Tree = &Tree{nil,1,nil}
 print(tree)
 tree.insert(3)
 print(tree)
 tree.insert(5)
 print(tree)
 tree.LeftNode.insert(7)
 print(tree)
}

Run the following commands:

go run tree.go

The following screenshot displays the output:

Data Structures and Algorithms Chapter 1

[45]

Now that we know about the complexities in algorithms and analyzing their performance,
let's take a look at brute force algorithms in the next section.

Brute force algorithms
A brute force algorithm solves a problem based on the statement and the problem
definition. Brute force algorithms for search and sort are sequential search and selection
sort. Exhaustive search is another brute force algorithm where the solution is in a set of
candidate solutions with definitive properties. The space in which the search happens is a
state and combinatorial space, which consists of permutations, combinations, or subsets.

Brute Force algorithms are known for wide applicability and simplicity in solving complex
problems. Searching, string matching, and matrix multiplication are some scenarios where
they are used. Single computational tasks can be solved using brute force algorithms. They
do not provide efficient algorithms. The algorithms are slow and non-performant.
Representation of a brute force algorithm is shown in the following code:

//main package has examples shown
//in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt package
import (
 "fmt"
)
//findElement method given array and k element
func findElement(arr[10] int, k int) bool {
 var i int
 for i=0; i< 10; i++ {
 if arr[i]==k {
 return true
 }
 }
 return false
}
// main method
func main() {
 var arr = [10]int{1,4,7,8,3,9,2,4,1,8}
 var check bool = findElement(arr,10)
 fmt.Println(check)
 var check2 bool = findElement(arr,9)
 fmt.Println(check2)
}

Data Structures and Algorithms Chapter 1

[46]

Run the following commands:

go run bruteforce.go

The following screenshot displays the output:

After brute force algorithms, let's cover divide and conquer algorithms in the next section.

Divide and conquer algorithms
A divide and conquer algorithm breaks a complex problem into smaller problems and
solves these smaller problems. The smaller problem will be further broken down till it is a
known problem. The approach is to recursively solve the sub-problems and merge the
solutions of the sub-problems.

Recursion, quick sort, binary search, fast Fourier transform, and merge sort are good
examples of divide and conquer algorithms. Memory is efficiently used with these
algorithms. Performance is sometimes an issue in the case of recursion. On multiprocessor
machines, these algorithms can be executed on different processors after breaking them
down into sub-problems. A divide and conquer algorithm is shown in the following code:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt package
import (
 "fmt"
)

As shown in the following code, the Fibonacci method takes the k integer parameter and
returns the Fibonacci number for k. The method uses recursion to calculate the Fibonacci
numbers. The recursion algorithm is applied by dividing the problem into the k-1 integer
and the k-2 integer:

// fibonacci method given k integer
func fibonacci(k int) int {
if k<=1{

Data Structures and Algorithms Chapter 1

[47]

 return 1
 }
 return fibonacci(k-1)+fibonacci(k-2)
}
// main method
func main() {
var m int = 5
for m=0; m < 8; m++ {
var fib = fibonacci(m)
fmt.Println(fib)
 }
}

Run the following commands:

go run divide.go

The following screenshot displays the output:

Let's take a look at what backtracking algorithms are in the next section.

Backtracking algorithms
A backtracking algorithm solves a problem by constructing the solution incrementally.
Multiple options are evaluated, and the algorithm chooses to go to the next component of
the solution through recursion. Backtracking can be a chronological type or can traverse the
paths, depending on the problem that you are solving.

Data Structures and Algorithms Chapter 1

[48]

Backtracking is an algorithm that finds candidate solutions and rejects a candidate on the
basis of its feasibility and validity. Backtracking is useful in scenarios such as finding a
value in an unordered table. It is faster than a brute force algorithm, which rejects a large
number of solutions in an iteration. Constraint satisfaction problems such as parsing, rules
engine, knapsack problems, and combinatorial optimization are solved using backtracking.

The following is an example of a backtracking algorithm. The problem is to identify the
combinations of elements in an array of 10 elements whose sum is equal to 18. The
findElementsWithSum method recursively tries to find the combination. Whenever the
sum goes beyond the k target, it backtracks:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt package
import (
 "fmt"
)
//findElementsWithSum of k from arr of size
func findElementsWithSum(arr[10] int,combinations[19] int,size int, k int,
addValue int, l int, m int) int {
var num int = 0
if addValue > k {
 return -1
 }
if addValue == k {
 num = num +1
 var p int =0
 for p=0; p < m; p++ {
 fmt.Printf("%d,",arr[combinations[p]])
 }
 fmt.Println(" ")
 }
var i int
for i=l; i< size; i++ {
//fmt.Println(" m", m)
combinations[m] = l
findElementsWithSum(arr,combinations,size,k,addValue+arr[i],l,m+1)
l = l+1
 }
 return num
}
// main method
func main() {
var arr = [10]int{1,4,7,8,3,9,2,4,1,8}
var addedSum int = 18
var combinations [19]int

Data Structures and Algorithms Chapter 1

[49]

findElementsWithSum(arr,combinations,10,addedSum,0,0,0)
//fmt.Println(check)//var check2 bool = findElement(arr,9)
//fmt.Println(check2)
}

Run the following commands:

go run backtracking.go

The following screenshot displays the output:

Data Structures and Algorithms Chapter 1

[50]

Summary
This chapter covered the definition of abstract datatypes, classifying data structures into
linear, nonlinear, homogeneous, heterogeneous, and dynamic types. Abstract datatypes
such as container, list, set, map, graph, stack, and queue were presented in this chapter. The
chapter covered the performance analysis of data structures and structural design patterns.

We looked at the classification of data structures and structural design patterns. You can
use algorithms such as brute force, divide and conquer, and backtracking by calculating the
complexity and performance analysis. The choice of algorithm and the use of design
patterns and data structures are the key takeaways.

In the next chapter, we will discuss data structures in Go. The following data structures will
be covered:

Arrays
Slices
Two-dimensional slices
Maps

Questions and exercises
Give an example where you can use a composite pattern.1.
For an array of 10 elements with a random set of integers, identify the maximum2.
and minimum. Calculate the complexity of the algorithm.
To manage the state of an object, which structural pattern is relevant?3.
A window is sub-classed to add a scroll bar to make it a scrollable window.4.
Which pattern is applied in this scenario?
Find the complexity of a binary tree search algorithm.5.
Identify the submatrices of 2x2 in a 3x3 matrix. What is the complexity of the6.
algorithm that you have used?
Explain with a scenario the difference between brute force and backtracking7.
algorithms.

Data Structures and Algorithms Chapter 1

[51]

A rules engine uses backtracking to identify the rules affected by the change.8.
Show an example where backtracking identifies the affected rules.
Draw a flow chart for the algorithm of the calculation of profit-loss given the cost9.
price, selling price, and quantity.
Write the pseudo code for an algorithm that compares the strings and identifies10.
the substring within a string.

Further reading
The following books are recommended if you want to find out more about Gang of Four
design patterns, algorithms, and data structures:

Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides
Introduction to Algorithms – Third Edition, by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and Clifford Stein
Data structures and Algorithms: An Easy Introduction, by Rudolph Russell

2
Getting Started with Go for

Data Structures and Algorithms
The Go programming language has been rapidly adopted by developers for building web
applications. With its impressive performance and ease of development, Go enjoys the
support of a wide variety of open source frameworks for building scalable and highly
performant web services and apps. The migration to Golang has taken place mainly
because of its fast, lightweight, and inbuilt concurrency features. This brings with it the
need to learn data structures and algorithms with this growing language.

In data structures, a collection of elements of a single type is called an array. Slices are
similar to arrays except that they have unusual properties. Slice operations such as
enlarging a slice using append and copy methods, assigning parts of a slice, appending a
slice, and appending a part of a slice are presented with code samples. Database operations
and CRUD web forms are the scenarios in which Go data structures and algorithms are
demonstrated.

In this chapter, we will discuss the following Go language-specific data structures:

Arrays
Slices
Two-dimensional slices
Maps
Database operations
Variadic functions
CRUD web forms

Getting Started with Go for Data Structures and Algorithms Chapter 2

[53]

Technical requirements
Install Go Version 1.10 at https:/ ​/​golang. ​org/​doc/ ​install, depending on your operating
system.

The code files for this chapter can be found at the following GitHub URL: https:/ ​/​github.
com/​PacktPublishing/ ​Learn- ​Data- ​Structures- ​and-​Algorithms- ​with- ​Golang/ ​tree/
master/​Chapter02.

In this chapter, database operations require the github.com/go-sql-
driver/mysql package. In addition to this, MySQL (4.1+) needs to be installed from
https:/​/​dev.​mysql. ​com/ ​downloads/ ​mysql/ ​.

Run the following command:

go get -u github.com/go-sql-driver/mysql

Arrays
Arrays are the most famous data structures in different programming languages. Different
data types can be handled as elements in arrays such as int, float32, double, and others.
The following code snippet shows the initialization of an array (arrays.go):

var arr = [5]int {1,2,4,5,6}

An array's size can be found with the len() function. A for loop is used for accessing all
the elements in an array, as follows:

var i int
for i=0; i< len(arr); i++ {
 fmt.Println("printing elements ",arr[i]
}

In the following code snippet, the range keyword is explained in detail. The range
keyword can be used to access the index and value for each element:

var value int
for i, value = range arr{
 fmt.Println(" range ",value)
}

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter02
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/

Getting Started with Go for Data Structures and Algorithms Chapter 2

[54]

The _ blank identifier is used if the index is ignored. The following code shows how a _
blank identifier can be used:

for _, value = range arr{
 fmt.Println("blank range",value)
}

Run the following command:

go run arrays.go

The following screenshot displays the output:

Go arrays are not dynamic but have a fixed size. To add more elements than the size, a
bigger array needs to be created and all the elements of the old one need to be copied. An
array is passed as a value through functions by copying the array. Passing a big array to a
function might be a performance issue.

Now that we have covered what arrays are, let's take a look at slices in the next section.

Slices
Go Slice is an abstraction over Go Array. Multiple data elements of the same type are
allowed by Go arrays. The definition of variables that can hold several data elements of the
same type are allowed by Go Array, but it does not have any provision of inbuilt methods
to increase its size in Go. This shortcoming is taken care of by Slices. A Go slice can be
appended to elements after the capacity has reached its size. Slices are dynamic and can
double the current capacity in order to add more elements.

Getting Started with Go for Data Structures and Algorithms Chapter 2

[55]

Let's take a look at the len function in the next section.

The len function
The len() function gives the current length of slice, and the capacity of slice can be
obtained using the cap() function. The following code sample shows the basic slice
creation and appending a slice (basic_slice.go):

var slice = []int{1,3,5,6}
slice = append(slice, 8)
fmt.Println(“Capacity”, cap(slice))
fmt.Println(“Length”, len(slice))

Run the following command to execute the preceding code:

go run basic_slice.go

The following screenshot displays the output:

Let's take a look at the slice function in the next section.

Slice function
Slices are passed by referring to functions. Big slices can be passed to functions without
impacting performance. Passing a slice as a reference to a function is demonstrated in the
code as follows (slices.go):

//twiceValue method given slice of int type
func twiceValue(slice []int) {
 var i int
 var value int
for i, value = range slice {
 slice[i] = 2*value
 }
 }
// main method
func main() {

Getting Started with Go for Data Structures and Algorithms Chapter 2

[56]

 var slice = []int{1,3,5,6}
 twiceValue(slice)
 var i int
 for i=0; i< len(slice); i++ {
 fmt.Println(“new slice value”, slice[i])
}
}

Run the following command:

go run slices.go

The following screenshot displays the output:

Now that we know what slices are, let's move on to two-dimensional slices in the next
section.

Two-dimensional slices
Two-dimensional slices are descriptors of a two-dimensional array. A two-dimensional
slice is a contiguous section of an array that is stored away from the slice itself. It holds
references to an underlying array. A two-dimensional slice will be an array of arrays, while
the capacity of a slice can be increased by creating a new slice and copying the contents of
the initial slice into the new one. This is also referred to as a slice of slices. The following is
an example of a two-dimensional array. A 2D array is created and the array elements are
initialized with values.

twodarray.go is the code exhibit that's presented in the following code:

//main package has examples shown
// in Go Data Structures and algorithms book
package main
// importing fmt package
import (
 "fmt"
)
// main method

Getting Started with Go for Data Structures and Algorithms Chapter 2

[57]

func main() {
 var TwoDArray [8][8]int
 TwoDArray[3][6] = 18
 TwoDArray[7][4] = 3
 fmt.Println(TwoDArray)
}

Run the following command:

go run twodarray.go

The following screenshot displays the output:

For dynamic allocation, we use slice of slices. In the following code, slice of slices is
explained as two-dimensional slices—twodslices.go:

// in Go Data Structures and algorithms book
package main
// importing fmt package
import (
 "fmt"
)
// main method
func main() {
 var rows int
 var cols int
 rows = 7
 cols = 9
 var twodslices = make([][]int, rows)
 var i int
 for i = range twodslices {
 twodslices[i] = make([]int,cols)
 }
 fmt.Println(twodslices)
}

Run the following commands:

go run twodslices.go

Getting Started with Go for Data Structures and Algorithms Chapter 2

[58]

The following screenshot displays the output:

 The append method on the slice is used to append new elements to the slice. If the slice
capacity has reached the size of the underlying array, then append increases the size by
creating a new underlying array and adding the new element. slic1 is a sub slice of arr
starting from zero to 3 (excluded), while slic2 is a sub slice of arr starting from 1
(inclusive) to 5 (excluded). In the following snippet, the append method calls on slic2 to
add a new 12 element (append_slice.go):

var arr = [] int{5,6,7,8,9}
var slic1 = arr[: 3]
fmt.Println("slice1",slic1)
var slic2 = arr[1:5]
fmt.Println("slice2",slic2)
var slic3 = append(slic2, 12)
fmt.Println("slice3",slic3)

Run the following commands:

go run append_slice.go

The following screenshot displays the output:

Now that we have covered what two-dimensional slices are, let's take a look at maps in the
next section.

Getting Started with Go for Data Structures and Algorithms Chapter 2

[59]

Maps
Maps are used to keep track of keys that are types, such as integers, strings, float, double,
pointers, interfaces, structs, and arrays. The values can be of different types. In the
following example, the language of the map type with a key integer and a value string is
created (maps.go):

var languages = map[int]string {
 3: “English”,
 4: “French”,
 5: “Spanish”
}

Maps can be created using the make method, specifying the key type and the value type.
Products of a map type with a key integer and value string are shown in the following code
snippet:

var products = make(map[int]string)
products[1] = “chair”
products[2] = “table”

A for loop is used for iterating through the map. The languages map is iterated as follows:

var i int
var value string
for i, value = range languages {
 fmt.Println("language",i, “:",value)
}
fmt.Println("product with key 2",products[2])

Retrieving value and deleting slice operations using the products map is shown in the
following code:

fmt.Println(products[2])
delete(products,”chair”)
fmt.Println("products",products)

Run the following commands:

go run maps.go

Getting Started with Go for Data Structures and Algorithms Chapter 2

[60]

The following screenshot displays the output:

Now that we've covered maps, let's move on to database operations.

Database operations
In this section, we will take a look at some of database operations using appropriate
examples.

Let's start with the GetCustomer method in the next section.

The GetCustomer method
The GetCustomer method retrieves the Customer data from the database. To start with,
the create database operation is shown in the following example. Customer is the table
with the Customerid, CustomerName, and SSN attributes. The GetConnection method
returns the database connection, which is used to query the database. The query then
returns the rows from the database table. In the following code, database operations are
explained in detail (database_operations.go):

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main

// importing fmt,database/sql, net/http, text/template package
import (
 "fmt"
 "database/sql"
 _ "github.com/go-sql-driver/mysql"
)

// Customer Class
type Customer struct {
 CustomerId int

Getting Started with Go for Data Structures and Algorithms Chapter 2

[61]

 CustomerName string
 SSN string
}
// GetConnection method which returns sql.DB
func GetConnection() (database *sql.DB) {
 databaseDriver := "mysql"
 databaseUser := "newuser"
 databasePass := "newuser"
 databaseName := "crm"
 database, error := sql.Open(databaseDriver,
databaseUser+":"+databasePass+"@/"+databaseName)
 if error != nil {
 panic(error.Error())
 }
 return database
}
// GetCustomers method returns Customer Array
func GetCustomers() []Customer {
 var database *sql.DB
 database = GetConnection()

 var error error
 var rows *sql.Rows
 rows, error = database.Query("SELECT * FROM Customer ORDER BY
Customerid DESC")
 if error != nil {
 panic(error.Error())
 }
 var customer Customer
 customer = Customer{}

 var customers []Customer
 customers= []Customer{}
 for rows.Next() {
 var customerId int
 var customerName string
 var ssn string
 error = rows.Scan(&customerId, &customerName, &ssn)
 if error != nil {
 panic(error.Error())
 }
 customer.CustomerId = customerId
 customer.CustomerName = customerName
 customer.SSN = ssn
 customers = append(customers, customer)
 }

 defer database.Close()

Getting Started with Go for Data Structures and Algorithms Chapter 2

[62]

 return customers
}

//main method
func main() {

 var customers []Customer
 customers = GetCustomers()
 fmt.Println("Customers",customers)

}

Run the following commands:

go run database_operations.go

The following screenshot displays the output:

Let's take a look at the InsertCustomer method in the next section.

The InsertCustomer method
The INSERT operation is as follows. The InsertCustomer method takes the Customer
parameter and creates a prepared statement for the INSERT statement. The statement is
used to execute the insertion of customer rows into the table, as shown in the following
snippet:

// InsertCustomer method with parameter customer
func InsertCustomer(customer Customer) {
 var database *sql.DB
 database= GetConnection()

 var error error
 var insert *sql.Stmt
 insert,error = database.Prepare("INSERT INTO
CUSTOMER(CustomerName,SSN) VALUES(?,?)")
 if error != nil {
 panic(error.Error())
 }
 insert.Exec(customer.CustomerName,customer.SSN)

Getting Started with Go for Data Structures and Algorithms Chapter 2

[63]

 defer database.Close()

}

Let's take a look at the variadic functions in the next section.

Variadic functions
A function in which we pass an infinite number of arguments, instead of passing them one
at a time, is called a variadic function. The type of the final parameter is preceded by an
ellipsis (...), while declaring a variadic function; this shows us that the function might be
called with any number of arguments of this type.

Variadic functions can be invoked with a variable number of parameters. fmt.Println is a
common variadic function, as follows:

//main method
func main() {
 var customers []Customer
 customers = GetCustomers()
 fmt.Println("Before Insert",customers)
 var customer Customer
 customer.CustomerName = "Arnie Smith"
 customer.SSN = "2386343"
 InsertCustomer(customer)
 customers = GetCustomers()
 fmt.Println("After Insert",customers)
 }

Run the following commands:

go run database_operations.go

The following screenshot displays the output:

Getting Started with Go for Data Structures and Algorithms Chapter 2

[64]

Let's start the update operation in the next section.

The update operation
The update operation is as follows. The UpdateCustomer method takes the Customer
parameter and creates a prepared statement for the UPDATE statement. The statement is
used to update a customer row in the table:

// Update Customer method with parameter customer
func UpdateCustomer(customer Customer){
 var database *sql.DB
 database= GetConnection()
 var error error
 var update *sql.Stmt
 update,error = database.Prepare("UPDATE CUSTOMER SET CustomerName=?,
SSN=? WHERE CustomerId=?")
 if error != nil {
 panic(error.Error())
 }
 update.Exec(customer.CustomerName,customer.SSN,customer.CustomerId)
defer database.Close()
}
// main method
func main() {
 var customers []Customer
 customers = GetCustomers()
 fmt.Println("Before Update",customers)
 var customer Customer
 customer.CustomerName = "George Thompson"
 customer.SSN = "23233432"
 customer.CustomerId = 5
 UpdateCustomer(customer)
 customers = GetCustomers()
 fmt.Println("After Update",customers)
}

Run the following commands:

go run database_operations.go

Getting Started with Go for Data Structures and Algorithms Chapter 2

[65]

The following screenshot displays the output:

Let's take a look at the delete operation in the next section.

The delete operation
The delete operation is as follows. The DeleteCustomer method takes the
Customer parameter and creates a prepared statement for the DELETE statement. The
statement is used to execute the deletion of a customer row in the table:

// Delete Customer method with parameter customer
func deleteCustomer(customer Customer){
 var database *sql.DB
 database= GetConnection()
 var error error
 var delete *sql.Stmt
 delete,error = database.Prepare("DELETE FROM Customer WHERE
Customerid=?")
 if error != nil {
 panic(error.Error())
 }
 delete.Exec(customer.CustomerId)
 defer database.Close()
}
// main method
func main() {
 var customers []Customer
 customers = GetCustomers()
 fmt.Println("Before Delete",customers)
 var customer Customer
 customer.CustomerName = "George Thompson"
 customer.SSN = "23233432"
 customer.CustomerId = 5
 deleteCustomer(customer)
 customers = GetCustomers()
 fmt.Println("After Delete",customers)

Getting Started with Go for Data Structures and Algorithms Chapter 2

[66]

}

Run the following commands:

go run database_operations.go

The following screenshot displays the output:

Now that we are done with variadic functions, let's go ahead and look at CRUD web forms
in the next section.

CRUD web forms
In this section, we will explain web forms using basic examples, showing you how to
perform various actions.

To start a basic HTML page with the Go net/http package, the web forms example is as
follows (webforms.go). This has a welcome greeting in main.html:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt, database/sql, net/http, text/template package
import (
 "net/http"
 "text/template"
 "log")
// Home method renders the main.html
func Home(writer http.ResponseWriter, reader *http.Request) {
 var template_html *template.Template
 template_html = template.Must(template.ParseFiles("main.html"))
 template_html.Execute(writer,nil)
}
// main method
func main() {
 log.Println("Server started on: http://localhost:8000")
 http.HandleFunc("/", Home)

Getting Started with Go for Data Structures and Algorithms Chapter 2

[67]

 http.ListenAndServe(":8000", nil)
}

The code for main.html is as follows:

<html>
 <body>
 <p> Welcome to Web Forms</p>
 </body>
</html>

Run the following commands:

go run webforms.go

The following screenshot displays the output:

The web browser output is shown in the following screenshot:

The CRM application is built with web forms as an example to demonstrate
CRUD operations. We can use the database operations we built in the previous section. In
the following code, the crm database operations are presented. The crm database
operations consist of CRUD methods such as CREATE, READ, UPDATE, and DELETE customer
operations. The GetConnection method retrieves the database connection for performing
the database operations (crm_database_operations.go):

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt,database/sql, net/http, text/template package
import (
 "database/sql"
 _ "github.com/go-sql-driver/mysql"
)
// Customer Class

Getting Started with Go for Data Structures and Algorithms Chapter 2

[68]

type Customer struct {
 CustomerId int
 CustomerName string
 SSN string
}
// GetConnection method which returns sql.DB
func GetConnection() (database *sql.DB) {
 databaseDriver := "mysql"
 databaseUser := "newuser"
 databasePass := "newuser"
 databaseName := “crm"
 database, error := sql.Open(databaseDriver,
databaseUser+”:"+databasePass+"@/"+databaseName)
 if error != nil {
 panic(error.Error())
 }
 return database
}

As shown in the following code, the GetCustomerById method takes the customerId
parameter to look up in the customer database. The GetCustomerById method returns the
customer object:

//GetCustomerById with parameter customerId returns Customer
func GetCustomerById(customerId int) Customer {
 var database *sql.DB
 database = GetConnection()
 var error error
 var rows *sql.Rows
 rows, error = database.Query("SELECT * FROM Customer WHERE
CustomerId=?",customerId)
 if error != nil {
 panic(error.Error())
 }
 var customer Customer
 customer = Customer{}
 for rows.Next() {
 var customerId int
 var customerName string
 var SSN string
 error = rows.Scan(&customerId, &customerName, &SSN)
 if error != nil {
 panic(error.Error())
 }
 customer.CustomerId = customerId
 customer.CustomerName = customerName
 customer.SSN = SSN

Getting Started with Go for Data Structures and Algorithms Chapter 2

[69]

 }

Now that we have covered CRUD web forms, let's move on to defer and panic in the next
section.

The defer and panic statements
The defer statement defers the execution of the function until the surrounding function
returns. The panic function stops the current flow and control. Deferred functions are
executed normally after the panic call. In the following code example, the defer call gets
executed even when the panic call is invoked:

 defer database.Close()
 return customer
}
// GetCustomers method returns Customer Array
func GetCustomers() []Customer {
 var database *sql.DB
 database = GetConnection()
 var error error
 var rows *sql.Rows
 rows, error = database.Query("SELECT * FROM Customer ORDER BY
Customerid DESC")
 if error != nil {
 panic(error.Error())
 }
 var customer Customer
 customer = Customer{}
 var customers []Customer
 customers= []Customer{}
 for rows.Next() {
 var customerId int
 var customerName string
 var ssn string
 error = rows.Scan(&customerId, &customerName, &ssn)
 if error != nil {
 panic(error.Error())
 }
 customer.CustomerId = customerId
 customer.CustomerName = customerName
 customer.SSN = ssn
 customers = append(customers, customer)
 }
 defer database.Close()
 return customers

Getting Started with Go for Data Structures and Algorithms Chapter 2

[70]

}

Let's take a look at the InsertCustomer, UpdateCustomer, and DeleteCustomer
methods in the following sections.

The InsertCustomer method
In the following code, the InsertCustomer method takes customer as a parameter to
execute the SQL statement for inserting into the CUSTOMER table:

// InsertCustomer method with parameter customer
func InsertCustomer(customer Customer) {
 var database *sql.DB
 database= GetConnection()
 var error error
 var insert *sql.Stmt
 insert,error = database.Prepare("INSERT INTO
CUSTOMER(CustomerName,SSN) VALUES(?,?)")
 if error != nil {
 panic(error.Error())
 }
 insert.Exec(customer.CustomerName,customer.SSN)
 defer database.Close()
}

The UpdateCustomer method
The UpdateCustomer method prepares the UPDATE statement by passing the
CustomerName and SSN from the customer object; this is shown in the following code:

// Update Customer method with parameter customer
func UpdateCustomer(customer Customer) {
 var database *sql.DB
 database= GetConnection()
 var error error
 var update *sql.Stmt
 update,error = database.Prepare("UPDATE CUSTOMER SET CustomerName=?,
SSN=? WHERE CustomerId=?")
 if error != nil {
 panic(error.Error())
 }
update.Exec(customer.CustomerName,customer.SSN,customer.CustomerId)
 defer database.Close()
}

Getting Started with Go for Data Structures and Algorithms Chapter 2

[71]

The DeleteCustomer method
The DeleteCustomer method deletes the customer that's passed by executing the DELETE
statement:

// Delete Customer method with parameter customer
func DeleteCustomer(customer Customer) {
 var database *sql.DB
 database= GetConnection()
 var error error
 var delete *sql.Stmt
 delete,error = database.Prepare("DELETE FROM Customer WHERE
Customerid=?")
 if error != nil {
 panic(error.Error())
 }
 delete.Exec(customer.CustomerId)
 defer database.Close()
}

Let's take a look at the CRM web application in the next section.

CRM web application
The CRM web application is shown as follows, with various web paths handled. The CRM
application code is shown in the following code. The Home function executes the Home
template with the writer parameter and the customers array (crm_app.go):

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main

// importing fmt,database/sql, net/http, text/template package
import (
 "fmt"
 "net/http"
 "text/template"
 "log"
)

var template_html = template.Must(template.ParseGlob("templates/*"))

// Home - execute Template
func Home(writer http.ResponseWriter, request *http.Request) {
 var customers []Customer

Getting Started with Go for Data Structures and Algorithms Chapter 2

[72]

 customers = GetCustomers()
 log.Println(customers)
 template_html.ExecuteTemplate(writer,"Home",customers)

}

Let's take a look at the Create, Insert, Alter, Update, and Delete functions, as well as
the main method in the following sections.

The Create function
As shown in the following code, the Create function takes the writer and request
parameters to render the Create template:

// Create - execute Template
func Create(writer http.ResponseWriter, request *http.Request) {

 template_html.ExecuteTemplate(writer,"Create",nil)
}

The Insert function
The Insert function invokes the GetCustomers method to get an array of customers and
renders the Home template with the writer and customers arrays as parameters by
invoking the ExecuteTemplate method. This is shown in the following code:

// Insert - execute template
func Insert(writer http.ResponseWriter, request *http.Request) {

 var customer Customer
 customer.CustomerName = request.FormValue("customername")
 customer.SSN = request.FormValue("ssn")
 InsertCustomer(customer)
 var customers []Customer
 customers = GetCustomers()
 template_html.ExecuteTemplate(writer,"Home",customers)

}

Getting Started with Go for Data Structures and Algorithms Chapter 2

[73]

The Alter function
The following code shows how the Alter function renders the Home template by invoking
the ExecuteTemplate method with the writer and customers arrays as parameters:

// Alter - execute template
func Alter(writer http.ResponseWriter, request *http.Request) {

 var customer Customer
 var customerId int
 var customerIdStr string
 customerIdStr = request.FormValue("id")
 fmt.Sscanf(customerIdStr, "%d", &customerId)
 customer.CustomerId = customerId
 customer.CustomerName = request.FormValue("customername")
 customer.SSN = request.FormValue("ssn")
 UpdateCustomer(customer)
 var customers []Customer
 customers = GetCustomers()
 template_html.ExecuteTemplate(writer,"Home",customers)

}

The Update function
The Update function invokes the ExecuteTemplate method with writer and customer
looked up by id. The ExecuteTemplate method renders the UPDATE template:

// Update - execute template
func Update(writer http.ResponseWriter, request *http.Request) {

 var customerId int
 var customerIdStr string
 customerIdStr = request.FormValue("id")
 fmt.Sscanf(customerIdStr, "%d", &customerId)
 var customer Customer
 customer = GetCustomerById(customerId)

 template_html.ExecuteTemplate(writer,"Update",customer)

}

Getting Started with Go for Data Structures and Algorithms Chapter 2

[74]

The Delete function
The Delete method renders the Home template after deleting the customer that's found by
the GetCustomerById method. The View method renders the View template after finding
the customer by invoking the GetCustomerById method:

// Delete - execute Template
func Delete(writer http.ResponseWriter, request *http.Request) {
 var customerId int
 var customerIdStr string
 customerIdStr = request.FormValue("id")
 fmt.Sscanf(customerIdStr, "%d", &customerId)
 var customer Customer
 customer = GetCustomerById(customerId)
 DeleteCustomer(customer)
 var customers []Customer
 customers = GetCustomers()
 template_html.ExecuteTemplate(writer,"Home",customers)

}
// View - execute Template
func View(writer http.ResponseWriter, request *http.Request) {
 var customerId int
 var customerIdStr string
 customerIdStr = request.FormValue("id")
 fmt.Sscanf(customerIdStr, "%d", &customerId)
 var customer Customer
 customer = GetCustomerById(customerId)
 fmt.Println(customer)
 var customers []Customer
 customers= []Customer{customer}
 customers.append(customer)
 template_html.ExecuteTemplate(writer,"View",customers)

}

The main method
The main method handles the Home, Alter, Create, Update, View, Insert, and Delete
functions with different aliases for lookup and renders the templates appropriately.
HttpServer listens to port 8000 and waits for template alias invocation:

// main method
func main() {
 log.Println("Server started on: http://localhost:8000")
 http.HandleFunc("/", Home)

Getting Started with Go for Data Structures and Algorithms Chapter 2

[75]

 http.HandleFunc("/alter", Alter)
 http.HandleFunc("/create", Create)
 http.HandleFunc("/update", Update)
 http.HandleFunc("/view", View)
 http.HandleFunc("/insert", Insert)
 http.HandleFunc("/delete", Delete)
 http.ListenAndServe(":8000", nil)
}

Let's take a look at the Header, Footer, Menu, Create, Update, and View templates in the
following sections.

The Header template
The Header template has the HTML head and body defined in the code snippet, as follows.
The TITLE tag of the web page is set to CRM and the web page has Customer Management
– CRM as content (Header.tmpl):

{{ define "Header" }}
<!DOCTYPE html>
<html>
 <head>
 <title>CRM</title>
 <meta charset="UTF-8" />
 </head>
 <body>
 <h1>Customer Management – CRM</h1>
{{ end }}

The Footer template
The Footer template has the HTML and BODY close tags defined. The Footer template is
presented in the following code snippet (Footer.tmpl):

{{ define "Footer" }}
 </body>
 </html>
{{ end }}

Getting Started with Go for Data Structures and Algorithms Chapter 2

[76]

The Menu template
The Menu template has the links defined for Home and Create Customer, as shown in the
following code (Menu.tmpl):

{{ define "Menu" }}
Home |Create Customer
{{ end }}

The Create template
The Create template consists of Header, Menu, and Footer templates. The form to create
customer fields is found in the create template. This form is submitted to a web
path—/insert, as shown in the following code snippet (Create.tmpl):

{{ define "Create" }}
 {{ template "Header" }}
 {{ template "Menu" }}

 <h1>Create Customer</h1>

 <form method="post" action="/insert">
 Customer Name: <input type="text" name="customername"
placeholder="customername" autofocus/>

 SSN: <input type="text" name="ssn" placeholder="ssn"/>

 <input type="submit" value="Create Customer"/>
 </form>
{{ template "Footer" }}
{{ end }}

The Update template
The Update template consists of the Header, Menu, and Footer templates, as follows. The
form to update customer fields is found in the Update template. This form is submitted to a
web path, /alter (Update.tmpl):

{{ define "Update" }}
 {{ template "Header" }}

Getting Started with Go for Data Structures and Algorithms Chapter 2

[77]

 {{ template "Menu" }}

<h1>Update Customer</h1>

 <form method="post" action="/alter">
 <input type="hidden" name="id" value="{{ .CustomerId }}" />
 Customer Name: <input type="text" name="customername"
placeholder="customername" value="{{ .CustomerName }}" autofocus>

 SSN: <input type="text" name="ssn" value="{{ .SSN }}"
placeholder="ssn"/>

 <input type="submit" value="Update Customer"/>
 </form>
{{ template "Footer" }}
{{ end }}

The View template
The View template consists of Header, Menu, and Footer templates. The form to view the
customer fields is found in the View template, which is presented in code as follows
(View.tmpl):

{{ define "View" }}
 {{ template "Header" }}
 {{ template "Menu" }}

 <h1>View Customer</h1>

<table border="1">
<tr>
<td>CustomerId</td>
<td>CustomerName</td>
<td>SSN</td>
<td>Update</td>
<td>Delete</td>
</tr>
{{ if . }}
 {{ range . }}
<tr>
<td>{{ .CustomerId }}</td>
<td>{{ .CustomerName }}</td>

Getting Started with Go for Data Structures and Algorithms Chapter 2

[78]

<td>{{ .SSN }}</td>
<td><a href="/delete?id={{.CustomerId}}" onclick="return confirm('Are you
sure you want to delete?');">Delete </td>
<td>Update </td>
</tr>
{{ end }}
 {{ end }}
</table>
{{ template "Footer" }}
{{ end }}

Run the following commands:

go run crm_app.go crm_database_operations.go

The following screenshot displays the output:

The web browser output is shown in the following screenshot:

Getting Started with Go for Data Structures and Algorithms Chapter 2

[79]

Summary
This chapter introduced database operations and web forms. Now, you will be able to build
web applications that can store data in databases. Arrays, slices, two-dimensional slices,
and maps were covered with code samples. Array methods such as len, iterating through
an array using for, and range were explained in this chapter using code snippets. Two-
dimensional arrays and slice of slices were discussed in the Slices section.

Maps were explained with various scenarios such as adding keys and values, as well as
retrieving and deleting values. Maps of different types, such as strings and integers, were
also discussed in this chapter. Furthermore, variadic functions, deferred function calls, and
panic and recover operations were demonstrated in the Database operations and CRUD web
forms sections.

The CRM application was built as a web application with data persisted in the MySQL
database. Database operations for adding, deleting, updating, and retrieving data were
shown in code snippets. In addition, web forms for creating, updating, deleting, and
viewing customer data were presented using web forms with templates. MySQL driver and
its installation details were provided in the Technical requirements section of this chapter.
How to create a web application using Go was demonstrated with execution details.

The next chapter will have topics related to linear data structures such as lists, sets, tuples,
and stacks.

Questions
What is the name of the method to get the size of an array?1.
How do you find the capacity of the slice?2.
How do you initialize the 2D slice of a string type?3.
How do you add an element to the slice?4.
Using code, can you demonstrate how to create a map of key strings and value5.
strings? Initialize the map with keys and values in the code, iterate them in a
loop, and print the keys and values in the code.

Getting Started with Go for Data Structures and Algorithms Chapter 2

[80]

 How do you delete a value in a map?6.
What parameters are required for getting a database connection?7.
Which sql.Rows class method makes it possible to read the attributes of the8.
entity in a table?
What does defer do when a database connection is closed?9.
Which method allows the sql.DB class to create a prepared statement?10.

Further reading
To read more about arrays, maps and slices, the following links are recommended:

Learning Go Data Structures and Algorithms [Video], by Gustavo Chaín
Mastering Go, by Mihalis Tsoukalos

2
Section 2: Basic Data

Structures and Algorithms using
Go

We will talk about data structures, including linear, non-linear, homogeneous,
heterogeneous, and dynamic types, as well as classic algorithms. This section covers
different types of lists, trees, arrays, sets, dictionaries, tuples, heaps, queues, and stacks,
along with sorting, recursion, searching, and hashing algorithms.

This section contains the following chapters:

Chapter 3, Linear Data Structures
Chapter 4, Non-Linear Data Structures
Chapter 5, Homogeneous Data Structures
Chapter 6, Heterogeneous Data Structures
Chapter 7, Dynamic Data Structures
Chapter 8, Classic Algorithms

3
Linear Data Structures

Various applications, such as Facebook, Twitter, and Google, use lists and linear data
structures. As we have discussed previously, data structures allow us to organize vast
swathes of data in a sequential and organized manner, thereby reducing time and effort in
working with such data. Lists, stacks, sets, and tuples are some of the commonly used
linear data structures.

In this chapter, we will discuss these data structures by giving examples of various
procedures involving them. We will discuss the various operations related to these data
structures, such as insertion, deletion, updating, traversing (of lists), reversing, and
merging with various code samples.

We will cover the following linear data structures in this chapter:

Lists
Sets
Tuples
Stacks

Technical requirements
Install Go version 1.10 at https:/ ​/​golang. ​org/ ​doc/ ​install, depending on your operating
system.

The code files for this chapter can be found at the following GitHub URL: https:/ ​/​github.
com/​PacktPublishing/ ​Learn- ​Data- ​Structures- ​and-​Algorithms- ​with- ​Golang/ ​tree/
master/​Chapter03.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter03

Linear Data Structures Chapter 3

[83]

Lists
A list is a collection of ordered elements that are used to store list of items. Unlike array
lists, these can expand and shrink dynamically.

Lists also be used as a base for other data structures, such as stack and queue. Lists can be
used to store lists of users, car parts, ingredients, to-do items, and various other such
elements. Lists are the most commonly used linear data structures. These were introduced
in the lisp programming language. In this chapter, linked list and doubly linked list are the
lists we will cover in the Go language.

Let's discuss the operations related to add, update, remove, and lookup on linked list and
doubly linked list in the following section.

LinkedList
LinkedList is a sequence of nodes that have properties and a reference to the next node in
the sequence. It is a linear data structure that is used to store data. The data structure
permits the addition and deletion of components from any node next to another node. They
are not stored contiguously in memory, which makes them different arrays.

The following sections will look at the structures and methods in a linked list.

The Node class
The Node class has an integer typed variable with the name property. The class has
another variable with the name nextNode, which is a node pointer. Linked list will have a
set of nodes with integer properties, as follows:

//Node class
type Node struct {
 property int
 nextNode *Node
}

Linear Data Structures Chapter 3

[84]

The LinkedList class
The LinkedList class has the headNode pointer as its property. By traversing
to nextNode from headNode, you can iterate through the linked list, as shown in the
following code:

// LinkedList class
type LinkedList struct {
 headNode *Node
}

The different methods of the LinkedList class, such as AddtoHead, IterateList,
LastNode, AddtoEnd, NodeWithValue, AddAfter, and the main method, are discussed in
the following sections.

The AddToHead method
The AddToHead method adds the node to the start of the linked list. The
AddToHead method of the LinkedList class has a parameter integer property. The
property is used to initialize the node. A new node is instantiated and its property is set to
the property parameter that's passed. The nextNode points to the current headNode of
linkedList, and headNode is set to the pointer of the new node that's created, as shown
in the following code:

//AddToHead method of LinkedList class
func (linkedList *LinkedList) AddToHead(property int) {
 var node = Node{}
 node.property = property
 if node.nextNode != nil {
 node.nextNode = linkedList.headNode
 }
 linkedList.headNode = &node
}

When the node with the 1 property is added to the head, adding the 1 property to the head
of linkedList sets headNode to currentNode with a value of 1, as you can see in the
following screenshot:

Linear Data Structures Chapter 3

[85]

Let's execute this command using the main method. Here, we have created an instance of a
LinkedList class and added the 1 and 3 integer properties to the head of this instance.
The linked list's headNode property is printed after adding the elements, as follows:

// main method
func main() {
 var linkedList LinkedList
 linkedList = LinkedList{}
 linkedList.AddToHead(1)
 linkedList.AddToHead(3)
 fmt.Println(linkedList.headNode.property)
}

Run the following commands to execute the linked_list.go file:

go run linked_list.go

After executing the preceding command, we get the following output:

Let's take a look at the IterateList method in the next section.

The IterateList method
The IterateList method of the LinkedList class iterates from the headNode property
and prints the property of the current head node. The iteration happens with the head node
moves to nextNode of the headNode property until the current node is no longer equal to
nil. The following code shows the IterateList method of the LinkedList class:

//IterateList method iterates over LinkedList
func (linkedList *LinkedList) IterateList() {
 var node *Node
 for node = linkedList.headNode; node != nil; node = node.nextNode {
 fmt.Println(node.property)
 }
}

Linear Data Structures Chapter 3

[86]

The LastNode method
The LastNode method of LinkedList returns the node at the end of the list. The list is
traversed to check whether nextNode is nil from nextNode of headNode, as follows:

//LastNode method returns the last Node

func (linkedList *LinkedList) LastNode() *Node{
 var node *Node
 var lastNode *Node
 for node = linkedList.headNode; node != nil; node = node.nextNode {
 if node.nextNode ==nil {
 lastNode = node
 }
 }
 return lastNode
}

The AddToEnd method
The AddToEnd method adds the node at the end of the list. In the following code, the
current lastNode is found and its nextNode property is set as the added node:

//AddToEnd method adds the node with property to the end

func (linkedList *LinkedList) AddToEnd(property int) {
 var node = &Node{}
 node.property = property
 node.nextNode = nil
 var lastNode *Node
 lastNode = linkedList.LastNode()
 if lastNode != nil {
 lastNode.nextNode = node
 }
}

In the following screenshot, the AddToEnd method is invoked when the node with a
property value of 5 is added to the end. Adding the property through this method creates a
node with a value of 5. The last node of the list has a property value of 5. The
nextNode property of lastNode is nil. The nextNode of lastNode is set to the node with
a value of 5:

Linear Data Structures Chapter 3

[87]

Let's take a look at the NodeWithValue method in the next section.

The NodeWithValue method
In the following code snippet, the NodeWithValue method of LinkedList returns the
node with the property value. The list is traversed and checked to see whether the
property value is equal to the parameter property:

//NodeWithValue method returns Node given parameter property

func (linkedList *LinkedList) NodeWithValue(property int) *Node{
 var node *Node
 var nodeWith *Node
 for node = linkedList.headNode; node != nil; node = node.nextNode {
 if node.property == property {
 nodeWith = node
 break;
 }
 }
 return nodeWith
}

The AddAfter method
The AddAfter method adds the node after a specific node. The AddAfter method of
LinkedList has nodeProperty and property parameters. A node with
the nodeProperty value is retrieved using the NodeWithValue method. A node with
property is created and added after the NodeWith node, as follows:

//AddAfter method adds a node with nodeProperty after node with property

func (linkedList *LinkedList) AddAfter(nodeProperty int,property int) {
 var node = &Node{}
 node.property = property
 node.nextNode = nil
 var nodeWith *Node
 nodeWith = linkedList.NodeWithValue(nodeProperty)
 if nodeWith != nil {
 node.nextNode = nodeWith.nextNode
 nodeWith.nextNode = node
 }
}

Linear Data Structures Chapter 3

[88]

You then get the following output when the AddAfter method is invoked when the node
with a property value of 7 is added after the node with a value of 1. The
nextNode property of the node with a property value of 1 is nil. The nextNode property of
the node with a property value of 1 is set to the node with a value of 5:

Let's take a look at the main method in the next section.

The main method
The main method adds the nodes with integer properties of 1, 3, and 5, as shown in the
following code. A node with an integer property of 7 is added after the node with an
integer property of 1. The IterateList method is invoked on the linkedList instance,
as follows:

// main method
func main() {
 var linkedList LinkedList
 linkedList = LinkedList{}
 linkedList.AddToHead(1)
 linkedList.AddToHead(3)
 linkedList.AddToEnd(5)
 linkedList.AddAfter(1,7)
 linkedList.IterateList()
}

The main method adds 1 and 3 to the head of the linked list. 5 is added to the end. 7 is
added after 1. The linked list will be 3, 1, 7, and 5.

Run the following commands to execute the linked_list.go file:

go run linked_list.go

Linear Data Structures Chapter 3

[89]

After executing the preceding command, we get the following output:

Let's take a look at doubly linked list in the next section.

Doubly linked list
In a doubly linked list, all nodes have a pointer to the node they are connected to, on either
side of them, in the list. This means that each node is connected to two nodes, and we can
traverse forward through to the next node or backward through to the previous node.
Doubly linked lists allow insertion, deletion and, obviously, traversing operations. The
node class definition is presented in the following code example:

// Node class
type Node struct {
 property int
 nextNode *Node
 previousNode *Node
}

The following sections explain doubly linked list methods, such as
the NodeBetweenValues, AddToHead, AddAfter, AddToEnd, and main methods.

The NodeBetweenValues method
The NodeBetweenValues method of the LinkedList class returns the node that has a
property lying between the firstProperty and secondProperty values. The method
traverses the list to find out whether the firstProperty and secondProperty integer
properties match on consecutive nodes, as follows:

//NodeBetweenValues method of LinkedList
func (linkedList *LinkedList) NodeBetweenValues(firstProperty
int,secondProperty int) *Node{
 var node *Node
 var nodeWith *Node
 for node = linkedList.headNode; node != nil; node = node.nextNode {

Linear Data Structures Chapter 3

[90]

 if node.previousNode != nil && node.nextNode != nil {
 if node.previousNode.property == firstProperty &&
node.nextNode.property ==
 secondProperty{
 nodeWith = node
 break;
 }
 }
 }
 return nodeWith
}

The example output after the node between the values method was invoked with 1 and 5 is
shown in the following screenshot. The nextNode of the lastNode is set to the node with a
value of 5. The node with a property value of 7 is between the nodes with property values
of 1 and 5:

Let's take a look at the AddToHead method in the next section.

The AddToHead method
The AddToHead method of the doubly LinkedList class sets the previousNode property
of the current headNode of the linked list to the node that's added with property. The node
with property will be set as the headNode of the LinkedList method in the following
code:

//AddToHead method of LinkedList
func (linkedList *LinkedList) AddToHead(property int) {
 var node = &Node{}
 node.property = property
 node.nextNode = nil
 if linkedList.headNode != nil {
 node.nextNode = linkedList.headNode
 linkedList.headNode.previousNode = node
 }
 linkedList.headNode = node
}

Linear Data Structures Chapter 3

[91]

The example output after the AddToHead method was invoked with property 3 is as
follows. A node with property 3 is created. The headNode property of the list has a
property value of 1. The current node with property 3 has a nextNode property of nil. The
nextNode property of the current node is set to headNode with a property value of 1. The
previous node of the headNode property is set to the current node:

Let's take a look at the AddAfter method in the next section.

AddAfter method
The AddAfter method adds a node after a specific node to a double linked list.
The AddAfter method of the double LinkedList class searches the node whose value is
equal to nodeProperty. The found node is set as the previousNode of the node that was
added with property. The nextNode of the added node will be the nodeWith property's
nextNode. The previousNode of the added node will be the node that was found with
value equal to nodeProperty. The nodeWith node will be updated to the current node. In
the following code, the AddAfter method is shown:

//AddAfter method of LinkedList
func (linkedList *LinkedList) AddAfter(nodeProperty int,property int) {
 var node = &Node{}
 node.property = property
 node.nextNode = nil
 var nodeWith *Node
 nodeWith = linkedList.NodeWithValue(nodeProperty)
 if nodeWith != nil {

 node.nextNode = nodeWith.nextNode
 node.previousNode = nodeWith
 nodeWith.nextNode = node
 }
}

Linear Data Structures Chapter 3

[92]

The example output after the AddAfter method is invoked with property 7 is as follows. A
node with property value 7 is created. The nextNode property of the created node is nil.
The nextNode property of the created node is set to headNode with property value 1. The
previousNode property of headNode is set to the current node:

Let's take a look at the AddToEnd method in the next section.

The AddToEnd method
The AddToEnd method adds the node to the end of the double linked list. The AddToEnd
method of the LinkedList class creates a node whose property is set as the integer
parameter property. The method sets the previousNode property of the node that was
added with the current lastNode property as follows. The nextNode of the current
lastNode property is set to a node added with property at the end as follows:

//AddToEnd method of LinkedList
func (linkedList *LinkedList) AddToEnd(property int) {
 var node = &Node{}
 node.property = property
 node.nextNode = nil
 var lastNode *Node
 lastNode = linkedList.LastNode()
 if lastNode != nil {

 lastNode.nextNode = node
 node.previousNode = lastNode
 }
}

Linear Data Structures Chapter 3

[93]

The example output after the AddToEnd method was invoked with property 5 is as follows.
A node with property value 5 is created. The lastNode of the list has property value 1. The
nextNode property of the lastNode is nil. The nextNode of the lastNode is set to the
node with property value 5. The previousNode of the created node is set to the node with
property value 1:

Let's take a look at the main method in the next section.

The main method
In the following code snippet, the main method calls the NodeBetweenValues property
with firstProperty and secondProperty. The node property between values 1 and 5 is
printed:

// main method
func main() {
 var linkedList LinkedList
 linkedList = LinkedList{}
 linkedList.AddToHead(1)
 linkedList.AddToHead(3) linkedList.AddToEnd(5)
 linkedList.AddAfter(1,7)
 fmt.Println(linkedList.headNode.property)
 var node *Node
 node = linkedList.NodeBetweenValues(1,5)
 fmt.Println(node.property)
}

The main method creates a linked list. The nodes are added to the head and end. The node
between values 1 and 5 is searched and its property is printed.

Run the following command to execute the doubly_linked_list.go file:

go run doubly_linked_list.go

Linear Data Structures Chapter 3

[94]

After executing the preceding command, we get the following output:

The next section talks about sets, which are linear data structures.

Sets
A Set is a linear data structure that has a collection of values that are not repeated. A set can
store unique values without any particular order. In the real world, sets can be used to
collect all tags for blog posts and conversation participants in a chat. The data can be of
Boolean, integer, float, characters, and other types. Static sets allow only query operations,
which means operations related to querying the elements. Dynamic and mutable sets allow
for the insertion and deletion of elements. Algebraic operations such as union, intersection,
difference, and subset can be defined on the sets. The following example shows
the Set integer with a map integer key and bool as a value:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt package
import (
 "fmt"
)
//Set class
type Set struct {
 integerMap map[int]bool
}
//create the map of integer and bool
func (set *Set) New(){
 set.integerMap = make(map[int]bool)
}

The AddElement, DeleteElement, ContainsElement, Intersect, Union, and main
methods are discussed in the following sections.

Linear Data Structures Chapter 3

[95]

The AddElement method
The AddElement method adds the element to a set. In the following code snippet, the
AddElement method of the Set class adds the element to integerMap if the element is not
in the Set. The integerMap element has the key integer and value as bool, as shown in
the following code:

// adds the element to the set
func (set *Set) AddElement(element int){
 if !set.ContainsElement(element) {
 set.integerMap[element] = true
 }
}

The example output after invoking the AddElement method with parameter 2 is as
follows. The check is done if there is an element with value 2. If there is no element, the
map is set to true with the key as 2:

Let's take a look at the DeleteElement method in the next section.

The DeleteElement method
The DeleteElement method deletes the element from integerMap using the delete
method. This method removes the element from the integerMap of the set, as follows:

//deletes the element from the set
func (set *Set) DeleteElement(element int) {
 delete(set.integerMap,element)
}

Linear Data Structures Chapter 3

[96]

The ContainsElement method
The ContainsElement method of the Set class checks whether or not the element exists
in integerMap. The integerMap element is looked up with a key integer element, as
shown in the following code example:

//checks if element is in the set
func (set *Set) ContainsElement(element int) bool{
 var exists bool
 _, exists = set.integerMap[element]
 return exists
}

The main method – contains element
In the following code snippet, the main method creates Set, invokes the New method, and
adds elements 1 and 2. The check is done if element 1 exists in the set:

// main method
func main() {
 var set *Set
 set = &Set{}
 set.New()
 set.AddElement(1)
 set.AddElement(2)
 fmt.Println(set)
 fmt.Println(set.ContainsElement(1))
}

Run the following command to execute the set.go file:

go run set.go

After executing the preceding command, we get the following output:

Let's take a look at the InterSect method in the next section.

Linear Data Structures Chapter 3

[97]

The InterSect method
In the following code, the InterSect method on the Set class returns an
intersectionSet that consists of the intersection of set and anotherSet. The set class
is traversed through integerMap and checked against another Set to see if any elements
exist:

//Intersect method returns the set which intersects with anotherSet

func (set *Set) Intersect(anotherSet *Set) *Set{
 var intersectSet = & Set{}
 intersectSet.New()
 var value int
 for(value,_ = range set.integerMap){
 if anotherSet.ContainsElement(value) {
 intersectSet.AddElement(value)
 }
 }
 return intersectSet
}

The example output after invoking the intersect with the parameter of another Set is as
follows. A new intersectSet is created. The current set is iterated and every value is
checked to see if it is in another set. If the value is in another set, it is added to
the set intersect:

Let's take a look at the Union method in the next section.

The Union method
The Union method on the Set class returns a unionSet that consists of a union of set and
anotherSet. Both sets are traversed through integerMap keys, and union set is updated
with elements from the sets, as follows:

//Union method returns the set which is union of the set with anotherSet

func (set *Set) Union(anotherSet *Set) *Set{
 var unionSet = & Set{}

Linear Data Structures Chapter 3

[98]

 unionSet.New()
 var value int
 for(value,_ = range set.integerMap){
 unionSet.AddElement(value)
 }

 for(value,_ = range anotherSet.integerMap){
 unionSet.AddElement(value)
 }

 return unionSet
}

The example output after invoking the union method with the anotherSet parameter is as
follows. A new unionSet is created. The current set and another set values are iterated.
Every value is added to the union set:

Let's take a look at the main method in the next section.

The main method – intersection and union
In the following code snippet, the main method calls intersect and union on the set class,
passing the anotherSet parameter. The intersection and union sets are printed as follows:

// main method
func main() {
 var set *Set
 set = &Set{}
 set.New()
 set.AddElement(1)
 set.AddElement(2)
 fmt.Println("initial set", set)
 fmt.Println(set.ContainsElement(1))
 var anotherSet *Set

Linear Data Structures Chapter 3

[99]

 anotherSet = &Set{}
 anotherSet.New()
 anotherSet.AddElement(2)
 anotherSet.AddElement(4)
 anotherSet.AddElement(5) fmt.Println(set.Intersect(anotherSet))
 fmt.Println(set.Union(anotherSet))
}

The main method takes two sets and finds the intersection and union of the sets.

Run the following command to execute the set.go file:

go run set.go

After executing the preceding command, we get the following output:

The next section talks about tuples, which are finite ordered sequences of objects.

Tuples
Tuples are finite ordered sequences of objects. They can contain a mixture of other data
types and are used to group related data into a data structure. In a relational database, a
tuple is a row of a table. Tuples have a fixed size compared to lists, and are also faster. A
finite set of tuples in the relational database is referred to as a relation instance. A tuple can
be assigned in a single statement, which is useful for swapping values. Lists usually contain
values of the same data type, while tuples contain different data. For example, we can store
a name, age, and favorite color of a user in a tuple. Tuples were covered in Chapter 1, Data
Structures and Algorithms. The following sample shows a multi-valued expression from a
function's call (tuples.go):

//main package has examples shown
 // in Hands-On Data Structures and algorithms with Go book
 package main
 // importing fmt package
 import (
 "fmt"
)

Linear Data Structures Chapter 3

[100]

 //h function which returns the product of parameters x and y
 func h(x int, y int) int {
 return x*y
 }
 // g function which returns x and y parameters after modification
 func g(l int, m int) (x int, y int) {
 x=2*l
 y=4*m
 return
 }
 // main method
 func main() {
 fmt.Println(h(g()))
 }

The main function calls the h function with the g function as its parameter. The g function
returns the tuple x and y integers.

Run the following command to execute the tuples.go file:

go run tuples.go

After executing the preceding command, we get the following output:

The next section talks about queues, which are linear data structures.

Queues
A queue consists of elements to be processed in a particular order or based on priority. A
priority-based queue of orders is shown in the following code, structured as a heap.
Operations such as enqueue, dequeue, and peek can be performed on queue. A queue is a
linear data structure and a sequential collection. Elements are added to the end and are
removed from the start of the collection. Queues are commonly used for storing tasks that
need to be done, or incoming HTTP requests that need to be processed by a server. In real
life, handling interruptions in real-time systems, call handling, and CPU task scheduling
are good examples for using queues.

Linear Data Structures Chapter 3

[101]

The following code shows the queue of Orders and how the Queue type is defined:

// Queue—Array of Orders Type
type Queue []*Order

// Order class
type Order struct {
 priority int
 quantity int
 product string
 customerName string
}

The following sections in the chapter discuss the New, Add, and main methods of queue.

The New method
The New method on the Order class assigns the properties from the priority, quantity,
and product parameters for name and customerName. The method initializes the
properties of the order as follows:

// New method initializes with Order with priority, quantity, product,
customerName
func (order *Order) New(priority int, quantity int, product string,
customerName string){
 order.priority = priority
 order.quantity = quantity
 order.product = product
 order.customerName = customerName
 }

The Add method
In the following code snippet, the Add method on the Queue class takes the order
parameter and adds it to Queue based on the priority. Based on this, the location of the
order parameter is found by comparing it with the priority parameter:

//Add method adds the order to the queue
func (queue *Queue) Add(order *Order){
 if len(*queue) == 0 {
 *queue = append(*queue,order)
 } else{
 var appended bool

Linear Data Structures Chapter 3

[102]

 appended = false
 var i int
 var addedOrder *Order
 for i, addedOrder = range *queue {
 if order.priority > addedOrder.priority {
 *queue = append((*queue)[:i], append(Queue{order}, (*queue)[i:]...)...)
 appended = true
 break
 }
 }
 if !appended {
 *queue = append(*queue, order)
 }
 }
}

The example output after the add method is invoked with the order parameter is as
follows. The order is checked to see whether or not it exists in the queue. The order is then
appended to the queue:

Let's take a look at the Main method in the next section.

The main method – queues
The main method creates two orders, and the priority of the orders is set to 2 and 1. In the
following code, the queue will first process the order with the higher number on the
priority value:

// main method
func main() {
 var queue Queue
 queue = make(Queue,0)
 var order1 *Order = &Order{}
 var priority1 int = 2
 var quantity1 int = 20
 var product1 string = "Computer"
 var customerName1 string = "Greg White"
 order1.New(priority1,quantity1,product1, customerName1)
 var order2 *Order = &Order{}
 var priority2 int = 1
 var quantity2 int = 10

Linear Data Structures Chapter 3

[103]

 var product2 string = "Monitor"
 var customerName2 string = "John Smith"
 order2.New(priority2,quantity2,product2, customerName2)
 queue.Add(order1)

 queue.Add(order2)
var i int
for i=0; i< len(queue); i++ {
fmt.Println(queue[i])
}
}

Run the following commands to execute the queue.go file:

go run queue.go

After executing the preceding command, we get the following output:

Let's take a look at Synchronized queue in the next section.

Synchronized queue
A synchronized queue consists of elements that need to be processed in a particular
sequence. Passenger queue and ticket processing queues are types of synchronized queues,
as follows:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt package
import (
 "fmt"
 "time"
 "math/rand"
)
// constants
const (
 messagePassStart = iota
 messageTicketStart

Linear Data Structures Chapter 3

[104]

 messagePassEnd
 messageTicketEnd
)
//Queue class
type Queue struct {
 waitPass int
 waitTicket int
 playPass bool
 playTicket bool
 queuePass chan int
 queueTicket chan int
 message chan int
}

We will discuss the different methods of synchronized queue in the following sections.

The New method
The New method on Queue initializes message, queuePass, and queueTicket with nil
values. The make method creates a Queue with a chan integer parameter, as follows:

// New method initializes queue
func (queue *Queue) New() {
 queue.message = make(chan int)
 queue.queuePass= make(chan int)
 queue.queueTicket= make(chan int)
 }

In the following code example, the Go routine handles selecting the message based on the
type of message and the respective queue to process it:

go func() {
 var message int
 for {
 select {
 case message = <-queue.message:
 switch message {
 case messagePassStart:
 queue.waitPass++
 case messagePassEnd:
 queue.playPass = false
 case messageTicketStart:
 queue.waitTicket++
 case messageTicketEnd:
 queue.playTicket = false
 }
 if queue.waitPass > 0 && queue.waitTicket > 0 && !queue.playPass &&

Linear Data Structures Chapter 3

[105]

!queue.playTicket {
 queue.playPass = true
 queue.playTicket = true
 queue.waitTicket--
 queue.waitPass--
 queue.queuePass <- 1
 queue.queueTicket <- 1
 }
 }
 }
 }()
}

The StartTicketIssue method
The StartTicketIssue method starts the issuing of a ticket for passengers standing in a
queue. The StartTicketIssue method on Queue sends messageTicketStart to the
message queue and queueTicket receives the message. The ticket issue is started by
sending messages to the queue, as follows:

// StartTicketIssue starts the ticket issue
func (Queue *Queue) StartTicketIssue() {
 Queue.message <- messageTicketStart
 <-Queue.queueTicket
}

The EndTicketIssue method
The EndTicketIssue method finishes the issuing of a ticket to a passenger standing in the
queue. In the following code, the EndTicketIssue method on Queue sends
messageTicketEnd to the message queue. The ticket issue is ended by sending the
message:

// EndTicketIssue ends the ticket issue
func (Queue *Queue) EndTicketIssue() {
 Queue.message <- messageTicketEnd
}

Linear Data Structures Chapter 3

[106]

The ticketIssue method
The ticketIssue method starts and finishes the issuing of a ticket to the passenger.
The ticketIssue method invokes the StartTicketIssue and
EndTicketIssue methods after Sleep calls for 10 seconds and two seconds. The ticket is
issued after the ticket is processed, as shown in the following code:

//ticketIssue starts and ends the ticket issue
func ticketIssue(Queue *Queue) {
 for {
 // Sleep up to 10 seconds.
 time.Sleep(time.Duration(rand.Intn(10000)) * time.Millisecond)
 Queue.StartTicketIssue()
 fmt.Println("Ticket Issue starts")
 // Sleep up to 2 seconds.
 time.Sleep(time.Duration(rand.Intn(2000)) * time.Millisecond)
 fmt.Println("Ticket Issue ends")
 Queue.EndTicketIssue()
 }
}

The StartPass method
The StartPass method starts the passenger queue moving toward the ticket counter. The
StartPass method on Queue sends messagePassStart to the message queue and
queuePass receives the message. Passengers are moved into the queue as follows:

//StartPass ends the Pass Queue
func (Queue *Queue) StartPass() {
 Queue.message <- messagePassStart
 <-Queue.queuePass
}

The EndPass method
The EndPass method stops the passenger queue moving toward the ticket counter. The
EndPass method on Queue sends messagePassEnd to the message queue in the following
code. The passenger is moved to the counter for ticket processing, and the passenger is then
out of the queue:

//EndPass ends the Pass Queue
func (Queue *Queue) EndPass() {
 Queue.message <- messagePassEnd
}

Linear Data Structures Chapter 3

[107]

The passenger method
The passenger methods starts and ends passenger movement to the queue. The
passenger method invokes the StartPass method, and the EndPass method ends after
sleep calls for 10 seconds and two seconds. The passenger moves into the queue and
reaches the ticket counter, as shown in the following code:

//passenger method starts and ends the pass Queue
func passenger(Queue *Queue) {
 //fmt.Println("starting the passenger Queue")
 for {
 // fmt.Println("starting the processing")
 // Sleep up to 10 seconds.
 time.Sleep(time.Duration(rand.Intn(10000)) * time.Millisecond)
 Queue.StartPass()
 fmt.Println(" Passenger starts")
 // Sleep up to 2 seconds.
 time.Sleep(time.Duration(rand.Intn(2000)) * time.Millisecond)
 fmt.Println(" Passenger ends")
 Queue.EndPass()
 }
}

The main method
The main method calls the passenger and ticketIssue methods after creating a queue.
The passenger enters into the queue and a ticket is issued at the counter in the
processing queue, as explained in the following code:

// main method
func main() {
 var Queue *Queue = & Queue{}
 //fmt.Println(Queue)
 Queue.New()
 fmt.Println(Queue)
 var i int
 for i = 0; i < 10; i++ {
 // fmt.Println(i, "passenger in the Queue")
 go passenger(Queue)
 }
 //close(Queue.queuePass)
 var j int
 for j = 0; j < 5; j++ {
 // fmt.Println(i, "ticket issued in the Queue")
 go ticketIssue(Queue)
 }

Linear Data Structures Chapter 3

[108]

 select {}
}

Run the following command to execute the sync_queue.go file:

go run sync_queue.go

After executing the preceding command, we get the following output:

The next section talks about Stacks, which are linear data structures.

Stacks
A stack is a last in, first out structure in which items are added from the top. Stacks are used
in parsers for solving maze algorithms. Push, pop, top, and get size are the typical
operations that are allowed on stack data structures. Syntax parsing, backtracking, and
compiling time memory management are some real-life scenarios where stacks can be used.
An example of stack implementation is as follows (stack.go):

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt package
import (
 "fmt"
 "strconv"

Linear Data Structures Chapter 3

[109]

)
//Element class
type Element struct {
 elementValue int
}
// String method on Element class
func (element *Element) String() string {
 return strconv.Itoa(element.elementValue)
}

The Element class has elementValue as an attribute. The String method returns the
element's elementValue.

Stacks methods, such as New, Push, Pop, and main are presented in the following sections.

The New method
The New method on the Stack class creates a dynamic array of elements. The Stack class
has the count and array pointer of elements. The code snippet with the Stack class
definition and the New method is as follows:

// NewStack returns a new stack.
func (stack *Stack) New() {
 stack.elements = make(*Element[] elements,0)
}
// Stack is a basic LIFO stack that resizes as needed.
type Stack struct {
 elements []*Element
 elementCount int
}

The Push method
The Push method adds the node to the top of the stack class. In the following code
sample, the Push method on the Stack class adds the element to the elements array and
increases the Count element, while the append method adds the element to the elements of
the stack class:

// Push adds a node to the stack.
func (stack *Stack) Push(element *Element) {
 stack.elements = append(stack.elements[:stack.elementCount], element)
 stack.elementCount = stack.elementCount + 1
}

Linear Data Structures Chapter 3

[110]

The example output after the push method is invoked with parameter elements as follows.
The element with the value 7 is pushed to the stack. The count of the elements before
pushing to the stack is 2, and, after pushing to the stack, this figure is 3:

Let's take a look at the Pop method in the next section.

The Pop method
The Pop method on the Stack implementation removes the last element from the element
array and returns the element, as shown in the following code. The len method returns the
length of the elements array:

// Pop removes and returns a node from the stack in last to first order.
func (stack *Stack) Pop() *Element {
 if stack.elementCount == 0 {
 return nil
 }
 var length int = len(stack.elements)
 var element *Element = stack.elements[length -1]
 //stack.elementCount = stack.elementCount - 1
 if length > 1 {
 stack.elements = stack.elements[:length-1]
 } else {
 stack.elements = stack.elements[0:]
 }
 stack.elementCount = len(stack.elements)
 return element
}

The example output after the Pop method is invoked is as follows. The element value 5 is
passed and added to the Pop method. The count of elements before invoking the Pop
method is 2. The count of the elements after calling the Pop method is 1:

Let's take a look at the main method in the next section.

Linear Data Structures Chapter 3

[111]

The main method
In the following code section, the main method creates a stack, calls the New method, and
pushes the elements after initializing them. The popped-out element value and the order is
printed:

// main method
func main() {
 var stack *Stack = & Stack{}
 stack.New()
 var element1 *Element = &Element{3}
 var element2 *Element = &Element{5}
 var element3 *Element = &Element{7}
 var element4 *Element = &Element{9}
 stack.Push(element1)
 stack.Push(element2)
 stack.Push(element3)
 stack.Push(element4)
 fmt.Println(stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop())
}

Run the following commands to execute the stack.go file:

go run stack.go

After executing the preceding command, we get the following output:

Summary
This chapter covered the definition of LinkedList, double LinkedList, Tuples, Sets,
Queues, and Stacks. The LinkedList methods – AddToHead, AddToEnd, LastNode, and
iterateList—were also covered in this chapter. In addition, a priority queue was
modeled as a heap of orders to be processed, sync queue was presented as passenger and
ticket processing queues, and tuples were explained in a context in which a function returns
a multivalued expression. The new, push, pop, and string methods for Stack were
explained with code samples.

Linear Data Structures Chapter 3

[112]

In the next chapter, we will cover areas such as the Trees, Tables, Containers, and Hash
functions.

Questions
Where can you use double linked list? Please provide an example.1.
Which method on linked list can be used for printing out node values?2.
Which queue was shown with channels from the Go language?3.
Write a method that returns multiple values. What data structure can be used for4.
returning multiple values?
Can set have duplicate elements?5.
Write a code sample showing the union and intersection of two sets.6.
In a linked list, which method is used to find the node between two values?7.
We have elements that are not repeated and unique. What is the correct data8.
structure that represents the collection?
In Go, how do you generate a random integer between the values 3 and 5?9.
Which method is called to check if an element of value 5 exists in the Set?10.

Further reading
To read more about LinkedLists, Sets, Tuples, and Stacks, consult the following
sources:

Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides
Introduction to Algorithms – Third Edition, by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and Clifford Stein
Data structures and Algorithms: An Easy Introduction, by Rudolph Russell

4
Non-Linear Data Structures

Non-linear data structures are used in cryptography and other areas. A non-linear data
structure is an arrangement in which an element is connected to many elements. These
structures use memory quickly and efficiently. Free contiguous memory is not required for
adding new elements.

The length of the data structures is not important before adding new elements. A non-linear
data structure has multiple levels and a linear one has a single level. The values of the
elements are not organized in a non-linear data structure. The data elements in a non-linear
data structure cannot be iterated in one step. The implementation of these data structures is
complicated.

Tree types such as binary search trees, treaps, and symbol tables are explained in this
chapter.

This chapter covers the following non-linear data structures:

Trees
Tables
Containers
Hash functions

Technical requirements
Install Go version 1.10 from https:/ ​/ ​golang. ​org/ ​doc/​install for your OS.

The GitHub URL for the code in this chapter is as follows: https:/ ​/​github. ​com/
PacktPublishing/​Learn- ​Data- ​Structures- ​and- ​Algorithms- ​with- ​Golang/ ​tree/ ​master/
Chapter04.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter04

Non-Linear Data Structures Chapter 4

[114]

Trees
A tree is a non-linear data structure. Trees are used for search and other use cases. A binary
tree has nodes that have a maximum of two children. A binary search tree consists of nodes
where the property values of the left node are less than the property values of the right
node. The root node is at level zero of a tree. Each child node could be a leaf.

Trees and binary trees were introduced in Chapter 1, Data Structures and Algorithms, while
we were discussing logarithmic complexity. Let's take a closer look at them in the next
section.

Binary search tree
A binary search tree is a data structure that allows for the quick lookup, addition, and
removal of elements. It stores the keys in a sorted order to enable a faster lookup. This data
structure was invented by P. F. Windley, A. D. Booth, A. J. T. Colin, and T. N. Hibbard. On
average, space usage for a binary search tree is of the order O(n), whereas the insert, search,
and delete operations are of the order O(log n). A binary search tree consists of nodes with
properties or attributes:

A key integer
A value integer
The leftNode and rightNode instances of TreeNode

They can be represented in the following code:

// TreeNode class
type TreeNode struct {
 key int
 value int
 leftNode *TreeNode
 rightNode *TreeNode
}

In the next section, the BinarySearchTree class implementation is discussed. For this
section, please refer to the binary_search_tree.go file.

Non-Linear Data Structures Chapter 4

[115]

The BinarySearchTree class
In the following code snippet, the BinarySearchTree class consists of a rootNode that's
of the TreeNode type, and lock, which is of the sync.RWMutex type. The binary search tree
is traversed from rootNode by accessing the nodes to the left and right of rootNode:

// BinarySearchTree class
type BinarySearchTree struct {
 rootNode *TreeNode
 lock sync.RWMutex
}

Now that we know what BinarySearchTree is, let's take a look at its different methods in
the next section.

The InsertElement method
The InsertElement method inserts the element with the given key and value in the binary
search tree. The tree's lock() instance is locked first and the unlock() method is deferred
before inserting the element. The InsertTreeNode method is invoked by passing
rootNode and the node to be created with the key and value, as shown here:

// InsertElement method
func (tree *BinarySearchTree) InsertElement(key int, value int) {
 tree.lock.Lock()
 defer tree.lock.Unlock()
 var treeNode *TreeNode
 treeNode= &TreeNode{key, value, nil, nil}
 if tree.rootNode == nil {
 tree.rootNode = treeNode
 } else {
 insertTreeNode(tree.rootNode, treeNode)
 }
}

The example output for inserting an element with key and value 3 is shown as follows. The
insert element method calls insertTreeNode with rootNode with key 8 and the new
treeNode with key 3:

Non-Linear Data Structures Chapter 4

[116]

The insertTreeNode method
The insertTreenode method inserts the new TreeNode in the binary search tree. In the
following code, the insertTreeNode method takes rootNode and newTreeNode, both of
the TreeNode type, as parameters. Note that newTreeNode is inserted at the right place in
the binary search tree by comparing the key values:

// insertTreeNode function
func insertTreeNode(rootNode *TreeNode, newTreeNode *TreeNode) {
 if newTreeNode.key < rootNode.key {
 if rootNode.leftNode == nil {
 rootNode.leftNode = newTreeNode
 } else {
 insertTreeNode(rootNode.leftNode, newTreeNode)
 }
 } else {
 if rootNode.rightNode == nil{
 rootNode.rightNode = newTreeNode
 } else {
 insertTreeNode(rootNode.rightNode, newTreeNode)
 }
 }
}

The inOrderTraverse method
The inOrderTraverse method visits all nodes in order. The RLock() method on the
tree lock instance is called first. The RUnLock() method is deferred on the tree lock
instance before invoking the inOrderTraverseTree method, as presented in the
following code snippet:

// InOrderTraverseTree method
func (tree *BinarySearchTree) InOrderTraverseTree(function func(int)) {
 tree.lock.RLock()
 defer tree.lock.RUnlock()
 inOrderTraverseTree(tree.rootNode, function)
}

Non-Linear Data Structures Chapter 4

[117]

The inOrderTraverseTree method
The inOrderTraverseTree method traverses the left, the root, and the right tree. The
inOrderTraverseTree method takes treeNode of the TreeNode type and function as
parameters. The inOrderTraverseTree method is called on leftNode and rightNode
with function as a parameter. A function is passed with treeNode.value, as shown in
the following code snippet:

// inOrderTraverseTree method
func inOrderTraverseTree(treeNode *TreeNode, function func(int)) {
 if treeNode != nil {
 inOrderTraverseTree(treeNode.leftNode, function)
 function(treeNode.value)
 inOrderTraverseTree(treeNode.rightNode, function)
 }
}

The PreOrderTraverseTree method
The PreOrderTraverseTree method visits all the tree nodes with preorder traversing.
The tree lock instance is locked first and the Unlock method is deferred before
preOrderTraverseTree is called. In the following code snippet, the
preOrderTraverseTree method is passed with rootNode and function as parameters:

// PreOrderTraverseTree method
func (tree *BinarySearchTree) PreOrderTraverseTree(function func(int)) {
 tree.lock.Lock()
 defer tree.lock.Unlock()
 preOrderTraverseTree(tree.rootNode, function)
}

The preOrderTraverseTree method
The preOrderTraverseTree method is passed with treeNode of the TreeNode type and
function as parameters. The preOrderTraverseTree method is called by passing
leftNode and rightNode with function as parameters. The function is invoked with
treeNode.value, as shown here:

// preOrderTraverseTree method
func preOrderTraverseTree(treeNode *TreeNode, function func(int)) {
 if treeNode != nil {
 function(treeNode.value)
 preOrderTraverseTree(treeNode.leftNode, function)
 preOrderTraverseTree(treeNode.rightNode, function)
 }

Non-Linear Data Structures Chapter 4

[118]

}

The PostOrderTraverseTree method
The PostOrderTraverseTree method traverses the nodes in a post order (left, right,
current node). In the following code snippet, the PostOrderTraverseTree method of the
BinarySearchTree class visits all nodes with post-order traversing. The
function method is passed as a parameter to the method. The tree.lock instance is
locked first and the Unlock method is deferred on the tree lock instance before calling the
postOrderTraverseTree method:

// PostOrderTraverseTree method
func (tree *BinarySearchTree) PostOrderTraverseTree(function func(int)) {
 tree.lock.Lock()
 defer tree.lock.Unlock()
 postOrderTraverseTree(tree.rootNode, function)
}

The postOrderTraverseTree method
The postOrderTraverseTree method is passed with treeNode of the TreeNode type
and function as parameters. The postOrderTraverseTree method is called by passing
leftNode and rightNode with function as parameters. In the following code snippet,
function is invoked with treeNode.value as a parameter:

// postOrderTraverseTree method
func postOrderTraverseTree(treeNode *TreeNode, function func(int)) {
 if treeNode != nil {
 postOrderTraverseTree(treeNode.leftNode, function)
 postOrderTraverseTree(treeNode.rightNode, function)
 function(treeNode.value)
 }
}

The MinNode method
MinNode finds the node with the minimum value in the binary search tree. In the following
code snippet, the RLock method of the tree lock instance is invoked first and the RUnlock
method on the tree lock instance is deferred. The MinNode method returns the element
with the lowest value by traversing from rootNode and checking whether the value of
leftNode is nil:

// MinNode method
func (tree *BinarySearchTree) MinNode() *int {

Non-Linear Data Structures Chapter 4

[119]

 tree.lock.RLock()
 defer tree.lock.RUnlock()
 var treeNode *TreeNode
 treeNode = tree.rootNode
 if treeNode == nil {
 //nil instead of 0
 return (*int)(nil)
 }
 for {
 if treeNode.leftNode == nil {
 return &treeNode.value
 }
 treeNode = treeNode.leftNode
 }
}

The MaxNode method
MaxNode finds the node with maximum property in the binary search tree. The RLock
method of the tree lock instance is called first and the RUnlock method on the tree lock
instance is deferred. The MaxNode method returns the element with the highest value after
traversing from rootNode and finding a rightNode with a nil value. This is shown in the
following code:

// MaxNode method
func (tree *BinarySearchTree) MaxNode() *int {
 tree.lock.RLock()
 defer tree.lock.RUnlock()
 var treeNode *TreeNode
 treeNode = tree.rootNode
 if treeNode == nil {
 //nil instead of 0
 return (*int)(nil)
 }
 for {
 if treeNode.rightNode == nil {
 return &treeNode.value
 }
 treeNode = treeNode.rightNode
 }
}

Non-Linear Data Structures Chapter 4

[120]

The SearchNode method
The SearchNode method searches the specified node in the binary search tree. First, the
RLock method of the tree lock instance is called. Then, the RUnlock method on the
tree lock instance is deferred. The SearchNode method of the BinarySearchTree class
invokes the searchNode method with the rootNode and the key integer value
as parameters, as shown here:

// SearchNode method
func (tree *BinarySearchTree) SearchNode(key int) bool {
 tree.lock.RLock()
 defer tree.lock.RUnlock()
 return searchNode(tree.rootNode, key)
}

The searchNode method
In the following code, the searchNode method takes treeNode, a pointer of the TreeNode
type, and a key integer value as parameters. The method returns true or false after
checking whether treeNode with the same value as key exists:

// searchNode method
func searchNode(treeNode *TreeNode, key int) bool {
 if treeNode == nil {
 return false
 }
 if key < treeNode.key {
 return searchNode(treeNode.leftNode, key)
 }
 if key > treeNode.key {
 return searchNode(treeNode.rightNode, key)
 }
 return true
}

The RemoveNode method
The RemoveNode method of the BinarySearchTree class removes the element with key
that's passed in. The method takes the key integer value as the parameter. The Lock()
method is invoked on the tree's lock instance first. The Unlock() method of the tree lock
instance is deferred, and removeNode is called with rootNode and the key value as
parameters, as shown here:

// RemoveNode method
func (tree *BinarySearchTree) RemoveNode(key int) {

Non-Linear Data Structures Chapter 4

[121]

 tree.lock.Lock()
 defer tree.lock.Unlock()
 removeNode(tree.rootNode, key)
}

The removeNode method
The removeNode method takes treeNode of the TreeNode type and a key integer value as
parameters. In the following code snippet, the method recursively searches the leftNode
instance of treeNode and the key value of rightNode if it matches the parameter value:

// removeNode method
func removeNode(treeNode *TreeNode, key int) *TreeNode {
 if treeNode == nil {
 return nil
 }
 if key < treeNode.key {
 treeNode.leftNode = removeNode(treeNode.leftNode, key)
 return treeNode
 }
 if key > treeNode.key {
 treeNode.rightNode = removeNode(treeNode.rightNode, key)
 return treeNode
 }
 // key == node.key
 if treeNode.leftNode == nil && treeNode.rightNode == nil {
 treeNode = nil
 return nil
 }
 if treeNode.leftNode == nil {
 treeNode = treeNode.rightNode
 return treeNode
 }
 if treeNode.rightNode == nil {
 treeNode = treeNode.leftNode
 return treeNode
 }
 var leftmostrightNode *TreeNode
 leftmostrightNode = treeNode.rightNode
 for {
 //find smallest value on the right side
 if leftmostrightNode != nil && leftmostrightNode.leftNode != nil {
 leftmostrightNode = leftmostrightNode.leftNode
 } else {
 break
 }
 }

Non-Linear Data Structures Chapter 4

[122]

 treeNode.key, treeNode.value = leftmostrightNode.key,
leftmostrightNode.value
 treeNode.rightNode = removeNode(treeNode.rightNode, treeNode.key)
 return treeNode
}

The String method
The String method turns the tree into a string format. At first, the Lock() method is
invoked on the tree lock instance. Then, the Unlock() method of the tree lock instance is
deferred. The String method prints a visual representation of tree:

// String method
func (tree *BinarySearchTree) String() {
 tree.lock.Lock()
 defer tree.lock.Unlock()
 fmt.Println("--")
 stringify(tree.rootNode, 0)
 fmt.Println("--")
}

The stringify method
In the following code snippet, the stringify method takes a treeNode instance of the
TreeNode type and level (an integer) as parameters. The method recursively prints the
tree based on the level:

// stringify method
func stringify(treeNode *TreeNode, level int) {
 if treeNode != nil {
 format := ""
 for i := 0; i < level; i++ {
 format += " "
 }
 format += "---["
 level++
 stringify(treeNode.leftNode, level)
 fmt.Printf(format+"%d\n", treeNode.key)
 stringify(treeNode.rightNode, level)
 }
}

Non-Linear Data Structures Chapter 4

[123]

The main method
In the following code, the main method creates the binary search tree and inserts the
elements 8, 3, 10, 1, and 6 into it. tree is printed by invoking the String method:

// main method
func main() {
 var tree *BinarySearchTree = &BinarySearchTree{}
 tree.InsertElement(8,8)
 tree.InsertElement(3,3)
 tree.InsertElement(10,10)
 tree.InsertElement(1,1)
 tree.InsertElement(6,6)
 tree.String()
}

Run the following command to execute the binary_search_tree.go file:

go run binary_search_tree.go

The output is as follows:

The next section talks about AVL tree implementation.

Non-Linear Data Structures Chapter 4

[124]

Adelson, Velski, and Landis (AVL) tree
Adelson, Velski, and Landis pioneered the AVL tree data structure and hence it is named
after them. It consists of height adjusting binary search trees. The balance factor is obtained
by finding the difference between the heights of the left and right sub-trees. Balancing is
done using rotation techniques. If the balance factor is greater than one, rotation shifts the
nodes to the opposite of the left or right sub-trees. The search, addition, and deletion
operations are processed in the order of O(log n).

The following sections talks about the KeyValue interface definition and the TreeNode
class. For this section, please refer to the avl_tree.go file.

The KeyValue interface
The KeyValue interface has the LessThan and EqualTo methods. The LessThan and
EqualTo methods take KeyValue as a parameter and return a Boolean value after checking
the less than or equal to condition. This is shown in the following code:

// KeyValue type
type KeyValue interface {
 LessThan(KeyValue) bool
 EqualTo(KeyValue) bool
}

The TreeNode class
The TreeNode class has KeyValue, BalanceValue, and LinkedNodes as properties. The
AVL tree is created as a tree of nodes of the TreeNode type, as shown here:

// TreeNode class
type TreeNode struct {
 KeyValue KeyValue
 BalanceValue int
 LinkedNodes [2]*TreeNode
}

Now, let's take a look at the different methods of the TreeNode class.

Non-Linear Data Structures Chapter 4

[125]

The opposite method
The opposite method takes a node value and returns the opposite node's value. In the
following code snippet, the opposite method takes the nodeValue integer as a parameter
and returns the opposite node's value:

//opposite method
func opposite(nodeValue int) int {
 return 1 - nodeValue
}

The singleRotation method
The singleRotation method rotates the node opposite to the specified sub-tree. As
shown in the following snippet, the singleRotation function rotates the node opposite
the left or right sub-tree. The method takes the pointer to rootNode and a nodeValue
integer as parameters and returns a TreeNode pointer:

// single rotation method
func singleRotation(rootNode *TreeNode, nodeValue int) *TreeNode {
var saveNode *TreeNode
 saveNode = rootNode.LinkedNodes[opposite(nodeValue)]
 rootNode.LinkedNodes[opposite(nodeValue)] =
saveNode.LinkedNodes[nodeValue]
 saveNode.LinkedNodes[nodeValue] = rootNode
 return saveNode
}

The doubleRotation method
Here, the doubleRotation method rotates the node twice. The method returns a
TreeNode pointer, taking parameters such as rootNode, which is a treeNode pointer, and
nodeValue, which is an integer. This is shown in the following code:

// double rotation
func doubleRotation(rootNode *TreeNode, nodeValue int) *TreeNode {
var saveNode *TreeNode
 saveNode =
rootNode.LinkedNodes[opposite(nodeValue)].LinkedNodes[nodeValue]
rootNode.LinkedNodes[opposite(nodeValue)].LinkedNodes[nodeValue] =
saveNode.LinkedNodes[opposite(nodeValue)]
 saveNode.LinkedNodes[opposite(nodeValue)] =
rootNode.LinkedNodes[opposite(nodeValue)]
 rootNode.LinkedNodes[opposite(nodeValue)] = saveNode
saveNode = rootNode.LinkedNodes[opposite(nodeValue)]
 rootNode.LinkedNodes[opposite(nodeValue)] =

Non-Linear Data Structures Chapter 4

[126]

saveNode.LinkedNodes[nodeValue]
 saveNode.LinkedNodes[nodeValue] = rootNode
 return saveNode
}

The implementation of this method is shown in The InsertNode method section, as follows.

The adjustBalance method
The adjustBalance method adjusts the balance of the tree. In the following code snippet,
the adjustBalance method does a double rotation given the balance factor, rootNode,
and nodeValue. The adjustBalance method takes rootNode, which is an instance of the
TreeNode type, nodeValue, and balanceValue (which are both integers) as parameters:

// adjust balance method
func adjustBalance(rootNode *TreeNode, nodeValue int, balanceValue int) {
 var node *TreeNode
 node = rootNode.LinkedNodes[nodeValue]
 var oppNode *TreeNode
 oppNode = node.LinkedNodes[opposite(balanceValue)]
 switch oppNode.BalanceValue {
 case 0:
 rootNode.BalanceValue = 0
 node.BalanceValue = 0
 case balanceValue:
 rootNode.BalanceValue = -balanceValue
 node.BalanceValue = 0
 default:
 rootNode.BalanceValue = 0
 node.BalanceValue = balanceValue
 }
 oppNode.BalanceValue= 0
}

The BalanceTree method
The BalanceTree method changes the balance factor by a single or double rotation. The
method takes rootNode (a TreeNode pointer) and nodeValue (an integer) as parameters.
The BalanceTree method returns a TreeNode pointer, as shown here:

// BalanceTree method
func BalanceTree(rootNode *TreeNode, nodeValue int) *TreeNode {
 var node *TreeNode
 node = rootNode.LinkedNodes[nodeValue]
 var balance int
 balance = 2*nodeValue - 1

Non-Linear Data Structures Chapter 4

[127]

 if node.BalanceValue == balance {
 rootNode.BalanceValue = 0
 node.BalanceValue = 0
 return singleRotation(rootNode, opposite(nodeValue))
 }
 adjustBalance(rootNode, nodeValue, balance)
 return doubleRotation(rootNode, opposite(nodeValue))
}

The insertRNode method
The insertRNode method inserts the node and balances the tree. This
method inserts rootNode with the KeyValue key, as presented in the following code
snippet. The method takes rootNode, which is a TreeNode pointer, and the key as an
integer as parameters. The method returns a TreeNode pointer and a Boolean value if the
rootNode is inserted:

//insertRNode method
func insertRNode(rootNode *TreeNode, key KeyValue) (*TreeNode, bool) {
 if rootNode == nil {
 return &TreeNode{KeyValue: key}, false
 }
 var dir int
 dir = 0
 if rootNode.KeyValue.LessThan(key) {
 dir = 1
 }
 var done bool
 rootNode.LinkedNodes[dir], done = insertRNode(rootNode.LinkedNodes[dir],
key)
 if done {
 return rootNode, true
 }
 rootNode.BalanceValue = rootNode.BalanceValue+(2*dir - 1)
 switch rootNode.BalanceValue {
 case 0:
 return rootNode, true
 case 1, -1:
 return rootNode, false
 }
 return BalanceTree(rootNode, dir), true
}

Non-Linear Data Structures Chapter 4

[128]

The InsertNode method
The InsertNode method inserts a node into the AVL tree. This method takes treeNode,
which is a double TreeNode pointer, and the key value as parameters:

// InsertNode method
func InsertNode(treeNode **TreeNode, key KeyValue) {
 *treeNode, _ = insertRNode(*treeNode, key)
}

The example output of the InsertNode method is shown in the following screenshot. The
InsertNode method calls the insertRNode method with the rootNode parameters and
node to be inserted. rootNode has a key value of 5 and the node to be inserted has a key
value of 6. The tree needs to be balanced.

Hence, the next call will be rootNode with key 8 and node to be inserted. The next step
calls rootnode with key value 7 and node to be inserted. The last call will be with
rootNode nil and node to be inserted. The balance value is checked and the balance tree
method returns the balanced tree:

The RemoveNode method
In the following code, the RemoveNode method removes the element from the AVL tree by
invoking the removeRNode method. The method takes treeNode, which is a double
TreeNode pointer, and KeyValue as parameters:

// RemoveNode method
func RemoveNode(treeNode **TreeNode, key KeyValue) {
 *treeNode, _ = removeRNode(*treeNode, key)
}

Non-Linear Data Structures Chapter 4

[129]

The removeBalance method
The removeBalance method removes the balance factor in a tree. This method adjusts the
balance factor after removing the node and returns a treeNode pointer and a Boolean if the
balance is removed. The method takes rootNode (an instance of TreeNode) and
nodeValue (an integer) as parameters. This is shown in the following code:

// removeBalance method
func removeBalance(rootNode *TreeNode, nodeValue int) (*TreeNode, bool) {
 var node *TreeNode
 node = rootNode.LinkedNodes[opposite(nodeValue)]
 var balance int
 balance = 2*nodeValue - 1
 switch node.BalanceValue {
 case -balance:
 rootNode.BalanceValue = 0
 node.BalanceValue = 0
 return singleRotation(rootNode, nodeValue), false
 case balance:
 adjustBalance(rootNode, opposite(nodeValue), -balance)
 return doubleRotation(rootNode, nodeValue), false
 }
 rootNode.BalanceValue = -balance
 node.BalanceValue = balance
 return singleRotation(rootNode, nodeValue), true
}

The removeRNode method
The removeRNode method removes the node from the tree and balances the tree.
This method takes rootNode, which is a TreeNode pointer, and the key value. This
method returns a TreeNode pointer and Boolean value if RNode is removed, as shown in
the following code snippet:

//removeRNode method
func removeRNode(rootNode *TreeNode, key KeyValue) (*TreeNode, bool) {
 if rootNode == nil {
 return nil, false
 }
 if rootNode.KeyValue.EqualTo(key) {
 switch {
 case rootNode.LinkedNodes[0] == nil:
 return rootNode.LinkedNodes[1], false
 case rootNode.LinkedNodes[1] == nil:
 return rootNode.LinkedNodes[0], false
 }

Non-Linear Data Structures Chapter 4

[130]

 var heirNode *TreeNode
 heirNode = rootNode.LinkedNodes[0]
 for heirNode.LinkedNodes[1] != nil {
 heirNode = heirNode.LinkedNodes[1]
 }
 rootNode.KeyValue = heirNode.KeyValue
 key = heirNode.KeyValue
 }
 var dir int
 dir = 0
 if rootNode.KeyValue.LessThan(key) {
 dir = 1
 }
 var done bool
 rootNode.LinkedNodes[dir], done = removeR(rootNode.LinkedNodes[dir], key)
 if done {
 return rootNode, true
 }
 rootNode.BalanceValue = rootNode.BalanceValue + (1 - 2*dir)
 switch rootNode.BalanceValue {
 case 1, -1:
 return rootNode, true
 case 0:
 return rootNode, false
 }
 return removeBalance(rootNode, dir)
}
type integerKey int
func (k integerKey) LessThan(k1 KeyValue) bool { return k < k1.(integerKey)
}
func (k integerKey) EqualTo(k1 KeyValue) bool { return k == k1.(integerKey)
}

The example output of the removeRNode method is shown as follows. The RemoveNode
method calls the removeRNode method. The removeRNode method takes the parameters,
such as rootNode and KeyValue, of the node:

Non-Linear Data Structures Chapter 4

[131]

The main method
In the following code snippet, the main method creates an AVL tree by inserting nodes
with the 5, 3, 8, 7, 6, and 10 keys. Nodes with the 3 and 7 keys are removed. The tree data
structure is converted in to JSON in bytes. The JSON bytes are printed after being changed
to a string:

//main method
func main() {
 var treeNode *TreeNode
 fmt.Println("Tree is empty")
 var avlTree []byte
 avlTree, _ = json.MarshalIndent(treeNode, "", " ")
 fmt.Println(string(avlTree))

 fmt.Println("\n Add Tree")
 InsertNode(&treeNode, integerKey(5))
 InsertNode(&treeNode, integerKey(3))
 InsertNode(&treeNode, integerKey(8))
 InsertNode(&treeNode, integerKey(7))
 InsertNode(&treeNode, integerKey(6))
 InsertNode(&treeNode, integerKey(10))
 avlTree, _ = json.MarshalIndent(treeNode, "", " ")
 fmt.Println(string(avlTree))

 fmt.Println("\n Delete Tree")
 RemoveNode(&treeNode, integerKey(3))
 RemoveNode(&treeNode, integerKey(7))
 avlTree, _ = json.MarshalIndent(treeNode, "", " ")
 fmt.Println(string(avlTree))
}

Run the following command to execute the avl_tree.go file:

go run avl_tree.go

Non-Linear Data Structures Chapter 4

[132]

The output is as follows:

In the next section, B+ tree implementation is discussed and code snippets are presented.

Non-Linear Data Structures Chapter 4

[133]

B+ tree
The B+ tree contains a list of keys and pointers to the next-level nodes in trees. During a
search, recursion is used to search for an element by looking for the the adjacent node keys.
B+ trees are used to store data in filesystems. B+ trees require fewer I/O operations to search
for a node in the tree. Fan-out is defined as the number of nodes pointing to the child nodes
of a node in a B+ tree. B+ trees were first described in a technical paper by Rudolf Bayer and
Edward M. McCreight.

The block-oriented storage context in B+ trees helps with the storage and efficient retrieval
of data. The space efficiency of a B+ tree can be enhanced by using compression techniques.
B+ trees belong to a family of multiway search trees. For a b-order B+ tree, space usage is of
the order O(n). Inserting, finding, and removing operations are of the order O(logbn).

B-tree
The B-tree is a search tree with non-leaf nodes that only have keys, and the data is in the
leaves. B-trees are used to reduce the number of disk accesses. The B-tree is a self-adjusting
data structure that keeps data sorted. B-trees store keys in a sorted order for easy traversal.
They can handle multiple insertions and deletions.

Knuth initially came up with the concept of this data structure. B-trees consist of nodes that
have at most n children. Every non-leaf node in the tree has at least n/2 child nodes. Rudolf
Bayer and Edward M. McCreight were the first to implement this data structure in their
work. B-trees are used in HFS and Reiser4 filesystems to allow for quick access to any block
in a file. On average, space usage is in the order of O(n). Insert, search, and delete
operations are in the order of O(log n).

T-tree
The T-tree is a balanced data structure that has both the index and actual data in memory.
They are used in in-memory databases. T refers to the shape of the node. Each node consists
of pointers to the parent node and the left and right child nodes. Each node in the tree node
will have an ordered array of data pointers and extra control data.

T-trees have similar performance benefits to in-memory tree structures. A T-tree is
implemented on top of a self-balancing binary search tree. This data structure is good for
ordered scanning of data. It supports various degrees of isolation.

Non-Linear Data Structures Chapter 4

[134]

Tables
As we already know, tables are used in data management and other areas. A table has a
name and a header with the column names. Let's take a look at the different classes in
tables such as the Table class, the Row class, the Column class, and the PrintTable
method in the following sections.

For this section, please refer to the table.go file.

The Table class
A Table class has an array of rows and column names. The table's Name is a string property
in the struct class, as shown here:

// Table Class
type Table struct {
 Rows []Row
 Name string
 ColumnNames []string
}

The Row class
The Row class has an array of columns and an Id integer, as shown in the following code.
The Id instance is a unique identifier for a row:

// Row Class
type Row struct {
 Columns []Column
 Id int
}

The Column class
A Column class has an Id integer and a Value string that's identified by a unique
identifier, as presented in the following code snippet:

// Column Class
type Column struct {
 Id int
 Value string

Non-Linear Data Structures Chapter 4

[135]

}

The printTable method
In the following code snippet, the printTable method prints the rows and columns of a
table. Rows are traversed, and then for every row the columns are printed:

//printTable
func printTable(table Table){
 var rows []Row = table.Rows
 fmt.Println(table.Name)
 for _,row := range rows {
 var columns []Column = row.Columns
 for i,column := range columns {
 fmt.Println(table.ColumnNames[i],column.Id,column.Value);
 }
 }
}

The main method
In this main method, we will instantiate the classes such as Table, Row, and Column, which
we just took a look at. The main method creates a table and sets the name and column
names. Columns are created with values. The columns are set on the rows after the rows
are created. The table is printed by invoking the printTable method, as shown here:

// main method
func main() {
 var table Table = Table{}
 table.Name = "Customer"
 table.ColumnNames = []string{"Id", "Name","SSN"}
 var rows []Row = make([]Row,2)
 rows[0] = Row{}
 var columns1 []Column = make([]Column,3)
 columns1[0] = Column{1,"323"}
 columns1[1] = Column{1,"John Smith"}
 columns1[2] = Column{1,"3453223"}
 rows[0].Columns = columns1
 rows[1] = Row{}
 var columns2 []Column = make([]Column,3)
 columns2[0] = Column{2,"223"}
 columns2[1] = Column{2,"Curran Smith"}
 columns2[2] = Column{2,"3223211"}
 rows[1].Columns = columns2

Non-Linear Data Structures Chapter 4

[136]

 table.Rows = rows
 fmt.Println(table)
 printTable(table)
}

Run the following command to execute the table.go file:

go run table.go

The output is as follows:

The next section talks about the symbol table data structure.

Symbol tables
A symbol table is present in memory during the program translation process. It can be
present in program binaries. A symbol table contains the symbol's name, location, and
address. In Go, the gosym package implements access to the Go symbol and line number
tables. Go binaries generated by the GC compilers have the symbol and line number tables.
A line table is a data structure that maps program counters to line numbers.

Containers
The containers package provides access to the heap, list, and ring functionalities in Go.
Containers are used in social networks, knowledge graphs, and other areas. Containers are
lists, maps, slices, channels, heaps, queues, and treaps. Lists were introduced in Chapter 1,
Data Structures and Algorithms. Maps and slices are built-in containers in Go. Channels in
Go are called queues. A heap is a tree data structure. This data structure satisfies the heap
property. A queue is modeled as a heap in Chapter 3, Linear Data Structures. A treap is a
mix of a tree and a heap. It is a binary tree with keys and values and a heap that maintains
priorities.

Non-Linear Data Structures Chapter 4

[137]

A ring is called a circular linked list and is presented in the next section. For this section,
please refer to the circular_list.go file.

Circular linked list
A circular linked list is a data structure in which the last node is followed by the first node.
The container/ring structures are used to model circular linked lists. An example
implementation of a circular linked list is shown as follows:

package main
import (
 "container/ring"
 "fmt"
)
func main() {
 var integers []int
 integers = []int{1,3,5,7}
 var circular_list *ring.Ring
 circular_list= ring.New(len(integers))
 var i int
 for i = 0; i < circular_list.Len(); i++ {
 circular_list.Value = integers[i]
 circular_list = circular_list.Next()
 }

The ring.New method with the len n as a parameter creates a circular list of length n. The
circular linked list is initialized with an integer array by moving through circular_list
with the Next method. The Do method of ring.Ring class takes the element as an
interface, and the element is printed as follows:

circular_list.Do(func(element interface{}) {
 fmt.Print(element,",")
 })
 fmt.Println()

The reverse of the circular list is traversed using the Prev method, and the value is printed
in the following code:

// reverse of the circular list
 for i = 0; i < circular_list.Len(); i++ {
 fmt.Print(circular_list.Value,",")
 circular_list = circular_list.Prev()
 }
 fmt.Println()

Non-Linear Data Structures Chapter 4

[138]

In the following code snippet, the circular list is moved two elements forward using the
Move method, and the value is printed:

// move two elements forward in the circular list
 circular_list = circular_list.Move(2)
 circular_list.Do(func(element interface{}) {
 fmt.Print(element,",")
 })
 fmt.Println()
}

Run the following command to execute the circular_list.go file:

go run circular_list.go

The output is as follows:

The next section talks about the hash function data structure.

The hash functions
Hash functions are used in cryptography and other areas. These data structures are
presented with code examples related to cryptography. There are two ways to implement a
hash function in Go: with crc32 or sha256. Marshaling (changing the string to an encoded
form) saves the internal state, which is used for other purposes later. A
BinaryMarshaler (converting the string into binary form) example is explained in this
section:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing bytes, crpto/sha256, encoding, fmt and log package
import (
 "bytes"

Non-Linear Data Structures Chapter 4

[139]

 "crypto/sha256"
 "encoding"
 "fmt"
 "log"
 "hash"
)

The main method creates a binary marshaled hash of two example strings. The hashes of
the two strings are printed. The sum of the first hash is compared with the second hash
using the equals method on bytes. This is shown in the following code:

//main method
func main() {
 const (
 example1 = "this is a example "
 example2 = "second example"
)
 var firstHash hash.Hash
 firstHash = sha256.New()
 firstHash.Write([]byte(example1))
 var marshaler encoding.BinaryMarshaler
 var ok bool
 marshaler, ok = firstHash.(encoding.BinaryMarshaler)
 if !ok {
 log.Fatal("first Hash is not generated by encoding.BinaryMarshaler")
 }
 var data []byte
 var err error
 data, err = marshaler.MarshalBinary()
 if err != nil {
 log.Fatal("failure to create first Hash:", err)
 }
 var secondHash hash.Hash
 secondHash = sha256.New()
var unmarshaler encoding.BinaryUnmarshaler
 unmarshaler, ok = secondHash.(encoding.BinaryUnmarshaler)
 if !ok {
 log.Fatal("second Hash is not generated by encoding.BinaryUnmarshaler")
 }
 if err := unmarshaler.UnmarshalBinary(data); err != nil {
 log.Fatal("failure to create hash:", err)
 }
 firstHash.Write([]byte(example2))
 secondHash.Write([]byte(example2))
 fmt.Printf("%x\n", firstHash.Sum(nil))
 fmt.Println(bytes.Equal(firstHash.Sum(nil), secondHash.Sum(nil)))
}

Non-Linear Data Structures Chapter 4

[140]

Run the following command to execute the hash.go file:

go run hash.go

The output is as follows:

Summary
This chapter covered trees, binary search trees, and AVL trees. Treap, B-trees, and B+ trees
were explained briefly. Operations such as insertion, deletion, and updating elements in
trees were shown with various code examples. Tables, containers, and hash functions were
presented in the last section. The complexity in time and space for operations such as
insertion, deletion, and search were explained in each section.

In the next chapter, homogeneous data structures such as two-dimensional and multi-
dimensional arrays will be covered.

Questions
Can you give an example where you can use a binary search tree?1.
Which method is used to search for an element in a binary search tree?2.
Which techniques are used to adjust the balance in an AVL tree?3.
What is a symbol table?4.

Non-Linear Data Structures Chapter 4

[141]

Which class and method are called to generate a binary marshaled hash on the5.
hash class?
Which container in Go is used to model a circular linked list?6.
How do you create a JSON (indented) from a tree structure? Which class and7.
method are used?
How do you compare the sum of hashes?8.
What is the balance factor in an AVL tree?9.
How do you identify a row and column in a table?10.

Further reading
The following books are recommended if you want to know more about trees, binary
search trees, and AVL trees:

Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides
Introduction to Algorithms – Third Edition, by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and Clifford Stein
Data structures and Algorithms: An Easy Introduction, by Rudolph Russell

5
Homogeneous Data Structures

Homogeneous data structures contain similar types of data, such as integers or double
values. Homogeneous data structures are used in matrices, as well as tensor and vector
mathematics. Tensors are mathematical structures for scalars and vectors. A first-rank
tensor is a vector. A vector consists of a row or a column. A tensor with zero rank is a
scalar. A matrix is a two-dimensional cluster of numbers. They are all used in scientific
analysis.

Tensors are used in material science. They are used in mathematics, physics, mechanics,
electrodynamics, and general relativity. Machine learning solutions utilize a tensor data
structure. A tensor has properties such as position, shape, and a static size.

This chapter covers the following homogeneous data structures:

Two-dimensional arrays
Multi-dimensional arrays

The following scenarios are shown to demonstrate the usage of two-dimensional and multi-
dimensional arrays:

Matrix representation
Multiplication
Addition
Subtraction
Determinant calculation
Inversion
Transposition

Homogeneous Data Structures Chapter 5

[143]

Technical requirements
Install Go Version 1.10 from https:/ ​/ ​golang. ​org/ ​doc/ ​install for your OS.

The GitHub URL for the code in this chapter is as follows: https:/ ​/​github. ​com/
PacktPublishing/​Learn- ​Data- ​Structures- ​and- ​Algorithms- ​with- ​Golang/ ​tree/ ​master/
Chapter05.

Two-dimensional arrays
Two-dimensional arrays were presented briefly in Chapter 2, Getting Started with Go for
Data Structures and Algorithms. To recap, for dynamic allocation, we use slice of slices,
which is a two-dimensional array. A two-dimensional array, is a list of single-dimensional
arrays. Every element in a two-dimensional array arr, is identified as arr[i][j], where
arr is the name of the array and i and j represent rows and columns, and their values
ranging from 0 to m and 0 to n, respectively. Traversing a two-dimensional array is of
O(m*n) complexity.

The following code shows how to initialize an array:

var arr = [4][5] int{
 {4,5,7,8,9},
 {1,2,4,5,6},
 {9,10,11,12,14},
 {3,5,6,8,9}
}

An element in a two-dimensional array is accessed with a row index and column index. In
the following example, the array's value in row 2 and column 3 is retrieved as an integer
value:

var value int = arr[2][3]

Arrays can store a sequential collection of data elements of the same type. Homogeneous
data structure arrays consist of contiguous memory address locations.

Two-dimensional matrices are modeled as two-dimensional arrays. A scalar is an element
of a field that defines a vector space. A matrix can be multiplied by a scalar. You can divide
a matrix by any non-zero real number.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Go/tree/master/Chapter05

Homogeneous Data Structures Chapter 5

[144]

The order of a matrix is the number of rows, m, by the number of columns, n. A matrix with
rows m and columns n is referred to as an m x n matrix. There are multiple
types of matrices, such as a row matrix, column matrix, triangular matrix, null matrix, and
zero matrix; let's discuss them in the following sections.

Row matrix
A row matrix is a 1 x m matrix consisting of a single row of m elements, as shown here:

var matrix = [1][3] int{
 {1, 2, 3}
}

Run the following command to execute the row_matrix.go file:

go run row_matrix.go

The output is as follows:

The next section talks about the column matrix data structure.

Column matrix
A column matrix is an m x 1 matrix that has a single column of m elements. The following
code snippet shows how to create a column matrix:

var matrix = [4][1] int{
 {1},
 {2},
 {3},
 {4}
}

Run the following command to execute the column_matrix.go file:

go run column_matrix.go

Homogeneous Data Structures Chapter 5

[145]

The output is as follows:

The next section talks about the lower triangular matrix data structure.

Lower triangular matrix
A lower triangular matrix consists of elements that have a value of zero above the main
diagonal. The following code snippet shows how to create a lower triangular matrix:

var matrix = [3][3] int{
 {1,0,0},
 {1,1,0},
 {2,1,1}
}

Run the following command to execute the lower_triangular.go file:

go run lower_triangular.go

The output is as follows:

The next section talks about the upper triangular matrix data structure.

Upper triangular matrix
An upper triangular matrix consists of elements with a value of zero below the main
diagonal. The following code creates an upper triangular matrix:

var matrix = [3][3] int{
 {1,2,3},
 {0,1,4},
 {0,0,1}
}

Homogeneous Data Structures Chapter 5

[146]

Run the following command to execute the upper_triangular.go file:

go run upper_triangular.go

The output is as follows:

The next section talks about the null matrix data structure.

Null matrix
A null or a zero matrix is a matrix entirely consisting of zero values, as shown in the
following code snippet:

var matrix = [3][3] int{
 {0,0,0},
 {0,0,0},
 {0,0,0}
}

Run the following command to execute the null_matrix.go file:

go run null_matrix.go

The output is as follows:

The next section talks about the identity matrix data structure.

Homogeneous Data Structures Chapter 5

[147]

Identity matrix
An identity matrix is a unit matrix with ones are on the main diagonal and zeros are
elsewhere. The following code snippet creates an identity matrix:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)
// identity method
func Identity(order int) [][]float64 {
var matrix [][]float64
 matrix = make([][]float64, order)
var i int
 for i = 0; i < order; i++ {
var temp []float64
 temp = make([]float64, order)
 temp[i] = 1
 matrix[i] = temp
 }
 return matrix
}
// main method
func main() {
 fmt.Println(Identity(4))
}

Run the following command to execute the preceding code snippet:

go run identity_matrix.go

The output is as follows:

The next section talks about the symmetric matrix data structure.

Homogeneous Data Structures Chapter 5

[148]

Symmetric matrix
A symmetric matrix is a matrix whose transpose is equal to itself. Symmetric matrices
include other types of matrices such as antimetric, centrosymmetric, circulant, covariance,
coxeter, hankel, hilbert, persymmetric, skew-symmetric, and toeplitz matrices. A
negative matrix is a matrix in which each element is a negative number.

Basic 2D matrix operations
In this section, we will look at the basic operations on the two-dimensional matrix. Let's
start with initializing the matrices.

matrix1 and matrix2 are initialized in the following code snippet:

var matrix1 = [2][2] int{
 {4,5},
 {1,2}
}
var matrix2 = [2][2] int{
 {6,7},
 {3,4}
}

The add, subtract, multiply, transpose, and inversion operations are presented in
the next few sections. For this section, please refer to the binary_search_tree.go file.

The add method
The add method adds the elements of two 2 x 2 matrices. The following code returns the
created matrix by adding the two matrices:

// add method
func add(matrix1 [2][2]int, matrix2 [2][2]int) [2][2]int {
 var m int
 var l int
 var sum [2][2]int
 for l = 0; l < 2; l++ {
 for m=0; m <2; m++ {
 sum[l][m] = matrix1[l][m] +matrix2[l][m]
 }
 }
 return sum
}

Homogeneous Data Structures Chapter 5

[149]

The sum between the two matrices is the result of calling the add method. The parameters
that are passed are the matrices to be added, as shown here:

var sum [2][2]int
sum = add(matrix1, matrix2)

The example output of the add method is as follows. Adding matrix1 and matrix2 gives
a sum matrix:

The subtract method
The subtract method subtracts the elements of two 2 x 2 matrices. The subtract method
in the following snippet subtracts the elements of matrix1 and matrix2. This method
returns the resulting matrix after subtraction:

// subtract method
func subtract(matrix1 [2][2]int, matrix2 [2][2]int) [2][2]int {
 var m int
 var l int
 var difference [2][2]int
 for l = 0; l < 2; l++ {
 for m=0; m <2; m++ {
 difference[l][m] = matrix1[l][m] -matrix2[l][m]
 }
 }
 return difference
}

The difference between two matrices is the result of calling the subtract method. The
parameters that are passed are the matrices to be subtracted, as shown here:

var difference [2][2]int
difference = subtract(matrix1, matrix2)

Homogeneous Data Structures Chapter 5

[150]

The example output of the subtract method is as follows:

The multiply method
The multiply method multiplies the elements of two 2 x 2 matrices. The multiplication of
two matrices, matrix1 and matrix2, is shown in the following snippet. The matrix
that's generated after the multiplication is returned by the multiply method:

// multiply method
func multiply(matrix1 [2][2]int, matrix2 [2][2]int) [2][2]int {
 var m int
 var l int
 var n int
 var product [2][2]int
 for l = 0; l < 2; l++ {
 for m=0; m <2; m++ {
 var productSum int = 0
 for n=0; n< 2; n++ {
 productSum = productSum + matrix1[l][n]*matrix2[n][m]
 }
 product[l][m] = productSum;
 }
 }
 return product
}

The product of two matrices is calculated using the multiply method in the following
code snippet, which takes the two matrices as parameters:

var product [2][2]int
product = multiply(matrix1, matrix2)

The example output of the multiply method is as follows. The product of matrix1 and
matrix2 is the product matrix:

Homogeneous Data Structures Chapter 5

[151]

The transpose method
The transpose of a matrix is achieved using the transpose method. This method takes the
matrix as a parameter and returns the transposed matrix:

// transpose method
func transpose(matrix1 [2][2]int) [2][2]int {
 var m intvar l int
 var transMatrix [2][2]int
 for l = 0; l < 2; l++ {
 for m=0; m <2; m++ {
 transMatrix[l][m] = matrix1[m][l]
 }
 }
 return transMatrix
}

The determinant method
The determinant method calculates the determinant of the matrix. The determinant
method in the following code snippet calculates the determinant value of a matrix. The
method takes the matrix and returns a float32 value, which is the determinant of the
matrix:

// determinant method
func determinant(matrix1 [2][2]int) float32 {
 var m int
 var l int
 var det float32
 det = det + ((matrix1[0][0]*matrix1[1][1])-
(matrix1[0][1]*matrix1[1][0]));
 return det
}

The inverse method
The inverse method returns the inverse of the matrix, which is passed as a parameter.
This is shown in the following snippet:

//inverse method
func inverse(matrix [2][2]int) [][]float64 {
 var det float64
 det = determinant(matrix)
 var invmatrix float64

Homogeneous Data Structures Chapter 5

[152]

 invmatrix[0][0] = matrix[1][1]/det
 invmatrix[0][1] = -1*matrix[0][1]/det
 invmatrix[1][0] = -1*matrix[1][0]/det
 invmatrix[1][1] = matrix[0][0]/det
 return invmatrix
}

Run the following command to execute the twodmatrix.go file:

go run twodmatrix.go

The output is as follows:

The next section talks about the zig-zag matrix data structure.

Zig-zag matrix
A zig-zag matrix is a square arrangement of n x n integers. The integers are arranged on
anti-diagonals in sequentially increasing order. The following code explains how to create a
zig-zag matrix and also how to traverse it. The PrintZigZag method creates the matrix in
a zig-zag fashion with the elements in a sequentially increasing order. The method takes the
integer n as a parameter and returns the integer array, which is the zig-zag matrix:

///main package has examples shown
// in Go Data Structures and algorithms book
package main
// importing fmt package
import (
 "fmt"
)
//prints the matrix in zig-zag fashion
func PrintZigZag(n int) []int {
 var zigzag []int
 zigzag = make([]int, n*n)
 var i int
 i = 0
 var m int
 m = n * 2
 var p int

Homogeneous Data Structures Chapter 5

[153]

 for p = 1; p <= m; p++ {
 var x int
 x = p - n
 if x < 0 {
 x = 0
 }
 var y int
 y = p - 1
 if y > n-1 {
 y = n - 1
 }
 var j int
 j = m - p
 if j > p {
 j = p
 }
 var k int
 for k = 0; k < j; k++ {
 if p&1 == 0 {
 zigzag[(x+k)*n+y-k] = i
 } else {
 zigzag[(y-k)*n+x+k] = i
 }
 i++
 }
 }
 return zigzag
}

The main method invokes the PrintZigZag method, which takes the parameter n and
prints the matrix first from left to right, then from right to left for the second level, and so
on. The number of integers is 5 and the field width is 2:

// main method
func main() {
 var n int
 n = 5
 var length int
 length = 2
 var i int
 var sketch int
 for i, sketch = range PrintZigZag(n) {
 fmt.Printf("%*d ", length, sketch)
 if i%n == n-1 {
 fmt.Println("")
 }
 }
}

Homogeneous Data Structures Chapter 5

[154]

Run the following command to execute the zigzagmatrix.go file:

go run zigzagmatrix.go

The output is as follows:

The next section talks about the spiral matrix data structure.

Spiral matrix
A spiral matrix is an arrangement of n x n integers in which integers are arranged spirally
in sequentially increasing order. A spiral matrix is an old toy algorithm. The spiral order is
maintained using four loops, one for each corner of the matrix. The PrintSpiral method
in the following code snippet creates a matrix with elements arranged spirally in increasing
order. The method takes a parameter, n, and returns an integer array:

///main package has examples shown
// in Go Data Structures and algorithms book
package main
// importing fmt package
import (
 "fmt"
)
//PrintSpiral method
func PrintSpiral(n int) []int {

 var left int
 var top int
 var right int
 var bottom int

 left =0
 top =0
 right = n-1
 bottom = n-1
 var size int

Homogeneous Data Structures Chapter 5

[155]

 size = n * n
 var s []int
 s = make([]int, size)

 var i int
 i = 0
 for left < right {
 var c int
 for c = left; c <= right; c++ {
 s[top*n+c] = i
 i++
 }
 top++
 var r int
 for r = top; r <= bottom; r++ {
 s[r*n+right] = i
 i++
 }
 right--
 if top == bottom {
 break
 }
 for c = right; c >= left; c-- {
 s[bottom*n+c] = i
 i++
 }
 bottom--
 for r = bottom; r >= top; r-- {
 s[r*n+left] = i
 i++
 }
 left++
 }
 s[top*n+left] = i

 return s
}

In the following code snippet, the main method invokes the PrintSpiral method, which
takes the integer n and prints the integer values of the matrix spirally. The values returned
from the PrintSpiral method are printed as fields with a width of 2:

func main() {
 var n int
 n = 5
 var length int
 length = 2
 var i int

Homogeneous Data Structures Chapter 5

[156]

 var sketch int
 for i, sketch = range PrintSpiral(n) {
 fmt.Printf("%*d ", length, sketch)
 if i%n == n-1 {
 fmt.Println("")
 }
 }
}

Run the following command to execute the spiralmatrix.go file:

go run spiralmatrix.go

The output is as follows:

The next section talks about the Boolean matrix data structure.

Boolean matrix
A Boolean matrix is a matrix that consists of elements in the mth row and the nth column with
a value of 1. A matrix can be modified to be a Boolean matrix by making the values in
the mth row and the nth column equal to 1. In the following code, the Boolean matrix
transformation and print methods are shown in detail. The changeMatrix method
transforms the input matrix in to a Boolean matrix by changing the row and column values
from 0 to 1 if the cell value is 1. The method takes the input matrix as the parameter and
returns the changed matrix, as shown in the following code:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)
//changeMatrix method

Homogeneous Data Structures Chapter 5

[157]

func changeMatrix(matrix [3][3]int) [3][3]int {
 var i int
 var j int
 var Rows [3]int
 var Columns [3]int

 var matrixChanged [3][3]int

 for i=0; i<3; i++{
 for j=0; j < 3; j++{
 if matrix[i][j]==1 {
 Rows[i] =1
 Columns[j] =1
 }

 }
 }

 for i=0; i<3; i++ {
 for j=0; j<3; j++{
 if Rows[i]==1 || Columns[j]==1{
 matrixChanged[i][j] = 1
 }

 }
 }

 return matrixChanged

}

The example output of the change matrix method is shown the following screenshot. The
elements with 1 in the row or column are checked and the row elements are updated to 1:

Let's take a look at the printMatrix method and the main method.

Homogeneous Data Structures Chapter 5

[158]

The printMatrix method
In the following code snippet, the printMatrix method takes the input matrix and prints
the matrix values by row and traverses the columns for every row:

//printMatrix method
func printMatrix(matrix [3][3]int) {
 var i int
 var j int
 //var k int
 for i=0; i < 3; i++ {

 for j=0; j < 3; j++ {

 fmt.Printf("%d",matrix[i][j])

 }
 fmt.Printf("\n")
 }

}

The main method
The main method in the following code snippet invokes the changeMatrix method after
initializing the matrix. The changed matrix is printed after the invocation of the
changeMatrix method:

//main method
func main() {

 var matrix = [3][3] int {{1,0,0},{0,0,0},{0,0,0}}

 printMatrix(matrix)

 matrix = changeMatrix(matrix)

 printMatrix(matrix)

}

Homogeneous Data Structures Chapter 5

[159]

Run the following command to execute the boolean_matrix.go file:

go run boolean_matrix.go

The output is as follows:

The next section talks about multi-dimensional arrays.

Multi-dimensional arrays
An array is a homogeneous collection of data elements. An array's indexes range from
index 0 to index m-1, where m is the fixed length of the array. An array with multiple
dimensions is an array of an array. The following code initializes a multi-dimensional
array. A three-dimensional array is printed:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
 "math/rand"
)
//main method
func main() {

var threedarray [2][2][2]int

var i int

var j int

var k int

Homogeneous Data Structures Chapter 5

[160]

for i=0; i < 2; i++ {

 for j=0; j < 2; j++ {

 for k=0; k < 2; k++ {

 threedarray[i][j][k] = rand.Intn(3)
 }
 }
}

 fmt.Println(threedarray)
}

Run the following command to execute the preceding code snippet:

go run multidarray.go

The output is as follows:

The next section talks about tensor data structures.

Tensors
A tensor is a multi-dimensional array of components that are spatial coordinates. Tensors
are used extensively in physics and biological studies in topics such as electromagnetism
and diffusion tensor imaging. William Rowan Hamilton was the first to come up with the
term tensor. Tensors play a basic role in abstract algebra and algebraic topology.

The tensor order is the sum of the order of its arguments, plus the order of the result tensor.
For example, an inertia matrix is a second-order tensor. Spinors are also multi-dimensional
arrays, but the values of their elements change via coordinate transformations.

The initialization of a tensor is shown here. The array is initialized with integer values
ranging from 0 to 3:

var array [3][3][3]int
var i int
var j int

Homogeneous Data Structures Chapter 5

[161]

var k int
for i=0; i < 3; i++ {
 for j=0; j < 3; j++ {
 for k=0; k < 3; k++ {

 array[i][j][k] = rand.Intn(3)
 }
 }
}

Unfolding a tensor is done along the first dimension. Rearranging the tensor mode's n
vectors is referred to as mode n-unfolding of a tensor. 0-mode unfolding of a tensor array is
shown here:

 for j=0; j < 3; j++ {
 for k=0; k < 3; k++ {
 fmt.Printf("%d ",array[0][j][k])
 }
 fmt.Printf("\n")
 }

1-mode unfolding of a tensor array is shown here. The array's first dimension index is set to
1:

 for j=0; j < 3; j++ {
 for k=0; k < 3; k++ {
 fmt.Printf("%d ",array[1][j][k])
 }
 fmt.Printf("\n")
 }

The 2-mode unfolding of a tensor array is shown here. The array's first dimension row
index is set to 2:

for j=0; j < 3; j++ {
 for k=0; k < 3; k++ {
 fmt.Printf("%d ",array[2][j][k])
 }
 fmt.Printf("\n")
 }

Run the following command to execute the tensor.go file:

go run tensor.go

Homogeneous Data Structures Chapter 5

[162]

The output is as follows:

Summary
This chapter covered homogeneous data structures such as two-dimensional arrays and
multi-dimensional arrays. Matrix operations such as sum, subtraction, multiplication,
inverse, and determinant have been explained with code examples. Spiral matrices, zig-zag
matrices, and Boolean matrices have been explained using two-dimensional arrays. Tensors
and operations such as folding were also covered.

In the next chapter, heterogeneous data structures such as linked lists, ordered lists, and
unordered lists will be covered.

Questions
What is 2-mode unfolding of a tensor array?1.
Write a two-dimensional array of strings and initialize it. Print the strings.2.
Give an example of a multi-dimensional array and traverse through it.3.
For a 3 x 3 matrix, write code that calculates the determinant of the matrix.4.
What is a transpose of a 3 x 3 matrix?5.
What is a zig-zag matrix?6.
Write code with an example of a spiral matrix.7.
Which dimension is typically unfolded for tensor arrays?8.
How do you define a Boolean matrix?9.
Choose two 3 x 3 matrices and find the product of the matrices.10.

Homogeneous Data Structures Chapter 5

[163]

Further reading
The following books are recommended if you want to learn more about arrays, matrices,
and tensors:

Advanced Data Structures, by Peter Brass
Dynamic Data Structures: Lists, Stacks, Queues, and Trees, by Bogdan Patrut, and
Tiberiu Socaciu
Data structures and Algorithms: An Easy Introduction, by Rudolph Russell

6
Heterogeneous Data Structures

Heterogeneous data structures are data structures that contain diverse types of data, such
as integers, doubles, and floats. Linked lists and ordered lists are good examples of these
data structures. They are used for memory management. A linked list is a chain of elements
that are associated together by means of pointers. Each element's pointer links to the
following item, which connects the chain together. Linked lists don't have to take up a
block of memory. The memory that they utilize can be allocated dynamically. It comprises a
progression of nodes, which are the components of the list. Ordered lists and unordered
lists from HTML are shown to demonstrate the usage of lists and storage management. We
will cover linked lists, ordered lists, and unordered lists in this chapter and show the
implementation of their methods with appropriate examples. This chapter covers the
following heterogeneous data structures:

Linked lists
Ordered lists
Unordered lists

We covered singly linked lists and doubly linked lists with code examples in Chapter 3,
Linear Data Structures. Circular-linked lists were covered in Chapter 4, Non-Linear Data
Structures.

Technical requirements
Install Go Version 1.10 for your OS from the following link: https:/ ​/​golang. ​org/ ​doc/
install.

The GitHub URL for the code in this chapter is as follows: https:/ ​/​github. ​com/
PacktPublishing/​Learn- ​Data- ​Structures- ​and- ​Algorithms- ​with- ​Golang/ ​tree/ ​master/
Chapter06.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter06

Heterogeneous Data Structures Chapter 6

[165]

Linked lists
A linked list is a linear collection of elements with information. The linked list shrinks or
expands based on whether the components are to be included or removed. This list can be
small or enormous, yet, regardless of the size, the elements that make it up are
straightforward. Linked lists were covered in Chapter 3, Linear Data Structures. They
consume more memory than arrays. Reverse traversing is a problem for singly linked lists
because a singly linked list points to the next node forward. The next section explains how
to reverse a singly linked list with a code example.

Singly, doubly, and circular-linked lists will be covered in this chapter.

Singly linked lists
A singly linked list is a dynamic data structure in which addition and removal operations
are easy; this is because it's a dynamic data structure and not fixed. Stack and queue data
structures are implemented with linked lists. More memory is consumed when elements
are dynamically added because dynamic data structures aren't fixed. Random retrieval is
not possible with a singly linked list because you will need to traverse the nodes for a
positioned node. Insertion into a singly linked list can be at the beginning or end of the list,
and after a specified node. Deletion can happen at the beginning or end of the list and after
a specified node.

Reversing a singly linked list is shown in this section. The methods that are explained in
this section are a part of the linked_list.go file that's provided in the code bundle.

The Node class is defined in this snippet with a node pointer, nextNode, and a rune
property:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)

// Node struct
type Node struct {
 nextNode *Node
 property rune
}

Heterogeneous Data Structures Chapter 6

[166]

The methods of singly linked lists are discussed in the following sections.

The CreateLinkedList method
The CreateLinkedList method creates a linked list of runes from a to z:

// create List method
func CreateLinkedList() *Node {
 var headNode *Node
 headNode = &Node{nil, 'a'}
 var currNode *Node
 currNode = headNode
 var i rune
 for i= 'b'; i <= 'z'; i++ {
 var node *Node
 node = &Node{nil, i}
 currNode.nextNode = node
 currNode = node
 }
 return headNode
}

The example output for the CreateLinkedList method is shown as follows. The
headNode is created with a value of 97. The linked list is created with nodes starting from a
to z:

The ReverseLinkedList method
The ReverseLinkedList function takes a node pointer, nodeList, and returns a node
pointer to a reversed linked list.

The following code snippet shows how the linked list is reversed:

// Reverse List method
func ReverseLinkedList(nodeList *Node) *Node {
 var currNode *Node
 currNode = nodeList
 var topNode *Node = nil
 for {
 if currNode == nil {

Heterogeneous Data Structures Chapter 6

[167]

 break
 }
 var tempNode *Node
 tempNode = currNode.nextNode
 currNode.nextNode = topNode
 topNode = currNode
 currNode = tempNode
 }
 return topNode
}

The example output for the reverse linked list method is as follows. The method takes the
parameter of a linked string starting from a to z. The reversed list is from z to a nodes:

The main method
The main method creates the linked list, and prints the linked list and the reversed list in
string format:

// main method
func main() {
 var linkedList = CreateLinkedList()
 StringifyList(linkedList)
 StringifyList(ReverseLinkedList(linkedList))
}

Run the following command to execute the linked_list.go file:

go run linked_list.go

This is the output:

The next section talks about the doubly linked list data structure.

Heterogeneous Data Structures Chapter 6

[168]

Doubly linked lists
A doubly linked list is a data structure that consists of nodes that have links to the previous
and the next nodes. Doubly linked lists were presented with code examples in Chapter 3,
Linear Data Structures. Lists in Go are implemented as doubly linked lists. The elements 14
and 1 are pushed backward and forward, respectively. The elements 6 and 5 are inserted
before and after. The doubly linked list is iterated and the elements are printed. The code in
this section shows how lists can be used:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt and list package
import (
 "container/list"
 "fmt"
)

// main method
func main() {
 var linkedList *list.List
 linkedList = list.New()
 var element *list.Element
 element = linkedList.PushBack(14)
 var frontElement *list.Element
 frontElement = linkedList.PushFront(1)
 linkedList.InsertBefore(6, element)
 linkedList.InsertAfter(5, frontElement)

 var currElement *list.Element
 for currElement = linkedList.Front(); currElement != nil; currElement =
 currElement.Next() {
 fmt.Println(currElement.Value)
 }
}

Run the following command to execute the double_linked_list.go file:

go run double_linked_list.go

Heterogeneous Data Structures Chapter 6

[169]

This is the output:

The next section talks about the circular-linked list data structure.

Circular-linked lists
A circular-linked list is a collection of nodes in which the last node is connected to the first
node. Circular-linked lists were briefly covered in Chapter 4, Non-Linear Data Structures.
Circular-linked lists are used to create a circular queue.

In the following section, a circular queue struct is defined and implemented. The methods
that are explained in this section are part of the circular_queue.go file given in the code
bundle.

The CircularQueue class
The CircularQueue class has size, head, and last integer properties, as well as a nodes
array. The class is defined in the following code snippet:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)

//Circular Queue
type CircularQueue struct {
 size int
 nodes []interface{}
 head int
 last int
}

Heterogeneous Data Structures Chapter 6

[170]

Let's discuss the different methods of the CircularQueue class in the following sections.

The NewQueue method
The NewQueue method creates a new instance of the circular queue. The NewQueue function
takes the num parameter, which is the size of the queue. The function returns the circular
queue of nodes, as shown in the following code:

// NewCircularQueue method
func NewQueue(num int) *CircularQueue {
 var circularQueue CircularQueue
 circularQueue = CircularQueue{size: num + 1, head: 0, last: 0}
 circularQueue.nodes = make([]interface{}, circularQueue.size)
 return &circularQueue
}

The IsUnUsed method
The IsUnUsed method of the CircularQueue class in the following snippet checks
whether head is equal to the last node and returns true if so; otherwise, it returns false:

// IsUnUsed method
func (circularQueue CircularQueue) IsUnUsed() bool {
 return circularQueue.head == circularQueue.last
}

The IsComplete method
The IsComplete function of the CircularQueue class returns true if the head node's
position is the same as the last node position +1; otherwise, it returns false:

// IsComplete method
func (circularQueue CircularQueue) IsComplete() bool {
 return circularQueue.head == (circularQueue.last+1)%circularQueue.size
}

Heterogeneous Data Structures Chapter 6

[171]

The Add method
This method adds the given element to the circular queue. In the following code snippet,
the Add method takes an element parameter of the interface type and adds the element to
the circular queue:

// Add method
func (circularQueue *CircularQueue) Add(element interface{}) {
 if circularQueue.IsComplete() {
 panic("Queue is Completely Utilized")
 }
 circularQueue.nodes[circularQueue.last] = element
 circularQueue.last = (circularQueue.last + 1) % circularQueue.size
}

The example output for the Add method is as follows. The Add method takes the element
with value 1 and updates the queue:

The MoveOneStep method
The MoveOnestep method moves the element one step forward in the circular queue. The
MoveOneStep method takes the element parameter of the interface type and moves the
head node to position two after setting the element as the head node:

//MoveOneStep method
func (circularQueue *CircularQueue) MoveOneStep() (element interface{}) {
 if circularQueue.IsUnUsed() {
 return nil
 }
 element = circularQueue.nodes[circularQueue.head]
 circularQueue.head = (circularQueue.head + 1) % circularQueue.size
 return
}

The main method
The main method creates the queue and adds elements to the circular queue:

// main method
func main() {
 var circularQueue *CircularQueue

Heterogeneous Data Structures Chapter 6

[172]

 circularQueue = NewQueue(5)
 circularQueue.Add(1)
 circularQueue.Add(2)
 circularQueue.Add(3)
 circularQueue.Add(4)
 circularQueue.Add(5)
 fmt.Println(circularQueue.nodes)

}

Run the following command to execute the circular_queue.go file:

go run circular_queue.go

This is the output:

In the following sections, ordered lists and unordered lists are explained with code
examples.

Ordered lists
Lists in Go can be sorted in two ways:

Ordered list: By creating a group of methods for the slice data type and calling
sort

Unordered list: The other way is to invoke sort.Slice with a custom less
function

The only difference between an ordered list and an unordered list is that, in an ordered list,
the order in which the items are displayed is mandatory.

An ordered list in HTML starts with an tag. Each item in the list is written in
tags. Here's an example:

 Stones
 Branches
 Smoke

Heterogeneous Data Structures Chapter 6

[173]

An example of an ordered list using Golang is shown in the following code snippet. The
Employee class has Name, ID, SSN, and Age properties:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt and sort package
import (
 "fmt"
 "sort"
)

// class Employee
type Employee struct {
 Name string
 ID string
 SSN int
 Age int
}

The methods that are explained in the following sections are a part of the linked_list.go
file that's provided in the code bundle.

The ToString method
The ToString method of the Employee class returns a string version of employee. The
string version consists of a comma-separated Name, Age, ID, and SSN. This is shown in the
following code snippet:

// ToString method
func (employee Employee) ToString() string {
 return fmt.Sprintf("%s: %d,%s,%d", employee.Name,
employee.Age,employee.ID,
 employee.SSN)
}

Heterogeneous Data Structures Chapter 6

[174]

The SortByAge type
The SortByAge method sorts the elements concerned by Age. The SortByAge interface
operates on the Employee array. This is shown in the following code snippet:

// SortByAge type
type SortByAge []Employee

// SortByAge interface methods
func (sortIntf SortByAge) Len() int { return len(sortIntf) }
func (sortIntf SortByAge) Swap(i int, j int) { sortIntf[i], sortIntf[j] =
sortIntf[j], sortIntf[i] }
func (sortIntf SortByAge) Less(i int, j int) bool { return sortIntf[i].Age
< sortIntf[j].Age }

The main method initializes the employees array and sorts the array by age:

func main() {
 var employees = []Employee{
 {"Graham","231",235643,31},
 {"John", "3434",245643,42},
 {"Michael","8934",32432, 17},
 {"Jenny", "24334",32444,26},
 }
 fmt.Println(employees)
 sort.Sort(SortByAge(employees))
 fmt.Println(employees)
 sort.Slice(employees, func(i int, j int) bool {
 return employees[i].Age > employees[j].Age
 })
 fmt.Println(employees)
}

Run the following command to execute the sort_slice.go snippet:

go run sort_slice.go

This is the output:

Heterogeneous Data Structures Chapter 6

[175]

An ordered list is sorted using the sort criteria as follows. The sort_keys.go code snippet
shows how things are sorted by various criteria, such as name, mass, and distance. The
Mass and Miles units are defined as float64:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt and sort package
import (
 "fmt"
 "sort"
)

// Mass and Miles Types
type Mass float64
type Miles float64

The next section talks about the Thing struct definition.

The Thing class
A Thing class is defined in the following code with name, mass, distance,
meltingpoint, and freezingpoint properties:

// Thing class
type Thing struct {
 name string
 mass Mass
 distance Miles
 meltingpoint int
 freezingpoint int
}

The next section talks about the ByFactor function type.

Heterogeneous Data Structures Chapter 6

[176]

The ByFactor function type
ByFactor is a type of less function. The following code snippet shows the ByFactor
type:

// ByFactor function type
type ByFactor func(Thing1 *Thing, Thing2 *Thing) bool

The Sort method
The Sort method is a function with the byFactor parameter, as shown here:

// Sort method
func (byFactor ByFactor) Sort(Things []Thing) {
 var sortedThings *ThingSorter
 sortedThings = &ThingSorter{
 Things: Things,
 byFactor: byFactor,
 }
 sort.Sort(sortedThings)
}

Thing sorter class
The Thing sorter sorts the elements by their properties. The ThingSorter class has an
array of things and a byFactor method:

// ThingSorter class
type ThingSorter struct {
 Things []Thing
 byFactor func(Thing1 *Thing, Thing2 *Thing) bool
}

The next section talks about the implementation of the len, swap, and less methods.

Heterogeneous Data Structures Chapter 6

[177]

The len, swap, and less methods
The sort.Interface has the len, swap, and less methods, as shown in the following
code:

// Len method
func (ThingSorter *ThingSorter) Len() int {
 return len(ThingSorter.Things)
}

// Swap method
func (ThingSorter *ThingSorter) Swap(i int, j int) {
 ThingSorter.Things[i], ThingSorter.Things[j] = ThingSorter.Things[j],
 ThingSorter.Things[i]
}

// Less method
func (ThingSorter *ThingSorter) Less(i int, j int) bool {
 return ThingSorter.byFactor(&ThingSorter.Things[i],
&ThingSorter.Things[j])
}

The main method
The main method creates things and initializes them with values. This method shows
things that are sorted by mass, distance, and name in decreasing order of distance:

// Main method
func main() {
 var Things = []Thing{
 {"IronRod", 0.055, 0.4, 3000, -180},
 {"SteelChair", 0.815, 0.7, 4000, -209},
 {"CopperBowl", 1.0, 1.0, 60, -30},
 {"BrassPot", 0.107, 1.5, 10000, -456},
 }

 var name func(*Thing, *Thing) bool
 name = func(Thing1 *Thing, Thing2 *Thing) bool {
 return Thing1.name < Thing2.name
 }
 var mass func(*Thing, *Thing) bool
 mass = func(Thing1 *Thing, Thing2 *Thing) bool {
 return Thing1.mass < Thing2.mass
 }
 var distance func(*Thing, *Thing) bool
 distance = func(Thing1 *Thing, Thing2 *Thing) bool {

Heterogeneous Data Structures Chapter 6

[178]

 return Thing1.distance < Thing2.distance
 }
 var decreasingDistance func(*Thing, *Thing) bool
 decreasingDistance = func(p1, p2 *Thing) bool {
 return distance(p2, p1)
 }

 ByFactor(name).Sort(Things)
 fmt.Println("By name:", Things)
 ByFactor(mass).Sort(Things)
 fmt.Println("By mass:", Things)
 ByFactor(distance).Sort(Things)
 fmt.Println("By distance:", Things)
 ByFactor(decreasingDistance).Sort(Things)
 fmt.Println("By decreasing distance:", Things)
}

Run the following command to execute the sort_keys.go file:

go run sort_keys.go

This is the output:

The next section talks about the struct data structure.

Heterogeneous Data Structures Chapter 6

[179]

The struct type
A struct type (class) can be sorted using different sets of multiple fields. In the
sort_multi_keys.go code, we show how to sort struct types. A class called Commit
consists of the username, lang, and numlines properties. username is a string, lang is a
string, and numlines is an integer. In the following code, the Commit class is sorted by
commits and lines:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt and sort package
import (
 "fmt"
 "sort"
)

// A Commit is a record of code checking
type Commit struct {
 username string
 lang string
 numlines int
}

In the next section, the implementation of the multiSorter class is discussed.

The multiSorter class
The multiSorter class consists of the commits and lessFunction array properties. The
multiSorter class implements the Sort interface to sort the commits, as shown in the
following code:

type lessFunc func(p1 *Commit, p2 *Commit) bool
// multiSorter class
type multiSorter struct {
 Commits []Commit
 lessFunction []lessFunc
}

The different methods of the multiSorter class are discussed in the following sections.

Heterogeneous Data Structures Chapter 6

[180]

The Sort method
In the following code snippet, the Sort method of multiSorter sorts the Commits array
by invoking sort.Sort and passing the multiSorter argument:

// Sort method
func (multiSorter *multiSorter) Sort(Commits []Commit) {
 multiSorter.Commits = Commits
 sort.Sort(multiSorter)
}

The OrderBy method
The OrderedBy method takes the less function and returns multiSorter. The
multisorter instance is initialized by the less function, as shown in the following code
snippet:

// OrderedBy method
func OrderedBy(lessFunction ...lessFunc) *multiSorter {
 return &multiSorter{
 lessFunction: lessFunction,
 }
}

The len method
The len method of the multiSorter class returns the length of the Commits array. The
Commits array is a property of multiSorter:

// Len method
func (multiSorter *multiSorter) Len() int {
 return len(multiSorter.Commits)
}

The Swap method
The Swap method of multiSorter takes the integers i and j as input. This method swaps
the array elements at index i and j:

// Swap method
func (multiSorter *multiSorter) Swap(i int, j int) {
 multiSorter.Commits[i] = multiSorter.Commits[j]
 multiSorter.Commits[j] = multiSorter.Commits[i]
}

Heterogeneous Data Structures Chapter 6

[181]

The less method
The Less method of the multiSorter class takes the integers i and j and compares the
element at index i to the element at index j:

func (multiSorter *multiSorter) Less(i int, j int) bool {

 var p *Commit
 var q *Commit
 p = &multiSorter.Commits[i]
 q = &multiSorter.Commits[j]

 var k int
 for k = 0; k < len(multiSorter.lessFunction)-1; k++ {
 less := multiSorter.lessFunction[k]
 switch {
 case less(p, q):
 return true
 case less(q, p):
 return false
 }
 }
 return multiSorter.lessFunction[k](p, q)
}

The main method
The main method creates a Commit array and initializes the array with values. Functions
are created for sorting by user, language, and lines. OrderedBy returns a
multiSorter, and its sort method is called by user, language, increasingLines, and
decreasingLines:

//main method
func main() {
 var Commits = []Commit{
 {"james", "Javascript", 110},
 {"ritchie", "python", 250},
 {"fletcher", "Go", 300},
 {"ray", "Go", 400},
 {"john", "Go", 500},
 {"will", "Go", 600},
 {"dan", "C++", 500},
 {"sam", "Java", 650},
 {"hayvard", "Smalltalk", 180},
 }
 var user func(*Commit, *Commit) bool
 user = func(c1 *Commit, c2 *Commit) bool {

Heterogeneous Data Structures Chapter 6

[182]

 return c1.username < c2.username
 }
 var language func(*Commit, *Commit) bool
 language = func(c1 *Commit, c2 *Commit) bool {
 return c1.lang < c2.lang
 }
 var increasingLines func(*Commit, *Commit) bool
 increasingLines = func(c1 *Commit, c2 *Commit) bool {
 return c1.numlines < c2.numlines
 }
 var decreasingLines func(*Commit, *Commit) bool
 decreasingLines = func(c1 *Commit, c2 *Commit) bool {
 return c1.numlines > c2.numlines // Note: > orders downwards.
 }
 OrderedBy(user).Sort(Commits)
 fmt.Println("By username:", Commits)
 OrderedBy(user, increasingLines).Sort(Commits)
 fmt.Println("By username,asc order", Commits)
 OrderedBy(user, decreasingLines).Sort(Commits)
 fmt.Println("By username,desc order", Commits)
 OrderedBy(language, increasingLines).Sort(Commits)
 fmt.Println("By lang,asc order", Commits)
 OrderedBy(language, decreasingLines, user).Sort(Commits)
 fmt.Println("By lang,desc order", Commits)
}

Run the following command to execute the sort_multi_keys.go file:

go run sort_multi_keys.go

This is the output:

Heterogeneous Data Structures Chapter 6

[183]

The next section talks about the HTML unordered list data structure.

Unordered lists
An unordered list is implemented as a linked list. In an unordered list, the relative
positions of items in contiguous memory don't need to be maintained. The values will be
placed in a random fashion.

An unordered list starts with a tag in HTML 5.0. Each list item is coded with
tags. Here's an example:

 First book
 Second book
 Third book

The following is an example of an unordered list in Golang. The Node class has a property
and a nextNode pointer, as shown in the following code. The linked list will have a set of
nodes with a property attribute. The unordered list is presented in the script called
unordered_list.go:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main

// importing fmt package
import (
 "fmt"
)

//Node class
type Node struct {
 property int
 nextNode *Node
}

The next section talks about the UnOrderedList class implementation.

Heterogeneous Data Structures Chapter 6

[184]

The UnOrderedList class
The unordered list consists of elements that are not ordered by numbers. An
UnOrderedList class has a headNode pointer as the property. Traversing to the next node
from the head node, you can iterate through the linked list:

// UnOrderedList class
type UnOrderedList struct {
 headNode *Node
}

The next section discusses the AddtoHead method and the IterateList method of the
UnOrderedList struct.

The AddtoHead method
The AddtoHead method adds the node to the head of the unordered list. The AddToHead
method of the UnOrderedList class has a property parameter that's an integer. It will
make the headNode point to a new node created with property, and the nextNode points
to the current headNode of the unordered list:

//AddToHead method of UnOrderedList class
func (UnOrderedList *UnOrderedList) AddToHead(property int) {
 var node = &Node{}
 node.property = property
 node.nextNode = nil
 if UnOrderedList.headNode != nil {
 node.nextNode = UnOrderedList.headNode
 }
 UnOrderedList.headNode = node
}

The IterateList method
The IterateList method of the UnOrderedList class prints the node property of the
nodes in the list. This is shown in the following code:

//IterateList method iterates over UnOrderedList
func (UnOrderedList *UnOrderedList) IterateList() {
 var node *Node
 for node = UnOrderedList.headNode; node != nil; node = node.nextNode {
 fmt.Println(node.property)
 }
}

Heterogeneous Data Structures Chapter 6

[185]

The main method
The main method creates an instance of a linked list, and integer properties 1, 3, 5, and 7
are added to the head of the linked list. The linked list's headNode property is printed after
the elements are added:

// main method
func main() {
 var unOrderedList UnOrderedList
 unOrderedList = UnOrderedList{}
 unOrderedList.AddToHead(1)
 unOrderedList.AddToHead(3)
 unOrderedList.AddToHead(5)
 unOrderedList.AddToHead(7)
 unOrderedList.IterateList()
}

Run the following command to execute the unordered_list.go file from the code
bundle:

go run unordered_list.go

This is the output:

Summary
This chapter covered heterogeneous data structures such as ordered lists and unordered
lists with code examples. The Ordered lists section covered sorting slices by single key,
multiple keys, and sort.Slice. Slices are sorted by making the array of struct elements
implement the sort.Sort interface. Unordered lists were described as linked lists with
values that are not ordered.

The next chapter will cover dynamic data structures such as dictionaries, TreeSets,
sequences, synchronized TreeSets, and mutable TreeSets.

Heterogeneous Data Structures Chapter 6

[186]

Questions
Which method of the sort.Sort interface returns the size of the elements to be1.
sorted?
Which function needs to be passed to the sort.Slice method to sort a slice?2.
What does the swap method do to the elements at the i and j indices?3.
What is the default order for sorting elements using sort.Sort?4.
How do you implement ascending and descending sorting with sort.Slice?5.
How do you sort an array and keep the original order of the elements?6.
Which interface is used to reverse the order of the data?7.
Show an example of sorting a slice.8.
Which method is called to add elements to an unordered list?9.
Write a code example of an unordered list of floats.10.

Further reading
The following books are recommended if you want to know more about heterogeneous
data structures:

Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides
Introduction to Algorithms – Third Edition, by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and Clifford Stein
Data structures and Algorithms: An Easy Introduction, by Rudolph Russell

7
Dynamic Data Structures

A dynamic data structure is a set of elements in memory that has the adaptability to
expand or shrink. This ability empowers a software engineer to control precisely how much
memory is used. Dynamic data structures are used for handling generic data in a key-value
store. They can be used in distributed caching and storage management. Dynamic data
structures are valuable in many circumstances in which dynamic addition or deletion of
elements occur. They are comparable in capacity to a smaller relational database or an in-
memory database. These data structures are used in marketing and customer relationship
management applications. Dictionaries, TreeSets, and sequences are examples of dynamic
data structures.

In this chapter, we will explain what dictionaries, TreeSets, and sequences are and show
you how they are implemented with the help of code examples.

This chapter covers the following dynamic data structures:

Dictionaries
TreeSets:

Synchronized TreeSets
Mutable TreeSets

Sequences:
Farey
Fibonacci
Look-and-say
Thue–Morse

Dynamic Data Structures Chapter 7

[188]

Technical requirements
Install Go Version 1.10 from https:/ ​/ ​golang. ​org/ ​doc/ ​install for your OS.

The GitHub URL for the code in this chapter is as follows: https:/ ​/​github. ​com/
PacktPublishing/​Learn- ​Data- ​Structures- ​and- ​Algorithms- ​with- ​Golang/ ​tree/ ​master/
Chapter07.

Dictionaries
A dictionary is a collection of unique key and value pairs. A dictionary is a broadly useful
data structure for storing a set of data items. It has a key, and each key has a solitary item
associated with it. When given a key, the dictionary will restore the item associated with
that key. These keys can be of any type: strings, integers, or objects. Where we need to sort
a list, an element value can be retrieved utilizing its key. Add, remove, modify, and lookup
operations are allowed in this collection. A dictionary is similar to other data structures,
such as hash, map, and HashMap. The key/value store is used in distributed caching and in
memory databases. Arrays differ from dictionaries in how the data is accessed. A set has
unique items, whereas a dictionary can have duplicate values.

Dictionary data structures are used in the following streams:

Phone directories
Router tables in networking
Page tables in operating systems
Symbol tables in compilers
Genome maps in biology

The following code shows how to initialize and modify a dictionary. In this snippet, the
dictionary has the key DictKey and is a string:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
"fmt"
 "sync"
)

// DictKey type

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter07

Dynamic Data Structures Chapter 7

[189]

type DictKey string

The following sections talk about the type and methods in dictionaries.

DictVal type
The dictionary has the value DictVal of type string mapped to DictKey:

// DictVal type
type DictVal string

Dictionary class
The dictionary in the following code is a class with dictionary elements, with DictKey
as the key and DictVal as the value. It has a sync.RWMutex property, lock:

// Dictionary class
type Dictionary struct {
 elements map[DictKey]DictVal
 lock sync.RWMutex
}

The Put, Remove, Contain, Find, Rest, NumberofElements, GetKeys, GetValues, and
Main methods are discussed in the following sections.

Put method
A has a Put method, as shown in the following example, that takes the key and value
parameters of the DictKey and DictVal types respectively. The Lock method of the
dictionary's lock instance is invoked, and the Unlock method is deferred. If there are
empty map elements in the dictionary, elements are initialized using make.
The map elements are set with a key and a value if they are not empty:

// Put method
func (dict *Dictionary) Put(key DictKey, value DictVal) {
 dict.lock.Lock()
 defer dict.lock.Unlock()
 if dict.elements == nil {
 dict.elements = make(map[DictKey]DictVal)
 }
 dict.elements[key] = value
}

Dynamic Data Structures Chapter 7

[190]

The example output of the put method is as follows. The put method takes the key 1 and
value 1. The map is updated with key and value:

Remove method
A dictionary has a remove method, as shown in the following code, which has a key
parameter of the DictKey type. This method returns a bool value if the value associated
with Dictkey is removed from the map:

// Remove method
func (dict *Dictionary) Remove(key DictKey) bool {
 dict.lock.Lock()
 defer dict.lock.Unlock()
 var exists bool
 _, exists = dict.elements[key]
 if exists {
 delete(dict.elements, key)
 }
 return exists
}

Contains method
In the following code, the Contains method has an input parameter, key, of the
DictKey type, and returns bool if key exists in the dictionary:

// Contains method
func (dict *Dictionary) Contains(key DictKey) bool {
 dict.lock.RLock()
 defer dict.lock.RUnlock()
 var exists bool
 _, exists = dict.elements[key]
 return exists
}

Dynamic Data Structures Chapter 7

[191]

Find method
The Find method takes the key parameter of the DictKey type and returns the
DictVal type associated with the key. The following code snippet explains the Find
method:

// Find method
func (dict *Dictionary) Find(key DictKey) DictVal {
 dict.lock.RLock()
 defer dict.lock.RUnlock()
 return dict.elements[key]
}

Reset method
The Reset method of the Dictionary class is presented in the following snippet. The
Lock method of the dictionary's lock instance is invoked and Unlock is deferred. The
elements map is initialized with a map of the DictKey key and the DictVal value:

// Reset method
func (dict *Dictionary) Reset() {
 dict.lock.Lock()
 defer dict.lock.Unlock()
 dict.elements = make(map[DictKey]DictVal)
}

NumberOfElements method
The NumberOfElements method of the Dictionary class returns the length of the
elements map. The RLock method of the lock instance is invoked. The RUnlock method
of the lock instance is deferred before returning the length; this is shown in the following
code snippet:

// NumberOfElements method
func (dict *Dictionary) NumberOfElements() int {
 dict.lock.RLock()
 defer dict.lock.RUnlock()
 return len(dict.elements)
}

Dynamic Data Structures Chapter 7

[192]

GetKeys method
The GetKeys method of the Dictionary class is shown in the following code snippet. The
method returns the array of the DictKey elements. The RLock method of the lock instance
is invoked, and the RUnlock method is deferred. The dictionary keys are returned by
traversing the element's map:

// GetKeys method
func (dict *Dictionary) GetKeys() []DictKey {
 dict.lock.RLock()
 defer dict.lock.RUnlock()
 var dictKeys []DictKey
 dictKeys = []DictKey{}
 var key DictKey
 for key = range dict.elements {
 dictKeys = append(dictKeys, key)
 }
 return dictKeys
}

GetValues method
The GetValues method of the Dictionary class returns the array of the DictVal
elements. In the following code snippet, the RLock method of the lock instance is invoked
and the RUnlock method is deferred. The array of dictionary values is returned after
traversing the element's map:

// GetValues method
func (dict *Dictionary) GetValues() []DictVal {
 dict.lock.RLock()
 defer dict.lock.RUnlock()
 var dictValues []DictVal
 dictValues = []DictVal{}
 var key DictKey
 for key = range dict.elements {
 dictValues = append(dictValues, dict.elements[key])
 }
 return dictValues
}

Dynamic Data Structures Chapter 7

[193]

The main method
The following code shows the main method, where the dictionary is initialized and printed:

// main method
func main() {
 var dict *Dictionary = &Dictionary{}
 dict.Put("1","1")
 dict.Put("2","2")
 dict.Put("3","3")
 dict.Put("4","4")
 fmt.Println(dict)
}

Run the following commands to execute the dictionary.go file:

go run dictionary.go

The output is as follows:

Let's take a look at the TreeSet data structure in the following section.

TreeSets
TreeSets are used in marketing and customer relationship management applications.
TreeSet is a set that has a binary tree with unique elements. The elements are sorted in a
natural order. In the following code snippet, TreeSet creation, insertion, search, and
stringify operations are presented. TreeSet allows only one null value if the set is
empty. The elements are sorted and stored as elements. The add, remove, and contains
functions cost log(n) on TreeSets:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// TreeSet class
type TreeSet struct {
 bst *BinarySearchTree

Dynamic Data Structures Chapter 7

[194]

}

We will discuss the different TreeSet methods in the following sections.

InsertTreeNode method
The InsertTreeNode method of the TreeSet class takes treeNodes variable arguments
of the TreeNode type. In the following code, the elements with the key and value are
inserted in the binary search tree of TreeSet:

// InsertTreeNode method
func (treeset *TreeSet) InsertTreeNode(treeNodes ...TreeNode) {
 var treeNode TreeNode
 for _, treeNode = range treeNodes {
 treeset.bst.InsertElement(treeNode.key, treeNode.value)
 }
}

The example output of the InsertTreeNode method is as follows. The InsertTreeNode
method takes treeNodes as the parameter. treeNodes are inserted with rootNode, which
has a value of 8:

Dynamic Data Structures Chapter 7

[195]

Delete method
The Delete method of the TreeSet class is shown in the following code snippet. In this
method, treeNodes with the provided key are removed:

// Delete method
func (treeset *TreeSet) Delete(treeNodes ...TreeNode) {
 var treeNode TreeNode
 for _, treeNode = range treeNodes {
 treeset.bst.RemoveNode(treeNode.key)
 }
}

InOrderTraverseTree method
The InOrderTraverseTree method of the BinarySearchTree class takes function as a
parameter. The RLock method of the lock instance is invoked. The RUnlock method of the
tree's lock instance is deferred. InOrderTraverseTree is invoked with the rootNode of
the tree and function as parameters:

//InOrderTraverseTree method
func (tree *BinarySearchTree) InOrderTraverseTree(function func(int)) {
 tree.lock.RLock()
 defer tree.lock.RUnlock()
 inOrderTraverseTree(tree.rootNode, function)
}

The inOrderTraverseTree method
The inOrderTraverseTree method traverses from the left of the tree to root of the node
and then to the right of the tree. The inOrderTraverseTree method takes treeNode and
function as parameters. The method recursively calls the inOrderTraverseTree method
with function and then leftNode and rightNode in separate calls. The function
method is invoked with the value of treeNode:

// inOrderTraverseTree method
func inOrderTraverseTree(treeNode *TreeNode, function func(int)) {
 if treeNode != nil {
 inOrderTraverseTree(treeNode.leftNode, function)
 function(treeNode.value)
 inOrderTraverseTree(treeNode.rightNode, function)
 }
}

Dynamic Data Structures Chapter 7

[196]

PreOrderTraverseTree method
The PreOrderTraverseTree method of the BinarySearchTree class takes the function
as its parameter. The Lock method on the tree's lock instance is invoked first, and the
Unlock method is deferred. The PreOrderTraverseTree method is called with the
rootNode of the tree and function as parameters:

// PreOrderTraverse method
func (tree *BinarySearchTree) PreOrderTraverseTree(function func(int)) {
 tree.lock.Lock()
 defer tree.lock.Unlock()
 preOrderTraverseTree(tree.rootNode, function)
}

The preOrderTraverseTree method
The preOrderTraverseTree method traverses the tree from the root, to the left and right
of the tree. The preOrderTraverseTree method takes treeNode and function as
parameters. If treeNode is not nil, function is invoked with the value of treeNode,
and the preOrderTraverseTree method is invoked with function and leftNode and
rightNode as parameters:

// preOrderTraverseTree method
func preOrderTraverseTree(treeNode *TreeNode, function func(int)) {
 if treeNode != nil {
 function(treeNode.value)
 preOrderTraverseTree(treeNode.leftNode, function)
 preOrderTraverseTree(treeNode.rightNode, function)
 }
}

Search method
The Search method of the TreeSet class takes a variable argument named treeNodes of
the TreeNode type and returns true if one of those treeNodes exists; otherwise, it returns
false. The code following snippet outlines the Search method:

// Search method
func (treeset *TreeSet) Search(treeNodes ...TreeNode) bool {
 var treeNode TreeNode
 var exists bool
 for _, treeNode = range treeNodes {

Dynamic Data Structures Chapter 7

[197]

 if exists = treeset.bst.SearchNode(treeNode.key); !exists {
 return false
 }
 }
 return true
}

The String method
In the following code snippet, the String method of the TreeSet class returns the string
version of bst:

// String method
func (treeset *TreeSet) String() {
 treeset.bst.String()
}

The main method
The main method in the TreeSet class creates a TreeSet with TreeNodes. The following
snippet creates a TreeSet and invokes the String method:

// main method
func main() {
 var treeset *TreeSet = &TreeSet{}
 treeset.bst = &BinarySearchTree{}
 var node1 TreeNode = TreeNode{8,8, nil,nil}
 var node2 TreeNode = TreeNode{3,3,nil, nil}
 var node3 TreeNode = TreeNode{10,10,nil,nil}
 var node4 TreeNode = TreeNode{1,1,nil,nil}
 var node5 TreeNode = TreeNode{6,6,nil,nil}
 treeset.InsertTreeNode(node1,node2,node3, node4, node5)
 treeset.String()
}

Run the following commands to execute the treeset.go and binarysearchtree.go
files:

$ go build treeset.go binarysearchtree.go
$./treeset

Dynamic Data Structures Chapter 7

[198]

The output is as follows:

The next section talks about the synchronized TreeSet data structure.

Synchronized TreeSets
Operations that are performed on synchronized TreeSets are synchronized across multiple
calls that access the elements of TreeSets. Synchronization in TreeSets is achieved using a
sync.RWMutex lock. The lock method on the tree's lock instance is invoked, and the
unlock method is deferred before the tree nodes are inserted, deleted, or updated:

// InsertElement method
func (tree *BinarySearchTree) InsertElement(key int, value int) {
 tree.lock.Lock()
 defer tree.lock.Unlock()
 var treeNode *TreeNode
 treeNode = &TreeNode{key, value, nil, nil}
 if tree.rootNode == nil {
 tree.rootNode = treeNode
 } else {
 insertTreeNode(tree.rootNode, treeNode)
 }
}

Dynamic Data Structures Chapter 7

[199]

Mutable TreeSets
Mutable TreeSets can use add, update, and delete operations on the tree and its nodes.
insertTreeNode updates the tree by taking the rootNode and treeNode parameters to
be updated. The following code snippet shows how to insert a TreeNode with a given
rootNode and TreeNode:

// insertTreeNode method
func insertTreeNode(rootNode *TreeNode, newTreeNode *TreeNode) {
 if newTreeNode.key < rootNode.key {
 if rootNode.leftNode == nil {
 rootNode.leftNode = newTreeNode
 } else {
 insertTreeNode(rootNode.leftNode, newTreeNode)
 }
 } else {
 if rootNode.rightNode == nil {
 rootNode.rightNode = newTreeNode
 } else {
 insertTreeNode(rootNode.rightNode, newTreeNode)
 }
 }
}

Let's discuss the different mutable TreeSets in the following sections.

RemoveNode method
The RemoveNode method of a BinarySearchTree is as follows:

// RemoveNode method
func (tree *BinarySearchTree) RemoveNode(key int) {
 tree.lock.Lock()
 defer tree.lock.Unlock()
 removeNode(tree.rootNode, key)
}

Dynamic Data Structures Chapter 7

[200]

Treeset.bst
The TreeNode's can be updated by accessing treeset.bst and traversing the binary
search tree from the rootNode and the left and right nodes of rootNode, as shown here:

 var treeset *TreeSet = &TreeSet{}
 treeset.bst = &BinarySearchTree{}
 var node1 TreeNode = TreeNode{8, 8, nil, nil}
 var node2 TreeNode = TreeNode{3, 3, nil, nil}
 var node3 TreeNode = TreeNode{10, 10, nil, nil}
 var node4 TreeNode = TreeNode{1, 1, nil, nil}
 var node5 TreeNode = TreeNode{6, 6, nil, nil}
 treeset.InsertTreeNode(node1, node2, node3, node4, node5)
 treeset.String()

In the next section, we will take a look at sequences.

Sequences
A sequence is a set of numbers that are grouped in a particular order. The number of
elements in the stream can be infinite, and these sequences are called streams. A
subsequence is a sequence that's created from another sequence. The relative positions of
the elements in a subsequence will remain the same after deleting some of the elements in a
sequence.

In the following sections, we will take a look at different sequences such as the Farey
sequence, Fibonacci sequence, look-and-say, and Thue–Morse.

Farey sequence
A Farey sequence consists of reduced fractions with values between zero and one. The
denominators of the fractions are less than or equal to m, and organized in ascending order.
This sequence is called a Farey series. In the following code, reduced fractions are
displayed:

///main package has examples shown
// in Go Data Structures and algorithms book
package main
// importing fmt package
import (
 "fmt"
)

Dynamic Data Structures Chapter 7

[201]

// fraction class
type fraction struct {
 numerator int
 denominator int
}

Let's take a look at the different methods in a Farey sequence.

String method
The fraction class has the numerator and denominator integer properties. The String
method of the fraction class, as shown in the following snippet, returns a string version
of fraction:

// string method of fraction class
func (frac fraction) String() string {
 return fmt.Sprintf("%d/%d", frac.numerator, frac.denominator)
}

The g method
The g method takes two fractions and prints the series of reduced fractions. The g
function takes an l or an r fraction, and num int as arguments to print the reduced fraction
as a series. The following code snippet shows the g method:

// g method
func g(l fraction, r fraction, num int) {
 var frac fraction
 frac = fraction{l.numerator + r.numerator, l.denominator + r.denominator}
 if frac.denominator <= num {
 g(l, frac, num)
 fmt.Print(frac, " ")
 g(frac, r, num)
 }
}

Dynamic Data Structures Chapter 7

[202]

The main method
The following snippet shows the main method. In the main method, reduced fraction series
are printed using recursion:

// main method
func main() {
 var num int
 var l fraction
 var r fraction
 for num = 1; num <= 11; num++ {
 l = fraction{0, 1}
 r = fraction{1, 1}
 fmt.Printf("F(%d): %s ", num, l)
 g(l, r, num)
 fmt.Println(r)
 }

Run the following command to execute the farey_sequence.go file:

go run farey_sequence.go

The output is as follows:

The next section talks about the Fibonacci sequence data structure.

Dynamic Data Structures Chapter 7

[203]

Fibonacci sequence
The Fibonacci sequence consists of a list of numbers in which every number is the sum of
the two preceding numbers. Pingala, in 200 BC, was the first to come up with Fibonacci
numbers. The Fibonacci sequence is as follows:

The recurrence relation for the Fibonacci sequence is as follows:

The seed values are as follows:

A Fibonacci prime is a Fibonacci number that is a prime number. The Fibonacci prime
series is as follows:

Computer algorithms such as the Fibonacci search technique, heap, and cubes are popular
applications of Fibonacci numbers. Pseudorandom number generators use Fibonacci
numbers.

The following code snippet shows the Fibonacci sequence and recursive Fibonacci number
calculation. The Series function is presented as well. The Series function calculates the
Fibonacci numbers in the sequence:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt and strconv package
import (
 "fmt"
 "strconv"
)

// Series method
func Series(n int) int {
 var f []int
 f = make([]int, n+1, n+2)
 if n < 2 {

Dynamic Data Structures Chapter 7

[204]

 f = f[0:2]
 }
 f[0] = 0
 f[1] = 1
 var i int
 for i = 2; i <= n; i++ {
 f[i] = f[i-1] + f[i-2]
 }
 return f[n]
}

The different methods of the Fibonacci sequence are discussed in the following sections.

FibonacciNumber method
The FibonacciNumber method takes the integer n and, by recursion, calculates the
Fibonacci numbers. The following code snippet shows this recursion:

// FibonacciNumber method
func FibonacciNumber(n int) int {
 if n <= 1 {
 return n
 }
 return FibonacciNumber(n-1) + FibonacciNumber(n-2)
}

Main method
The main method in the following code snippet shows how the Fibonacci sequence is
calculated:

// main method
func main() {
 var i int
 for i = 0; i <= 9; i++ {
 fmt.Print(strconv.Itoa(Series(i)) + " ")
 }
 fmt.Println("")
 for i = 0; i <= 9; i++ {
 fmt.Print(strconv.Itoa(FibonacciNumber(i)) + " ")
 }
 fmt.Println("")
}

Dynamic Data Structures Chapter 7

[205]

Run the following command to execute the fibonacci_sequence.go file:

go run fibonacci_sequence.go

The output is as follows:

The next section talks about the look-and-say data structure.

Look-and-say
The look-and-say sequence is a sequence of integers:

The sequence is generated by counting the digits of the previous number in the group. John
Conway initially coined the term look-and-say sequence.

The look-and-say sequence is shown in the following code. The look_say method takes a
string as a parameter and returns a look-and-say sequence of integers:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt and strconv package
import (
 "fmt"
 "strconv"
)

// look_say method
func look_say(str string) (rstr string) {
 var cbyte byte
 cbyte = str[0]
 var inc int
 inc = 1

Dynamic Data Structures Chapter 7

[206]

 var i int
 for i = 1; i < len(str); i++ {
 var dbyte byte
 dbyte = str[i]
 if dbyte == cbyte {
 inc++
 continue
 }
 rstr = rstr + strconv.Itoa(inc) + string(cbyte)
 cbyte = dbyte
 inc = 1
 }
 return rstr + strconv.Itoa(inc) + string(cbyte)
}

The main method initializes the string and invokes the look_say method. The look-and-
say sequence that is returned from the method is printed:

// main method
func main() {
 var str string
 str = "1"
 fmt.Println(str)
 var i int
 for i = 0; i < 8; i++ {
 str = look_say(str)
 fmt.Println(str)
 }
}

Run the following command to execute the look_say.go file:

go run look_say.go

The output is as follows:

Dynamic Data Structures Chapter 7

[207]

The next section talks about the Thue–Morse data structure.

Thue–Morse
The Thue–Morse sequence is a binary sequence starting at zero that appends the Boolean
complement of the current sequence.

The Thue–Morse sequence is as follows:

The Thue–Morse sequence was applied by Eugene Prophet and used by Axel Thue in the
study of combinatorics on words. The Thue–Morse sequence is used in the area of fractal
curves, such as Koch snowflakes.

The following code snippet creates the Thue–Morse sequence. The ThueMorseSequence
function takes a bytes.Buffer instance buffer and modifies the buffer to the Thue–Morse
sequence by applying the complement operation on the bytes:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt and bytes package
import (
 "bytes"
 "fmt"
)

// ThueMorseSequence method
func ThueMorseSequence(buffer *bytes.Buffer) {

 var b int
 var currLength int
 var currBytes []byte
 for b, currLength, currBytes = 0, buffer.Len(), buffer.Bytes(); b <
currLength; b++ {
 if currBytes[b] == '1' {
 buffer.WriteByte('0')
 } else {
 buffer.WriteByte('1')
 }
 }
}

Dynamic Data Structures Chapter 7

[208]

The main method initializes the sequence number as 0. The ThueMorseSequence method
takes the pointer to the bytes.Buffer and modifies it by invoking the
ThueMorseSequence method. The resulting sequence is printed on the Terminal:

// main method
func main() {
 var buffer bytes.Buffer
 // initial sequence member is "0"
 buffer.WriteByte('0')
 fmt.Println(buffer.String())
 var i int
 for i = 2; i <= 7; i++ {
 ThueMorseSequence(&buffer)
 fmt.Println(buffer.String())
 }
}

Run the following command to execute the thue_morse.go file:

go run thue_morse.go

The output is as follows:

Dynamic Data Structures Chapter 7

[209]

Summary
This chapter covered the contains, put, remove, find, reset, NumberOfElements,
getKeys, and getValues methods of the dictionary data structure. The InsertTreeNode,
Delete, Search, and stringify TreeSet operations have been explained in detail, and
code examples were provided. The BinarySearchTree structure has been presented in
code, along with the InsertElement, InOrderTraversal, PreOrderTraverseTree,
SearchNode, and RemoveNode functions.

The next chapter covers algorithms such as sorting, searching, recursion, and hashing.

Questions
How do you ensure a BinarySearchTree is synchronized?1.
Which method is called to postpone the invocation of a function?2.
How do you define dictionary keys and values with custom types?3.
How do you find the length of a map?4.
What keyword is used to traverse a list of treeNodes in a tree?5.
In a Farey sequence, what are the real numbers in the series called?6.
What is a Fibonacci number?7.
How do you convert an integer into a string?8.
What method is used to convert a byte into a string?9.
What method is called to add elements to a dictionary?10.

Dynamic Data Structures Chapter 7

[210]

Further reading
The following books are recommended if you want to learn more about dynamic data
structures:

Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides
Introduction to Algorithms – Third Edition, by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and Clifford Stein
Data structures and Algorithms: An Easy Introduction, by Rudolph Russell

8
Classic Algorithms

Classic algorithms are used in the areas of data search and cryptography. Sorting,
searching, recursing, and hashing algorithms are good examples of classic
algorithms. Sorting algorithms are used to order elements into either an ascending or
descending key arrangement. These algorithms are frequently used to canonicalize data
and to create readable content. Search algorithms are used to find an element in a set. A
recursive algorithm is one that calls itself with input items. A hashing algorithm is a
cryptographic hash technique. It is a scientific calculation that maps data with a subjective
size to a hash with a settled size. It's intended to be a single direction function, that you
cannot alter.

In this chapter, we will cover the different classic algorithms and explain them with suitable
examples.

This chapter covers the following algorithms:

Sorting:
Bubble
Selection
Insertion
Shell
Merge
Quick

Searching:
Linear
Sequential
Binary
Interpolation

Recursion
Hashing

Classic Algorithms Chapter 8

[212]

Technical requirements
Install Go version 1.10 from https:/ ​/ ​golang. ​org/ ​doc/​install for your OS.

The GitHub URL for the code in this chapter is as follows: https:/ ​/​github. ​com/
PacktPublishing/​Learn- ​Data- ​Structures- ​and- ​Algorithms- ​with- ​Golang/ ​tree/ ​master/
Chapter08.

Sorting
Sorting algorithms arrange the elements in a collection in ascending or descending order.
Lexicographical order can be applied to a collection of characters and strings. The efficiency
of these algorithms is in the performance of sorting the input data into a sorted collection.
The best sorting algorithm time complexity is O(n log n). Sorting algorithms are classified
by the following criteria:

Computational complexity
Memory usage
Stability
Type of sorting: serial/parallel
Adaptability
Method of sorting

In the following sections, we'll look at the different sorting algorithms, that is, bubble,
selection, insertion, shell, merge, and quick.

Bubble
The bubble sort algorithm is a sorting algorithm that compares a pair of neighboring
elements and swaps them if they are in the wrong order. The algorithm has a complexity of
O(n2), where n is the number of elements to be sorted. The smallest or greatest value
bubbles up to the top of the collection, or the smallest or greatest sinks to the bottom
(depending on whether you're sorting into ascending or descending order).

The following code snippet shows the implementation of the bubble sort algorithm. The
bubbleSorter function takes an integer array and sorts the array's elements in ascending
order.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter08

Classic Algorithms Chapter 8

[213]

The main method initializes the array's integers and invokes the bubbleSorter function,
as follows:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt and bytes package
import (
 "fmt"
)

//bubble Sorter method
func bubbleSorter(integers [11]int) {

 var num int
 num = 11
 var isSwapped bool
 isSwapped = true
 for isSwapped {
 isSwapped = false
 var i int
 for i = 1; i < num; i++ {
 if integers[i-1] > integers[i] {

 var temp = integers[i]
 integers[i] = integers[i-1]
 integers[i-1] = temp
 isSwapped = true
 }
 }
 }
 fmt.Println(integers)
}

// main method
func main() {
 var integers [11]int = [11]int{31, 13, 12, 4, 18, 16, 7, 2, 3, 0, 10}
 fmt.Println("Bubble Sorter")
 bubbleSorter(integers)

}

Classic Algorithms Chapter 8

[214]

Run the following command to execute the bubble_sort.go file:

go run bubble_sort.go

The output is as follows:

Let's take a look at the selection sort algorithm in the following section.

Selection
Selection sort is an algorithm that divides the input collection into two fragments. This
sublist of elements is sorted by swapping the smallest or largest element from the left of the
list to the right. The algorithm is of the order O(n2). This algorithm is inefficient for large
collections, and it performs worse than the insertion sort algorithm.

The following code shows the implementation of the SelectionSorter function, which
takes the collection to be sorted:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)

// Selection Sorter method
func SelectionSorter(elements []int) {

 var i int
 for i = 0; i < len(elements)-1; i++ {
 var min int
 min = i
 var j int
 for j = i + 1; j <= len(elements)-1; j++ {
 if elements[j] < elements[min] {

Classic Algorithms Chapter 8

[215]

 min = j
 }
 }
 swap(elements, i, min)
 }
}

Let's take a look at the different selection methods in the next sections.

The swap method
The swap method takes the elements array and the i and j indices as parameters. The
method swaps the element at position i with the element at position j, as shown here:

// swap method
func swap(elements []int, i int, j int) {
 var temp int
 temp = elements[j]
 elements[j] = elements[i]
 elements[i] = temp
}

The main method
The main method initializes the elements array. The elements are printed before and
after sorting in the following code snippet:

//main method
func main() {
 var elements []int
 elements = []int{11, 4, 18, 6, 19, 21, 71, 13, 15, 2}
 fmt.Println("Before Sorting ", elements)
 SelectionSorter(elements)
 fmt.Println("After Sorting", elements)
}

Run the following command to execute the selection_sort.go file:

go run selection_sort.go

Classic Algorithms Chapter 8

[216]

The output is as follows:

Let's take a look at the insertion sort algorithm in the following section.

Insertion
Insertion sort is an algorithm that creates a final sorted array one element at a time. The
algorithm's performance is of the order O(n2). This algorithm is less efficient on large
collections than other algorithms, such as quick, heap, and merge sort. In real life, a good
example of insertion sort is the way cards are manually sorted by the players in a game of
bridge.

The implementation of the insertion sort algorithm is shown in the following code snippet.
The RandomSequence function takes the number of elements as a parameter and returns an
array of random integers:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt and bytes package
import (
 "fmt"
 "math/rand"
 "time"
)

// randomSequence method
func randomSequence(num int) []int {

 var sequence []int
 sequence = make([]int, num,num)
 rand.Seed(time.Now().UnixNano())
 var i int
 for i= 0; i < num; i++ {
 sequence[i] = rand.Intn(999) - rand.Intn(999)
 }

Classic Algorithms Chapter 8

[217]

 return sequence
}

Let's take a look at the different insertion methods in the next sections.

InsertionSorter method
The implementation of the InsertionSorter method is shown in the following snippet.
This method takes the array of integers as a parameter and sorts them:

//InsertionSorter method
func InsertionSorter(elements []int) {
 var n = len(elements)
 var i int

 for i = 1; i < n; i++ {
 var j int
 j = i
 for j > 0 {
 if elements[j-1] > elements[j] {
 elements[j-1], elements[j] = elements[j], elements[j-1]
 }
 j = j - 1
 }
 }
}

The main method
The main method initializes the sequence by invoking the randomSequence function, as
shown in the following code. The InsertionSorter function takes the sequence and
sorts it in ascending order:

//main method
func main() {

 var sequence []int
 sequence = randomSequence(24)
 fmt.Println("\n^^^^^^ Before Sorting ^^^ \n\n", sequence)
 InsertionSorter(sequence)
 fmt.Println("\n--- After Sorting ---\n\n", sequence, "\n")
}

Classic Algorithms Chapter 8

[218]

Run the following command to execute the insertion_sort.go file:

go run insertion_sort.go

The output is as follows:

Let's take a look at the shell sort algorithm in the next section.

Shell
The shell sort algorithm sorts a pair of elements that are not in sequence in a collection. The
distance between the elements to be compared is decreased sequentially. This algorithm
performs more operations and has a greater cache miss ratio than the quick sort algorithm.

In the following code, we can see the implementation of the shell sort algorithm. The
ShellSorter function takes an integer array as a parameter and sorts it:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt and bytes package
import (
 "fmt"
)

// shell sorter method
func ShellSorter(elements []int) {
 var (
 n = len(elements)
 intervals = []int{1}
 k = 1

Classic Algorithms Chapter 8

[219]

)

 for {
 var interval int
 interval = power(2, k) + 1
 if interval > n-1 {
 break
 }
 intervals = append([]int{interval}, intervals...)
 k++
 }
 var interval int
 for _, interval = range intervals {
 var i int
 for i = interval; i < n; i += interval {
 var j int
 j = i
 for j > 0 {
 if elements[j-interval] > elements[j] {
 elements[j-interval], elements[j] = elements[j], elements[j-
interval]
 }
 j = j - interval
 }
 }
 }
}

Let's take a look at the different shell methods in the following sections.

The power method
The power method takes exponent and index as parameters and returns the power of the
exponent to the index, as follows:

//power function
func power(exponent int, index int) int {
 var power int
 power = 1
 for index > 0 {
 if index&1 != 0 {
 power *= exponent
 }
 index >>= 1
 exponent *= exponent
 }
 return power

Classic Algorithms Chapter 8

[220]

}

The main method
The main method initializes the elements integer array and invokes the ShellSorter
method, as follows:

// main method
func main() {
 var elements []int
 elements = []int{34, 202, 13, 19, 6, 5, 1, 43, 506, 12, 20, 28, 17, 100,
25, 4, 5, 97, 1000, 27}
 ShellSorter(elements)
 fmt.Println(elements)
}

Run the following command to execute the shell_sort.go file:

go run shell_sort.go

The output is as follows:

Let's take a look at the merge sort algorithm in the next section.

Merge
The merge sort algorithm is a comparison-based method that was invented by John Von
Neumann. Each element in the adjacent list is compared for sorting. The performance of the
algorithm is in the order of O(n log n). This algorithm is the best algorithm for sorting a
linked list.

Classic Algorithms Chapter 8

[221]

The following code snippet demonstrates the merge sort algorithm. The createArray
function takes num int as a parameter and returns an integer, array, that consists of
randomized elements:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt and bytes package
import (
 "fmt"
 "math/rand"
 "time"
)

// create array
func createArray(num int) []int {
 var array []int
 array = make([]int, num, num)
 rand.Seed(time.Now().UnixNano())
 var i int
 for i = 0; i < num; i++ {
 array[i] = rand.Intn(99999) - rand.Intn(99999)
 }
 return array
}

Let's take a look at the different merge methods in the following sections.

MergeSorter method
The MergeSorter method takes an array of integer elements as a parameter, and two sub-
arrays of elements are recursively passed to the MergeSorter method. The resultant arrays
are joined and returned as the collection, as follows:

// MergeSorter algorithm
func MergeSorter(array []int) []int {

 if len(array) < 2 {
 return array
 }
 var middle int
 middle = (len(array)) / 2
 return JoinArrays(MergeSorter(array[:middle]),
MergeSorter(array[middle:]))
}

Classic Algorithms Chapter 8

[222]

JoinArrays method
The JoinArrays function takes the leftArr and rightArr integer arrays as parameters.
The combined array is returned in the following code:

// Join Arrays method
func JoinArrays(leftArr []int, rightArr []int) []int {

 var num int
 var i int
 var j int
 num, i, j = len(leftArr)+len(rightArr), 0, 0
 var array []int
 array = make([]int, num, num)

 var k int
 for k = 0; k < num; k++ {
 if i > len(leftArr)-1 && j <= len(rightArr)-1 {
 array[k] = rightArr[j]
 j++
 } else if j > len(rightArr)-1 && i <= len(leftArr)-1 {
 array[k] = leftArr[i]
 i++
 } else if leftArr[i] < rightArr[j] {
 array[k] = leftArr[i]
 i++
 } else {
 array[k] = rightArr[j]
 j++
 }
 }
 return array
}

The main method
The main method initializes the integer array of 40 elements, and the elements are printed
before and after sorting, as follows:

// main method
func main() {

 var elements []int
 elements = createArray(40)
 fmt.Println("\n Before Sorting \n\n", elements)
 fmt.Println("\n-After Sorting\n\n", MergeSorter(elements), "\n")

Classic Algorithms Chapter 8

[223]

}

Run the following command to execute the merge_sort.go file:

go run merge_sort.go

The output is as follows:

Let's take a look at the quick sort algorithm in the following section.

Quick
Quick sort is an algorithm for sorting the elements of a collection in an organized
way. Parallelized quick sort is two to three times faster than merge sort and heap sort. The
algorithm's performance is of the order O(n log n). This algorithm is a space-optimized
version of the binary tree sort algorithm.

In the following code snippet, the quick sort algorithm is implemented. The QuickSorter
function takes an array of integer elements, upper int, and below int as parameters.
The function divides the array into parts, which are recursively divided and sorted:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)

Classic Algorithms Chapter 8

[224]

//Quick Sorter method
func QuickSorter(elements []int, below int, upper int) {
 if below < upper {
 var part int
 part = divideParts(elements, below, upper)
 QuickSorter(elements, below, part-1)
 QuickSorter(elements, part+1, upper)
 }
}

Let's take a look at the different quick methods in the following sections.

The divideParts method
The divideParts method takes an array of integer elements, upper int, and below
int as parameters. The method sorts the elements in ascending order, as shown in the
following code:

// divideParts method
func divideParts(elements []int, below int, upper int) int {
 var center int
 center = elements[upper]
 var i int
 i = below
 var j int
 for j = below; j < upper; j++ {
 if elements[j] <= center {
 swap(&elements[i], &elements[j])
 i += 1
 }
 }
 swap(&elements[i], &elements[upper])
 return i
}

Classic Algorithms Chapter 8

[225]

The swap method
In the following code snippet, the swap method exchanges elements by interchanging the
values:

//swap method
func swap(element1 *int, element2 *int) {
 var val int
 val = *element1
 *element1 = *element2
 *element2 = val
}

The main method
The main method asks the user to input the number of elements and the elements to be
read. The array is initialized and printed before and after sorting, as follows:

// main method
func main() {
 var num int

 fmt.Print("Enter Number of Elements: ")
 fmt.Scan(&num)

 var array = make([]int, num)

 var i int
 for i = 0; i < num; i++ {
 fmt.Print("array[", i, "]: ")
 fmt.Scan(&array[i])
 }

 fmt.Print("Elements: ", array, "\n")
 QuickSorter(array, 0, num-1)
 fmt.Print("Sorted Elements: ", array, "\n")
}

Run the following command to execute the quick_sort.go file:

go run quick_sort.go

Classic Algorithms Chapter 8

[226]

The output is as follows:

Now that we are done with sort algorithms, let's take a look at the search algorithms in the
next section.

Searching
Search algorithms are used to retrieve information that's stored in a data source or a
collection. The algorithm is given the key of the element in question, and the associated
value will be found. Search algorithms return a true or a false Boolean value based on the
availability of the information. They can be enhanced to display multiple values related to
the search criteria. Different types of search algorithms include linear, binary, and
interpolation. These algorithms are categorized by the type of search. Search algorithms
include brute force and heuristic methods. The algorithms are chosen for their efficiency.
Different factors for choosing these algorithms are as follows:

Input type
Output type
Definiteness
Correctness
Finiteness
Effectiveness
Generality

In this section, we will discuss the different types of search algorithms.

Classic Algorithms Chapter 8

[227]

Linear
The linear search method finds a given value within a collection by sequentially checking
every element in the collection. The time complexity of the linear search algorithm is O(n).
The binary search algorithm and hash tables perform better than this search algorithm.

The implementation of the linear search method is shown in the following code snippet.
The LinearSearch function takes an array of integer elements and findElement int as
parameters. The function returns a Boolean true if the findElement is found; otherwise, it
returns false:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)

// Linear Search method
func LinearSearch(elements []int, findElement int) bool {
 var element int
 for _, element = range elements {
 if element == findElement {
 return true
 }
 }
 return false
}

The main method initializes the array of integer elements and invokes the LinearSearch
method by passing an integer that needs to be found, as follows:

// main method
func main() {
 var elements []int
 elements = []int{15, 48, 26, 18, 41, 86, 29, 51, 20}
 fmt.Println(LinearSearch(elements, 48))
}

Run the following command to execute the linear_search.go file:

go run linear_search.go

Classic Algorithms Chapter 8

[228]

The output is as follows:

Let's take a look at the binary search algorithm in the following section.

Binary
The binary search algorithm compares the input value to the middle element of the sorted
collection. If the values are not equal, the half in which the element is not found is
eliminated. The search continues on the remaining half of the collection. The time
complexity of this algorithm is in the order of O(log n).

The following code snippet shows an implementation of the binary search algorithm using
the sort.Search function from the sort package. The main method initializes the
elements array and invokes the sort.Search function to find an integer element:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
 "sort"
)

// main method
func main() {
 var elements []int
 elements = []int{1, 3, 16, 10, 45, 31, 28, 36, 45, 75}
 var element int
 element = 36

 var i int

 i = sort.Search(len(elements), func(i int) bool { return elements[i] >=
element })
 if i < len(elements) && elements[i] == element {
 fmt.Printf("found element %d at index %d in %v\n", element, i,
elements)

Classic Algorithms Chapter 8

[229]

 } else {
 fmt.Printf("element %d not found in %v\n", element, elements)
 }
}

Run the following command to execute the binary_search.go file:

go run binary_search.go

The output is as follows:

Let's take a look at the interpolation search algorithm in the following section.

Interpolation
The interpolation search algorithm searches for the element in a sorted collection. The
algorithm finds the input element at an estimated position by diminishing the search space
before or after the estimated position. The time complexity of the search algorithm is of the
order O(log log n).

The following code snippet implements the interpolation search algorithm. The
InterpolationSearch function takes the array of integer elements and the integer
element to be found as parameters. The function finds the element in the collection and
returns the Boolean and the index for the found element:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)

//interpolation search method
func InterpolationSearch(elements []int, element int) (bool, int) {
 var mid int
 var low int
 low = 0

Classic Algorithms Chapter 8

[230]

 var high int
 high = len(elements) - 1

 for elements[low] < element && elements[high] > element {
 mid = low + ((element-elements[low])*(high-low))/(elements[high]-
elements[low])

 if elements[mid] < element {
 low = mid + 1
 } else if elements[mid] > element {
 high = mid - 1
 } else {
 return true, mid
 }
 }

 if elements[low] == element {
 return true, low
 } else if elements[high] == element {
 return true, high
 } else {
 return false, -1
 }

 return false, -1
}

The main method initializes the array of integer elements and invokes the
InterpolationSearch method with the elements array and the element parameters, as
follows:

// main method
func main() {
 var elements []int
 elements = []int{2, 3, 5, 7, 9}
 var element int
 element = 7
 var found bool
 var index int
 found, index = InterpolationSearch(elements, element)
 fmt.Println(found, "found at", index)
}

Run the following command to execute the interpolation_search.go file:

go run interpolation_search.go

Classic Algorithms Chapter 8

[231]

The output is as follows:

Now that we are done with search algorithms, let's take a look at the recursion algorithms
in the next section.

Recursion
Recursion is an algorithm in which one of the steps invokes the currently running method
or function. This algorithm acquires the outcome for the input by applying basic tasks and
then returns the value. This method was briefly discussed in the Divide and conquer
algorithms section of Chapter 1, Data Structures and Algorithms. During recursion, if the base
condition is not reached, then a stack overflow condition may arise.

A recursion algorithm is implemented in the following code snippet. The Factor method
takes the num as a parameter and returns the factorial of num. The method uses recursion to
calculate the factorial of the number:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt and bytes package
import (
 "fmt"
)

//factorial method
func Factor(num int) int {
 if num <= 1 {
 return 1
 }
 return num * Factor(num-1)
}

Classic Algorithms Chapter 8

[232]

The main method defines the integer with a value of 12 and invokes the Factor method.
The factorial of the number 12 is printed, as shown in the following code:

//main method
func main() {
 var num int = 12
 fmt.Println("Factorial: %d is %d", num, Factor(num))
}

Run the following command to execute the recurse_factorial.go file:

go run recurse_factorial.go

The output is as follows:

Now that we are done with recursive algorithms, let's take a look at the hash algorithms in
the next section.

Hashing
Hash functions were introduced in Chapter 4, Non-Linear Data Structures. Hash
implementation in Go has crc32 and sha256 implementations. An implementation of a
hashing algorithm with multiple values using an XOR transformation is shown in the
following code snippet. The CreateHash function takes a byte array, byteStr, as a
parameter and returns the sha256 checksum of the byte array:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
 "crypto/sha1"
 "hash"
)

Classic Algorithms Chapter 8

[233]

//CreateHash method
func CreateHash(byteStr []byte) []byte {
 var hashVal hash.Hash
 hashVal = sha1.New()
 hashVal.Write(byteStr)

 var bytes []byte

 bytes = hashVal.Sum(nil)
 return bytes
}

In the following sections, we will discuss the different methods of hash algorithms.

The CreateHashMutliple method
The CreateHashMutliple method takes the byteStr1 and byteStr2 byte arrays as
parameters and returns the XOR-transformed bytes value, as follows:

// Create hash for Multiple Values method
func CreateHashMultiple(byteStr1 []byte, byteStr2 []byte) []byte {
 return xor(CreateHash(byteStr1), CreateHash(byteStr2))
}

The XOR method
The xor method takes the byteStr1 and byteStr2 byte arrays as parameters and returns
the XOR-transformation result, as follows:

// XOR method
func xor(byteStr1 []byte, byteStr2 []byte) []byte {
 var xorbytes []byte
 xorbytes = make([]byte, len(byteStr1))
 var i int
 for i = 0; i < len(byteStr1); i++ {
 xorbytes[i] = byteStr1[i] ^ byteStr2[i]
 }
 return xorbytes
}

Classic Algorithms Chapter 8

[234]

The main method
The main method invokes the createHashMutliple method, passing Check and
Hash as string parameters, and prints the hash value of the strings, as follows:

// main method
func main() {

 var bytes []byte
 bytes = CreateHashMultiple([]byte("Check"), []byte("Hash"))

 fmt.Printf("%x\n", bytes)
}

Run the following command to execute the hash.go file:

go run hash.go

The output is as follows:

Summary
This chapter covered sorting algorithms such as bubble, selection, insertion, shell, merge,
and quick sort. Search algorithms such as linear, binary, and interpolation were the
discussed. Finally, the recursion and hashing algorithms were explained with code
snippets. All of the algorithms were discussed alongside code examples and performance
analysis.

In the next chapter, network representation using graphs and sparse matrix representation
using list of lists will be covered, along with appropriate examples.

Classic Algorithms Chapter 8

[235]

Questions
What is the order of complexity of bubble sort?1.
Which sorting algorithm takes one element at a time to create a final sorted2.
collection?
What sorting method sorts pairs of elements that are far apart from each other?3.
What is the complexity of using the merge sort algorithm?4.
Which is better: the quick, merge, or heap sort algorithm?5.
What are the different types of search algorithms?6.
Provide a code example of the recursion algorithm.7.
Who was the first person to describe the interpolation search?8.
Which sorting algorithm is based on a comparison-based method of an adjacent9.
list of elements?
Who was the person to publish the shell sort algorithm?10.

Further reading
The following books are recommended if you want to know more about algorithms such as
sorting, selecting, searching, and hashing:

Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides
Introduction to Algorithms – Third Edition, by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and Clifford Stein
Data structures and Algorithms: An Easy Introduction, by Rudolph Russell

3
Section 3: Advanced Data

Structures and Algorithms using
Go

Network representation, sparse matrix representation, memory management, instance
based learning, compiler translation, and process scheduling-related data structures and
algorithms are presented in this section. The data structures shown in the algorithms are
graphs, list of lists, AVL trees, K-D trees, ball trees, Van Emde Boas trees, buffer trees, and
red-black trees. Cache-oblivious data structures and data flow analysis are covered with
code examples and efficiency analysis.

This section contains the following chapters:

Chapter 9, Network and Sparse Matrix Representation
Chapter 10, Memory Management

9
Network and Sparse Matrix

Representation
A sparse matrix is a matrix in which most of the values are zero. The ratio of zero values to
non-zero values is known as the sparsity. An estimation of a matrix's sparsity can be
helpful when creating hypotheses about the availability of networks. Extensive big sparse
matrices are commonly used in machine learning and natural language parsing. It is
computationally costly to work with them. Recommendation engines use them for
representing products inside a catalog. Computer vision uses sparse matrices and network
data structures when working with pictures that contain sections with dark pixels. Network
and sparse matrix data structures are also used in social graphs and map layouts. In this
chapter, we will cover the following topics:

Network representations using graphs:
Social network representation
Map layouts
Knowledge graphs

Sparse matrix representation using a list of lists

A social graph that connects people is implemented in this chapter, and a code example
shows how the graph can be traversed. Map layouts are explained with geographic
locations with latitude and longitude. Knowledge graphs are explained via the use of a car
and its parts.

Network and Sparse Matrix Representation Chapter 9

[238]

Technical requirements
Install Go version 1.10 from https:/ ​/ ​golang. ​org/ ​doc/​install for your OS.

The GitHub URL for the code in this chapter is as follows: https:/ ​/​github. ​com/
PacktPublishing/​Learn- ​Data- ​Structures- ​and- ​Algorithms- ​with- ​Golang/ ​tree/ ​master/
Chapter09.

Network representation using graphs
A graph is a representation of a set of objects that's connected by links. The links connect
vertices, which are points. The basic operations on a graph are the addition and removal of
links and vertices. These are some different types of graphs:

Directed graph
Non-directed graph
Connected graph
Non-connected graph
Simple graph
Multi-graph

An adjacency list consists of adjacent vertices of a graph that have objects or records. An
adjacency matrix consists of source and destination vertices. An incidence matrix is a two-
dimensional Boolean matrix. The matrix has rows of vertices and columns that represent
the links (edges).

Network representation using a graph is shown in the following code. A social graph
consists of an array of links:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)
// Social Graph
type SocialGraph struct {
 Size int
 Links [][]Link
}

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter09

Network and Sparse Matrix Representation Chapter 9

[239]

The Link struct is defined and implemented in the next section.

The Link class
The Link class consists of the vertex1 and vertex2 vertices and the LinkWeight integer
property:

// Link class
type Link struct {
 Vertex1 int
 Vertex2 int
 LinkWeight int
}

The next section talks about the implementation of the different Link class methods.

The NewSocialGraph method
The NewSocialGraph function creates a social graph given num, which is the size of the
graph. Size is the number of links in the graph:

// NewSocialGraph method
func NewSocialGraph(num int) *SocialGraph {
 return &SocialGraph{
 Size: num,
 Links: make([][]Link, num),
 }
}

The AddLink method
The AddLink method adds the link between two vertices. The AddLink method of a social
graph takes vertex1, vertex2, and weight as parameters. The method adds the link from
vertex1 to vertex2, as shown in the following code:

// AddLink method
func (socialGraph *SocialGraph) AddLink(vertex1 int, vertex2 int, weight
int) {
 socialGraph.Links[vertex1] = append(socialGraph.Links[vertex1],
Link{Vertex1: vertex1, Vertex2: vertex2, LinkWeight: weight})
}

Network and Sparse Matrix Representation Chapter 9

[240]

The PrintLinks method
The PrintLinks method of the SocialGraph class prints the links from vertex = 0 and
all the links in the graph:

// Print Links Example
func (socialGraph *SocialGraph) PrintLinks() {

 var vertex int
 vertex = 0

 fmt.Printf("Printing all links from %d\n", vertex)
 var link Link
 for _, link = range socialGraph.Links[vertex] {
 fmt.Printf("Link: %d -> %d (%d)\n", link.Vertex1, link.Vertex2,
link.LinkWeight)
 }

 fmt.Println("Printing all links in graph.")
 var adjacent []Link
 for _, adjacent = range socialGraph.Links {
 for _, link = range adjacent {
 fmt.Printf("Link: %d -> %d (%d)\n", link.Vertex1, link.Vertex2,
link.LinkWeight)
 }
 }
}

The main method
The main method creates a social graph by invoking the NewSocialGraph method. The
links from 0 to 1, 0 to 2, 1 to 3, and 2 to 4 are added to the social graph. The links are
printed using the printLinks method:

// main method
func main() {

 var socialGraph *SocialGraph

 socialGraph = NewSocialGraph(4)

 socialGraph.AddLink(0, 1, 1)
 socialGraph.AddLink(0, 2, 1)
 socialGraph.AddLink(1, 3, 1)
 socialGraph.AddLink(2, 4, 1)

Network and Sparse Matrix Representation Chapter 9

[241]

 socialGraph.PrintLinks()

}

Run the following command to execute the social_graph.go file:

go run social_graph.go

The output is as follows:

In the next section, we will take a look at the unit test for the social graph method.

Test
Here, we have written a unit test for the social graph method. The code is as follows:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing testing package
import (
 "fmt"
 "testing"
)
// NewSocialGraph test method
func TestNewSocialGraph(test *testing.T) {

 var socialGraph *SocialGraph

 socialGraph = NewSocialGraph(1)

 if socialGraph == nil {

Network and Sparse Matrix Representation Chapter 9

[242]

 test.Errorf("error in creating a social Graph")
 }

}

Run the following command to execute the preceding code snippet:

go test -run NewSocialGraph -v

The output is as follows:

In the next section, a social network representation will be implemented with code
examples. The preceding graph will be enhanced with nodes. Each node will represent a
social entity.

Representing a social network
A social network consists of social links that contain social entities such as people, friends,
discussions, shares, beliefs, trust, and likes. This graph is used to represent the social
network.

Metrics related to the proximity of entities can be calculated based on the graph. Social
graphs consist of graph nodes and links, which are maps with a key name and multiple
keys names, respectively:

///Main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)

type Name string

Network and Sparse Matrix Representation Chapter 9

[243]

type SocialGraph struct {
 GraphNodes map[Name]struct{}
 Links map[Name]map[Name]struct{}
}

The different social network methods are explained and implemented in the next section.

The NewSocialGraph method
The NewSocialGraph method returns a social graph consisting of nil-valued GraphNodes
and Links:

// NewSocialGraph method
func NewSocialGraph() *SocialGraph {
 return &SocialGraph{
 GraphNodes: make(map[Name]struct{}),
 Links: make(map[Name]map[Name]struct{}),
 }
}

The AddEntity method
The AddEntity method adds the entity to the social graph. The AddEntity method of
the SocialGraph class takes name as a parameter and returns true if it is added to the
social graph:

// AddEntity method
func (socialGraph *SocialGraph) AddEntity(name Name) bool {

 var exists bool
 if _, exists = socialGraph.GraphNodes[name]; exists {
 return true
 }
 socialGraph.GraphNodes[name] = struct{}{}
 return true
}

Network and Sparse Matrix Representation Chapter 9

[244]

The AddLink method
The AddLink method of the SocialGraph class takes name1 and name2 as parameters.
This method creates the entities if the named entities do not exist and creates a link between
the entities:

// Add Link
func (socialGraph *SocialGraph) AddLink(name1 Name, name2 Name) {
 var exists bool
 if _, exists = socialGraph.GraphNodes[name1]; !exists {
 socialGraph.AddEntity(name1)
 }
 if _, exists = socialGraph.GraphNodes[name2]; !exists {
 socialGraph.AddEntity(name2)
 }
 if _, exists = socialGraph.Links[name1]; !exists {
 socialGraph.Links[name1] = make(map[Name]struct{})
 }
 socialGraph.Links[name1][name2] = struct{}{}
}

The PrintLinks method
The PrintLinks method of the SocialGraph class prints the links adjacent to the
root and all the links, as shown in the following code snippet:

func (socialGraph *SocialGraph) PrintLinks() {
 var root Name
 root = Name("Root")

 fmt.Printf("Printing all links adjacent to %d\n", root)

 var node Name
 for node = range socialGraph.Links[root] {
 // Edge exists from u to v.
 fmt.Printf("Link: %d -> %d\n", root, node)
 }

 var m map[Name]struct{}
 fmt.Println("Printing all links.")
 for root, m = range socialGraph.Links {
 var vertex Name
 for vertex = range m {
 // Edge exists from u to v.
 fmt.Printf("Link: %d -> %d\n", root, vertex)
 }

Network and Sparse Matrix Representation Chapter 9

[245]

 }
}

The main method
The main method creates a social graph. The entities, such as john, per, and cynthia, are
created and linked with the root node. The friends, such as mayo, lorrie, and ellie, are
created and linked with john and per:

// main method
func main() {

 var socialGraph *SocialGraph

 socialGraph = NewSocialGraph()

 var root Name = Name("Root")
 var john Name = Name("John Smith")
 var per Name = Name("Per Jambeck")
 var cynthia Name = Name("Cynthia Gibas")

 socialGraph.AddEntity(root)
 socialGraph.AddEntity(john)
 socialGraph.AddEntity(per)
 socialGraph.AddEntity(cynthia)

 socialGraph.AddLink(root, john)
 socialGraph.AddLink(root, per)
 socialGraph.AddLink(root, cynthia)

 var mayo Name = Name("Mayo Smith")
 var lorrie Name = Name("Lorrie Jambeck")
 var ellie Name = Name("Ellie Vlocksen")

 socialGraph.AddLink(john, mayo)
 socialGraph.AddLink(john, lorrie)
 socialGraph.AddLink(per, ellie)

 socialGraph.PrintLinks()
}

Network and Sparse Matrix Representation Chapter 9

[246]

Run the following command to execute the social_graph_example.go file:

go run social_graph_example.go

The output is as follows:

The next section talks about the map layout implementation.

Map layouts
A map layout is a geographical visualization of locations that are linked together. The
nodes in the graph of a map consist of geo-based information. The node will have
information such as the name of the location, latitude, and longitude. Maps are laid out in
different scales. Cartographic design is referred to as map creation using geographic
information.

A map layout is shown in the following code snippet. The Place class consists of Name,
Latitude, and Longitude properties:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)

// Place class
type Place struct {

 Name string

Network and Sparse Matrix Representation Chapter 9

[247]

 Latitude float64
 Longitude float64

}

The next section talks about the MapLayout class.

The MapLayout class
The MapLayout class consists of GraphNodes and Links:

// MapLayout class
type MapLayout struct {
 GraphNodes map[Place]struct{}
 Links map[Place]map[Place]struct{}
}

The different MapLayout methods are explained and implemented in the next section.

The NewMapLayout method
The NewMapLayout method creates a MapLayout. The MapLayout has GraphNodes and
links maps:

// NewMapLayout method
func NewMapLayout() *MapLayout {
 return &MapLayout{
 GraphNodes: make(map[Place]struct{}),
 Links: make(map[Place]map[Place]struct{}),
 }
}

The AddPlace method
The AddPlace method of the MapLayout class takes place as a parameter and returns true
if the place exists. If the place does not exist, then a graph node with a new place key is
created:

// AddPlace method
func (mapLayout *MapLayout) AddPlace(place Place) bool {

 var exists bool
 if _, exists = mapLayout.GraphNodes[place]; exists {
 return true
 }

Network and Sparse Matrix Representation Chapter 9

[248]

 mapLayout.GraphNodes[place] = struct{}{}
 return true
}

The AddLink method
The AddLink method of the MapLayout class takes the places as parameters and links them
together:

// Add Link
func (mapLayout *MapLayout) AddLink(place1 Place, place2 Place) {
 var exists bool
 if _, exists = mapLayout.GraphNodes[place1]; !exists {
 mapLayout.AddPlace(place1)
 }
 if _, exists = mapLayout.GraphNodes[place2]; !exists {
 mapLayout.AddPlace(place2)
 }

 if _, exists = mapLayout.Links[place1]; !exists {
 mapLayout.Links[place1] = make(map[Place]struct{})
 }
 mapLayout.Links[place1][place2] = struct{}{}

}

 The PrintLinks method
The PrintLinks method of MapLayout prints the places and the links:

// PrintLinks method
func (mapLayout *MapLayout) PrintLinks() {
 var root Place
 root = Place{"Algeria", 3, 28}

 fmt.Printf("Printing all links adjacent to %s\n", root.Name)

 var node Place
 for node = range mapLayout.Links[root] {
 fmt.Printf("Link: %s -> %s\n", root.Name, node.Name)
 }

 var m map[Place]struct{}
 fmt.Println("Printing all links.")
 for root, m = range mapLayout.Links {
 var vertex Place
 for vertex = range m {

Network and Sparse Matrix Representation Chapter 9

[249]

 fmt.Printf("Link: %s -> %s\n", root.Name, vertex.Name)
 }
 }
}

The main method
In the main method, the map layout is created by invoking the NewMapLayout method.
Places are instantiated and added to the map layout. Then, the links are added between
places:

// main method
func main() {

 var mapLayout *MapLayout

 mapLayout = NewMapLayout()

 var root Place = Place{"Algeria", 3, 28}
 var netherlands Place = Place{"Netherlands", 5.75, 52.5}

 var korea Place = Place{"Korea", 124.1, -8.36}
 var tunisia Place = Place{"Tunisia", 9, 34}

 mapLayout.AddPlace(root)
 mapLayout.AddPlace(netherlands)
 mapLayout.AddPlace(korea)
 mapLayout.AddPlace(tunisia)

 mapLayout.AddLink(root, netherlands)
 mapLayout.AddLink(root,korea)
 mapLayout.AddLink(root,tunisia)

 var singapore Place = Place{"Singapore",103.8,1.36}
 var uae Place = Place{"UAE",54,24}
 var japan Place = Place{"Japan",139.75, 35.68}

 mapLayout.AddLink(korea, singapore)
 mapLayout.AddLink(korea,japan)
 mapLayout.AddLink(netherlands,uae)

 mapLayout.PrintLinks()
}

Network and Sparse Matrix Representation Chapter 9

[250]

Run the following command to execute the map_layout.go file:

go run map_layout.go

The output is as follows:

In the next section, we will take a look at the unit test for the NewMapLayout method.

Test
A unit test for the MapLayout class's NewMapLayout method is shown in the following
code snippet:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing testing package
import (
 "testing"
)

// NewMapLayout test method
func TestNewMapLayout(test *testing.T) {

 var mapLayout *MapLayout

 mapLayout = NewMapLayout()

 test.Log(mapLayout)

 if mapLayout == nil {

 test.Errorf("error in creating a mapLayout")
 }

Network and Sparse Matrix Representation Chapter 9

[251]

}

Run the following command to execute the preceding code snippet:

go test -run NewMapLayout -v

The output is as follows:

The next section talks about implementing a knowledge graph.

Knowledge graphs
A knowledge graph is a network representation of entities, items, and users as nodes. The
nodes interact with one another via links or edges. Knowledge graphs are widely used
because they are schema less. These data structures are used to represent knowledge in the
form of graphs, and the nodes have textual information. Knowledge graphs are created by
using item, entity, and user nodes and linking them with edges.

An ontology consists of a knowledge graph of information nodes. The reasoner derives
knowledge from knowledge graphs. A knowledge graph consists of classes, slots, and
facets, which are ontological terms. In the following code, a knowledge graph consisting of
a car's bill of materials is explained. The Class type consists of a name, which is a string:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)

// Class Type
type Class struct {
 Name string
}

Network and Sparse Matrix Representation Chapter 9

[252]

The next section talks about the knowledge graph class.

The KnowledgeGraph class
The KnowledgeGraph class consists of GraphNodes and links:

// Knowledge Graph type
type KnowledgeGraph struct {
 GraphNodes map[Class]struct{}
 Links map[Class]map[Class]struct{}
}

The different knowledge graph methods are explained and implemented in the following
sections.

The NewKnowledgeGraph method
The NewKnowledgeGraph method creates a knowledge graph, which consists of
GraphNodes and Links maps:

// NewKnowledgeGraph method
func NewKnowledgeGraph() *KnowledgeGraph {
 return &KnowledgeGraph{
 GraphNodes: make(map[Class]struct{}),
 Links: make(map[Class]map[Class]struct{}),
 }
}

The AddClass method
The AddClass method of the KnowledgeGraph class takes class as a parameter and
returns true if the class exists. If the class does not exist, a GraphNode is created with
class as a key:

// AddClass method
func (knowledgeGraph *KnowledgeGraph) AddClass(class Class) bool {

 var exists bool
 if _, exists = knowledgeGraph.GraphNodes[class]; exists {
 return true
 }
 knowledgeGraph.GraphNodes[class] = struct{}{}
 return true
}

Network and Sparse Matrix Representation Chapter 9

[253]

The AddLink method
The AddLink method of the KnowledgeGraph class takes class1 and
class2 as parameters, and a link is created between these classes:

// Add Link
func (knowledgeGraph *KnowledgeGraph) AddLink(class1 Class, class2 Class) {
 var exists bool
 if _, exists = knowledgeGraph.GraphNodes[class1]; !exists {
 knowledgeGraph.AddClass(class1)
 }
 if _, exists = knowledgeGraph.GraphNodes[class2]; !exists {
 knowledgeGraph.AddClass(class2)
 }

 if _, exists = knowledgeGraph.Links[class1]; !exists {
 knowledgeGraph.Links[class1] = make(map[Class]struct{})
 }
 knowledgeGraph.Links[class1][class2] = struct{}{}

}

The PrintLinks method
The PrintLinks method of the KnowledgeGraph class prints the links and nodes:

// Print Links method
func (knowledgeGraph *KnowledgeGraph) PrintLinks() {
 var car Class
 car = Class{"Car"}

 fmt.Printf("Printing all links adjacent to %s\n", car.Name)

 var node Class
 for node = range knowledgeGraph.Links[car] {
 fmt.Printf("Link: %s -> %s\n", car.Name, node.Name)
 }

 var m map[Class]struct{}
 fmt.Println("Printing all links.")
 for car, m = range knowledgeGraph.Links {
 var vertex Class
 for vertex = range m {
 fmt.Printf("Link: %s -> %s\n", car.Name, vertex.Name)
 }
 }
}

Network and Sparse Matrix Representation Chapter 9

[254]

The main method
The main method creates the knowledge graph, and the classes are instantiated. The links
between the classes are created and printed:

// main method
func main() {

 var knowledgeGraph *KnowledgeGraph

 knowledgeGraph = NewKnowledgeGraph()

 var car = Class{"Car"}
 var tyre = Class{"Tyre"}
 var door = Class{"Door"}
 var hood = Class{"Hood"}

 knowledgeGraph.AddClass(car)
 knowledgeGraph.AddClass(tyre)
 knowledgeGraph.AddClass(door)
 knowledgeGraph.AddClass(hood)

 knowledgeGraph.AddLink(car, tyre)
 knowledgeGraph.AddLink(car, door)
 knowledgeGraph.AddLink(car, hood)

 var tube = Class{"Tube"}
 var axle = Class{"Axle"}
 var handle = Class{"Handle"}
 var windowGlass = Class{"Window Glass"}

 knowledgeGraph.AddClass(tube)
 knowledgeGraph.AddClass(axle)
 knowledgeGraph.AddClass(handle)
 knowledgeGraph.AddClass(windowGlass)

 knowledgeGraph.AddLink(tyre, tube)
 knowledgeGraph.AddLink(tyre, axle)
 knowledgeGraph.AddLink(door, handle)
 knowledgeGraph.AddLink(door, windowGlass)

 knowledgeGraph.PrintLinks()
}

Run the following command to execute the knowledge_catalog.go file:

go run knowledge_catalog.go

Network and Sparse Matrix Representation Chapter 9

[255]

The output is as follows:

In the next section, we will take a look at the unit test for the NewKnowledgeGraph method.

Test
The NewKnowledgeGraph method is unit tested in the following code snippet:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing testing package
import (
 "testing"
)

// NewKnowledgeGraph test method
func TestNewKnowledgeGraph(test *testing.T) {

 var knowledgeGraph *KnowledgeGraph

 knowledgeGraph = NewKnowledgeGraph()

 test.Log(knowledgeGraph)

 if knowledgeGraph == nil {

 test.Errorf("error in creating a knowledgeGraph")
 }

}

Network and Sparse Matrix Representation Chapter 9

[256]

Run the following command to execute the preceding code snippet:

go test -run NewKnowledgeGraph -v

The output is as follows:

The next section talks about the representation of the sparse matrix.

Sparse matrix representation using a list of
lists
A sparse matrix is a two-dimensional list of m rows and n columns. The shape of a matrix is
m x n if it consists of m rows and n columns. Sparse matrices are used for solving large-scale
problems that do not require dense matrices. For example, partial differential equations are
solved by using the finite element method (FEM). Tuples of a sparse matrix are non-zero
elements of the matrix.

In the following code, a sparse matrix is modeled as a list of lists. A sparse matrix consists
of cells that are a list of lists. Each cell has properties such as Row, Column, and Value:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)

//List of List
type LOL struct {
 Row int
 Column int
 Value float64
}

Network and Sparse Matrix Representation Chapter 9

[257]

The next section talks about the SparseMatrix class.

SparseMatrix class
SparseMatrix has a cells array and shape, which is an integer array:

//Sparse Matrix
type SparseMatrix struct {
 cells []LOL
 shape [2]int
}

In the next section, the different Sparse methods of the SparseMatrix struct are
implemented.

The Shape method
The Shape method of the SparseMatrix class returns the shape array elements:

// Shape method
func (sparseMatrix *SparseMatrix) Shape() (int, int) {
 return sparseMatrix.shape[0], sparseMatrix.shape[1]
}

The NumNonZero method
The NumNonZero method finds the cells with non-zero elements. The NumNonZero method
of the SparseMatrix class returns the size of the cells array in sparseMatrix:

// NumNonZero method
func (sparseMatrix *SparseMatrix) NumNonZero() int {
 return len(sparseMatrix.cells)
}

The LessThan method
The LessThan method compares the list of lists rows and columns and checks whether the
row is less than i and that the column is less than j:

// Less Than method
func LessThan(lol LOL, i int, j int) bool {

Network and Sparse Matrix Representation Chapter 9

[258]

 if lol.Row < i && lol.Column < j {

 return true
 }

 return false
}

The Equal method
The Equal method checks whether the list of lists rows and columns are equal to i and j,
respectively:

// Equal method
func Equal(lol LOL, i int, j int) bool {
 if lol.Row == i && lol.Column == j {
 return true
 }
 return false
}

The GetValue method
The GetValue method of the SparseMatrix class returns the value of the cell whose row
and column equal i and j, respectively:

// GetValue method
func (sparseMatrix *SparseMatrix) GetValue(i int, j int) float64 {
 var lol LOL
 for _, lol = range sparseMatrix.cells {
 if LessThan(lol, i, j) {
 continue
 }
 if Equal(lol, i, j) {
 return lol.Value
 }
 return 0.0
 }
 return 0.0
}

Network and Sparse Matrix Representation Chapter 9

[259]

The SetValue method
The SetValue method of the SparseMatrix class sets the value of the cell with the row
and column equal to i and j, respectively, as the parameter value:

//SetValue method
func (sparseMatrix *SparseMatrix) SetValue(i int, j int, value float64) {

 var lol LOL
 var index int
 for index, lol = range sparseMatrix.cells {
 if LessThan(lol, i, j) {
 continue
 }
 if Equal(lol, i, j) {
 sparseMatrix.cells[index].Value = value
 return
 }

 sparseMatrix.cells = append(sparseMatrix.cells, LOL{})
 var k int
 for k = len(sparseMatrix.cells) - 2; k >= index; k-- {
 sparseMatrix.cells[k+1] = sparseMatrix.cells[k]
 }
 sparseMatrix.cells[index] = LOL{
 Row: i,
 Column: j,
 Value: value,
 }
 return
 }
 sparseMatrix.cells = append(sparseMatrix.cells, LOL{
 Row: i,
 Column: j,
 Value: value,
 })
}

Network and Sparse Matrix Representation Chapter 9

[260]

The NewSparseMatrix method
The NewSparseMatrix method takes the m and n as parameters and returns the initialized
matrix:

// New SparseMatrix method
func NewSparseMatrix(m int, n int) *SparseMatrix {
 return &SparseMatrix{
 cells: []LOL{},
 shape: [2]int{m, n},
 }
}

The main method
The main method creates the sparse matrix by invoking the NewSparseMatrix method.
The values are set in cells (1, 1) and (1, 3). The sparse matrix and the number of non-zero
cells are printed:

// main method
func main() {

 var sparseMatrix *SparseMatrix

 sparseMatrix = NewSparseMatrix(3, 3)

 sparseMatrix.SetValue(1, 1, 2.0)
 sparseMatrix.SetValue(1, 3, 3.0)

 fmt.Println(sparseMatrix)
 fmt.Println(sparseMatrix.NumNonZero())
}

Network and Sparse Matrix Representation Chapter 9

[261]

Run the following command to execute the sparse_matrix.go file:

go run sparse_matrix.go

The output is as follows:

Summary
This chapter covered how to present networks and sparse matrices using graphs and a list
of lists, respectively. Social network representation, map layouts, and knowledge graphs
were discussed in detail with code examples. The different sparse matrix methods were
also implemented with the appropriate code.

In the next chapter, algorithms such as garbage collection, cache management, and space
allocation will be presented with code examples and an efficiency analysis.

Questions
What data structure is used to represent a set of linked objects?
What is a two-dimensional matrix with Boolean values called?
Give a code example for a network representation using a graph.
Which metrics can be calculated from a social graph?
What is a cartographic design?
Give an example of a knowledge graph and define the class, slots, and facets.
What are the applications of sparse matrices?
Define a list of lists and write a code sample.
What is a map layout?
What different operations can be performed using graphs?

Network and Sparse Matrix Representation Chapter 9

[262]

Further reading
The following books are recommended if you want to know more about graphs and list of
lists:

Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides
Introduction to Algorithms – Third Edition, by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and Clifford Stein
Data structures and Algorithms: An Easy Introduction, by Rudolph Russell

10
Memory Management

Memory management is a way to control and organize memory. Memory divisions are
called blocks, and they are used for running different processes. The basic goal of memory
management algorithms is to dynamically designate segments of memory to programs on
demand. The algorithms free up memory for reuse when the objects in the memory are
never required again. Garbage collection, cache management, and space allocation
algorithms are good examples of memory management techniques. In software
engineering, garbage collection is used to free up memory that's been allocated to those
objects that won't be used again, thus helping in memory management. The cache provides
in-memory storage for data. You can sort the data in the cache into locale-specific groups.
The data can be stored using key and value sets.

This chapter covers the garbage collection, cache management, and space allocation
algorithms. The memory management algorithms are presented with code samples and
efficiency analyses. The following topics will be covered in this chapter:

Garbage collection
Cache management
Space allocation
Concepts—Go memory management

We'll look at garbage collection first, then look at the different algorithms related to garbage
collection.

Technical requirements
Install Go Version 1.10 from Golang (https:/ ​/​golang. ​org/ ​), choosing the right version for
your OS.

The GitHub repository for the code in this chapter can be found here: https:/ ​/​github. ​com/
PacktPublishing/​Learn- ​Data- ​Structures- ​and- ​Algorithms- ​with- ​Golang/ ​tree/ ​master/
Chapter10.

https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Chapter10

Memory Management Chapter 10

[264]

Garbage collection
Garbage collection is a type of programmed memory management in which memory,
currently occupied by objects that will never be used again, is gathered. John McCarthy was
the first person to come up with garbage collection for managing Lisp memory
management. This technique specifies which objects need to be de-allocated, and then
discharges the memory. The strategies that are utilized for garbage collection are stack
allocation and region interference. Sockets, relational database handles, user window
objects, and file resources are not overseen by garbage collectors.

Garbage collection algorithms help reduce dangling pointer defects, double-free defects,
and memory leaks. These algorithms are computing-intensive and cause decreased or
uneven performance. According to Apple, one of the reasons for iOS not having garbage
collection is that garbage collection needs five times the memory to match explicit memory
management. In high-transactional systems, concurrent, incremental, and real-time garbage
collectors help manage memory collection and release.

Garbage collection algorithms depend on various factors:

GC throughput
Heap overhead
Pause times
Pause frequency
Pause distribution
Allocation performance
Compaction
Concurrency
Scaling
Tuning
Warm-up time
Page release
Portability
Compatibility

That's simple, deferred, one-bit, weighted reference counting, mark-and-sweep, and
generational collection algorithms discussed in the following sections.

Memory Management Chapter 10

[265]

The ReferenceCounter class
The following code snippet shows how references to created objects are maintained in the
stack. The ReferenceCounter class has the number of references, including the pool of
references and removed references, as properties:

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main

// importing fmt package
import (
 "fmt"
 "sync"
)

//Reference Counter
type ReferenceCounter struct {
 num *uint32
 pool *sync.Pool
 removed *uint32
}

Let's take a look at the method of the ReferenceCounter class.

The newReferenceCounter method
The newReferenceCounter method initializes a ReferenceCounter instance and returns
a pointer to ReferenceCounter. This is shown in the following code:

//new Reference Counter method
func newReferenceCounter() *ReferenceCounter {
 return &ReferenceCounter{
 num: new(uint32),
 pool: &sync.Pool{},
 removed: new(uint32),
 }
}

The Stack class is described in the next section.

Memory Management Chapter 10

[266]

The Stack class
The Stack class consists of a references array and Count as properties. This is shown in
the following code:

// Stack class
type Stack struct {
 references []*ReferenceCounter
 Count int
}

Let's take a look at the methods of the Stack class.

The Stack class – a new method
Now, let's look at the heap interface methods that are implemented by the Stack class. The
new method initializes the references array, and the Push and Pop heap interface
methods take the reference parameter to push and pop reference out of the stack. This
is shown in the following code:

// New method of Stack Class
func (stack *Stack) New() {
 stack.references = make([]*ReferenceCounter,0)
}

// Push method
func (stack *Stack) Push(reference *ReferenceCounter) {
 stack.references = append(stack.references[:stack.Count],
 reference)
 stack.Count = stack.Count + 1
}

// Pop method
func (stack *Stack) Pop() *ReferenceCounter {
 if stack.Count == 0 {
 return nil
 }
var length int = len(stack.references)
var reference *ReferenceCounter = stack.references[length -1]
if length > 1 {
 stack.references = stack.references[:length-1]
 } else {
 stack.references = stack.references[0:]
}
 stack.Count = len(stack.references)
 return reference

Memory Management Chapter 10

[267]

}

The main method
In the following code snippet, let's see how Stack is used. A Stack instance is initialized,
and references are added to the stack by invoking the Push method. The Pop method is
invoked and the output is printed:

// main method
func main() {
 var stack *Stack = &Stack{}
 stack.New()
 var reference1 *ReferenceCounter = newReferenceCounter()
 var reference2 *ReferenceCounter = newReferenceCounter()
 var reference3 *ReferenceCounter = newReferenceCounter()
 var reference4 *ReferenceCounter = newReferenceCounter()
 stack.Push(reference1)
 stack.Push(reference2)
 stack.Push(reference3)
 stack.Push(reference4)
 fmt.Println(stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop())
}

Run the following commands to execute the stack_garbage_collection.go file:

go run stack_garbage_collection.go

The output is as follows:

The reference counting, mark-and-sweep, and generational collection algorithms will be
discussed in the following sections.

Memory Management Chapter 10

[268]

Reference counting
Reference counting is a technique that's used for keeping the count of references, pointers,
and handles to resources. Memory blocks, disk space, and objects are good examples of
resources. This technique tracks each object as a resource. The metrics that are tracked are
the number of references held by different objects. The objects are recovered when they can
never be referenced again.

The number of references is used for runtime optimizations. Deutsch-Bobrow came up with
the strategy of reference counting. This strategy was related to the number of updated
references that were produced by references that were put in local variables. Henry Baker
came up with a method that includes references in local variables that are deferred until
needed.

In the following subsections, the simple, deferred, one-bit, and weighted techniques of
reference counting will be discussed.

Simple reference counting
Reference counting is related to keeping the number of references, pointers, and handles to
a resource such as an object, block of memory, or disk space. This technique is related to the
number of references to de-allocated objects that are never referenced again.

The collection technique tracks, for each object, a tally of the number of references to the
object. The references are held by other objects. The object gets removed when the number
of references to the object is zero. The removed object becomes inaccessible. The removal
of a reference can prompt countless connected references to be purged.

The algorithm is time-consuming because of the size of the object graph and slow access
speed.

In the following code snippets, we can see a simple reference-counting algorithm being
implemented. The ReferenceCounter class has number (num), pool, and removed
references as properties:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing sync, atomic and fmt packages
import (
 "sync/atomic"
 "sync"
 "fmt"

Memory Management Chapter 10

[269]

)

//Reference Counter
type ReferenceCounter struct {
 num *uint32
 pool *sync.Pool
 removed *uint32
}

The newReferenceCounter, Add, and Subtract methods of the ReferenceCounter class
are shown in the following snippet:

//new Reference Counter method
func newReferenceCounter() ReferenceCounter {
 return ReferenceCounter{
 num: new(uint32),
 pool: &sync.Pool{},
 removed: new(uint32),
 }
}

// Add method
func (referenceCounter ReferenceCounter) Add() {
 atomic.AddUint32(referenceCounter.num, 1)
}

// Subtract method
func (referenceCounter ReferenceCounter) Subtract() {
 if atomic.AddUint32(referenceCounter.num, ^uint32(0)) == 0 {
 atomic.AddUint32(referenceCounter.removed, 1)
 }
}

Let's look at the main method and see an example of simple reference counting. The
newReferenceCounter method is invoked, and a reference is added by invoking the Add
method. The count reference is printed at the end. This is shown in the following code
snippet

// main method
func main() {
 var referenceCounter ReferenceCounter
 referenceCounter = newReferenceCounter()
 referenceCounter.Add()
 fmt.Println(*referenceCounter.count)
}

Memory Management Chapter 10

[270]

Run the following commands to execute the reference_counting.go file:

go run reference_counting.go

The output is as follows:

The different types of reference counting techniques are described in the following sections.

Deferred reference counting
Deferred reference counting is a procedure in which references from different objects to a
given object are checked and program-variable references are overlooked. If the tally of the
references is zero, that object will not be considered. This algorithm helps reduce the
overhead of keeping counts up to date. Deferred reference counting is supported by many
compilers.

One-bit reference counting
The one-bit reference counting technique utilizes a solitary bit flag to show whether an
object has one or more references. The flag is stored as part of the object pointer. There is no
requirement to spare any object for extra space in this technique. This technique is viable
since the majority of objects have a reference count of 1.

Weighted reference counting
The weighted reference counting technique tallies the number of references to an object,
and each reference is delegated a weight. This technique tracks the total weight of the
references to an object. Weighted reference counting was invented by Bevan, Watson, and
Watson in 1987. The following code snippet shows an implementation of the weighted
reference counting technique:

//Reference Counter
type ReferenceCounter struct {
 num *uint32
 pool *sync.Pool
 removed *uint32

Memory Management Chapter 10

[271]

 weight int
}

//WeightedReference method
func WeightedReference() int {
 var references []ReferenceCounter
 references = GetReferences(root)
 var reference ReferenceCounter
 var sum int
 for _, reference = range references {
 sum = sum + reference.weight
 }
 return sum
}

The mark-and-sweep algorithm
The mark-and-sweep algorithm is based on an idea that was proposed by Dijkstra in
1978. In the garbage collection style, the heap consists of a graph of connected objects,
which are white. This technique visits the objects and checks whether they are specifically
available by the application. Globals and objects on the stack are shaded gray in this
technique. Every gray object is darkened to black and filtered for pointers to other
objects. Any white object found in the output is turned gray. This calculation is rehashed
until there are no gray objects. White objects that are left out are inaccessible.

A mutator in this algorithm handles concurrency by changing the pointers while the
collector is running. It also takes care of the condition so that no black object points to a
white object. The mark algorithm has the following steps:

Mark the root object1.
Mark the root bit as true if the value of the bit is false2.
For every reference of root, mark the reference, as in the first step3.

The following code snippet shows the marking algorithm. Let's look at the implementation
of the Mark method:

func Mark(root *object){
 var markedAlready bool
 markedAlready = IfMarked(root)
 if !markedAlready {
 map[root] = true
 }
 var references *object[]
 references = GetReferences(root)

Memory Management Chapter 10

[272]

 var reference *object
 for _, reference = range references {
 Mark(reference)
 }
}

The sweep algorithm's pseudocode is presented here:

For each object in the heap, mark the bit as false if the value of the bit is true
If the value of the bit is true, release the object from the heap

The sweep algorithm releases the objects that are marked for garbage collection.

Now, let's look at the implementation of the sweep algorithm:

func Sweep(){
 var objects *[]object
 objects = GetObjects()
 var object *object
 for _, object = range objects {
 var markedAlready bool
 markedAlready = IfMarked(object)
 if markedAlready {
 map[object] = true
 }
 Release(object)
 }
}

The generational collection algorithm
The generational collection algorithm divides the heap of objects into generations. A
generation of objects will be expired and collected by the algorithm based on their age. The
algorithm promotes objects to older generations based on the age of the object in the
garbage collection cycle.

The entire heap needs to be scavenged, even if a generation is collected. Let's say generation
3 is collected; in this case, generations 0-2 are also scavenged. The generational collection
algorithm is presented in the following code snippet:

func GenerationCollect(){
 var currentGeneration int
 currentGeneration = 3
 var objects *[]object
 objects = GetObjectsFromOldGeneration(3)

Memory Management Chapter 10

[273]

 var object *object
 for _, object = range objects {
 var markedAlready bool
 markedAlready = IfMarked(object)
 if markedAlready {
 map[object] = true
 }
 }
}

We'll take a look at cache management in the next section.

Cache management
Cache management consists of managing static, dynamic, and variable information:

Static information never changes
Dynamic information changes frequently
Variable information changes less frequently than dynamic information

The object cache is stored in various data structures, such as maps and trees. Maps have a
key as an identifier and a value, which is an object.

Cache objects can be related to memory, disks, pools, and streams. Caches have attributes
related to time to live, group, and region. A region consists of a collection of mapped key-
values. Regions can be independent of other regions. Cache configuration consists of
defaults, regions, and auxiliaries.

A typical cache manager has the following features:

Memory management
Thread pool controls
Grouping of elements
Configurable runtime parameters
Region data separation and configuration
Remote synchronization
Remote store recovery
Event handling
Remote server chaining and failover
Custom event logging

Memory Management Chapter 10

[274]

Custom event queue injection
Key pattern-matching retrieval
Network-efficient multi-key retrieval

The CacheObject class and the Cache class are described in the following sections.

The CacheObject class
The CacheObject class has Value and TimeToLive properties. This is shown in the
following code:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt, sync and time packages
import (
 "fmt"
 "sync"
 "time"
)

// CacheObject class
type CacheObject struct {
 Value string
 TimeToLive int64
}

The IfExpired method of the CacheObject class is shown in the next section.

The IfExpired method
IfExpired checks whether the cache object has expired. The IfExpired method of
CacheObject returns true if TimeToLive has not expired; otherwise, it returns false.
This is shown in the following code:

// IfExpired method
func (cacheObject CacheObject) IfExpired() bool {
 if cacheObject.TimeToLive == 0 {
 return false
 }
 return time.Now().UnixNano() > cacheObject.TimeToLive
}

Memory Management Chapter 10

[275]

The Cache class
The Cache class consists of objects map with a string key, a CacheObject value, and a
sync.RWMutex mutex. This is shown in the following code:

//Cache class
type Cache struct {
 objects map[string]CacheObject
 mutex *sync.RWMutex
}

The NewCache, GetObject, and SetValue methods of the Cache class are shown in the
following sections.

The NewCache method
The NewCache method returns a pointer to a cache, which is initialized with the nil map
(that is, a map without values) and RWMutex. This is shown in the following code:

//NewCache method
func NewCache() *Cache {
 return &Cache{
 objects: make(map[string]CacheObject),
 mutex: &sync.RWMutex{},
 }
}

The GetObject method
The GetObject method retrieves the object given the cache key. The GetObject method of
the Cache class returns the value of cacheKey. The RLock method on the mutex object of
the cache is invoked, and the RUnlock method is deferred before returning the value of
cacheKey. If the object has expired, the key value will be an empty string. This is shown in
the following code:

//GetObject method
func (cache Cache) GetObject(cacheKey string) string {
 cache.mutex.RLock()
 defer cache.mutex.RUnlock()
 var object CacheObject
 object = cache.objects[cacheKey]
 if object.IfExpired() {
 delete(cache.objects, cacheKey)
 return ""

Memory Management Chapter 10

[276]

 }
 return object.Value
}

The SetValue method
The SetValue method of the Cache class takes cacheKey, cacheValue, and timeToLive
parameters. The Lock method on the mutex object of the cache is invoked, and the Unlock
method is deferred. A new CacheObject is created with cacheValue and TimeToLive as
properties. The created cacheObject is set as a value to map objects with the cacheKey
key. This is shown in the following code:

//SetValue method
func (cache Cache) SetValue(cacheKey string, cacheValue string, timeToLive
time.Duration) {
 cache.mutex.Lock()
 defer cache.mutex.Unlock()
 cache.objects[cacheKey] = CacheObject{
 Value: cacheValue,
 TimeToLive: time.Now().Add(timeToLive).UnixNano(),
 }
}

We'll implement the methods we just took a look at in the main method in the next section.

The main method
The main method creates the cache by invoking the NewCache method. The key and value
are set on the cache by invoking setValue. The value is accessed by calling the GetObject
method of the Cache class. This is shown in the following code:

// main method
func main() {
 var cache *Cache
 cache = NewCache()
 cache.SetValue("name", "john smith", 200000000)
 var name string
 name = cache.GetObject("name")
 fmt.Println(name)
}

Memory Management Chapter 10

[277]

Run the following command to execute the cache_management.go file:

go run cache_management.go

The output is as follows:

The next section talks about the space allocation algorithm.

Space allocation
Each function has stack frames associated with individual memory space. Functions have
access to the memory inside the frame, and a frame pointer points to the memory's
location. Transition between frames occurs when the function is invoked. Data is
transferred by value from one frame to another during the transition.

Stack frame creation and memory allocation is demonstrated in the following code.
The addOne function takes num and increments it by one. The function prints the value and
address of num:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)

// increment method
func addOne(num int) {
 num++
 fmt.Println("added to num", num, "Address of num", &num)
}

Memory Management Chapter 10

[278]

The main method initializes the variable number as 17. The number value and address are
printed before and after invoking the addOne function. This is shown in the following code:

// main method
func main() {
 var number int
 number = 17
 fmt.Println("value of number", number, "Address of number",
 &number)
 addOne(number)
 fmt.Println("value of number after adding One", number, "Address
 of", &number)
}

Run the following command to execute the stack_memory_allocation.go file:

go run stack_memory_allocation.go

The output is as follows:

Frame pointers are explained in the next section.

Pointers
Pointers have an address that is 4 or 8 bytes long, depending on whether you have a 32-bit
or 64-bit architecture. The stack's main frame consists of the number 17 with the address
0xc420016058. After adding one, a new frame with num equal to 18 and an address of
0xc420016068 is created. The main method prints the stack's main frame after invoking
the addOne function. The code in the following sections demonstrates memory space
allocation with pointers instead of actual values passed into a function.

The AddOne and main methods of pointers are shown in the following sections.

Memory Management Chapter 10

[279]

The addOne method
The addOne function takes a pointer to num and increments it by 1. The function prints the
value, address, and pointer of num. This is shown in the following code:

///main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt package
import (
 "fmt"
)

// increment method
func addOne(num *int) {
 *num++
 fmt.Println("added to num", num, "Address of num", &num, "Value
 Points To", *num)
}

The main method
The main method initializes the variable number to 17. The pointer to the number is passed
to the addOne function. The number value and address is printed before and after invoking
the addOne function.

In this example, the address of the number is the same as the value of num in the addOne
function. Pointers share the address of the variable for the function to access for reads and
writes within the stack frame. Pointer types are specific to every type that is declared.
Pointers provide indirect memory access outside the function's stack frame. This is shown
in the following code:

// main method
func main() {
 var number int
 number = 17
 fmt.Println("value of number", number, "Address of number",
 &number)
 addOne(&number)
 fmt.Println("value of number after adding One", number, "Address
 of", &number)
}

Memory Management Chapter 10

[280]

Run the following command to execute the stack_memory_pointer.go file:

go run stack_memory_pointer.go

The output is as follows:

The next section talks about memory management in Go.

Concepts – Go memory management
In Go, programmers don't need to worry about coding a variable's value placement in
memory and space allocation. Garbage collection in Go is overseen by the memory
manager. The GOGC variable is used to set a value for the initial garbage collection target
percentage. Garbage collection is activated when the proportion of freshly allotted data to
the live data that remains after the previous garbage collection reaches the target
percentage. The default value of the GOGC variable is 100. This setting can be turned off,
which stops garbage collection. The current implementation of garbage collection in Go
uses the mark-and-sweep algorithm.

Some of the best practices that you can follow to improve memory management are as
follows:

Small objects can be combined into larger objects
Local variables that have escaped from their declaration scope can be promoted
into heap allocations
Slice array pre-allocation can be performed to improve memory
Use int8, instead of int, because int8 is a smaller data type
Objects that do not have any pointers will not be scanned by the garbage
collector
FreeLists can be used to reuse transient objects and reduce the number of
allocations

Memory Management Chapter 10

[281]

Profiling
Profiling in Go can be enabled by using the cpuprofile and memprofile flags. The Go
testing package has support for benchmarking and profiling. The cpuprofile flag can be
invoked by the following command:

go test -run=none -bench=ClientServerParallel4 -cpuprofile=cprofile
net/http

The benchmark can be written to a cprofile output file using the following command:

go tool pprof --text http.test cprof

Let's look at an example of how to profile the programs that you have written. The
flag.Parse method reads the command-line flags. The CPU profiling output is written to
a file. The StopCPUProfile method on the profiler is called to flush any pending file
output that needs to be written before the program stops:

var profile = flag.String("cpuprofile", "", "cpu profile to output file")
func main() {
 flag.Parse()
 if *profile != "" {
 var file *os.File
 var err error
 file, err = os.Create(*profile)
 if err != nil {
 log.Fatal(err)
 }
 pprof.StartCPUProfile(file)
 defer pprof.StopCPUProfile()
 }

Summary
This chapter covered the garbage collection, cache management, and memory space
allocation algorithms. We looked at reference counting algorithms, including simple,
deferred, one-bit, and weighted. The mark-and-sweep and generational collection
algorithms were also presented with code examples.

The next chapter will cover the next steps we can take after going through this book.

Memory Management Chapter 10

[282]

Questions
Which factors are considered when choosing a garbage collection algorithm?1.
In which reference counting algorithm are program-variable references ignored?2.
What is the type of reference counting algorithm in which a single-bit flag is used3.
for counting?
In which reference counting algorithm is a weight assigned to each reference?4.
Who invented weighted reference counting?5.
Which garbage collection algorithm was proposed by Dijkstra?6.
What class handles concurrency when the mark-and-sweep collector is running?7.
What are the criteria for promoting objects to older generations?8.
Draw a flow chart for the cache management algorithm.9.
How do you get indirect memory access outside a method's stack frame?10.

Further reading
The following books are recommended if you want to know more about garbage collection:

Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides
Introduction to Algorithms – Third Edition, by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and Clifford Stein
Data structures and Algorithms: An Easy Introduction, by Rudolph Russell

Next Steps
In this appendix, we share the reader's learning outcomes from this book. The code
repository links and key takeaways are presented. References are included for the latest
data structures and algorithms. Tips and techniques are provided to help you keep yourself
up to date with the latest on data structures and algorithms.

Technical requirements
Install Go version 1.10 from https:/ ​/ ​golang. ​org/ ​doc/​install, being sure to choose the
correct version for your operating system.

The GitHub repository for the code in this appendix can be found here: https:/ ​/​github.
com/​PacktPublishing/ ​Learn- ​Data- ​Structures- ​and-​Algorithms- ​with- ​Golang/ ​tree/
master/​Appendix.

Learning outcomes
The learning outcomes from this book are as follows:

Improve a web or mobile application's performance using the correct data
structures and algorithms.
Understand how an algorithm solves a problem and how the correct data
structure is chosen for a problem.
Enumerate the various solutions to a problem and identify algorithms and data
structures after doing a cost/benefit analysis.
Get a grasp of the various techniques for writing pseudocode for an algorithm,
allowing you to ace white-boarding sessions and interview assignments.
Discover the pitfalls in selecting data structures and algorithms by predicting
how fast and efficient an algorithm or data structure is.

In the following section, the key takeaway points, papers, and articles to be referred to,
along with tips and techniques, are discussed.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix
https://github.com/PacktPublishing/Learn-Data-Structures-and-Algorithms-with-Golang/tree/master/Appendix

Next Steps

[284]

Key takeaways
The key takeaways for the reader are as follows:

How to choose the correct algorithm and data structures for a problem.
How to compare the complexity and data structures of different algorithms for
code performance and efficiency.
How to apply best practices to improve and increase the performance of an
application.
Real-world problems, solutions, and best practices associated with web and
mobile software solutions are provided in the book as code examples.

Next steps
In this section, papers and articles are provided as further reading for each chapter.

Chapter 1 – Data Structures and Algorithms
The following articles are related to data structures and algorithms:

The complete guide to Go Data Structures (https:/ ​/​flaviocopes. ​com/ ​golang-
data-​structures/ ​)
Data Structure and Algorithms
(http://www.golangprograms.com/data-structure-and-algorithms.html)
Data structures in Go: Stacks and queues
(https://ieftimov.com/golang-datastructures-stacks-queues)

The following papers are related to data structures and algorithms:

THE REPRESENTATION OF ALGORITHMS – DTIC
(https://apps.dtic.mil/dtic/tr/fulltext/u2/697026.pdf)
ON THE COMPUTATIONAL COMPLEXITY OF ALGORITHMS
(https://fi.ort.edu.uy/innovaportal/file/20124/1/60-hartmanis_stearns_
complexity_of_algorithms.pdf)
Analysis and Performance of Divide and Conquer Methodology
(http://ijarcet.org/wp-content/uploads/IJARCET-VOL-6-ISSUE-8-1295-1298
.pdf)

https://flaviocopes.com/golang-data-structures/
https://flaviocopes.com/golang-data-structures/
https://flaviocopes.com/golang-data-structures/
https://flaviocopes.com/golang-data-structures/
https://flaviocopes.com/golang-data-structures/
https://flaviocopes.com/golang-data-structures/
https://flaviocopes.com/golang-data-structures/
https://flaviocopes.com/golang-data-structures/
https://flaviocopes.com/golang-data-structures/
https://flaviocopes.com/golang-data-structures/
https://flaviocopes.com/golang-data-structures/
https://flaviocopes.com/golang-data-structures/
https://flaviocopes.com/golang-data-structures/
http://www.golangprograms.com/data-structure-and-algorithms.html
https://ieftimov.com/golang-datastructures-stacks-queues
https://apps.dtic.mil/dtic/tr/fulltext/u2/697026.pdf
https://fi.ort.edu.uy/innovaportal/file/20124/1/60-hartmanis_stearns_complexity_of_algorithms.pdf
https://fi.ort.edu.uy/innovaportal/file/20124/1/60-hartmanis_stearns_complexity_of_algorithms.pdf
http://ijarcet.org/wp-content/uploads/IJARCET-VOL-6-ISSUE-8-1295-1298.pdf
http://ijarcet.org/wp-content/uploads/IJARCET-VOL-6-ISSUE-8-1295-1298.pdf

Next Steps

[285]

Chapter 2 – Getting Started with Go for Data
Structures and Algorithms
The following articles are related to the content in this chapter:

Go – Data structures (https://golanglibs.com/category/data-structures)
Applied – Go Algorithms and Data Structures
(https://appliedgo.net/domains/algorithms-and-data-structures/)
Effective Go (https://golang.org/doc/effective_go.html)

Chapter 3 – Linear Data Structures
The following articles are related to linear data structures:

Data Structures for Beginners: Arrays, HashMaps, and Lists
(https://adrianmejia.com/blog/2018/04/28/data-structures-time-complexi
ty-for-beginners-arrays-hashmaps-linked-lists-stacks-queues-tutorial/)
Stack - Array Implementation
(https://www.cs.bu.edu/teaching/c/stack/array/)

The following papers are related to linear data structures:

Linear-Space Data Structures for Range Mode Query in
Arrays (https://cs.au.dk/~larsen/papers/linear_mode.pdf)
RESEARCH PAPER ON STACK AND QUEUE
(http://www.ijirt.org/master/publishedpaper/IJIRT101357_PAPER.pdf)
Linear Data Structures for Fast Ray-Shooting amidst Convex Polyhedra
(http://www.cs.tau.ac.il/~haimk/papers/ray.pdf)

Chapter 4 – Non-Linear Data Structures
The following articles are related to non-linear data structures:

Overview of non-linear data structures
(https://medium.com/@ankitkulhari/overview-of-non-linear-data-structur
es-40cb441f6d7)
Non-linear Data Structures (http:/ ​/​euler. ​vcsu. ​edu:7000/ ​9647/ ​)

https://golanglibs.com/category/data-structures
https://appliedgo.net/domains/algorithms-and-data-structures/
https://golang.org/doc/effective_go.html
https://adrianmejia.com/blog/2018/04/28/data-structures-time-complexity-for-beginners-arrays-hashmaps-linked-lists-stacks-queues-tutorial/
https://adrianmejia.com/blog/2018/04/28/data-structures-time-complexity-for-beginners-arrays-hashmaps-linked-lists-stacks-queues-tutorial/
https://www.cs.bu.edu/teaching/c/stack/array/
https://cs.au.dk/~larsen/papers/linear_mode.pdf
http://www.ijirt.org/master/publishedpaper/IJIRT101357_PAPER.pdf
http://www.cs.tau.ac.il/~haimk/papers/ray.pdf
https://medium.com/@ankitkulhari/overview-of-non-linear-data-structures-40cb441f6d7
https://medium.com/@ankitkulhari/overview-of-non-linear-data-structures-40cb441f6d7
http://euler.vcsu.edu:7000/9647/
http://euler.vcsu.edu:7000/9647/
http://euler.vcsu.edu:7000/9647/
http://euler.vcsu.edu:7000/9647/
http://euler.vcsu.edu:7000/9647/
http://euler.vcsu.edu:7000/9647/
http://euler.vcsu.edu:7000/9647/
http://euler.vcsu.edu:7000/9647/
http://euler.vcsu.edu:7000/9647/
http://euler.vcsu.edu:7000/9647/
http://euler.vcsu.edu:7000/9647/
http://euler.vcsu.edu:7000/9647/

Next Steps

[286]

What Is Forest Data Structure?
(https://magoosh.com/data-science/what-is-forest-data-structure/)
Tree Data Structure
(http://www.cs.cmu.edu/~clo/www/CMU/DataStructures/Lessons/lesson4_1.h
tm)

The following papers are related to non-linear data structures:

Y-Trees: An extending non-linear data structure for better organization of large-sized
data (https://ieeexplore.ieee.org/document/8234528)

A Shape Analysis for Non-linear Data Structures
(https://link.springer.com/chapter/10.1007/978-3-642-15769-1_13)

Representation of Nonlinear Data Surfaces
(https://www.semanticscholar.org/paper/Representation-of-Nonlinear-Dat
a-Surfaces-Olsen-Fukunaga/f4f4812532ba427658ecc83d772637c076780acf)

Chapter 5 – Homogeneous Data Structures
The following articles are related to homogeneous data structures:

USING MATRICES IN GO(LANG)
(http://connor-johnson.com/2014/06/21/using-matrices-in-golang/)

Golang: Linear algebra and matrix calculation example (https:/ ​/ ​www.​socketloop.
com/​tutorials/ ​golang- ​linear- ​algebra- ​and- ​matrix- ​calculation- ​example)

Gonum Tutorial: Linear Algebra in Go
(https://medium.com/wireless-registry-engineering/gonum-tutorial-linea
r-algebra-in-go-21ef136fc2d7)

Matrix Multiplication in Golang (3x3 matrices)
(https://repl.it/@hygull/Matrix-multiplication-in-Golang2-matrices-of-
order-3x3)

https://magoosh.com/data-science/what-is-forest-data-structure/
http://www.cs.cmu.edu/~clo/www/CMU/DataStructures/Lessons/lesson4_1.htm
http://www.cs.cmu.edu/~clo/www/CMU/DataStructures/Lessons/lesson4_1.htm
https://ieeexplore.ieee.org/document/8234528
https://link.springer.com/chapter/10.1007/978-3-642-15769-1_13
https://www.semanticscholar.org/paper/Representation-of-Nonlinear-Data-Surfaces-Olsen-Fukunaga/f4f4812532ba427658ecc83d772637c076780acf
https://www.semanticscholar.org/paper/Representation-of-Nonlinear-Data-Surfaces-Olsen-Fukunaga/f4f4812532ba427658ecc83d772637c076780acf
http://connor-johnson.com/2014/06/21/using-matrices-in-golang/
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://www.socketloop.com/tutorials/golang-linear-algebra-and-matrix-calculation-example
https://medium.com/wireless-registry-engineering/gonum-tutorial-linear-algebra-in-go-21ef136fc2d7
https://medium.com/wireless-registry-engineering/gonum-tutorial-linear-algebra-in-go-21ef136fc2d7
https://repl.it/@hygull/Matrix-multiplication-in-Golang2-matrices-of-order-3x3
https://repl.it/@hygull/Matrix-multiplication-in-Golang2-matrices-of-order-3x3

Next Steps

[287]

Chapter 6 – Heterogeneous Data Structures
The following articles are related to heterogeneous data structures:

Heterogeneous Arrays (https://gist.github.com/cslarsen/5256744)
OL (Ordered List) (https://www.w3.org/MarkUp/html3/seqlists.html)
Large Ordered Lists (https://www.aerospike.com/docs/guide/llist.html)
Implementing an Ordered List
(https://bradfieldcs.com/algos/lists/implementing-an-ordered-list/)

Chapter 7 – Dynamic Data Structures
The following articles are related to dynamic data structures:

The complete guide to Go Data Structures
(https://flaviocopes.com/golang-data-structures/)
DATA STRUCTURE AND ALGORITHMS
(http://www.golangprograms.com/data-structure-and-algorithms.html)
Data structures in Go: Stacks and queues
(https://ieftimov.com/golang-datastructures-stacks-queues)

The following papers are related to dynamic data structures:

THE REPRESENTATION OF
ALGORITHMS – DTIC (https://apps.dtic.mil/dtic/tr/fulltext/u2/697026.
pdf)
ON THE COMPUTATIONAL COMPLEXITY OF
ALGORITHMS (https://fi.ort.edu.uy/innovaportal/file/20124/1/60-hartm
anis_stearns_complexity_of_algorithms.pdf)
Analysis and Performance of Divide and Conquer
Methodology (http://ijarcet.org/wp-content/uploads/IJARCET-VOL-6-ISSUE-
8-1295-1298.pdf)

https://gist.github.com/cslarsen/5256744
https://www.w3.org/MarkUp/html3/seqlists.html
https://www.aerospike.com/docs/guide/llist.html
https://bradfieldcs.com/algos/lists/implementing-an-ordered-list/
https://flaviocopes.com/golang-data-structures/
http://www.golangprograms.com/data-structure-and-algorithms.html
https://ieftimov.com/golang-datastructures-stacks-queues
https://apps.dtic.mil/dtic/tr/fulltext/u2/697026.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/697026.pdf
https://fi.ort.edu.uy/innovaportal/file/20124/1/60-hartmanis_stearns_complexity_of_algorithms.pdf
https://fi.ort.edu.uy/innovaportal/file/20124/1/60-hartmanis_stearns_complexity_of_algorithms.pdf
http://ijarcet.org/wp-content/uploads/IJARCET-VOL-6-ISSUE-8-1295-1298.pdf
http://ijarcet.org/wp-content/uploads/IJARCET-VOL-6-ISSUE-8-1295-1298.pdf

Next Steps

[288]

Chapter 8 – Classic Algorithms
The following articles are related to classic algorithms:

Sorting Algorithms Primer
(https://hackernoon.com/sorting-algorithms-primer-374b83f3ba09)
Depth-First Search
(https://medium.com/@g789872001darren/gogoalgorithm-1-depth-first-sear
ch-582eeb58f23a)
Hashing in Go (Golang vs Python)
(https://medium.com/@vworri/hashing-in-go-golang-vs-python-b7bc1194e96
7)
Iterative vs Recursive vs Tail-Recursive in Golang
(https://medium.com/@felipedutratine/iterative-vs-recursive-vs-tail-re
cursive-in-golang-c196ca5fd489)

The following papers are related to classic algorithms:

A Mathematical Modeling of Pure, Recursive Algorithms
(https://www.researchgate.net/publication/220810107_A_Mathematical_Mod
eling_of_Pure_Recursive_Algorithms)
Recursive algorithms for estimation of hidden Markov models and autoregressive models
with Markov regime (https://ieeexplore.ieee.org/document/979322)
Recursive algorithms for approximating probabilities in graphical models
(https://papers.nips.cc/paper/1316-recursive-algorithms-for-approximat
ing-probabilities-in-graphical-models.pdf)

Chapter 9 – Network and Sparse Matrix Representation
The following articles are related to network and sparse matrix representation:

Equations Are Graphs
(http://gopherdata.io/post/deeplearning_in_go_part_1/)
From Theory To Practice: Representing Graphs
(https://medium.com/basecs/from-theory-to-practice-representing-graphs
-cfd782c5be38)
Go Data Structures: Graph
(https://flaviocopes.com/golang-data-structure-graph/)

https://hackernoon.com/sorting-algorithms-primer-374b83f3ba09
https://medium.com/@g789872001darren/gogoalgorithm-1-depth-first-search-582eeb58f23a
https://medium.com/@g789872001darren/gogoalgorithm-1-depth-first-search-582eeb58f23a
https://medium.com/@vworri/hashing-in-go-golang-vs-python-b7bc1194e967
https://medium.com/@vworri/hashing-in-go-golang-vs-python-b7bc1194e967
https://medium.com/@felipedutratine/iterative-vs-recursive-vs-tail-recursive-in-golang-c196ca5fd489
https://medium.com/@felipedutratine/iterative-vs-recursive-vs-tail-recursive-in-golang-c196ca5fd489
https://www.researchgate.net/publication/220810107_A_Mathematical_Modeling_of_Pure_Recursive_Algorithms
https://www.researchgate.net/publication/220810107_A_Mathematical_Modeling_of_Pure_Recursive_Algorithms
https://ieeexplore.ieee.org/document/979322
https://papers.nips.cc/paper/1316-recursive-algorithms-for-approximating-probabilities-in-graphical-models.pdf
https://papers.nips.cc/paper/1316-recursive-algorithms-for-approximating-probabilities-in-graphical-models.pdf
http://gopherdata.io/post/deeplearning_in_go_part_1/
https://medium.com/basecs/from-theory-to-practice-representing-graphs-cfd782c5be38
https://medium.com/basecs/from-theory-to-practice-representing-graphs-cfd782c5be38
https://flaviocopes.com/golang-data-structure-graph/

Next Steps

[289]

The following papers are related to network and sparse matrix representation:

Representation Learning on Graphs: Methods and Applications
(https://www-cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee
17.pdf)
An overview on network diagrams: Graph-based representation
(https://www.researchgate.net/publication/308049492_An_overview_on_net
work_diagrams_Graph-based_representation)
Design principles for origin-destination flow maps
(https://pdfs.semanticscholar.org/587a/730b11a4b3878142bd4995f80dc969b
c5982.pdf)

In Chapter 9, Network and Sparse Matrix Representation, use cases from real-life applications
were presented. Learning how the network data structure and sparse matrices are applied
in different domains, such as airlines, banking, medical, pharma, telecoms, and supply
chains, is a good next step for the reader.

Chapter 10 – Memory Management
The following articles are related to memory management:

Getting to Go: The Journey of Go's Garbage Collector
(https://blog.golang.org/ismmkeynote)
Modern garbage collection
(https://blog.plan99.net/modern-garbage-collection-911ef4f8bd8e)
Go Lang: Memory Management and Garbage Collection
(https://vikash1976.wordpress.com/2017/03/26/go-lang-memory-management
-and-garbage-collection/)

The following papers are related to memory management:

Analysis of the Go runtime scheduler
(http://www.cs.columbia.edu/~aho/cs6998/reports/12-12-11_DeshpandeSpon
slerWeiss_GO.pdf)
Simple Generational Garbage Collection and Fast Allocation
(http://www.cs.ucsb.edu/~ckrintz/racelab/gc/papers/appel88simplegen.pd
f)
A Time- and SpaceEfficient Garbage Compaction Algorithm
(http://www.cs.ucsb.edu/~ckrintz/racelab/gc/papers/morris-compaction.p
df)

https://www-cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
https://www-cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
https://www.researchgate.net/publication/308049492_An_overview_on_network_diagrams_Graph-based_representation
https://www.researchgate.net/publication/308049492_An_overview_on_network_diagrams_Graph-based_representation
https://pdfs.semanticscholar.org/587a/730b11a4b3878142bd4995f80dc969bc5982.pdf
https://pdfs.semanticscholar.org/587a/730b11a4b3878142bd4995f80dc969bc5982.pdf
https://blog.golang.org/ismmkeynote
https://blog.plan99.net/modern-garbage-collection-911ef4f8bd8e
https://vikash1976.wordpress.com/2017/03/26/go-lang-memory-management-and-garbage-collection/
https://vikash1976.wordpress.com/2017/03/26/go-lang-memory-management-and-garbage-collection/
http://www.cs.columbia.edu/~aho/cs6998/reports/12-12-11_DeshpandeSponslerWeiss_GO.pdf
http://www.cs.columbia.edu/~aho/cs6998/reports/12-12-11_DeshpandeSponslerWeiss_GO.pdf
http://www.cs.ucsb.edu/~ckrintz/racelab/gc/papers/appel88simplegen.pdf
http://www.cs.ucsb.edu/~ckrintz/racelab/gc/papers/appel88simplegen.pdf
http://www.cs.ucsb.edu/~ckrintz/racelab/gc/papers/morris-compaction.pdf
http://www.cs.ucsb.edu/~ckrintz/racelab/gc/papers/morris-compaction.pdf

Next Steps

[290]

The different tips and tricks to be used in Go data structures and algorithm are discussed in
the next section.

Tips and techniques
To keep updated on Go, you can subscribe to these forums and blogs:

Gopherize: https:/ ​/​gopherize. ​me/​?​fromhttp= ​true

Golang Weekly: https:/ ​/ ​golangweekly. ​com/ ​issues/ ​240

The Gopher Conference: https:/ ​/​www. ​gophercon. ​com/ ​

Google Groups: https:/ ​/ ​groups. ​google. ​com/ ​forum/ ​m/​#!newtopic/ ​golang-
dev

Slack Groups: https:/ ​/ ​techbeacon. ​com/ ​46- ​slack- ​groups- ​developers

Stack Overflow: http:/ ​/​stackoverflow. ​com/​questions/ ​tagged/ ​go

Dave Cheney's Resources for New Go Programmers: https:/ ​/​dave. ​cheney. ​net/
resources- ​for- ​new- ​go- ​programmers

The following section contains tips for writing good code in Go.

Using channel with a timeout interval
The software program that connects to resources can be set with timeouts. Channels are
used for implementing timeouts. You can configure a channel with a timeout interval as
follows:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing errors, log and time packages
import (
 "errors"
 "log"
 "time"
)

// delayTimeOut method
func delayTimeOut(channel chan interface{}, timeOut time.Duration)
(interface{}, error) {
 log.Printf("delayTimeOut enter")
 defer log.Printf("delayTimeOut exit")
 var data interface{}

https://gopherize.me/?fromhttp=true
https://gopherize.me/?fromhttp=true
https://gopherize.me/?fromhttp=true
https://gopherize.me/?fromhttp=true
https://gopherize.me/?fromhttp=true
https://gopherize.me/?fromhttp=true
https://gopherize.me/?fromhttp=true
https://gopherize.me/?fromhttp=true
https://gopherize.me/?fromhttp=true
https://gopherize.me/?fromhttp=true
https://gopherize.me/?fromhttp=true
https://gopherize.me/?fromhttp=true
https://gopherize.me/?fromhttp=true
https://golangweekly.com/issues/240
https://golangweekly.com/issues/240
https://golangweekly.com/issues/240
https://golangweekly.com/issues/240
https://golangweekly.com/issues/240
https://golangweekly.com/issues/240
https://golangweekly.com/issues/240
https://golangweekly.com/issues/240
https://golangweekly.com/issues/240
https://golangweekly.com/issues/240
https://golangweekly.com/issues/240
https://www.gophercon.com/
https://www.gophercon.com/
https://www.gophercon.com/
https://www.gophercon.com/
https://www.gophercon.com/
https://www.gophercon.com/
https://www.gophercon.com/
https://www.gophercon.com/
https://www.gophercon.com/
https://www.gophercon.com/
https://www.gophercon.com/
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://groups.google.com/forum/m/#!newtopic/golang-dev
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
https://techbeacon.com/46-slack-groups-developers
http://stackoverflow.com/questions/tagged/go
http://stackoverflow.com/questions/tagged/go
http://stackoverflow.com/questions/tagged/go
http://stackoverflow.com/questions/tagged/go
http://stackoverflow.com/questions/tagged/go
http://stackoverflow.com/questions/tagged/go
http://stackoverflow.com/questions/tagged/go
http://stackoverflow.com/questions/tagged/go
http://stackoverflow.com/questions/tagged/go
http://stackoverflow.com/questions/tagged/go
http://stackoverflow.com/questions/tagged/go
http://stackoverflow.com/questions/tagged/go
http://stackoverflow.com/questions/tagged/go
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers
https://dave.cheney.net/resources-for-new-go-programmers

Next Steps

[291]

 select {
 case <-time.After(timeOut):
 return nil, errors.New("delayTimeOut time out")
 case data = <-channel:
 return data, nil
 }
}

//main method
func main() {
 channel := make(chan interface{})
 go func() {
 var err error
 var data interface{}
 data, err = delayTimeOut(channel, time.Second)
 if err != nil {
 log.Printf("error %v", err)
 return
 }
 log.Printf("data %v", data)
 }()
 channel <- struct{}{}
 time.Sleep(time.Second * 2)
 go func() {
 var err error
 var data interface{}
 data, err = delayTimeOut(channel, time.Second)
 if err != nil {
 log.Printf("error %v", err)
 return
 }
 log.Printf("data %v", data)
 }()
 time.Sleep(time.Second * 2)
}

Run the following command to execute the preceding code snippet:

go run chan_timeout.go

Next Steps

[292]

The output is as follows:

Using context instead of channel
Contexts can be implemented in functions executed in Go routines. Contexts are used
instead of channel in the code for passing information between processes. The following
code snippet shows the usage of context:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing errors,context,log and time packages

import (
 "errors"
 "golang.org/x/net/context"
 "log"
 "time"
)

// main method
func main() {

 var delay time.Duration

 delay = time.Millisecond

 var cancel context.CancelFunc

 var contex context.Context

 contex, cancel = context.WithTimeout(context.Background(), delay)

 go func(context.Context) {
 <-contex.Done()
 log.Printf("contex done")

Next Steps

[293]

 }(contex)

 _ = cancel

 time.Sleep(delay * 2)

 log.Printf("contex end %v", contex.Err())

 channel := make(chan struct{})

 var err error
 go func(chan struct{}) {
 select {
 case <-time.After(delay):
 err = errors.New("ch delay")
 case <-channel:
 }
 log.Printf("channel done")
 }(channel)

 time.Sleep(delay * 2)

 log.Printf("channel end %v", err)
}

Run the following command to execute the preceding code snippet:

go run context.go

The output is as follows:

Logging with the line number
While logging, you can log with the line number and the method name. The following code
snippet shows how logging can be executed with the line number and the method name:

//main package has examples shown
//in Go Data Structures and algorithms book

Next Steps

[294]

package main

//importing path, runtime, fmt, log and time packages

import(
 "path"
 "runtime"
 "fmt"
 "log"
 "time"
)

//checkPoint method
func checkPoint() string {
 pc, file, line, _ := runtime.Caller(1)
 return fmt.Sprintf("\033[31m%v %s %s %d\x1b[0m", time.Now(),
 runtime.FuncForPC(pc).Name(), path.Base(file), line)
}

//method1
func method1(){
 fmt.Println(checkPoint())
}

//main method
func main() {

 log.SetFlags(log.LstdFlags | log.Lshortfile)

 log.Println("logging the time and flags")

 method1()

}

Run the following command to execute the preceding code snippet:

go run log_linenumber.go

The output is as follows:

Next Steps

[295]

Go tool usage
The Go tool compiler can be invoked with the following command:

go build -gcflags="-S -N"

The list options command syntax is as follows:

go build -x

To test the race conditions, you can use the following command:

go test -race

Running a test method by name can be done using the following syntax:

go test -run=method1

To update your version of Go, you can use the following command:

go get -u

Copying can be done with the following command:

go get -d

To get depths, you can use the following command:

go get -t

To get a list of software, you can use the following command:

go list -f

Go environment variables
The GOROOT variable can be configured as an environment variable with this command:

export GOROOT=/opt/go1.7.1

The PATH variable can be configured as an environment variable with this command:

export PATH=$GOROOT/bin:$PATH

The GOPATH variable can be configured as an environment variable with this command:

export GOPATH=$HOME/go

Next Steps

[296]

The GOPATH variable can be configured in the PATH variable with this command:

export PATH=$GOPATH/bin:$PATH

Test table
Tests are driven by a test table. The following code snippet shows how a test table can be
used:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing testing packages

import (
 "testing"
)

func TestAddition(test *testing.T) {

 cases := []struct{ integer1 , integer2 , resultSum int }{
 {1, 1, 2},
 {1, -1, 0},
 {1, 0, 1},
 {0, 0, 0},
 {3, 2, 1},
 }

 for _, cas := range cases {
 var sum int
 var expected int
 sum = cas.integer1 + cas.integer2
 expected = cas.resultSum
 if sum != expected {
 test.Errorf("%d + %d = %d, expected %d", cas.integer1, cas.integer2,
sum, expected)
 }
 }

}

Run the following command to execute the preceding code snippet:

go test -run TestAddition -v

Next Steps

[297]

The output is as follows:

Importing packages
You can import packages with the following statements. Here, we show three different
syntactical options:

import "fmt"
import ft "fmt"
import . "fmt"

Panic, defer, and recover
Panic, defer, and recover are used to handle complex errors. The last returned variable in a
function is used as an error. The following code snippet is an example of this:

//main package has examples shown
// in Go Data Structures and algorithms book
package main

// importing fmt and errors packages

import(
 "fmt"
 "errors"

)

//First Func method
func FirstFunc(v interface{}) (interface{}, error) {
 var ok bool

 if !ok {
 return nil, errors.New("false error")
 }
 return v, nil
}

Next Steps

[298]

//SecondFunc method
func SecondFunc() {
 defer func() {
 var err interface{}
 if err = recover(); err != nil {
 fmt.Println("recovering error ", err)
 }
 }()
 var v interface{}
 v = struct{}{}
 var err error
 if _, err = FirstFunc(v); err != nil {
 panic(err)
 }

 fmt.Println("The error never happen")
}

//main method
func main() {
 SecondFunc()
 fmt.Println("The execution ended")
}

Run the following command to execute the preceding code snippet:

go run handling_error.go

The output is as follows:

The following link contain some useful tips and techniques for writing Go code: https:/ ​/
golang.​org/​doc/​effective_ ​go. ​html.

https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Software Architecture with Golang
Jyotiswarup Raiturkar

ISBN: 978-1-78862-259-2

Understand architectural paradigms and deep dive into Microservices
Design parallelism/concurrency patterns and learn object-oriented design
patterns in Go
Explore API-driven systems architecture with introduction to REST and
GraphQL standards
Build event-driven architectures and make your architectures anti-fragile
Engineer scalability and learn how to migrate to Go from other languages
Get to grips with deployment considerations with CICD pipeline, cloud
deployments, and so on
Build an end-to-end e-commerce (travel) application backend in Go

https://www.packtpub.com/application-development/hands-software-architecture-golang

Other Books You May Enjoy

[300]

Hands-On Dependency Injection in Go
Corey Scott

ISBN: 978-1-78913-276-2

Understand the benefits of DI
Explore SOLID design principles and how they relate to Go
Analyze various dependency injection patterns available in Go
Leverage DI to produce high-quality, loosely coupled Go code
Refactor existing Go code to adopt DI
Discover tools to improve your code’s testability and test coverage
Generate and interpret Go dependency graphs

https://www.packtpub.com/application-development/hands-dependency-injection-go

Other Books You May Enjoy

[301]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
adapter pattern 16, 17
Adelson, Velski, and Landis (AVL) tree
 about 124
 KeyValue interface 124
 TreeNode class 124
adjacency list 238
adjacency matrix 238
algorithms
 representing 35
arrays 52, 53, 54, 143

B
B+ tree 133
B-tree 133
backtracking algorithm 47, 48, 49
Big O notation 38
binary search algorithm 228
binary search tree 114
BinarySearchTree class
 about 115
 inOrderTraverse method 116
 inOrderTraverseTree method 117
 InsertElement method 115
 insertTreeNode method 116
 main method 123
 MaxNode method 119
 MinNode method 118
 PostOrderTraverseTree method 118
 postOrderTraverseTree method 118
 PreOrderTraverseTree method 117
 preOrderTraverseTree method 117
 removeNode method 121
 RemoveNode method 120
 searchNode method 120
 SearchNode method 120

 String method 122
 stringify method 122
blocks 263
Boolean matrix
 about 156
 main method 158
 printMatrix method 158
bridge pattern
 about 17, 18
 drawContour method 19, 20
 drawShape method 18
brute force algorithms 45, 46
bubble sort algorithm 212, 213, 214
ByFactor function type
 Sort method 176

C
Cache class
 about 275
 GetObject method 275
 NewCache method 275
 SetValue method 276
cache management
 about 273
 Cache class 275
 CacheObject class 274
 main method 276
cache manager
 features 273, 274
CacheObject class
 about 274
 IfExpired method 274
circular linked list
 about 137, 138, 169
 CircularQueue class 169
CircularQueue class
 about 169

[303]

 Add method 171
 CircularQueue class 170
 IsUnUsed method 170
 main method 171
 MoveOneStep method 171
 NewQueue method 170
classic algorithms 211
column matrix 144
complexity analysis of algorithm
 about 36, 37
 Big O notation 38
 cubic complexity 41
 linear complexity 39
 logarithmic complexity 42, 43
 quadratic complexity 40
composite pattern 20
containers 136
CRM web application
 about 71
 alter function 73
 create function 72
 delete function 74
 insert function 72
 main method 74
 update function 73
CRUD web forms
 about 66, 67, 68
 Create template 76
 CRM web application 71
 defer statement 69
 DeleteCustomer method 71
 footer template 75
 Header template 75
 InsertCustomer method 70
 Menu template 76
 panic statement 69
 Update template 76
 UpdateCustomer method 70
 View template 77
cubic complexity 41

D
data structures
 about 7
 classifying 9, 10

 heaps 13, 14
 lists 10, 11
 tuples 12, 13
database operations
 about 60
 GetCustomer method 60, 62
 InsertCustomer method 62
decorator pattern 22, 23
deferred reference counting 270
Dictionary class
 about 189
 Contains method 190
 Find method 191
 GetKeys method 192
 GetValues method 192
 main method 193
 NumberOfElements method 191
 Put method 190
 Remove method 190
 Reset method 191
dictionary
 about 188
 Dictionary class 189
 DictVal type 189
 uses 188
divide and conquer algorithm 46, 47
documentation keywords 35
doubly linked list
 about 89, 168
 AddAfter method 91
 AddToEnd method 92
 AddToHead method 90
 main method 93
 NodeBetweenValues method 89
dynamic data structures
 about 187
 dictionary 188
 sequences 200
 TreeSets 193

F
facade pattern 24, 25, 27
Farey sequence
 about 200
 g method 201

[304]

 main method 202
 String method 201
Farey series 200
Fibonacci sequence
 about 203
 FibonacciNumber method 204
 main method 204, 205
finite element method (FEM) 256
flow chart 35
flow control keywords 35
flyweight pattern 28, 29, 31

G
Gang of Four (GoF) 15
garbage collection algorithms
 factors 264
garbage collection
 about 264
 generational collection algorithm 272
 mark-and-sweep algorithm 271
 reference counting 268
 ReferenceCounter class 265
 region interference 264
 stack allocation 264
 Stack class 266
generational collection algorithm 272
Go Array 54
Go Slice 54
graphs
 about 238
 types 238

H
hash functions
 about 138, 140, 232
 CreateHashMutliple method 233
 main method 234
 XOR method 233
hashing 232
hashing algorithm 211
heaps 13, 14
heterogeneous data structures
 about 164
 linked lists 165
 ordered lists 172

 unordered lists 183
homogeneous data structures
 about 142
 multi-dimensional arrays 159
 two-dimensional arrays 143

I
identity matrix 147
incidence matrix 238
insertion sort
 about 216
 InsertionSorter method 217
 main method 217, 218
interpolation search algorithm 229

K
knowledge graph 251
KnowledgeGraph class
 about 252
 AddClass method 252
 AddLink method 253
 main method 254
 NewKnowledgeGraph method 252
 PrintLinks method 253
 test 255, 256

L
len function 55
linear complexity 39
linear data structures
 lists 83
 queues 100
 sets 94
 stack 108
 tuples 99
linear search method 227
Link class
 about 239
 AddLink method 239
 main method 240, 241
 NewSocialGraph method 239
 PrintLinks method 240
 test 241, 242
linked lists
 about 164, 165

[305]

 circular-linked list 169
 doubly linked list 168
 singly linked list 165
LinkedList
 about 83, 84
 AddAfter method 87
 AddToEnd method 86
 AddToHead method 84, 85
 IterateList method 85
 LastNode method 86
 main method 88
 Node class 83
 NodeWithValue method 87
lists
 about 10, 11, 83
 doubly linked list 89
 LinkedList 83
 ordered lists 172
 unordered lists 172
logarithmic complexity 42, 43
look-and-say sequence 205
lower triangular matrix 145

M
m x n matrix 144
map layout 246
MapLayout class
 about 247
 AddLink method 248
 AddPlace method 247
 main method 249, 250
 NewMapLayout method 247
 PrintLinks method 248
 test 250, 251
maps 59
mark-and-sweep algorithm 271, 280
matrix
 about 142, 143
 Boolean matrix 156
 column matrix 144
 identity matrix 147
 lower triangular matrix 145
 null matrix 146
 row matrix 144
 spiral matrix 154, 155

 symmetric matrix 148
 two-dimensional matrix 148
 upper triangular matrix 145
 zig-zag matrix 152, 154
memory management
 about 263
 best practices 280
merge sort algorithm
 about 220, 221
 JoinArrays method 222
 main method 222
 MergeSorter method 221
multi-dimensional arrays
 about 159
 tensors 160
multiSorter class
 about 179
 len method 180
 less method 181
 main method 181
 OrderBy method 180
 Sort method 180
 Swap method 180
Mutable TreeSets
 about 199
 RemoveNode method 199
 Treeset.bst 200

N
negative matrix 148
network representation, with graphs
 about 238
 knowledge graph 251
 Link class 239
 map layouts 246
 social network 242
non-linear data structures
 about 113
 containers 136
 symbol tables 136
 tables 134
 trees 114
null matrix 146

[306]

O
old toy algorithm 154
one-bit reference counting 270
ontology 251
ordered lists
 about 164, 172
 SortByAge type 174
 struct type 179
 Thing class 175
 Thing sorter class 176
 ToString method 173

P
performance analysis
 of algorithms 36
pointers
 addOne method 279
 main method 279, 280
private class data pattern 31
product matrix 150
profiling 281
proxy pattern 33
pseudo code 35, 36

Q
quadratic complexity 40
queues
 about 100
 Add method 101
 main method 102
 New method 101
 Synchronized Queue 103
quick sort algorithm
 about 223
 divideParts method 224
 main method 225, 226
 swap method 225

R
recursion 231, 232
reference counting
 about 268
 deferred reference counting 270
 one-bit reference counting 270

 simple reference counting 268
 weighted reference counting 270
ReferenceCounter class
 about 265
 newReferenceCounter method 265
representations, of algorithms
 flow chart 35
 pseudo code 36
row matrix 144

S
scalar 142, 143
search algorithms
 about 211, 226
 binary search algorithm 228
 interpolation search algorithm 229
 linear search method 227
selection sort
 about 214
 main method 215, 216
 swap method 215
sequences
 about 200
 Farey sequence 200
 Fibonacci sequence 203
 look-and-say sequence 205
sets
 about 94
 AddElement method 95
 ContainsElement method 96
 DeleteElement method 95
 InterSect method 97
 main method 96, 98
 Union method 97
shell sort algorithm
 about 218
 main method 220
 power method 219
simple reference counting 268
singly linked list
 about 165
 CreateLinkedList method 166
 main method 167
 ReverseLinkedList method 166
slice function 55, 56

[307]

slice of slices 56, 143
slices
 about 52, 54
 two-dimensional slices 56, 57, 58
social network, methods
 AddEntity method 243
 AddLink method 244
 main method 245, 246
 NewSocialGraph method 243
 PrintLinks method 244
social network
 about 242
 representing 242
sorting algorithms
 about 211, 212
 bubble sort algorithm 212, 213, 214
 insertion sort 216
 merge sort algorithm 220, 221
 quick sort algorithm 223
 selection sort 214
 shell sort algorithm 218
space allocation
 about 277, 278
 pointers 278
sparse matrix
 about 237, 256
 modeling, as list of lists 256
SparseMatrix class
 about 257
 Equal method 258
 GetValue method 258
 LessThan method 257
 main method 260, 261
 NewSparseMatrix method 260
 NumNonZero method 257
 SetValue method 259
 Shape method 257
sparsity 237
spiral matrix 154, 155
Stack class
 about 266
 main method 267
 new method 266
stacks
 about 108

 Main method 111
 New method 109
 Pop method 110
 Push method 109
streams 200
struct type
 about 179
 multiSorter class 179
structural design patterns
 about 15
 adapter pattern 16, 17
 bridge pattern 17, 18
 composite pattern 20
 decorator pattern 22, 23
 facade pattern 24, 25, 27
 flyweight pattern 28, 29, 31
 private class data pattern 31
 proxy pattern 33
structured program 35
subsequence 200
symbol tables 136
symmetric matrix 148
Synchronized Queue
 about 103
 EndPass method 106
 EndTicketIssue method 105
 main method 107
 New method 104
 passenger method 107
 StartPass method 106
 StartTicketIssue method 105
 ticketIssue method 106
Synchronized TreeSets 198

T
T-tree 133
tables
 about 134
 Column class 134
 main method 135
 printTable method 135
 Row class 134
 Table class 134
tensors 142, 160
Thing class

 ByFactor function type 176
Thing sorter class
 len method 177
 less method 177
 main method 177
 swap method 177
Thue–Morse sequence 207
TreeNode class
 about 124
 adjustBalance method 126
 BalanceTree method 126
 doubleRotation method 125
 InsertNode method 128
 insertRNode method 127
 main method 131, 132
 opposite method 125
 removeBalance method 129
 RemoveNode method 128
 removeRNode method 129
 singleRotation method 125
trees
 about 114
 Adelson, Velski, and Landis (AVL) tree 124
 B+ tree 133
 B-tree 133
 binary search tree 114
 T-tree 133
TreeSets
 about 193
 Delete method 195
 inOrderTraverseTree method 195
 InOrderTraverseTree method 195
 InsertTreeNode method 194
 main method 197, 198
 Mutable TreeSets 199
 preOrderTraverseTree method 196

 PreOrderTraverseTree method 196
 search method 196
 String method 197
 Synchronized TreeSets 198
tuples 12, 13, 99
two-dimensional arrays 143
two-dimensional matrix
 add method 148
 determinant method 151
 inverse method 151
 multiply method 150
 subtract method 149
 transpose method 151
two-dimensional slices 56, 57, 58

U
unordered lists 172, 183
UnOrderedList class
 about 184
 AddtoHead method 184
 IterateList method 184
 main method 185
upper triangular matrix 145

V
variadic functions
 about 63
 delete operation 65, 66
 update operation 64, 65
vectors 142

W
weighted reference counting 270

Z
zig-zag matrix 152, 154

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Introduction to Data Structures and Algorithms and the Go Language
	Chapter 1: Data Structures and Algorithms
	Technical requirements
	Classification of data structures and structural design patterns
	Classification of data structures
	Lists
	Tuples
	Heaps

	Structural design patterns
	Adapter
	Bridge
	drawShape method
	drawContour method

	Composite
	Decorator
	Facade
	Flyweight
	Private class data
	Proxy

	Representation of algorithms
	Flow chart
	Pseudo code

	Complexity and performance analysis
	Complexity analysis of algorithms
	Big O notation
	Linear complexity
	Quadratic complexity
	Cubic complexity
	Logarithmic complexity

	Brute force algorithms
	Divide and conquer algorithms
	Backtracking algorithms
	Summary
	Questions and exercises
	Further reading

	Chapter 2: Getting Started with Go for Data Structures and Algorithms
	Technical requirements
	Arrays
	Slices
	The len function
	Slice function

	Two-dimensional slices
	Maps
	Database operations
	The GetCustomer method
	The InsertCustomer method

	Variadic functions
	The update operation
	The delete operation

	CRUD web forms
	The defer and panic statements
	The InsertCustomer method
	The UpdateCustomer method
	The DeleteCustomer method

	CRM web application
	The Create function
	The Insert function
	The Alter function
	The Update function
	The Delete function
	The main method

	The Header template
	The Footer template
	The Menu template
	The Create template
	The Update template
	The View template

	Summary
	Questions
	Further reading

	Section 2: Basic Data Structures and Algorithms using Go
	Chapter 3: Linear Data Structures
	Technical requirements
	Lists
	LinkedList
	The Node class
	The LinkedList class
	The AddToHead method
	The IterateList method
	The LastNode method
	The AddToEnd method
	The NodeWithValue method
	The AddAfter method
	The main method

	Doubly linked list
	The NodeBetweenValues method
	The AddToHead method
	AddAfter method
	The AddToEnd method
	The main method

	Sets
	The AddElement method
	The DeleteElement method
	The ContainsElement method
	The main method – contains element
	The InterSect method
	The Union method
	The main method – intersection and union

	Tuples
	Queues
	The New method
	The Add method
	The main method – queues
	Synchronized queue
	The New method
	The StartTicketIssue method
	The EndTicketIssue method
	The ticketIssue method
	The StartPass method
	The EndPass method
	The passenger method
	The main method

	Stacks
	The New method
	The Push method
	The Pop method
	The main method

	Summary
	Questions
	Further reading

	Chapter 4: Non-Linear Data Structures
	Technical requirements
	Trees
	Binary search tree
	The BinarySearchTree class
	The InsertElement method
	The insertTreeNode method
	The inOrderTraverse method
	The inOrderTraverseTree method
	The PreOrderTraverseTree method
	The preOrderTraverseTree method
	The PostOrderTraverseTree method
	The postOrderTraverseTree method
	The MinNode method
	The MaxNode method
	The SearchNode method
	The searchNode method
	The RemoveNode method
	The removeNode method
	The String method
	The stringify method
	The main method

	Adelson, Velski, and Landis (AVL) tree
	The KeyValue interface
	The TreeNode class
	The opposite method
	The singleRotation method
	The doubleRotation method
	The adjustBalance method
	The BalanceTree method
	The insertRNode method
	The InsertNode method
	The RemoveNode method
	The removeBalance method
	The removeRNode method
	The main method

	B+ tree
	B-tree
	T-tree

	Tables
	The Table class
	The Row class
	The Column class
	The printTable method
	The main method

	Symbol tables
	Containers
	Circular linked list

	The hash functions
	Summary
	Questions
	Further reading

	Chapter 5: Homogeneous Data Structures
	Technical requirements
	Two-dimensional arrays
	Row matrix
	Column matrix
	Lower triangular matrix
	Upper triangular matrix
	Null matrix
	Identity matrix
	Symmetric matrix
	Basic 2D matrix operations
	The add method
	The subtract method
	The multiply method
	The transpose method
	The determinant method
	The inverse method

	Zig-zag matrix
	Spiral matrix
	Boolean matrix
	The printMatrix method
	The main method

	Multi-dimensional arrays
	Tensors

	Summary
	Questions
	Further reading

	Chapter 6: Heterogeneous Data Structures
	Technical requirements
	Linked lists
	Singly linked lists
	The CreateLinkedList method
	The ReverseLinkedList method
	The main method

	Doubly linked lists
	Circular-linked lists
	The CircularQueue class
	The NewQueue method
	The IsUnUsed method
	The IsComplete method
	The Add method
	The MoveOneStep method
	The main method

	Ordered lists
	The ToString method
	The SortByAge type
	The Thing class
	The ByFactor function type
	The Sort method

	Thing sorter class
	The len, swap, and less methods
	The main method

	The struct type
	The multiSorter class
	The Sort method
	The OrderBy method
	The len method
	The Swap method
	The less method
	The main method

	Unordered lists
	The UnOrderedList class
	The AddtoHead method
	The IterateList method
	The main method

	Summary
	Questions
	Further reading

	Chapter 7: Dynamic Data Structures
	Technical requirements
	Dictionaries
	DictVal type
	Dictionary class
	Put method
	Remove method
	Contains method
	Find method
	Reset method
	NumberOfElements method
	GetKeys method
	GetValues method
	The main method

	TreeSets
	InsertTreeNode method
	Delete method
	InOrderTraverseTree method
	The inOrderTraverseTree method
	PreOrderTraverseTree method
	The preOrderTraverseTree method
	Search method
	The String method
	The main method
	Synchronized TreeSets
	Mutable TreeSets
	RemoveNode method
	Treeset.bst

	Sequences
	Farey sequence
	String method
	The g method
	The main method

	Fibonacci sequence
	FibonacciNumber method
	Main method

	Look-and-say
	Thue–Morse

	Summary
	Questions
	Further reading

	Chapter 8: Classic Algorithms
	Technical requirements
	Sorting
	Bubble
	Selection
	The swap method
	The main method

	Insertion
	InsertionSorter method
	The main method

	Shell
	The power method
	The main method

	Merge
	MergeSorter method
	JoinArrays method
	The main method

	Quick
	The divideParts method
	The swap method
	The main method

	Searching
	Linear
	Binary
	Interpolation

	Recursion
	Hashing
	The CreateHashMutliple method
	The XOR method
	The main method

	Summary
	Questions
	Further reading

	Section 3: Advanced Data Structures and Algorithms using Go
	Chapter 9: Network and Sparse Matrix Representation
	Technical requirements
	Network representation using graphs
	The Link class
	The NewSocialGraph method
	The AddLink method
	The PrintLinks method
	The main method
	Test

	Representing a social network
	The NewSocialGraph method
	The AddEntity method
	The AddLink method
	The PrintLinks method
	The main method

	Map layouts
	The MapLayout class
	The NewMapLayout method
	The AddPlace method
	The AddLink method
	 The PrintLinks method
	The main method
	Test

	Knowledge graphs
	The KnowledgeGraph class
	The NewKnowledgeGraph method
	The AddClass method
	The AddLink method
	The PrintLinks method
	The main method
	Test

	Sparse matrix representation using a list of lists
	SparseMatrix class
	The Shape method
	The NumNonZero method
	The LessThan method
	The Equal method
	The GetValue method
	The SetValue method
	The NewSparseMatrix method
	The main method

	Summary
	Questions
	Further reading

	Chapter 10: Memory Management
	Technical requirements
	Garbage collection
	The ReferenceCounter class
	The newReferenceCounter method

	The Stack class
	The Stack class – a new method
	The main method

	Reference counting
	Simple reference counting
	Deferred reference counting
	One-bit reference counting
	Weighted reference counting

	The mark-and-sweep algorithm
	The generational collection algorithm

	Cache management
	The CacheObject class
	The IfExpired method

	The Cache class
	The NewCache method
	The GetObject method
	The SetValue method

	The main method

	Space allocation
	Pointers
	The addOne method
	The main method

	Concepts – Go memory management
	Profiling

	Summary
	Questions
	Further reading

	Next Steps
	Technical requirements
	Learning outcomes
	Key takeaways
	Next steps
	Chapter 1 – Data Structures and Algorithms
	Chapter 2 – Getting Started with Go for Data Structures and Algorithms
	Chapter 3 – Linear Data Structures
	Chapter 4 – Non-Linear Data Structures
	Chapter 5 – Homogeneous Data Structures
	Chapter 6 – Heterogeneous Data Structures
	Chapter 7 – Dynamic Data Structures
	Chapter 8 – Classic Algorithms
	Chapter 9 – Network and Sparse Matrix Representation
	Chapter 10 – Memory Management

	Tips and techniques
	Using channel with a timeout interval
	Using context instead of channel
	Logging with the line number
	Go tool usage
	Go environment variables
	Test table
	Importing packages
	Panic, defer, and recover

	Other Books You May Enjoy
	Index

