

 VISIT…

http://www.iteksoft.com/pdf-creator/
http://pdf.iteksoft.com/pdf-writer/
http://www.lanzarotecaliente.com/

Mastering GoLang

Mastering GoLang helps readers quickly understand the core concepts and then
move on to practical projects using the Go programming language.

GoLang is often dubbed a game-changer in the world of programming languages.
Instead of starting from scratch, Go was created using the C programming lan-
guage. GoLang inherits C’s disciplined grammar but with specific tweaks and en-
hancements to properly manage memory. This lessens the memory leakage prob-
lems that developers tend to face with C.

Go borrows and adapts notions from various programming languages while skip-
ping characteristics that result in complicated, insecure, and unpredictable code.
Go’s concurrency features are well-suited to build the infrastructure for gigantic
projects such as networking systems and distributed hardware. Go is also often
employed in domains such as visuals, mobile applications, and Machine Learning.

Even though GoLang is a relatively new language, it has been adopted by several
major organizations owing to its benefits such as code clarity, custom libraries,
adaptability, multithreading, and a simple build process. Because Go is gaining
traction in the development community, learning GoLang can open up new av-
enues across various fields and career trajectories.

Since it is still a relatively newer language, quality literature pertaining to Go is of-
ten hard to find. However, this particular book covers all the bases that you might
need, and is an ideal companion for beginner-level developers looking to master
Go programming.

With Mastering GoLang, learning GoLang becomes an easy task, and learners can
use their skills to create innovative projects.

The Mastering Computer Science series is edited by Sufyan bin Uzayr, a writer and
educator with over a decade of experience in the computing field.

Mastering Computer Science
Series Editor: Sufyan bin Uzayr

Mastering GoLang: A Beginner’s Guide
Divya Sachdeva, D Nikitenko, and Aruqqa Khateib

Mastering GNOME: A Beginner’s Guide
Jaskiran Kaur, Mathew Rooney, and Reza Nafim

Mastering Flutter: A Beginner’s Guide
Divya Sachdeva, NT Ozman, and Reza Nafim

Mastering Vue.js: A Beginner’s Guide
Lokesh Pancha, Divya Sachdeva, and Faruq KC

Mastering Rust: A Beginner’s Guide
Divya Sachdeva, Faruq KC, and Aruqqa Khateib

Mastering Ubuntu: A Beginner’s Guide
Jaskiran Kaur, Rubina Salafey, and Shahryar Raz

For more information about this series, please visit: https://www.routledge
.com/Mastering-Computer-Science/book-series/MCS

The “Mastering Computer Science” series of books are authored by the
Zeba Academy team members, led by Sufyan bin Uzayr.

Zeba Academy is an EdTech venture that develops courses and content
for learners primarily in STEM fields, and offers education consulting
to Universities and Institutions worldwide. For more info, please visit
https://zeba.academy

https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://zeba.academy

Mastering GoLang
A Beginner’s Guide

Edited by
Sufyan bin Uzayr

First Edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.
co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Bin Uzayr, Sufyan, editor.
Title: Mastering GoLang : a beginner’s guide / edited by Sufyan bin Uzayr.
Description: First edition. | Boca Raton : CRC Press, 2023. | Series: Mastering computer
science series | Includes bibliographical references and index.
Identifiers: LCCN 2022021390 (print) | LCCN 2022021391 (ebook) |
ISBN 9781032315911 (hardback) | ISBN 9781032315904 (paperback) |
ISBN 9781003310457 (ebook)
Subjects: LCSH: Go (Computer program language)
Classification: LCC QA76.73.G63 M325 2023 (print) | LCC QA76.73.G63 (ebook) |
DDC 005.13/3--dc23/eng/20220802
LC record available at https://lccn.loc.gov/2022021390
LC ebook record available at https://lccn.loc.gov/2022021391

ISBN: 9781032315911 (hbk)
ISBN: 9781032315904 (pbk)
ISBN: 9781003310457 (ebk)

DOI: 10.1201/9781003310457

Typeset in Minion
by KnowledgeWorks Global Ltd.

https://lccn.loc.gov/2022021390
https://lccn.loc.gov/2022021391
https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003310457

v

Contents

Preface, xv

About the Author, xvii

Chapter 1    ◾   � Getting Started with Go� 1
Go PROGRAMMING FEATURES� 1

WHY IS GoLang BETTER THAN THE OTHER
PROGRAMMING LANGUAGES?� 2

GoLang’s Core Capability� 2
Multithreading and Concurrency� 3
Go Empowers Hardware from Within� 4
The Unmatched Simplicity of Go� 4
Inbuilt Testing and Profiling Framework� 4
Easy Learning Curve� 5

BEGINNING WITH Go� 5

Text Editor� 5
Finding a Go Compiler� 5

INSTALL Go ON WINDOWS� 6

How Do We Determine the Go Language Version
That Is Preinstalled?� 6
Downloading and Installing Go� 6

WRITING THE FIRST Go PROGRAM� 7

Single-Line Comment� 8
Multiline Comment� 8
Explanation of the Preceding Program� 8

vi    ◾    Contents

Why Is There a “Go Language”?� 9
What Is Absent in Go That Is Present in Other Languages?� 9
Hardware Restrictions� 9
Benefits and Drawbacks of the Go Language� 9

TERMINAL� 10

The Open Terminal Tool Window� 11
Start New Session� 11

INSTALL Go ON MAC� 11

Making Our First Program� 13
Execute a Go Program� 14
Do Programs in Go Link with the C/C++
Programming Language?� 14

IN GoLang, HOW DO WE CREATE AN EMPTY FILE?� 15

In GoLang, We May Check Whether a Given File Exists or Not� 16
CREATE A DIRECTORY IN Go� 18

Make a Single Directory� 18
Make a Directory Hierarchy (Nested Directories)� 18

Chapter 2    ◾   � GoLang Tools� 21
HOW TO READ AND WRITE PROGRAMS IN Go� 21

IN GoLang, HOW TO RENAME AND MOVE A FILE� 26

HOW TO READ FILES LINE BY LINE TO STRING� 27

Chapter 3    ◾   � Data Types� 29
BASIC SYNTAX� 29

Tokens� 29
Line Separator� 30
Comments� 30
Identifiers� 30
Keywords� 32
Whitespace� 32

DATA TYPES IN Go� 33

Numbers� 33

Contents    ◾    vii

Floating Point Numbers� 34
Complex Numbers� 34

Booleans� 35
Strings� 36

Chapter 4    ◾   � Variables and Constants� 37
VARIABLES IN Go� 37

Declaring a Variable� 38
Using the var Keyword� 38
Using the Short Variable Declaration� 41

CONSTANTS� 45

How Should We Declare?� 45
Untyped and Typed Numeric Constants� 45

Numeric Constant� 46
String Literals� 47
Boolean Constant� 48

VARIABLE SCOPE IN Go� 49

Local Variables� 49
Global Variables� 50

DECLARATION OF MULTIPLE VARIABLES� 52

Shorthand Declaration� 54

Chapter 5    ◾   � Operators and Control Structures� 57
OPERATORS IN Go� 57

Arithmetic Operators� 58
Relational Operators� 59
Logical Operators� 60
Bitwise Operators� 61
Assignment Operators� 62
Misc Operators� 64

CONTROL STATEMENTS� 65

if Statement� 66
if…else Statement� 67

viii    ◾    Contents

Nested if Statement� 69
if..else..if Ladder� 70

Go LANGUAGE LOOPS� 72

Go SWITCH STATEMENT� 77

Expression Switch� 78
Type Switch� 80

Chapter 6    ◾   � Arrays, Slices, and Maps� 83
ARRAYS� 83

Creating and Accessing an Array� 83
Using the var Keyword� 84
Using a Shorthand Declaration� 85

Multidimensional Array� 86
Important Observations about the Array� 87
In GoLang, How Do We Copy an Array into
Another Array?� 90
In GoLang, How Can We Pass an Array to
a Function?� 92

SLICES� 93

Slice Declaration� 93
Slice Components� 94
How Can We Create and Initialize a Slice?� 95

Using the Slice Literal� 95
Using an Array� 96
Using an Existing Slice� 96
Using the make() Function� 97

How to Iterate over a Slice� 98
Using the for loop� 99
Using Range in the for loop� 99
Using a Blank Identifier in a for loop� 100

Important Points about Slice� 100
Zero Value Slice� 100
Modifying Slices� 100

Contents    ◾    ix

Slice Comparison� 101
Multidimensional Slice� 102
Sorting of Slice� 102

Slice Composite Literal� 103
In GoLang, How Do We Sort a Slice of Ints?� 104

Ints� 104
IntsAreSorted� 105

In GoLang, How Can You Trim a Slice of Bytes?� 106
How Can You Split a Slice of Bytes in GoLang?� 108

STRINGS� 110

String Literals� 111
Using Double Quotes("")� 111
Using backticks(")� 111

Important Points about Strings� 112
Strings Are Immutable� 112
How to Iterate over a String� 113
How to Access an Individual Byte of the String� 114
How to Make a String from a Slice of Bytes� 114
How Can We Determine the Length of a String
in GoLang?� 115

In GoLang, How Do We Trim a String?� 115
Trim� 115
TrimLeft� 116
TrimRight� 117
TrimSpace� 118
TrimSuffix� 119
TrimPrefix� 120

In GoLang, How Do We Split a String?� 121
Split� 121
SplitAfter� 122
SplitAfterN� 124

In GoLang, There Are Several Ways to Compare Strings� 125

x    ◾    Contents

Making Use of Comparison Operators� 125
Using Compare() Method� 126

MAPS� 127

How Do We Create and Initialize Maps?� 128
Simple� 128
Using the make() Function� 129

Important Considerations� 130
How Do We Iterate over a Map?� 130
How to Add Key-Value Pairs to the Map� 131
How to Retrieve the Value Associated with a Key
in a Map� 132
How to Check If the Key Is Present on the Map� 132
How to Remove a Key from a Map� 133
Map Modification� 134

Chapter 7    ◾   � Functions and Recursion� 137
Go LANGUAGE FUNCTIONS� 137

Function Declaration� 137
Function Calling� 138
Function Arguments� 139

Call by Value� 139
Call by Reference� 140

FUNCTION RETURNING MULTIPLE VALUES� 141

Giving Names to the Return Values� 141
VARIADIC FUNCTIONS� 142

Anonymous Functions� 144
GoLang main() and init() Functions� 147

main() Function� 147
init() Function� 148

In GoLang, What Is a Blank Identifier (Underscore)?� 149
DEFER KEYWORD� 150

PANIC IN GoLang� 153

Panic’s Usage� 156

Contents    ◾    xi

RECOVER� 156

Quick Points� 157
CLOSURE� 158

RECURSION� 160

Recursion Types� 161
Direct Recursion� 162
Indirect Recursion� 163
Tail Recursion� 164
Head Recursion� 165
Infinite Recursion� 166
Anonymous Function Recursion� 166

Chapter 8    ◾   � Pointers� 171
GoLang POINTERS� 171

What Is the Purpose of a Pointer?� 171
Declaration and Initialization of Pointers� 173

Declaring a Pointer� 173
Pointer Initialization� 173
Important Considerations� 174

Dereferencing Pointer� 176
In GoLang, How Can We Instantiate a Struct Using
the New Keyword?� 177

POINTERS TO A FUNCTION� 178

Create a Pointer and Pass It to the Function� 178
Passing an Address of the Variable to Function Call� 179

POINTER TO A STRUCT� 180

POINTER TO POINTER (DOUBLE POINTER) IN Go� 182

How to Declare a Pointer to a Pointer� 182
COMPARING POINTERS� 184

Chapter 9    ◾   � Structs and Interfaces� 187
GoLang STRUCTURES� 187

How Can We Get to Struct Fields?� 189
Pointers to a Struct� 190

xii    ◾    Contents

GoLang’s NESTED STRUCTURE� 191

GoLang’s ANONYMOUS STRUCTURE
AND FIELD� 193

Anonymous Structure� 193
Anonymous Fields� 194

GoLang METHODS� 196

Method with the Struct Type Receiver� 196
Method with the Non-Struct Type Receiver� 197
Methods with the Pointer Receiver� 198
Method Can Accept Both the Pointer and the Value� 199
Difference between the Method and the Function� 200

INTERFACES� 200

How Do We Make an Interface?� 201
How to Implement Interfaces� 201
Why Go Interfaces Are Great� 206

Redundant Functions� 206
Enter Interface� 208

EMBEDDING INTERFACES� 209

INHERITANCE� 215

POLYMORPHISM USING INTERFACES� 218

Chapter 10    ◾   � Concurrency and Goroutines� 221
GOROUTINES – CONCURRENCY IN GoLang� 221

Go Concurrent Programming� 222
Issues with Multithreading� 222
Concurrent Programming in Go� 223
How to Handle Concurrency Issues in Go� 223
Goroutine with WaitGroup Example� 223
How to Create a Goroutine� 224
Anonymous Goroutines� 226

SELECT STATEMENT� 227

MULTIPLE GOROUTINES� 231

Contents    ◾    xiii

GoLang CHANNEL� 233

Creating a Channel� 233
Send and Receive Data from a Channel� 234

Send Operation� 234
Receive Operation� 234

Channel Closing� 235
UNIDIRECTIONAL CHANNEL� 239

Converting a Bidirectional Channel to a Unidirectional Channel� 240

Chapter 11    ◾   � Packages in GoLang� 241
PACKAGES IN GoLang� 241

Workspace� 241
Packages� 242
Main Package� 242
Importing Packages� 243
Installing Third-Party Packages� 243
Init Function� 243
Important Considerations� 245
Giving the Packages Names� 246
Code Exported� 248

DOCUMENTATION� 250

Chapter 12    ◾   � The Core Packages� 251
STRING� 252

INPUT/OUTPUT (I/O)� 253

FILES AND FOLDERS� 253

ERRORS� 256

CONTAINERS AND SORTING� 256

List� 256
SORT� 257

HASHES AND CRYPTOGRAPHY� 258

SERVERS� 260

xiv    ◾    Contents

HTTP� 262

RPC� 263

PARSING THE COMMAND LINE ARGUMENTS� 264

SYNCHRONIZATION PRIMITIVES� 265

Mutexes� 265

APPRAISAL, 267

BIBLIOGRAPHY, 271

INDEX, 275

xv

Preface

The Mastering Computer Science covers a wide range of topics, spanning
programming languages as well as modern-day technologies and frame-
works. The series has a special focus on beginner-level content, and is pre-
sented in an easy-to-understand manner, comprising:

•	 Crystal-clear text, spanning various topics sorted by relevance,

•	 A special focus on practical exercises, with numerous code samples
and programs,

•	 A guided approach to programming, with step-by-step tutorials for
the absolute beginners,

•	 Keen emphasis on real-world utility of skills, thereby cutting the
redundant and seldom-used concepts and focusing instead of industry-
prevalent coding paradigm, and

•	 A wide range of references and resources to help both beginner and
intermediate-level developers gain the most out of the books.

The Mastering Computer Science series starts from the core concepts, and
then quickly moves on to industry-standard coding practices, to help
learners gain efficient and crucial skills in as little time as possible. The
books of the series assume no prior knowledge of coding, so even the abso-
lute newbie coders can benefit from them.

The Mastering Computer Science series is edited by Sufyan bin Uzayr, a
writer and educator with more than a decade of experience in the comput-
ing field.

http://taylorandfrancis.com

xvii

About the Author

Sufyan bin Uzayr is a writer, coder, and entrepreneur with over a
decade of experience in the industry. He has authored several books in
the past, pertaining to a diverse range of topics, ranging from History to
Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT company spe-
cializing in EdTech solutions. He also runs Zeba Academy, an online
learning and teaching vertical with a focus on STEM fields.

Sufyan specializes in a wide variety of technologies such as JavaScript,
Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,
including ones in Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between four countries. He
has lived and taught in universities and educational institutions around
the globe. Sufyan takes a keen interest in technology, politics, literature,
history, and sports, and in his spare time, he enjoys teaching coding and
English to young students.

Learn more at sufyanism.com

http://taylorandfrancis.com

1DOI: 10.1201/9781003310457-1

C h a p t e r 1

Getting Started with Go

IN THIS CHAPTER

➢➢ Files and folders

➢➢ The terminal

➢➢ Text editors

Go is a general-purpose programming language created with systems pro-
gramming in mind. It was invented in 2007 by Google’s Robert Griesemer,
Rob Pike, and Ken Thompson. It is strongly and statically typed, has built-
in garbage collection support, and supports concurrent programming.

Packages are used to construct programs to manage dependencies effi-
ciently. Go programming implementations employ a traditional compile
and link model to generate executable binaries. The Go programming lan-
guage was introduced in November 2009 and is currently used in some of
Google’s production systems.

GO PROGRAMMING FEATURES

•	 Language Design: The language’s designers made a conscious deci-
sion to keep the language simple and easy to understand. The entire
detailing is contained within a few pages, and some interesting design
decisions were made using the language’s Object-Oriented support. The
language is opinionated, recommending a conversational method of

https://doi.org/10.1201/9781003310457-1

2    ◾    Mastering GoLang: A Beginner’s Guide

accomplishing things. Composition is preferred over Inheritance. The
mantra in Go Language is “Do More with Less.”

•	 Package Management: Go incorporates modern developer work-
flows for working with Open Source projects into managing exter-
nal packages. Support for getting external packages and publishing
our packages is provided directly in the tooling via a set of simple
commands.

•	 Powerful Standard Library: Go has a robust standard library, dis-
tributed in the form of packages.

•	 Static Typing: Go is a language that is static typed. As a result, not
only does this compiler work on successfully compiling code, but it
also ensures type conversions and compatibility. Go avoids all of the
issues we see in dynamically typed languages because of this feature.

•	 Testing Support: Go includes unit testing features by default, such as
a simple mechanism for writing unit tests in parallel with our code,
allowing us to understand code coverage through our tests. As an
example, we can easily use this to generate code documentation.

•	 Platform Independence: Like the Java language, the Go Language
supports platform independence. Because of its modular design and
modularity, the code is compiled and converted into a binary form
that is as small as possible, requiring no dependency. Its code can
compile in any platform, server, or application on which we work.

WHY IS GoLang BETTER THAN THE OTHER
PROGRAMMING LANGUAGES?
There is no respite for innovations and breakthroughs in the world of pro-
gramming languages. Developers are constantly looking for a more straight-
forward, sophisticated, and project-friendly language. GoLang emerged as an
amazing new programming language with a plethora of solutions. GoLang
has taken the programming world by surprise since its introduction.

Many of the surprises that distinguish this language from others will be
revealed here. Let’s begin with an overview of the core capability in brief.

GoLang’s Core Capability

Google developers reportedly conceived the GoLang while waiting for a
code compilation project. This is why GoLang is the only language that

Getting Started with Go    ◾    3

combines all three desired features, namely ease of coding, efficient code
compilation, and efficient execution. The fact that one can set all these
capabilities together in a single language distinguishes GoLang from other
programming languages.

Go, also known as GoLang, is a robust system-level language used for
programming across large-scale network servers and large distributed sys-
tems. In simple words, through the context of what Google required for its
network servers and distributed systems, GoLang emerged as an alterna-
tive to C++ and Java for app developers. The language was designed to
eliminate the slowness and difficulties associated with programming for
large and scalable servers and software systems. To be more specific, Go
arrived at Google to provide the following solutions:

•	 Compilation and execution in a blink.

•	 Eliminating the need to work with different subsets of languages for
a single project.

•	 Improved code readability and documentation.

•	 Providing an utterly consistent language.

•	 Allowing for simple program versioning.

•	 The ability to develop in multiple languages.

•	 Facilitating dependency management.

Multithreading and Concurrency

As hardware becomes more sophisticated over time, manufacturers add
cores to the system to improve performance. When you come across with
huge number of cores, the system must maintain database connections via
microservices, manage queues, and maintain caches. This is why today’s
hardware requires a programming language that can better support concur-
rency and scale-up performance as the number of cores increases over time.

When working with multiple threads, most programming languages
lack concurrent execution, which often slows down the pace of program-
ming, compiling, and execution. This is where Go emerges as the most
viable option for supporting both multithreading and concurrency.

When multi-core processors were widely available on sophisticated
hardware, Go as a programming language came into existence. Naturally,

4    ◾    Mastering GoLang: A Beginner’s Guide

the creators of Go placed a premium on concurrency. Go uses goroutines
rather than threads, allowing it to handle many tasks simultaneously.

Go Empowers Hardware from Within

Because hardware processors only understand binaries, any application
written in Java or JVM is interpreted into binaries. This interpretation
at the hardware level increases the execution time. This is why compiled
languages such as C/C++, which eliminate the step of understanding, can
improve performance and speed of execution.

However, extracting and allocating variables in C/C++ involve a signifi-
cant amount of complication and time. This is where Go shines as the ideal
solution, combining the best of both worlds. Go, like C/C++, is a compiled
language, which makes it as fast as they are. On the other hand, it uses gar-
bage collection and object removal, just like Java, for variable allocation. As
a result, Go is an ideal language for working within any hardware system.

The Unmatched Simplicity of Go

One of the primary benefits of adopting Go is its simplicity. Despite being
a highly sophisticated language with a rich feature set, Go stands out from
the group due to its simplicity and straightforward approach.

•	 No Generics: Generics or templates, which have long been a staple
of various programming languages, often add to the obscurity and
difficulty of understanding. By deciding to forego it, designers sim-
plified things.

•	 Single Executable: GoLang does not include a runtime library. It
can generate a single executable file that can be deployed simply by
copying. This alleviates any concerns about making mistakes due to
dependencies or version mismatches.

•	 No Dynamic Libraries: Go decided to forego any dynamic libraries
to keep the language simple. However, in the latest Go 1.10 version,
developers can upload dynamic libraries via plug-in packages. This
has only been included as an added feature.

Inbuilt Testing and Profiling Framework

When developing a JavaScript application, many of us have encountered
the complexities of selecting a testing framework through a series of anal-
yses. The fact that we do not use more than 20% of the chosen framework

Getting Started with Go    ◾    5

most of the time is true. The same issue arises when good profiling is
required for evaluation.

Go includes an inbuilt testing and profiling tool to help us test the appli-
cation quickly and easily. Apart from providing ready-to-execute code
examples, the tool can use for all types of testing and profiling needs.

Easy Learning Curve

One of the important advantages of Go is its low learning curve. We
shouldn’t be surprised if we say that all of GoLang’s features can learn in
just a few hours. Once we’ve mastered these fundamentals, we’ll need to
understand the best programming practices for specific needs as well as
the standard library. However, a two- to three-hour session is sufficient to
learn the language.

BEGINNING WITH Go
Several online IDEs, such as The Go Playground, repl.it, and others, can
run Go programs without installing anything.

To install Go on our PCs or laptops, we will need the following two
pieces of software: Text editor and Compiler.

Text Editor

A text editor provides a platform for us to write our source code. The fol-
lowing is a list of text editors:

•	 Windows notepad

•	 Brief

•	 OS Edit command

•	 Epsilon

•	 VS Code

•	 vm or vi

•	 Emacs

Finding a Go Compiler

The Go distribution is available as a binary installable for FreeBSD, Mac
OS X, Linux, and Windows operating systems with 32-bit (386) and 64-bit
(amd64) x86 processor architectures.

6    ◾    Mastering GoLang: A Beginner’s Guide

INSTALL Go ON WINDOWS
Before we begin, we must first install GoLang on our system. We need
firsthand knowledge of what the Go Language is and what it does. Go is
an open-source, statically typed programming language created in 2007
by Google’s Robert Griesemer, Rob Pike, and Ken Thompson, but released
in 2009. It also goes by the name GoLang and supports the procedural
programming language. It was initially designed to boost programming
productivity on large codebases, multi-core, and networked machines.

GoLang programs are easy to write. They can be written in any plain
text editor such as notepad, notepad++, or something similar. One can
also use an online IDE to write GoLang code or install one on their system
to do writing and working on these codes easier. The best thing is that the
IDE makes it easier to write the GoLang code because IDEs include many
features such as an intuitive code editor, debugger, compiler, etc.

First, one must have the Go Language installed on their system to write
GoLang Codes and perform various intriguing and valuable operations.

How Do We Determine the Go Language Version
That Is Preinstalled?

Before we begin installing Go, it is good to check if it is already installed on
our system. To see if our device has GoLang preinstalled, go to the com-
mand line (for Windows), search for cmd in the Run dialogue (+ R).

Execute following command:

go version

If GoLang is already installed on your PC, it will generate a message contain-
ing all of the GoLang version’s details; otherwise, if GoLang is not installed
on your PC, an error stating “Bad command or file name” will appear.

Downloading and Installing Go

Before we begin the installation procedure, we must first download it. All
versions for Windows are available for download at https://go.dev/dl/.

Download GoLang for our system architecture and then follow the
installation instructions for GoLang.

•	 Step 1: Unzip the downloaded archive file after it has been down-
loaded. After unzipping, we’ll find a go folder in our current
directory.

https://go.dev

Getting Started with Go    ◾    7

•	 Step 2: Copy and paste the extracted folder wherever we put it. In
this case, we’re installing it on the C drive.

•	 Step 3: Now, configure the environment variables. Right-click My
PC and choose Properties. Select the Advanced System Settings from
left menu and then Environment Variables.

•	 Step 4: From the system variables, select Path and then Edit. Then
select New and enter the Path with bin directory where we pasted the
Go folder. Here, we’re going to change the path C:gobiC:\go\bin and
click OK.

•	 Step 5: Create a new user variable that tells the Go command where
the GoLang libraries are located. To do so, go to User Variables and
select New.

Now enter GOROOT as the Variable name and the path to our GoLang
folder as the Variable value. So, in this case, the Variable Value is C:\go\.
After we’ve finished filling out the form, click OK.

Then, on Environment Variables, click OK, and our setup is complete. Now,
check the GoLang version by typing go version into the command prompt.

After completing the installation process, any text editor or IDE can use
to write GoLang Codes, which can then run on the IDE or the Command
prompt using the command:

go run filename.go

WRITING THE FIRST Go PROGRAM

package main
import "fmt"
func main() {
 // print
 fmt.Println("Hello, everyone")
}

Explanation of Go program syntax:

•	 Line 1: contains the program’s main package, including its over-
all content. It is the starting point for the program, so it must be
written.

8    ◾    Mastering GoLang: A Beginner’s Guide

•	 Line 2: contains import “fmt,” a preprocessor command that instructs
the compiler to include the files in the package.

•	 Line 3: main function; this is the start of the program’s execution.

•	 Line 4: fmt.

•	 Println(): is a standard library function for printing something to
the screen.

•	 The fmt package: has transmitted the Println method, which dis-
plays the output in this case.

•	 Comments: are used to explain code in the same way that they are in
Java, C, or C++. Comment entries are ignored by compilers and are
not executed. Comments can be single or multiple lines long.

Single-Line Comment

Syntax:

// single-line-comment

Multiline Comment

Syntax:

/* multiline-comment */

Example:
package main
import "fmt"
func main() {
 fmt.Println("2 + 2 =", 2 + 2)
}

Explanation of the Preceding Program

The preceding program uses the same package line, import line, func-
tion declaration, and Println function as the first Go program. Instead
of printing the string “Hello, everyone,” we print 2 + 2 = followed by the
result of the expression 2 + 2. This expression comprises three parts: the int
numeric literal 2, the + operator (which represents addition), and another
int numeric literal 2.

Getting Started with Go    ◾    9

Why Is There a “Go Language”?

Go is an attempt to combine the programming ease of an interpreted lan-
guage and the safety of a statically typed, dynamically typed language
with the efficiency of a compiled language. It also aspires to be cutting-
edge, with networked and multi-core computing support.

What Is Absent in Go That Is Present in Other Languages?

•	 Go makes an effort to reduce typing in both senses of the word.
Developers worked hard to keep clutter and complexity to a mini-
mum throughout the design process.

•	 There are no forward declarations or header files; everything is only
declared once.

•	 Simple type derivation using the := declare-and-initialize construct
reduces stuttering.

•	 There is no type hierarchy: types simply exist; they are not required
to announce their relationships.

Hardware Restrictions

We have observed that hardware and processing configuration change at a
prolonged rate over a decade. In 2004, the P4 had a clock speed of 3.0 GHz.
In 2018, the Macbook Pro has a clock speed of approximately (2.3 GHz vs.
2.66 GHz). We use more processors to speed up functionality, but the cost of
using more processors also rises. As a result, we use limited processors, and
with few processors, we have a heavy programming language whose thread-
ing consumes more memory and slows down our system’s performance.

To address this issue, GoLang was designed so that instead of thread-
ing, it uses goroutine, which is similar to threading but consumes much
less memory. Because threading consumes 1 MB of memory and gorou-
tines 2 KB, it is easy to trigger millions of goroutines simultaneously. As
a result of the points above, GoLang is a powerful language that handles
concurrency in the same way that C++ and Java do.

Benefits and Drawbacks of the Go Language

Benefits:

•	 Flexible: It is adaptable because concise, straightforward, and simple
to read.

10    ◾    Mastering GoLang: A Beginner’s Guide

•	 Concurrency: It allows multiple processes to run concurrently and
effectively.

•	 Quick Compilation: Its compilation time is very short.

•	 Library: It includes an extensive standard library.

•	 Garbage collection is an essential feature of go. Go excels at provid-
ing a high level of control over memory allocation, and the garbage
collector’s latency has been dramatically reduced in recent versions.

•	 It checks for interface and type embedding.

Drawbacks:

•	 Even though many discussions about it, it does not support generics.

•	 Although the packages included with this programming language
are pretty helpful, Go is not an object-oriented programming lan-
guage in the traditional sense.

•	 Some libraries, particularly a UI toolkit, are missing.

Some popular Go Language applications include:

•	 Docker: It is a set of tools for managing and deploying Linux
containers.

•	 Red Hat: It is Openshift and is a cloud computing platform as a service.

•	 Kubernetes: The Future of Seamlessly Automated Deployment.

•	 Dropbox: It shifted some of its critical components from Python to Go.

•	 Netflix: For two different aspects of their server architecture.

•	 InfluxDB: It is a time-series database that is open source and devel-
oped by InfluxData.

•	 GoLang: The language was created in Go.

TERMINAL
GoLand features an integrated terminal emulator that allows us to interact
with our command-line shell from within the IDE. It may run Git com-
mands, modify file permissions, and conduct other command-line func-
tions without switching to a specialized terminal program.

Getting Started with Go    ◾    11

The terminal emulator starts with our normal system shell, but it
supports a variety of alternative shells, including Windows PowerShell,
Command Prompt cmd.exe, sh, bash, zsh, csh, and others. See Configure
the terminal emulator for further information on changing the shell.

The Open Terminal Tool Window

Select View | Tool Windows | Terminal from the main menu, or press
Alt+F12.

By default, the terminal emulator runs with the current directory set to
the current project’s root directory.

Alternatively, we may right-click any file (for example, in the Project
tool window or any open tab) and choose Open in Terminal from the con-
text menu to launch the Terminal tool window with a new session in the
file’s directory.

Start New Session

Click Add button to create a new session in a new tab on the toolbar.
To run several sessions within a tab, right-click it and choose Split Right

or Split Down from the context menu.
When we close the project or GoLand, the Terminal remembers tabs

and sessions. Tab names, shell history, and the current working directory,
are all saved.

Use the Terminal toolbar’s Close button or right-click the tab and pick
Close Tab from the context menu to close a tab.

To move between active tabs, press Alt+Right and Alt+Left. We may
also press Alt+Down to get a list of all terminal tabs.

Right-click a tab and pick Rename Session from the context menu to
rename it.

Ctrl+F will search for a specific string in a Terminal session. This
searches the entire session’s text, including the prompt, commands, and
output.

Configure the terminal emulator as follows:
To open the IDE settings, press Ctrl+Alt+S and then select Tools |

Terminal.

INSTALL Go ON MAC
Before we begin, we must first install GoLang on our system. We need
firsthand knowledge of what the Go Language is and what it does. Go
is an open-source, statically typed programming language created in

12    ◾    Mastering GoLang: A Beginner’s Guide

2007 by Google’s Robert Griesemer, Rob Pike, and Ken Thompson but
released in 2009. It also goes by the name GoLang and supports the pro-
cedural programming language. It was originally designed to boost pro-
gramming productivity on large codebases, multi-core, and networked
machines.

GoLang programs can be created in any plain text editor such as
TextEdit, Sublime Text, or something similar. One can also use an online
IDE to write GoLang code or install one on their system to make writing
and working on these codes easier. For convenience, using an IDE makes it
easier to write the GoLang code because IDEs include many features such
as an intuitive code editor, debugger, compiler, etc.

The following are the steps for installing GoLang on MacOS:

•	 Step 1: Determine whether Go is installed or not. Before we begin
installing Go, it is good to check to see if it is already installed on our
system. To see if our device is preinstalled with GoLang, open the
Terminal and type the following command:

go version

If GoLang is already installed on your PC, it will generate a mes-
sage with all of the GoLang version details available; otherwise, it
will show an error.

•	 Step 2: Before we begin the installation process, we must first down-
load it. As a result, all versions of Go for MacOS are available for
download at https://go.dev/dl/.

Download GoLang based on our system architecture. For the sys-
tem, we have downloaded go1.13.1drawin-amd64.pkg.

•	 Step 3: Once the package has been downloaded, install it on our system.

•	 Step 4: Following the completion of the installation processes.
Open Terminal (a command-line interface for MacOS) and use the
GoLang version command to see if Go is installed correctly. It dis-
plays the GoLang version information, indicating that Go is success-
fully installed on our system.

After successfully installing Go on our system, we will now configure the
Go workspace. A Go workspace is a folder on our computer that will house
all of our Go code.

https://go.dev

Getting Started with Go    ◾    13

•	 Step 1: Make a folder called Go in our documents (or wherever we
want in our system).

•	 Step 2: Tell the Go tools where to look for this folder. To begin, use
the following command to navigate to our home directory:

cd ~

After that, use the following command to set the folder’s path:

echo "export GOPATH=/Users/anki/Documents/go" >>
.bash_profile

In this case, we add export OPATH=/Users/anki/Documents/go
to .bash_profile. The .bash profile file is automatically loaded when
we log into our Mac account and contains all of our command-line
interface startup configurations and preferences (CLI).

•	 Step 3: Run the following command to ensure that our .bash_profile
contains the following path:

cat. bash_profile

•	 Step 4: Now, we’ll use the following command to verify our go path.
We can also skip this step if we prefer.

echo $GOPATH

Making Our First Program

•	 Step 1: Download and then install a text editor of your choice. Create
a folder in Documents called Go (or whatever name we want) after
installation (or wherever we want in our system). Create another
folder called source in this folder and another folder called welcome
in this source folder. All of our Go programs will save in this folder.

•	 Step 2: Let us write our first Go program. Open a text editor and type
the Go program.

•	 Step 3: After creating the Go program, save it with the extension .go.

•	 Step 4: Launch the terminal to execute your first Go program.

•	 Step 5: Change the location of our program’s files.

14    ◾    Mastering GoLang: A Beginner’s Guide

•	 Step 6: After changing directories, use the following command to
run the Go program:

go run name_of_the_program.go

Execute a Go Program

Let’s go over how to save the source code in a file, compile it, and then run
the program. Please follow the instructions below:

•	 Open a text editor and paste the above code into it.

•	 Save the file with the name helloo.go

•	 Open the command prompt.

•	 Navigate to the location of saved file.

•	 Enter go run helloo.

•	 To run our code, go ahead and press enter.

•	 If your code is error-free, we will see “Hello Everyone” printed on
the screen.

$ go run helloo.go

Hello, Everyone
Ascertain that the Go compiler is in our path and that it is running in

the directory containing the source file helloo.go.

Do Programs in Go Link with the C/C++ Programming Language?

It is indeed possible to use C and Go in the same address space, but it is
not a natural fit and may necessitate the use of special interface software.
In addition, linking C code with Go code sacrifices Go’s memory safety
and stack management properties. Sometimes using C libraries to solve
a problem is necessary, but doing so always introduces an element of risk
that is not present in pure Go code, so proceed with caution.

If we must use C with Go, how you proceed is determined by the Go
compiler implementation. The Go team provides support for three Go
compiler implementations.

The default compiler is GC, followed by gccgo, which uses the GCC
back end, and a slightly less mature gollvm, which uses the LLVM
infrastructure.

Getting Started with Go    ◾    15

Because gc has a different calling convention and linker than C, it can-
not be called directly from C programs and vice versa. The cgo program
implements a “foreign function interface” that allows Go code to call C
libraries safely. This capability is extended to C++ libraries by SWIG.

Gccgo and gollvm can also be used with cgo and SWIG. Because they use
a traditional API, it is possible to link code from these compilers directly
with GCC/LLVM-compiled C or C++ programs with caution. However,
doing so safely necessitates familiarity with all languages’ calling conven-
tions and consideration for stack limits when calling C or C++ from Go.

IN GoLang, HOW DO WE CREATE AN EMPTY FILE?
Go Language, like other computer languages, allows us to construct files.
It offers the Create() function for creating a file, which is used to create or
truncate the given named file.

If the specified file already exists, then this method will truncate it.
If a specified file does not exist, this method will create one with mode

0666.
This procedure will return a *PathError exception if the specified path

is incorrect.
This function returns a file descriptor that may be read and written.
Because it is specified in the os package, we must import the os package

in our program to use the Create() method.

Syntax:

func Create(file-name string) (*File, error)

First example:

package main
import (
 "log"
 "os"
)
func main() {
 // empty file Creation
 // Create() function Using
 myfile, es := os.Create("helloo.txt")
 if es != nil {
 log.Fatal(es)
 }

16    ◾    Mastering GoLang: A Beginner’s Guide

 log.Println(myfile)
 myfile.Close()
}

Second example:

package main
import (
 "log"
 "os"
)
func main() {
 // empty file Creation
 // Create() function Using
 myfile, es := os.Create("/Users/anki/
Documents/new_folder/helloo.txt")
 if es != nil {
 log.Fatal(es)
 }
 log.Println(myfile)
 myfile.Close()
}

In GoLang, We May Check Whether a Given File Exists or Not

The IsNotExist() function in the Go programming language allows us to
determine if a given file exists or not. If the above-mentioned function
returns true, then the error is known to report that the specified file or
directory does not already exist, and if it returns false, it means that the
supplied file or directory does exist. ErrNotExist and several syscall errors
also satisfy this procedure. Because it is specified in the os package, we must
import the os package in our program to use the IsNotExist() method.

Syntax:

func IsNotExist(es error) bool

First example:

package main
import (
 "log"
 "os"

Getting Started with Go    ◾    17

)
var (
 myfile *os.FileInfo
 es error
)
func main() {
 // Stat() function returns the file info and
 //if there is no file, then it will return
error
 myfile, es := os.Stat("helloo.txt")
 if es != nil {
 // Checking if given file exists or not
 // Using the IsNotExist() function
 if os.IsNotExist(es) {
 log.Fatal("File not Found")
 }
 }
 log.Println("File Exist")
 log.Println("File Detail is:")
 log.Println("Name is: ", myfile.Name())
 log.Println("Size is: ", myfile.Size())
}

Second example:

package main

import (
 "log"
 "os"
)
var (
 myfile *os.FileInfo
 es error
)
func main() {
 // Stat() function returns the file info and
 // if there is no file, then it will return
error
 myfile, es := os.Stat("/Users/anki/Documents/
new_folder/myfolder/helloo.txt")
 if es != nil {
 // Checking if given file exists or not

18    ◾    Mastering GoLang: A Beginner’s Guide

 // Using IsNotExist() function
 if os.IsNotExist(es) {
 log.Fatal("File not Found")
 }
 }
 log.Println("File Exist")
 log.Println("File Detail is:")
 log.Println("Name is: ", myfile.Name())
 log.Println("Size is: ", myfile.Size())
}

CREATE A DIRECTORY IN Go
In Go, use the os.Mkdir() method to create a single directory. Use
os.MkdirAll() to establish a folder hierarchy (nested directories). Both
methods need a path and the folder’s permission bits as parameters.

Make a Single Directory
package main
import (
 "log"
 "os"
)
func main() {
 if er := os.Mkdir("a", os.ModePerm); er != nil {
 log.Fatal(er)
 }
}

Make a Directory Hierarchy (Nested Directories)
package main
import (
 "log"
 "os"
)
func main() {
 if er := os.MkdirAll("a/b/c/d", os.ModePerm); er
!= nil {
 log.Fatal(er)
 }
}

Getting Started with Go    ◾    19

The os.Mkdir() function generates a new directory with the specified
name but does not allow for the creation of subdirectories.

In this chapter, we covered the introduction of Go with its features,
advantages, and disadvantages. We also covered Go installation in
Windows and Mac. Moreover, we covered Files and Folders, The Terminal,
and Text Editors.

http://taylorandfrancis.com

21DOI: 10.1201/9781003310457-2

C h a p t e r 2

GoLang Tools

IN THIS CHAPTER

➢➢ How to Read a Go Program

In Chapter 1, we covered the introduction of Go along with its advantages
and disadvantages. We also covered Go installation, Files and Folders,
Terminal, and Text Editors. This chapter will discuss how to read and
write a program.

HOW TO READ AND WRITE PROGRAMS IN Go
GoLang includes an extensive built-in library that may use to conduct file
read and write operations. The io/ioutil module is all about reading from
files on the local system. One can use the io/ioutil module to save data to
a file.

The fmt module supports formatted I/O by providing methods for
reading input from stdin and printing output to stdout. The log module is
a basic logging package that is implemented.

It introduces a Logger type with methods for formatting output. The
os module allows us to use native operating-system functions. Buffered
I/O is implemented by the bufio module, which helps to enhance
CPU speed.

•	 os.Create(): This function creates a file with the specified name. If
another file with the same name already exists, the create method
truncates it.

https://doi.org/10.1201/9781003310457-2

22    ◾    Mastering GoLang: A Beginner’s Guide

•	 ioutil.ReadFile(): The only parameter to the ioutil.ReadFile() func-
tion is the path to the file to be read. This procedure either returns the
file’s contents or an error.

•	 ioutil.WriteFile(): It returns the ioutil. WriteFile() is a function used to
save data to a file. The WriteFile() function accepts three parameters:
the location of the file to which we want to write, the data object, and
the FileMode, which contains the file’s mode and permission bits.log.

•	 Fatalf: Fatalf will terminate the application after printing the log
message. It is similar to doing Printf() followed by os.Exit (1).

•	 log.Panicf: Panic is similar to an exception that may occur during
runtime. Panicln is the same as Println() followed by a panic() call.
The parameter supplied to panic() is displayed when the program
exits.

•	 bufio.NewReader(os.Stdin): This function returns a new Reader
with the default buffer size (4096 bytes).

•	 inputReader.ReadString(‘n’): This method reads user input from
stdin until the first occurrence of a delimiter in the input and returns
a string containing the data up to and including the delimiter. An
error before locating a delimiter provides the data read before the
fault and the error itself.

First example: For best results, use the offline compiler. Save the file
as a .go file. To run the program, follow-up the below given command.

go run file-name.go

// program to read and write files
package main
// importing packages
import (
 "fmt"
 "io/ioutil"
 "log"
 "os"
)
func CreateFile() {
 // fmt package implements formatted I/O, it
has functions like Printf and Scanf

GoLang Tools    ◾    23

 fmt.Printf("Writing file in Go lang\n")
 // in case error is thrown it is received by
err variable and Fatalf method of
 // log prints error message and stops program
execution
 file, er := os.Create("test1.txt")
 if er != nil {
 log.Fatalf("failed creating file: %s", er)
 }
 // Defer is used for the purposes of cleanup
like closing a running file after the file has
 // been written and the main function has
completed execution
 defer file.Close()
 // len variable captures the length of string
written to the file.
 len, er := file.WriteString("Welcome
Everyone"+
 " Program demonstrates reading and
writing"+
 " operations to a file in
the Go lang.")
 if er != nil {
 log.Fatalf("failed writing to file: %s", er)
 }
 // Name() method returns name of the file as
presented to Create() method.
 fmt.Printf("\nFile Name: %s", file.Name())
 fmt.Printf("\nLength: %d bytes", len)
}
func ReadFile() {
 fmt.Printf("\n\nReading a file in the Go
lang\n")
 fileName := "test1.txt"
 // The ioutil package contains inbuilt
 // methods like ReadFile that reads
 // filename and returns contents.
 data, er := ioutil.ReadFile("test.txt")
 if er != nil {
 log.Panicf("failed reading data from file:
%s", er)
 }
 fmt.Printf("\nFile Name is: %s", fileName)

24    ◾    Mastering GoLang: A Beginner’s Guide

 fmt.Printf("\nSize is: %d bytes", len(data))
 fmt.Printf("\nData is: %s", data)
}
// main function
func main() {
 CreateFile()
 ReadFile()
}

Second example: GoLang program code reads and writes files based on
user input.

// Program to read and write files
package main
// importing requires packages
import (
 "bufio"
 "fmt"
 "io/ioutil"
 "log"
 "os"
)
func CreateFile(filename, text string)
{
 // fmt package implements formatted I/O
 // and contains the inbuilt methods like the
Printf and Scanf
 fmt.Printf("Writing to a file in the Go
lang\n")

 // Creating file using Create() method with
user inputted filename and err
 // variable catches any error thrown
 file, er := os.Create(filename)

 if er != nil {
 log.Fatalf("failed creating file: %s", er)
 }
 // closing running file after the main method
has completed execution and
 // writing to the file is complete
 defer file.Close()

GoLang Tools    ◾    25

 // writing data to file using
 // WriteString() method and
 // length of the string is stored in the len
variable
 len, er := file.WriteString(text)
 if er != nil {
 log.Fatalf("failed writing to file: %s",
er)
 }
 fmt.Printf("\nFile Name is: %s", file.Name())
 fmt.Printf("\nLength is: %d bytes", len)
}
func ReadFile(filename string) {
 fmt.Printf("\n\nReading a file in the Go
lang\n")
 // file is read using ReadFile() method of the
ioutil package
 data, err := ioutil.ReadFile(filename)
 // in case of an error
 // the error statement is printed, program is
stopped
 if er != nil {
 log.Panicf("failed reading data from file:
%s", er)
 }
 fmt.Printf("\nFile Name is: %s", filename)
 fmt.Printf("\nSize is: %d bytes", len(data))
 fmt.Printf("\nData is: %s", data)
}
// main function
func main() {
 // user input for the filename
 fmt.Println("Enter-filename: ")
 var filename string
 fmt.Scanln(&filename)
 // user input for the file content
 fmt.Println("Enter-text: ")
 inputReader := bufio.NewReader(os.Stdin)
 input, _ := inputReader.ReadString('\n')
 // file is created then read
 CreateFile(filename, input)
 ReadFile(filename)

}

26    ◾    Mastering GoLang: A Beginner’s Guide

IN GoLang, HOW TO RENAME AND MOVE A FILE
The Rename() function in the Go programming language allows us to
rename and transfer an existing file to a new directory. This procedure is
used to rename and transfer a file from one path to another.

If the specified new path already exists and is not in a directory, this
procedure will overwrite it. However, OS-specific limitations may apply if
the specified old and new paths are in separate directories.

If the specified path is wrong, type *LinkError will throw an error.
Because it is specified in the os package, we must import the os package

in our program to use the Remove() method.

Syntax:

func Rename(old-path, new-path string) error

First example:

// Program to illustrate how to rename,
// move a file in the default directory
package main
import (
 "log"
 "os"
)
func main() {
 // Rename and Remove a file
 // Using Rename() function
 OriginalPath := "helloo.txt"
 NewPath := "abc.txt"
 es := os.Rename(Original_Path, New_Path)
 if es != nil {
 log.Fatal(es)
 }

}

Second example:

// Program to illustrate how to rename,
//remove a file in new directory
package main

GoLang Tools    ◾    27

import (
 "log"
 "os"
)
func main() {
 // Rename and Remove file
 // Using Rename() function
 OriginalPath := "/Users/anki/Documents/new_
folder/helloo.txt"
 NewPath := "/Users/anki/Documents/new_folder/
myfolder/abc.txt"
 es := os.Rename(OriginalPath, NewPath)
 if es != nil {
 log.Fatal(es)
 }
}

HOW TO READ FILES LINE BY LINE TO STRING
The bufio package Scanner is used to read a file line by line. Let the text file
be called sample1.txt, and the content inside the file is as follows.

The Go programming language is an open-source, statically compiled
programming language. Rob Pike, Ken Thompson, and Robert Grieserner
created it at Google. It is sometimes referred to as GoLang. The Go pro-
gramming language is a general-purpose programming language designed
to develop large-scale, complicated software.

package main
import (
 "bufio"
 "fmt"
 "log"
 "os"
)
func main() {
 // os.Open() opens specific file in the
 // read-only mode,
 // this return pointer of type os.
 file, er := os.Open("sample1.txt")

 if er != nil {
 log.Fatalf("failed to open")

28    ◾    Mastering GoLang: A Beginner’s Guide

 }
 // bufio.NewScanner() function is called in which
 // object os.File passed as its parameter
 // this returns object bufio.Scanner which is used
on the
 // bufio.Scanner.Split() method
 scanner := bufio.NewScanner(file)
 // The bufio.ScanLines is used as
 // input to method bufio.Scanner.Split()
 // and then scanning forwards to each
 // new line using bufio.Scanner.Scan() method.
 scanner.Split(bufio.ScanLines)
 var text []string
 for scanner.Scan() {
 text = append(text, scanner.Text())
 }
 // The method os.File.Close() is called
 // on the os.File object to close file
 file.Close()
 // and then a loop iterates through,
 // prints each of the slice values.
 for _, each_ln := range text {
 fmt.Println(each_ln)
 }
}

This chapter covered how to read and write Go programs, read a file line
by line to string, and how to rename files.

29DOI: 10.1201/9781003310457-3

C h a p t e r 3

Data Types

IN THIS CHAPTER

➢➢ Numbers

➢➢ Booleans

➢➢ Strings

In Chapter 2, we discussed on how to read the file in Go and how to rename
the file. In this chapter, we will wrap numbers, Booleans, and strings.

BASIC SYNTAX
In Chapter 2, we explored the fundamental structure of a Go program.
The other essential building parts of the Go programming language will
be much easier to grasp now.

Tokens

A Go program is made up of different tokens. Tokens can be keywords,
identifiers, constants, string literals, or symbols. For instance, the follow-
ing Go statement is made up of six tokens:

fmt.Println("Hello, Everyone")

Individual tokens are as follows:

fmt
.
Println

https://doi.org/10.1201/9781003310457-3

30    ◾    Mastering GoLang: A Beginner’s Guide

(
 "Hello, Everyone"
)

Line Separator

The line separator key is a statement terminator in a Go program. Individual
statements, in other words, do not require a particular separator like “;” in
C. The Go compiler uses the statement terminator “;” to signify the end of
one logical entity.

Take a look at the following statements, for example:

fmt.Println("Hello, Everyone")
fmt.Println("We are in the world of Go Programming")

Comments

Comments are similar to help messages in our Go program, and the com-
piler ignores them. They begin with/* and end with the characters */, as
illustrated below.

/* My first Go program */

There can be no comments within comments, and they do not appear
within strings or characters literal.

Identifiers

A Go identifier identifies a variable, function, or other user-defined entity.
An identifier begins with a letter A to Z, a to z, or an underscore. It can be
followed by underscores, zero or more letters, or digits.

identifier = letter { letter | unicode_digit }

Punctuation characters such as @, $, and percent are not permitted within
identifiers in Go. Go is a case-sensitive computer language. Thus, in Go,
Manpower and manpower are two distinct identities. The following are
some instances of appropriate identifiers:

ramesh sehgal xyz move_name x_123
myname40 _temp j x23b8 retVal

Data Types    ◾    31

Keywords are not permitted to be used as identifiers.
Identifier _ is a unique identifier, sometimes known as a blank identifier.
We will later discover that all types, variables, constants, labels, package

names, and package import names must be identifiers.
An exported identifier begins with a Unicode upper case letter. In many

other languages, the word exported can be translated as public. Non-
exported identifiers do not begin with a Unicode upper case letter. The
term “non-exported” can be understood as “private in several different
languages.” Eastern characters are now categorized as non-exported let-
ters. Non-exported IDs are sometimes known as unexported identifiers.

Here are some examples of legally exported identifiers:

Player_7
DidSomething
VERSION
Ĝo
Π

Here are some examples of legal non-exported identifiers:

_
_status
memeStat
books
π

Here are some examples of tokens that are not permitted to be used
as identifiers:

// Starting with Unicode digit.
321
4apples
// Containing the Unicode characters not
// satisfying requirements.
c.d
*ptr
$names
c@d.e
// These are keywords.
type
range

32    ◾    Mastering GoLang: A Beginner’s Guide

Keywords

The reserved terms in Go are listed in the following table. These reserved
terms are not permitted to be used as constants, variables, or other
identifiers.

case default import interface struct
chan defer go map select
break else if package type
const fallthrough goto range switch
continue for func return var

They are divided into six categories: const, func, import, package, type,
and var are used to declare various types of code components in Go
programs.

Some composite type denotations use chan, interface, map, and struct
as components.

To manage the code flow, break, case, continue, default, otherwise,
fallthrough, for, goto, if, range, return, select, and switch are used.

Both defer and go control flow terms, although in different ways.

Whitespace

In Go, whitespace refers to blanks, tabs, newline characters, and com-
ments. A blank line has simply whitespace, maybe with a remark, and is
entirely ignored by the Go compiler.

Whitespaces divides one section of a statement from another and allows
the compiler to determine where one element, int, ends, and the next ele-
ment begins in a statement. As a result, in the following statement:

var ages int;

For the compiler to distinguish between int and ages, there must be at least
one whitespace character (typically a space). In contrast, consider the fol-
lowing statement:

fruits = grapes + oranges; // get the total amount of
fruit

There are no whitespace characters required between fruit and =, or
between = and grapes; however, we are welcome to include any for read-
ability purposes.

Data Types    ◾    33

DATA TYPES IN Go
Data types define the sorts of data stored in a valid Go variable. The type is
separated into four types in the Go language, which are as follows:

•	 Numbers, strings, and Booleans are examples of basic types.

•	 Arrays and structs are examples of aggregate types.

•	 Pointers, slices, maps, functions, and channels are examples of refer-
ence types.

•	 Interface type.

This section will go through Basic Data Types in the Go programming
language. The Basic Data Types are further divided into three subcatego-
ries, which are as follows:

•	 Numbers

•	 Booleans

•	 Strings

Numbers

Numbers in Go are separated into three subcategories, which are as follows:

•	 Integers: The Go language supports both signed and unsigned integers
in four distinct sizes, as indicated in the following table. The signed inte-
ger is denoted by int, whereas the unsigned integer is denoted by uint.

Data Type Description

int8 8 bit signed integer
int16 16 bit signed integer
int32 32 bit signed integer
int64 64 bit signed integer
uint8 8 bit unsigned integer
uint16 16 bit unsigned integer
uint32 32 bit unsigned integer
uint64 64 bit unsigned integer
Int In and uint have the same size, either 32 or 64 bits
uint In and uint have the same size, either 32 or 64 bits
Rune It is the same as int32 and represents Unicode code points
Byte It is an abbreviation for uint8
Uintptr It is a type of unsigned integer. It has no fixed width, but it

can store all of the bits of a pointer value

34    ◾    Mastering GoLang: A Beginner’s Guide

Example:

// Program to illustrate the use of integers
package main
import "fmt"
func main() {
 // 8-bit unsigned int using
 var A uint8 = 225
 fmt.Println(A, A-3)
 // Using 16-bit signed int
 var B int16 = 32767
 fmt.Println(B+2, B-2)
}

Floating Point Numbers
In Go, floating-point numbers are classified into two types, as illustrated
in the following table:

Data Type Description

float32 32 bit IEEE 754 floating point number
float64 64 bit IEEE 754 floating point number

Example:

// I illustrate the use of floating-point numbers
package main
import "fmt"
func main()
{
 x := 22.46
 y := 35.88
 // Subtract of two floating-point number
 z := y-x
 // Display result
 fmt.Printf("Result is: %f", z)
 // Display type of c variable
 fmt.Printf("\nThe type of z is : %T", z)
}

Complex Numbers
The complex numbers are separated into two portions in the following
table. These complex integers also include float32 and float64. The built-in

Data Types    ◾    35

function generates a complex number from its imaginary and real com-
ponents, while the built-in imaginary and real functions remove those
components.

Data Type Description

complex64 Complex numbers with float32 as both a real and imaginary component.
complex128 Complex numbers with float64 as both a real and imaginary component.

Example:

// Illustrate the use of complex numbers
package main
import "fmt"
func main() {
 var x complex128 = complex(7, 3)
 var y complex64 = complex(8, 3)
 fmt.Println(x)
 fmt.Println(y)
 // Display type
 fmt.Printf("The type of x is %T and "+
 "the type of y is %T", x, y)
}

Booleans

The Boolean data type merely represents one bit of information: true or
false. The values of type Boolean are not inherently or explicitly trans-
formed to any other type.

Example:

// Program to illustrate the use of booleans
package main
import "fmt"
func main() {
 // variables
 strg1 := "PeeksofPeeks"
 strg2:= "peeksofpeeks"
 strg3:= "PeeksofPeeks"
 results1:= strg1 == strg2
 results2:= strg1 == strg3
 // Display result
 fmt.Println(results1)

36    ◾    Mastering GoLang: A Beginner’s Guide

 fmt.Println(results2)
 // Display type of
 // results1 and results2
 fmt.Printf("The type of results1 is %T and "+
 "the type of results2 is %T",
 results1, results2)
}

Strings

A string data type is a series of Unicode code points. In other terms, a
string is a series of immutable bytes, which implies that once a string is
created, it cannot change. A string can include any data in human-read-
able form, including zero value bytes.

Example:

// Program to illustrate the use of strings
package main
import "fmt"
func main()
{
 // strf variable stores strings
 strg := "PeeksofPeeks"
 // Display length of the string
 fmt.Printf("Length of the string is:%d",
 len(strg))
 // Display string
 fmt.Printf("\nString is: %s", strg)
 // Display type of strg variable
 fmt.Printf("\nType of strg is: %T", strg)
}

This chapter covered numbers, Booleans, and strings with its relevant
examples.

37DOI: 10.1201/9781003310457-4

C h a p t e r 4

Variables and Constants

IN THIS CHAPTER

➢➢ Variables in Go

➢➢ Constants

➢➢ Variable scope in Go

➢➢ Declaration of multiple variables

In Chapter 3, we covered numbers, strings, and Booleans. In this chapter,
we will cover variables, scope, and constants.

VARIABLES IN Go
A typical program employs a variety of variables that may change during
execution. For instance, consider a program that runs various operations
on the values entered by the user. The values submitted by one user may
differ from those entered by another. As a result, variables are required. It
is because another user may not utilize the same values again.

When a user enters a new value in the process of operation that will
utilize further, they can store it temporarily in the computer’s Random
Access Memory, and the values in this area of memory fluctuate through-
out the execution, giving rise to another word for this, which is known as
Variables. So, in essence, a Variable is a placeholder for information that
may update at runtime. Variables enable the retrieval and manipulation of
stored data.

https://doi.org/10.1201/9781003310457-4

38    ◾    Mastering GoLang: A Beginner’s Guide

Variable Naming Guidelines:

•	 Always begin the variable name with a letter or underscore (_). In
addition, the letters “a-z” or “A-Z” or the digits 0–9 and the character
“_” may appear in the names.
Peeks peeks, _peeks24 // valid-variable
124Peeks, 24peeks // invalid-variable

•	 Never begin any variable name with a digit.
235peeks // illegal-variable

•	 The variable’s name is case-sensitive.
peeks and Peeks are the two different variables

•	 Keywords are not permitted to be used as variable names.

•	 There is no restriction to the length of the variable’s name; however,
it is recommended to be no more than 4–15 letters long.

Declaring a Variable

Variables in the Go programming language may declare in the following
two ways.

Using the var Keyword
Variables in Go are created using the var keyword of a particular type,
linked with a name, and given an initial value.

Syntax:

var variable_name type = expression

Important Notes:

•	 In the preceding syntax, either the type or the = expression can
delete, but not both, in the definition of a variable.

•	 If the type is deleted, the value-initialize in the expression deter-
mines the type of the variable.

Example:

// Illustrate the concept of variable
package main
 import "fmt"

Variables and Constants    ◾    39

func main() {
// Variable declared &
// initialized without the explicit type
var myvariable1 = 30
var myvariable2 = "PeeksofPeeks"
var myvariable3 = 37.80
// Display value and
// type of the variables
fmt.Printf("Value of myvariable1 is : %d\n",
 myvariable1)
fmt.Printf("Type of myvariable1 is : %T\n",
 myvariable1)
fmt.Printf("Value of myvariable2 is : %s\n",
 myvariable2)
fmt.Printf("Type of myvariable2 is : %T\n",
 myvariable2)
fmt.Printf("Value of myvariable3 is : %f\n",
 myvariable3)
fmt.Printf("Type of myvariable3 is : %T\n",
 myvariable3)

}

•	 If the expression is deleted, the variable will have a zero value for the
type, such as zero for numbers, false for Booleans, " " for strings, and
nil for interface and reference types. As a result, there is no idea of an
uninitialized variable in the Go programming language.

Example:

// Program to illustrate the concept of variable
package main
import "fmt"
 func main() {
 // Variable declared &
 // initialized without the expression
 var myvariable1 int
 var myvariable2 string
 var myvariable3 float64
 // Display zero-value of the variables
 fmt.Printf("Value of myvariable1 is : %d\n",
 myvariable1)
 fmt.Printf("Value of myvariable2 is : %s\n",
 myvariable2)

40    ◾    Mastering GoLang: A Beginner’s Guide

 fmt.Printf("Value of myvariable3 is : %f",
 myvariable3)
}

•	 We may define several variables of the same type in a single declara-
tion when using type.

Example:

// Program to illustrate
// the concept of variable
package main
import "fmt"
func main() {
 // Multiple variables of same type
 // are declared & initialized in single line
 var myvariable1, myvariable2, myvariable3 int
= 4, 554, 68
 // Display values of the variables
 fmt.Printf("Value of myvariable1 is : %d\n",
 myvariable1)
 fmt.Printf("Value of myvariable2 is : %d\n",
 myvariable2)
 fmt.Printf("Value of myvariable3 is : %d",
 myvariable3)
}

•	 If we remove the type, we can define many variables of various types
in a single declaration. The initialized values indicate the type of
variable.

Example:

// Program to illustrate
// the concept of variable
package main
import "fmt"
func main() {
// Multiple variables of different types
// are declared and initialized in single line

Variables and Constants    ◾    41

var myvariable1, myvariable2, myvariable3 = 4,
"CFG", 69.56
// Display value &
// type of variables
fmt.Printf("Value of myvariable1 is : %d\n",
 myvariable1)
fmt.Printf("Type of myvariable1 is : %T\n",
 myvariable1)
fmt.Printf("\nValue of the myvariable2 is : %s\n",
 myvariable2)
fmt.Printf("Type of the myvariable2 is : %T\n",
 myvariable2)

fmt.Printf("\nThe value of the myvariable3 is :
%f\n",
 myvariable3)
fmt.Printf("Type of the myvariable3 is : %T\n",
 myvariable3)

}

•	 The calling function that returns multiple values allows us to initial-
ize a set of variables.

Example:

// Here, os.Open function return a
// file in x variable and an error
// in y variable
var x, y = os.Open(name)

Using the Short Variable Declaration
Short variable declaration is used to define and initialize local variables in
functions.

Syntax:

variable-name:= expression

Note: Please do not mix up := and =, as := is a declaration while = is an
assignment.

42    ◾    Mastering GoLang: A Beginner’s Guide

Important Notes:

•	 The type of the expression decides the type of the variable in the
preceding expression.

Example:

// Program to illustrate
// the concept of variable
package main
import "fmt"
func main()
{
// Using short-variable declaration
myvar1 := 37
myvar2 := "PeeksofPeeks"
myvar3 := 36.63
// Display value and type of the variables
fmt.Printf("Value of myvar1 is : %d\n", myvar1)
fmt.Printf("Type of myvar1 is : %T\n", myvar1)
fmt.Printf("\nValue of myvar2 is : %s\n", myvar2)
fmt.Printf("Type of myvar2 is : %T\n", myvar2)
fmt.Printf("\nValue of myvar3 is : %f\n", myvar3)
fmt.Printf("Type of myvar3 is : %T\n", myvar3)

}

•	 Because of their brevity and versatility, most local variables are
defined and initialized using short variable declarations.

•	 Variables with the var declaration are used for local variables that need
an explicit type that differs from the initializer expression or variables
whose values are assigned later, and the initialized value is irrelevant.

•	 When using a short variable declaration, we can declare several vari-
ables in a single declaration.

Example:

// Go program to illustrate
// concept of variable
package main
import "fmt"
func main()

Variables and Constants    ◾    43

{
// Using short variable declaration
// Multiple variables of the same types
// are declared & initialized in single line
myvar1, myvar2, myvar3 := 830, 44, 66
// Display value and
// type of variables
fmt.Printf("Value of myvar1 is : %d\n", myvar1)
fmt.Printf("Type of myvar1 is : %T\n", myvar1)
fmt.Printf("\nValue of myvar2 is : %d\n", myvar2)
fmt.Printf("Type of myvar2 is : %T\n", myvar2)
fmt.Printf("\nValue of myvar3 is : %d\n", myvar3)
fmt.Printf("Type of myvar3 is : %T\n", myvar3)

}

•	 The calling function can initialize a group of variables that return
multiple values in a short variable declaration.

Example:

// os.Open function return
// a file in x variable and an
// error in y variable

x, y := os.Open(name)

•	 A short variable declaration behaves similarly to an assignment only
when referring to previously defined variables in the same lexical
block. Variable declarations in the outer block are ignored. And, as
shown in the following example, at least one variable is a new vari-
able created from these two variables.

Example:

// Program to illustrate
// the concept of variable
package main
import "fmt"
func main() {
// Using the short variable declaration
// short variable declaration acts
// as an assignment for the myvar2 variable
// because same variable present in same block

44    ◾    Mastering GoLang: A Beginner’s Guide

// so the value of myvar2 is changed from 55 to 100
myvar1, myvar2 := 39, 55
myvar3, myvar2 := 55, 100
// If we try to run the commented lines,
// then compiler will gives the error because
// these variables are already defined
// myvar1, myvar2 := 53, 57
// myvar2:= 210
// Display the values of the variables
fmt.Printf("Value of myvar1 and myvar2 is : %d
%d\n",

myvar1, myvar2)
fmt.Printf("Value of myvar3 and myvar2 is : %d
%d\n",

myvar3, myvar2)

}

•	 We can define numerous variables of various kinds in a single decla-
ration using a short variable declaration. The expression determines
the type of these variables.

Example:

// Program to illustrate
// the concept of variable
package main
import "fmt"
func main() {
// Using the short variable declaration
// Multiple variables of the different types
// are declared and initialized in single line
myvar1, myvar2, myvar3 := 700, "Peeks", 48.56
// Display value and type of the variables
fmt.Printf("Value of myvar1 is : %d\n", myvar1)
fmt.Printf("Type of myvar1 is : %T\n", myvar1)
fmt.Printf("\nValue of myvar2 is : %s\n", myvar2)
fmt.Printf("Type of myvar2 is : %T\n", myvar2)
fmt.Printf("\nValue of myvar3 is : %f\n", myvar3)
fmt.Printf("Type of myvar3 is : %T\n", myvar3)
}

Variables and Constants    ◾    45

CONSTANTS
As the word CONSTANT implies, it is fixed; similarly, in programming
languages, once the value of a constant is declared, it cannot change
further. Constants can be any fundamental data kind, such as an integer
constant, a floating constant, a character constant, or a literal string.

How Should We Declare?

Constants are defined similarly to variables, but with the const keyword
as a prefix to specify a constant of a specified type. It is not possible to
describe it using the := syntax.

Example:

package main

import "fmt"
const Pi = 3.14
func main()
{
 const POP = "PeeksofPeeks"
 fmt.Println("Hello", world)
 fmt.Println("Happy", Pi, "Day")
 const Correct= true
 fmt.Println("Go rules?", Correct)
}

Untyped and Typed Numeric Constants

Typed constants behave like immutable variables and can only interact
with variables of the same type, but untyped constants behave like literals
and interact with similar variables. In Go, constants can specify with or
without a type. The following is an example of typed and untyped numeric
constants, both named and nameless.

const untypedInteger = 321
const untypedFloating typed = 321.12
const typedInteger int = 321
const typedFloatingPoint float64 = 321.12

The following is a list of Go Language constants:

•	 Numeric Constant (Integer constant, Floating constant, and Complex
constant)

46    ◾    Mastering GoLang: A Beginner’s Guide

•	 Boolean Constant

•	 String Literals

Numeric Constant
Numeric constants are values with high precision. Because Go is a statically
typed language, operations that combine numeric types are not permit-
ted. We cannot add a float64 or even an int32 to an int. It is, neverthe-
less, allowed to write 1e6*time. Second, or mathematics. 1(‘t’+2.0) or even
Exp(1). Constants, unlike variables, operate like regular numbers in Go.

There are three types of numerical constants: integer, complex, and
floating-point.

Integer Constant 

•	 The base or radix is specified by a prefix: 0x or 0X for hexadecimal, 0
for octal, and nothing for decimal.

•	 An integer literal can additionally include a suffix that is a mix of
U(upper case) and L(upper case), indicating that it is unsigned or long.

•	 It can be a constant in decimal, octal, or hexadecimal form.

•	 An int can only store a 64-bit integer at most, and occasionally less.

Here are some instances of Integer Constant:

85 : decimal
0213 : octal
0x4b : hexadecimal
30 : int
30u : unsigned int
30l : long
30ul : unsigned long
212 : Legal
215u : Legal
0xFeeL : Legal
078 : Illegal: 8 is not an octal digit
032UU : Illegal: cannot repeat a suffix

Complex Constant  Complex constants act pretty similarly to floating-
point constants. It is an ordered or real pair of integer constant (or param-
eters), separated by a comma and contained in parentheses. The first

Variables and Constants    ◾    47

constant represents the actual component, while the second represents the
imaginary part. COMPLEX*8 is a complex constant that requires 8 bytes
of storage.

Example:

(0.0, 0.0) (-123.456E+30, 987.654E-29)

Floating Constant  An integer portion, a decimal point, a fractional part,
and an exponent part comprise a floating type constant.

Floating constants can be represented in either decimal or exponential
forms.

When expressing in decimal form, we must include the decimal point,
the exponent, or both.

And, when employing the exponential form, the integer, fractional, or
both parts must include.

Here are some instances of Floating type constants:

3.14159 : Legal
314159E-5L : Legal
510E : Illegal: incomplete exponent
210f : Illegal: no decimal or exponent
.e55 : Illegal: missing integer or fraction

String Literals
Go supports two forms of string literals: " " (double-quote style) and ' '
(back-quote).

The + and += operators can use to concatenate strings.
Characters in a string are comparable to character literals in that they

are plain characters, escape sequences, and universal characters.
And this is a case of untyped.
String types with zero values are blank strings, which can be repre-

sented by " " or " in literal.
String types may all be compared using operators such as ==,!=, and

(for comparing of same types)

Syntax:

type _string struct
{

48    ◾    Mastering GoLang: A Beginner’s Guide

 elements *byte // the underlying bytes
 len int //the number of bytes
}

Example:

"hello, peeksofpeeks"
"hello, \
peeksofpeeks"
"hello " "peeks" "ofpeeks"

All three of the above statements are similar in this context in that they
lack a specific type.

Example:

package main
import "fmt"
func main()
{
 const X = "POP"
 var Y = "PeeksofPeeks"
 // Concat strings.
 var helloEveryone = X+ " " + Y
 helloEveryone += "!"
 fmt.Println(helloEveryone)

 // Compare strings.
 fmt.Println(X == "POP")
 fmt.Println(Y < X)
}

Boolean Constant
String constants and Boolean constants are both types of constants. It fol-
lows the same guidelines as a string constant. The main difference is that it
contains two untyped constants, true and false.

Example:

package main
import "fmt"
const Pi = 3.14

Variables and Constants    ◾    49

func main()
{
 const trueConst = true
 // Type definition using the type keyword
 type myBool bool
 var defaultBool = trueConst // allowed
 var customBool myBool = trueConst // allowed
 // defaultBool = customBool // not allowed
 fmt.Println(defaultBool)
 fmt.Println(customBool)
}

VARIABLE SCOPE IN Go
A variable’s scope may be described as the area of the program where a spe-
cific variable is available. A variable can declare in a class, method, loop,
or other structure. Like C/C++, all identifiers in GoLang are lexically (or
statically) scoped, which means that the variable’s scope may determine at
compilation time. Alternatively, a variable can only be called from within
the code block in which it is defined.

Variable scope rules in GoLang may be classified into two types based
on where the variables are declared:

•	 Local Variables (declared inside a block)

•	 Global Variables (declared outside a block)

Local Variables

•	 The type of variables that are defined within a function or a block is
known as local variables. Outside of the function or block, these are
inaccessible.

•	 These variables can also be declared within a function’s for, while,
and similar statements.

•	 These variables, however, can be accessed by nested code blocks
within a function.

•	 The block variables are another name for these variables.

•	 A compile-time error will occur if these variables are declared twice
with the same name in the same scope.

50    ◾    Mastering GoLang: A Beginner’s Guide

•	 After the function’s execution is complete, these variables are no lon-
ger present.

•	 The variable specified outside the loop is also available within the
nested loops. It signifies that a global variable will be available to all
methods and loops. The loop and function within the function will
access the local variable.

•	 A variable declared within a loop body is not visible to the outside of
the loop body.

Example:

// Program to illustrate the local variables
package main
import "fmt"
// main function
func main() { // from here the local level scope
of main function starts
 // local variables inside the main function
 var myvariable1, myvariable2 int = 90, 47
// Display values of the variables
fmt.Printf("Value of myvariable1 is : %d\n",
 myvariable1)
fmt.Printf("Value of myvariable2 is : %d\n",
 myvariable2)
} // here the local level scope of main function
ends

Global Variables

•	 Global variables are specified outside of a function or a block.

•	 These are accessible for the duration of a program.

•	 These are declared outside of any functions or blocks at the pro-
gram’s top.

•	 These are accessible from anywhere in the program.

Example:

// Program to illustrate the global variables
package main

Variables and Constants    ◾    51

import "fmt"
// the global variable declaration
var myvariable1 int = 120
func main() { // from here the local level scope
starts
// the local variables inside the main function
var myvariable2 int = 210
// Display value of global variable
fmt.Printf("Value of Global myvariable1 is :
%d\n",
 myvariable1)
// Display value of local variable
fmt.Printf("Value of Local myvariable2 is : %d\n",
 myvariable2)
// calling function
display()
} // local level scope ends
// taking function
func display() { // the local level starts
// Display value of global variable
fmt.Printf("Value of Global myvariable1 is :
%d\n",
 myvariable1)
} // the local scope ends here

Note: What happens if a local variable with the same name as a global
variable appears within a function? The solution is straightforward: the
compiler will favor the local variable. When two similar variables with
the same name are declared, the compiler usually generates a compile-
time error. However, if the variables are specified in distinct scopes,
the compiler will accept them. The compiler will precedence the local
variable when a local variable with the same name as a global variable
is declared.

•	 In the following example, we can see the output. As the value of
myvariable1 in function main is 210. As a result, a local variable
strongly prefers a global variable.

Example:

// Program to show the compiler giving preference
// to local variable over a global variable

52    ◾    Mastering GoLang: A Beginner’s Guide

package main
import "fmt"
// the global variable declaration
var myvariable1 int = 120
func main() { // from here the local level scope
starts
// local variables inside main function
// it is same as a global variable
var myvariable1 int = 210
// Display value
fmt.Printf("Value of myvariable1 is : %d\n",
 myvariable1)
} // here the local level scope ends

DECLARATION OF MULTIPLE VARIABLES
A single statement can use to declare many variables.

The syntax for multiple variable declaration is var name1, name2 type =
initialvalue1, initialvalue2.

Example:

package main
import "fmt"
func main() {
 var width, height int = 120, 60 //declaring
multiple variables
 fmt.Println("width :", width, "height :", height)
}

If the variables have an initial value, the type can be omitted. Because
the variables in the preceding program have initial values, the int type
may delete.

Example:

package main
import "fmt"
func main() {
 var width, height = 120, 60 //"int" is dropped
 fmt.Println("width :", width, "height :", height)
}

Variables and Constants    ◾    53

As an example, the above software will print width of 120 and a height of
60 as a result.

It’s pretty clear you should have guessed by now, if no starting value is
specified for width and height, that we will set to 0.

Example:

package main
import "fmt"
func main() {
 var width, height int
 fmt.Println("width :", width, "height :", height)
 width = 120
 height = 60
 fmt.Println("new width :", width, "new height
:", height)
}

There may be chances when we want to define variables of several kinds in
a single sentence. The syntax for doing so is explained below:

var (
 nme1 = initialvalue1
 nme2 = initialvalue2
)

The following program declares variables of various kinds using the syn-
tax described above.

package main
import "fmt"
func main() {
 var (
 name = "natasha"
 age = 27
 height int
)
 fmt.Println("my name :", name, ", age :", age,
"and height :", height)
}

Here, we define a string variable name, an int variable age, and an int vari-
able height.

54    ◾    Mastering GoLang: A Beginner’s Guide

Shorthand Declaration

Go also has a more compact approach to declaring variables. This is
referred to as a shorthand statement, and it employs the := operator.

The shorthand form for declaring a variable is name := initialvalue.
The following program declares a variable count with a value of 12

using the shorthand syntax. Because count has been started with the inte-
ger value 12, Go will infer that it is of type int.

package main
import "fmt"
func main() {
 count := 12
 fmt.Println("Count =",count)
}

Multiple variables can also be declared on a single line using shorthand
syntax.

package main
import "fmt"
func main() {
 name, age := "natasha", 27 //short hand
declaration
 fmt.Println("my name :", name, "age :", age)
}

The preceding program defines two variables of type string and int,
respectively.

If we execute or run the above program, we will see my name, natasha,
and age, 27 printed.

Shorthand declaration necessitates the assignment of initial values to all
variables on the left side of the assignment. The following application will
output an assignment mismatch error: two variables but only one value.
This is because age has not been assigned a value.

package main
import "fmt"
func main() {
 name, age := "natasha" //error
 fmt.Println("my name :", name, "age :", age)
}

Variables and Constants    ◾    55

Only when at least one of the variables on the left side of := is newly defined
may shorthand syntax be used. Think about the following program:

package main
import "fmt"
func main() {
 x, y := 30, 10 // declare variables x and y
 fmt.Println("x is", x, "y is", y)
 y, z := 50, 60 // y is already declared but z is
new
 fmt.Println("y is", y, "z is", z)
 y, z = 70, 80 // assign new values to already
declared variables y and z
 fmt.Println("changed y is", y, "z is", z)
}

In contrast, if we execute the following program:

package main
import "fmt"
func main() {
 x, y := 20, 30 //x and y declared
 fmt.Println("x is", x, "y is", y)
 x, y := 40, 50 //error, no new variables
}

It will output the error message. There are no new variables on the left side
of := since variables a and b have already been declared. There are no new
variables on the left side of := in line no. 6.

Variables can also have values that are calculated during run time.
Think about the following program:

package main
import (
 "fmt"
 "math"
)
func main() {
 x, y := 145.8, 543.8
 z := math.Min(x, y)
 fmt.Println("Minimum value :", z)
}

56    ◾    Mastering GoLang: A Beginner’s Guide

Math is a package in the program above, and Min is a function within that
package. We need to know that the value of z is determined at run time
and equals the sum of x and y.

Variables specified as belonging to one type cannot be assigned a value
of another type because Go is tightly typed. Because age is specified as
type int, and we are attempting to assign a string value, the following pro-
gram will show an error stating that we cannot use “natasha” (type string)
as type int in the assignment.

package main
func main() {
 age := 27 // age is int
 age = "natasha" // error since we are trying to
assign the string to a variable of type int
}

This chapter covered how to name a variable, scope, and constants.
Moreover, we also discussed defining multiple variables and Shorthand
declaration.

57DOI: 10.1201/9781003310457-5

C h a p t e r 5

Operators and
Control Structures

IN THIS CHAPTER

➢➢ For

➢➢ If

➢➢ Switch

➢➢ Operators

In Chapter 4, we covered variables where we discussed how to name a
variable and multiple variables. We also covered scope and constants. This
chapter will discuss control statements with for, if, and switch. Moreover,
we will cover operators with their relevant examples.

OPERATORS IN Go
Operators are the building blocks of every programming language. As a
result, without the usage of operators, the functionality of the Go language
is incomplete. Operators allow us to do numerous actions on operands.
Operators in the Go programming language are classified based on their
functionality:

•	 Arithmetic Operators

•	 Relational Operators

https://doi.org/10.1201/9781003310457-5

58    ◾    Mastering GoLang: A Beginner’s Guide

•	 Misc Operators

•	 Bitwise Operators

•	 Assignment Operators

•	 Logical Operators

Arithmetic Operators

In Go, these are used to execute arithmetic/mathematical operations on
operands:

•	 Addition: The ‘+’ operator joins two operands together. For instance,
x+y.

•	 Subtraction: The ‘−’ operator takes two operands and subtracts
them. For example, x-y.

•	 Multiplication: The ‘*’ is used to multiply the two operands. For
instance, x*y.

•	 Division: The ‘/’ operator divides first operand by second operand.
As an example, consider x/y.

•	 Modulus: When first operand is divided by the second, the remain-
der of the ‘%’ operator returns. For instance, x percent y.

Nota bene: -, +, !, &, *, and - are also known as unary operators, and their
precedence is higher. Because ++ and -- operators originate from state-
ments rather than expressions; they are outside the operator hierarchy.

Example:

// Program to illustrate the
// use of the arithmetic operators
package main
import "fmt"
func main()
{
 x:= 37
 y:= 22
 // Addition
 result1:= x + y
 fmt.Printf("Result of x + y = %d", result1)

Operators and Control Structures    ◾    59

 // Subtraction
 result2:= x - y
 fmt.Printf("\nResult of x - y = %d", result2)
 // Multiplication
 result3:= x * y
 fmt.Printf("\nResult of x * y = %d", result3)
 // Division
 result4:= x / y
 fmt.Printf("\nResult of x / y = %d", result4)
 // Modulus
 result5:= x % y
 fmt.Printf("\nResult of x %% y = %d", result5)
}

Relational Operators

When comparing two values, relational operators are employed. Let’s have
a look at them:

•	 The ‘==’ (Equal To) operator determines whether or not the two
operands are equal. If this is the case, it returns the true. If not, it
returns false. 6==6 will, for example, return true.

•	 The ‘!=’ operator determines whether the two provided operands are
equal or not. If it does, it returns true. If it does not, it returns false. It
is the boolean equivalent of the ‘==’ operator. 6!=6 will, for example,
return false.

•	 The ‘>’ (Greater Than) operator determines if the first operand is
greater than the second. If this is the case, it returns the true. If not,
it returns false. 7>6 will, for example, yield true.

•	 The ‘<’ (Less Than) operator determines if the first operand is less
than the second. If this is the case, it returns the true. If not, it returns
false. 6<4, for example, will return false.

•	 The ‘≥’ (Greater Than Equal To) operator determines if the first oper-
and is greater than or equal to the second operand then it returns
true. If not, it returns false. 6≥6 will, for example, return true.

•	 The ‘≤’ (Least Than Equal To) operator determines if the first oper-
and is less than or equal to the second operand then it returns true. If
not, it returns false. 6≤6 will, for example, also return true.

60    ◾    Mastering GoLang: A Beginner’s Guide

Example:

// Program to illustrate
// the use of relational operators
package main
import "fmt"
func main() {
 x:= 38
 y:= 25
 // '=='(Equal To)
 result1:= x == y
 fmt.Println(result1)
 // '!='(Not Equal To)
 result2:= x != y
 fmt.Println(result2)
 // '<'(Less Than)
 result3:= x < y
 fmt.Println(result3)
 // '>'(Greater Than)
 result4:= x > y
 fmt.Println(result4)
 // '>='(Greater Than Equal To)
 result5:= x >= y
 fmt.Println(result5)
 // '<='(Less Than Equal To)
 result6:= x <= y
 fmt.Println(result6)
}

Logical Operators

They are used to integrate two or more conditions/constraints or comple-
ment the original condition’s evaluation.

•	 Logical AND: The && operator returns the true when both of the
conditions in consideration are met. If not, it returns false. x && y,
for example, returns true when both x and y are true (i.e., non-zero).

•	 Logical OR: When one or both of the requirements is met, the ‘||’
operator returns true. If not, it returns false. For instance, x || y
returns true if either x or y is true (i.e., non-zero). Naturally, it returns
true if both x and y are true.

Operators and Control Structures    ◾    61

•	 Logical NOT: If condition in question is satisfied, the ‘!’ operator
returns true. If not, it returns false. !x, for example, returns true if a
is false, that is, when x=0.

Example:

// Program to illustrate
//the use of logical operators
package main
import "fmt"
func main() {
 var x int = 26
 var y int = 65
 if(x!=y && x<=y){
 fmt.Println("True")
 }
 if(x!=y || x<=y){
 fmt.Println("True")
 }
 if(!(x==y)){
 fmt.Println("True")
 }
}

Bitwise Operators

In the Go programming language, 6 bitwise operators act at the bit level or
conduct bit-by-bit operations. The bitwise operators are:

•	 & (bitwise AND): Takes two operands and performs the AND on
each bit of the two numbers. AND returns 1 only if the both bits
are 1.

•	 | (bitwise OR): Takes two operands and performs the OR on each bit
of the two integers. OR returns value of 1 if either of the two bits is 1.

•	 ^ (bitwise XOR): Takes two operands and performs the XOR on each
bit of the two numbers. If two bits are different, the result of XOR is 1.

•	 << (left shift): Takes two integers, left shifts the bits of the first
operand, and the second operand specifies the number of positions
to shift.

62    ◾    Mastering GoLang: A Beginner’s Guide

•	 >> (right shift): Takes two numbers, shifts the first operand’s bits to
the right, and number of places to shift is determined by the second
operand.

•	 &^ (AND NOT): This is a straightforward operator.

Example:

// Program to illustrate
// the use of bitwise operators
package main
import "fmt"
func main() {
 x:= 34
 y:= 20
 // & (bitwise AND)
 result1:= x & y
 fmt.Printf("Result of x & y = %d", result1)
 // | (bitwise OR)
 result2:= x | y
 fmt.Printf("\nResult of p | q = %d", result2)
 // ^ (bitwise XOR)
 result3:= p ^ q
 fmt.Printf("\nResult of x ^ y = %d", result3)
 // << (left shift)
 result4:= x << 1
 fmt.Printf("\nResult of x << 1 = %d", result4)
 // >> (right shift)
 result5:= x >> 1
 fmt.Printf("\nResult of x >> 1 = %d", result5)
 // &^ (AND NOT)
 result6:= x &^ y
 fmt.Printf("\nResult of x &^ y = %d", result6)
}

Assignment Operators

When assigning a value to a variable, assignment operators are
employed. The assignment operator’s left operand is a variable, while the
assignment operator’s right operand is a value. The value on the right

Operators and Control Structures    ◾    63

side must have the same data type as the variable on the left side, or the
compiler will throw an error. The following are examples of assignment
operators:

•	 “=” (Simple Assignment): The most basic assignment operator. The
value on the right is assigned to the variable on the left using this
operator.

•	 “+=” (Add Assignment): A combination of the ‘+’ and ‘=’ operators.
This operator first adds the variable on the left’s current value to the
right and then assigns result to the variable on the left.

•	 “-=” (Subtract Assignment): A combination of the ‘−’ and ‘=’ opera-
tors. This operator subtracts the variable on the left’s current value
from the right and then assigns the result to the variable on the left.

•	 “*=” (Multiply Assignment): A combination of the ‘*’ and ‘=’ opera-
tors. This operator first multiplies the variable on the left to the right
and then assigns the result to the left variable.

•	 “/=” (Division Assignment): A combination of the ‘/’ and ‘=’ opera-
tors. This operator divides the variable on the left’s current value by
the value on the right and then assigns result to the variable on the
left.

•	 “%=” (Modulus Assignment): This operator combines the ‘%’ and
‘=’ operators. This operator multiplies current value of the variable
on the left to the right and then assigns the result to the left variable.

•	 “&=” (Bitwise AND Assignment): A combination of the ‘&’ and ‘=’
operators. This operator “Bitwise AND” the current value to the left
variable to the right before assigning the result to the left variable.

•	 “=” (Bitwise Exclusive OR): A combination of the “=” and ‘=’
operators. This operator “Bitwise Exclusive OR” the current value
of the left variable to the right before assigning the result to the left
variable.

•	 “|=” (Bitwise Inclusive OR): A combination of the ‘|’ and ‘=’ oper-
ators. This operator “Bitwise Inclusive OR” the current value of
the left variable to the right before assigning the result to the left
variable.

64    ◾    Mastering GoLang: A Beginner’s Guide

Example:

// Program to illustrate
// the use of assignment operators
package main
import "fmt"
func main()
{
 var x int = 49
 var y int = 54
 // "="(Simple Assignment)
 x = y
 fmt.Println(p)
 // "+="(Add Assignment)
 x += y
 fmt.Println(x)
 //"-="(Subtract Assignment)
 x-=y
 fmt.Println(x)
 // "*="(Multiply Assignment)
 x*= y
 fmt.Println(x)
 // "/="(Division Assignment)
 x /= y
 fmt.Println(x)
 // "%="(Modulus Assignment)
 x %= y
 fmt.Println(x)
}

Misc Operators

•	 &: This operator returns the variable’s address.

•	 *: This operator returns a pointer to a variable.

•	 <-: This operator’s name is received. It’s used to get a value from the
channel.

Example:

// Program to illustrate
// the use of Misc Operators

Operators and Control Structures    ◾    65

package main
import "fmt"
func main() {
 x := 6
 // Using address of operator(&) and
 // pointer indirection(*) operator
 y := &x
 fmt.Println(*y)
 *y = 7
 fmt.Println(x)
}

CONTROL STATEMENTS
The programmer must define one or more conditions to be evaluated or
tested by the program, a statement or statements to be performed if the
condition is determined to be true, and optionally, further statements to
be run if the condition is decided to be false.

The general form of a common decision-making framework present in
most programming languages is shown below.

The Go programming language supports the following decision-
making statements.

Structure of decision making.

66    ◾    Mastering GoLang: A Beginner’s Guide

Sr. No Statement and Description

1 if statement
A Boolean expression is followed by one or more statements in an if statement.

2 if...else statement
When Boolean expression is false, the if an optional else statement follows statement.

3 nested if statements
The if or else if statement can be used inside another if or else if statement(s).

4 switch statement
A switch statement checks a variable for equality against a set of values.

5 select statement
A select statement is similar to a switch statement; however, case statements relate
to channel communications.

if Statement

This is the most straightforward decision-making statement. It is used to
decide whether or not a specific statement or block of statements will be
performed, i.e., if a given condition is true, then a block of statements is
executed, otherwise not.

Syntax:

if(condition)
{
 // Statement to execute if condition is true
}

Flowchart:

Statement of if.

Operators and Control Structures    ◾    67

Example:

// Program to illustrate
//the use of if statement
package main
import "fmt"
func main() {
 // taking local variable
 var v int = 800
 // using the if statement for
 // checking condition
 if(v < 2000) {
 // print following if
 // condition evaluates to true
 fmt.Printf("v is less than 2000\n")
 }
 fmt.Printf("Value of v is : %d\n", v)
}

if…else Statement

The if statement by itself informs us that the condition is true, a block of
statements will be executed; if condition is false, the block of statements
will not be executed. But what if the condition is false and we want to do
something else? This is when the otherwise statement comes in. When the
condition is false, we may use the else statement in combination with the
if statement to run a code block.

Syntax:

 if (condition)
{
 // Executes this block if
 // the condition is true
} else {
 // Executes this block if
 // the condition is false
}

68    ◾    Mastering GoLang: A Beginner’s Guide

Flowchart:

Example:

// Program to illustrate
// the use of if...else statement
package main
import "fmt"
func main() {
 // taking a local variable
 var v int = 2400
 // using the if statement for
 // checking condition
 if(v < 2000) {
 // print following if
 // the condition evaluates to true
 fmt.Printf("v is less than 2000\n")
 } else {
 // print following if
 // the condition evaluates to true
 fmt.Printf("v is greater than 2000\n")
 }
}

Statement of if-else.

Operators and Control Structures    ◾    69

Nested if Statement

In Go, a nested if is an if statement that is the target of another if or else
expression. An if statement nested inside another if statement is referred
to as a nested if statement. Yes, we may nest if statements within if state-
ments in GoLang. In other words, we may nest an if statement within
another if statement.

Syntax:

if (condition1) {
 // Executes when the condition1 is true
 if (condition2) {
 // Executes when the condition2 is true
 }
}

Flowchart:

Statement of nested-if.

70    ◾    Mastering GoLang: A Beginner’s Guide

Example:

// Program to illustrate
// the use of nested if statement
package main
import "fmt"
func main() {
 // taking the two local variable
 var v1 int = 500
 var v2 int = 800
 // using if statement
 if(v1 == 600) {
 // if condition is true then
 // check the following
 if(v2 == 800) {
 // if the condition is true
 // then display following
 fmt.Printf("Value of v1 is 500 and v2 is
800\n");
 }
 }
}

if..else..if Ladder

A user can select from a variety of alternatives here. The if statements are
performed in the order listed. When one of the conditions is met, the state-
ment associated with that if is executed; the rest of the ladder is skipped.
If none of the requirements are met, the last else statement is performed.

Important Notes:

•	 The if statement might have a value of zero or one, and it must occur
after any other if statements.

•	 The else if statement in an if statement can include zero to many
other if statements, and it must occur before the otherwise clause.

•	 If an else if succeeds, there is no need to try none of the remaining
else if ’s or else’s statements.

Syntax:

if(condition_1) {
 // this block will execute when the
condition_1 is true

Operators and Control Structures    ◾    71

} else if(condition_2) {
 // this block will execute when the condition2
is true
}
….
else {
 // this block will execute when none
 // of condition is true
}

Flowchart:

Example:

// Program to illustrate
// the use of if..else..if ladder
package main
import "fmt"
func main() {

Statement of if-else-if.

72    ◾    Mastering GoLang: A Beginner’s Guide

 // taking a local variable
 var v1 int = 800
 // checking condition
 if(v1 == 120) {
 // if condition is true then
 // display following */
 fmt.Printf("Value of v1 is 120\n")
 } else if(v1 == 250) {
 fmt.Printf("Value of a is 250\n")
 } else if(v1 == 310) {
 fmt.Printf("Value of a is 310\n")
 } else {
 // if none of the conditions is true
 fmt.Printf("None of values is matching\n")
 }
}

Go LANGUAGE LOOPS
The Go programming language has only one loop, which is a for loop. For
loop is a form of repetition control structure that allows us to design a loop
that will be executed a certain number of times. This for loop may be used
in several ways in the Go programming language, including:

1.	As basic as possible for loop: It is comparable to what we see in other
programming languages like C, C++, C#, Java, etc.

Syntax:

for initialization; condition; post{
 // statement
}

Here, the initialization statement is optional and runs before the for
loop begins. The initialization statement is always contained within
a basic statement, such as variable declarations, increment or assign-
ment instructions, or function calls.

The condition statement contains a Boolean expression evaluated
at the start of each loop iteration. The loop is executed if the condi-
tional statement’s value is true.

Operators and Control Structures    ◾    73

The post statement is performed after the for loop body.
Following the post statement, the condition statement is re-evaluated;
if the value of the conditional statement is false, the loop is
terminated.

Example:

/ Program to illustrate
// the use of simple for loop
package main
import "fmt"
// the main function
func main() {
 // for loop
 // This loop starts when x = 0
 // executes till x<4 condition is true
 // post statement is x++
 for x := 0; x < 4; x++{
 fmt.Printf("helloeveryone\n")
 }
}

2.	For loop as infinite loop: By deleting all three expressions from the
for loop, a for loop may be utilized as an infinite loop. When a user
does not include a condition statement in a for loop, it indicates that
the condition statement is true, and loop enters an endless loop.

Syntax:

for
{
 // Statement(s)
}

Example:

// Program to illustrate
// the use of an infinite loop
package main
 import "fmt"
// the main function

74    ◾    Mastering GoLang: A Beginner’s Guide

func main() {
 // infinite loop
 for {
 fmt.Printf("Helloeveryone\n")
 }
}

3.	while for loop: A for loop can also be used as a while loop. This loop
is repeated until the specified condition is met. The loop is termi-
nated when the value of the provided condition is false.

Syntax:

for condition{
 // statements
}

Example:

/ Program to illustrate
// for loop as while Loop
package main
import "fmt"
// the main function
func main() {
 // while loop for loop executes till
 // x < 3 condition is true
 x:= 0
 for x < 3 {
 x += 2
 }
 fmt.Println(x)
}

4.	Simple range in for loop: The range may also be used for a loop.

Syntax:

for x, y:= range rvariable{
 // statements
}

Operators and Control Structures    ◾    75

Here, the variables x and y are where the iteration values are stored.
They are sometimes referred to as iteration variables.

The second variable, y, is not required.
Before the loop begins, the range expression is evaluated once.

Example:

// Program to illustrate
// the use of simple range loop
package main
import "fmt"
// the main function
func main() {
 // Here rvariable is array
 rvariable:= []string{"HEW", "Hello",
"Helloeveryoneworld"}
 // x and y stores the value of rvariable
 // x store index number of individual string
and
 // y store individual string of the given
array
 for x, y:= range rvariable {
 fmt.Println(x, y)
 }
}

5.	Using a for loop for strings: A for loop can iterate across a string’s
Unicode code point.

Syntax:

for index, chr:= range str{
 // Statements
}

Here, the index is a variable that stores the first byte of a UTF-8
encoded code point, chr is a variable that stores the characters of the
provided string, and str is a string.

Example:

// Program to illustrate
// the use for loop using string

76    ◾    Mastering GoLang: A Beginner’s Guide

package main
import "fmt"
// the main function
func main() {
 // String as range in the for loop
 for x, y:= range "XxyCd" {
 fmt.Printf("Index number of %U is %d\n",
y, x)
 }
}

6.	For maps: A for loop can traverse across the map’s key and value
pairs.

Syntax:

for key, value := range map {
 // Statements
}

Example:

// Program to illustrate
// the use for loop using maps
package main
import "fmt"
// the main function
func main() {
 // using the maps
 mmap := map[int]string{
 22:"Peeks",
 33:"POP",
 44:"PeeksofPeeks",
 }
 for key, value:= range mmap {
 fmt.Println(key, value)
 }
}

7.	For channel: A for loop can iterate over the consecutive data trans-
mitted on the channel until the channel is closed.

Operators and Control Structures    ◾    77

Syntax:

for item := range Chnl {
 // statement(s)
}

Example:

// program to illustrate
// the use for loop using channel
package main
import "fmt"
// the main function
func main() {
 // using the channel
 chnl := make(chan int)
 go func(){
 chnl <- 1000
 chnl <- 10000
 chnl <- 100000
 chnl <- 1000000
 close(chnl)
 }()
 for x:= range chnl {
 fmt.Println(x)
 }
}

Important Notes:

•	 Parentheses do not enclose a for loop’s three statements.

•	 Curly braces are required for the loop.

•	 The opening brace and the post statement should be on the same line.

•	 If array, string, slice, or map is empty, the for loop does not throw an
error and proceeds with its flow. In other words, if array, string, slice,
or map is nil, the number of for loop iterations is zero.

Go SWITCH STATEMENT
A switch statement is an example of a multiway branch statement. It
offers an effective method for transferring execution to various code areas

78    ◾    Mastering GoLang: A Beginner’s Guide

according to the expression’s value. The Go programming language allows
two types of switch statements:

•	 Expression Switch

•	 Type Switch

Expression Switch

The expression switch is analogous to the switch statement in C, C++, and
Java. It allows us to efficiently route execution to various areas of code
based on the value of the expression.

Syntax:

switch optstatement; optexpression{
case expression1: Statement
case expression2: Statement
.
.
default: Statement
}

Important Notes:

•	 In the expression switch, both optstatement and optexpression are
optional statements.

•	 If both optstatement and optexpression are present, a semi-colon (;)
must be used to separate them.

•	 If there is no expression in the switch, the compiler assumes that the
expression is true.

•	 The optional statement, often known as the optstatement, comprises
basic statements like variable declarations, increment or assignment
statements, function calls, etc.

•	 If a variable appears in the optional statement, its scope is confined
to that switch statement.

•	 There is no break statement in switch statement’s case and default
statements. However, we may utilize the break and fallthrough state-
ments if our application requires them.

Operators and Control Structures    ◾    79

•	 In a switch statement, the default statement is optional.

•	 A case can have multiple values separated by a comma (,).

•	 If a case lacks an expression, the compiler assumes that the expres-
sion is true.

First example:

// Program to illustrate
// the concept of Expression switch statement
package main
import "fmt"
func main() {
 // the switch statement with both
 // optional statement, i.e, day:=4
 // and the expression, i.e, day
 switch day:=5; day{
 case 1:
 fmt.Println("Sunday")
 case 2:
 fmt.Println("Monday")
 case 3:
 fmt.Println("Tuesday")
 case 4:
 fmt.Println("Wednesday")
 case 5:
 fmt.Println("Thursday")
 case 6:
 fmt.Println("Friday")
 case 7:
 fmt.Println("Saturday")
 default:
 fmt.Println("Invalid")
 }
}

Second example:

// Program to illustrate
// the concept of Expression switch statement
package main
import "fmt"

80    ◾    Mastering GoLang: A Beginner’s Guide

func main() {
 var value int = 3
 // Switch statement without an
 // optional statement and expression
 switch {
 case value == 1:
 fmt.Println("Hey")
 case value == 2:
 fmt.Println("Hello")
 case value == 3:
 fmt.Println("Namstae")
 default:
 fmt.Println("Invalid")
 }
}

Third example:

// Program to illustrate
// the concept of Expression switch statement
package main
import "fmt"
func main() {
 var value string = "four"
 // Switch statement without the default
statement
 // Multiple values in the case statement
 switch value {
 case "one":
 fmt.Println("C")
 case "two", "three":
 fmt.Println("C#")
 case "four", "five", "six":
 fmt.Println("Go")
 }
}

Type Switch

When comparing types, a type switch is applied. The case in this switch
includes the type that will compare to the type in the switch expression.

Operators and Control Structures    ◾    81

Syntax:

switch optstatement; typeswitchexpression{
case typelist 1: Statement
case typelist 2: Statement
.
.
default: Statement
}

Important Notes:

•	 The optional statement, abbreviated as optstatement, is comparable
to the switch expression.

•	 A case can have multiple values separated by a comma (,).

•	 The case and default statements in the type switch statement do not
contain break statements. However, we may utilize the break and
fallthrough statements if our application requires them.

•	 In a type switch statement, the default statement is optional.

•	 The typeswitchexpression is an expression that produces a type as a
consequence.

•	 If an expression is assigned to a variable in typeswitchexpression
using the := operator, the type of that variable is determined by the
type contained in the case clause. If the case clause includes two or
more types, the variable’s type is the type in which it is generated in
typeswitchexpression.

Example:

// Program to illustrate
// the concept of Type switch statement
package main
import "fmt"
func main() {
 var value interface{}
 switch x:= value.(type) {
 case bool:
 fmt.Println("The value is of boolean type")
 case float64:

82    ◾    Mastering GoLang: A Beginner’s Guide

 fmt.Println("The value is of float64 type")
 case int:
 fmt.Println("value is of int type")
 default:
 fmt.Printf("value is of type: %T", x)
 }
}

This chapter covered control structures where we discussed switch state-
ments, if-else, and nested if. Moreover, we also covered loops and opera-
tors with their relevant syntax and examples.

83DOI: 10.1201/9781003310457-6

C h a p t e r 6

Arrays, Slices, and Maps

IN THIS CHAPTER

➢➢ Arrays

➢➢ Slices

➢➢ Strings

➢➢ Maps

Chapter 5 covered switch statements, operators, if-else, and nested if. We
also covered the loop with its relevant syntax and examples. In this chap-
ter, we will discuss arrays, slices, and maps.

ARRAYS
Arrays in the GoLang computer language are similar to those in other
programming languages. In the software, we may need to keep a collec-
tion of data of the same type, such as a list of students’ marks. An Array is
used to hold this sort of collection in a program. An array is a fixed-length
sequence utilized in memory to hold homogenous items. Because of their
limited length array is not as popular as Slice in the Go language.

An array can have zero or more than zero elements stored in it. The
array elements are indexed using the [] index operator with their zero-
based position, which means that the index of first element is array[0], and
the index of the final element is array[len(array)-1].

Creating and Accessing an Array

Arrays are formed in two methods in the Go programming language.

https://doi.org/10.1201/9781003310457-6

84    ◾    Mastering GoLang: A Beginner’s Guide

Using the var Keyword
In Go, an array of a specific type with a name, size, and items is created
using the var keyword.

Syntax:

Var arrayname[length]Type

or

var arrayname[length]Typle{item1, item2, item3,
...itemN}

Important Notes:

•	 Arrays in Go are mutable; therefore, we may apply array[index] syn-
tax on the left-hand side of the assignment to set the array’s elements
to the provided index.

Var arrayname[index] = element

•	 We may access the array’s elements using the index value or a for a
loop.

•	 The array type in the Go programming language is one-dimensional.

•	 The array’s length is fixed and cannot be changed.

•	 Duplicate elements may be stored in an array.

Example:

// Program to illustrate how to
// create an array using var keyword
// and accessing elements of
// the array using their index value
package main
import "fmt"
func main() {
// Creating array of string type
// Using the var keyword
var myarr[3]string

Arrays, Slices, and Maps    ◾    85

// Elements are assigned using the index
myarr[0] = "HEW"
myarr[1] = "Helloevryoneoworld"
myarr[2] = "Hello"
// Accessing elements of the array
// Using the index value
fmt.Println("Elements of Array:")
fmt.Println("Element 1: ", myarr[0])
fmt.Println("Element 2: ", myarr[1])
fmt.Println("Element 3: ", myarr[2])
}

Using a Shorthand Declaration
Arrays in Go may also be declared using a shorthand declaration. It is
more flexible than the initial assertion.

Syntax:

arrayname:= [length]Type{item1, item2, item3,...
itemN}

Example:

// Program to illustrate how to create
// array using shorthand declaration
// and accessing elements of
// the array using for loop
package main
import "fmt"
func main() {
// Shorthand declaration of the array
arr:= [4]string{"hello", "hew", "Hello1431",
"Helloeveryoneworld"}
// Accessing elements of the
// array Using for loop
fmt.Println("Elements of the array:")
for x:= 0; x < 3; x++{
fmt.Println(arr[x])
}
}

86    ◾    Mastering GoLang: A Beginner’s Guide

Multidimensional Array

Although we already know that arrays are one-dimensional, we can create
a multidimensional array. Arrays of the same kind are known as multidi-
mensional arrays. We may build a multidimensional array in Go by using
the following syntax:

Arrayname[Length1][Length2]..[LengthN]Type

As demonstrated in the example below, we may build a multidimensional
array using the Var keyword or a shorthand declaration.

Note: If a cell is not initialized with a value by the user in a multidimen-
sion array, the compiler will do so automatically. There is no such thing as
uninitialized concept in GoLang.

Example:

// Program to illustrate
// the concept of multi-dimension array
package main
import "fmt"
func main() {
// Creating, initializing
// 2-dimensional array
// Using the shorthand declaration
// Here (,) Comma is necessary
arry:= [3][3]string{{"C", "C++", "PHP"},
 {"Go", "C#", "Scala"},
 {"Python", "C#", "HTML"},}
// Accessing values of
// the array Using for loop
fmt.Println("Elements of Array 1")
for a:= 0; a < 3; a++{
for b:= 0; b < 3; b++{
fmt.Println(arry[a][b])
}
}
// Creating a 2-dimensional
// array using the var keyword
// and initializing a multi
// -dimensional array using index
var arry1 [2][2] int

Arrays, Slices, and Maps    ◾    87

arry1[0][0] = 100
arry1[0][1] = 200
arry1[1][0] = 300
arry1[1][1] = 400
// Accessing values of the array
fmt.Println("Elements of the array 2")
for x:= 0; x<2; x++{
for y:= 0; y<2; y++{
fmt.Println(arry1[x][y])
}
}
}

Important Observations about the Array

1.	If an array is not explicitly initialized, the default value of this array
is 0.

Example:

// Program to illustrate an array
package main
import "fmt"
func main() {
// Creating an array of the int type
// which stores the two elements
// Here, we do not initialize
// array so the value of array
// is zero
var myarry[2]int
fmt.Println("Elements of the Array :", myarry)
}

2.	The length of an array may be find using the len() function, as seen
in the following example:

// Program to illustrate how to find
// length of the array
package main
import "fmt"
func main() {

88    ◾    Mastering GoLang: A Beginner’s Guide

// Creating array
// Using the shorthand declaration
arry1:= [3]int{9,7,6}
arry2:= [...]int{9,7,6,4,5,3,2,4}
arry3:= [3]int{9,3,5}
// Finding length of the
// array using the len method
fmt.Println("The Length of the array 1 is:",
len(arry1))
fmt.Println("The Length of the array 2 is:",
len(arry2))
fmt.Println("The Length of the array 3 is:",
len(arry3))
}

3.	If the ellipsis “…” appears at the place of length in an array, the array’s
length is determined by the initialized items. As illustrated in the fol-
lowing example:

// Program to illustrate
// the concept of ellipsis in an array
package main
import "fmt"
func main() {
// Creating an array whose size is determined
// by number of elements present in it
// Using the ellipsis
myarray:= [...]string{"HEW", "hew", "hello",
 "Helloeveryoneworld", "HELLO"}
fmt.Println("Elements of array: ", myarray)
// Length of array
// is determine by
// Using the len() method
fmt.Println("Length of array is:", len(myarray))
}

4.	We can iterate over the array’s elements by iterating over the array’s
range. As illustrated in the following example:

// Program to illustrate
// how to iterate array
package main

Arrays, Slices, and Maps    ◾    89

import "fmt"
func main() {
// Creating an array whose size
// is represented by ellipsis
myarray:= [...]int{79, 49, 29, 20,
 49, 49, 48, 39}
// Iterate array using for the loop
for y:=0; y < len(myarray); y++{
fmt.Printf("%d\n", myarray[y])
}
}

5.	An array in Go is of the value type, not the reference type. As a result,
when the array is assigned to a new variable, any modifications per-
formed in the new variable have no effect on the original array. As
illustrated in the following example:

// Program to illustrate value type array
package main
import "fmt"
func main() {
// Creating array whose size
// is represented by ellipsis
my_array:= [...]int{200, 300, 500, 100, 800}
fmt.Println("Original array(Before):", my_array)
// Creating new variable
// and initialize with the my_array
new_array := my_array
fmt.Println("New array(before):", new_array)
// Change value at index 0 to 500
new_array[0] = 500
fmt.Println("The New array(After):", new_array)
fmt.Println("The Original array(After):", my_array)
}

6.	If the array’s element type is equivalent, then the array type is also
comparable. As a result, we may directly compare two arrays using
the == operator. As illustrated in the following example:

// Program to illustrate
// how to compare the two arrays

90    ◾    Mastering GoLang: A Beginner’s Guide

package main
import "fmt"
func main() {
// Arrays
arry1:= [3]int{8,7,5}
arry2:= [...]int{8,7,5}
arry3:= [3]int{8,5,3}
// Comparing arrays using == operator
fmt.Println(arry1==arry2)
fmt.Println(arry2==arry3)
fmt.Println(arry1==arry3)
// This will give error because
// type of arr1 and arr4 is mismatch
/*
arry4:= [4]int{8,7,5}
fmt.Println(arry1==arry4)
*/
}

In GoLang, How Do We Copy an Array into Another Array?

Arrays in the GoLang computer language are similar to those in other
programming languages. In the program, we may need to keep a collec-
tion of data of the same type, such as a list of student marks. An Array is
used to hold this sort of collection in a program. An array is a fixed-length
sequence utilized in memory to hold homogenous items. GoLang does not
provide a built-in method for copying one array into another. However,
we may make a clone of an array by simply assigning an array by value or
reference to a new variable.

If we make a copy of an array by value and modify the original array’s
values, it will not reflect changes in the copy of that array. And if we make
a copy of an array by reference and modify the original array’s values, it
will reflect the changes in the duplicate of that array. As seen in the follow-
ing samples:

Syntax:

// creating copy of an array by value
arry := arr1
// Creating copy of an array by reference
arry := &arr1

Arrays, Slices, and Maps    ◾    91

Let’s look at few instances to assist us understand this concept:

First example:

// Program to illustrate how
// to copy array by value
package main
import "fmt"
func main() {
 // Creating, initializing an array
 // Using the shorthand declaration
 my_arry1 := [5]string{"C", "Go", "Java",
" Scala ", "C#"}

 // Copying array into new variable
 // Here, elements are passed by value
 my_arry2 := my_arry1
 fmt.Println("Array_1: ", my_arry1)
 fmt.Println("Array_2:", my_arry2)
 my_arry1[0] = "C++"
 // when we copy an array
 // into the another array by value
 then changes made in the original
 // array do not reflect in copy of that array
 fmt.Println("\nThe Array_1: ", my_arry1)
 fmt.Println("The Array_2: ", my_arry2)
}

Second example:

// Program to illustrate how to
// copy array by reference
package main
import "fmt"
func main() {
 // Creating, initializing an array
 // Using the shorthand declaration
 my_arry1 := [6]int{14, 416, 47, 69, 44, 32}
 // Copying array into new variable
 // Here, elements are passed by reference
 my_arry2 := &my_arry1
 fmt.Println("Array_1: ", my_arry1)

92    ◾    Mastering GoLang: A Beginner’s Guide

 fmt.Println("Array_2:", *my_arry2)
 my_arry1[5] = 200000
 // when we copy an array
 // into the another array by reference
 // then changes made in original
 // array will reflect in
 // the copy of that array
 fmt.Println("\nArray_1: ", my_arry1)
 fmt.Println("Array_2:", *my_arry2)
}

In GoLang, How Can We Pass an Array to a Function?

Arrays in the GoLang computer language are similar to those in other
programming languages. In the program, we may need to keep a collec-
tion of data of the same type, such as a list of student grades. An Array is
used to hold this sort of collection in a program. An array is a fixed-length
sequence utilized in memory to hold homogenous items.

We can send an array as an argument to a function in the Go program-
ming language. To pass an array as an argument to a function, first create
a formal parameter with the following syntax:

Syntax:

// For the sized array
func function_name(variablename [size]type){
// Code
}

We can pass one or more dimensional arrays to the function using this
syntax. Let us illustrate this notion with an example:

// Program to illustrate how to pass an
// array as an argument in function
package main
 import "fmt"
// This function accept
// an array as argument
func myfun(a [5]int, size int) int {
 var x, val, y int
 for x = 0; x < size; x++ {
 val += a[x]

Arrays, Slices, and Maps    ◾    93

 }
 y = val / size
 return y
}
// the main function
func main() {
 // Creating, initializing an array
 var arr = [5]int{57, 29, 69, 25, 14}
 var rest int
 // Passing an array as an argument
 rest = myfun(arr, 5)
 fmt.Printf("Final result is: %d ", rest)
}

Explanation: In the example, we have a method called myfun() that takes
an array as an input. In main function, we passed arr[5] of int type to
the function with the array’s size, and the function returned the array’s
average.

SLICES
Slice is a Go data structure that is more powerful, adaptable, and conve-
nient than an array. Multiple components cannot be placed in the same
slice since it is a variable-length sequence comprising elements of the same
sort. It’s comparable to an array in that it contains a length and an index
value. However, the size of the slice may be expanded, unlike an array.
Internally, a slice and an array are linked; a slice is a reference to an under-
lying array. Duplicate elements may be stored in the slice. In a slice, the
initial index point is always 0, and the last is (length of slice – 1).

Slice Declaration

A slice is stated similarly to an array, but it does not provide the slice’s size.
Hence, it may expand and contract as needed.

Syntax:

[]T

or

[]T{}

94    ◾    Mastering GoLang: A Beginner’s Guide

or

[]T{value1, value2, value3, ...value n}

T denotes the element type in this case. As an example:

var myslice[]int

Slice Components

A slice is made up of three parts:

•	 Pointer: The pointer is used to point to the first array element avail-
able via the slice. It is not required that the indicated element be the
first element of the array in this case.

•	 Length: The length of an array is the total number of elements in the
array.

•	 Capacity: The greatest size to which it may expand is represented by
the capacity.

Let’s have a look at each of these components with the aid of an example:

// Program to illustrate the
// working of the slice components
package main
import "fmt"
func main() {
 // Array Creation
 arry := [7]string{"This", "is", "the", "example",
 "of", "Go", "Programming"}
 // Display array
 fmt.Println("Array:", arry)
 // Creating a slice
 myslice := arry[1:6]
 // Display the slice
 fmt.Println("Slice:", myslice)
 // Display the length of slice
 fmt.Printf("The Length of the slice: %d",
len(myslice))
 // Display the capacity of the slice

Arrays, Slices, and Maps    ◾    95

 fmt.Printf("\nThe Capacity of the slice: %d",
cap(myslice))
}

Explanation: In the preceding example, we generate a slice from an array.
Because the slice’s lower bound is set to one, the slice’s pointer pointed to
index 1 here. Therefore, it began accessing items from index 1. The length of
the slice is 5, indicating that there are a total of 5 elements in the slice, and the
capacity of the slice is 6, indicating that it can store a maximum of 6 items.

How Can We Create and Initialize a Slice?

A slice in Go may be built and started in the following ways:

Using the Slice Literal
Use the slice literal to generate a slice. The construction of a slice literal
is similar to that of an array literal, with the exception that you are not
permitted to define the size of the slice in the square brackets[]. The slice
literal is presented on the right-hand side of this expression in the follow-
ing example:

var myslice1 = []string{"Hello", "from", "Everyone"}

Note: Remember that when we create a slice with a string literal, it first
creates an array and then returns a slice reference to it.

Example:

// Program to illustrate how
// to create a slice using slice literal
package main
import "fmt"
func main() {
 // Creating slice using the var keyword
 var myslice1 = []string{"Hello", "from",
"Everyone"}
 fmt.Println("My Slice 1:", myslice1)
 // Creating a slice
 //using the shorthand declaration
 myslice2 := []int{14, 35, 57, 49, 41, 24, 45}
 fmt.Println("My Slice 2:", myslice2)
}

96    ◾    Mastering GoLang: A Beginner’s Guide

Using an Array
Because the slice is the array’s reference, we may build a slice from the provided
array. To create a slice from the given array, first specify the lower and upper
bound, which implies the slice can accept elements from the array, beginning
with the lower bound and ending with the upper bound. It excludes the items
from the upper bound above. As illustrated in the following example:

Syntax:

arrayname[low:high]

This syntax will return a new slice.
Note that the lower bound is 0 by default, while the upper bound is set

to the total number of elements in the specified array.

Example:

// Program to illustrate how to
// create the slices from array
package main
import "fmt"
func main() {
 // Array Creation
 arry := [4]string{"Hello", "from",
"Developer", "HFD"}
 // Creating slices from given array
 var myslice1 = aryr[1:2]
 myslice2 := arry[0:]
 myslice3 := arry[:2]
 myslice4 := arry[:]
 // Display the result
 fmt.Println("My Array: ", arry)
 fmt.Println("My Slice 1: ", myslice1)
 fmt.Println("My Slice 2: ", myslice2)
 fmt.Println("My Slice 3: ", myslice3)
 fmt.Println("My Slice 4: ", myslice4)
}

Using an Existing Slice
It is possible to create a new slice from the supplied slice. To create a new
slice from the given slice, first specify the lower and upper bound, which

Arrays, Slices, and Maps    ◾    97

indicates the slice can take components from the given slice, beginning
with the lower bound and the upper bound. It excludes the items from the
upper bound above. As illustrated in the following example:

Syntax:

slicename[low:high]

This syntax will return a new slice.
Note that the lower bound is 0 by default, while the upper bound is set

to the total number of items in the specified slice.

Example:

// Program to illustrate how to
// create slices from slice
package main
import "fmt"
func main() {
 // Creating s slice
 oRignAl_slice := []int{80, 20, 50, 10,
 54, 89, 70}
 // Creating the slices from the given slice
 var myslice1 = oRignAl_slice[1:5]
 myslice2 := oRignAl_slice[0:]
 myslice3 := oRignAl_slice[:6]
 myslice4 := oRignAl_slice[:]
 myslice5 := myslice3[2:4]
 // Display result
 fmt.Println("Original Slice:", oRignAl_slice)
 fmt.Println("New Slice 1:", myslice1)
 fmt.Println("New Slice 2:", myslice2)
 fmt.Println("New Slice 3:", myslice3)
 fmt.Println("New Slice 4:", myslice4)
 fmt.Println("New Slice 5:", myslice5)
}

Using the make() Function
We can also use the go library’s make() function to generate a slice.
This function has three input parameters: type, length, and capacity.

98    ◾    Mastering GoLang: A Beginner’s Guide

The capacity value is optional in this case. It returns a slice that ref-
erences the underlying array and assigns an underlying array with a
size equal to the given capacity. In most cases, the make() method pro-
duces an empty slice. In this context, empty slices have an empty array
reference.

Syntax:

func make([]T, len, cap) []T

Example:

// Program to illustrate how to create slices
// Using the make function
package main
import "fmt"

func main() {
 // Creating array of size 7 and slice this
array till 4
 // and return the reference of the slice
 // Using make function
 var myslice1 = make([]int, 4, 7)
 fmt.Printf("Slice 1 = %v, \nlength = %d, \
ncapacity = %d\n",
 myslice1, len(myslice1),
cap(myslice1))
 // Creating the another array of size 7
 // and return the reference of slice
 // Using the make function
 var myslice2 = make([]int, 7)
 fmt.Printf("Slice 2 = %v, \nlength = %d, \
ncapacity = %d\n",
 myslice2, len(myslice2),
cap(myslice2))
}

How to Iterate over a Slice

It is possible to iterate across slice in the following ways:

Arrays, Slices, and Maps    ◾    99

Using the for loop
It is the easiest technique to iterate slices, as seen in the following
example:

// program to illustrate
// the iterating over a slice using for loop
package main
import "fmt"
func main() {
 // Creating slice
 myslice := []string{"This", "is", "the",
"example",
 "of", "Go", "language"}
 // Iterate using the for loop
 for x := 0; x < len(myslice); x++ {
 fmt.Println(myslice[x])
 }
}

Using Range in the for loop
Using range in for loop allows us to iterate across a slice. The index and
element value may be obtained using range in for loop, as demonstrated in
the following example:

// Program to illustrate the iterating
// over a slice using range in for loop
package main
import "fmt"
func main() {
 // Creating a slice
 myslice := []string{"This", "is", "the", "example",
 "of", "Go",
"programing"}
 // Iterate the slice using range in for loop
 for index, ele := range myslice {
 fmt.Printf("Index = %d and element = %s\n",
index+3, ele)
 }
}

100    ◾    Mastering GoLang: A Beginner’s Guide

Using a Blank Identifier in a for loop
If we don’t want to retrieve the index value of the elements in the range
for loop, we may use blank space(_) in place of the index variable, as illus-
trated in the following example:

// program to illustrate the iterating over
// a slice using a range in for loop without an index
package main
import "fmt"
func main() {
 // Creating slice
 myslice := []string{"This", "is", "the",
 "example", "of", "Go", "programing"}
 // Iterate the slice
 // using range in for loop without index
 for _, ele := range myslice {
 fmt.Printf("Element = %s\n", ele)
 }
}

Important Points about Slice
Zero Value Slice
In the Go programming language, we may build a nil slice that has no
elements. As a result, the capacity and length of this slice are both 0.
As seen in the following example, a nil slice does not include an array
reference:

// Program to illustrate a zero value slice
package main
import "fmt"
func main() {
 // Creating zero value slice
 var myslice []string
 fmt.Printf("Length is = %d\n", len(myslice))
 fmt.Printf("Capacity is = %d ", cap(myslice))
}

Modifying Slices
Because slice is a reference type, it can refer to an underlying array. So,
if we modify any elements in the slice, the changes should be reflected in
the referenced array as well. In other words, if we make changes to the

Arrays, Slices, and Maps    ◾    101

slice, the changes will be reflected in the array, as seen in the following
example:

// Program to illustrate
// how to modify slice
package main
import "fmt"
func main() {
 // Creating zero value slice
 arry := [6]int{25, 86, 97, 33, 49, 21}
 slc := arry[0:4]
 // Before the modifying
 fmt.Println("Original_Array: ", arry)
 fmt.Println("Original_Slice: ", slc)
 // After the modification
 slc[0] = 10
 slc[1] = 100
 slc[2] = 1000
 fmt.Println("\nNew_Array: ", arr)
 fmt.Println("New_Slice: ", slc)
}

Slice Comparison
In slice, we can only use the == operator to determine whether a particular
slice is nill or not. If we try to compare two slices using the == operator, we
will get an error, as shown in the following example:

// Program to check if
// the slice is nil or not
package main
import "fmt"
func main() {
 // creating the slices
 st1 := []int{22, 38, 46}
 var st2 []int
 // If we try to run this commented
 // code compiler will give error
 /*st3:= []int{13, 55, 69}
 fmt.Println(st1==st3)
 */

102    ◾    Mastering GoLang: A Beginner’s Guide

 // Checking if the given slice is nil or not
 fmt.Println(st1 == nil)
 fmt.Println(st2 == nil)
}

Note: To compare two slices, use a range for loop to match each element,
or use the DeepEqual function.

Multidimensional Slice
A multidimensional slice is similar to a multidimensional array, except
that the slice does not include the size.

Example:

// Program to illustrate multi-dimensional slice
package main
import "fmt"
func main() {
 // Creating the multi-dimensional slice
 st1 := [][]int{{13, 39},
 {46, 57},
 {99, 30},
 {26, 76},
 }
 // Accessing the multi-dimensional slice
 fmt.Println("Slice 1 : ", st1)
 // Creating multi-dimensional slice
 st2 := [][]string{
 []string{"Hello", "for"},
 []string{"everyone", "HFE"},
 []string{"hfw", "hello"},
 }
 // Accessing the multi-dimensional slice
 fmt.Println("Slice 2 : ", st2)
}

Sorting of Slice
We may sort the elements in a slice in the Go programming language. The
sort package is included in the Go language’s standard library and offers
several sorting techniques for sorting slices of ints, float64s, and strings.

Arrays, Slices, and Maps    ◾    103

These functions always sort the elements in ascending order accessible in
the slice.

Example:

// Program to illustrate how to sort
// elements present in the slice
package main
import (
 "fmt"
 "sort"
)
func main() {
 // Creating the Slice
 slc1 := []string{"C++", "Java", " Python ",
"Go", "Python"}
 slc2 := []int{35, 87, 13, 91, 34, 41, 86, 58,
69}
 fmt.Println("Before the sorting:")
 fmt.Println("Slice 1: ", slc1)
 fmt.Println("Slice 2: ", slc2)
 // Performing sort operation on the
 // slice using the sort function
 sort.Strings(slc1)
 sort.Ints(slc2)
 fmt.Println("\nAfter sorting:")
 fmt.Println("Slice 1: ", slc1)
 fmt.Println("Slice 2: ", slc2)

}

Slice Composite Literal

Slice and Composite Literal are the two words. Slice is a composite data
type that, like an array, contains items of the same data type. The sig-
nificant distinction between an array and a slice is that a slice’s size may
change dynamically, but an array cannot.

Values for arrays, structs, slices, and maps are constructed using com-
posite literal. Each time they are evaluated, a new value is created. They are
made up of the literal’s type followed by a brace-bound list of items. After
reading this, we will understand what a composite literal is, and we will be
surprised that we already know.

104    ◾    Mastering GoLang: A Beginner’s Guide

Let’s look at how to create a slice and use a composite literal:

// Program to show the slice composite literal
package main
import "fmt"
func main() {
 // Slice with the composite literal
 // Slice allows us to group together
 // the values of same type
 // here the type of values is int
 st1 := []int{53, 26, 19, 84}
 // displaying the values
 fmt.Println(st1)
}

We understand what is meant by the term “composite literal.” As a result,
composite literals are used to assign values or initialize arrays, slices, etc.
These are often used to combine a collection of values of comparable sorts.

In GoLang, How Do We Sort a Slice of Ints?

Slice is a Go data structure that is more versatile, powerful, and convenient
than an array. The slice is a variable-length sequence containing elements
of the same kind; multiple components cannot be stored in the same slice.

The Go programming language allows us to order the slice’s items based
on their type. As a result, an int type slice is sorted using the below func-
tions. Because these functions are specified in the sort package, we must
import the sort package into our application to use them:

Ints
This function only sorts a slice of ints, and the elements in the slice are
sorted in increasing order.

Syntax:

func Ints(slc []int)

In this case, slc represents a slice of ints. Let us illustrate this notion with
an example:

// Program to demonstrate how
// to sort slice of ints

Arrays, Slices, and Maps    ◾    105

package main
import (
 "fmt"
 "sort"
)
// the main function
func main() {
 // Creating, initializing slices
 // Using the shorthand declaration
 scl1 := []int{300, 500, 200, 300, 400, 700, 800}
 scl2 := []int{-13, 267, -54, 69, 0, 22, -4}
 // Displaying the slices
 fmt.Println("Slices(Before):")
 fmt.Println("Slice 1: ", scl1)
 fmt.Println("Slice 2: ", scl2)
 // Sortingslice of ints
 // Using Ints function
 sort.Ints (scl1)
 sort.Ints (scl2)
 // Displaying result
 fmt.Println("\nSlices(After):")
 fmt.Println("Slice 1 : ", scl1)
 fmt.Println("Slice 2 : ",scl2)
}

IntsAreSorted
This function determines whether the supplied slice of ints is sorted (in
increasing order) or not. If the slice is in sorted form, this function returns
true; otherwise, it returns false.

Syntax:

func IntsAreSorted(scl []int) bool

In this case, scl represents a slice of ints. Let us illustrate this notion with
an example:

// Program to demonstrate how to check
// whether a given slice of ints is in
// sorted the form or not
package main
import (

106    ◾    Mastering GoLang: A Beginner’s Guide

 "fmt"
 "sort"
)
// the main function
func main() {
 // Creating, initializing slices
 // Using the shorthand declaration
 scl1 := []int{200, 100, 800, 300, 400, 500, 700}
 scl2 := []int{-13, 547, -24, 97, 0, 18, -5}
 // Displaying the slices
 fmt.Println("Slices:")
 fmt.Println("Slice 1: ", scl1)
 fmt.Println("Slice 2: ", scl2)
 // Checking slice is in sorted form or not
 // Using IntsAreSorted function
 rest1 := sort.IntsAreSorted(scl1)
 rest2 := sort.IntsAreSorted(scl2)
 // Displaying result
 fmt.Println("\nResult:")
 fmt.Println("Is Slice 1 is sorted?: ", rest1)
 fmt.Println("Is Slice 2 is sorted?: ", rest2)
}

In GoLang, How Can You Trim a Slice of Bytes?

Slice is a Go data structure that is more versatile, powerful, and conve-
nient than an array. The slice is a variable-length sequence containing
elements of the same kind; multiple components cannot be stored in the
same slice.

Trim() method in the Go slice of bytes allows us to trim all the begin-
ning and trailing UTF-8-encoded code points from the specified slice.

This method produces a subslice of the original slice by removing all
leading and trailing UTF-8-encoded code points from the provided
string. If the provided bytes slice does not contain the required string, this
method returns the original slice with no changes. Because it is specified
in the bytes package, we must import the bytes package in our application
to use the Trim function.

Syntax:

func Trim(ori_slice[]byte, cut_string string) []byte

Arrays, Slices, and Maps    ◾    107

The original slice of bytes is represented by ori_slice, and cut_string rep-
resents a string that we want to trim in the given slice. Let us examine this
notion using the following examples:

First example:

// Program to demonstrate the concept of trim in
the slice of bytes
package main
import (
 "bytes"
 "fmt"
)
func main() {
 // Creating, initializing
 // the slice of bytes
 // Using the shorthand declaration
 slice_1 := []byte{'!', '!', 'H', 'e', 'e',
'l', 'o', 'o',
 'o', 'r', 'W', 'o', 'r', 'l',
'd', '#', '#'}
 slice_2 := []byte{'*', '*', 'G', 'r', 'a',
'p', 'e', '^', '^'}
 slice_3 := []byte{'%', 'h', 'e', 'l', 'l',
'o', '%'}
 // Displaying slices
 fmt.Println("The Original Slice:")
 fmt.Printf("Slice 1: %s", slice_1)
 fmt.Printf("\nSlice 2: %s", slice_2)
 fmt.Printf("\nSlice 3: %s", slice_3)
 // Trimming the specified leading
 // and trailing Unicodes points
 // from given slice of bytes
 // Using Trim function
 rest1 := bytes.Trim(slice_1, "!#")
 rest2 := bytes.Trim(slice_2, "*^")
 rest3 := bytes.Trim(slice_3, "@")
 // Display results
 fmt.Printf("New Slice:\n")
 fmt.Printf("\nSlice 1: %s", rest1)
 fmt.Printf("\nSlice 2: %s", rest2)
 fmt.Printf("\nSlice 3: %s", rest3)
}

108    ◾    Mastering GoLang: A Beginner’s Guide

Second example:

// Program to demonstrate the concept of trim in
the slice of bytes
package main
import (
 "bytes"
 "fmt"
)
func main() {
 // Creating, trimming the slice of bytes
 // Using the Trim function
 rest1 := bytes.Trim([]byte("****Welcome to
GoWorld****"), "*")
 rest2 := bytes.Trim([]byte("!!!!Learning how
to trim slice of bytes@@@@"), "!@")
 rest3 := bytes.Trim([]byte("^^hello&&"), "$")
 // Display results
 fmt.Printf("Final Slice:\n")
 fmt.Printf("\nSlice 1: %s", rest1)
 fmt.Printf("\nSlice 2: %s", rest2)
 fmt.Printf("\nSlice 3: %s", rest3)
}

How Can You Split a Slice of Bytes in GoLang?

Slice is a Go data structure that is more versatile, powerful, and convenient
than an array. The slice is a variable-length sequence containing elements
of the same kind; multiple components cannot be stored in the same slice.

We may split the provided slice of bytes in Go using the Split() method.
This method divides a byte slice into all subslices divided by the provided
separator and returns a slice containing all of these subslices. Because it is
specified in the bytes package, we must import the bytes package in our
program to use the Split function.

Syntax:

func Split(o_slice, sep []byte) [][]byte

In this case, o_slice is the bytes slice, and sep is the separator. If the sep
is empty, it will divide after each UTF-8 sequence. Let us examine this
notion using the following examples:

Arrays, Slices, and Maps    ◾    109

First example:

// Program to illustrate the concept
// of splitting a slice of bytes
package main

import (
 "bytes"
 "fmt"
)
func main() {
 // Creating, initializing the slice of bytes
 // Using the shorthand declaration
 slice_1 := []byte{'!', '!', 'H', 'e', 'l',
'l', 'o',
 'f', 'o', 'r', 'W', 'o', 'r', 'l', 'd',
'#', '#'}
 slice_2 := []byte{'G', 'r', 'a', 'p', 'e'}
 slice_3 := []byte{'%', 'h', '%', 'e', '%',
'l',
 '%', 'l', '%', 'o', '%'}
 // Displaying slices
 fmt.Println("Original Slice:")
 fmt.Printf("Slice 1: %s", slice_1)
 fmt.Printf("\nSlice 2: %s", slice_2)
 fmt.Printf("\nSlice 3: %s", slice_3)
 // Splitting slice of bytes
 // Using the Split function
 rest1 := bytes.Split(slice_1, []byte("eek"))
 rest2 := bytes.Split(slice_2, []byte(""))
 rest3 := bytes.Split(slice_3, []byte("%"))
 // Display results
 fmt.Printf("\n\nAfter splitting:")
 fmt.Printf("\nSlice 1: %s", rest1)
 fmt.Printf("\nSlice 2: %s", rest2)
 fmt.Printf("\nSlice 3: %s", rest3)
}

Second example:

// Program to illustrate the concept
// of splitting a slice of bytes
package main

110    ◾    Mastering GoLang: A Beginner’s Guide

import (
 "bytes"
 "fmt"
)
func main() {
 // Creating, Splitting the slice of bytes
 // Using the Split function
 rest1 := bytes.Split([]byte("****Welcome, to,
Tutorial****"),

[]byte(","))
 rest2 := bytes.Split([]byte("Learning x how x
to x trim x a x slice of bytes"),

[]byte("x"))
 rest3 := bytes.Split([]byte("Helloworld,
world"), []byte(""))
 rest4 := bytes.Split([]byte(""), []byte(","))
 // Display results
 fmt.Printf("Final Value:\n")
 fmt.Printf("\nSlice 1: %s", rest1)
 fmt.Printf("\nSlice 2: %s", rest2)
 fmt.Printf("\nSlice 3: %s", rest3)
 fmt.Printf("\nSlice 4: %s", rest4)
}

STRINGS
Strings in Go differ from those in other languages such as Java, C++,
Python, etc. It is a string of variable-width characters, each represented
by one or more bytes encoded with UTF-8. In other terms, strings are
an immutable chain of arbitrary bytes (including zero-valued bytes), or
strings are a read-only slice of bytes whose bytes may be expressed in
Unicode text using UTF-8 encoding.

Because of UTF-8 encoding, a GoLang string may include content that
is a mash-up of every language in the world without causing confusion
or limiting the page. Strings are typically enclosed in double-quotes"", as
shown in the following example:

// Program to illustrate
// how to create strings
package main
import "fmt"

Arrays, Slices, and Maps    ◾    111

func main() {
 // Creating, initializing a
 // variable with a string
 // Using the shorthand declaration
 My_value_1 := "Welcome to Home"
 // Using the var keyword
 var My_value_2 string
 My_value_2 = "World"
 // Displaying the strings
 fmt.Println("String 1: ", My_value_1)
 fmt.Println("String 2: ", My_value_2)
}

String Literals

String literals are formed in two ways in the Go programming language.

Using Double Quotes("")
The string literals, in this case, are produced using double quotes(" "). This
sort of string can contain escape characters, as described in the follow-
ing table, but it cannot extend several lines. String literals of this kind are
commonly used in GoLang programming.

Escape Character Description

\\ Backslash
\000 Unicode character with given 3-digit 8-bit octal code point
\' Single quote('). It is only allowed inside the character literals
\" Double quote("). It is only allowed inside the interpreted string literals
\a ASCII bell
\b ASCII backspace
\f ASCII formfeed
\n ASCII linefeed
\r ASCII carriage return
\t ASCII tab
\uhhhh Unicode character with given 4-digit 16-bit hex code point

Unicode character with given 8-digit 32-bit hex code point
\v ASCII vertical tab
\xhh Unicode character with given 2-digit 8-bit hex code point

Using backticks(")
String literals are formed using backticks(") and are also known as raw
literals in this context. Raw literals do not allow escape characters, span

112    ◾    Mastering GoLang: A Beginner’s Guide

many lines, and contain any other characters than the backtick. It is com-
monly used for producing multiline messages, regular expressions, and
HTML.

Example:

// Program to illustrate string literals
package main
import "fmt"
func main() {
 // Creating, initializing a
 // variable with string literal
 // Using the double-quote
 My_value_1 := "Welcome to World"
 // Adding escape character
 My_value_2 := "Welcome!\nWorld "
 // Using backticks
 My_value_3 := 'Hello!Everyone'
 // Adding the escape character
 // in the raw literals
 My_value_4 := 'Hello!\nGeeksforGeeks'
 // Displaying the strings
 fmt.Println("The String 1: ", My_value_1)
 fmt.Println("The String 2: ", My_value_2)
 fmt.Println("The String 3: ", My_value_3)
 fmt.Println("The String 4: ", My_value_4)
}

Important Points about Strings
Strings Are Immutable
Strings are immutable in Go. Once a string is formed, it isn’t easy to mod-
ify the value. Strings, in other words, are read-only. If we attempt to alter
something, the compiler will raise an error.

Example:

// Program to illustrate
// the string are immutable
package main
import "fmt"
// the main function
func main() {

Arrays, Slices, and Maps    ◾    113

 // Creating, initializing a string
 // using the shorthand declaration
 mystr := "Welcome to World"
 fmt.Println("String:", mystr)
 /* if we trying to change
 the value of string
 then compiler will
 throw error, i.e,
 cannot assign to mystr[1]
 mystry[1]= 'G'
 fmt.Println("String:", mystry)
 */
}

How to Iterate over a String
Use the for rang loop to iterate through a string. This loop may iterate
across a string’s Unicode code point.

Syntax:

for index, chr:= range str{
 // Statement
}

Here, the index is a variable that stores the first byte of a UTF-8 encoded
code point, chr is a variable that stores the characters of the provided
string, and str is a string.

Example:

// Program to illustrate how
// to iterate over string
// using the for range loop
package main
import "fmt"
// the main function
func main() {
 // String as a range in for loop
 for index, st := range "Helloeveryone" {
 fmt.Printf("Index number of %c is
%d\n", st, index)
 }
}

114    ◾    Mastering GoLang: A Beginner’s Guide

How to Access an Individual Byte of the String
We can access each byte of the provided text because it is a byte string.

Example:

// Program to illustrate how to
// access bytes of the string
package main
import "fmt"
// Main function
func main() {
 // Creating, initializing a string
 str := "Welcome to World"
 // Accessing the bytes of the given string
 for x := 0; x < len(str); x++ {
 fmt.Printf("\nCharacter = %c Bytes = %v",
str, str)
 }
}

How to Make a String from a Slice of Bytes
In Go, we can make a string from a slice of bytes.

Example:

package main
import (
 "fmt"
 "reflect"
 "strings"
)
func main() {
 stry1 := []string{"Drum", "of", "India", "On",
"Dec"}
 fmt.Println(stry1)
 fmt.Println(reflect.TypeOf(stry1))

 stry2 := strings.Join(stry1, " ")
 fmt.Println(stry2)
 fmt.Println(reflect.TypeOf(stry2))
 stry3 := strings.Join(stry1, ", ")
 fmt.Println(stry3)
 fmt.Println(reflect.TypeOf(stry3))
}

Arrays, Slices, and Maps    ◾    115

How Can We Determine the Length of a String in GoLang?
We can find the length of a string in GoLang by utilizing two func-
tions: len() and RuneCountInString (). The UTF-8 package includes the
RuneCountInString() method, which returns the total rune in the string.
And the len() method returns the string’s length in bytes.

Example:

// Program to illustrate how to
// find the length of the string
package main
import (
 "fmt"
 "unicode/utf8"
)
// the main function
func main() {
 // Creating, initializing a string
 // using the shorthand declaration
 mystr := "Welcome to Everyone???"
 // Finding length of the string
 // Using len() function
 length1 := len(mystr)
 // Using the RuneCountInString() function
 length2 := utf8.RuneCountInString(mystr)
 // Displaying length of the string
 fmt.Println("string:", mystr)
 fmt.Println("Length 1:", length1)
 fmt.Println("Length 2:", length2)
}

In GoLang, How Do We Trim a String?

Strings in Go differ from those in other languages such as Java, C++,
Python, etc. It is a string of variable-width characters, each represented by
one or more bytes encoded with UTF-8. We may trim a string in various
ways by using the following listed methods. These functions are specified
in the strings package; thus, we must import the strings package in your
application to use them.

Trim
This function trims the text by removing all of the leading and trailing
Unicode code points given in this function.

116    ◾    Mastering GoLang: A Beginner’s Guide

Syntax:

func Trim(str string, cutstr string) string

In this case, str represents the current string, and cutstr represents the ele-
ments in the specified string that we want to remove.

Example:

// Program to illustrate
// how to trim string
package main
import (
 "fmt"
 "strings"
)
// the main method
func main() {
 // Creating, initializing string
 // Using the shorthand declaration
 stry1 := "!!Welcome to Everyone !!"
 stry2 := "@@This is the example of Golang$$"
 // Displaying strings
 fmt.Println("Strings before the trimming:")
 fmt.Println("String 1: ", stry1)
 fmt.Println("String 2:", stry2)
 // Trimming given strings
 // Using Trim() function
 rest1 := strings.Trim(stry1, "!")
 rest2 := strings.Trim(stry2, "@$")
 // Displaying results
 fmt.Println("\nStrings after the trimming:")
 fmt.Println("Result 1: ", rest1)
 fmt.Println("Result 2:", rest2)
}

TrimLeft
TrimLeft function is used to trim the string’s Unicode code points on the
left-hand side (given in the function).

Syntax:

func TrimLeft(str string, cutstr string) string

Arrays, Slices, and Maps    ◾    117

In this case, str represents the current string, and cutstr represents the left-
hand side elements of the specified string that we want to trim.

Example:

// Program to illustrate how to
// trim the left-hand side elements
// from string
package main
import (
 "fmt"
 "strings"
)
// the main method
func main() {
 // Creating, initializing string
 // Using the shorthand declaration
 stry1 := "!!Welcome to Everyone **"
 stry2 := "@@This is the example of Golang$$"
 // Displaying the strings
 fmt.Println("Strings before trimming:")
 fmt.Println("String 1: ", stry1)
 fmt.Println("String 2:", stry2)
 // Trimming the given strings
 // Using the TrimLeft() function
 rest1 := strings.TrimLeft(str1, "!*")
 rest2 := strings.TrimLeft(str2, "@")
 // Displaying results
 fmt.Println("\nStrings after trimming:")
 fmt.Println("Result 1: ", rest1)
 fmt.Println("Result 2:", rest2)
}

TrimRight
This function trims the string’s right-hand side (given in the function)
Unicode code points.

Syntax:

func TrimRight(str string, cutstr string) string

118    ◾    Mastering GoLang: A Beginner’s Guide

In this case, str represents the current string, and cutstr represents
the right-hand side components of the specified string that we want to
trim.

Example:

// Program to illustrate how to
// trim the right-hand side elements
// from string
package main
import (
 "fmt"
 "strings"
)
// the main method
func main() {
 // Creating, initializing the
 // string using the shorthand declaration
 stry1 := "!!Welcome to Everyone **"
 stry2 := "@@This is the example of Golang$$"
 // Displaying the strings
 fmt.Println("Strings before the trimming:")
 fmt.Println("String 1: ", stry1)
 fmt.Println("String 2:", stry2)
 // Trimming given strings
 // Using the TrimRight() function
 rest1 := strings.TrimRight(stry1, "!*")
 rest2 := strings.TrimRight(stry2, "$")
 // Displaying results
 fmt.Println("\nStrings after trimming:")
 fmt.Println("Result 1: ", rest1)
 fmt.Println("Result 2:", rest2)
}

TrimSpace
This method removes all leading and trailing white space from the given
string.

Syntax:

func TrimSpace(str string) string

Arrays, Slices, and Maps    ◾    119

Example:

// Program to illustrate how to
// trim the white space from string
package main
import (
 "fmt"
 "strings"
)
// the main method
func main() {
 // Creating, initializing string
 // Using the shorthand declaration
 stry1 := " **Welcome to Everyone** "
 stry2 := " ##This is the example of Golang## "
 // Displaying the strings
 fmt.Println("Strings before the trimming:")
 fmt.Println(stry1, stry2)
 // Trimming the white space from given strings
 // Using TrimSpace() function
 rest1 := strings.TrimSpace(stry1)
 rest2 := strings.TrimSpace(stry2)
 // Displaying results
 fmt.Println("\nStrings after the trimming:")
 fmt.Println(rest1, rest2)
}

TrimSuffix
This method removes the string’s trailing suffix. If the provided string
does not include the specified suffix string, this method returns the origi-
nal string unaltered.

Syntax:

func TrimSuffix(str, suffstr string) string

The original string is represented by str, while the suffix string is repre-
sented by suffstr.

Example:

// Program to illustrate how to
// trim suffix string from

120    ◾    Mastering GoLang: A Beginner’s Guide

// the given string
package main
import (
 "fmt"
 "strings"
)
// the main method
func main() {
 // Creating, initializing string
 // Using the shorthand declaration
 stry1 := "Welcome, Everyone"
 stry2 := "This is the, example of Golang"
 // Displaying the strings
 fmt.Println("Strings before the trimming:")
 fmt.Println("String 1: ", stry1)
 fmt.Println("String 2:", stry2)
 // Trimming the suffix string from given strings
 // Using the TrimSuffix() function
 rest1 := strings.TrimSuffix(str1, "Helloworld")
 rest2 := strings.TrimSuffix(str2, "Helloo")
 // Displaying results
 fmt.Println("\nStrings after the trimming:")
 fmt.Println("Result 1: ", rest1)
 fmt.Println("Result 2:", rest2)
}

TrimPrefix
This method removes the string’s leading prefix. If the provided string
does not include the requested prefix string, this method returns the origi-
nal string unaltered.

Syntax:

func TrimPrefix(str, suffstr string) string

The original string is represented by str, while the prefix string is repre-
sented by suffstr.

Example:

// Program to illustrate how to
// trim prefix string from

Arrays, Slices, and Maps    ◾    121

// the given string
package main
import (
 "fmt"
 "strings"
)
// the Main method
func main() {
 // Creating, initializing string
 // Using the shorthand declaration
 stry1 := "Welcome, Everyone"
 stry2 := "This is the, example of Golang"
 // Displaying the strings
 fmt.Println("Strings before the trimming:")
 fmt.Println("String 1: ", stry1)
 fmt.Println("String 2: ", stry2)
 // Trimming the prefix string from given
strings
 // Using the TrimPrefix() function
 rest1 := strings.TrimPrefix(str1, "Hello")
 rest2 := strings.TrimPrefix(str2, "World")
 // Displaying results
 fmt.Println("\nStrings after the trimming:")
 fmt.Println("Result 1: ", rest1)
 fmt.Println("Result 2: ", rest2)
}

In GoLang, How Do We Split a String?

Strings in Go differ from those in other languages such as Java, C++,
Python, etc. It is a string of variable-width characters, each represented
by one or more bytes encoded with UTF-8. With the aid of the following
functions, we can split a string into a slice in Go strings. Because these
functions are specified in the strings package, we must import the strings
package in our program to use them:

Split
This function splits the string into all substrings separated by the separator
specified and returns a slice containing these substrings.

Syntax:

func Split(str, sep string) []string

122    ◾    Mastering GoLang: A Beginner’s Guide

The string str is used here, and the separator sep is used. If str does not
include the given sep and sep is not empty, it will return a slice of length
1 that solely contains str. If the sep parameter is left empty, it will divide
after each UTF-8 sequence. Alternatively, if both str and sep are empty, it
will produce an empty slice.

Example:

// Program to demonstrate how to split a string
package main
import (
 "fmt"
 "strings"
)
// the main function
func main() {
 // Creating, initializing the strings
 stry1 := "Welcome, to the, our channel,
Helloeveryone"
 stry2 := "My dog name is Dollar"
 stry3 := "I like to play Ludo"
 // Displaying the strings
 fmt.Println("String 1: ", stry1)
 fmt.Println("String 2: ", stry2)
 fmt.Println("String 3: ", stry3)
 // Splitting given strings
 // Using the Split() function
 rest1 := strings.Split(stry1, ",")
 rest2 := strings.Split(stry2, "")
 rest3 := strings.Split(stry3, "!")
 rest4 := strings.Split("", "Helloeveryone,
hello")
 // Displaying result
 fmt.Println("\nResult 1: ", rest1)
 fmt.Println("Result 2: ", rest2)
 fmt.Println("Result 3: ", rest3)
 fmt.Println("Result 4: ", rest4)
}

SplitAfter
Splits a string into all substrings after each instance of the provided sepa-
rator and returns a slice containing these substrings.

Arrays, Slices, and Maps    ◾    123

Syntax:

func SplitAfter(str, sep string) []string

The string str is used here, and the separator sep is used. If str does not
include the given sep and sep is not empty, it will return a slice of length
1 that solely contains str. If the sep parameter is left empty, it will divide
after each UTF-8 sequence. Alternatively, if both str and sep are empty, it
will produce an empty slice.

Example:

// Program to demonstrate how to split a string
package main
import (
 "fmt"
 "strings"
)
// the main function
func main() {
 // Creating, initializing the strings
 stry1 := "Welcome, to the, online session,
Helloeveryone"
 stry2 := "My cat name is puffi"
 stry3 := "I like to play chess"
 // Displaying the strings
 fmt.Println("String 1: ", stry1)
 fmt.Println("String 2: ", stry2)
 fmt.Println("String 3: ", stry3)
 // Splitting given strings
 // Using the SplitAfter() function
 rest1 := strings.SplitAfter(str1, ",")
 rest2 := strings.SplitAfter(str2, "")
 rest3 := strings.SplitAfter(str3, "!")
 rest4 := strings.SplitAfter("",
"Helloeveryone, Hello")
 // Displaying result
 fmt.Println("\nResult 1: ", rest1)
 fmt.Println("Result 2: ", rest2)
 fmt.Println("Result 3: ", rest3)
 fmt.Println("Result 4: ", rest4)
}

124    ◾    Mastering GoLang: A Beginner’s Guide

SplitAfterN
Splits a string into all substrings after each use of the provided separator
and returns a slice containing these substrings.

Syntax:

func SplitAfterN(str, sep string, m int) []string

In this case, str is the string, sep is the separator, and m is the number of
substrings to return. If m>0, it will return at most m substrings, with the
final string substring not splitting. If m == zero, it will return nil. If m<0,
it returns all substrings.

Example:

// Program to demonstrate how to split a string
package main
import (
 "fmt"
 "strings"
)
// the main function
func main() {
 // Creating, initializing the strings
 stry1 := "Welcome, to the, online session,
Helloeveryone"
 stry2 := "My cat name is puffi"
 stry3 := "I like to play chess"
 // Displaying strings
 fmt.Println("String 1: ", stry1)
 fmt.Println("String 2: ", stry2)
 fmt.Println("String 3: ", stry3)
 // Splitting given strings
 // Using SplitAfterN() function
 rest1 := strings.SplitAfterN(stry1, ",", 2)
 rest2 := strings.SplitAfterN(stry2, "", 4)
 rest3 := strings.SplitAfterN(stry3, "!", 1)
 rest4 := strings.SplitAfterN("",
"Helloeveryone, hello", 3)
 // Displaying result
 fmt.Println("\nResult 1: ", rest1)
 fmt.Println("Result 2: ", rest2)

Arrays, Slices, and Maps    ◾    125

 fmt.Println("Result 3: ", rest3)
 fmt.Println("Result 4: ", rest4)
}

In GoLang, There Are Several Ways to Compare Strings

The string in Go is an immutable chain of arbitrary bytes encoded using
UTF-8 encoding. We have two options for comparing strings to each other:

Making Use of Comparison Operators
Go strings allow comparison operators such as ==, !=, >=, <=, <, >. The ==
and != operators are used to determine if the given strings are equal, while
the >=, <=, <, > operators determine the lexical order. The outcomes of
these operators are of the Boolean type, which means that if the condition
is met. It will return true; otherwise, false.

First example:

// Program to illustrate the concept
// of == and != operator with the strings
package main
import "fmt"
// the main function
func main() {
 // Creating, initializing strings
 // using the shorthand declaration
 stry1 := "Hello"
 stry2 := "Helo"
 stry3 := "Helloeveryone"
 stry4 := "Hello"
 // Checking string are equal
 // or not using == operator
 res1 := str1 == str2
 res2 := str2 == str3
 res3 := str3 == str4
 res4 := str1 == str4
 fmt.Println("Result 1: ", res1)
 fmt.Println("Result 2: ", res2)
 fmt.Println("Result 3: ", res3)
 fmt.Println("Result 4: ", res4)
 // Checking the string are not equal
 // using != operator

126    ◾    Mastering GoLang: A Beginner’s Guide

 res5 := str1 != str2
 res6 := str2 != str3
 res7 := str3 != str4
 res8 := str1 != str4
 fmt.Println("\nResult 5: ", res5)
 fmt.Println("Result 6: ", res6)
 fmt.Println("Result 7: ", res7)
 fmt.Println("Result 8: ", res8)
}

Second example:

// Program to illustrate concept
// of comparison operator with the strings
package main
import "fmt"
// the main function
func main() {
 // Creating, initializing
 // slice of string using
 // the shorthand declaration
 myslice := []string{"Hello", "Hello",
 "hfw", "HFW", "from"}
 fmt.Println("Slice: ", myslice)
 // Using the comparison operator
 result1 := "HFW" > "Hello"
 fmt.Println("Result 1: ", result1)
 result2 := "HFW" < "hello"
 fmt.Println("Result 2: ", result2)
 result3 := "Hello" >= "from"
 fmt.Println("Result 3: ", result3)
 result4 := "Hello" <= "from"
 fmt.Println("Result 4: ", result4)
 result5 := "Hello" == "Hello"
 fmt.Println("Result 5: ", result5)
 result6 := "Hello" != "from"
 fmt.Println("Result 6: ", result6)
}

Using Compare() Method
We may also compare two strings using the strings package’s built-in
function Compare(). After comparing two strings lexicographically,

Arrays, Slices, and Maps    ◾    127

this method produces an integer value. The values returned are as
follows:

Return 0, if stry1 == stry2.
Return 1, if stry1 > stry2.
Return -1, if stry1 < stry2.

Syntax:

func Compare(stry1, stry2 string) int

Example:

// Program to illustrate how to compare
// the string using compare() function
package main
import (
 "fmt"
 "strings"
)
func main() {
 // Comparing string using the Compare function
 fmt.Println(strings.Compare("hfw", "Hello"))
 fmt.Println(strings.Compare("Helloeveryone",
 "Hello"))
 fmt.Println(strings.Compare("Hello", " HFW"))
 fmt.Println(strings.Compare("HelLo", "HelLo"))
}

MAPS
A map is a strong, inventive, and flexible data structure in the Go program-
ming language. Maps in GoLang language are a collection of key-value
pairs that are not ordered. It is commonly used because it allows quick
lookups and values that may be retrieved, updated, or delete using keys.

•	 It’s a hash table reference.

•	 It is inexpensive to pass due to its reference type; for example, on
a 64-bit processor, it requires 8 bytes, while on a 32-bit machine, it
takes 4 bytes.

•	 A key in a map must be unique and always of the type that is com-
pared using the == operator or the type that supports the != operator.

128    ◾    Mastering GoLang: A Beginner’s Guide

As a result, most built-in types, such as int, float64, rune, string, sim-
ilar array and structure, pointer, and so on, may be used as keys.
Data types such as slice and noncomparable arrays and structs and
custom data types that are not comparable are not used as map keys.

•	 Values in maps are not unique like keys and can be of any type such
as int, float64, string, rune, pointer, reference type, map type, etc.

•	 The Keys and values must be of same type; various keys and values in
the same maps are not permitted. However, the type of key and type
values might differ.

•	 A hash table, hash map, unordered map, dictionary, or associative
array are other maps’ names.

•	 We can only add value to a map after it has been initialized. If we add
value to an uninitialized map, the compiler will give an error.

How Do We Create and Initialize Maps?

Maps in the Go programming language may be created and initialized in
two ways:

Simple
We may use this way to construct and initialize a map without using the
make() function:

1.	Creating a Map: Using the following syntax, we can easily create a
map:

// Empty map
map[KeyType]ValueType{}
// Map with the keyvalue pair
map[KeyType]ValueType{key1: value1, ..., keyN:
valueN}

Example:

var mymap map[int]string

The zero value of a map in maps is nil, and a nil map does not include
any keys. If we insert a key-value pair into the nil map, the compiler
will report a runtime error.

Arrays, Slices, and Maps    ◾    129

2.	Using map literals to initialize the map: Map literals are the sim-
plest way to populate a map with data; separate the key-value pair
with a colon, and the last trailing colon is required; otherwise, the
compiler will generate an error.

Example:

// Program to illustrate how to
// create, initialize maps
package main
import "fmt"
func main() {
 // Creating, initializing empty map
 // Using the var keyword
 var map_1 map[int]int
 // Checking if map is nil or not
 if map_1 == nil {
 fmt.Println("True")
 } else {
 fmt.Println("False")
 }
 // Creating, initializing a map
 // Using the shorthand declaration and
 // using the map literals
 map_2 := map[int]string{
 90: "Duck",
 91: "Cow",
 92: "Cat",
 93: "Bird",
 94: "Boat",
 }
 fmt.Println("Map-2: ", map_2)
}

Using the make() Function
We can also create a map using the make() function. This function is an
inbuilt function, and in this method, we need to pass the type of the map
and return an initialized map.

Syntax:

make(map[KeyType]ValueType, initial_Capacity)
make(map[KeyType]ValueType)

130    ◾    Mastering GoLang: A Beginner’s Guide

Example:

// Program to illustrate how to
// create, initialize a map
// Using the make() function
package main
import "fmt"
func main() {
 // Creating map
 // Using the make() function
 var Mymap = make(map[float64]string)
 fmt.Println(Mymap)
 // As we know that make() function always
returns a map which is initialized
 // we can add values in it
 Mymap[1.3] = "Ridhi"
 Mymap[1.5] = "Sunita"
 fmt.Println(Mymap)
}

Important Considerations
How Do We Iterate over a Map?
We may use the range for loop to iterate over a map. Because the map is an
unordered collection, the value of this loop may vary.

Example:

// Program to illustrate how
// to iterate map using for rang loop
package main
 import "fmt"
// the main function
func main() {
 // Creating, initializing a map
 m_a_p := map[int]string{
 90: "Duck",
 91: "Cow",
 92: "Cat",
 93: "Bird",
 94: "Dog",
 }
 // Iterating the map using for rang loop

Arrays, Slices, and Maps    ◾    131

 for id, pet := range m_a_p {
 fmt.Println(id, pet)
 }
}

How to Add Key-Value Pairs to the Map
In maps, we may add key-value pairs to the initialized map using the
following syntax:

map-name[key]=value

If we try to add key that already exists in a map, it will simply override or
update value of that key with the new value.

Example:

// Program to illustrate how to add
 key-value pair in the map using make() function
package main
import "fmt"
// the main function
func main() {
 // Creating, initializing a map
 m_a_p := map[int]string{
 90: "Duck",
 91: "Cow",
 92: "Dog",
 93: "Cat",
 94: "Rabbit",
 }
 fmt.Println("Original map: ", m_a_p)
 // Adding the new key-value pairs in the map
 m_a_p[95] = "Parrot"
 m_a_p[96] = "Crow"
 fmt.Println("Map after adding the new key-
value pair:\n", m_a_p)
 // Updating the values of map
 m_a_p[91] = "PIG"
 m_a_p[93] = "MONKEY"
 fmt.Println("\nMap after updating the values
of map:\n", m_a_p)
}

132    ◾    Mastering GoLang: A Beginner’s Guide

How to Retrieve the Value Associated with a Key in a Map
In maps, use the following syntax to obtain a value using a key:

map_name[key]

If key does not exist in the given map, it will return its zero value, i.e., nil.
And if the key is found in the given map, it will return the value associated
with that key.

Example:

// Program to illustrate how to
// retrieve the value of key
package main
import "fmt"
// the ain function
func main() {
 // Creating, initializing a map
 m_a_p := map[int]string{
 90: "Duck",
 91: "Cow",
 92: "Cat",
 93: "Dog",
 94: "Rabbit",
 }
 fmt.Println("Original map: ", m_a_p)
 // Retrieving values with help of keys
 value_1 := m_a_p[91]
 value_2 := m_a_p[92]
 fmt.Println("Value of key[91]: ", value_1)
 fmt.Println("Value of key[92]: ", value_2)
}

How to Check If the Key Is Present on the Map
In maps, we may use the following syntax to determine whether or not a
particular key exists:

Syntax:

// With the value
// It will give the value, check the result
value, checkvariablename:= mapname[key]

Arrays, Slices, and Maps    ◾    133

or

// Without the value using the blank identifier
// It will only give check result
_, checkvariablename:= mapname[key]

If the value of the checkvariablename is true, the key exists in the given
map; if the value of the checkvariablename is false, the key does not exist
in the given map.

Example:

// Program to illustrate how to
// check key is available or not
package main
import "fmt"
// the main function
func main() {
 // Creating. initializing a map
 m_a_p := map[int]string{
 90: "Cow",
 91: "Cat",
 92: "Duck",
 93: "Dog",
 94: "Rabbit",
 }
 fmt.Println("Original map: ", m_a_p)
 // Checking key is available
 or not in the m_a_p map
 pet_name, ok := m_a_p[90]
 fmt.Println("\nThe Key present or not:", ok)
 fmt.Println("The Value:", pet_name)
 // Using the blank identifier
 _, ok1 := m_a_p[92]
 fmt.Println("\nThe Key present or not:", ok1)
}

How to Remove a Key from a Map
The delete() method in maps allows us to delete the key existing in the
map. It is a built-in function that returns no value and does nothing if the

134    ◾    Mastering GoLang: A Beginner’s Guide

key does not exist in the specified map. Simply pass the map and key that
we want to remove from the map to this method.

Syntax:

delete(mapname, key)

Example:

// Program to illustrate how to delete key
package main
import "fmt"
// the main function
func main() {
 // Creating, initializing a map
 m_a_p := map[int]string{
 90: "Duck",
 91: "Cow",
 92: "Cat",
 93: "Dog",
 94: "Rabbit",
 }
 fmt.Println("Original map: ", m_a_p)
 // Deleting keys
 // Using the delete function
 delete(m_a_p, 91)
 delete(m_a_p, 92)
 fmt.Println("Map after deletion: ", m_a_p)
}

Map Modification
As we all know, maps are of the reference kind. As a result, when we assign
an existing map to a new variable, both maps relate to the same underlying
data structure. As a result, when we update one map, it will be reflected in
another.

Example:

// Program to illustrate the
// modification concept in map
package main
import "fmt"

Arrays, Slices, and Maps    ◾    135

// the main function
func main() {
 // Creating, initializing a map
 m_a_p := map[int]string{
 90: "Duck",
 91: "Cow",
 92: "Cat",
 93: "Duck",
 94: "Rabbit",
 }
 fmt.Println("Original map: ", m_a_p)
 // Assigned map into a new variable
 new_map := m_a_p
 // Perform the modification in new_map
 new_map[96] = "Monkey"
 new_map[98] = "Donkey"
 // Display after modification
 fmt.Println("The New map: ", new_map)
 fmt.Println("\nModification done in old
map:\n", m_a_p)
}

In this chapter, we covered Arrays. We also discussed Slices and Maps with
their relevant syntax and example.

http://taylorandfrancis.com

137DOI: 10.1201/9781003310457-7

C h a p t e r 7

Functions and Recursion

IN THIS CHAPTER

➢➢ Returning multiple values

➢➢ Variadic functions

➢➢ Closure

➢➢ Recursion

➢➢ Defer, panic, and recover

Chapter 6 covered structures, array, slices, and maps. In this chapter, we
will discuss returning multiple values, variadic functions, and closure. We
will also cover recursion.

Go LANGUAGE FUNCTIONS
Functions are often the blocks of code or statements in a program that
allows the user to reuse the same code, saving memory, saving time, and,
most significantly, improving code readability. A function is, in essence,
a set of statements that execute a given task and provide the outcome to
the caller. A function can also carry out a specific task without returning
any results.

Function Declaration

A function declaration is a method of constructing a function.

https://doi.org/10.1201/9781003310457-7

138    ◾    Mastering GoLang: A Beginner’s Guide

Syntax:

func function-name(Parameterlist)(Returntype){
 // function body
}

The following are included in the function’s declaration:

•	 func: It is a keyword in the Go programming language used to define
a function.

•	 function-name: This is the function’s name.

•	 Parameterlist: It specifies the name and type of function arguments.

•	 Returntype: This parameter is optional and contains the types of
values that the function returns. If we’re going to utilize return type
in our function, we’ll need to include a return statement.

Function Calling

When a user wants to perform a function, they invoke it or call it. To use
the function’s capabilities, it must be invoked. As illustrated in the sample
below, we have a function named area() with two parameters. We now call
this function by its name in the main function, i.e., area(13, 11) with two
parameters.

Example:

// Program to illustrate
// the use of function
package main
import "fmt"
// area() is used to find

Functions and Recursion    ◾    139

// area of rectangle
// area() function two parameters,
// i.e, length and width
func area(length, width int)int{
 arr := length* width
 return arr
}
// the main function
func main() {
 // Display area of the rectangle
 // with the method calling
 fmt.Printf("Area of rectangle is : %d",
area(13, 11))
}

Function Arguments

The arguments provided to a function are referred to as actual parameters
in Go, meanwhile the parameters received by a function are referred to as
formal parameters.

Note: The Go language uses the call by value technique by default to
pass parameters in a function.

The Go programming language provides the following two methods for
passing parameters to our function.

Call by Value
In this way of parameter passing, the values of actual parameters are trans-
ferred to the function’s formal parameters, and two types of parameters
are kept in distinct memory locations. As a result, any changes performed
within functions are not reflected in the caller’s real arguments.

Example:

// Program to illustrate
// the concept of call by value
package main
import "fmt"
// function which swap the values
func swap(x, y int)int{
 var o int
 o= x
 x=y

140    ◾    Mastering GoLang: A Beginner’s Guide

 y=o
 return o
}
// the main function
func main() {
 var a int = 20
 var b int = 30
 fmt.Printf("a = %d and b = %d", a, b)
 // call by values
 swap(a, b)
 fmt.Printf("\n a = %d and b = %d",a, b)
}

Call by Reference
Because both the actual and formal parameters refer to identical locations,
any changes performed within the function are reflected in the caller’s
actual parameters.

Example:

// Program to illustrate
// the concept of call by reference
package main
import "fmt"
// function which swap the values
func swap(x, y *int)int{
 var o int
 o = *x
 *x = *y
 *y = o
 return o
}
// the main function
func main() {
var a int = 20
 var b int = 10
 fmt.Printf("a = %d and b = %d", a, b)
// call by reference
 swap(&a, &b)
 fmt.Printf("\n a = %d and b = %d", a, b)
}

Functions and Recursion    ◾    141

FUNCTION RETURNING MULTIPLE VALUES
The return statement in the Go programming language allows us to return
numerous values from a function. In other words, a single return state-
ment in a function might return many values. The return values are of the
same type as the parameters given in the parameter list.

Syntax:

func functionname(parameterlist)(returntypelist){
 // code...
}

Example:

// Program to illustrate how a
// function return the multiple values
package main
import "fmt"
// myfunc return 3 values of int type
func myfunc(x, y int)(int, int, int){
 return x - y, x * y, x + y
}
// the main Method
func main() {
 // return values are assigned into different
variables
 var myvar1, myvar2, myvar3 = myfunc(4, 2)
 // Display-values
 fmt.Printf("The Result is: %d", myvar1)
 fmt.Printf("\nThe Result is: %d", myvar2)
 fmt.Printf("\nThe Result is: %d", myvar3)
}

Giving Names to the Return Values

Return values in the Go programming language can be given names.
We can use such variable names in our code as well. It is not required to
include a return statement with these identifiers since the Go compiler will
recognize that these variables must send back. The bare return is the name
given to this form of return. The use of a bare return minimizes redun-
dancy in our program.

142    ◾    Mastering GoLang: A Beginner’s Guide

Syntax:

func functionname(para1, para2 int)(name1 int,
name2 int){
 // code
}

Name1 and name2 are names of the return values, while para1 and para2
are the function arguments.

Example:

// illustrate how to give names to return values
package main
import "fmt"
// myfunc return 2 values of the int type
// here, return value name
// is rectangle & square
func myfunc(x, y int)(rectangle int, square int)
{
 rectangle = x*y
 square = x*x
 return
}
func main() {
 // The return values are assigned into the two
different variables
 var area1, area2 = myfunc(4, 8)
 // Display the values
 fmt.Printf("Area of the rectangle is: %d",
area1)
 fmt.Printf("\nThe Area of the square is: %d",
area2)

}

VARIADIC FUNCTIONS
A variadic function is one that is called with a variable number of param-
eters. In other words, the variadic function accepts zero or more inputs
from the user. fmt. Printf is an example of variadic function; it requires
one fixed argument at the start and may accept any number of arguments
after that.

Functions and Recursion    ◾    143

Important Notes:

•	 The last parameter type in the variadic function’s declaration is
preceded by an ellipsis, i.e., (…). It denotes that the function can be
invoked with any number of this kind of parameters.

Syntax:

function function-name(para1, para2...type)type{
// code
}

•	 Within the function…type acts similarly to a slice. Assume we have
a function signature, such as add(b…int)int, and the an argument is
of type[]int.

•	 In a variadic function, you may also provide an existing slice. As
illustrated in the second example, we send a slice of the entire array
to the function to do this.

•	 When no arguments are passed to the variadic function, the slice
within the function is nil.

•	 Variadic functions are commonly used to format strings.

•	 In the variadic method, you may also pass several slices.

•	 Variadic parameters cannot be used as return values, although they
can be returned as slices.

First example:

// Program to illustrate
// the concept of variadic function
package main
import(
 "fmt"
 "strings"
)
// Variadic function to join the strings
func joinstr(element...string)string{
 return strings.Join(element, "-")
}
func main() {

144    ◾    Mastering GoLang: A Beginner’s Guide

 // zero argument
 fmt.Println(joinstr())
 // the multiple arguments
 fmt.Println(joinstr("Hello", "HEW"))
 fmt.Println(joinstr("Hello", "Everyone",
"World"))
 fmt.Println(joinstr("H", "E", "L", "L", "O"))
}

Second example:

// Program to illustrate
// the concept of variadic function
package main
 import(
 "fmt"
 "strings"
)
// The Variadic function to join strings
func joinstr(element...string)string{
 return strings.Join(element, "-")
}
func main() {
 // pass a slice in the variadic function
 element:= []string{"hello", "FROM", "world"}
 fmt.Println(joinstr(element...))
}

When we utilize a variadic function:

•	 A variadic function is used to pass a slice in a function.

•	 We utilize a variable function when we don’t know the number of
parameters.

•	 When we utilize a variadic function in your software, it improves
readability.

Anonymous Functions

An anonymous function is a feature of the Go programming language.
An anonymous function does not have a name when we need to write an
inline function. An anonymous function in Go can construct a closure.
Anonymous function is also referred to as function literal.

Functions and Recursion    ◾    145

Syntax:

func(parameter-list)(returntype){
// code
// Use the return statement if returntype are
given
// if returntype is not given, then do not
// use the return statement
return
}()

Example:

// Program to illustrate how
// to create anonymous function
package main
import "fmt"
func main() {
 // the anonymous function
 func(){
 fmt.Println("Welcome to World")
 }()
}

Important Notes:

•	 Anonymous function can assign to a variable in the Go program-
ming language. When we assign a function to a variable, the vari-
able’s type changes to function, and we may call it a function call, as
illustrated in the following example:

// Program to illustrate
// the use of an anonymous function
package main
import "fmt"
func main() {
 // Assigning anonymous
 // function to variable
 value := func(){
 fmt.Println("Welcome to World")
 }
 value()
}

146    ◾    Mastering GoLang: A Beginner’s Guide

•	 In the anonymous function, we may also pass parameters.

Example:

// Program to pass arguments
// in anonymous function
package main
import "fmt"func main() {
 // Passing arguments in the anonymous function
 func(ele string){
 fmt.Println(ele)
 }("Helloeveryone")

}

•	 An anonymous function can also pass as an argument to another
function.

Example:

// Program to pass an anonymous
// function as an argument into
// the other function
package main
import "fmt"
 // Passing anonymous function
 // as argument
 func XYZ(i func(a, b string)string){
 fmt.Println(i ("Hello", "for"))
 }
func main() {
 value:= func(a, b string) string{
 return a + b + "Hello"
 }
 XYZ(value)
}

•	 Another function can also return an anonymous function.

Example:

// Program to illustrate
// the use of anonymous function

Functions and Recursion    ◾    147

package main
import "fmt"
// Returning the anonymous function
 func XYZ() func(a, b string) string{
 myf := func(a, b string)string{
 return a + b + "Everyone"
 } return myf
 }func main() {
 value := XYZ()
 fmt.Println(value("Hello ", "to "))
}

GoLang main() and init() Functions

The Go programming language reserves two functions for special pur-
poses: main() and init().

main() Function
The main package in Go is a special package used with executable applica-
tions, including the main() method. The main() function is a unique func-
tion that serves as the executable program’s entry point. It neither accepts
nor returns any arguments. Go calls the main() method automatically
thus there is no need to call it directly, and every executable program must
have a single main package and the main() function.

Example:

// Program to illustrate
// the concept of main() function
// Declaration of main package
package main
// Importing packages
import (
 "fmt"
 "sort"
 "strings"
 "time"
)
// Main function
func main() {
 // Sorting the given slice
 st := []int{335, 79, 113, 14, 86, 12, 467, 9}
 sort.Ints(st)

148    ◾    Mastering GoLang: A Beginner’s Guide

 fmt.Println("Sorted slice: ", st)
 // Finding the index
 fmt.Println("Index value: ", strings.
Index("Hello", "ks"))
 // Finding the time
 fmt.Println("Time: ", time.Now().Unix())
}

init() Function
The init() function, like the main function, takes no arguments and
returns nothing. This function is contained in every package and is called
when the package is first loaded. This function is defined implicitly, so
we cannot access it elsewhere. We may construct many init() functions in
the same application, and they will execute in the order in which they are
created. init() functions can be placed anywhere in the program and are
called in lexical file name order (Alphabetical Order). And it is permissible
to include statements if the init() function is used, but keep in mind that
the init() method is performed before the main() function call; thus it is
not dependent on the main() function.

The init() function’s main purpose is to initialize global variables that
cannot initialize in the global context.

Example:

// Program to illustrate
// the concept of init() function
// Declaration of main package
package main
// the importing package
import "fmt"
// the multiple init() function
func init() {
 fmt.Println("Welcome everyone")
}
func init() {
 fmt.Println("Hello everyone ")
}
// the main function
func main() {
 fmt.Println("Welcome to home")
}

Functions and Recursion    ◾    149

In GoLang, What Is a Blank Identifier (Underscore)?

In GoLang, _(underscore) is referred to as the Blank Identifier. Identifiers
are the user-defined names of the software components used for identifi-
cation. GoLang provides a feature that allows us to declare and utilize an
unused variable using a Blank Identifier. Unused variables are defined by
the user throughout the program but are never utilized by them. These vari-
ables make the program nearly illegible. Because GoLang is a more concise
and readable programming language, it does not enable the programmer
to specify an unneeded variable; if we do, the compiler will give an error.

When a function returns several values, but we only need a few of them and
discard some of them, we may use the Blank Identifier. It informs the compiler
that this variable isn’t needed and may disregard without causing an error. It
conceals the values of the variables and makes the program intelligible. As a
result, anytime we provide a value to Bank Identifier, it becomes useless.

First example: In the following program, the function mul_div returns
two values, which we store in the mul and div identifiers. However,
throughout the program, we only use one variable, mul. As a result,
the compiler will report an error if a div is declared but not utilized.

// Program to show compiler
// throws an error if variable is
// declared but not used
package main
import "fmt"
// the main function
func main() {
 // calling function
 // function returns two values which are
 // assigned to mul and div the identifier
 mul, div := mul_div(110, 9)
 // only using the mul variable
 // compiler will give an error
 fmt.Println("110 x 9 = ", mul)
}
// function returning the two
// values of integer type
func mul_div(nm1 int, nm2 int) (int, int) {
 // returning values
 return nm1 * nm2, nm1 / nm2
}

150    ◾    Mastering GoLang: A Beginner’s Guide

Second example: To fix the above program, let’s utilize the Blank
Identifier. Simply use the _(underscore) in place of the div identifica-
tion. It allows the compiler to disregard the declared and not used
error for that specific variable.

// Program to the use of Blank identifier
package main
import "fmt"
// the main function
func main() {
 // calling function
 // function returns two values which are
 // assigned to mul and blank identifier
 mul, _ := mul_div(110, 8)
 // only using the mul variable
 fmt.Println("110 x 8 = ", mul)
}
// function returning the two
// values of integer type
func mul_div(nm1 int, nm2 int) (int, int) {
 // returning the values
 return nm1 * nm2, nm1 / nm2
}

Important Notes:

•	 Multiple Blank Identifiers can use in the same program. As a result,
a GoLang program might contain numerous variables with the same
identifier name, the Blank Identifier.

•	 There are numerous occasions where values must assign just to com-
plete the syntax, even though the values will never utilize in the pro-
gram. As in a function that returns many values. In such instances, a
blank identification is often used.

•	 With the Blank Identifier, we may utilize any value of any type.

DEFER KEYWORD
Defer statements in Go language postpone the execution of the function
or method or an anonymous method until the nearby functions return.
Deferred function or method call parameters, in other words, evaluate

Functions and Recursion    ◾    151

immediately but do not execute until the nearby function returns. We may
construct a delayed method, function, or anonymous function using the
defer keyword.

Syntax:

// Function
defer func func-name(parameterlist Type)
returntype{
// Code
}
// Method
defer func (receiver Type)
methodname(parameterlist){
// Code
}
defer func (parameterlist)(returntype){
// code
}()

Important Notes:

•	 Multiple defer statements are permitted in the same program in Go,
and they are executed in LIFO (Last-In, First-Out) sequence, as illus-
trated in the second example.

•	 The parameters in deferring statements are assessed when the defer
statement is performed, not when it is called.

•	 Defer statements are commonly used to guarantee that files are
closed when their use is no longer required, to close the channel, or
to capture panics in the program.

Let us illustrate this notion with an example:

First example:

// Program to illustrate
// the concept of the defer statement
package main
import "fmt"
// Functions
func mul(x1, x2 int) int {

152    ◾    Mastering GoLang: A Beginner’s Guide

 rest := x1 * x2
 fmt.Println("Result: ", rest)
 return 0
}
func show() {
 fmt.Println("Hello, Everyone")
}
// the main function
func main() {
 // Calling the mul() function
 // Here the mul function behaves
 // like normal function
 mul(43, 25)
 // Calling the mul()function
 // Using defer keyword
 // Here mul() function
 // is defer function
 defer mul(27, 46)
 // Calling show() function
 show()
}

Explanation: In the preceding example, there are two methods named
mul() and show() (). Whereas the show() function is generally called in
the main() function, the mul() function is called in two ways:

First, we call the mul function normally (no defer keyword), i.e.,
mul(43, 25), and it executes when the function is invoked.

Second, we use the defer keyword to refer to the mul() function as a
deferred function, i.e., defer mul(27, 46), and it executes when all of the
surrounding methods return.

Second example:

// Program to illustrate
// the multiple defer statements, to illustrate
LIFO policy
package main
import "fmt"
// Functions
func add(x1, x2 int) int {
 rest := x1 + x2
 fmt.Println("Result: ", rest)

Functions and Recursion    ◾    153

 return 0
}
// the main function
func main() {
 fmt.Println("Starting")
 // Multiple defer statements
 // Executes in the LIFO order
 defer fmt.Println("Ending")
 defer add(37, 59)
 defer add(12, 12)
}

PANIC IN GoLang
Panic, like an exception, occurs during runtime in the Go programming
language. In other words, panic occurs when an unexpected circumstance
occurs in your Go program, causing the execution of your program to be
terminated. Sometimes panic occurs during runtime when a specific con-
dition arises, such as out-of-bounds array accesses, as demonstrated in the
first example, and other times it is deliberately thrown by the programmer
to handle the worst-case scenario in the Go program using the panic()
function, as shown in the second example.

The panic function is an inherent function defined in the Go language’s
built-in package. This function stops the flow of control and begins panicking.

Syntax:

func panic(v interface{})

It can accept any kind of argument. When a panic occurs in a Go program,
the program stops at runtime, and an error message and the stack trace up
to the point where the panic occurred are displayed on the output screen.
In general, when a panic occurs in a Go program, the program does not
terminate immediately; instead, it ends after Go completes all pending
work for that program.

For example, if a function A calls panic, the execution of the function
A is halted, and if any delayed functions are available in A, they run nor-
mally. After that, the function A returns to its caller, and A behaves like
a call to panic to the caller. As seen in third example, this procedure is
continued until all of the functions in the current goroutine are returned,
at which time the program fails.

154    ◾    Mastering GoLang: A Beginner’s Guide

First example:
// Program which illustrates the
// concept of panic
package main
import "fmt"
// the main function
func main() {
 // Creating array of string type
 // Using the var keyword
 var myarr [3]string
 // Elements are assigned using an index
 myarr[0] = "HE"
 myarr[1] = "Helloeveryone"
 myarr[2] = "Hello"
 // Accessing elements
 // of the array
 // Using the index value
 fmt.Println("The Elements of Array:")
 fmt.Println("The Element 1: ", myarr[0])
 // Program panics because the
 // size of the array is 3
 // we try to access
 // the index 5 which is not
 // available in current array,
 // it gives an runtime error
 fmt.Println("The Element 2: ", myarr[5])
}

Second example:

// Program which illustrates
// how to create own panic
// Using the panic function
package main
import "fmt"
// Function
func entry(lang *string, aname *string) {
 // When value of lang
 // is nil it will panic
 if lang == nil {
 panic("Error: The Language cannot be nil")
 }

Functions and Recursion    ◾    155

 // When value of aname
 // is nil it will panic
 if aname == nil {
 panic("Error: The Author name cannot be
nil")
 }
 // When values of the lang and aname
 // are non-nil values it will print
 // the normal output
 fmt.Printf("The Author Language: %s \n Author
Name: %s\n", *lang, *aname)
}
// the main function
func main() {
 A_lang := "GO-Language"
 // Here in the entry function, we pass
 // a non-nil, nil values
 // Due to nil value this method panics
 entry(&A_lang, nil)
}

Third example:

// Program which illustrates
// the concept of Defer while panicking
package main
import (
 "fmt"
)
// Function
func entry(lang *string, aname *string) {

 // the Defer statement
 defer fmt.Println("The Defer statement in the
entry function")
 // When value of lang
 // is nil it will panic
 if lang == nil {
 panic("Error: The Language cannot be nil")
 }
 // When value of aname
 // is nil it will panic
 if aname == nil {

156    ◾    Mastering GoLang: A Beginner’s Guide

 panic("Error: The Author name cannot be
nil")
 }
 // When values of the lang and aname
 // are non-nil values it will
 // print the normal output
 fmt.Printf("The Author Language: %s \n Author
Name: %s\n", *lang, *aname)
}
// the main function
func main() {
 A_lang := "GO-Language"
 // the Defer statement
 defer fmt.Println("the Defer statement in the
main function")
 // in entry function, we pass
 // one non-nil and one-nil value
 // Due to nil value this method panics
 entry(&A_lang, nil)
}

Note that the Defer statement or function is always executed even if the
program panics.

Panic’s Usage

•	 We can use panic to indicate an unrecoverable error in which the
program cannot continue running.

•	 If we want an error for a specific circumstance in our program, we
may use panic.

RECOVER
Similar to how try/catch blocks in languages like Java, C#, and others are
used to catch exceptions, the recover function in Go is used to handle
panic. It is a built-in function defined in the Go language’s built-in pack-
age. This method is mainly used to regain control of a panicked goroutine.
In other words, it deals with the goroutine’s panicked behavior.

Syntax:

func recover() interface{}

Functions and Recursion    ◾    157

Quick Points

•	 The recover function is always invoked within the delayed function
and never in the regular function. Using the recover function from
within the normal function or outside the delayed function, the
panicking sequence continues, as demonstrated in the first exam-
ple. As shown in the second example, the recover function is always
called inside deferred function because deferred function does not
stop its execution if program panics, so the recover function stops
the panicking sequence by simply restoring normal execution of the
goroutine and retrieving the error value passed to the panic call.

•	 The recover function will only work if we call it in the same gorou-
tine where the panic occurred. It will not work as demonstrated in
the third example if we call it in a separate goroutine.

•	 If we want to find the stack trace, utilize the PrintStack method from
the Debug package.

First example:

// Program which illustrates
// the concept of recover
package main

import "fmt"

// This function is created to handle
 panic occurs in entry function
// but it does not handle panic
occurred in entry function
// because it called in normal
 function
func handlepanic() {

 if a := recover(); a != nil {
 fmt.Println("RECOVER", a)
 }
}

// Function
func entry(lang *string, aname *string) {

158    ◾    Mastering GoLang: A Beginner’s Guide

 // Normal function
 handlepanic()

 // When value of lang
 // is nil it will panic
 if lang == nil {
 panic("Error: Language cannot be nil")
 }
 // When value of aname
 // is nil it will panic
 if aname == nil {
 panic("Error: Author name cannot be nil")
 }
 fmt.Printf("The Author Language: %s \n Author
Name: %s\n", *lang, *aname)
 fmt.Printf("Return successfully from entry
function")
}
// The main function
func main() {
 A_lang := "GO Language"
 entry(&A_lang, nil)
 fmt.Printf("Return successfully from the main
function")
}

CLOSURE
An anonymous function is a feature of the Go programming language.
An anonymous function can form a closure. A closure is a sort of anony-
mous function that refers to variables specified outside of the function. It
is analogous to accessing global variables available before the function’s
declaration.

Example:

// Program to illustrate how
// to create Closure
package main
import "fmt"
func main() {

Functions and Recursion    ◾    159

 // Declaring variable
 HFW := 0
 // Assigning an anonymous
 // function to variable
 counter := func() int {
 HFW += 1
 return HFW
 }
 fmt.Println(counter())
 fmt.Println(counter())
}

Explanation: The variable HFW was not passed as an argument to the
anonymous function, yet it is accessible to the function. This example
has a minor issue since any other function specified in the main has to
access the global variable HFW and can update it without invoking the
counter function. As a result, closure also provides another benefit: data
isolation.

// Program to illustrate how
// to create the data isolation
package main
import "fmt"
// newCounter function to
// isolate the global variable
func newCounter() func() int {
 HFW := 0
 return func() int {
 HFW += 1
 return HFW
 }
}
func main() {
 // newCounter function is assigned to a
variable
 counter := newCounter()
 // invoke the counter
 fmt.Println(counter())
 // invoke the counter
 fmt.Println(counter())
}

160    ◾    Mastering GoLang: A Beginner’s Guide

Explanation: The closure refers to the variable HFW even after the new-
Counter() function has been completed, but no other code outside the
newCounter() method has access to it. This is how data persistency across
function calls is maintained while also isolating the data from other
programs.

RECURSION
Recursion is the process through which function calls itself, either implic-
itly or explicitly, and associated function is known as a recursive function.
The anonymous function is a particular feature of the Go programming
language. It is a function that does not have a name. It is used in the cre-
ation of an inline function. Anonymous recursive functions can also be
specified and defined. Recursive anonymous functions are also referred to
as recursive function literals.

Syntax:

func(parameterlist)(returntype){
// code
// call the same function
// within function for recursion
// Use the return statement only
// if return-type are given.
return
}()

First example:

// Program to show
// how to create recursive
// Anonymous function
package main
import "fmt"
func main() {
 // Anonymous function
 var recursiveAnonymous func()
 recursiveAnonymous = func() {
 // Printing message to show
 // the function call and iteration.
 fmt.Println("The Anonymous functions could
be recursive.")

Functions and Recursion    ◾    161

 // Calling the same function
recursively
 recursiveAnonymous()
 }
 // the main calling of function
 recursiveAnonymous()
}

Second example:

// Program to show
// how to create recursive
// Anonymous function
package main
import (
 "fmt"
)
func main() {
 // the Anonymous function
 var recursiveAnonymous func(int)
 // Passing arguments to Anonymous function
 recursiveAnonymous = func(variable int) {
 // Checking condition to return
 if variable == -1 {
 fmt.Println("Welcome to our Channel")
 return
 } else {
 fmt.Println(variable)
 // Calling the same
 // function recursively
 recursiveAnonymous(variable - 1)
 }
 }
 // the main calling
 // of function
 recursiveAnonymous(10)
}

Recursion Types

There are several varieties of recursion, as illustrated by the following
examples.

162    ◾    Mastering GoLang: A Beginner’s Guide

Direct Recursion
A direct recursion is a type of recursion in which the function calls itself
directly without the help of another function. The following example
shows the concept of direct recursion:

// Program to illustrate
// the concept of direct recursion
package main
import (
 "fmt"
)
// the recursive function for
// calculating factorial of a positive integer
func factorial_calc(number int) int {
 // this is base condition
 // if number is 0 or 1 the function will return 1
 if number == 0 || number == 1 {
 return 1
 }
 // if the negative argument is
 // given, it prints error message & returns -1
 if number < 0 {
 fmt.Println("Invalid-number")
 return -1
 }
 // the recursive call to itself with argument
decremented
 // by 1 integer so that it
 // eventually reaches base case
 return number*factorial_calc(number - 1)
}
// main function
func main() {
 // passing 0 as a parameter
 answer1 := factorial_calc(0)
 fmt.Println(answer1, "\n")
 // passing a positive integer
 answer2 := factorial_calc(5)
 fmt.Println(answer2, "\n")
 // passing negative integer
 // prints error message
 // with return value of -1
 answer3 := factorial_calc(-1)

Functions and Recursion    ◾    163

 fmt.Println(answer3, "\n")
 // passing positive integer
 answer4 := factorial_calc(10)
 fmt.Println(answer4, "\n")
}

Indirect Recursion
An indirect recursion is a sort of recursion in which a function calls
another function, which then calls the calling function. Another function
is used to assist with this form of recursion. The function does call itself,
but it does so indirectly via another function. The following example illus-
trates the concept of indirect recursion:

// Program to illustrate
// the concept of indirect recursion
package main
import (
 "fmt"
)
// the recursive function for printing all numbers
// upto number x
func print_one(x int) {
 // if number is positive
 // print the number
 // call second function
 if x >= 0 {
 fmt.Println("In first function:", x)
 // call to the second function
 // which calls this first
 // function indirectly
 print_two(x - 1)
 }
}
 func print_two(x int) {
 // if number is positive
 // print the number, call second function
 if x >= 0 {
 fmt.Println("In second function:", x)
 // call to first function
 print_one(x - 1)
 }
}

164    ◾    Mastering GoLang: A Beginner’s Guide

// main function
func main() {
 // passing positive
 // parameter which prints all
 // the numbers from 1 - 10
 print_one(10)
 // this will not print anything as it does not
 // follow base case
 print_one(-1)
}

Note: Mutual recursion refers to an indirect recursion with only two
functions. To assist indirect recursion, there might be more than two
functions.

Tail Recursion
A tail call is a subroutine call that is the last or last call made by the func-
tion. When a tail call calls the same function again, the function is said to
be tail-recursive. The recursive call is the final thing the function does in
this case.

Example:

// Program to illustrate
// the concept of tail recursion
package main
import (
 "fmt"
)
// the tail recursive function
// to print all the numbers
// from x to 1
func print_num(x int) {
 // if number is still
 // positive, print it
 // and call the function
 // with decremented value
 if x > 0 {
 fmt.Println(x)
 // last statement in
 // the recursive function

Functions and Recursion    ◾    165

 // tail recursive call
 print_num(x-1)
 }
}
 // the main function
func main() {
 // passing positive
 // number, prints 5 to 1
 print_num(5)
}

Head Recursion
The recursive call is the initial statement in the function in a head
recursion. There are no further statements or operations preceding the
call. The function does not need to process anything when called, and all
operations are completed when it returns.

Example:

// Program to illustrate
// the concept of head recursion
package main
import (
 "fmt"
)
// the head recursive function
// to print all the numbers
// from 1 to x
func print_num(x int) {
 // if the number is still
 // less than x, call
 // function with decremented value
 if x > 0 {
 // the first statement in function
 print_num(x-1)
 // printing is done at
 // the returning time
 fmt.Println(x)
 }
}
// the main function
func main() {

166    ◾    Mastering GoLang: A Beginner’s Guide

 // passing positive
 // number, prints 5 to 1
 print_num(5)
}

Note: It is worth noting that the output of head recursion is exactly the
opposite of that of tail recursion. This is because, in tail recursion, the
function prints the number first and then calls itself, but in head recur-
sion, the function calls itself until it reaches the base case and then begins
printing while returning.

Infinite Recursion
All of the recursive functions were definite or finite recursive functions,
which means they terminated when they reached a base condition. Infinite
recursion is a recursion that never converges to a base case and continues
indefinitely. This frequently leads to system crashes or memory spills.

Example:

// Program to illustrate
// the concept of infinite recursion
package main
import (
 "fmt"
)
// infinite-recursion function
func print_hello() {
 // printing infinite-times
 fmt.Println("Helloeveryone")
 print_hello()
}
// the main function
func main() {
 // call to infinite recursive-function
 print_hello()
}

Anonymous Function Recursion
There is a concept in GoLang known as functions that do not have a name.
These are known as anonymous functions. Anonymous functions in
GoLang can also be used for recursion, as seen in the following examples.

Functions and Recursion    ◾    167

First example:

// Program to illustrate
// the concept of anonymous function recursion
package main
import (
 "fmt"
)
// main function
func main() {
 // declaring anonymous function
 // that takes integer value
 var anon_func func(int)
 // defining the anonymous
 // function that prints the numbers from x to 1
 anon_func = func(number int) {
 // the base case
 if number == 0 {
 return
 } else {
 fmt.Println(number)
 // calling anonymous function
recursively
 anon_func(number-1)
 }
 }
 // call to anonymous recursive function
 anon_func(5)
}

Second example:

// Program which illustrates the
// concept of recover
package main
import (
 "fmt"
)
// This function handles panic
// occur in the entry function
// with help of the recover function
func handlepanic() {
 if x := recover(); x != nil {

168    ◾    Mastering GoLang: A Beginner’s Guide

 fmt.Println("RECOVER", x)
 }
}
// Function
func entry(lang *string, aname *string) {
 // the Deferred function
 defer handlepanic()

 // When value of lang is nil it will panic
 if lang == nil {
 panic("Error: The Language cannot be nil")
 }
 // When value of aname
 // is nil it will panic
 if aname == nil {
 panic("Error: The Author name cannot be
nil")
 }
 fmt.Printf("The Author Language: %s \n Author
Name: %s\n", *lang, *aname)
 fmt.Printf("The Return successfully from entry
function")
}
// the main function
func main() {
 A_lang := "GO-Language"
 entry(&A_lang, nil)
 fmt.Printf("The Return successfully from main
function")
}

Third example:

// Program which illustrates
// the recover in a goroutine
package main
import (
 "fmt"
 "time"
)
// For the recovery
func handlepanic() {
 if x := recover(); x != nil {

Functions and Recursion    ◾    169

 fmt.Println("RECOVER", x)
 }
}
/* Here, this panic is not handled by recover
 function because of recover function is not
 called in the same goroutine in which
 panic occurs */
// the Function 1
func myfun1() {
 defer handlepanic()
 fmt.Println("Welcome to the Function1")
 go myfun2()
 time.Sleep(10 * time.Second)
}
// the Function 2
func myfun2() {
 fmt.Println("Welcome to Function2")
 panic("Panicked!!")
}
// the main function
func main() {
 myfun1()
 fmt.Println("The Return successfully from main
function")
}

We covered Function in this chapter, where we talked about returning
multiple values, variadic functions, and closure. We also spoke about
recursion, defer, panic, and recovery.

http://taylorandfrancis.com

171DOI: 10.1201/9781003310457-8

C h a p t e r 8

Pointers

IN THIS CHAPTER

➢➢ The * and & operators

➢➢ New

In Chapter 7, we covered Functions, Closure, and Recursion. We also dis-
cussed Defer, Panic, and Recover. In this chapter, we will discuss * and &
pointers.

GoLang POINTERS
Pointers are variables in the Go programming language, or GoLang used
to hold the memory address of another variable. Pointers are also known
as special variables in GoLang. The variables are used to store data in the
system at a specific memory address. Memory addresses are always in
hexadecimal format (starting with 0x like 0xFFAAF etc.).

What Is the Purpose of a Pointer?

To understand this need, we must first grasp the idea of variables.
Variables are the names assigned to memory locations where actual data
is stored. To retrieve the stored data, we need to know the address of
that specific memory location. Manually remembering all of the memory
locations (Hexadecimal Format) is an overhead, which is why we uti-
lize variables to store data, and variables may retrieve simply by using
their name.

https://doi.org/10.1201/9781003310457-8

172    ◾    Mastering GoLang: A Beginner’s Guide

GoLang also allows us to save a hexadecimal number into a variable
using the literal expression, which means that any number beginning with
0x is a hexadecimal number.

Example: In the following program, we save the hexadecimal number
in a variable. However, we can see that the value type is int, and it is
saved as a decimal value, or we may say that the decimal value of type
int is storing. But the essential point of this example is that we are stor-
ing a hexadecimal value, but it is not a pointer because it is not referring
to another variable’s memory location. It is simply a variable that the
user has specified. As a result, pointers are required.

// Program to demonstrate the variables
// storing hexadecimal values
package main
import "fmt"
func main() {
 // storing hexadecimal
 // values in the variables
 c := 0xFF
 d := 0x9C
 // Displaying values
 fmt.Printf("The Type of variable x is %T\n", c)
 fmt.Printf("The Value of x in hexadecimal is
%X\n", c)
 fmt.Printf("The Value of x in decimal is
%v\n", c)
 fmt.Printf("The Type of variable y is %T\n", d)
 fmt.Printf("The Value of y in hexadecimal is
%X\n", d)
 fmt.Printf("The Value of y in decimal is
%v\n", d)
}

A pointer is a kind of variable that contains the memory addresses of other
variables and points where the memory is located and gives methods for
determining the value stored at that memory location. It is sometimes
referred to as a Special Type of Variable since it is virtually exactly speci-
fied as a variable but with * (dereferencing operator).

Pointers    ◾    173

Declaration and Initialization of Pointers

Before we begin, two key operators will use in pointers, namely:

•	 The ‘*’ dereferencing operator, commonly known as the pointer vari-
able operator, is used to define a pointer variable and access the value
contained in the address.

•	 The & operator, also known as the address operator, is used to return
a variable’s address or retrieve a variable’s address through a pointer.

Declaring a Pointer

var pointername *Data_Type

As an example, consider the following string pointer, which can only con-
tain the memory addresses of string variables.

var st *string

Pointer Initialization
To do this, use the address operator to initialize a pointer with the memory
address of another variable, as shown in the following example:

// the normal variable declaration
var x = 45
// Initialization of pointer st with
// the memory address of variable x
var st *int = &x

Example:

// program to demonstrate declaration and
// initialization of pointers
package main
import "fmt"
func main() {
 // taking normal variable
 var a int = 4798
 // the declaration of pointer
 var b *int
 // the initialization of pointer

174    ◾    Mastering GoLang: A Beginner’s Guide

 b = &a

 // displaying result
 fmt.Println("The Value stored in a = ", a)
 fmt.Println("The Address of a = ", &a)
 fmt.Println("The Value stored in variable b =
", b)
}

Important Considerations

1.	A pointer’s default or zero-value is always nil. Alternatively, an unini-
tialized pointer will always have a nil value.

Example:

// Program to demonstrate the
// nil value of the pointer
package main
import "fmt"
func main() {
 // taking pointer
 var st *int
 // displaying result
 fmt.Println("st = ", st)
}

2.	The pointers’ declaration and initialization can be done in a single
line.

Example:

var st *int = &x

3.	If we mention the data type in addition to the pointer declaration,
the pointer will be able to handle the memory location of the speci-
fied data type variable. For example, if we take a pointer of string
type, the address of the variable we give to a pointer will only be of
string data type variable, not any other kind.

4.	To avoid the issue above, we can use the var keyword’s Type
Inference idea. The data type does not need to be specified during

Pointers    ◾    175

the declaration. The compiler may determine the type of a pointer
variable in the same way that the type of a regular variable can. We
will not utilize the * operator in this case. It will be determined inter-
nally by the compiler as we initialize the variable using the address
of another variable.

Example:

// Program to demonstrate the
// use of type inference in
// the pointer variables
package main
import "fmt"
func main() {
 // using the var keyword
 // we are not defining any type with the
variable
 var x = 328
 // taking pointer variable using
 // the var keyword without specifying the type
 var a = &x
 fmt.Println("The Value stored in x = ", x)
 fmt.Println("The Address of x = ", &x)
 fmt.Println("The Value stored in pointer
variable a = ", a)
}

5.	We may alternatively define and initialize the pointer variables using
the shorthand (:=) syntax. If we pass the variable’s address to it using
the &(address) operator, the compiler will internally determine a
pointer variable.

Example:

// program to demonstrate the
// use of shorthand syntax in Pointer variables
package main
import "fmt"
func main() {
 // using the := operator to declare and
 // initialize the variable
 x := 328

176    ◾    Mastering GoLang: A Beginner’s Guide

 // taking pointer variable using
 // := by assigning it with
 // the address of variable y
 a := &x
 fmt.Println("The Value stored in x = ", x)
 fmt.Println("The Address of x = ", &x)
 fmt.Println("The Value stored in pointer
variable a = ", a)
}

Dereferencing Pointer

The * operator is also known as the dereferencing operator. It is used not
only to specify the pointer variable, but also to access the value of a variable
to which the pointer points, a process known as indirecting or dereferenc-
ing. The value at the location is sometimes referred to as the * operator.
Let’s look at an example to help us comprehend this concept:

// Program to illustrate
// the concept of dereferencing a pointer
package main
import "fmt"
func main() {
 // using the var keyword
 // we are not defining any type with the variable
 var x = 328
 // taking pointer variable using
 // the var keyword without specifying the type
 var a = &x
 fmt.Println("The Value stored in x = ", x)
 fmt.Println("The Address of x = ", &x)
 fmt.Println("The Value stored in pointer variable
a = ", a)
 // this is dereferencing a pointer
 // using * operator before the pointer
 // variable to access value stored at the variable
at which it is pointing
 fmt.Println("The Value stored in y(*a) = ", *a)
}

Instead of assigning new value to the variable, we can alter the value of the
pointer or memory location.

Pointers    ◾    177

Example:

// Program to illustrate the above mentioned
concept
package main
import "fmt"
func main() {
 // using the var keyword
 // we are not defining any type with the variable
 var x = 458
 // taking pointer variable using
 // the var keyword without specifying the type
 var a = &x
 fmt.Println("The Value stored in y before
changing = ", x)
 fmt.Println("The Address of x = ", &x)
 fmt.Println("The Value stored in pointer
variable a = ", a)
 // this is dereferencing pointer
 // using the * operator before pointer
 // variable to access value stored at the
variable at which it is pointing
 fmt.Println("The Value stored in x(*a) Before
Changing = ", *a)
 // changing the value of x by assigning
 // the new value to the pointer
 *a = 500
 fmt.Println("Value stored in x(*a) after
Changing = ",x)
}

In GoLang, How Can We Instantiate a Struct Using
the New Keyword?

A struct mainly serves as a container for all other data types. We can easily
manipulate/access the data allocated to a struct by utilizing a reference to a
struct. In GoLang, we may create struct using the new keyword as well as
the Pointer Address Operator, as seen in the following example.

Example: In this case, we can see that we are instantiating a struct with
the new keyword.

// Program to show how to instantiate struct
// using new keyword

178    ◾    Mastering GoLang: A Beginner’s Guide

package main

import "fmt"
type emp struct {
 name string
 empid int
 salary int
}
func main() {
 // emp1 is a pointer to an instance of emp
 // using the new keyword
 emp1 := new(emp)
 emp1.name = "ABC"
 emp1.empid = 2325
 emp1.salary = 37000
 fmt.Println(emp1)
 // emp2 is an instance of emp
 var emp2 = new(emp)
 emp2.name = "XYZ"
 emp2.salary = 40000
 fmt.Println(emp2)
}

POINTERS TO A FUNCTION
Pointers are variables in the Go programming language, or GoLang used
to hold the memory address of another variable. We may also pass point-
ers to the function in the same way variables are. There are two ways to
accomplish this.

Create a Pointer and Pass It to the Function

We use a function ptf with an integer type pointer parameter in the fol-
lowing program, instructing the function to accept only pointer type
arguments. This function essentially modified the value of the variable y.
At the start, y has the value 200. However, following the function call, the
value changed to 638, as seen in the output.

// Program to create a pointer and
// passing it to the function
package main
import "fmt"
// taking function with integer

Pointers    ◾    179

// the type pointer as an parameter
func ptf(b *int) {
 // dereferencing
 *b = 638
}
 // the main function
func main() {
 // taking normal variable
 var y = 200
 fmt.Printf("Value of y before function call
is: %d\n", y)
 // taking pointer variable and
 // assigning the address
 // of y to it
 var pb *int = &y
 // calling tfunction by
 // passing the pointer to function
 ptf(pb)

 fmt.Printf("Value of y after function call is:
%d\n", y)
}

Passing an Address of the Variable to Function Call

In the following program, we do not create a pointer to hold the address of
the variable y, as we did in the previous program. We are directly passing
the address of y to the function call, which works in the same way as the
previously stated manner.

// Program to create a pointer and
// passing address of the variable to the function
package main
import "fmt"
// taking function with integer
// the type pointer as an parameter
func ptf(b *int) {
 // dereferencing
 *b = 638
}
// the main function
func main() {

180    ◾    Mastering GoLang: A Beginner’s Guide

 // taking normal variable
 var y = 200
 fmt.Printf("Value of y before function call is:
%d\n", y)
 // calling the function by
 // passing address of
 // the variable y
 ptf(&y)
 fmt.Printf("Value of y after function call is:
%d\n", y)
}

Note: The variables and pointers in the preceding programs can also be
declared using the short declaration operator(:=).

POINTER TO A STRUCT
A pointer is variable that stores memory address of another variable.
Pointers are also known as special variables in GoLang. The variables are
used to store data in the system at a specific memory address.

A pointer to a struct can also use. In GoLang, a struct is a user-defined
type that allows us to group/combine elements of possibly diverse kinds
into a single type. To utilize a pointer to a struct, use the & operator, also
known as the address operator. GoLang allows programmers to use point-
ers to access the fields of a structure without explicitly dereferencing it.

First example: We will make a structure called Employee that con-
tains two variables. Create an instance of the struct, i.e., emp, in the
main function. Following that, we may send the struct’s address to the
pointer, which represents the pointer to the struct idea. There is no need
to explicitly use dereferencing because it will provide the same effect as
shown in the following program:

// Program to illustrate
// the concept of the Pointer to struct
package main
import "fmt"
// taking structure
type Employee struct {

 // taking the variables
 name string

Pointers    ◾    181

 empid int
}
// the main Function
func main() {
 // creating instance of the Employee struct type
 emp := Employee{"XYZ", 17028}
 // Here, it is the pointer to struct
 pts := &emp
 fmt.Println(pts)
 // accessing struct fields using pointer
 // but here we are not using
 // the dereferencing explicitly
 fmt.Println(pts.name)
 // same as above by explicitly using the
 // dereferencing concept means
 // the result will be the same
 fmt.Println((*pts).name)
}

Second example: We may also use the pointer to change the values
of structure members or structure literals, as seen in the following
program:

// Program to illustrate
// the concept of Pointer to struct
package main

import "fmt"
// taking structure
type Employee struct {
 // taking the variables
 name string
 empid int
}
// the main Function
func main() {
 // creating instance of the
 // Employee struct type
 emp := Employee{"XYZ", 12038}
 // Here, it is the pointer to struct
 pts := &emp
 // displaying values
 fmt.Println(pts)

182    ◾    Mastering GoLang: A Beginner’s Guide

 // updating value of name
 pts.name = "ABC"
 fmt.Println(pts)
}

POINTER TO POINTER (DOUBLE POINTER) IN Go
Pointers are variables in the Go programming language, or GoLang used
to hold the memory address of another variable. Because a pointer is a spe-
cial variable, it may point to any variable, even another pointer. Essentially,
this appears to be a chain of pointers. When we define a pointer to a pointer,
the first pointer stores the address of the second pointer. Double Pointers is
another name for this concept.

How to Declare a Pointer to a Pointer

Declaring a pointer to a pointer is the same as declaring a pointer in Go.
The distinction is that we must put an additional ‘*’ before the pointer’s
name. This is usually done when we declare the pointer variable using the
var keyword and the type. The following examples and illustration will
illustrate the concept much better.

First example: In the following program, the pointer pt2 saves the loca-
tion of the pointer pt1. Dereferencing pt2, i.e., *pt2, returns the address
of variable V, or the value of pointer pt1. If we attempt **pt2, you will get
the value of the variable V, which is 200.

// Program to illustrate
// the concept of the Pointer to Pointer
package main
import "fmt"
// the main Function
func main() {
 // taking variable
 // of the integer type
 var V int = 200
 // taking a pointer
 // of integer type
 var pt1 *int = &V
 // taking pointer to
 // pointer to pt1
 // storing the address

Pointers    ◾    183

 // of pt1 into pt2
 var pt2 **int = &pt1
 fmt.Println("Value of Variable V is = ", V)
 fmt.Println("The Address of variable V is = ",
&V)

 fmt.Println("Value of pt1 is = ", pt1)
 fmt.Println("The Address of pt1 is = ", &pt1)
 fmt.Println("Value of pt2 is = ", pt2)
 // Dereferencing pointer to pointer
 fmt.Println("The Value at the address of pt2
is or *pt2 = ", *pt2)
 // double pointer will give the value of
variable V
 fmt.Println("*(The Value at the address of pt2
is) or **pt2 = ", **pt2)
}

Second example: Let’s make some changes to the preceding program.
Assigning a new value to pointers by modifying their values using
dereferencing, as seen in the following program:

// Program to illustrate
// the concept of Pointer to Pointer
package main
import "fmt"
// the main Function
func main() {
 // taking variable
 // of the integer type
 var v int = 200
 // taking pointer
 // of the integer type
 var pt1 *int = &v
 // taking pointer to
 // the pointer to pt1
 // storing address
 // of pt1 into pt2
 var pt2 **int = &pt1
 fmt.Println("Value of Variable v is = ", v)
 // changing value of v by assigning
 // new value to the pointer pt1

184    ◾    Mastering GoLang: A Beginner’s Guide

 *pt1 = 400
 fmt.Println("The Value stored in v after
changing pt1 = ", v)
 // changing value of v by assigning
 // the new value to the pointer pt2
 **pt2 = 600
 fmt.Println("The Value stored in v after
changing pt2 = ", v)
}

COMPARING POINTERS
Pointers are variables in the Go programming language, or GoLang used
to hold the memory address of another variable. Pointers are also known
as special variables in GoLang. The variables are used to store data in the
system at a specific memory address. Memory addresses are always in
hexadecimal format (starting with 0x like 0xFFAAF etc.).

In the Go programming language, we may compare two pointers. Two
pointer values are only identical if they point to the same memory location
or if they are nil. We may compare pointers using the == and != operators
given by the Go programming language:

1.	== operator: Returns true if both pointers point to the same vari-
able. Alternatively, if both pointers refer to different variables, return
false.

Syntax:

pointer_1 == pointer_2

Example:

// program to illustrate
// the concept of comparing two pointers
package main
import "fmt"
func main() {
 val1 := 5325
 val2 := 469
 // Creating, initializing pointers
 var p1 *int

Pointers    ◾    185

 p1 = &val1
 p2 := &val2
 p3 := &val1
 // Comparing the pointers with each other
 // Using == operator
 res1 := &p1 == &p2
 fmt.Println("Is p1 pointer is equal to the p2
pointer: ", res1)
 res2 := p1 == p2
 fmt.Println("Is p1 pointer is equal to the p2
pointer: ", res2)
 res3 := p1 == p3
 fmt.Println("Is p1 pointer is equal to the p3
pointer: ", res3)
 res4 := p2 == p3
 fmt.Println("Is p2 pointer is equal to the p3
pointer: ", res4)
 res5 := &p3 == &p1
 fmt.Println("Is p3 pointer is equal to the p1
pointer: ", res5)
}

2.	 != operator: If both pointers refer to the same variable, this opera-
tor returns false. Instead, if both pointers refer to separate variables,
return true.

Syntax:

pointer_1 != pointer_2

Example:

// Program to illustrate
// the concept of comparing two pointers
package main
import "fmt"
func main() {
 val1 := 22459
 val2 := 467
 // Creating, initializing pointers
 var p1 *int
 p1 = &val1

186    ◾    Mastering GoLang: A Beginner’s Guide

 p2 := &val2
 p3 := &val1
 // Comparing the pointers with each other
 // Using the != operator
 res1 := &p1 != &p2
 fmt.Println("Is p1 pointer not equal to the p2
pointer: ", res1)

 res2 := p1 != p2
 fmt.Println("Is p1 pointer not equal to the p2
pointer: ", res2)
 res3 := p1 != p3
 fmt.Println("Is p1 pointer not equal to the p3
pointer: ", res3)
 res4 := p2 != p3
 fmt.Println("Is p2 pointer not equal to the p3
pointer: ", res4)
 res5 := &p3 != &p1
 fmt.Println("Is p3 pointer not equal to the p1
pointer: ", res5)
}

This chapter covered * and & operators and new operator in pointers.

187DOI: 10.1201/9781003310457-9

C h a p t e r 9

Structs and Interfaces

IN THIS CHAPTER

➢➢ Structs

➢➢ Methods

➢➢ Interfaces

In Chapter 8, we covered pointers, and in this chapter, we will discuss
structs, methods, and interfaces.

GoLang STRUCTURES
In GoLang, a structure or struct is a user-defined type that allows us to
group/combine elements of possibly diverse kinds into a single type. A
struct can represent any real-world thing with a collection of properties/
fields. In general, this idea is related to classes in object-oriented program-
ming. It is a lightweight class that does not support inheritance but sup-
ports composition.

An address, for example, includes a name, street, city, state, and Pin
code. As seen below, it makes logical to combine all three characteristics
into a single structure address.

Declaring a structure:

type Address struct {
 name string
 streetno string
 city string

https://doi.org/10.1201/9781003310457-9

188    ◾    Mastering GoLang: A Beginner’s Guide

 state string
 Pin-code int
}

The type keyword adds a new type in the preceding code. It is followed by
the type name (Address) and the keyword struct, indicating that we define
a struct. Within the curly braces, the struct has a list of several fields. Each
field has a name as well as a kind.

Nota bene: We may also make them more compact by combining many
fields of the same kind, as demonstrated in the following example:

type Address struct {
 name, streetno, city, state string
 Pin-code int
}

To define a structure:
The syntax for declaring a structure is stated below:

var x Address

The above code creates a variable of type Address, which is initially initial-
ized to zero. Zero indicates that all fields have been set to their correspond-
ing zero value for a struct. So, the fields name, street no., city, and state are
all set to " " and the field Pin-code is set to 0.

We may also use a struct literal to initialize a variable of a struct type,
as illustrated below:

var x = Address{"Abishek", "PritamNagar", "Delhi",
"Noida", 293616}

Note:

•	 Remember to pass the field values in the same order specified in the
struct. Furthermore, it is difficult to use the approach above to ini-
tialize only a subset of fields.

•	 Go also provides the name: value syntax (the order of fields is irrel-
evant when using this syntax). As a result, we can only initialize a
subset of the fields. All uninitialized fields are set to their default
value of zero.

Structs and Interfaces    ◾    189

Example:

var x = Address{Name:"Abhishek",
streetno:"PritamNagar", state:"Delhi", Pin-code:
293616} //city:""

// Program to show how to
// declare and define struct
package main
import "fmt"
// Defining struct type
type Address struct {
 Name string
 city string
 Pin-code int
}
func main() {
 // Declaring variable of a 'struct' type
 // All the struct fields are initialized with
their zero value
 var x Address
 fmt.Println(x)
 // Declaring and initializing a
 // struct using struct literal
 x1 := Address{"Anisha", "Delhi", 3663272}
 fmt.Println("Address1: ", x1)
 // Naming fields while
 // initializing a struct
 x2 := Address{Name: "Abhishek", city: "Balli",
 Pincode: 287011}
 fmt.Println("Address2: ", x2)
 // Uninitialized fields are set to
 // their corresponding zerovalue
 x3 := Address{Name: "Amritsar"}
 fmt.Println("Address3: ", x3)
}

How Can We Get to Struct Fields?

We must use the dot (.) operator to access specific fields of a struct.

Example:
// program to show how to
// access fields of struct

190    ◾    Mastering GoLang: A Beginner’s Guide

package main
import "fmt"
 // defining struct
type Car struct {
 Name, Modelno, Color string
 WeightinKg float64
}
// the main Function
func main() {
 x := Car{Name: "BMW", Modelno: "BTC2",
 Color: "Black", WeightinKg: 1720}
 // Accessing the struct fields
 // using dot operator
 fmt.Println("Car Name: ", x.Name)
 fmt.Println("Car Color: ", x.Color)
 // Assigning a new value
 // to a struct field
 x.Color = "White"
 // Displaying result
 fmt.Println("Car: ", x)
}

Pointers to a Struct

Pointers are variables in the Go programming language, or GoLang used
to hold the memory address of another variable. As seen in the following
example, we can also build a reference to a struct:

// Program to illustrate
// pointer to the struct
package main
import "fmt"
// defining structure
type Employee struct {
 first-name, last-name string
 age, salary int
}
func main() {
 // passing address of the struct variable
 // empy is a pointer to the Employee struct
 empy := &Employee{"Samrit", "Anders", 35, 7000}
 // (*empy).first-name is the syntax to access
 // the first-name field of the empy struct

Structs and Interfaces    ◾    191

 fmt.Println("First Name:", (*empy).first-name)
 fmt.Println("Age:", (*empy).age)
}

We may use empy.first-name instead of the explicit dereference (*empy) in
GoLang. To access the first-name field, type first-name. The following is an
example to demonstrate this:

// Program to illustrate the
// pointer to the struct
package main

import "fmt"
// Defining structure
type Employee struct {
 first-name, last-name string
 age, salary int
}
// the main Function
func main() {
 // taking pointer to the struct
 empy := &Employee{"Samrit", "Anders", 59, 7000}
 // empy.first-name is used to access
 // the field first-name
 fmt.Println("First Name: ", empy.first-name)
 fmt.Println("Age: ", empy.age)
}

GoLang’s NESTED STRUCTURE
A structure, also known as a struct in GoLang, is a user-defined type that
allows us to group items of multiple kinds into a single unit. A struct can
represent any real-world thing with various attributes or fields. The Go
programming language supports nested structures. A nested structure is
a structure that is the field of another structure. A nested structure is a
structure that is enclosed within another structure.

Syntax:

type structname1 struct{
 // Fields
}

192    ◾    Mastering GoLang: A Beginner’s Guide

type structname2 struct{
 variablename structname1
}

Let’s look at a few instances to assist us to understand this concept:

First example:

// Program to illustrate the
// nested structure
package main
import "fmt"
// Creating the structure
type Author struct {
 name string
 branchno string
 year int
}
// Creating the nested structure
type HR struct {
 // structure as field
 details Author
}
func main() {
 // Initializing fields
 // of the structure
 results := HR{
 details: Author{"Sonali", "EDE", 2014},
 }
 // Display values
 fmt.Println("\nDetails of the Author")
 fmt.Println(results)
}

Second example:

// Program to illustrate the
// nested structure
package main
import "fmt"
// Creating the structure
type Students struct {

Structs and Interfaces    ◾    193

 name string
 branchno string
 year int
}
// Creating the nested structure
type Teachers struct {
 name string
 subject string
 expr int
 details Students
}
func main() {
 // Initializing fields
 // of the structure
 results := Teachers{
 name: "Sunita",
 subject: "PHP",
 expr: 2,
 details: Student{"Rahil", "CDE", 4},
 }
 // Display the values
 fmt.Println("Details of the Teachers")
 fmt.Println("Teacher's name: ", results.name)
 fmt.Println("Subject: ", results.subject)
 fmt.Println("Experience: ", results.exp)
 fmt.Println("\nDetails of Students")
 fmt.Println("Student's name: ", results.
details.name)
 fmt.Println("Student's branch name: ",
results.details.branch)
 fmt.Println("Year: ", results.details.year)
}

GoLang’s ANONYMOUS STRUCTURE AND FIELD
A structure, also known as a struct in GoLang, is a user-defined type that
allows us to organize items of multiple kinds into a single unit. A struct
can represent any real-world thing with a collection of attributes or fields.

Anonymous Structure

In the Go programming language, we may build an anonymous struc-
ture. An anonymous building does not have a name. It is useful to create

194    ◾    Mastering GoLang: A Beginner’s Guide

a structure that will only use once. Use the following syntax to create an
anonymous structure:

variablename := struct{
// fields
}{// Fieldvalues}

Let us illustrate this notion with an example:

// Program to illustrate
// the concept of anonymous structure
package main
import "fmt"
// the main function
func main() {
 // Creating, initializing
 // anonymous structure
 Elements := struct {
 name string
 branch string
 language string
 Particles int
 }{
 name: "Pihu",
 branch: "ECE",
 language: "C#",
 Particles: 298,
 }
 // Display anonymous structure
 fmt.Println(Element)
}

Anonymous Fields

We may build anonymous fields in a Go structure. Anonymous fields do
not have a name; instead, we specify the field type, and Go will use the
type as the field’s name. The structure’s anonymous fields may be created
using the following syntax:

type structname struct{
 int
 bool
 float64
}

Structs and Interfaces    ◾    195

Important Notes:

•	 It is not permitted to create two or more fields of the same type in a
structure, as seen below:

type students struct{
int
int
}

If we attempt to do so, the compiler will generate an error.

•	 It is permissible to combine anonymous and named fields, as dem-
onstrated below:

type students struct{
 name int
 prices int
 string
}

Below is an example to explain the anonymous field concept:

// Program to illustrate
// the concept of anonymous structure
package main
import "fmt"
// Creating structure
// with the anonymous fields
type students struct {
 int
 string
 float64
}
// the main function
func main() {
 // Assigning the values to anonymous
 // fields of the students structure
 value := students{143, "Sud", 8200.21}
 // Display values of the fields
 fmt.Println("Enrollment number : ", value.int)
 fmt.Println("Student name : ", value.string)
 fmt.Println("Package price : ", value.float64)
}

196    ◾    Mastering GoLang: A Beginner’s Guide

GoLang METHODS
Methods for Go language support Go methods are identical to Go func-
tions with one exception: the method includes a receiver parameter. The
method can access the receiver’s properties with the aid of the receiver
argument. The receiver can be of either struct or non-struct type in this
case. When we write code, the receiver and receiver type must be in the
same package. Furthermore, we are not permitted to write a method whose
receiver type is already specified in another package, including inbuilt
types such as int, string, and so on. If we attempt to do so, the compiler
will generate an error.

Syntax:

func(reciver-name Type) method-name(parameter-
list)(return-type){
// Code
}

Within the method, the receiver may access.

Method with the Struct Type Receiver

We may construct a method whose receiver is of the struct type in the Go
programming language. This receiver is available within the method, as
seen in the following example:

// Program to illustrate
// the method with struct type receiver
package main
import "fmt"
// the author structure
type author struct {
 name string
 branch string
 particles int
 salary int
}
// Method with a receiver of author type
func (x author) show() {
 fmt.Println("Author's Name: ", x.name)
 fmt.Println("Branch Name: ", x.branch)
 fmt.Println("Published articles: ", x.particles)

Structs and Interfaces    ◾    197

 fmt.Println("Salary: ", x.salary)
}
// the main function
func main() {
 // Initializing values
 // of the author structure
 rest := author{
 name: "Monika",
 branch: "CDE",
 particles: 204,
 salary: 37000,
 }
 // Calling method
 rest.show()
}

Method with the Non-Struct Type Receiver

In Go, we may define a method with a non-struct type receiver as long
as the type and method declarations are in the same package. If they are
present in many packages, such as int, string, and so on, the compiler will
generate an error because they are defined in multiple packages.

Example:

// Program to illustrate method
// with the non-struct type receiver
package main
import "fmt"
// Type definition
type data int
// Defining method with
// the non-struct type receiver
func (c1 data) multiply(c2 data) data {
 return c1 * c2
}
/*
// if you try to run this code,
// then compiler will throw an error
func(c1 int)multiply(c2 int)int{
return c1 * c2
}

198    ◾    Mastering GoLang: A Beginner’s Guide

*/
// Main function
func main() {
 value1 := data(43)
 value2 := data(26)
 rest := value1.multiply(value2)
 fmt.Println("Final result: ", rest)
}

Methods with the Pointer Receiver

A method with a pointer recipient is permitted in the Go programming
language. If a modification is made to the method using a pointer receiver,
it will be reflected in the caller, which is not feasible with value receiver
methods.

Syntax:

func (p *Type) method-name(...Type) Type {
// Code
}

Example:

// Program to illustrate pointer receiver
package main
import "fmt"
// the author structure
type author struct {
 name string
 branch string
 particles int
}
// Method with a receiver of the author type
func (x *author) show(abranch string) {
 (*x).branch = abranch
}
// the main function
func main() {
 // Initializing values
 // of the author structure
 rest := author{

Structs and Interfaces    ◾    199

 name: "Shona",
 branch: "CDE",
 }
 fmt.Println("Author's name: ", rest.name)
 fmt.Println("Branch Name(Before): ", rest.
branch)
 // Creating pointer
 p := &rest
 // Calling show method
 p.show("ERE")
 fmt.Println("Author's name: ", rest.name)
 fmt.Println("Branch Name(After): ", rest.
branch)
}

Method Can Accept Both the Pointer and the Value

As we all know, when a function has a value argument, it will only
take the values of the parameter, and if we try to give a pointer to a
value function, it will reject it, and vice versa. On the other hand, a Go
method can accept both a value and a pointer, depending on whether it
is specified with a pointer or a value receiver. As illustrated in the fol-
lowing example:

// Program to illustrate how
// the method can accept pointer and value
package main
 import "fmt"
// Author structure
type author struct {
 name string
 branch string
}
// Method with pointer
// receiver of author type
func (x *author) show_1(abranch string) {
 (*x).branch = abranch
}
 // Method with a value
// receiver of author type
func (x author) show_2() {
 x.name = "Gautam"

200    ◾    Mastering GoLang: A Beginner’s Guide

 fmt.Println("Author's name(Before) : ", x.name)
}
// the main function
func main() {

 // Initializing values
 // of the author structure
 rest := author{
 name: "Sonika",
 branch: "CSA",
 }
 fmt.Println("Branch Name(Before): ", rest.
branch)
 // Calling show_1 method
 // (pointer method) with the value
 res.show_1("ECE")
 fmt.Println("Branch Name(After): ", rest.
branch)
 // Calling show_2 method
 // (value method) with a pointer
 (&rest).show_2()
 fmt.Println("Author's name(After): ", res.namet)
}

Difference between the Method and the Function

Method Function

It includes a receiver. It does not include a receiver.
In the program, methods with the
same name but various kinds might
define.

The program does not define functions with
the same name but distinct types.

It cannot use to create a first-order
object.

It may be used as a first-order object and can
be passed.

INTERFACES
The interfaces of the Go language differ from those of other languages. The
interface is a special type in Go used to express a set of one or more method
signatures. The interface is abstract, thus we cannot make an instance of
it. However, we are permitted to establish an interface type variable that
may be assigned with a concrete type value that has the methods required
by the interface. In other words, the interface is both a set of methods and
a custom type.

Structs and Interfaces    ◾    201

How Do We Make an Interface?

In the Go programming language, we can define an interface with the fol-
lowing syntax:

type interfacename interface{
// Method-signatures
}

Example:

// Creating interface
type myinterface interface{

// Methods
func1() int
func2() float64
}

The interface name is enclosed by the type and interface keywords, while
curly brackets enclose the method signatures.

How to Implement Interfaces

In order to implement an interface in the Go language, all of the meth-
ods specified in the interface must implement. The interfaces for the Go
programming language are implemented implicitly. And, unlike other
languages, it lacks a specific term for implementing an interface. As illus-
trated in the following example.

Example:

// Program illustrates how
// to implement interface
package main

202    ◾    Mastering GoLang: A Beginner’s Guide

import "fmt"
// Creating interface
type tank interface {
 // Methods
 Tarea() float64
 Volume() float64
}
type myvalue struct {
 radius float64
 height float64
}
// Implementing methods of t
ank interface
func (m myvalue) Tarea() float64
{
 return 2*m.radius*m.height +
 2*3.14*m.radius*m.radius
}
func (m myvalue) Volume() float64
{
 return 3.14 * m.radius * m.radius * m.height
}
// the main Method
func main() {

 // Accessing elements of the
 // tank interface
 var tk tank
 tk = myvalue{10, 14}
 fmt.Println("The Area of tank :", tk.Tarea())
 fmt.Println("The Volume of tank:",
tk.Volume())
}

Important Notes:

•	 The interface’s zero value is nil.

•	 When an interface includes no methods, it is referred to as an empty
interface. As a result, all types implement the empty interface.

Syntax:

interface{}

Structs and Interfaces    ◾    203

•	 Interface Types: There are two types of interfaces: static interfaces
and dynamic interfaces. The static type is the interface itself, such
as tank in the example below. However, because the interface lacks a
static value, it always points to the dynamic values.

A variable of the interface type contains the value of the type that
implements the interface; hence, the value of that type is known as
dynamic value, and the type is the dynamic type. It’s also referred to
as concrete value and concrete type.

Example:

// Program to illustrate concept
// of the dynamic values and types
package mainimport "fmt"
// Creating interface
type tank interface {

 // Methods
 Tarea() float64
 Volume() float64
}
func main() {
 var tk tank
 fmt.Println("The Value of the tank interface
is: ", tk)
 fmt.Printf("The Type of the tank interface is:
%T ", tk)
}

In the example, we have an interface called a tank. In this exam-
ple, fmt.Println("The Value of the tank interface is: ", tk) returns the
interface’s dynamic value, whereas fmt.Printf("The Type of the tank
interface is: percent T ", tk) returns the dynamic type, which is nil
because the interface does not know who is implementing it.

•	 Type Assertions: A type assertion in Go is an operation performed
on the value of an interface. In other words, type assertion is a proce-
dure for extracting the interface’s values.

Syntax:

a.(T)

204    ◾    Mastering GoLang: A Beginner’s Guide

In this case, a is the interface’s value or expression, and T is the type,
sometimes known as the asserted type. The type assertion is used to
determine whether or not the dynamic type of its operand matches
the claimed type. If the T is of concrete type, the type assertion veri-
fies that the specified dynamic type of a is equal to the T; if the veri-
fication is successful, the type assertion returns the dynamic value
of a. If the checking fails, the operation will fail. If T is an interface
type, the type assertion tests if the supplied dynamic type of a satis-
fies T; if the checking succeeds, the dynamic value is not extracted.

Example:

// Program to illustrate the
// type assertion
package main
import "fmt"
func myfun(a interface{}) {
 // Extracting the value of a
 vals := a.(string)
 fmt.Println("Value: ", vals)
}
func main() {
 var val interface {
 } = "Helloeveryone"
 myfun(vals)
}

If we alter the val:= a.(string) command in the above example to val:=
a.(int), the program panics. To address this issue, we apply the fol-
lowing syntax:

value, ok := a.(T)

If the type of the a is T, then the value includes the dynamic value
of the a, and ok is set to true. And if the type of the a is not equal to
T, then ok is set to false, and value contains a value of zero, and the
program does not panic. As shown in the following program:

// Program to illustrate the type assertion
package main
import "fmt"
func myfun(a interface{}) {

Structs and Interfaces    ◾    205

 value, ok := a.(float64)
 fmt.Println(value, ok)
}
func main() {
 var a1 interface {
 } = 97.09
 myfun(a1)
 var a2 interface {
 } = "Helloeveryone"
 myfun(a2)
}

•	 Type Switch: A type switch in a Go interface compares the concrete
type of an interface to the numerous types provided in the case state-
ments. It is identical to type assertion with one exception: case speci-
fies types rather than values. A type can also compare to an interface
type. As illustrated in the following example:

// Program to illustrate the type switch
package main
import "fmt"
func myfun(a interface{}) {
 // Using the type switch
 switch a.(type) {
 case int:
 fmt.Println("Type: int, Value:", a.(int))
 case string:
 fmt.Println("\nType: string, Value: ",
a.(string))
 case float64:
 fmt.Println("\nType: float64, Value: ",
a.(float64))
 default:
 fmt.Println("\nType not found")
 }
}
// the main method
func main() {
 myfun("Helloeveryone")
 myfun(59.9)
 myfun(true)
}

206    ◾    Mastering GoLang: A Beginner’s Guide

•	 Use of Interface: We may use interface when we want to pass mul-
tiple sorts of arguments to methods or functions such as the Println
() function. When many types implement the same interface, we may
also use interface.

Why Go Interfaces Are Great

An “interface” in object-oriented programming describes what an object
can accomplish. Typically, this takes the form of a list of methods that an
object to have is required. C #, Java supports interfaces, and the Go pro-
gramming language, although Go’s interfaces are notably simple to use.

We don’t have to declare that a Go type (which functions similarly to a
“class” in other languages) implements an interface, as we would in C# or
Java. We just declare the interface, and then any type that has those meth-
ods may be used anywhere that interface is required.

Redundant Functions
Assume we have a pet package (a “package” is equivalent to a “library” in
other languages) containing Dogs and Cats types. A Dogs has the Fetch
technique, a Cats has the Purr method, and both dogs and cats have the
Walk and Sit methods.

packag pets
import "fmt"
type Dogs struct {
 Name string
 Breed string
}
func (d Dogs) Walk() {
 fmt.Println(d.Name, "walks across room")
}
func (d Dogs) Sit() {
 fmt.Println(d.Name, "sits down")
}
func (d Dogs) Fetch() {
 fmt.Println(d.Name, "fetches toy")
}
type Cats struct {
 Name string
 Breed string
}

Structs and Interfaces    ◾    207

func (c Cats) Walk() {
 fmt.Println(c.Name, "walks across room")
}
func (c Cats) Sit() {
 fmt.Println(c.Name, "sits down")
}
func (c Cats) Purr() {
 fmt.Println(c.Name, "purrs")
}

Now, let’s create an example. Go program that demonstrates what the
Dog and Cat types are capable of. We’ll create a DemoDog function that
takes a Dog and calls the Walk and Sit methods on it. Then, we’ll create a
DemoCat function that accomplishes the same thing for cats.

package main
import "pets"
func DemoDogs(dog pets.Dogs) {
 dog.Walk()
 dog.Sit()
}
func DemoCat(cat pets.Cats) {
 cat.Walk()
 cat.Sit()
}
func main() {
 dog := pets.Dogs{"Fido", "Terrier"}
 cat := pets.Cats{"Fluffy", "Siamese"}
 DemoDogs(dog)
 // call outputs:
 // Fido walks across room
 // Fido sit down
 DemoCat(cat)
 // call outputs:
 // Fluffy walks across room
 // Fluffy sit down
}

Unfortunately, the DemoDogs and DemoCats routines are identical,
except that one takes a Dogs and the other takes Cats. Because we could
alter one function but fail to update the other, repeating code like that
increases the risk of inconsistency. It would be perfect if we could get rid

208    ◾    Mastering GoLang: A Beginner’s Guide

of DemoCats and only give Cats to DemoDogs; however, this would lead
to an error:

DemoDogs(cat)
// ./demo.go:19: cannot use cat (type pets.Cats)
// as type pets.Dogs in argument to DemoDogs

Enter Interface

But we don’t have to keep two almost identical functions simply because
they take different types. This is precisely the problem that interfaces are
created to fulfill.

We’ll create a FourLegged interface with Walk and Sit methods for all
kinds. Then, instead of the DemoDogs and DemoCats functions, we’ll
replace them with a single Demo function that accepts any FourLegged
value (whether it’s a Dogs or a Cats).

package main
import "pets"
// This interface represents any type that has Walk
and Sit methods.
type FourLegged interface {
 Walk()
 Sit()
}
// We can replace DemoDogs and DemoCats
// with this single function.
func Demo(animal FourLegged) {
 animal.Walk()
 animal.Sit()
}
func main() {
 dog := pets.Dogs{"Rido", "Ferrier"}
 cat := pets.Cats{"Pluffy", "Diames"}
 Demo(dog)
 // Above call (again) outputs:
 // Fido walks across room
 // Fido sit down
 Demo(cat)
 // The above call (again) outputs:
 // Fluffy walks across room
 // Fluffy sit down
}

Structs and Interfaces    ◾    209

EMBEDDING INTERFACES
The interface in Go is a collection of method signatures and a type, which
means you may construct a variable of an interface type. Although the Go
language does not enable inheritance, the Go interface does. In embed-
ding, an interface can embed other interfaces or their method signatures,
with the same results as seen in first and second examples. We may embed
an unlimited number of interfaces in a single interface. And when we
embed other interfaces in an interface, if we alter the methods of the inter-
faces, the changes will be reflected in the embedded interface as well, as
illustrated in Example 3.

Syntax:

type interfacename1 interface {
 Method1()
}

type interfacename2 interface {
 Method2()
}
type finalinterfacename interface {
 interfacename1
 interfacename2
}

First example:

// Program to illustrate the concept
// of embedding interfaces
package main
import "fmt"
// Interface 1
type AuthorDetail interface {
 details()
}
// Interface 2
type AuthorArticle interface {
 articles()
}
// Interface 3 embedded with the interface 1 and 2
type FinalDetail interface {
 AuthorDetail

210    ◾    Mastering GoLang: A Beginner’s Guide

 AuthorArticle
}

// Structure
type author struct {
 a_name string
 branch string
 college string
 year int
 salary int
 particles int
 tarticles int
}

// Implementing the method of
// the interface 1
func (a author) details() {
 fmt.Printf("The Author Name: %s", a.a_name)
 fmt.Printf("\nThe Branch: %s and passing year:
%d",
 a.branch, a.year)
 fmt.Printf("\nThe College Name: %s", a.college)
 fmt.Printf("\nThe Salary: %d", a.salary)
 fmt.Printf("\nThe Published articles: %d",
a.particle)
}
// Implementing method of the interface 2
func (a author) articles() {
 pendingarticle := a.tarticle - a.particle
 fmt.Printf("\nPending articles: %d",
pendingarticle)
}
// the main value
func main() {
 // Assigning values to the structure
 values := author{
 a_name: "Ricky",
 branch: "Accounts",
 college: "XYZ",
 year: 2019,
 salary: 40000,
 particle: 107,
 tarticle: 206,

Structs and Interfaces    ◾    211

 }
 // Accessing methods of the interface 1 and 2
 // Using the FinalDetail interface
 var f FinalDetail = values
 f.details()
 f.articles()
}

Explanation: As seen in the preceding example, we have three interfaces.
Interfaces 1 and 2 are basic interfaces, but interface 3 is an embedded
interface containing interfaces 1 and 2. As a result, any changes made in
interfaces 1 and 2 will be reflected in interface 3. And interface 3 has access
to all of the methods available in interfaces 1 and 2.

Second example:

// Program to illustrate concept of embedding
interfaces
package main
import "fmt"
// Interface 1
type AuthorDetail interface {
 details()
}
// Interface 2
type AuthorArticle interface {
 article()
}
// Interface 3 embedded with the interface 1 and
2's methods
type FinalDetail interface {
 detail()
 article()
}
// Structure
type author struct {
 a_name string
 branch string
 college string
 year int
 salary int
 particle int

212    ◾    Mastering GoLang: A Beginner’s Guide

 tarticle int
}
 // Implementing method of the interface 1
func (a author) details() {
 fmt.Printf("The Author Name: %s", a.a_name)
 fmt.Printf("\nThe Branch: %s and passing year:
%d", a.branch, a.year)
 fmt.Printf("\nThe College Name: %s",
a.college)
 fmt.Printf("\nThe Salary: %d", a.salary)
 fmt.Printf("\nThe Published articles: %d",
a.particle)
}
// Implementing method of the interface 2
func (a author) articles() {
 pendingarticle := a.tarticle - a.particle
 fmt.Printf("\nThe Pending articles: %d",
pendingarticle)
}
// the main value
func main() {
 // Assigning the values to structure
values := author{
 a_name: "Ricky",
 branch: "Accounts",
 college: "XYZ",
 year: 2019,
 salary: 40000,
 particle: 107,
 tarticle: 206,
 }
 // Accessing the methods
 // of the interface 1 and 2
 // Using the FinalDetail interface
 var f FinalDetail = values
 f.detail()
 f.article()
}

Explanation: As seen in the preceding example, we have three interfaces.
Interfaces 1 and 2 are basic interfaces, whereas interface 3 is an embed-
ded interface containing method signatures for interfaces 1 and 2. As a

Structs and Interfaces    ◾    213

consequence, any modifications made to interfaces 1 and 2’s methods will
be reflected in interface 3. And interface 3 has access to all of the methods
available in interfaces 1 and 2.

Third example:

// Program to illustrate concept of embedding
interfaces
package main
import "fmt"
// Interface 1
type AuthorDetail interface {
 detail()
}
// Interface 2
type AuthorArticle interface {
 article()
 picked()
}
// Interface 3
// Interface 3 embedded with interface 1's method
and interface 2
// And also contain its own method
type FinalDetail interface {
 detail()
 AuthorArticle
 cdeatil()
}
// Structure
type author struct {
 a_name string
 branch string
 college string
 year int
 salary int
 particle int
 tarticle int
 cid int
 post string
 pick int
}
// Implementing method of the interface 1

214    ◾    Mastering GoLang: A Beginner’s Guide

func (a author) detail() {
 fmt.Printf("The Author Name: %s", a.a_name)
 fmt.Printf("\nThe Branch: %s and passing year:
%d", a.branch, a.year)
 fmt.Printf("\nThe College Name: %s",
a.college)
 fmt.Printf("\nThe Salary: %d", a.salary)
 fmt.Printf("\nThe Published articles: %d",
a.particle)
}
// Implementing methods of the interface 2
func (a author) article() {

 pendingarticle := a.tarticle - a.particle
 fmt.Printf("\nPending articles: %d",
pendingarticle)
}
func (a author) picked() {
 fmt.Printf("\nThe Total number of picked
articles: %d", a.pick)
}
// Implementing the method of the embedded
interface
func (a author) cdeatil() {
 fmt.Printf("\nAuthor Id: %d", a.cid)
 fmt.Printf("\nPost: %s", a.post)
}
// the main value
func main() {
 // Assigning values to structure
 values := author{
 a_name: "Ricky",
 branch: "Accounts",
 college: "XYZ",
 year: 2019,
 salary: 40000,
 particle: 107,
 tarticle: 206,
 cid: 3097,
 post: "Content writer",
 pick: 38,
 }
 // Accessing methods

Structs and Interfaces    ◾    215

 // of the interface 1 and 2
 // Using the FinalDetails interface
 var f FinalDetails = values
 f.detail()
 f.article()
 f.picked()
 f.cdeatil()
}

Explanation: As seen in the preceding example, we have three interfaces.
Interfaces 1 and 2 are basic interfaces, whereas interface 3 is an embedded
interface that contains the method signatures of interfaces 1 and 2 and its
own method. As an outcome, any modifications made to the methods of
interfaces 1 and 2 will be reflected in interface 3. And interface 3 has access
to all of the methods in it, including those in interfaces 1, 2, and its own.

INHERITANCE
One of the most fundamental ideas in object-oriented programming is
inheritance, which involves inheriting the properties of the superclass
into the base class. Because GoLang does not provide classes, inheritance
is accomplished through struct embedding. We cannot directly expand
structs, but must instead employ a notion known as composition, in which
the struct is used to create additional objects. As a result, there is no inher-
itance concept in GoLang.

In composition, base structs can be embedded in a child struct, and the
base struct’s methods can be called directly on the child struct, as demon-
strated in the following examples.

First example:

// Program to illustrate
// the concept of inheritance
package main
import (
 "fmt"
)
// declaring struct
type Comic struct{
 // declaring the struct variable
 Universe string
}

216    ◾    Mastering GoLang: A Beginner’s Guide

// function to return
// universe of comic
func (comic Comic) ComicUniverse() string {
 // returns the comic universe
 return comic.Universe
}
// declaring struct
type Marvel struct{
 // anonymous field,
 // this is composition where the
 // struct is embedded
 Comic
}
// declaring struct
type DC struct{
 // anonymous field
 Comic
}
// the main function
func main() {

 // creating instance
 cs1 := Marvel{
 // child struct can directly access base
struct variables
 Comic{
 Universe: "MCU",
 },
 }
 // child struct can directly access base
struct methods
 // printing base method using child
 fmt.Println("The Universe is:", cs1.
ComicUniverse())
 cs2 := DC{
 Comic{
 Universe : "DC",
 },
 }
 // printing base method using the child
 fmt.Println("The Universe is:", cs2.
ComicUniverse())
}

Structs and Interfaces    ◾    217

Multiple inheritance occurs when a child struct has access to various attri-
butes, fields, and methods of more than one base struct. As seen by the
following code, the child struct embeds all of the base structs:

Second example:

// Program to illustrate
// the concept of multiple inheritances
package main

import (
 "fmt"
)
// declaring first base struct
type first struct{
 // declaring the struct variable
 base_one string
}
// declaring the second base struct
type second struct{
 // declaring the struct variable
 base_two string
}
// function to return first struct variable
func (f first) printBase1() string{
 // returns string of first struct
 return f.base_one
}
// function to return second struct variable
func (s second) printBase2() string{
 // returns string of first struct
 return s.base_two
}
// child struct which embeds both base structs
type child struct{
 // anonymous fields, struct embedding
 // of multiple structs
 first
 second
}
// the main function
func main() {
 // declaring instance

218    ◾    Mastering GoLang: A Beginner’s Guide

 // of child struct
 cs1 := child{
 // child struct can directly access base
struct variables
 first{
 base_one: "In base struct 1.",
 },
 second{
 base_two: "\nIn base struct 2.\n",
 },
 }
 // child struct can directly access base
struct methods
 // printing the base method
 // using the instance of child struct
 fmt.Println(cs1.printBase1())
 fmt.Println(cs1.printBase2())
}

POLYMORPHISM USING INTERFACES
The term polymorphism refers to presence of many forms. Polymorphism,
in other words, is the ability of a message to be displayed in more than one
form. In technical terms, polymorphism refers to the usage of the same
method name (but distinct signatures) for multiple types. A lady, for exam-
ple, might have many characteristics at the same time, for example, a mother,
wife, sister, employee, and so forth. As a result, the same individual exhibits
diverse behavior in different settings. This is known as polymorphism.

We cannot create polymorphism in Go using classes since Go does
not allow classes, but we can achieve it using interfaces. As previously
stated, interfaces are implicitly implemented in Go. So, when we estab-
lish an interface and other kinds want to implement it, those types utilize
the interface with the aid of the interface’s methods without knowing the
type. A variable of an interface type in an interface can hold any value that
implements the interface. In the Go programming language, this charac-
teristic aids interfaces in achieving polymorphism. Let us use an example.

// Program to illustrate the
// concept of polymorphism using the interfaces
package main
import "fmt"

Structs and Interfaces    ◾    219

// Interface
type employee interface {
 develop() int
 name() string
}
// Structure1
type team1 struct {
 totalapp_1 int
 name_1 string
}
// Methods of employee interface
// are implemented by team1 structure
func (tm1 team1) develop() int {
 return tm1.totalapp_1
}
func (tm1 team1) name() string {
 return tm1.name_1
}
// Structure 2
type team2 struct {
 totalapp_2 int
 name_2 string
}
// Methods of the employee interface are
// implemented by team2 structure
func (tm2 team2) develop() int {
 return tm2.totalapp_2
}
func (tm2 team2) name() string {
 return tm2.name_2
}
func finaldevelop(i []employee) {
 totalproject := 0
 for _, ele := range i {
 fmt.Printf("\nThe Project environment = %s\n
", ele.name())
 fmt.Printf("The Total number of project %d\n
", ele.develop())
 totalproject += ele.develop()
 }
 fmt.Printf("\nThe Total projects completed by "+
 "the company = %d", totalproject)
}

220    ◾    Mastering GoLang: A Beginner’s Guide

 // The main function
func main() {
 res1 := team1{totalapp_1: 20,
 name_1: "IOS"}
 res2 := team2{totalapp_2: 35,
 name_2: "Android"}
 final := []employee{res1, res2}
 finaldevelop(final)
}

Explanation: In the above example, an interface name is used as an
employee. This interface has two methods: develop() and name(). The
develop() method returns the total number of projects, while the name()
method returns the name of environment in which they are created.

We now have two structures, team1 and team2. totalapp_1 int, name_1
string, totalapp_2 int, and name_2 string are the fields in both structures.
These structures (team1 and team2) are now implementing the employee
interface methods.

Following that, we write a finaldevelop() method that returns the total
number of projects created by the organization. It takes an argument of a
slice of employee interfaces. It estimates the total number of projects gen-
erated by the firm by iterating through the slice and calling the develop()
function on each of its members. It also shows the project’s environment
by invoking the name() function. Different develop() and name() methods
will be invoked depending on the concrete type of the employee interface.
So, we accomplished polymorphism in the finaldevelop() method.

If you add another team to this program that implements an employee
interface, the finaldevelop() function will determine the total number of
projects created by the firm without regard for polymorphism.

This chapter covered structs definition, declaration of struct, nested and
anonymous structure. We also covered method with the struct and non-
type receiver. Moreover, we learned about interfaces, polymorphism, and
inheritance.

221DOI: 10.1201/9781003310457-10

C h a p t e r 10

Concurrency and
Goroutines

IN THIS CHAPTER

➢➢ Goroutines

➢➢ Channels

In Chapter 9, we discussed structs and interfaces. In this chapter, we will
cover Goroutines and channels.

GOROUTINES – CONCURRENCY IN GoLang
A Goroutine is a particular feature of the Go programming language.
A Goroutine is function or method that runs independently and con-
currently with other Goroutines in our program. In other words, any
continuously performing action in the Go programming language is
referred to as a Goroutine. A Goroutine may be thought of as a light-
weight thread. When compared to the thread, the cost of establishing
Goroutines is quite low. Every program comprises at least one Goroutine,
which is referred to as the main Goroutine. All of the Goroutines are
subordinate to the main Goroutines; if the main Goroutine terminates,
all of the goroutines in the program end. Goroutine is always working in
the background.

Concurrency improves performance by utilizing many processing cores.
Go’s API support enables programmers to implement parallel algorithms

https://doi.org/10.1201/9781003310457-10

222    ◾    Mastering GoLang: A Beginner’s Guide

efficiently. Concurrency support is an optional feature in most major pro-
gramming languages; however, it is built into Go.

Go Concurrent Programming

Concurrent programming makes full use of the numerous processor cores
found in most contemporary systems. The notion has been around for
a long time, even when the single core just had one core. Using several
threads to create some form of concurrency was a widespread approach in
many programming languages, including C/C++, Java, and others.

A single thread is essentially a small set of instructions scheduled to be
executed individually. We might think of it as a small task within a larger
project.

As a result, numerous threads of execution are combined and run con-
currently to task a complicated process. This coherence across numer-
ous jobs offers the impression of concurrent execution. However, keep
in mind that any underlying constrained hardware – such as a single
Processor – can only achieve so much by scheduling activities in a time-
shared manner.

Multiple cores power today’s computing devices. As a result, a language
that can fully use its potential is constantly in demand. Mainstream pro-
gramming languages progressively recognize this truth and attempt to
include concurrency into their primary capabilities. However, the Go cre-
ators reasoned, “Why not construct a language from the ground up with
the concept of concurrency as one of its basic features?” One such language
that provides high-level APIs for writing concurrent programs in Go.

Issues with Multithreading

Multithreaded applications are not only challenging to create and main-
tain but also to debug. Furthermore, breaking up any process using sev-
eral threads is not always possible to make it as performant as concurrent
programming. Multithreading has its own set of costs. The environment
handles many tasks, including inter-process communication and shared
memory access. The developers are allowed to concentrate on the task at
hand rather than become entangled in parallel processing details.

Keeping these issues in mind, another option is to depend entirely on
the operating system for multiprocessing. In this instance, it is the devel-
oper’s job to handle the complexities of interprocess communication or
the cost of shared-memory concurrency. This strategy is very tweakable in
favor of performance, but it is also easy to mess up.

Concurrency and Goroutines    ◾    223

Concurrent Programming in Go

Go provides a threefold solution for concurrent programming.

•	 High-level support makes concurrency not only easier to implement
but also easier to manage.

•	 Goroutines are used. Threads are heavier than goroutines.

•	 Without the intervention of developers, Go’s automated garbage col-
lection solves the complexity of memory management.

How to Handle Concurrency Issues in Go

The goroutines make it simple to build concurrency and fundamental
primitives. The executing activity is referred to as a goroutine in this con-
text. Consider a program having two functions that do not communicate
with one another. In sequential execution, one function completes its
execution before another is invoked. However, in Go, the function can be
both active and executing simultaneously. This is simple if the functions
are unconnected, but complications might arise when they are intercon-
nected and share execution durations. Even with Go’s high-level concur-
rency support, these problems cannot be avoided entirely, especially if the
main function accomplishes its execution before the functions that rely on
it. As a result, we must be cautious about making the main goroutine wait
until all tasks have been performed.

Another issue is deadlock, which occurs when more than one goroutine
locks a certain resource to retain exclusivity while another tries to acquire
the same lock at the same time. This sort of danger is typical in concur-
rent programming, but Go includes a fix that eliminates the need for locks
by utilizing channels. As the job is completed, a channel is often formed
to notify the completion of execution. Another option is to use sync to
wait for the report. WaitGroup. However, deadlock can still occur in any
instance and, at most, can be prevented with careful design. Go simply
offers the tools to plan the proper operation of concurrency.

Goroutine with WaitGroup Example

We may establish a goroutine by prefixing any function call with the term
go. The function then acts as a thread by constructing a goroutine contain-
ing the call frame and scheduling it to operate as a thread. It can access
any arguments, globals, or anything available within its reach, just like any
other function.

224    ◾    Mastering GoLang: A Beginner’s Guide

Here is a basic code that may use to determine whether a website is up
or down. The identical code is then applied to goroutine. Make a note of
how the execution speed increases when we use concurrency.

package main
import (
 "fmt"
 "net/http"
 "time"
)
func main() {
 start := time.Now()
 sitelist := []string{
 "https://www.google.com//",
 "https://www.youtube.com/",
 "https://www.pinterest.com/",
 "https://www.codeguru.com/",
 "https://www.nasa.gov/",
 }
 for _, site := range sitelist {
 GetSiteStatus(site)
 }
 fmt.Printf("\n\nTime elapsed since %v\n\n", time.
Since(start))

}
func GetSiteStatus(site string) {
 if _, err := http.Get(site); err != nil {
 fmt.Printf("%s is down\n", site)
 } else {
 fmt.Printf("%s is up\n", site)
 }
}

How to Create a Goroutine

We may simply create our own Goroutine by prefixing the function or
method call with the go keyword, as seen in the following syntax:

Syntax:

func name(){
// statement
}

https://www.google.com
https://www.youtube.com
https://www.pinterest.com
https://www.codeguru.com
https://www.nasa.gov

Concurrency and Goroutines    ◾    225

// using go keyword as
// the prefix of our function call
go name()

Example:

// Program to illustrate the
// concept of Goroutine
package main
import "fmt"
func display(str string) {
 for c := 0; c < 5; c++ {
 fmt.Println(str)
 }
}
func main() {
 // Calling the Goroutine
 go display("Welcome")
 // Calling the normal function
 display("Helloeveryone")
}

In the above example, we define a display() method and then call it in
two distinct ways. The first is a Goroutine, such as go display(“Welcome”),
while the second is a normal function, such as display(“Helloeveryone”).
However, there is a problem: it only shows the result of the normal func-
tion, not the result of the Goroutine, since when a new Goroutine is
called, Goroutine calls the returns immediately. The control does not
wait for Goroutine to finish its execution; instead, it moves on to the next
line following the Goroutine call and disregards the value provided by
the Goroutine. So, to properly run a Goroutine, we made the following
changes to our program:

Updated example:

// program to illustrate concept of Goroutine
package main

import (
 "fmt"
 "time"
)

226    ◾    Mastering GoLang: A Beginner’s Guide

func display(str string) {
 for w := 0; w < 5; w++ {
 time.Sleep(1 * time.Second)
 fmt.Println(str)
 }
}
func main() {
 // Calling Goroutine
 go display("Hello")
 // Calling the normal function
 display("Helloeveryone")
}

In our application, we introduced the Sleep() function, which causes
the main Goroutine to sleep for 1 second in between 1-second the new
Goroutine executes, shows “Hello” on the screen, and then terminates
after 1-second the main Goroutine reschedules and does its action. This
procedure continues until the value of z<5 is reached, at which point the
main Goroutine ends. In this case, both the Goroutine and the normal
function are able to function efficiently.

Goroutines provide the following advantages:

•	 Goroutines are less expensive than threads.

•	 Goroutines are stored on the stack, and the size of the stack can
expand and shrink according to the program’s needs. However, the
size of the stack in threads is fixed.

•	 Goroutines can interact over the channel, and these channels are spe-
cifically intended to prevent race problems when using Goroutines to
access shared memory.

•	 Assume a program has a single thread with several Goroutines
attached to it. If any of the Goroutines blocks the thread owing to
resource constraints, all of the remaining Goroutines will be assigned
to a newly generated OS thread. The programmers are not aware of
any of this information.

Anonymous Goroutines

In Go, we can start a Goroutine for an anonymous function, or in
other words, we can construct an anonymous Goroutine simply by

Concurrency and Goroutines    ◾    227

using the go keyword as a prefix to that function, as seen in the fol-
lowing syntax:

Syntax:

// the Anonymous function call
go func (parameterlist){
// statement..
}(arguments)

Example:

// Program to illustrate how
// to create anonymous Goroutine
package main
import (
 "fmt"
 "time"
)
// the main function
func main() {

 fmt.Println("Welcome to the main function")
 // Creating the Anonymous Goroutine
 go func() {
 fmt.Println("Welcome to ourworld")
 }()
 time.Sleep(1 * time.Second)
 fmt.Println("GoodBye ")
}

SELECT STATEMENT
The select statement in Go is similar to the switch statement; however, the
case statement in the select statement relates to communication, i.e., sent
or received operation on the channel.

Syntax:

select{
case SendOrReceive1: // Statement..
case SendOrReceive2: // Statement..
case SendOrReceive3: // Statement..
.
.
default: // Statement..

228    ◾    Mastering GoLang: A Beginner’s Guide

Points to consider:

•	 For some circumstances, the select statement waits until the com-
munication (send or receive operation) is ready before proceeding.

Example:

// Program to illustrate
// the concept of select statement
package main
 import("fmt"
 "time")
 // function 1
 func portal1(channel1 chan string) {
 time.Sleep(3*time.Second)
 channel1 <- "Welcome to channel1"
 }
 // function 2
 func portal2(channel2 chan string) {
 time.Sleep(9*time.Second)
 channel2 <- "Welcome to channel2"
 }
// the main function
func main(){
 // Creating the channels
 R1:= make(chan string)
 R2:= make(chan string)
 // calling function 1
 // and function 2 in the goroutine
 go portal1(R1)
 go portal2(R2)
 select{
 // case 1 for portal1
 case op1:= <- R1:
 fmt.Println(op1)
 // case 2 for portal2
 case op2:= <- R2:
 fmt.Println(op2)
 }
}

Explanation: In the preceding program, portal1 sleeps for 3 sec-
onds, and portal2 sleeps for 9 seconds before starting. Now, choose

Concurrency and Goroutines    ◾    229

statement waits till their sleep time is up, then selects case 2 and out-
puts “Welcome to channel1.” If portal1 wakes up before portal2, the
output will be “welcome to channel2.”

•	 If select statement does not include a case statement, it will wait
indefinitely.

Syntax:

select{}

Example:

// Program to illustrate
// the concept of select statement
package main
// the main function
func main() {
 // Select statement without any case
 select{ }

}

•	 The select statement’s default statement is used to prevent the select
statement from blocking. This statement is executed when there is no
case statement, and the statement is ready to proceed.

Example:

// Program to illustrate
// the concept of select statement
package main
import "fmt"
// the main function
func main() {
 // the creating channel
 mychannel:= make(chan int)
 select{
 case <- mychannel:
 default:fmt.Println("Not-found")
}

}

230    ◾    Mastering GoLang: A Beginner’s Guide

•	 When no case statement is ready, and the select statement does not
contain any default statements, the select statement will block until
at least one case statement or communication can proceed.

Example:

// Program to illustrate
// the concept of select statement
package main
// the main function
func main() {
 // creating the channel
 mychannel:= make(chan int)
 // channel is not ready and
 // no default case
 select{
 case <- mychannel:
 }

}

•	 If numerous cases are ready to proceed, one can select at random in
the select statement.

Example:

// Program to illustrate
// the concept of select statement
package main
import "fmt"
 // function 1
 func portal1(channel1 chan string){
 for i := 0; i <= 4; i++{
 channel1 <- "Welcome to channel1"
 }
 }
 // function 2
 func portal2(channel2 chan string){
 channel2 <- "Welcome to channel2"
 }
// the main function
func main() {
 // Creating the channels

Concurrency and Goroutines    ◾    231

 R1:= make(chan string)
 R2:= make(chan string)

 // calling the function 1 and function 2 in
goroutine
 go portal1(R1)
 go portal2(R2)
 // the choice of selection of case is random
 select{
 case op1:= <- R1:
 fmt.Println(op1)
 case op2:= <- R2:
 fmt.Println(op2)
 }
}

MULTIPLE GOROUTINES
A Goroutine is a function or method in our program that runs indepen-
dently and concurrently with other Goroutines. In other words, any con-
currently performing action in the Go programming language is referred
to as a Goroutine. We may have several goroutines in a single program in
the Go programming language. We may easily construct a goroutine by
prefixing the function or method call with the go keyword, as illustrated
in the following syntax:

func name(){
// statement(s)
}
// using go keyword as
// the prefix of your function call
go name()

With the help of an example, we will now explore how to create and work
on several goroutines:

// Program to illustrate the Multiple Goroutines
package main
import (
 "fmt"
 "time"
)

232    ◾    Mastering GoLang: A Beginner’s Guide

// For goroutine 1
func Aname() {
 arr1 := [4]string{"Ronik", "Sunita", "Arman",
"Tia"}
 for tk1 := 0; tk1 <= 3; tk1++ {
 time.Sleep(150 * time.Millisecond)
 fmt.Printf("%s\n", arr1[tk1])
 }
}
// For goroutine 2
func Aid() {
 arr2 := [4]int{400, 201, 402, 203}
 for tk2 := 0; tk2 <= 3; tk2++ {
 time.Sleep(500 * time.Millisecond)
 fmt.Printf("%d\n", arr2[tk2])
 }
}
// the main function
func main() {
 fmt.Println("!The Main Go-routine Start!")
 // calling Goroutine 1
 go Aname()

 // calling Goroutine 2
 go Aid()
 time.Sleep(2900 * time.Millisecond)
 fmt.Println("\n! The Main Go-routine End!")
}

1.	Creation: From the above example, we have two goroutines and the
main goroutine, namely Aname and Aid. Here, Aname prints the
authors’ names, and Aid prints the authors’ id.

2.	Working: We have two goroutines, Aname and Aid, and one main
goroutine here. When we run this program, the main goroutine
starts, and prints “!The Main Go-routine Start!” Because the main
goroutine is like a parent and the other goroutines are its children,
the main goroutine runs first, followed by the other goroutines, and
if the main goroutine terminates, the other goroutines terminate as
well. As a result, following the main goroutine, the Aname and Aid
goroutines begin functioning concurrently.

Concurrency and Goroutines    ◾    233

GoLang CHANNEL
A channel in Go is a medium via which a goroutine communicates with
another goroutine in a lock-free manner. In other terms, a channel is a
mechanism that allows one goroutine to transfer data to another. The chan-
nel is bidirectional by default, which implies that goroutines can transmit
and receive data over the same channel, as illustrated in the following figure.

Creating a Channel

A channel is formed in Go using the chan keyword, and it can only trans-
fer data of the same kind; multiple types of data cannot be sent from the
same channel.

Syntax:

var Channelname chan Type

We may also use a shorthand declaration to build a channel with the
make() method.

Syntax:

channelname:= make(chan Type)

Example:

// Program to illustrate
// how to create channel
package main
import "fmt"
func main() {
 // Creating channel
 // Using the var keyword
 var mychannel chan int

Channel in GoLang.

234    ◾    Mastering GoLang: A Beginner’s Guide

 fmt.Println("The Value of the channel: ",
mychannel)
 fmt.Printf("The Type of the channel: %T ",
mychannel)
 // Creating channel using the make() function
 mychannel1 := make(chan int)
 fmt.Println("\nThe Value of the channel1: ",
mychannel1)
 fmt.Printf("The Type of the channel1: %T ",
mychannel1)
}

Send and Receive Data from a Channel

In the Go programming language, channels perform two primary oper-
ations: sending and receiving, collectively referred to as communication.
And whether the data is received or sent is indicated by the direction of
the <- operator. By default, the send and receive operations in the chan-
nel is blocked until the other side is ready. It enables goroutines to com-
municate with one another without explicit locks or condition variables.

Send Operation
The send operation sends data from one goroutine to another over a chan-
nel. Values, such as int, float64, and bool, are safe and simple to send across
a channel because they are copied, eliminating the possibility of accidental
concurrent access to the same value. Strings are similarly safe to transmit
since they are immutable. However, transmitting pointers or references
such as a slice, map, etc., across a channel is not safe since the value of the
pointers or references may change by the sending or receiving goroutine
at the same time, resulting in an unpredictable consequence. As a result,
when using pointers or references in the channel, we must ensure that they
can only access by one goroutine at a time.

Mychannel <- element

The above sentence indicates that the data(element) was sent to the
channel(Mychannel) using the <- operator.

Receive Operation
The receive operation is used to receive data that sent by the send operator.

element := <-Mychannel

Concurrency and Goroutines    ◾    235

According to the above sentence, the element gets data from the channel
(Mychannel). If the outcome of the received statement is not going to be used,
the statement is also valid. A receive statement can alternatively write as:

<-Mychannel

Example:

// Program to illustrate send and
// receive operation
package main
import "fmt"
func myfunc(ch chan int) {
 fmt.Println(234 + <-ch)
}
func main() {
 fmt.Println("Main method start")
 // Creating channel
 ch := make(chan int)
 go myfunc(ch)
 ch <- 23
 fmt.Println("Main method end")
}

Channel Closing

We may also use the close() method to close a channel. This built-in func-
tion sets a flag indicating that no additional data will send to this channel.

Syntax:

close()

We may also use for range loop to close the channel. The receiver goroutine
can use the following syntax to determine if the channel is open or closed:

Syntax:

ele, ok:= <- Mychannel

If the value of ok is true, this indicates that the channel is open and read
operations can conduct. And if the value is false, it signifies that the chan-
nel is closed; therefore, read operations will fail.

236    ◾    Mastering GoLang: A Beginner’s Guide

Example:

// program to illustrate
// how to close channel using
// for range loop and close function
package main
import "fmt"
// Function
func myfun(mychnl chan string) {
 for k := 0; k < 4; k++ {
 mychnl <- "Helloeveryone"
 }
 close(mychnl)
}
// the main function
func main() {
 // Creating channel
 ch := make(chan string)
 // calling Goroutine
 go myfun(ch)
 // When value of ok is
 // set to true means
 // channel is open and
 // it can send or receive data
 // When value of ok is set to
 // false means channel is closed
 for {
 rest, ok := <-c
 if ok == false {
 fmt.Println("Channel-Close ", ok)
 break
 }
 fmt.Println("Channel-Open ", rest, ok)
 }
}

Important Notes:

•	 Send and Receive Blocking: When data is transferred to a channel,
control is blocked in that send statement until another goroutine
reads from that channel. Similarly, when a channel gets data from

Concurrency and Goroutines    ◾    237

a goroutine, the read command is blocked until another goroutine
statement is executed.

•	 Channel with Zero Value: The channel’s zero value is nil.

•	 For the Channel Loop: A for loop can traverse over the values sent
on the channel until it closes.

Syntax:

for item := range Chnl {
 // statement(s)
}

Example:

// Program to illustrate how
// to use for loop in the channel
package main
import "fmt"

// the main function
func main() {
 // Creating channel
 // Using the make() function
 mychnl := make(chan string)
 // Anonymous goroutine
 go func() {
 mychnl <- "HFE"
 mychnl <- "hfe"
 mychnl <- "hello"
 mychnl <- "Hellofromeveryone"
 close(mychnl)
 }()
 // Using the for loop
 for rest := range mychnl {
 fmt.Println(rest)
 }

}

•	 Length of the Channel: The length of the channel may be found in
the channel by utilizing the len() method. The length, in this case,
indicates the number of values queued in the channel buffer.

238    ◾    Mastering GoLang: A Beginner’s Guide

Example:

// Program to illustrate how to
// find the length of channel
package main
import "fmt"
// the main function
func main() {
 // Creating channel
 // Using the make() function
 mychnl := make(chan string, 4)
 mychnl <- "HFE"
 mychnl <- "hfe"
 mychnl <- "Hello"
 mychnl <- "Hellofromeveryone"
 // Finding length of the channel
 // Using the len() function
 fmt.Println("The Length of channel is: ",
len(mychnl))

}

•	 Capacity of the Channel: The cap() function in channel may be used
to determine the channel’s capacity. The capacity specifies the size of
the buffer in this case.

Example:

// Program to illustrate
// how to find the capacity of the channel
package main
import "fmt"
// the main function
func main() {
 // Creating channel
 // Using the make() function
 mychnl := make(chan string, 5)
 mychnl <- "HFE"
 mychnl <- "hfe"
 mychnl <- "Geeks"
 mychnl <- "Helloeveryone"
 // Finding the capacity of channel
 // Using the cap() function

Concurrency and Goroutines    ◾    239

 fmt.Println("The Capacity of the channel is:
", cap(mychnl))

}

•	 Select and Case Statement in the Channel: A select statement in
Go is similar to a switch statement in that it does not take any input
parameters. This pick statement is used in the channel to perform a
single operation from the case block’s list of numerous operations.

UNIDIRECTIONAL CHANNEL
A channel, as we know, is a mechanism of communication between
concurrently executing goroutines that allows them to send and receive
data from each other. A bidirectional channel by default, but we may
also construct a unidirectional channel. The unidirectional chan-
nel can only receive data or one that can only send data. The make()
method can also use to construct a unidirectional channel, as demon-
strated below:

// Only to receive the data
c1:= make(<- chan bool)
// Only to send the data
c2:= make(chan<-bool)

Example:

// Program to illustrate concept
// of unidirectional channel
package main
import "fmt"

// the main function
func main() {
 // Only for receiving
 mychanl1 := make(<-chan string)
 // Only for sending
 mychanl2 := make(chan<- string)
 // Display types of channels
 fmt.Printf("%T", mychanl1)
 fmt.Printf("\n%T", mychanl2)
}

240    ◾    Mastering GoLang: A Beginner’s Guide

Converting a Bidirectional Channel to a Unidirectional Channel

In Go, we may convert a bidirectional channel to a unidirectional
channel, or in other words, a bidirectional channel to a receive-only
or send-only channel, but not vice versa. It is shown in the following
program:

Example:

// Program to illustrate how to
// convert bidirectional channel into
// the unidirectional channel
package main
import "fmt"
func sending(s chan<- string) {
 s <- "Helloeveryone"
}
func main() {
 // Creating bidirectional channel
 mychanl := make(chan string)
 // Here, sending() function convert
 // bidirectional channel into send only channel
 go sending(mychanl)

 // Here, channel is sent
 // only inside goroutine
 // outside goroutine the
 // channel is bidirectional
 // So, it print Helloeveryone
 fmt.Println(<-mychanl)
}

Use of Unidirectional Channel: The unidirectional channel is used to
offer type-safety to the program, resulting in fewer errors. We may use
a unidirectional channel when we want to create a channel that can only
send or receive data.

In this chapter, we covered Go concurrent programming, how to handle
concurrency issues in Go, how to create a Goroutine and select statement.
We also covered multiple Goroutines, and GoLang channel.

241DOI: 10.1201/9781003310457-11

C h a p t e r 11

Packages in GoLang

IN THIS CHAPTER

➢➢ Packages in GoLang

➢➢ Documentation

In Chapter 10, we covered Goroutines and Channels. This chapter will
cover packages with the creation and their documentation.

PACKAGES IN GoLang
We’ll examine packages in the Go programming language in this session.
Writing maintainable and reusable code is critical while developing soft-
ware applications. Through its package ecosystem, Go delivers modularity
and code reusability. Go encourages us to create little pieces of software
as packages and then use these small packages to compose our programs.

Workspace

Before we go into Go packages, let’s talk about structure code in Workspace.
Programs in Go are maintained in a directory structure known as a work-
space. A workspace is nothing more than the root directory for our Go
applications. At the root of a workspace, there are three subdirectories:

•	 src: This directory includes source files grouped as packages. Inside
this directory, we will develop our Go programs.

•	 pkg: Go package objects are stored in this directory.

•	 bin: This directory contains programs that may execute.

https://doi.org/10.1201/9781003310457-11

242    ◾    Mastering GoLang: A Beginner’s Guide

Before we can start writing Go programs, we must first define the location
of the workspace. GOPATH is an environment variable that specifies the
location of Go workspaces.

Packages

In Go, source files are grouped into system folders called packages, allow-
ing code reuse among Go programs. The Go package naming convention
utilizes the name of the system directory where we keep our Go source
files. The package name will be same for all source files included within
that directory within a single folder. We create Go programs under the
$GOPATH directory, where we organize source code files into packages as
directories. All identifiers in Go packages are exported to other packages
if the initial letter of the identifier name is uppercase.

If we begin the identifier name with a lowercase letter, the functions and
types will not export to other packages.

Go’s standard library includes a plethora of helpful packages to con-
struct real-world applications. The standard library, for example, has a “net/
http” package that may use to create online applications and web services.
The standard library packages may find in the GOROOT directory’s “pkg”
subfolder. When you install Go, an environment variable called GOROOT
is added to our system to designate the Go installation path. The Go devel-
oper community is ecstatic about the prospect of creating third-party Go
packages. These third-party Go packages can use for developing Go apps.

Main Package

When we create reusable code, you will create a package as a shared
library. However, while creating executable applications, we will utilize the
package “main” to convert the package into an executable program. The
package “main” instructs the Go compiler to construct the package as an
executable application rather than a shared library. The main function in
package “main” will serve as the executable program’s entry point. When
you create shared libraries, there will be no main package or main func-
tion in the package.

Here’s an example executable program that uses the package main, with
the function main serving as the entry point.

package main
import (
"fmt"

Packages in GoLang    ◾    243

)
func main(){
 fmt.Println("Hello, Everyone")
}

Importing Packages

When importing a package into another package, “import” is used. We
imported the package “fmt” into the sample program in Code to use the
method Println. The “fmt” package is part of the Go standard library.
When we import packages, the Go compiler searches for them in the loca-
tions indicated by the environment variables GOROOT and GOPATH.
The GOROOT directory contains packages from the standard library. The
GOPATH location contains packages that we have written and third-party
packages that we have imported.

Installing Third-Party Packages

We may get and install third-party Go packages by using “Go get” com-
mand. The Go get command will retrieve the packages from the source
repository and place them in the GOPATH location.

In the terminal, type following command to install “mgo,” a third-party
Go driver package for MongoDB, into our GOPATH, which may be used
across all projects in the GOPATH directory:

go get gopkg.in/mgo.v2

After installing the mgo, add the following import statement to our apps
to reuse the code:

import (
 "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

The MongoDB driver, mgo, provides two packages we have imported in
the preceding import statement.

Init Function

When writing Go packages, we may include a function called “init” that
is called at the start of the execution period. The init function is useful for
adding initialization logic into a package.

244    ◾    Mastering GoLang: A Beginner’s Guide

package db
import (
 "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)
func init {
 // here initialization-code
}

In some instances, we may need to import a package to invoke its init func-
tion, and we do not need to call any of the package’s other methods. If we
import a package but do not use the package identification in the program,
the Go compiler will complain. In this case, we may use a blank identifier
(_) as the package alias name. The compiler will overlook the mistake of
not utilizing the package identifier while still invoking the init function.

package main
import (
 _ "mywebapp/libs/mongodb/db"
 "fmt"
 "log"
)
func main() {
 //implementation-here
}

We imported a package called db into the sample program above. Assume
we want to utilize this package to call the init function. The blank identi-
fier will dodge the Go compiler error and execute the init function speci-
fied in the package.

To avoid package name ambiguity, we can use alias names for packages.

package main
import (
 mongo "mywebapp/libs/mongodb/db"
 mysql "mywebapp/libs/mysql/db"  
)
func main() {
 mongodata :=mongo.Get() //calling the method of
package "mywebapp/libs/mongodb/db"
 sqldata:=mysql.Get() //calling the method of
package "mywebapp/libs/mysql/db"

Packages in GoLang    ◾    245

 fmt.Println(mongodata)
 fmt.Println(sqldata)
}

We’re importing two separate packages from two different locations, but
their names are identical. We may create an alias name for a single package
and use it anytime we need to invoke a method in that package.

Important Considerations

1.	Import Paths: In the Go programming language, each package is
specified by a unique string called an import path. We may import
packages into our program using an import route. As an example:

import "fmt"

As stated in this sentence, we are importing fmt package into our
program. Package import paths are unique on a global scale. To avoid
conflicts with the paths of other packages than the standard library,
the package path should begin with the Internet domain name of the
entity that owns or hosts the package. As an example:

import "geeksforgeeks.com/example/strings"

2.	Package Declaration: In the Go programming language, a package
declaration is always included at the beginning of the source file. Its
function is to set the default identifier for that package when another
package imports it. As an example:

package main

3.	Import Declaration: The import declaration follows the package
declaration immediately. The Go source file has one or more import
declarations, each of which gives the path to one or more packages in
parentheses. As an example:

// Importing the single package
import "fmt"
// Importing the multiple packages
import(
"fmt"
"strings"
"bytes"
)

246    ◾    Mastering GoLang: A Beginner’s Guide

When we import a package into our program, we have access to the
package’s members. For example, we have a package called “sort,”
and we can access sort when we import it into our program. Sort,
Float64s() That package’s SearchStrings() and other functionalities.

4.	Blank Import: In Go programming, there are occasions when we
import certain packages but do not utilize them. When we execute
programs that include unused packages, the compiler will generate
an error. We use a blank identifier before the package name to cir-
cumvent this problem. As an example:

import _ "strings"

It’s referred to as a blank import. It is used in several situations when
the main program can enable the extra capabilities given by the
blank importing additional packages at compile-time.

5.	Nested Packages: In Go, we may construct a package within another
package by simply establishing a subdirectory. And the nested pack-
age, like the root package, may import. As an example:

import "math/cmplx"

The math package is the primary package in this case, while the
cmplx package is the nested package.

6.	Although some packages may have the same name, the route to such
packages is always distinct. For example, both the math and crypto
packages have a rand-named package, but their paths are different,
i.e., math/rand and crypto/rand.

7.	In Go programming, why is the main package usually at the top of
the program? Because the main package instructs the go build that
the linker must enable to create an executable file.

Giving the Packages Names

When naming a package in Go, we must always keep the following criteria
in mind:

•	 When constructing a package, we must keep the name brief and con-
cise. Strings, time, flags, and so on are examples of standard library
packages.

Packages in GoLang    ◾    247

•	 The name of the package should be descriptive and clear.

•	 Always attempt to avoid using names already in use or those used for
local relative variables.

•	 The package’s name is usually written in the singular form. To pre-
vent keyword conflicts, several packages are named in plural form,
such as strings, bytes, buffers, and so on.

•	 Always avoid package names with pre-existing meanings.

Example:

// Program to illustrate
// the concept of packages
// Package declaration
package main
// Importing the multiple packages
import (
 "bytes"
 "fmt"
 "sort"
)
func main() {
 // Creating and initializing the slice
 // Using the shorthand declaration
 slice_1 := []byte{'*', 'H', 'e', 'l', 'l',
'o', 'f',
 'o', 'r', 'W', 'o', 'r', 'k', 's', '^', '^'}
 slice_2 := []string{"hel", "lo", "for", "wor",
"ks"}
 // Displaying the slices
 fmt.Println("Original-Slice:")
 fmt.Printf("Slice 1 : %s", slice_1)
 fmt.Println("\nSlice 2: ", slice_2)
 // Trimming the specified leading
 // and trailing Unicode points
 // from given slice of bytes
 // Using the Trim function
 res := bytes.Trim(slice_1, "*^")
 fmt.Printf("\nNew Slice : %s", res)
 // Sorting the slice 2
 // Using the Strings function

248    ◾    Mastering GoLang: A Beginner’s Guide

 sort.Strings(slice_2)
 fmt.Println("\nSorted slice:", slice_2)
}

Code Exported

We might have noticed the declarations in the greet.go file we called were
all uppercase. Go, unlike other languages, does not have the idea of public,
private, or protected modifiers. Capitalization governs external visibility.
Types, variables, functions, and that begin with a capital letter are publicly
accessible outside of the current package. A symbol that can be seen out-
side of its container is termed exported.

If we add a new reset method to Octopus, we may call it from the wel-
come package but not from our main.go file, which is not part of the greet
package:

package greet
import "fmt"
var Shark = "Rammy"
type Octopus struct {
 Name string
 Color string
}
func (o Octopus) String() string {
 return fmt.Sprintf("Octopus's name is %q and
the color %s.", o.Name, o.Color)
}
func (o *Octopus) reset() {
 o.Name = ""
 o.Color = ""
}
func Hello() {
 fmt.Println("Hello, Everyone")
}

If we attempt to call reset from the main.go ahead and file:

package main
import (
 "fmt"
 "github.com/gopherguides/greet"
)

Packages in GoLang    ◾    249

func main() {
 greet.Hello()
 fmt.Println(greet.Shark)
 oct := greet.Octopus{
 Name: "Tessa",
 Color: "White",
 }
 fmt.Println(oct.String())
 oct.reset()
}

We’ll receive the compilation error.
To export Octopus’ reset functionality, capitalize the R in reset:

package greet
import "fmt"
var Shark = "Rammy"
type Octopus struct {
 Name string
 Color string
}
func (o Octopus) String() string {
 return fmt.Sprintf("The octopus's name is %q
and is the color %s.", o.Name, o.Color)
}
func (o *Octopus) Reset() {
 o.Name = ""
 o.Color = ""
}
func Hello() {
 fmt.Println("Hello, Everyone")
}

As a consequence, we may use Reset from another package without seeing
an error:

package main
import (
 "fmt"
 "github.com/gopherguides/greet"
)

250    ◾    Mastering GoLang: A Beginner’s Guide

func main() {
 greet.Hello()
 fmt.Println(greet.Shark)
 oct := greet.Octopus{
 Name: "Tessa",
 Color: "White",
 }
 fmt.Println(oct.String())
 oct.Reset()
 fmt.Println(oct.String())
}

Now if we run the program:

$ go run main.go

DOCUMENTATION
Go provides the ability to produce documentation for packages we develop
comparable to regular package documentation. Run the following com-
mand in a terminal:

godoc golang-book/chapter11/math Average

We can enhance this documentation by including the following note
before the function:

// Finds the average of a series of numbers
func Average(xs []float64) float64 {

If we run go install in the math folder, then godoc, we should notice our
remark underneath the function definition. This documentation is also
available in online form if we perform the following command:

godoc -http=":6060"

and enter following URL into our browser:

http://localhost:6060/pkg/

We should go through all of the packages on our system.
In this chapter, we covered packages and their documentation.

251DOI: 10.1201/9781003310457-12

C h a p t e r 12

The Core Packages

IN THIS CHAPTER

➢➢ String

➢➢ Input/output

➢➢ Files and folders

➢➢ Errors

➢➢ Containers and sort

➢➢ Hashes and cryptography

➢➢ Servers

➢➢ Parsing command line arguments

➢➢ Synchronization primitives

In Chapter 11, we covered creating packages and documentation. This
chapter will discuss strings, input/output, files and folders, and errors.
We will also cover containers and sort, hashes and cryptography, servers,
parsing command line arguments, and synchronization primitives.

Most real-world programming relies on our ability to integrate with
existing libraries rather than writing everything from scratch. This chap-
ter will go through some of the popular Go packages.

First, a word of caution: while some of these libraries are relatively obvi-
ous, many of the libraries bundled with Go need specialist subject exper-
tise (for example, cryptography).

https://doi.org/10.1201/9781003310457-12

252    ◾    Mastering GoLang: A Beginner’s Guide

STRING
In the strings package, Strings Go contains a vast variety of functions for
working with strings:

package main
import (
 "fmt"
 "strings"
)
func main() {
 fmt.Println(
 // true
 strings.Contains("rest", "es"),
 // 2
 strings.Count("rest", "r"),
 // true
 strings.HasPrefix("rest", "re"),
 // true
 strings.HasSuffix("rest", "st"),
 // 1
 strings.Index("rest", "e"),
 // "x-y"
 strings.Join([]string{"x","y"}, "-"),
 // == "xxxxx"
 strings.Repeat("x", 5),
 // "yyxx"
 strings.Replace("xxxx", "x", "y", 2),
 // []string{"x","y","z","a","b"}
 strings.Split("x-y-z-a-b", "-"),
 // "rest"
 strings.ToLower("REST"),
 // "REST"
 strings.ToUpper("rest"),
)
}

We occasionally need to work with strings as binary data. To convert a
string to a byte slice, perform the following:

arr := []byte("rest")
str := string([]byte{'r','e','s','t'})

The Core Packages    ◾    253

INPUT/OUTPUT (I/O)
The io package contains a few functions, most of which are interfaces used
by other packages. Reader and Writer are the two main interfaces. Readers
help reading by using the Read method. Writers assist writers using the
Write method. Many Go functions accept Readers or Writers as argu-
ments. The io package, for example, includes a Copy function that trans-
fers data from Reader to Writer:

func Copy(dst Writer, src Reader) (written int64, err
error)

The Buffer struct from the bytes package may use to read or write to a []
byte or a string:

var buf bytes.Buffer
buf.Write([]byte("test"))

A Buffer does not need to be initialized and may be used with the Reader
and Writer interfaces. The buf can use to convert it into a []byte by call-
ing bug.Bytes(). We may also utilize the strings if we need to read from a
string.NewReader method is faster than using a buffer.

FILES AND FOLDERS
To open a file, use the os package’s Open function. An example of how to
read a file’s contents and show them on the terminal:

package main

import (
 "fmt"
 "os"
)
func main() {
 file, err := os.Open("rest.txt")
 if err != nil {
 // handle error here
 return
 }
 defer file.Close()
 // get file size
 stat, err := file.Stat()

254    ◾    Mastering GoLang: A Beginner’s Guide

 if err != nil {
 return
 }
 // read file
 bs := make([]byte, stat.Size())
 _, err = file.Read(bs)
 if err != nil {
 return
 }
 str := string(bs)
 fmt.Println(str)
}

We utilize a deferred file.Close() should be called immediately after open-
ing the file to ensure it is closed as soon as the function is finished. Because
reading files is so common, there is a quicker way to accomplish this:

package main
import (
 "fmt"
 "io/ioutil"
)
func main() {
 bs, err := ioutil.ReadFile("rest.txt")
 if err != nil {
 return
 }
 str := string(bs)
 fmt.Println(str)
}

Here’s how we’d go about creating a file:

package main
import (
 "os"
)
func main() {
 file, err := os.Create("rest.txt")
 if err != nil {
 // handle error here
 return
 }

The Core Packages    ◾    255

 defer file.Close()
 file.WriteString("rest")
}

To retrieve the contents of a directory, we use the same os.Open method,
but we pass it a directory path rather than a file name this time. The
Readdir method is then invoked:

package main
import (
 "fmt"
 "os"
)
func main() {
 dir, err := os.Open(".")
 if err != nil {
 return
 }
 defer dir.Close()
 fileInfos, err := dir.Readdir(-1)
 if err != nil {
 return
 }
 for _, fi := range fileInfos {
 fmt.Println(fi.Name())
 }
}

We often want to recursively walk a folder (read the folder’s contents, all
the sub-folders, all the sub-sub-folders,…). To help with this, the path/file-
path package has a Walk function:

package main
import (
 "fmt"
 "os"
 "path/filepath"
)
func main() {
 filepath.Walk(".", func(path string, info
os.FileInfo, err error) error {
 fmt.Println(path)

256    ◾    Mastering GoLang: A Beginner’s Guide

 return nil
 })
}

The function calls every file and folder in the root folder we pass to Walk.

ERRORS
Go includes a built-in type for previously seen errors (the error type).
Using the New function in errors package, we may build our own errors:

package main
import "errors"
func main() {
 err := errors.New("error-message")
}

CONTAINERS AND SORTING
Go’s container package has a number of different collections in addition to
lists and maps. As an example, consider the container/list package.

List

The list package implements doubly linked list. A linked list is a form of
data structure that looks like this:

Linked list.

Each node in list has a value (1, 2, or 3 in this example) and a link to the
next node. Because this is a doubly-linked list, each node has a pointer to
the node before it. This program may generate the following list:

package main
import ("fmt" ; "container/list")
func main() {
 var y list.List
 y.PushBack(1)
 y.PushBack(2)
 y.PushBack(3)

The Core Packages    ◾    257

 for c := y.Front(); c != nil; c=c.Next() {
 fmt.Println(c.Value.(int))
 }
}

A List with a zero value is an empty list (*List may also be generated using
list.New). PushBack is used to append values to the list. We loop over the
list, starting with the first element and following all the connections until
we reach nil.

SORT
Sorting arbitrary data is supported by the sort package. There are a variety
of built-in sorting functions (for slices of ints and floats) Here’s an example
of how we can sort our data:

package main
import ("fmt" ; "sort")
type Person struct {
 Name string
 Age int
}
type ByName []Person
func (this ByName) Len() int {
 return len(this)
}
func (this ByName) Less(x, y int) bool {
 return this[x].Name < this[y].Name
}
func (this ByName) Swap(x, y int) {
 this[x], this[y] = this[y], this[x]
}

func main() {
 kids := []Person{
 {"Thill",7},
 {"Rach",11},
 }
 sort.Sort(ByName(kids))
 fmt.Println(kids)
}

258    ◾    Mastering GoLang: A Beginner’s Guide

The Sort function takes a sort. It is interfaced with and sorted. That sort.
Interface necessitates three methods: Len, Less, and Swap. We build a new
type (ByName) that relates to a slice of what we wish to sort to design our
own sort. The three techniques are then defined.

Therefore, sorting our person list is as simple as casting the list into our
new type. We may also order by age by doing the following:

type ByAge []Person
func (this ByAge) Len() int {
 return len(this)
}
func (this ByAge) Less(x, y int) bool {
 return this[x].Age < this[y].Age
}
func (this ByAge) Swap(x, y int) {
 this[x], this[y] = this[y], this[x]
}

HASHES AND CRYPTOGRAPHY
A hash function lowers a collection of data to a smaller fixed size. Hashes
are often used in programming for various purposes ranging from data
lookup to simply identifying changes. In Go, hash functions are classified
as cryptographic or non-cryptographic.

Non-cryptographic hash functions include adler32, crc32, crc64, and
fnv, which may be found in the hash package. Here’s an example that
makes use of crc32:

package main
import (
 "fmt"
 "hash/crc32"
)
func main() {
 x := crc32.NewIEEE()
 x.Write([]byte("rest"))
 y := h.Sum32()
 fmt.Println(y)
}

Because the crc32 hash object implements the Writer interface, we may
write bytes to it the same way as any other Writer. After we’ve typed all

The Core Packages    ◾    259

we need, we’ll call Sum32() to get an uint32. The comparison of two files
is a popular use for crc32. If Sum32 value for both files is the same, it is
extremely likely (but not definite) that the files are the same. If the values
differ, the files are not the same:

package main
import (
 "fmt"
 "hash/crc32"
 "io/ioutil"
)
func getHash(filename string) (uint32, error) {
 bs, err := ioutil.ReadFile(filename)
 if err != nil {
 return 0, err
 }
 x := crc32.NewIEEE()
 x.Write(bs)
 return x.Sum32(), nil
}
func main() {
 x1, err := getHash("rest1.txt")
 if err != nil {
 return
 }
 x2, err := getHash("rest2.txt")
 if err != nil {
 return
 }
 fmt.Println(x1, x2, x1 == x2)
}

Cryptographic hash functions are comparable to non-cryptographic
hash functions, but they have the additional property of being dif-
ficult to reverse. It is complicated to establish who created a crypto-
graphic hash of data collection. These hashes are frequently employed
in security applications.

SHA-1 is known cryptographic hash function. Here’s how it’s put to use:

package main
import (
 "fmt"

260    ◾    Mastering GoLang: A Beginner’s Guide

 "crypto/sha1"
)
func main() {
 x:= sha1.New()
 x.Write([]byte("rest"))
 bs := x.Sum([]byte{})
 fmt.Println(bs)
}

Because crc32 and sha1 both implement the hash.Hash interface, this
example is quite identical to the crc32 one. The primary distinction is
that, whereas crc32 generates a 32-bit hash, sha1 generates a 160-bit hash.
Because there is no native type to represent a 160-bit integer, we use a
20-byte slice instead.

SERVERS
It is relatively simple to create network servers in Go. We’ll start by looking
at how to create a TCP server:

package main
import (
 "encoding/gob"
 "fmt"
 "net"
)
func server() {
 // listen on a port
 l, err := net.Listen("tcp", ":9999")
 if err != nil {
 fmt.Println(err)
 return
 }
 for {
 // accept a connection
 x, err := ln.Accept()
 if err != nil {
 fmt.Println(err)
 continue
 }
 // handle the connection

The Core Packages    ◾    261

 go handleServerConnection(x)
 }
}

func handleServerConnection(c net.Conn) {
 // receive message
 var msg string
 err := gob.NewDecoder(c).Decode(&msg)
 if err != nil {
 fmt.Println(err)
 } else {
 fmt.Println("Receive", msg)
 }
 x.Close()
}
func client() {
 // connect to the server
 x, err := net.Dial("tcp", "127.0.0.1:9999")
 if err != nil {
 fmt.Println(err)
 return
 }
 // send message
 msg := "Hello Everyone"
 fmt.Println("Sending", msg)
 err = gob.NewEncoder(x).Encode(msg)
 if err != nil {
 fmt.Println(err)
 }
 x.Close()
}
func main() {
 go server()
 go client()
 var input string
 fmt.Scanln(&input)
}

This example employs the encoding/gob package, which makes it sim-
ple to encode Go values so that other Go programs (or, in this case, the
same Go program) can read them. Additional encodings can find in

262    ◾    Mastering GoLang: A Beginner’s Guide

packages beneath encoding (such as encoding/json) and in third-party
packages.

HTTP
HTTP servers are even simpler to set up and operate:

package main
import ("net/http" ; "io")
func helloo(res http.ResponseWriter, req *http.
Request) {
 res.Header().Set(
 "Content-Type",
 "text/html",
)
 io.WriteString(
 res,
 '<DOCTYPE html>
<html>
 <head>
 <title>Hello Everyone</title>
 </head>
 <body>
 Hello Everyone!
 </body>
</html>',
)
}
func main() {
 http.HandleFunc("/helloo", helloo)
 http.ListenAndServe(":9000", nil)
}

HandleFunc handles a URL route (/helloo) by calling the given function.
We may also use FileServer to handle static files:

http.Handle(
 "/assets/",
 http.StripPrefix(
 "/assets/",
 http.FileServer(http.Dir("assets")),
),
)

The Core Packages    ◾    263

RPC
The net/rpc and net/rpc/jsonrpc packages make it simple to provide
methods for use over a network (rather than in the program that exe-
cutes them).

package main
import (
 "fmt"
 "net"
 "net/rpc"
)
type Server struct {}
func (this *Server) Negate(i int64, reply *int64)
error {
 *reply = -i
 return nil
}
func server() {
 rpc.Register(new(Server))
 ln, err := net.Listen("tcp", ":9999")
 if err != nil {
 fmt.Println(err)
 return
 }
 for {
 x, err := ln.Accept()
 if err != nil {
 continue
 }
 go rpc.ServeConn(x)
 }
}
func client() {
 x, err := rpc.Dial("tcp", "127.0.0.1:9999")
 if err != nil {
 fmt.Println(err)
 return
 }
 var result int64
 err = x.Call("Server.Negate", int64(999), &result)
 if err != nil {
 fmt.Println(err)

264    ◾    Mastering GoLang: A Beginner’s Guide

 } else {
 fmt.Println("Server.Negate(999) =", result)
 }
}
func main() {
 go server()
 go client()
 var input string
 fmt.Scanln(&input)
}

This program is identical to the TCP example, except that now we’ve cre-
ated an object to store all of the methods we want to expose, and we’ve
called the Negate method from the client.

PARSING THE COMMAND LINE ARGUMENTS
When we run a command from the terminal, we may feed it arguments.
We’ve seen this using the go command:

go run mytestfile.go

Arguments are run and mytestfile.go. We may also pass a command flags:

go run -v mytestfile.go

We may use the flag package to parse arguments and flags sent to our pro-
gram. Here is a program that produces a number between 0 and 6. We may
adjust the maximum value by sending a flag to the program (-max=100):

package main
import ("fmt";"flag";"math/rand")
func main() {
 // Define the flags
 maxp := flag.Int("max", 6, "max value")
 // Parse
 flag.Parse()
 // Generate a number between 0 and max
 fmt.Println(rand.Intn(*maxp))
}

flag.Args() returns a []string if there are any additional non-flag arguments.

The Core Packages    ◾    265

SYNCHRONIZATION PRIMITIVES
The sync and sync/atomic packages in Go enable more typical multi-
threading functions.

Mutexes

A mutex (mutal exclusive lock) is used to protect shared resources from
non-atomic operations by locking a block of code to single thread at a
time. A mutex is illustrated below:

package main
import (
 "fmt"
 "sync"
 "time"
)
func main() {
 x := new(sync.Mutex)
 for c := 0; c < 10; c++ {
 go func(i int) {
 x.Lock()
 fmt.Println(c, "start")
 time.Sleep(time.Second)
 fmt.Println(c, "end")
 x.Unlock()
 }(i)
 }
 var input string
 fmt.Scanln(&input)
}

If the mutex (x) is locked, any further attempts to lock it will fail until it is
unlocked. Extreme caution should be taken when utilizing mutexes or the
synchronization primitives offered by the sync/atomic package.

Traditional multithreaded programming is challenging; mistakes are
simple to make. Those problems are difficult to identify since they may
depend on a highly specific, relatively rare, and difficult to duplicate set
of circumstances. One of Go’s main advantages is its concurrency capa-
bilities are considerably easier to comprehend and apply than threads
and locks.

266    ◾    Mastering GoLang: A Beginner’s Guide

In this chapter, we covered the core packages. We discussed strings,
input/output, files and folders, errors, containers and sort, hashes and
cryptography, servers, parsing command line arguments, and synchroni-
zation primitives.

267DOI: 10.1201/9781003310457-13

Appraisal

Go is a computer language created in 2007 by Google’s Rob Pike, Robert
Griesemer, and Ken Thompson. It is a statically typed language with syn-
tax comparable to C. It has garbage collection, type safety, dynamic typ-
ing, and many advanced built-in types, including variable-length arrays
and key-value maps. It also has an extensive standard library, and allows
concurrent programming. Go is a programming language introduced in
November 2009 and utilized in some of Google’s production systems.

Packages are used to design programs to manage dependencies effi-
ciently. Go programming implementations use a typical compile and link
model to build executable binaries.

BENEFITS AND DRAWBACKS OF PROGRAMMING IN Go
The Go programming language has seen an explosive rise in popularity
in recent years. Every startup appears to be utilizing it for its backend sys-
tems. Developers are drawn to it for a variety of reasons.

Go Is Quick

Go is a lightning-fast programming language. It is compiled to machine
code; it will automatically outperform interpreted or virtual runtime lan-
guages. Go applications also build quickly, and the final binary is tiny. Our
API builds in seconds and generates an 11.5 MB executable file.

Simple to Understand

Go’s grammar is short compared to other languages, making it simple to
learn. We can remember most of it, so we don’t need to spend much time
digging stuff up. It’s also quite clean and simple to read. Non-Go program-
mers, particularly those used to C-style syntax, can typically read a Go
program and understand what’s going on.

https://doi.org/10.1201/9781003310457-13

268    ◾    Appraisal

Static Typing

Go is a highly typed, statically typed programming language. Primitive
types include int, byte, and string. Structs are another type of structure.
Like any strongly typed language, the type system allows the compiler to
catch entire classes of problems. Go includes built-in types for lists and
maps that are simple to use.

Types of Interfaces

Interfaces exist in Go, and any struct can fulfill an interface by simply
implementing its functions. This allows you to decouple the code’s depen-
dencies. The dependencies may then mock in tests. We can develop more
modular, testable programming by utilizing interfaces. Go also features
first-class functions, which allow us to create code more functionally.

Standard Library

Go comes with a decent standard library. It has useful built-in routines
for dealing with primitive kinds. Packages exist that make it simple to set
up a web server, manage I/O, interact with encryption, and manipulate
raw data. The standard library’s JSON serialization and deserialization
are simple. We may give JSON field names directly next to struct fields
using “tags.”

Testing Assistance

The standard library includes testing support. There is no need for an addi-
tional dependence. If we have a code named example.go, put our tests in a
file called thing test.go, and then execute “go test”, these tests will be run
quickly by Go.

Tools for Static Analysis

Static analysis tools for Go are plentiful and powerful. Gofmt, in particu-
lar, formats our code according to Go’s recommended style. This can help
normalize a lot of conflicting perspectives on a project and free up our
team’s time to focus on what the code is doing. We run gofmt, golint, and
vet every build, and if any warnings are discovered, the build fails.

Garbage Collection

Go’s memory management was designed to be simpler than the memory
management in C and C++. Objects that are dynamically allocated are

Appraisal    ◾    269

trash collected. Go makes utilizing pointers considerably safer because it
does not enable pointer arithmetic. It also provides the option of using
value types.

Easier Concurrency Model

While concurrent programming is never easy, Go makes it easier than
other programming languages. It is incredibly straightforward to establish
a lightweight thread known as a “goroutine” and communicate with it over
a “channel.” It is also possible to create more complicated patterns.

WHAT IS ITS NAME? IS IT Go OR GoLang?
We may hear the language referred to as both Go and GoLang, which
might be confusing. That said, GoLang is simply another name for Go,
maintaining the official name.

The word GoLang was derived from the domain name of the official Go
website, golang.org. Which is very useful because “GoLang” is consider-
ably more searchable on Google than “Go.” As a result, it makes life sim-
pler for individuals seeking knowledge about the programming language.

WHY WE SHOULD STUDY Go
Simple Learning Curve

Go is one of the most fundamental programming languages available. It
is simple to learn, especially if we are already familiar with another pro-
gramming language.

Many Go developers who are confident in their teaching talents claim
that they can teach a complete newbie how to construct an app in only a
few hours.

According to the 2020 StackOverflow Developer Survey, one of the key
reasons Go rose from 10th to 5th most popular programming language is
because of its simplicity.

Good Documentation and Active Community

Go offers comprehensive and easy-to-understand documentation. The
documentation is available on the official website.

Aside from documentation, Go has a strong and active community
behind it, so we can always obtain help if we get stuck.

Because the hashtag #golang is widely used on Twitter, we may tweet
our query with the hashtag attached if we get stuck.

270    ◾    Appraisal

With Go, We Can Get a Lot Done

Go is a versatile programming language, which can be used for various
tasks like web development, data science, cloud computing, and more.

If we want to work in cloud computing, we should learn Go since sys-
tems like Amazon Web Services, Kubernetes, and Google Cloud Platform
(GCP) all support it.

Wages Are Attractive

With a median pay of $74,000, Go workers are the third-highest paid
behind Perl and Scala, according to the 2020 StackOverflow Developer
Survey.

This amount is likely to increase more as Go grows in popularity year
after year and is in high demand. So, if we want to make more money, we
should learn Go.

271

Bibliography

7 Types of Golang Operators – golangprograms.com. (n.d.). 7 Types of Golang
Operators – Golangprograms.Com; www.golangprograms.com. Retrieved July
11, 2022, from https://www.golangprograms.com/go-language/operators.html

8 Key Reasons to Choose Go Programming Language for Cloud Infrastructure Projects
| Xoriant. (n.d.). Xoriant; www.xoriant.com. Retrieved July 11, 2022, from
https://www.xoriant.com/blog/product-engineering/go-programming-
language-for-cloud-infrastructure-projects.html

A Golang Tutorial with Code Examples | Toptal. (n.d.). Toptal Engineering Blog;
www.toptal.com. Retrieved July 11, 2022, from https://www.toptal.com/go/
go-programming-a-step-by-step-introductory-tutorial

A Practical Guide to Interfaces in Go (Golang) – golangbot.com. (2020, March 1).
Go Tutorial – Learn Go from the Basics with Code Examples; golangbot.
com. https://golangbot.com/interfaces-part-1/

Bodnar, J. (2022, April 25). Go variable – working with variables in Golang. Go
Variable – Working with Variables in Golang; zetcode.com. https://zetcode.
com/golang/variable/

Chapter 4. Arrays, slices, and maps · Go in Action. (n.d.). Chapter 4. Arrays, Slices,
and Maps · Go in Action; livebook.manning.com. Retrieved July 11, 2022,
from https://livebook.manning.com/book/go-in-action/chapter-4/20

Concurrency in Go | Engineering Education (EngEd) Program | Section. (n.d.).
Engineering Education (EngEd) Program | Section; www.section.io.
Retrieved July 11, 2022, from https://www.section.io/engineering-edu-
cation/concurrency-in-go/#:~:text=In%20Go%2C%20concurrency%20
works%20through,alongside%20other%20code%20or%20programs

Create an empty file in Golang – golangprograms.com. (n.d.). Create an Empty File
in Golang – Golangprograms.Com; www.golangprograms.com. Retrieved
July 11, 2022, from https://www.golangprograms.com/create-an-empty-file.
html

DASC, T. is. (2020, July 11). Seven Golang Features you must know about | by
This is DASC | Medium. Medium; medium.com. https://medium.com/@
thisisdasc/seven-golang-features-you-must-know-about-944485d413fe

Fadatare, R. (n.d.). Go (Golang) Read and Write File Example Tutorial. Go (Golang)
Read and Write File Example Tutorial; www.javaguides.net. Retrieved July
11, 2022, from https://www.javaguides.net/2021/05/go-golang-read-and-
write-file-example.html

https://www.golangprograms.com
https://www.golangprograms.com
https://www.xoriant.com
https://www.xoriant.com
https://www.xoriant.com
https://www.toptal.com
https://www.toptal.com
https://www.toptal.com
https://golangbot.com
https://zetcode.com
https://zetcode.com
https://livebook.manning.com
https://www.section.io
https://www.section.io
https://www.section.io
https://www.section.io
https://www.golangprograms.com
https://www.golangprograms.com
https://www.golangprograms.com
https://medium.com
https://medium.com
https://www.javaguides.net
https://www.javaguides.net
https://www.javaguides.net

272    ◾    Bibliography

Forbes, E. (n.d.). Reading And Writing To Files in Go | TutorialEdge.net.
TutorialEdge; tutorialedge.net. Retrieved July 11, 2022, from https://tutori-
aledge.net/golang/reading-writing-files-in-go/

Getting started with Golang: A tutorial for beginners. (n.d.). Educative: Interactive
Courses for Software Developers; www.educative.io. Retrieved July 11, 2022,
from https://www.educative.io/blog/golang-tutorial

Go – Functions. (n.d.). Go – Functions; www.tutorialspoint.com. Retrieved July 11,
2022, from https://www.tutorialspoint.com/go/go_functions.htm

Go Basic Syntax Tutorial | KoderHQ. (n.d.). Go Basic Syntax Tutorial | KoderHQ;
www.koderhq.com. Retrieved July 11, 2022, from https://www.koderhq.
com/tutorial/go/syntax/

Go Packages (With Examples). (n.d.). Go Packages (With Examples); www.pro-
gramiz.com. Retrieved July 11, 2022, from https://www.programiz.com/
golang/packages

Go Programming Language (Introduction) – GeeksforGeeks. (2018, April 25).
GeeksforGeeks; www.geeksforgeeks.org. https://www.geeksforgeeks.org/
go-programming-language-introduction/

Go Syntax. (n.d.). Go Syntax; www.w3schools.com. Retrieved July 11, 2022, from
https://www.w3schools.com/go/go_syntax.php

Go Variables and Constants. (n.d.). Go Variables and Constants; www.programiz.
com. Retrieved July 11, 2022, from https://www.programiz.com/golang/
variables-constants

Golang Maps – GeeksforGeeks. (2019, July 22). GeeksforGeeks; www.geeksfor-
geeks.org. https://www.geeksforgeeks.org/golang-maps/

Golang Tutorial: Learn Go Programming Language for Beginners. (2020, January
1). Guru99; www.guru99.com. https://www.guru99.com/google-go-tuto-
rial.html

Guide on Go Programming Language. (2019, October 1). Appinventiv; appinventiv.com.
https://appinventiv.com/blog/mini-guide-to-go-programming-language/

How to become a Golang developer: 6 step career guide. (n.d.). Educative: Interactive
Courses for Software Developers; www.educative.io. Retrieved July 11, 2022,
from https://www.educative.io/blog/become-golang-developer

How to Create an Empty File in Golang? – GeeksforGeeks. (2020, March 12).
GeeksforGeeks; www.geeksforgeeks.org. https://www.geeksforgeeks.org/
how-to-create-an-empty-file-in-golang/

How to Install Go on Windows? – GeeksforGeeks. (2019, June 28). GeeksforGeeks;
www.geeksforgeeks.org. https://www.geeksforgeeks.org/how-to-install-go-on-
windows/#:~:text=Downloading%20and%20Installing%20Go&text=
Step%201%3A%20After%20downloading%2C%20unzip,you%20want%20
to%20install%20this

Interfaces in Golang – GeeksforGeeks. (2019, August 16). GeeksforGeeks; www.
geeksforgeeks.org. https://www.geeksforgeeks.org/interfaces-in-golang/

Introduction to Functions in Golang | CalliCoder. (2018, March 29). CalliCoder;
www.callicoder.com. https://www.callicoder.com/golang-functions/

https://tutorialedge.net
https://tutorialedge.net
https://www.educative.io
https://www.educative.io
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.koderhq.com
https://www.koderhq.com
https://www.koderhq.com
https://www.programiz.com
https://www.programiz.com
https://www.programiz.com
https://www.programiz.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.w3schools.com
https://www.w3schools.com
https://www.programiz.com
https://www.programiz.com
https://www.programiz.com
https://www.programiz.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.guru99.com
https://www.guru99.com
https://www.guru99.com
https://appinventiv.com
https://www.educative.io
https://www.educative.io
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.callicoder.com
https://www.callicoder.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org

Bibliography    ◾    273

Is Golang the Future? (n.d.). Is Golang the Future?; www.linkedin.com. Retrieved
July 11, 2022, from https://www.linkedin.com/pulse/golang-future-georgia-
luxton#:~:text=According%20to%20positronx%2C%20No%20doubt,it%20
is%20well%20worth%20learning

Keva Laya, S. E. (2022, February 7). Is Golang Worth Learning. Career Karma;
careerkarma.com. https://careerkarma.com/blog/is-golang-worth-learning/
#:~:text=Yes%2C%20Golang%20is%20still%20worth,the%20most%20
loved%20languages%20list

Nagarajan, M. (2020, May 12). Learning Go — Array, Slice, Map. Medium; levelup.
gitconnected.com. https://levelup.gitconnected.com/learning-go-array-slice-
map-934eed320b1c

Nnakwue, A. (2022, January 14). Exploring structs and interfaces in Go –
LogRocket Blog. LogRocket Blog; blog.logrocket.com. https://blog.logrocket.
com/exploring-structs-interfaces-go/

Packages in Golang – GeeksforGeeks. (2019, October 25). GeeksforGeeks; www.geeks-
forgeeks.org. https://www.geeksforgeeks.org/packages-in-golang/#:~:text=
Packages%20are%20the%20most%20powerful,of%20the%20other%20
package%20programs

Parr, K. (2021, September 13). How to use pointers in Go – LogRocket Blog.
LogRocket Blog; blog.logrocket.com. https://blog.logrocket.com/how-to-
use-pointers-in-go/

Reasons Why Golang is Better than other Programming Languages? (2021, May 7).
Supersourcing; supersourcing.com. https://supersourcing.com/blog/reasons-
why-golang-is-better-than-other-programming-languages/#:~:text=
Golang%20is%20bet ter%20than%20other%20programming%20
languages%2C%20therefore%20it%20reduces,to%20save%20time%20and%20
resources

Structs in Go (Golang) | Detailed Tutorial with Examples | golangbot.com. (2020,
May 1). Go Tutorial – Learn Go from the Basics with Code Examples; gol-
angbot.com. https://golangbot.com/structs/

Talim, S. M. (2015, September 2). What is the future for Go?. This year I had the privi-
lege to… | by Satish Manohar Talim | Medium. Medium; medium.com. https://
medium.com/@IndianGuru/what-is-the-future-for-go-e002b06a240b#:~:
text=Baron%20Schwartz%20%E2%80%94%20Go%20programmers%20
are,This%20will%20only%20increase

Top 7 Reasons to Learn Golang – GeeksforGeeks. (2020, August 16). GeeksforGeeks;
www.geeksforgeeks.org. https://www.geeksforgeeks.org/top-7-reasons-to-
learn-golang/#:~:text=Easy%20to%20Learn,to%20get%20the%20task%20
done

Tutu, A. (2017, February 7). Writing Your First Program with Go | by AnnMargaret
Tutu | Medium. Medium; codeamt.medium.com. https://codeamt.medium.
com/writing-your-first-program-with-go-79ee6a3c3b4d

Understanding Control Structures in Go | Developer.com. (2021, November
25). Developer.Com; www.developer.com. https://www.developer.com/
languages/control-structures-golang/

https://www.linkedin.com
https://www.linkedin.com
https://www.linkedin.com
https://www.linkedin.com
https://careerkarma.com
https://careerkarma.com
https://careerkarma.com
https://levelup.gitconnected.com
https://levelup.gitconnected.com
https://blog.logrocket.com
https://blog.logrocket.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://blog.logrocket.com
https://blog.logrocket.com
https://supersourcing.com
https://supersourcing.com
https://golangbot.com
https://medium.com
https://medium.com
https://medium.com
https://medium.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://codeamt.medium.com
https://codeamt.medium.com
https://www.developer.com
https://www.developer.com
https://www.developer.com
https://supersourcing.com
https://supersourcing.com
https://supersourcing.com

274    ◾    Bibliography

Understanding Pointers in Go | DigitalOcean. (2020, July 21). Understanding
Pointers in Go | DigitalOcean; www.digitalocean.com. https://www.digital-
ocean.com/community/conceptual_articles/understanding-pointers-in-go

What is the Go Programming Language? (2020, May 1). SearchITOperations; www.
techtarget.com. https://www.techtarget.com/searchitoperations/definition/
Go-programming-language#:~:text=Go%20(also%20called%20Golang%
20or,is%20statically%20typed%20and%20explicit

Your First Program — An Introduction to Programming in Go | Go Resources.
(n.d.). Your First Program — An Introduction to Programming in Go | Go
Resources; www.golang-book.com. Retrieved July 11, 2022, from https://
www.golang-book.com/books/intro/2

https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.techtarget.com
https://www.techtarget.com
https://www.techtarget.com
https://www.techtarget.com
https://www.golang-book.com
https://www.golang-book.com
https://www.golang-book.com
https://www.techtarget.com

275

Index

A

Anonymous fields, 194–195
Anonymous function, 144–147
Anonymous function recursion, 166–169
Anonymous Goroutine, 226–227
Anonymous structure, 193–194
Arithmetic operators, 58–59
Arrays, 83, 87–90

copying an array into another array,
90–92

creating and accessing, 83
shorthand declaration, using, 85
var keyword, using, 84–85

multidimensional array, 86–87
passing an array to a function, 92–93

Assignment operators, 62–64

B

Benefits and drawbacks of Go Language,
9–10, 267

easier concurrency model, 269
garbage collection, 269
Go as lightning-fast programming

language, 267
interfaces, types of, 268
simplicity, 267–268
standard library, 268
static analysis, tools for, 268
static typing, 268
testing assistance, 268

Bidirectional channel conversion to
unidirectional channel,
239–240

Bitwise operators, 61–62
Blank Identifier in GoLang, 149–150

Boolean constant, 48–49
Booleans, 29, 33, 35–36, 37, 39

C

Call by reference, 140
Call by value, 139–140
C/C++ programming language, 14–15
Channel in Go, 233

channel closing, 235–239
creating, 233–234
receive operation, 234–235
send operation, 234

Close() method, 235
Closure, 158–160
Command line arguments,

parsing, 264
Comments, 8, 30, 32
Compare() method, using, 126–127
Compiler, 5
Complex numbers, 34–35
Composite literal, 103, 104
Concurrency in GoLang, 221, 269

anonymous Goroutine, 226–227
concurrent programming in Go, 223
creating a Goroutine, 224–226
Go concurrent programming, 222
Goroutine with WaitGroup example,

223–224
handling concurrency issues in Go,

223
multithreading, issues with, 222

Constants, 45
declaring, 45
untyped and typed numeric

constants, 45
Boolean constant, 48–49

276    ◾    Index

numeric constant, 46–47
string literals, 47–48

Containers and sort, 256
list, 256–257

Control statements, 65
if..else..if ladder, 70–72
if…else statement, 67–68
if statement, 66–67
nested if statement, 69–70

Core capability, of GoLang, 2–3
Cryptography, 258–260

D

Data types in Go, 33
Booleans, 35–36
numbers, 33

complex numbers, 34–35
floating point numbers, 34

strings, 36
Defer keyword, 150–153
Dereferencing pointer, 176–177
Directory creation in Go, 18

directory hierarchy, making, 18–19
single directory, making, 18

Directory hierarchy, making, 18–19
Direct recursion, 162–163
Documentation, 250
Downloading and installing Go, 6–7
Drawbacks of Go Language, 9–10
Dynamic interfaces, 203
Dynamic value, 203

E

Embedding interfaces, 209–215
Empty file, making, 15–18
Errors, 16, 240, 251, 256, 266
Expression switch, 78–80

F

Files and folders, 253–256
Finaldevelop() method, 220
First Go program, writing, 7

benefits and drawbacks of Go
Language, 9–10

Go language vs. other languages, 9

hardware restrictions, 9
multiline comment, 8
preceding program, explanation

of, 8
single-line comment, 8

Floating point numbers, 34
For loop

as infinite loop, 73–74
iterating over a slice using, 99
iterating over a slice using blank

identifier in, 100
iterating over a slice using range in, 99
simple range in, 74–75
for strings, 75–76

func, 138
Function literal, see Anonymous function
function-name, 138
Functions, 137

arguments, 139
call by reference, 140
call by value, 139–140

calling, 138–139
closure, 158–160
declaration, 137–138
defer keyword, 150–153
panic function in GoLang, 153–156
recover function, 156–158
returning multiple values, 141

giving name to return values,
141–142

variadic functions, 142
anonymous function, 144–147
Blank Identifier in GoLang,

149–150
init() function, 148
main() function, 147–148

G

Garbage collection, 269
Global variables, 50–52
Good documentation and active

community, 269–270
Goroutines, 221

anonymous, 226–227
channel in Go, 233

channel closing, 235–239
creating channel, 233–234

Index    ◾    277

receive operation, 234–235
send operation, 234

concurrent programming in Go, 223
creating, 224–226
Go concurrent programming, 222
handling concurrency issues in

Go, 223
multiple Goroutines, 231–233
multithreading, issues with, 222
select statement, 227–231
unidirectional channel, 239

converting bidirectional channel to,
239–240

with WaitGroup example, 223–224
Griesemer, Robert, 267

H

Hardware, 3, 4, 222
Hardware restrictions, 9
Hashes and cryptography, 258–260
Head recursion, 165–166
HTTP, 224, 242, 250, 262

I

Identifiers, 30–31
If..else..if ladder, 70–72
If…else statement, 67–68
If statement, 66–67
Import packages, 243
Inbuilt testing and profiling

framework, 4–5
Indirect recursion, 163–164
Infinite recursion, 166
Inheritance, 215–218
Init function, 148, 243–245
Input/output (I/O), 253
Installing Go, 6–7
Integers, 33
Interfaces, 200

Go interfaces, 206
enter interface, 208
redundant functions, 206–208

implementing interfaces, 201–206
making an interface, 201
types of, 203, 268
use of, 206

Ints, 104–105
IntsAreSorted, 105–106
I/O, see Input/output
IsNotExist() function, 16

K

Keywords, 29, 31–32, 38, 201

L

Language design, 1–2
Language loops, 72–77
Learning curve, 5
Len() method, 115
Line separator, 30
Local variables, 49–50
Logical operators, 60–61

M

Mac, installing Go on, 11
executing Go program, 14
first program, making, 13–14
programs in Go and C/C++

programming language?, 14–15
Macbook Pro, 9
Main() function, 147–148, 152
Main package, 242–243
Make() function, 97–98, 129–130
Maps, 127

adding key-value pairs to, 131
checking if the key is present on, 132–133
creating and initializing, 128

simple, 128–129
using make() function, 129–130

iterating over a map, 130–131
modification, 134–135
removing a key from, 133–134
retrieving the value associated with a

key in, 132
Methods for Go language, 196

difference between method and
function, 200

method accepting both pointer and
value, 199–200

non-struct type receiver, method with,
197–198

278    ◾    Index

pointer receiver, methods with,
198–199

struct type receiver, method with,
196–197

Mul() function, 152
Multidimensional array, 86–87
Multidimensional slice, 102
Multiline comment, 8
Multiple Goroutines, 231–233
Multiple variables, declaration of, 52

shorthand declaration, 54–56
Multithreading and concurrency, 3–4
Mutexes, 265–266

N

Name() function, 220
Nested if statement, 69–70
Nested structure, 191–193
Non-cryptographic hash functions, 258
Non-struct type receiver, method with,

197–198
Numbers, 33, 39, 46, 61, 62, 163-165, 167, 250

complex numbers, 34–35
floating point numbers, 34

Numeric constant, 46–47

O

Open function, 253
Open terminal tool window, 11
Operators in Go, 57

arithmetic operators, 58–59
assignment operators, 62–64
bitwise operators, 61–62
logical operators, 60–61
misc operators, 64–65
relational operators, 59–60

Os.Mkdir() method, 18–19

P

Package management, 2
Packages in GoLang, 241, 242, 251

code exported, 248–250
command line arguments, parsing, 264
containers and sort, 256

list, 256–257

documentation, 250
errors, 256
files and folders, 253–256
giving the packages names, 246–248
hashes and cryptography, 258–260
HTTP, 262
import packages, 243
Init function, 243–245
input/output (I/O), 253
main package, 242–243
rpc, 263–264
servers, 260–262
sort, 257–258
string, 252
synchronization primitives, 265

mutexes, 265–266
third-party packages, installing, 243
workspace, 241–242

Panic function in GoLang, 153–156
Parameterlist, 138
Pike, Rob, 267
Platform independence, 2
Pointer Address Operator, 177
Pointer receiver, methods with, 198–199
Pointers, 171

comparing, 184–186
creating pointer and passing it to the

function, 178–179
declaring, 173
dereferencing pointer, 176–177
initialization, 173–174
instantiating a struct using new

keyword in GoLang, 177–178
passing an address of variable to

function call, 179–180
pointer to pointer in Go, 182–184
purpose of, 171–172
to a struct, 180–182

Pointer to pointer in Go, 182–184
Polymorphism using interfaces, 218–220
Preceding program, explanation of, 8
Programming features, of Go, 1–2

R

Reading and writing program in Go,
21–25

Reading file line by line to string, 27–28

Index    ◾    279

Recover function, 156–158
Recursion, 160

anonymous function recursion,
166–169

direct recursion, 162–163
head recursion, 165–166
indirect recursion, 163–164
infinite recursion, 166
tail recursion, 164–165

Recursive call, 165
Recursive function, 160
Relational operators, 59–60
Rename() function, 26
Renaming and moving a file, 26–27
Returntype, 138
rpc, 263–264
RuneCountInString() method, 115

S

Select statement in Go, 227–231
Servers, 260–262
Shorthand declaration, 54–56, 85
Short variable declaration, using, 41–44
Show() function, 152
Simple learning curve, 269
Simplicity of Go, 4
Single directory, making, 18
Single-line comment, 8
Slices, 93

comparison, 101–102
components, 94–95
composite literal, 103, 104
creating and initializing, 95

using array, 96
using existing slice, 96–97
using make() function, 97–98
using slice literal, 95

declaration, 93–94
ints, 104–105
IntsAreSorted, 105–106
iterating over a slice, 98

using blank identifier in for
loop, 100

using for loop, 99
using range in for loop, 99

modifying, 100–101
multidimensional, 102

sorting of, 102–103
splitting a slice of bytes in GoLang,

108–110
trimming a slice of bytes in GoLang,

106–108
zero value, 100

Sort, 257–258
SplitAfter function, 122–123
SplitAfterN function, 124–125
Split function, 121–122
Standard library, 2, 268
Static analysis, tools for, 268
Static interfaces, 203
Static typing, 2, 268
String, 252
String literals, 47–48
Strings, 36, 110

accessing an individual byte of
string, 114

determining the length of a string in
GoLang, 115

immutable, 112–113
iterating over a string, 113–114
literals, 111

using backticks, 111–112
using double quotes, 111

making a string from a slice of
bytes, 114

splitting a string in GoLang, 121
SplitAfter function, 122–123
SplitAfterN function, 124–125
Split function, 121–122

trimming a string in GoLang, 115
Trim function, 115–116
TrimLeft function, 116–117
TrimPrefix function, 120–121
TrimRight function, 117–118
TrimSpace function, 118–119
TrimSuffix function, 119–120

ways to compare strings in
GoLang, 125

Compare() method, using,
126–127

comparison operators, making use
of, 125–126

Struct, 180–182
Struct type receiver, method with,

196–197

280    ◾    Index

Structures, 187
anonymous fields, 194–195
anonymous structure, 193–194
getting to a struct’s fields, 189–190
nested structure, 191–193
pointers to a struct, 190–191

Switch statement, 77
expression switch, 78–80
type switch, 80–82

Synchronization primitives, 265
mutexes, 265–266

Syntax, 29
comments, 30
identifiers, 30–31
keywords, 32
line separator, 30
tokens, 29–30
whitespace, 32

T

Tail recursion, 164–165
Terminal, 10

open terminal tool window, 11
start new session, 11

Testing assistance, 268
Testing support, 2
Text editor, 5
Third-party packages, installing, 243
Thompson, Ken, 267
Tokens, 29–30
Tools, 21

reading and writing program in Go,
21–25

reading file line by line to string, 27–28
renaming and moving a file, 26–27

Tool Windows, 11
Trim() method, 106
Trim function, 115–116
TrimLeft function, 116–117
TrimPrefix function, 120–121
TrimRight function, 117–118
TrimSpace function, 118–119
TrimSuffix function, 119–120
Type assertions, 203–205
Type switch, 80–82, 205

U

Unidirectional channel, 239
converting bidirectional channel to,

239–240
Unmatched simplicity of Go, 4
Untyped and typed numeric

constants, 45
Boolean constant, 48–49
numeric constant, 46–47
string literals, 47–48

V

Variable scope in Go, 49
global variables, 50–52
local variables, 49–50

Variables in Go, 37
declaring, 38

short variable declaration, using,
41–44

var keyword, using, 38–41
multiple variables, declaration of, 52

shorthand declaration, 54–56
Variadic functions, 142

anonymous function, 144–147
Blank Identifier in GoLang,

149–150
init() function, 148
main() function, 147–148

Var keyword, using, 38–41, 84–85

W

Wages of Go workers, 270
While for loop, 74
Whitespace, 32
Windows, installing Go on, 6

determining Go language version that
is preinstalled, 6

downloading and installing Go, 6–7
Workspace, 241–242

Z

Zero value slice, 100–101

