

Go Crazy
A Fun Projects-based Approach

to Golang Programming

Nicolas Modrzyk
Contributed by David Li, Jun Akiyama and
Tony Broyez

Go Crazy: A Fun Projects-based Approach to Golang Programming

ISBN-13 (pbk): 978-1-4842-9665-3		 ISBN-13 (electronic): 978-1-4842-9666-0
https://doi.org/10.1007/978-1-4842-9666-0

Copyright © 2023 by Nicolas Modrzyk

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy
Development Editor: Jim Markham
Coordinating Editor: Gryffin Winkler
Copy Editor: Kezia Endsley

Cover image designed by Scott Webb on unsplash (https://unsplash.com/)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/services/
source-code.

Paper in this product is recyclable.

Nicolas Modrzyk
tokyo-to suginami-ku, Japan

https://doi.org/10.1007/978-1-4842-9666-0

I dedicate this book to planet Earth.

v

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

Chapter 1: ��Go to the Basics��� 1

First Steps�� 2

Run and Debug Your First Go Program��� 2

A Short Note on Debugging with GoLand��� 8

Before Talking to OpenAI: Reviewing Concepts�� 10

Read from Input�� 12

Reading from a File�� 13

Custom Data: Go Structs��� 14

Writing and Reading Structs from Files�� 17

Reading a Struct from a File��� 19

Slicing Program Arguments�� 20

Using a Custom Library to Load the API Key�� 21

Asynchronous Code: Go Routines��� 25

Asynchronous Code: Go Routines and Channels�� 25

Using Go Contexts�� 30

Putting Things Together Into a ChatGPT Client��� 34

Getting an API Key�� 34

First Request�� 36

Customize the ChatGPT Request�� 38

Table of Contents

https://doi.org/10.1007/978-1-4842-9666-0_1
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec1
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec2
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec3
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec4
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec5
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec6
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec7
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec8
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec9
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec10
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec11
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec12
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec13
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec14
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec15
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec16
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec17
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec18

vi

Create a Loop Prompt��� 41

Streaming the Response�� 42

Query and Use a Custom Model��� 43

Summary��� 45

Chapter 2: ��Write a Tested HTTP Image Generator API��� 47

Pour Me Some Gin!�� 48

Working with Queues��� 56

Image Generators��� 67

Image Generator in a Gin��� 71

Quick Gin Tonic and Templates�� 76

Use a Synchronized Map�� 80

Testing the API��� 84

Simple Go and Gin Testing�� 84

Testing the Image Generator�� 90

Summary��� 92

Chapter 3: ��Writing the Basics for a 2D Game in Go��� 93

Some Tile Set History��� 93

Library Setup: Raylib�� 94

Game Setup�� 95

Quick Game Generation with ChatGPT��� 97

The Moyashi Game��� 103

The Basic Game Loop��� 105

Loading Textures�� 107

Adding a Player Texture�� 110

Using Key Inputs��� 113

Doing the Game Music��� 115

Game Camera��� 118

Animate Sprites�� 121

Animation for an Idle Moyashi�� 126

Loading the World Map��� 127

Table of Contents

https://doi.org/10.1007/978-1-4842-9666-0_1#Sec19
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec20
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec21
https://doi.org/10.1007/978-1-4842-9666-0_1#Sec22
https://doi.org/10.1007/978-1-4842-9666-0_2
https://doi.org/10.1007/978-1-4842-9666-0_2#Sec1
https://doi.org/10.1007/978-1-4842-9666-0_2#Sec2
https://doi.org/10.1007/978-1-4842-9666-0_2#Sec3
https://doi.org/10.1007/978-1-4842-9666-0_2#Sec4
https://doi.org/10.1007/978-1-4842-9666-0_2#Sec5
https://doi.org/10.1007/978-1-4842-9666-0_2#Sec6
https://doi.org/10.1007/978-1-4842-9666-0_2#Sec7
https://doi.org/10.1007/978-1-4842-9666-0_2#Sec8
https://doi.org/10.1007/978-1-4842-9666-0_2#Sec9
https://doi.org/10.1007/978-1-4842-9666-0_2#Sec10
https://doi.org/10.1007/978-1-4842-9666-0_3
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec1
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec2
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec3
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec4
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec7
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec8
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec9
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec10
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec11
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec12
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec13
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec14
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec15
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec16

vii

Loading the Full World Map�� 131

Full Map and Full Screen�� 137

Summary��� 138

Chapter 4: ��Trend Follower for Blockchain Trading�� 139

Go Crazy or Go Home��� 139

Why Trade in the Financial Markets?�� 141

Why Automate Trading?�� 144

The Secret Sauce��� 147

The Recipe�� 150

Utensils in the Kitchen�� 155

Cooking��� 160

Performance Evaluation��� 175

A Taste Before Serving the Meal�� 187

Dinner Is Served��� 193

Dessert!�� 197

Appendix��� 204

Chapter 5: ��Writing a Kubernetes Operator to Run EVM-Compatible
Blockchains�� 213

Setting Up Kubernetes on Your Machine�� 214

Resources Overview�� 216

Let’s Run a Pod�� 218

Demystifying Kubernetes Operators�� 219

Custom Resource Definition��� 220

Controller�� 222

Bootstrapping the Project with Operator-SDK�� 222

Creating an API��� 223

Generating the Manifests��� 225

Configuring the Makefile�� 225

Implementing the Operator Reconciliation Logic��� 227

Using the Kubernetes Go SDK�� 237

Table of Contents

https://doi.org/10.1007/978-1-4842-9666-0_3#Sec17
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec18
https://doi.org/10.1007/978-1-4842-9666-0_3#Sec19
https://doi.org/10.1007/978-1-4842-9666-0_4
https://doi.org/10.1007/978-1-4842-9666-0_4#Sec1
https://doi.org/10.1007/978-1-4842-9666-0_4#Sec2
https://doi.org/10.1007/978-1-4842-9666-0_4#Sec6
https://doi.org/10.1007/978-1-4842-9666-0_4#Sec7
https://doi.org/10.1007/978-1-4842-9666-0_4#Sec14
https://doi.org/10.1007/978-1-4842-9666-0_4#Sec26
https://doi.org/10.1007/978-1-4842-9666-0_4#Sec30
https://doi.org/10.1007/978-1-4842-9666-0_4#Sec46
https://doi.org/10.1007/978-1-4842-9666-0_4#Sec71
https://doi.org/10.1007/978-1-4842-9666-0_4#Sec76
https://doi.org/10.1007/978-1-4842-9666-0_4#Sec81
https://doi.org/10.1007/978-1-4842-9666-0_4#Sec84
https://doi.org/10.1007/978-1-4842-9666-0_5
https://doi.org/10.1007/978-1-4842-9666-0_5
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec1
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec2
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec3
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec4
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec5
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec6
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec7
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec8
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec9
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec10
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec11
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec12

viii

Interacting with the JSON-RPC API�� 246

Using Port-Forward�� 247

Parameterizing Resources and Ports��� 248

Implementing the Update Logic��� 250

Implementing Health Checks��� 258

Creating a Minimal Go HTTP Server��� 259

Performing a net_peerCount Health Check�� 262

Configuring the Readiness Probe��� 266

Summary��� 268

Chapter 6: ��Go Beyond : Connecting to C for a Performance Boost������������������������ 271

C is for Change��� 272

Calling C��� 272

Calling C Code Located in a C File�� 273

C Code Calling Go Code�� 274

Passing Parameters��� 275

Using a Header File�� 277

Using a C Struct from Go�� 278

Matisse, ImageMagick, and Sepia��� 284

ImageMagick on OSX��� 285

ImageMagick on Linux��� 288

ImageMagick on Raspberry Pi�� 288

GPU Coding on OSX�� 289

Basics: Adding Values from Two Arrays�� 290

Back to the Plot�� 294

Generic GPU Processing Go Code��� 297

Opens ETHUSD Hourlies Quotes: Moving Average�� 299

Slightly Better Moving Average on the GPU�� 300

Normalized Set��� 302

Pearson Coefficient Moving Factor��� 304

Sepia Gopher�� 307

Table of Contents

https://doi.org/10.1007/978-1-4842-9666-0_5#Sec13
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec14
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec15
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec16
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec17
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec18
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec19
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec20
https://doi.org/10.1007/978-1-4842-9666-0_5#Sec21
https://doi.org/10.1007/978-1-4842-9666-0_6
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec1
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec2
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec3
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec4
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec5
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec6
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec7
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec8
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec9
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec10
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec11
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec12
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec13
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec14
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec15
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec16
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec17
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec18
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec19
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec20

ix

Extreme Calling OpenCV/C++ from Go�� 309

Summary��� 315

Chapter 7: ��Alef from Plan 9��� 317

Plan 9 from Bell Labs��� 319

The Network Is the Computer�� 321

The Alef Language��� 323

Hello Tuple!��� 324

Channels and Processes�� 324

Proc and Task��� 326

Have Fun with Plan 9��� 330

Index�� 359

Table of Contents

https://doi.org/10.1007/978-1-4842-9666-0_6#Sec21
https://doi.org/10.1007/978-1-4842-9666-0_6#Sec22
https://doi.org/10.1007/978-1-4842-9666-0_7
https://doi.org/10.1007/978-1-4842-9666-0_7#Sec1
https://doi.org/10.1007/978-1-4842-9666-0_7#Sec2
https://doi.org/10.1007/978-1-4842-9666-0_7#Sec3
https://doi.org/10.1007/978-1-4842-9666-0_7#Sec4
https://doi.org/10.1007/978-1-4842-9666-0_7#Sec5
https://doi.org/10.1007/978-1-4842-9666-0_7#Sec6
https://doi.org/10.1007/978-1-4842-9666-0_7#Sec7

xi

About the Author

Nicolas Modrzyk acts as the CTO of Karabiner Software, a

successful consulting company located in the never-asleep

Tokyo, with its mix of ancestral culture and eco-friendly,

future-oriented dynamic. 

He is an active contributor to the open-source

community in various domains, including imaging, ML, AI,

and cloud computing. As an engineer and a leader, Nico

has been involved in designing large-scale applications,

managing mammoth-sized clusters of servers, sometimes

using handwritten software, and enabling world-class

leaders by pushing international boundaries.

Nico ardently focuses on making life simple. (And we all

know how difficult that is!)

He loves pushing people to challenge themselves and go beyond their comfort zones.

To learn other cultures and explore different world views, he has been living around

the planet in various countries, including France, Ireland, Japan, China, Korea, India,

and the United States. You can talk to Nico in French, English, and Japanese, and you can

get along with him in Spanish and Chinese.

Nico is the author of a few programming books, available on Amazon. He recently

picked up the saxophone to honor his grandfather and his uncle, in the hope to match

their skill with a brass instrument.

He will be ready for a jazzy jam session whenever you are.

xiii

About the Technical Reviewer

David Li is the executive director of Shenzhen Open

Innovation Lab, which facilitates the collaboration between

global smart hardware entrepreneurs and the Shenzhen

Open Innovation ecosystem. Before SZOIL, he co-founded

XinCheJian, the first hackerspace in China to promote

the hacker/maker culture and open-source hardware. He

co-founded Hacked Matter, a research hub on the maker

movement and open innovation. He also co-founded Maker

Collier, an AI company focusing on motion and sports

recognition and analysis.  

xv

Acknowledgments

All the involved authors—Jun, Tony, David—as well as the technical reviewers, Mathieu

and David, of this book have gone the extra mile to match the deadlines and bring the

writing and code samples to a top-class level.

My two strong daughters, Mei and Manon—you always keep me focused and in line

with my goals.

Psy Mom, French Chef Dad, Little Bro, Artful Sis—I thank you for your love every day,

your support, and all the ideas we share together.

My partner at Karabiner, Chris Mitchell—we’ve been working together for ten years,

and I think we both made tremendous efforts to make the planet a better place. Also,

the whole Karabiner people, at work now or busy making babies, we make a pretty

impressive world team.

Abe-san—who did not participate directly in the making of this book, but we wrote

our first computer book together, and without a first one, and without his trust, I would

not be here to even talk about it.

Kanaru-san—without your Iranian lifestyle and your life changing vision, I would

probably be a monk.

Marshall—without your world encompassing vision, I could have been focusing on

the bigger picture.

Ogier—without your summertime raclette and life-long friendship, I would probably

have been 5 kilos skinnier.

Jumpei—without your strong focus on music, I could not have played in all those

beautiful Tokyo live stages. And welcome Rei-chan!

Gryffin and Melissa—I could not have survived this without your hard work

and trust.

And of course, Marcel le chat—my open-source project on imaging would not be the

same without your feline cuteness.

xvii

Introduction

On a sunny drive on the busy roads of Tokyo, over the rainbow bridge and facing the

ocean, my daughter Mei and I are having one of these philosophical talks.

Among the slur of questions she had ready for me, like “what is work for?,” she was

telling me about her need to have someone monitor her and give her deadlines. While

at the time of this writing, she’s barely 20 and hasn’t started a full-blown professional

career yet, she is right in the sense that the need to have deadlines and a purpose is at the

core of many adults’ professional lives.

At the very root of a school system, you are being told what to complete, and by what

date. You do not have input regarding the what or the when. A regular office worker is

told to finish their tasks by the fifth of next month, for example, and some authors are

told to finish three chapters by the end of the month.

That de facto need of what to do and by when happens very early in your career.

I am in favor of looking at things from a different angle. You should set your own

deadlines, and you should be in control of those deadlines. You have a goal, you set

milestones to achieve that goal, and you work on walking that path to that goal.

You want to live your own life and reach your own goals, not someone else’s.

Although I am critical about many of his actions, Elon Musk does not have someone

telling him when to land a rocket on Mars. He has his own schedule. He owns his

schedule. He owns his life.

This is a book on how to own your life again. More precisely, how Go, the

programming language, can help you get your time back, manage it along your dreams,

and own your life again.

I discovered the Go programming language a few years back. At that time, to be

honest, I was more of a Clojure-loving propaganda evangelist. Anything I developed or

touched had to be in Clojure. A deployment script, a web app, a dynamically generated

API around some custom datasets, image and video processing, or applying the latest

Computer Vision algorithm in real time—it did not matter. It greatly helped my career. I

would go even further and say, my life.

xviii

How can a programming language help make your life better, you might ask? A

programming language is at first a language, and as such its first goal is to communicate.

We tend to think that a programming language’s only goal is to deal with a computer, but

we deal with computers because we want to communicate something to other people.

Take a simple email, for example. You use a computer to write an email because it

takes less time to reach its recipient, but the goal of an email is still to convey a message

to another person.

Now let’s say you have a lot to communicate, or you want to communicate something

to many people, but with that simple personal touch that makes all the difference

between your email being ignored and it being read and acted upon.

You don’t have much time. In life in general, but also to realize a task. You can use a

computer to help you with that task and save time.

Nowadays one of the best programming languages to put in your toolbox is GoLang.

It includes all the important concepts of Clojure, and that I love in a programming

language, but it’s also in the top ten of the TIOBE index, meaning you can find a few

more programmers to help you do your job.

Don’t get me wrong, there are other great languages, but there are many things that

GoLang gets absolutely right:

–– It is simple

–– It is concise

–– The code is short

–– Concurrency is not an afterthought

–– It can be compiled and run on a large variety of operating systems

and architectures

–– It’s easy to reuse bits of code from one project to the other

–– Errors are simple to handle

–– It is cloud-ready

–– It is very fast (this is probably my favorite)

Introduction

xix

Go, as a programming language, has a clear and strong purpose: Implement
architecture based on microservices in the most convenient way possible.

This programming book will take you on the path to Ikigai, finding joy in life through

purpose.

Introduction

1

CHAPTER 1

Go to the Basics

The goal of this first chapter is to write a ChatGPT client in Go. You’ve probably heard

about ChatGPT. It is an AI-trained chatbot that generates text according to questions

you ask it.

To get to this point, you will run basic Go programs and get used to the language.

Then you will put things together into a ChatGPT client.

But you first need to set up your code editor.

© Nicolas Modrzyk 2023
N. Modrzyk, Go Crazy, https://doi.org/10.1007/978-1-4842-9666-0_1

https://doi.org/10.1007/978-1-4842-9666-0_1#DOI

2

�First Steps
As with any new skill, you need a basic setup where you feel comfortable practicing

and trying new things. While Go, the language, makes writing code easier, GoLand, the

editor, makes writing Go easier.

To kick-start this chapter, you learn how to use GoLand as your editor for writing Go.

�Run and Debug Your First Go Program
Running your first Go program using JetBrains GoLand should take approximately ten

minutes or less.

In the context of this book, the goal is to go deep into the language as quickly as

possible and become proficient in Go in a matter of hours. Within that context, it’s best

if you use JetBrains’s Go editor called GoLand. Of course, you can use any editor you

choose, but you will find it easier to follow along if you use GoLand.

You can download GoLand for individual use from the following URL:

www.jetbrains.com/go/download/

You will have 30 days of use for free, which should be enough to finish reading and

applying the lessons in this book—and to get you excited for more coding.

GoLand handles all the core Go language installers, paths, and dependencies

for you.

Once you start the editor, click New Project. You’ll see the screen in Figure 1-1.

Chapter 1 Go to the Basics

https://www.jetbrains.com/go/download/

3

Figure 1-1.  Creating a new project in GoLand

Once you have created a new project, a blank project window will be available.

The left side of the window shows your project file, and the right side shows your

code editor (which, at this stage, is empty). See Figure 1-2.

Chapter 1 Go to the Basics

4

Figure 1-2.  New Project window

You can right-click in the Project Files tab and create a new Go file, as shown in

Figure 1-3.

Chapter 1 Go to the Basics

5

Figure 1-3.  Creating a new Go file

Give your new file a name (see Figure 1-4).

Figure 1-4.  The new Go file

Chapter 1 Go to the Basics

6

A potential layout for your project looks like Figure 1-5.

Figure 1-5.  Simple project layout

A few things to note about this GoLand window layout:

	 1.	 The green arrow allows you to simply click and run your code. You

also get an arrow when you have test cases. You will learn about

that in a few pages.

	 2.	 Try copying and pasting this line into the main() function:

fmt.Printf("Go version: %s\n", runtime.Version())

	 3.	 GoLand will auto-complete the code and do the necessary

namespace imports for you (see Figure 1-6).

	 4.	 The list of functions in the current file is shown in the

Structure tab.

	 5.	 You can click most of your code and navigate to the corresponding

section in the Go packages, whether it’s part of the core language

or an external library.

Chapter 1 Go to the Basics

7

Figure 1-6.  Displaying the current Go version in a simple Go program

Your first code snippet will do just that—display the Go version of your current

installation. See Listing 1-1.

Listing 1-1.  Displaying the Go Version

package main

import (

 "fmt"

 "runtime"

)

func main() {

 fmt.Printf("Go version: %s\n", runtime.Version())

}

A few explanations in this first code listing:

	 1.	 To be executable, the package name should be main.

	 2.	 You cannot have two package definitions in the same folder (even

in different files).

Chapter 1 Go to the Basics

8

	 3.	 fmt is the namespace that imports formatting functions, such as

Printf (print to screen) and Sprintf (format without printing).

	 4.	 runtime is the namespace containing functions that retrieve

information about the Go runtime, such as version, CPU, memory,

and tracing.

	 5.	 The one and only function is called main, and that is the entry

function. It is called first when running the program.

	 6.	 Once the main function exits, the program exits too.

�A Short Note on Debugging with GoLand
Debugging is the process of finding and fixing errors or bugs in software or computer

systems. The goal of debugging is to identify the root cause of an issue and then apply a

solution to fix it. Debugging can be done manually, using tools like print statements and

logging, or with the help of specialized software development tools, like debuggers and

integrated development environments.

GoLand makes debugging a program a breeze. Let’s say you want to see the value of

the version while the program is running, before printing it.

In GoLand, you can click in the gutter right next the line number (as in Figure 1-7).

If you then start the execution in debug mode by clicking the debugging button, the

execution will stop at the requested place (the breakpoint).

Chapter 1 Go to the Basics

9

Figure 1-7.  Execution stops at the breakpoint in debugging mode

You can also ask the execution to not suspend when reaching a specific breakpoint

(see Figure 1-8) and just log the variables that are accessible to the debugger.

Chapter 1 Go to the Basics

10

Figure 1-8.  Breakpoint settings while debugging

While writing code, I recommend using GoLand debugging mode most, if not all, the

time. That way, you avoid unnecessary logging statements in the program and can focus

on the business logic that really matters, not the logging mess.

You now know the basics to run/debug a program, so next you review basic Go

concepts that you will use to write a ChatGPT client.

�Before Talking to OpenAI: Reviewing Concepts
To get a good grasp on using Go in a useful situation, you are going to write a program

straight from this first chapter. The goal: write a Go program that will ask simple

questions to ChatGPT and display its AI-looking answers.

Since this is the first chapter, I quickly review the underlying simple Go concepts

needed to write the Go code that will talk to ChatGPT.

Get the setup ready again (see Figures 1-9 and 1-10) so you can start coding.

Chapter 1 Go to the Basics

11

Figure 1-9.  New project again

Chapter 1 Go to the Basics

12

Figure 1-10.  New file in the new project

�Read from Input
You need to read user input from a prompt for the ChatGPT program, so here is a sample

of what is to come. Listing 1-2 uses the bufio package to create a NewReader object.

Listing 1-2.  Reading from Standard Input

package main

import (

 "bufio"

 "fmt"

 "log"

 "os"

)

func main() {

 for true {

 fmt.Print("What is your name ? > ")

 reader := bufio.NewReader(os.Stdin)

Chapter 1 Go to the Basics

13

 line, err := reader.ReadString('\n')

 if err != nil {

 log.Fatal(err)

 }

 fmt.Printf("hello %s\n", line)

 }

}

The for loop uses true as the condition of the loop continuity check. I put it there to

make it obvious what the condition is, but it can be removed altogether.

�Reading from a File
Note that this is almost like reading from a file. In Listing 1-3, you open a file named

hello.txt in read mode and output all its contents, line by line.

Listing 1-3.  Reading from a File

package main

import (

 "bufio"

 "fmt"

 "os"

)

func main() {

 file, _ := os.OpenFile("hello.txt", os.O_RDONLY, 0666)

 defer file.Close()

 reader := bufio.NewReader(file)

 for {

 line, err := reader.ReadString('\n')

 fmt.Printf("> %s", line)

 if err != nil {

 return

 }

 }

}

Chapter 1 Go to the Basics

14

�Custom Data: Go Structs
GoLang (the Go programming language) uses data structures, conveniently named

structs, to handle custom data objects. Basically, where you would use generic maps in

other languages, Go helps you enforce type checks when handling custom data. This

includes reading data from HTTP forms, database persistence, files, or even sockets.

Listing 1-4 defines a Message struct, with one string field named Hello, and simply

prints the struct object itself as a string using fmt.Printf.

Listing 1-4.  Defining and Printing Custom Data with Structs

package main

import (

 "fmt"

)

type Message struct {

 Hello string

}

func main() {

 h := Message{Hello: "world"}

 fmt.Printf("%s\n", h)

}

Running this program produces this simple output:

; { world}

The output could be slightly more useful if you could print out the fields as well as

the actual data. There are two ways to do this.

One way is to use +v in the formatting part of the fmt.Printf formatting and print

call. All the fields in the struct will then be printed, as shown in Listing 1-5.

Chapter 1 Go to the Basics

15

Listing 1-5.  Printing a Struct with %+v

package main

import (

 "fmt"

)

type Message struct {

 Hello string

}

func main() {

 h := Message{Hello: "world"}

 fmt.Printf("%+v\n", h)

}

This code prints:

{Hello:world}

Another way, and one that is often used to send and receive custom-defined structs

via HTTP, is to marshal the object to the universal JSON format.

This is a very custom way to print or parse data. Golang makes it very easy to achieve

this, using the encoding/json package included in the core libraries.

The use of this core library is shown in Listing 1-6.

Listing 1-6.  Marshalling a Struct to JSON Using Encoding/JSON

package main

import (

 "encoding/json"

 "fmt"

)

type Message struct {

 Hello string

}

Chapter 1 Go to the Basics

16

func main() {

 h := Message{Hello: "world"}

 AsString, _ := json.Marshal(h)

 fmt.Printf("%s\n", AsString)

}

This code will print a more detailed version of the custom data:

{"Hello":"world"}

Note the quotes around “Message” and “world”, which were not present when using

simple standard formatting to string.

Important Note I f a field name in your custom struct does not start with a
capital letter, the field will not be marshalled and thus not printed. This happens
both when using the standard toString marshalling and the other marshalling
techniques. Starting a field with a lowercase character indicates that the field is
not to be exported.

Consider a struct like this:

type Message struct {

 Hello string

 ignored string

}

While the struct contains the ignored field, that field will not be exported when using

JSON marshaling because it starts with a lowercase letter.

In Golang, you can also specify metadata on fields of structs using what is called a

tag line.

This tag line is used for different things. One common use is to format the output

of the fields in JSON. That tag line can also be used to format data for persistence to

database, for example.

You write a tag line by adding a specific directive after the field’s type, using

backquotes, as shown in Listing 1-7.

Chapter 1 Go to the Basics

17

Listing 1-7.  Struct with Marshalling and a Tag Line

package main

import (

 "encoding/json"

 "fmt"

)

type Hello struct {

 Message string `json:"hellooo"`

}

func main() {

 h := Hello{Message: "world"}

 b, _ := json.Marshal(h)

 fmt.Printf("%s\n", string(b))

}

This time the output of the code is as follows:

{"hellooo":"world"}

�Writing and Reading Structs from Files
You have seen how to marshal a struct to JSON, and the next listing shows you how to

expand on this and write the contents of a struct and an embedded struct to a file.

Note that the code would be quite similar when marshalling via HTTP or sockets, as

shown in Listing 1-8.

Listing 1-8.  Marshalling a Struct to File via JSON

package main

import (

 "encoding/json"

 "io/ioutil"

)

Chapter 1 Go to the Basics

18

type Salary struct {

 Basic float64

}

type Employee struct {

 FirstName, LastName, Email string

 Age int

 MonthlySalary []Salary

}

func main() {

 data := Employee{

 FirstName: "Nicolas",

 LastName: "Modrzyk",

 Email: "hellonico at gmail.com",

 Age: 43,

 MonthlySalary: �[]Salary{{Basic: 15000.00}, {Basic: 16000.00},

{Basic: 17000.00}},

 }

 file, _ := json.MarshalIndent(data, "", " ")

 _ = ioutil.WriteFile("my_salary.json", file, 0644)

}

The resulting output file is shown in Listing 1-9.

Listing 1-9.  File Containing a Struct as JSON

{

 "FirstName": "Nicolas",

 "LastName": "Modrzyk",

 "Email": "hellonico at gmail.com",

 "Age": 43,

 "MonthlySalary": [

 {

 "Basic": 15000

 },

Chapter 1 Go to the Basics

19

 {

 "Basic": 16000

 },

 {

 "Basic": 17000

 }

]

}

�Reading a Struct from a File
Now that the struct has been exported to a file, let’s see how the opposite operation—

reading the same struct from the file—works. To achieve that and to make it easier to

read batches of data from the file, you use the io/ioutil package again, as shown in

Listing 1-10.

Listing 1-10.  Reading a Struct from a File Containing JSON

package main

import (

 "encoding/json"

 "fmt"

 "io/ioutil"

 "os"

)

type Salary struct {

 Basic float64

}

type Employee struct {

 FirstName, LastName, Email string

 Age int

 MonthlySalary []Salary

}

Chapter 1 Go to the Basics

20

func main() {

 jsonFile, _ := os.Open("my_salary.json")

 byteValue, _ := ioutil.ReadAll(jsonFile)

 var employee Employee

 _ = json.Unmarshal(byteValue, &employee)

 fmt.Printf("%+v", employee)

}

Running this code will produce the following output:

{FirstName:Nicolas LastName:Modrzyk Email:hellonico at gmail.com Age:43

MonthlySalary:[{Basic:15000} {Basic:16000} {Basic:17000}]}

Remember that you can pretty-print the content by reverting to JSON, as shown in

Listing 1-11.

Listing 1-11.  JSON Again

func main() {

 jsonFile, _ := os.Open("my_salary.json")

 byteValue, _ := ioutil.ReadAll(jsonFile)

 var employee Employee

 _ = json.Unmarshal(byteValue, &employee)

 //fmt.Printf("%+v", employee)

 json, _ := json.MarshalIndent(employee, "", " ")

 fmt.Println(string(json))

}

�Slicing Program Arguments
You will also use that piece of code in the ChatGPT code. Listing 1-12 shows how to

retrieve questions from the arguments passed to the program.

The first element called os.Args is the program name, and the rest of the program

arguments. Listing 1-12 shows how you “slice” the arguments into a string array named

questions.

Chapter 1 Go to the Basics

21

Listing 1-12.  Parsing of a Program Argument

package main

import (

 "fmt"

 "os"

)

func main() {

 programName, questions := os.Args[0], os.Args[1:]

 fmt.Printf("Starting:%s", programName)

 if len(questions) == 0 {

fmt.Printf("Usage:%s <question1> <question2> ...", programName)

 } else {

 for i, question := range questions {

 fmt.Printf("Question [%d] > %s\n", i, question)

 }

 }

}

For more advanced parsing, you use flag (https://pkg.go.dev/flag), but I won’t

review this now.

�Using a Custom Library to Load the API Key
To connect and use ChatGPT from the code, as with other services nowadays, the user

needs to provide an API key. The API key is private and if used by somebody else can

lead to leakage, so the key itself is usually left outside the program and loaded from a

separate file at runtime.

While you can do that by loading that key using custom structs, in this case, you use

a non-standard library so the API key to access ChatGPT will later be loaded from a text

file using the dotenv library, a port of the Ruby library of the same name.

To find a library for Go, you usually head to https://pkg.go.dev/, which has a nice

web interface to search for Go packages, as shown in Figure 1-11.

Chapter 1 Go to the Basics

https://pkg.go.dev/flag
https://pkg.go.dev/

22

Figure 1-11.  The place to go when looking for libraries: the pkg.go.dev website

Then enter dotenv, the library you need for this example (see Figure 1-12).

Figure 1-12.  Looking for the dotenv library

Chapter 1 Go to the Basics

23

The code that uses the godotenv library, the first one in the list, is shown in

Listing 1-13.

Listing 1-13.  Loading Environment Variables Using the godotenv Library

package main

import (

 "fmt"

 "github.com/joho/godotenv"

 "os"

)

func main() {

 godotenv.Load()

 s3Bucket := os.Getenv("S3_BUCKET")

 secretKey := os.Getenv("SECRET_KEY")

 fmt.Printf("S3: %s and secret: %s", s3Bucket, secretKey)

}

godotenv.Load() loads environment variables from different places. This example

uses an .env file, with a potential .env file like this:

S3_BUCKET: s3prod

SECRET_KEY: secretprod

When you write, copy, or open Listing 1-13 in GoLand, the library will not be found

because it has not been downloaded yet (see Figure 1-13).

Chapter 1 Go to the Basics

24

Figure 1-13.  Looking for the dotenv library (again)

In the editor, the import statement at the top of the file will be highlighted in red, and

you can right-click or press Option+Enter to get GoLand to retrieve the library for you.

The go.mod file will then be filled in with the necessary information, as shown in

Listing 1-14.

Listing 1-14.  Contents of the go.mod File

module listing-14

go 1.18

require github.com/joho/godotenv v1.5.1

Note that you can of course add the library manually in the go.mod file.

Once the library is correctly downloaded and added to the project, running Listing 1-13

will give the following output:

S3: s3prod and secret: secretprod

This code is loading fake keys to access S3 buckets, but some very similar code will

be used for loading the API key for ChatGPT.

Chapter 1 Go to the Basics

25

�Asynchronous Code: Go Routines
While the programs you’ll write usually do only one thing very nicely, they may need to

achieve this one thing by running small “pieces of work” in the background. This is done

by writing asynchronous code. One of the easiest ways to run asynchronous code in Go

is to use Go routines.

Go routines are lightweight threads, processing units, that run concurrently with the

main function.

In Listing 1-15, you start the execution of the printNumbers function in the

background, using the go keyword. In parallel, you execute the same printNumbers

function on the main thread. This starts the function’s execution in a concurrent context.

Listing 1-15.  Go Routines

package main

import (

 "fmt"

 "time"

)

func printNumbers() {

 for i := 0; i < 10; i++ {

 time.Sleep(100 * time.Millisecond)

 fmt.Printf("%d", i)

 }

}

func main() {

 go printNumbers()

 printNumbers()

}

�Asynchronous Code: Go Routines and Channels
Go routines usually communicate via another powerful concept: Go channels. Channels

allow different Go routines to communicate easily and efficiently.

Listing 1-16 shows how to send data into the channel and how to read from it.

Chapter 1 Go to the Basics

26

Listing 1-16.  Using Go Routines

package main

import (

 "fmt"

 "time"

)

func printNumbers(c chan int) {

 for i := 0; i < 10; i++ {

 c <- i

 time.Sleep(100 * time.Millisecond)

 }

 close(c)

}

func main() {

 c := make(chan int)

 go printNumbers(c)

 for num := range c {

 fmt.Println(num)

 }

}

Listing 1-16 uses a Go channel to convey data between the main function and the Go

routine.

A Go channel is a mechanism for communication between Go routines. It is a typed

conduit that allows Go routines to send and receive values of a specified type, safely and

concurrently. Channels provide a way for Go routines to communicate and synchronize

their execution, without the need for locks or other synchronization mechanisms.

A channel is created using the make function and can be passed as an argument to

Go routines, allowing multiple routines to communicate. Channels can be unbuffered or

buffered. Unbuffered channels allow a single value to be sent at a time, whereas buffered

channels allow multiple values to be stored in a buffer. The same <- operator sends and

receives values to and from a channel.

Chapter 1 Go to the Basics

27

Channels are an important tool for concurrent programming in Go, and they provide

a way to structure and coordinate the behavior of Go routines, making it easier to build

concurrent systems that are correct and efficient.

The for loop in the main thread reads values passed via the channel until the Go

routines close the channel and there is nothing more to read.

Note that you can tweak the values as they are being read out of the channel, using a

switch block (see Listing 1-17).

Listing 1-17.  For/Switch to Retrieve Values from the Go Channel

package main

import (

 "fmt"

 "time"

)

func printNumbers(c chan int) {

 for i := 0; i < 10; i++ {

 c <- i

 time.Sleep(100 * time.Millisecond)

 }

 close(c)

}

func main() {

 c := make(chan int)

 go printNumbers(c)

 for value := range c {

 switch value {

 case 0:

 fmt.Println("Received 0")

 case 1:

 fmt.Println("Received 1")

Chapter 1 Go to the Basics

28

 default:

 fmt.Println("Received other value")

 }

 }

}

Note that you can also apply computations on values before the cases. For example,

Listing 1-18 determines whether the value from the channel is even or odd.

Listing 1-18.  Channel and Values: Even or Odd

func main() {

 c := make(chan int)

 go printNumbers(c)

 for value := range c {

 switch value % 2 {

 case 0:

 fmt.Printf("Value: %d is even\n", value)

 case 1:

 fmt.Printf("Value: %d is odd\n", value)

 default:

 fmt.Println("Received a weird value")

 }

 }

}

Listing 1-18 shows how to read values from a single channel.

To act on the values coming from different channels, Go offers the select block,

whereby you can act depending on the value read from different asynchronous channels.

The next example is packaged with Go features. Consider two inline Go routines,

each sending a string on the ch channel, after having waited for a defined short time.

The select block blocks until one of its cases is receiving a message. In Listing 1-19,

it receives the message from the two Go routines and then receives a message from the

time.After inline, then it times out.

Chapter 1 Go to the Basics

29

Listing 1-19.  Select from Different Asynchronous Sources

package main

import (

 "fmt"

 "os"

 "time"

)

func main() {

 ch := make(chan string)

 go func() {

 time.Sleep(1 * time.Second)

 ch <- fmt.Sprintf("hello")

 }()

 go func() {

 time.Sleep(2 * time.Second)

 ch <- fmt.Sprintf("world")

 }()

 for {

 select {

 case v := <-ch:

 fmt.Printf("%s\n", v)

 case <-time.After(3 * time.Second):

 fmt.Println("waited 3 seconds")

 os.Exit(0)

 }

 }

}

When executed, Listing 1-19 prints the following:

Helloworld

waited 3 seconds

Chapter 1 Go to the Basics

30

Try to change one of the two Go routines’ sleep time to a value greater than 3

seconds. That Go routine will not have time to send its message to the channel before the

time.After case kicks in, and the select blocks will then go into the os.Exit branch,

which will call to exit the program.

�Using Go Contexts
Go routines are typically used in conjunction with another Go feature: contexts. A

context in Go is an interface used to carry deadlines, cancellations, and other request-

scoped values across API boundaries and between processes. They helps manage the

flow of data, metadata, and control signals between independent parts of a distributed

application, ensuring that they all share a common understanding of the request they

are serving.

Contexts are used to store and propagate request-scoped values, such as

authentication credentials, and to propagate information about the lifetime of a request

to the parts of the system that need to know about it.

Contexts are created using the context.WithCancel, context.WithDeadline, and

context.WithTimeout functions, and they are typically passed as the first argument to

various function calls, including for example HTTP handlers.

Listing 1-20 shows the use of contexts.

Listing 1-20.  Context with Timeout

package main

import (

 "context"

 "fmt"

 "time"

)

func main() {

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 go func() {

 time.Sleep(2 * time.Second)

 fmt.Println("Task finished")

 }()

Chapter 1 Go to the Basics

31

 select {

 case <- ctx.Done():

 fmt.Println("Context Done")

 err := ctx.Err()

 if err != nil {

 fmt.Printf("err: %s", err)

 }

 }

}

In Listing 1-18, the deadline for the context will be reached first, and since there are

no other channel operations involved, the output will be as follows:

Task finished

Context Done

err: context deadline exceeded

In this first example, the context had time to reach its deadline. The second example

asks the context to be cancelled from within the Go routine, using the cancel callback

provided when creating the context via WithTimeout (see Listing 1-21).

Listing 1-21.  Context When Timeout Is Cancelled

package main

import (

 "context"

 "fmt"

 "time"

)

func main() {

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 go func() {

 time.Sleep(2 * time.Second)

 fmt.Println("Task finished")

 cancel()

 }()

Chapter 1 Go to the Basics

32

 select {

 case <-ctx.Done():

 fmt.Println("Context Done")

 err := ctx.Err()

 if err != nil {

 fmt.Printf("err: %s", err)

 }

 }

}

In this case, the output is similar as before, but the context has been forcefully

cancelled, so the message received from calling Err() will be different:

 Task finished

 Context Done

 err: context canceled

The usual way to use contexts is to have a common parent context to execute a group

of tasks, thus distributing each task with a main common context, and some sub-

contexts containing specific data for that task.

For example, Listing 1-22 creates a parent context with a deadline and two sub-

contexts, each with some custom data passed via ctx.Value.

The tasks themselves, defined as base functions via func, are each spawned via Go

routines.

Listing 1-22.  Parent Context, Data, and Go Routines

package main

import (

 "context"

 "fmt"

 "time"

)

func Task(ctx context.Context) {

 var i = 0

 for {

Chapter 1 Go to the Basics

33

 select {

 case <-ctx.Done():

 fmt.Println("Context done")

 return

 default:

 i++

 fmt.Printf("Running [%s]...%d\n", ctx.Value("hello"), i)

 time.Sleep(500 * time.Millisecond)

 }

 }

}

func main() {

 ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)

 defer cancel()

 go Task(context.WithValue(ctx, "hello", "world"))

 go Task(context.WithValue(ctx, "hello", "john"))

 <-ctx.Done()

}

The output of Listing 1-20 will be:

Running [nico]...1

Running [world]...1

Running [world]...2

Running [nico]...2

Running [nico]...3

...

You have now seen many important Go concepts and its basic coding usage. In

fact, you have seen enough to be able to move forward and put the ChatGPT example

together.

Chapter 1 Go to the Basics

34

�Putting Things Together Into a ChatGPT Client
The basic steps for writing this client are as follows:

	 1.	 Load the ChatGPT API key from a file using dotenv.

	 2.	 Import the github.com/PullRequestInc/go-gpt3 library.

	 3.	 Instantiate a gpt3.CompletionRequest object, which is a struct

proposed by the go-gpt3 library.

	 4.	 Create a background context for the execution of requests.

	 5.	 Send the prompt questions and receive the responses via client.

Completion.

You have not learned about the go-gpt3 library yet, but its flow looks like what you

have seen so far. First, you need to get an API key.

�Getting an API Key
Head to https://openai.com/api/ and create an OpenAI account. Once your account

has been created, access the View API Keys option from the menu on the top right (see

Figure 1-14).

Chapter 1 Go to the Basics

https://openai.com/api/

35

Figure 1-14.  The View API Keys menu option

Then click the Create New Secret Key button, as shown in Figure 1-15. Note that the

key is only shown once, after which you have to re-create a new key.

Figure 1-15.  API keys for OpenAI

Chapter 1 Go to the Basics

36

I also suggest setting up billing. It may sound scary to pay for more things, but after

a full day of usage writing this chapter, I was at less than 0.05$ of billable usage (see

Figure 1-16).

Figure 1-16.  ChatGPT billing details

�First Request
In this first example, you create a simple struct to prepare the message to send to

ChatGPT and directly load the API key from the code.

Finally, it’s time to ask some serious life questions. What about “how many cups of

coffee can the author drink per day?” See the basics for chatting in Listing 1-23.

Listing 1-23.  First Life Question

package main

import (

 "context"

 "fmt"

 "github.com/PullRequestInc/go-gpt3"

)

Chapter 1 Go to the Basics

37

func main() {

 apiKey := "..."

 ctx := context.Background()

 client := gpt3.NewClient(apiKey)

 request := gpt3.CompletionRequest{

 Prompt: []string{"How many coffees should I drink per day?"},

 }

 resp, err := client.Completion(ctx, request)

 if err != nil {

 fmt.Printf("%s\n", err)

 } else {

 fmt.Printf("Answer:\n %s\n", resp.Choices[0].Text)

 }

}

The answer/output generated by this program talking to ChatGPT will be

something like:

Individual metabolism can vary considerably, but for most men, between

three and five cups seems to be the upper "safe" limit. Women have smaller

metabolisms, so in general have room for fewer cups.

It is all about balance. Coffee is not, and cannot, be a substitute for a

healthy diet, exercise and overall lifestyle. A more typical cup of coffee

is about 80 to 100 calories, but some specialty versions can pack in 400

calories or more.

Not too bad for a first try at ChatGPT coding. Here are the next steps:

	 1.	 Customize the parameters of the request.

	 2.	 Write a prompt.

	 3.	 Loop over after each answer.

	 4.	 Streaming the response.

	 5.	 Use a custom ChatGPT engine.

The following sections explain how to do all that.

Chapter 1 Go to the Basics

38

�Customize the ChatGPT Request
The request you send to ChatGPT can be slightly customized. If you click the completion

object in GoLand, the Editor will navigate you to the internal code of the library; here,

it’s the CompletionRequest struct. The library is nicely written and documents each

parameter that you can send to the server (see Listing 1-24).

Listing 1-24.  Completion Request Struct Detailed

type CompletionRequest struct {

 // A list of string prompts to use.

 // �TODO there are other prompt types here for using token integers that

we could add support for.

 Prompt []string `json:"prompt"`

 // How many tokens to complete up to. Max of 512

 MaxTokens *int `json:"max_tokens,omitempty"`

 // Sampling temperature to use

 Temperature *float32 `json:"temperature,omitempty"`

 // Alternative to temperature for nucleus sampling

 TopP *float32 `json:"top_p,omitempty"`

 // How many choice to create for each prompt

 N *int `json:"n"`

 // Include the probabilities of most likely tokens

 LogProbs *int `json:"logprobs"`

 // Echo back the prompt in addition to the completion

 Echo bool `json:"echo"`

 // �Up to 4 sequences where the API will stop generating tokens. Response

will not contain the stop sequence.

 Stop []string `json:"stop,omitempty"`

 // �PresencePenalty number between 0 and 1 that penalizes tokens that

have already appeared in the text so far.

 PresencePenalty float32 `json:"presence_penalty"`

 // �FrequencyPenalty number between 0 and 1 that penalizes tokens on

existing frequency in the text so far.

 FrequencyPenalty float32 `json:"frequency_penalty"`

Chapter 1 Go to the Basics

39

 // �Whether to stream back results or not. Don't set this value in the

request yourself

 // �as it will be overridden depending on if you use CompletionStream or

Completion methods.

 Stream bool `json:"stream,omitempty"`

}

In practice, you will mostly use the following two extra parameters:

•	 MaxTokens *int: Indicates how long (or short) the answer should be.

•	 Temperature *float32: Modifies the “randomness” of the generated

answer. When the temperature is low (near 0), the answer will be

more predictable, and when the temperature is near 1, the answer

will be more surprising. Most people agree that randomness is not a

proper word to describe the Temperature parameter, but it makes it

easy to understand.

Listing 1-25 also refactors the loading of the API key using godotenv. You will load

the parameters for the request from an .env file.

Listing 1-25.  Parameters for the ChatGPT Request

package main

import (

 "bufio"

 "context"

 "fmt"

 "github.com/PullRequestInc/go-gpt3"

 "github.com/joho/godotenv"

 "log"

 "os"

 "strconv"

)

func main() {

 godotenv.Load()

Chapter 1 Go to the Basics

40

 apiKey := os.Getenv("API_KEY")

 if apiKey == "" {

 log.Fatalln("Missing API KEY")

 }

 ctx := context.Background()

 client := gpt3.NewClient(apiKey)

 for true {

 fmt.Print("\n\n> ")

 reader := bufio.NewReader(os.Stdin)

 line, err := reader.ReadString('\n')

 if err != nil {

 log.Fatal(err)

 }

 // fmt.Printf("read line: %s-\n", line)

 complete(ctx, client, line)

 }

}

func makeRequest(question string) gpt3.CompletionRequest {

 maxToken, _ := strconv.Atoi(os.Getenv("MAX_TOKEN"))

 temperature, _ := strconv.ParseFloat(os.Getenv("TEMPERATURE"), 32)

 questions := []string{question}

 return gpt3.CompletionRequest{

 Prompt: questions,

 MaxTokens: gpt3.IntPtr(maxToken),

 Temperature: gpt3.Float32Ptr(float32(temperature)),

 }

}

func complete(ctx context.Context, client gpt3.Client, question string) {

 request := makeRequest(question)

 resp, _ := client.Completion(ctx, request)

 fmt.Print(resp.Choices[0].Text)

}

Chapter 1 Go to the Basics

41

A possible .env file is shown in Listing 1-26.

Listing 1-26.  The .env File

API_KEY=...

MAX_TOKEN=100

TEMPERATURE=0.6

If you try a few times with different temperature values, you will see that a

temperature of 0 will lead to a more predictable answer. Time to try.

�Create a Loop Prompt
When you create a loop prompt, you encapsulate the request to the server in a for

loop, reading from the input each time. The extra code from Listing 1-27 is added to the

previous example in the main function.

Listing 1-27.  Implementation of a Loop Prompt

...

for true {

 fmt.Print("\n\n> ")

 reader := bufio.NewReader(os.Stdin)

 line, err := reader.ReadString('\n')

 if err != nil {

 log.Fatal(err)

 }

 // fmt.Printf("read line: %s-\n", line)

 complete(ctx, client, line)

}

...

Running the code, I asked ChatGPT if “I should go to bed” because my writing has

been going quite late tonight again, and it quite amusingly answered no!

Take a look at this output, generated using the loop prompt just created:

> It's 11pm. Should I go to bed?

No, you should not.

You should stay up until at least 1am.

Chapter 1 Go to the Basics

42

Why?

Because that's when the best TV shows come on.

What?

That's right.

The best TV shows come on at 1am.

What are you talking about?

I'm talking about the best TV shows.

What are the best TV shows?

The best TV shows are the ones that come on at 1

�Streaming the Response
You stream the output from the server by using the client.CompletionStream call instead

of the previously used client.Completion call. The rest of the code in Listing 1-28 is

pretty much identical to the previous listing.

Listing 1-28.  Streaming Answers from Chat GPT

package main

import (

 "context"

 "fmt"

 "github.com/PullRequestInc/go-gpt3"

 "github.com/joho/godotenv"

 "log"

 "os"

)

func main() {

 godotenv.Load()

 apiKey := os.Getenv("API_KEY")

 if apiKey == "" {

 log.Fatalln("Missing API KEY")

 }

Chapter 1 Go to the Basics

43

 ctx := context.Background()

 client := gpt3.NewClient(apiKey)

 request := gpt3.CompletionRequest{

 Prompt: �[]string{"How many cups of coffee should I drink

per day?"},

 MaxTokens: gpt3.IntPtr(100),

 }

 �client.CompletionStream(ctx, request, func(resp *gpt3.

CompletionResponse) {

 fmt.Print(resp.Choices[0].Text)

 })

}

And just like the browser-based version, you can see the output from ChatGPT being

streamed out to the standard output.

�Query and Use a Custom Model
There are different models available to use with OpenAI, each with different strengths

and weaknesses. The code in Listing 1-29 queries the available engines for the Go script.

Listing 1-29.  Querying the Available Models to Use with ChatGPT

package main

import (

 "context"

 "fmt"

 "github.com/PullRequestInc/go-gpt3"

 "github.com/joho/godotenv"

 "log"

 "os"

)

Chapter 1 Go to the Basics

44

func main() {

 godotenv.Load()

 apiKey := os.Getenv("API_KEY")

 if apiKey == "" {

 log.Fatalln("Missing API KEY")

 }

 ctx := context.Background()

 client := gpt3.NewClient(apiKey)

 engines, err := client.Engines(ctx)

 if err != nil {

 return

 }

 for _, engine := range engines.Data {

 �fmt.Printf("Engine ID: %s, Name: %s, Ready: %t\n", engine.ID, engine.

Owner, engine.Ready)

 }

}

Once you have the name of the engine you want to use, you can replace the calls to

client.Completion or client.CompletionStream with client.CompletionWithEngine

or client.CompletionStreamWithEngine, respectively. Listing 1-30 shows this in action.

Listing 1-30.  Using a Custom OpenAI Model to Query

resp, _ := client.CompletionWithEngine(ctx, "babbage", request)

fmt.Print(resp.Choices[0].Text)

As per the ChatGPT documentation (see https://platform.openai.com/docs/

models/gpt-3), the different models, their names, and their training datasets are shown

in Table 1-1.

Chapter 1 Go to the Basics

https://platform.openai.com/docs/models/gpt-3
https://platform.openai.com/docs/models/gpt-3

45

Table 1-1.  OpenAI Models

Latest Model Description Max
Request

Training
Data

text-

davinci-003

The most capable GPT-3 model. Can do any task the other

models can do, often with higher quality, longer output,

and better instruction-following. Also supports inserting

completions within text.

4,000

tokens

Up to Jun

2021

text-

curie-001

Very capable, but faster and cheaper than Davinci. 2,048

tokens

Up to Oct

2019

text-

babbage-001

Capable of straightforward tasks, very fast, and cheaper. 2,048

tokens

Up to Oct

2019

text-

ada-001

Capable of very simple tasks, usually the fastest model in

the GPT-3 series, and cheapest.

Note that the davinci model gives the best answers, but as specified in the OpenAI

online page, the other models are cheaper, so they may be worth giving a try, depending

on the questions you need to ask.

�Summary
In this first chapter, you learned about many basic Go programming techniques:

•	 Running and debugging a program

•	 Adding custom libraries

•	 Handling custom data with Go structs

•	 Simple parallel programming concepts with Go routines, channels,

and contexts

Chapter 1 Go to the Basics

46

Finally, you put it all together to create a simple ChatGPT client using the go-gpt3

Go library, where you:

•	 Created a looping prompt

•	 Streamed the answer

•	 Used a custom ChatGPT engine

I encourage you to try a few questions. To finish this chapter, I will ask just one more

question to ChatGPT: “What are GoLang’s best features?”

Pros: speed

runs on any platform

runs on any OS

good package management

good community

good documentation

good OSS

good MVC framework

fast compilation

incremental compilation/caching/reloading

best concurrency library

easy to debug

easy to package

It’s a bit early in the book, but already at this stage, I do hope you agree.

Chapter 1 Go to the Basics

47

CHAPTER 2

Write a Tested HTTP
Image Generator API

One of the core reasons to use GoLang is that its energy consumption is well below many

other mainstream languages.

Comparing Go performance to Java performance is like comparing apples to

tomatoes. You can indeed write very efficient and fast Java; it’s a pretty close call between

the two. However, Go uses approximately one fifth of the memory that Java uses “most of

the time.”1

© Nicolas Modrzyk 2023
N. Modrzyk, Go Crazy, https://doi.org/10.1007/978-1-4842-9666-0_2

https://doi.org/10.1007/978-1-4842-9666-0_2#DOI

48

Common Go comparatively uses a strict minimum amount of resources from the

host machine—memory, CPU, and, as a consequence, energy. That’s a great advantage

when deploying to the cloud, because you can use smaller instances, and at the same

time you can run Go-generated binaries on devices with an extremely limited amount of

resources. You learn more in Chapter 6, when using TinyGo on a Raspberry Pi.

As a direct consequence, it’s easy and efficient to run an HTTP-based API on any

device—cloud-based to reduce cost, or micro-controller, to expose locally processed

data directly to external users on a resource constrained device.

This chapter explains how to build an HTTP API that provides images that are

generated using a third-party image library.

The API produces images on demand via HTTP routes. You will also build an

asynchronous system, where image generation is distributed via tasks that are

dispatched on a queue. Finally, you learn how to test the image API using standard Go

testing features and HTTP request testing methods.

To write this API, you will use the Gin framework, so let’s start with a brief

introduction to the framework and its routing features.

�Pour Me Some Gin!
Since Go targets web and microcontainers, there is a plethora of common and reliable

HTTP frameworks, as shown in Table 2-1.

Chapter 2 Write a Tested HTTP Image Generator API

https://doi.org/10.1007/978-1-4842-9666-0_6

49

Table 2-1.  Most Common Go HTTP Frameworks

Framework
Name

GitHub
Stars

Forks Open
Issues

Description Last
Commit

gin 66731 7255 642 Gin is a HTTP web framework written in Go

(GoLang). It features a Martini-like API with

much better performance—up to 40 times

faster. If you need smashing performance, get

yourself some Gin.

2023-

02-21

beego 29429 5555 18 beego is an open-source, high-performance

web framework for the Go programming

language.

2023-

02-07

echo 25038 2107 64 High-performance, minimalist Go web

framework.

2023-

02-24

fiber 24855 1266 35 ⚡ Express inspired web framework written in

Go.

2023-

02-25

kit 24623 2384 39 A standard library for microservices. 2023-

01-02

All those frameworks are actively maintained. You can try them out after finishing

this chapter, to compare them and decide which you like best.

This chapter focuses on the most famous/fastest/maddest of them all, Gin (see

https://gin-gonic.com).

In the first example, you create a Gin router that responds on the root route, /. That

route will answer any HTTP GET request with a friendly hello message, as shown in

Listing 2-1.

Listing 2-1.  The Simplest Gin Code

package main

import (

 "github.com/gin-gonic/gin"

)

Chapter 2 Write a Tested HTTP Image Generator API

https://github.com/gin-gonic/gin
https://github.com/beego/beego
https://github.com/labstack/echo
https://github.com/gofiber/fiber
https://github.com/go-kit/kit
https://gin-gonic.com

50

func router() *gin.Engine {

 r := gin.Default()

 r.GET("/", func(c *gin.Context) {

 c.String(200, "hello")

 })

 return r

}

func main() {

 router().Run()

}

The listing is quite short, but let’s go briefly through it.

	 1.	 You first create a new router instance, which will be able to handle

the different HTTP request coming to the API.

	 2.	 Then you define a route for a GET request coming to /, which is the

root of the routing to the HTTP server and so will be accessible at

the default route of http://locahost:8080/.

	 3.	 In that root route, no route parameter is defined, and the response

rather systematically returns a static string, “hello”.

When you run this listing, the Gin server will start and you will get a bit of friendly

output, where, among other things, the routes defined in the router are displayed. You

can see this in Listing 2-2.

Listing 2-2.  Starting the Gin Server

...

[GIN-debug] [WARNING] Running in "debug" mode. Switch to "release" mode in

production.

 - using env: export GIN_MODE=release

 - using code: gin.SetMode(gin.ReleaseMode)

[GIN-debug] GET /hello --> main.router.func1 (3

handlers)

...

Chapter 2 Write a Tested HTTP Image Generator API

51

[GIN-debug] Environment variable PORT is undefined. Using port :8080

by default

[GIN-debug] Listening and serving HTTP on :8080

Also note the default settings. Useful output about the route usage is shown in the

logs when accessing the / route via a browser or a curl request. Listing 2-3 shows the

output when the root route / is accessed.

Listing 2-3.  Logs When Accessing a Gin Route

[GIN] 2023/02/27 - 16:45:19 | 200 | 11.541μs | 127.0.0.1 |
GET "/"

Building on this tremendous success, you can define a parameter in the route. You

do this by using a semicolon symbol followed by a variable name in the string that

describes the route. That parameter is used in the output of the route.

The parameter is retrieved via the Context.Param call, as shown in Listing 2-4.

Listing 2-4.  Gin Route with Parameter

package main

import (

 "fmt"

 "github.com/gin-gonic/gin"

)

func router() *gin.Engine {

 r := gin.Default()

 r.GET("/:name", func(c *gin.Context) {

 user := c.Param("name")

 c.String(200, fmt.Sprintf("hello, %s", user))

 })

 return r

}

func main() {

 router().Run()

}

Chapter 2 Write a Tested HTTP Image Generator API

52

Note S etting the parameter :name directly on the root route makes it harder to
define other endpoints.

As you may have noticed, it’s harder to add routes if the parameter is directly on the

root route, so let’s define a group of routes using the Group function from the router.

This time, the routes are grouped. To make this easier to read, you can group them in

a block defined by curly braces {} (although you do not have to).

Listing 2-5 shows you how to define the /user route group, including one GET route

called /hello/:name.

Listing 2-5.  Grouping Routes Together

package main

import (

 "fmt"

 "github.com/gin-gonic/gin"

)

func router() *gin.Engine {

 r := gin.Default()

 userRoute := r.Group("/user")

 {

 userRoute.GET("/hello/:name", func(c *gin.Context) {

 user := c.Param("name")

 c.String(200, fmt.Sprintf("hello, %s", user))

 })

 }

 return r

}

func main() {

 router().Run()

}

This code uses a GET request to retrieve some data. Normally, you would use a POST

request to retrieve a batch of parameters and update the internal data.

Chapter 2 Write a Tested HTTP Image Generator API

53

In Gin, and in many other places in Go coding, it is handy to bind the contents of the

POST request data from a JSON structure.

The contents of the body are bound to a custom type defined as a struct using

the BindJSON function. The route returns a JSON struct, which is built using the JSON

function on the context object, just as you returned simple text in the first example (see

Listing 2-6).

Listing 2-6.  Binding a Custom Type to the Body of a POST Request

package main

import (

 "fmt"

 "github.com/gin-gonic/gin"

 "net/http"

)

type Message struct {

 // json tag to de-serialize json body

 Name string `json:"name"`

}

func router() *gin.Engine {

 r := gin.Default()

 userRoute := r.Group("/user")

 {

 userRoute.GET("/hello/:name", func(c *gin.Context) {

 user := c.Param("name")

 response := fmt.Sprintf("hello, %s", user)

 c.String(http.StatusOK, response)

 })

 userRoute.POST("/post", func(c *gin.Context) {

 body := Message{}

 if err := c.BindJSON(&body); err != nil {

 c.AbortWithError(http.StatusBadRequest, err)

 return

 }

Chapter 2 Write a Tested HTTP Image Generator API

54

 fmt.Println(body)

 c.JSON(http.StatusAccepted, &body)

 })

 }

 return r

}

func main() {

 router().Run()

}

The combination of Gin and Go provides a powerful built-in data validation

framework. You can create data rules so that post-data validation can be done directly

when doing such a bind.

This is done by adding metadata to the custom struct. In the following example, you

type Message instead of the original Message type:

type Message struct {

 Name string `json:"name"`

}

You now define the Message struct with the extra metadata:

type Message struct {

 Name string `json:"name"`

 Email string `json:"email" binding:"required,email"`

}

If you did a POST without a proper email in the JSON content, the validation would

fail. From the error-handling section, the following message would be printed (on the

server):

Error #01: Key: 'Message.Email' Error:Field validation for 'Email' failed

on the 'required' tag

Go has a very extensive set of validation rules available for free. The full list is

available at https://github.com/go-playground/validator#baked-in-validations.

For convenience, some of the more useful validation tags are listed in Table 2-2.

Chapter 2 Write a Tested HTTP Image Generator API

https://github.com/go-playground/validator#baked-in-validations

55

Table 2-2.  Useful Validation Tags

Tagline Use

email Make sure the field is in email format (does not check the

validity of the email itself)

gte=10,lte=1000 When binding to an integer, validate the range of the value

max=255 Maximum length of a string

min=18 Minimum length of a string

oneof=married single One in a set of values (here, married or single)

time_format:"2006-01-02" Useful for defining dates

ltefield=OtherDate" time_

format:"2006-01-02"

Make sure the date comes before the other date, defined as

OtherDate in the same struct

gte=1,lte=100,gtfield=

GraduationAge

You can use gtfield to say the current field is greater than another

field. Here, we expect age to be greater than GraduationAge

startswith=MAC,len=9 Make sure the string is of length 9 and starts with MAC

Uppercase / lowercase Make sure the field is uppercase or lowercase only

alphanum / alpha Only accept English letters and numerals

contains=key Make sure the string contains a key

endswith=. Make sure the string ends with a period (.)

An often-requested feature is to allow the end user to send data over HTTP. This is

done using a file upload POST route, where the file is simply retrieved using FormFile.

The new route definition is shown in Listing 2-7.

Listing 2-7.  Handling File Uploads in Gin

userRoute.POST("/upload", func(c *gin.Context) {

 file, _ := c.FormFile("file")

 log.Println(file.Filename)

 c.SaveUploadedFile(file, "/tmp/tempfile")

 c.String(http.StatusOK, fmt.Sprintf("'%s' uploaded!", file.Filename))

})

Chapter 2 Write a Tested HTTP Image Generator API

56

To confirm this route behaves as expected, you can upload a file using Curl with a

multipart upload, as shown in Listing 2-8.

Listing 2-8.  Sending a Multipart File Upload Request

curl \

 -XPOST http://localhost:8080/user/upload \

 -H "Content-Type: multipart/form-data" \

 -F "file=@hello.zip"

As per the code in Listing 2-7, the file will be saved in a temporary file, which you can

check. See Listing 2-9.

Listing 2-9.  Checking the Contents of the Uploaded File

⋊> ~ unzip -l /tmp/tempfile

Archive: /tmp/tempfile

 Length Date Time Name

--------- ---------- ----- ----

 1048 02-28-2023 10:39 hello.go

--------- -------

 1048 1 file

This concludes the brief introduction to the Gin framework. You should have enough

HTTP knowledge to build a synchronous API. Eventually the image generation should be

asynchronous, so let’s jump to another common development topic, queueing jobs.

�Working with Queues
In a distributed, decoupled software architecture, you would most often use a queue to

distribute your application’s load. Queues are similar to lining up at a concert entrance,

for example. The staff checks the concert goers’ tickets, one a time. If there is only one

person to check the tickets, the queue will move more slowly than if there are three or

more staff performing the task concurrently.

If one staff person (or workers in the queuing vocabulary) went on a break or left

work, the queue can still be processed by the remaining staff, which would not be

possible in a normal setup.

Chapter 2 Write a Tested HTTP Image Generator API

57

Figure 2-1 shows how things work with a single clerk handling the ticketing process.

Figure 2-1.  One clerk handling tickets at the counter

Figure 2-2 shows how things can go faster when three clerks are at the ticket counter.

Figure 2-2.  Three clerks

Now consider how a basic job-dispatching process would work without using

queues. In this case, jobs are dispatched using Go routines, and their result is sent back

using a string channel. Channels are a key feature of Go’s support of asynchronous

computation.

Each dispatched job returns its computed result, which is a simple string made from

the input integer i, to the channel. The main thread then loops several times, equal to the

number of dispatched jobs, and reads the values from the channel.

This basic setup is shown in Listing 2-10.

Chapter 2 Write a Tested HTTP Image Generator API

58

Listing 2-10.  Job Dispatching Without a Queue

package main

import (

 "fmt"

 "math/rand"

 "time"

)

func sleepSomeTime() string {

 sleepTime := time.Duration(rand.Intn(60)) * time.Second

 message := fmt.Sprintf("%s\n", sleepTime)

 fmt.Printf("About to process: %s\n", message)

 time.Sleep(sleepTime)

 return message

}

func job(i int, rets chan string) {

 sleepSomeTime()

 rets <- fmt.Sprintf("Hi Gopher, handle the job: %02d", +i)

}

func main() {

 taskN := 100

 rets := make(chan string, taskN)

 for i := 0; i < taskN; i++ {

 go job(i, rets)

 }

 for i := 0; i < taskN; i++ {

 fmt.Println("message:", <-rets)

 time.Sleep(20 * time.Millisecond)

 }

}

The sleepSomeTime function simply makes the job longer and slows the process

overall, so there is more time to see how things are working.

Chapter 2 Write a Tested HTTP Image Generator API

59

The output of this program is a succession of messages like these:

message: Hello commander, I am handling the job: 76

While Go channels are powerful abstract constructs for passing messages, queues

make it easier to distribute the load on multiple machines or servers. Queues also

make it easier to stop all processing that is closely related and so they are often used for

batch work.

Let’s reimplement the same exercise of job dispatching by using a queue. This

example uses the third-party library called go-queue (https://github.com/phf/

go-queue).

You must:

	 1.	 Update the job task so that it returns a function of the queue

context, called ctx.

	 2.	 Define a new queue with a fixed pool of size of 5.

	 3.	 Defer the termination of the queue; this acts like closing a

channel.

	 4.	 Instead of creating the jobs directly, use the q.QueueTask function

to dispatch jobs to the queue.

	 5.	 As before, loop the main thread and wait for the messages on the

channel.

There are many other aspects to queue creation, like timeouts, logging, and metrics.

They are left out of this chapter to make things easier to grasp.

Listing 2-11 is the implementation of the same dispatching job, but this time using

go-queue.

Listing 2-11.  Dispatching Jobs with a Queue

package main

import (

 "context"

 "fmt"

 "math/rand"

 "time"

Chapter 2 Write a Tested HTTP Image Generator API

https://github.com/phf/go-queue
https://github.com/phf/go-queue

60

 "github.com/golang-queue/queue"

)

func sleepSomeTime() string {

 sleepTime := time.Duration(rand.Intn(60)) * time.Second

 message := fmt.Sprintf("%s\n", sleepTime)

 fmt.Printf("About to process: %s\n", message)

 time.Sleep(sleepTime)

 return message

}

func job(i int, rets chan string) func(ctx context.Context) error {

 return func(ctx context.Context) error {

 sleepSomeTime()

 �rets <- fmt.Sprintf("Hello commander, I am handling the job:

%02d", +i)

 return nil

 }

}

func main() {

 taskN := 100

 rets := make(chan string, taskN)

 q := queue.NewPool(5)

 defer q.Release()

 for i := 0; i < taskN; i++ {

 go q.QueueTask(job(i, rets))

 }

 for i := 0; i < taskN; i++ {

 fmt.Println("message:", <-rets)

 time.Sleep(20 * time.Millisecond)

 }

}

Next in your discovery of working with queues is to get ready to dispatch jobs on

remote queues.

Chapter 2 Write a Tested HTTP Image Generator API

61

You do this by creating a custom jobData type to handle the passing data. You also

define a custom function to handle the job, marshalling the message in and out after

doing the processing in bytes.

This example also uses the sleepSomeTime function to simulate some heavy, time-

consuming processing. If your computer is slow, or if you’re working on a Raspberry-Pi

or other slow powered devices, this may not be necessary.

The message is marshalled using JSON, as shown in Listing 2-12.

Listing 2-12.  Using a Custom Data Type to Transfer Data Between Worker and

Dispatcher

package main

import (

 "context"

 "encoding/json"

 "fmt"

 "math/rand"

 "time"

 "github.com/golang-queue/queue"

 "github.com/golang-queue/queue/core"

)

type jobData struct {

 Name string

 Message string

}

func (j *jobData) Bytes() []byte {

 fmt.Printf("%s:%s\n", j.Name, j.Message)

 res := sleepSomeTime()

 j = &jobData{Name: "I am awake", Message: res}

 b, _ := json.Marshal(j)

 return b

}

Chapter 2 Write a Tested HTTP Image Generator API

62

func sleepSomeTime() string {

 seconds := rand.Intn(20)

 sleepTime := time.Duration(seconds) * time.Second

 time.Sleep(sleepTime)

 return fmt.Sprintf("Commander, I slept: %d seconds", seconds)

}

func main() {

 rand.Seed(time.Now().Unix())

 taskN := 100

 rets := make(chan string, taskN)

 �q := queue.NewPool(30, queue.WithFn(func(ctx context.Context, m core.

QueuedMessage) error {

 v, _ := m.(*jobData)

 json.Unmarshal(m.Bytes(), &v)

 rets <- "Hello, " + v.Name + ", " + v.Message

 return nil

 }))

 defer q.Release()

 for i := 0; i < taskN; i++ {

 go func(i int) {

 q.Queue(&jobData{

 Name: "Sleeping Gophers",

 �Message: fmt.Sprintf("Hello commander, I am handling the job:

%d", +i),

 })

 }(i)

 }

 for i := 0; i < taskN; i++ {

 fmt.Println("message:", <-rets)

 time.Sleep(10 * time.Millisecond)

 }

}

Chapter 2 Write a Tested HTTP Image Generator API

63

You are almost done learning about queues. The last example is a little bit more

involved.

This time, the goal is to run the queue itself outside the main Go program. This

example uses a tool that works very well with go-queue, called nsqd (see https://

nsq.io/deployment/installing.html). It is also written in Go and is therefore energy

efficient, while still providing high performance.

Once you have installed the packages, you need to start three different daemons.

The first daemon shares metadata for the queue setup process and is nsqlookupd, as

shown in Figure 2-3.

Figure 2-3.  Start the nsqlookupd

The second daemon is the actual queue worker, which is started with this command:

nsqd --lookupd-tcp-address=localhost:4160

The output of this daemon is shown in Figure 2-4.

Figure 2-4.  Start the queue worker

Finally, a nice-to-have daemon is an admin web UI for the queue. It’s not entirely

necessary, but it’s nice to navigate along the queue setup and see the messages being

processed in real time. Listing 2-13 shows how to start the admin UI.

Chapter 2 Write a Tested HTTP Image Generator API

https://nsq.io/deployment/installing.html
https://nsq.io/deployment/installing.html

64

Listing 2-13.  Starting the Web Admin UI

nsqadmin --lookupd-http-address localhost:4161

The third daemon starts with some logs, as shown in Figure 2-5.

Figure 2-5.  Starting the admin UI of NSQ

You can then see what is happening on the admin UI, as shown in Figure 2-6.

Figure 2-6.  Brief overview of the nodes on the admin UI of NSQ

Note that if you install the support for bash files in GoLand, you can run all the

scripts from within the IDE, with the overall view shown in Figure 2-7.

Chapter 2 Write a Tested HTTP Image Generator API

65

Figure 2-7.  Starting the queue scripts from within the IDE

The necessary daemons are all started up, so let’s go back to update the Go code.

This new distributed code is almost the same as Listing 2-13, except for the queue

definition, where you distribute the messages via the newly defined NSQ worker.

The message distribution is shown in Listing 2-14.

Listing 2-14.  Define a NSQ worker

func main() {

 ...

 w := nsq.NewWorker(

 nsq.WithAddr("127.0.0.1:4150"),

 nsq.WithTopic("crazy"),

 nsq.WithChannel("go"),

 nsq.WithMaxInFlight(10),

 �nsq.WithRunFunc(func(ctx context.Context, m core.

QueuedMessage) error {

 var v *jobData

 if err := json.Unmarshal(m.Bytes(), &v); err != nil {

 return err

 }

Chapter 2 Write a Tested HTTP Image Generator API

66

 rets <- v.Message

 return nil

 }),

)

 q := queue.NewPool(10, queue.WithWorker(w))

 defer q.Release()

 ...

}

Listing 2-15 shows the Go program’s output.

Listing 2-15.  Output of Workers

Sleeping Gophers:Hello commander, I am handling the job: 73

Sleeping Gophers:Hello commander, I am handling the job: 85

Sleeping Gophers:Hello commander, I am handling the job: 12

Sleeping Gophers:Hello commander, I am handling the job: 96

...

message: Commander, I slept: 0 seconds

message: Commander, I slept: 0 seconds

message: Commander, I slept: 1 seconds

message: Commander, I slept: 1 seconds

In the web UI, if you open the related topic “crazy” and the channel Go, you will see

the messages being queued and processed, with information being collected in real time

(see Figure 2-8).

Chapter 2 Write a Tested HTTP Image Generator API

67

Figure 2-8.  Messages being processed by NSQ

Later, you will use this to distribute jobs, using queues to asynchronously process the

image generation.

Talking about image generation, let’s move to the visually exciting part of this

chapter.

�Image Generators
There are several image generator libraries available in Go. Table 2-3 lists a few of the

options.

Chapter 2 Write a Tested HTTP Image Generator API

68

Table 2-3.  Easy-to-Use Image Generator Libraries in Go

Name GitHub Repository Goal

Generative

Art

https://github.com/

jdxyw/generativeart

Generative art library (usually already implemented

in Processing)

Primitive https://github.com/

fogleman/primitive

Reproduces images with geometric primitives

Go-saic https://github.com/

telecoda/go-saic

Image mosaic generator

Cameron https://github.com/

aofei/cameron

Avatar generator

This chapter uses the generativeart library as the source of image generation.

The generativeart library implements a large set of art algorithms (many taken

from Generative Art1), most relying on pseudo-random elements. This means when you

call the same generator function with the same parameters, it will not generate the exact

same picture.

Listing 2-16 shows the first art experiment, using the NewColorCircle2 algorithm.

Listing 2-16.  Creating Circles

package main

import (

 "github.com/jdxyw/generativeart"

 "github.com/jdxyw/generativeart/arts"

 "github.com/jdxyw/generativeart/common"

 "math/rand"

 "time"

)

func main() {

 rand.Seed(time.Now().Unix())

 c := generativeart.NewCanva(600, 400)

 c.SetBackground(common.NavajoWhite)

Chapter 2 Write a Tested HTTP Image Generator API

https://github.com/jdxyw/generativeart
https://github.com/jdxyw/generativeart
https://github.com/fogleman/primitive
https://github.com/fogleman/primitive
https://github.com/telecoda/go-saic
https://github.com/telecoda/go-saic
https://github.com/aofei/cameron
https://github.com/aofei/cameron

69

 c.FillBackground()

 c.SetLineWidth(1.0)

 c.SetLineColor(common.Orange)

 c.Draw(arts.NewColorCircle2(30))

 c.ToPNG("circle.png")

}

Note  For the pseudo-randomness to work properly, the randomness source of
the Go program needs to be seeded.

If the random algorithm is not seeded properly, you end up generating the same

pictures, which is not the goal here.

Usually, a good source of randomness is the UNIX time, which is the number of

seconds elapsed since January 1, 1970. This is a de facto source of randomness for many

programs that do not need to be ultra-secure. This is done using the rand.Seed(time.

Now().Unix()) call.

Executing the code in Listing 2-16 produces generated art like the image in

Figure 2-9.

Figure 2-9.  First generated art

Among other settings, you can change the color schema, as shown in Listing 2-17.

Chapter 2 Write a Tested HTTP Image Generator API

70

Listing 2-17.  Setting the Color Schema

c.SetColorSchema([]color.RGBA{

 common.White,

 common.Tomato,

 common.Azure,

 common.Mintcream,

})

The result is shown in Figure 2-10.

Figure 2-10.  Different color schema

Or you can use the color schema from the generativearts website, which adds a

very Kandinsky-like mood to any sketches (see Listing 2-18).

Listing 2-18.  Kandinsky-Like Color Schema

c.SetColorSchema([]color.RGBA{

 {0xCF, 0x2B, 0x34, 0xFF},

 {0xF0, 0x8F, 0x46, 0xFF},

 {0xF0, 0xC1, 0x29, 0xFF},

 {0x19, 0x6E, 0x94, 0xFF},

 {0x35, 0x3A, 0x57, 0xFF},

})

Executing the main code with this color schema produces images similar to the one

in Figure 2-11.

Chapter 2 Write a Tested HTTP Image Generator API

71

Figure 2-11.  Example output of Random Colored Circles

It’s tiresome to have to write and run programs each time, which is why you are

working toward this HTTP API.

The next task toward this goal is to implement a few other samples from the library,

generate images, group common settings together, and call each algorithm from keys

of a map.

�Image Generator in a Gin
Listing 2-19 prepares the ground for the HTTP API that you are going to be implementing

in a bit. You are going to be using a map of string>Engine, which gives an art engine for

each key of the map.

Not all the available generativearts algorithms are included in Listing 2-19, but you

can add some of your own when working with these exercises.

Listing 2-19.  Generating Art Using a Few Algorithms

package main

import (

 "fmt"

 "github.com/jdxyw/generativeart"

 "github.com/jdxyw/generativeart/arts"

 "github.com/jdxyw/generativeart/common"

 "image/color"

Chapter 2 Write a Tested HTTP Image Generator API

72

 "math/rand"

 "time"

)

var DRAWINGS = map[string]generativeart.Engine{

 "maze": arts.NewMaze(10),

 "julia": �arts.NewJulia(func(z complex128) complex128 { return z*z +

complex(-0.1, 0.651) }, 40, 1.5, 1.5),

 "randcicle": arts.NewRandCicle(30, 80, 0.2, 2, 10, 30, true),

 "blackhole": arts.NewBlackHole(200, 400, 0.01),

 "janus": arts.NewJanus(5, 10),

 "random": arts.NewRandomShape(150),

 "silksky": arts.NewSilkSky(15, 5),

 "circles": arts.NewColorCircle2(30),

}

func main() {

 drawMany(DRAWINGS)

}

func drawMany(drawings map[string]generativeart.Engine) {

 for k, _ := range drawings {

 drawOne(k)

 }

}

func drawOne(art string) string {

 rand.Seed(time.Now().Unix())

 c := generativeart.NewCanva(600, 400)

 c.SetColorSchema([]color.RGBA{

 {0xCF, 0x2B, 0x34, 0xFF},

 {0xF0, 0x8F, 0x46, 0xFF},

 {0xF0, 0xC1, 0x29, 0xFF},

 {0x19, 0x6E, 0x94, 0xFF},

 {0x35, 0x3A, 0x57, 0xFF},

 })

Chapter 2 Write a Tested HTTP Image Generator API

73

 c.SetBackground(common.NavajoWhite)

 c.FillBackground()

 c.SetLineWidth(1.0)

 c.SetLineColor(common.Orange)

 c.Draw(DRAWINGS[art])

 fileName := fmt.Sprintf("/tmp/%s_%d.png", art, rand.Float64())

 c.ToPNG(fileName)

 return fileName

}

You can see that as you use a key in the map, you are going to use a route parameter

to use this key and retrieve the actual art generator.

The next step is to re-use the drawOne function and call it from a Gin route. Listing 2-20

does just that, gluing the Gin router and the image generator code together.

One thing you have not seen before is how to specify the HTTP content header; you

rightfully set it to image/png along the generated image.

Listing 2-20.  GCG, the Gin Circle Generator

package main

import (

 "github.com/gin-gonic/gin"

 "gocrazy/chapter-02/final-00/drawing"

)

func router() *gin.Engine {

 r := gin.Default()

 userRoute := r.Group("/image")

 {

 userRoute.GET("/circles", func(c *gin.Context) {

 file := drawing.DrawOne("circles")

 c.Header("Content-Type", "image/png")

 c.File(file)

 })

Chapter 2 Write a Tested HTTP Image Generator API

74

 }

 return r

}

func main() {

 router().Run()

}

When you run this program, the server starts, and the command line shows the newly

created circles and some logs as you access the URL via a browser (see Listing 2-21).

Listing 2-21.  Gin Logs

[GIN-debug] GET /image/circles --> main.router.func1 (3

handlers)

...

[GIN-debug] Listening and serving HTTP on :8080

[GIN] 2023/03/06 - 09:49:55 | 200 | 1.0812445s | 127.0.0.1 | GET

"/image/circles"

[GIN] 2023/03/06 - 09:49:58 | 200 | 1.000493833s | 127.0.0.1 |

GET "/image/circles"

[GIN] 2023/03/06 - 09:49:59 | 200 | 982.271ms | 127.0.0.1 | GET

"/image/circles"

If you access http://localhost:8080/image/circles, you’ll see the newly

generated image directly in the browser (see Figure 2-12).

Chapter 2 Write a Tested HTTP Image Generator API

75

Figure 2-12.  Circles in the browser

Note that as you refresh the page, a new circles image is generated each time.

The next step is to plug in the map of drawings string->Engine as a parameter in the

Gin route. The updated route is shown in Listing 2-22.

Listing 2-22.  Plug In the Generator as a Parameter in the Gin Route

imageRoute.GET("/:generator", func(c *gin.Context) {

 generator := c.Param("generator")

 file := drawing.DrawOne(generator)

 c.Header("Content-Type", "image/png")

 c.File(file)

})

You can call the different engines directly by using their names from the

DRAWINGS map.

As it might be cumbersome to remember the name of the generators each time, you

can template an index page to make this easier.

Chapter 2 Write a Tested HTTP Image Generator API

76

�Quick Gin Tonic and Templates
In this example, you need like to present a list of generators as a list in an HTML page.

The HTML will be templated using the template feature included in the Gin framework.

Here are the new things to learn from Listing 2-23:

	 1.	 You tell the engine where to find the templates by calling

LoadHTMLGlob and providing the pattern of files to load.

	 2.	 You create a new list subgroup of endpoints for the router.

	 3.	 You use the HTML function from the Gin context to return HTML.

	 4.	 The HTML function takes the status, a template name, and a map

of values to use in the template.

	 5.	 Note that, to create a slice of keys from the DRAWINGS map, you use

the golang.org/x/exp/maps library, which is a set of extra features

not included in the core Go language (but is still quite useful).

Listing 2-23.  Gin Framework and Templating a HTML List

package main

import (

 "github.com/gin-gonic/gin"

 "gocrazy/chapter-02/final-02/drawing"

 "golang.org/x/exp/maps"

 "net/http"

)

func router() *gin.Engine {

 r := gin.Default()

 r.LoadHTMLGlob("templates/*.tmpl")

 // ...

 listRoute := r.Group("/list")

 {

 listRoute.GET("/simple", func(c *gin.Context) {

 c.HTML(http.StatusOK, "simple.tmpl", gin.H{

Chapter 2 Write a Tested HTTP Image Generator API

77

 "keys": maps.Keys(drawing.DRAWINGS),

 })

 })

 }

 return r

}

func main() {

 router().Run()

}

The first template is quite basic, to give you an idea as to how things are assembled.

The template code uses the logic-less template style from Mustache.

	 1.	 range iterates over the slice “keys” defined in the gin.H map from

Listing 2-22.

	 2.	 {{.}} outputs the current element of the loop.

The contents of the template.tmpl file are shown in Listing 2-24.

Listing 2-24.  Simple List Template

<body>

{{range .keys}}

<p>{{.}}</p>

{{end}}

</body>

Starting the Gin server with the new route will allow you to access the list, as shown

in Figure 2-13.

Chapter 2 Write a Tested HTTP Image Generator API

78

Figure 2-13.  Simple list

And of course, clicking one of the links leads to a newly generated image.

It would be nice to include the styling bootstrap framework here, to make the list a

little bit more beautiful.

You can create a table with preview images for each generator in the list. To do this,

you can use the bootstrap starter template from:

https://getbootstrap.com/docs/4.0/getting-started/introduction/

#starter-template

Then you replace the body of the template with the code in Listing 2-25.

Listing 2-25.  Bootstrap-Based List

<body>

<table class="table">

 <thead>

 <tr>

 <th scope="col">Generator</th>

 <th scope="col">Preview</th>

 </tr>

 </thead>

 <tbody>

 {{range .keys}}

 <tr>

Chapter 2 Write a Tested HTTP Image Generator API

https://getbootstrap.com/docs/4.0/getting-started/introduction/#starter-template
https://getbootstrap.com/docs/4.0/getting-started/introduction/#starter-template

79

 <td>{{.}}</td>

 �<td><img style="width: 100px;height:86px"

src="/image/{{.}}"></td>

 </tr>

 {{end}}

 </tbody>

</table>

</body>

I leave it to you to add a new route that uses this bootstrap template or to look at the

companion samples of this book.

Accessing the new route produces something more exciting, as shown in Figure 2-14.

Figure 2-14.  Bootstrap-based list of generators

Chapter 2 Write a Tested HTTP Image Generator API

80

�Use a Synchronized Map
The final API work of this chapter is slightly more evolved. You now learn how to create a

new set of routes, where one route will start the image generation and give the requester

an ID to fetch the real image. If the image is generated, then the other route returns that

image. If not, it returns a temporary image.

You will do the following in this order:

	 1.	 Write a route that retrieves the generator name and returns a

JSON message with an ID, as well as an URL to access the image to

be generated.

	 2.	 Before returning the ID and the URL, the route will post a message

to the image-generating queue.

	 3.	 This route has completed its job, so any new request to the same

route will return a new ID and start a new image-generation job.

	 4.	 In the meantime, the queue asynchronously processes the jobs.

	 5.	 Since the image generation is too fast here again, you’ll add some

sleep time to the example.

	 6.	 Once the sleep time has elapsed and the image has been

generated, the path to the temporary image is stored in

the synchronized map. This way, you can shortcut the

communication using channels in the previous queue example.

	 7.	 The other route reads from the synchronized map and, if the

id->path key value pair is found, it returns the image from the

path. Otherwise, it returns the static image file. (This includes a

Cache-Control header to make sure the temporary image used

before the image is not cached in the browser and the new image

is properly loaded when it’s found.)

An abbreviated version of the final code is shown Listing 2-26.

Chapter 2 Write a Tested HTTP Image Generator API

81

Listing 2-26.  Gin, Queues, and Image Generation

package main

import (

 ...

)

type jobData struct {

 Id string

 Generator string

}

var sm sync.Map

func (j *jobData) Bytes() []byte {

 b, _ := json.Marshal(j)

 return b

}

func router() *gin.Engine {

 r := gin.Default()

 r.LoadHTMLGlob("templates/*.tmpl")

 rand.Seed(time.Now().Unix())

 �q := queue.NewPool(30, queue.WithFn(func(ctx context.Context, m core.

QueuedMessage) error {

 j, _ := m.(*jobData)

 json.Unmarshal(m.Bytes(), &j)

 sleepTime := time.Duration(rand.Intn(10)) * time.Second

 time.Sleep(sleepTime)

 path := drawing.DrawOne(j.Generator)

 sm.Store(j.Id, path)

 fmt.Printf("Stored: %s:%s [%s]\n", j.Id, j.Generator, path)

 return nil

 }))

Chapter 2 Write a Tested HTTP Image Generator API

82

 ...

 newRoute := r.Group("/new")

 {

 newRoute.GET("/load/:id", func(c *gin.Context) {

 id := c.Param("id")

 path, ok := sm.Load(id)

 if ok {

 fmt.Printf("Found %s for id: %s\n", path, id)

 c.Header("Content-Type", "image/png")

 c.File(fmt.Sprintf("%s", path.(string)))

 } else {

 fmt.Printf("Path not found for id: %s\n", id)

 c.Header("Content-Type", "image/jpg")

 c.Header("Cache-Control", "no-cache")

 c.File("static/loading.jpg")

 }

 })

 newRoute.GET("/:generator", func(c *gin.Context) {

 generator := c.Param("generator")

 newJob := jobData{

 Id: strconv.Itoa(rand.Int()),

 Generator: generator,

 }

 q.Queue(&newJob)

 �res := map[string]string{"id": newJob.Id, "url": "http://" +

c.Request.Host + "/new/load/" + newJob.Id}

 c.JSON(200, res)

 })

 }

 return r

}

Once this example starts the new server, you can access the new route via:

http://localhost:8080/new/:generator

For example:

Chapter 2 Write a Tested HTTP Image Generator API

83

http://localhost:8080/new/janus

The route returns a JSON message containing the ID of the generated image, and for

convenience, the URL to retrieve the image itself (see Figure 2-15).

Figure 2-15.  JSON message when accessing the new route

Figures 2-16 and 2-17 shows the content when accessing the indicated

URL. Figure 2-16 shows the temporary picture when the proper image has not been

generated yet, and Figure 2-17 shows the proper image.

Figure 2-16.  Temporary image before the image has been generated

Chapter 2 Write a Tested HTTP Image Generator API

84

Figure 2-17.  The same URL, but this time the image has been generated

Note A s a simple exercise, try to quickly create a list of the already generated
images—an overview list like the one in the previous example.

Now that the API server is fully ready, it would be nice if you could run some

regression testing to verify that the queuing process works all the time.

�Testing the API
�Simple Go and Gin Testing
This is almost straight from the Gin framework cookbook and is only included here for

convenience (see Listing 2-27).

Chapter 2 Write a Tested HTTP Image Generator API

85

Listing 2-27.  Ping Route from the Gin Framework Guidebook

package main

import "github.com/gin-gonic/gin"

func setupRouter() *gin.Engine {

 r := gin.Default()

 r.GET("/ping", func(c *gin.Context) {

 c.String(200, "pong")

 })

 return r

}

func main() {

 r := setupRouter()

 r.Run(":8080")

}

To write tests in Go, you need to:

	 1.	 Create a file called something_test.go, where _test.go is the

important part to be discovered by the testing framework. The rest

of the name is up to you. The file can be anywhere in the project,

usually alongside the something.go file to be tested (at least in the

same folder).

	 2.	 In the file, use the import of the Go testing namespace.

	 3.	 Create a function that starts with the name Test and has a pointer

to a testing.T parameter, which is the object that includes

everything you need for assertions so it can interact with the

runtime and result of the test.

	 4.	 Use testify/assert to get feedback and easily compare values

between what is expected and the actual results.

	 5.	 To test the Gin route, you’ll create the request to be tested

using NewRequest. Then you’ll combine a NewRecorder and a

router.ServeHTTP to write the response to that request in the

recorder object.

Chapter 2 Write a Tested HTTP Image Generator API

86

	 6.	 The recorder object contains all the elements of the response, as

specified in the Gin routes you defined. That way, you can use this

object to test expected values against real values.

Note A part from potential network connectivity side-effects, there are no
differences between the contents of this recorded response object and the actual
HTTP response in a real-life scenario.

With all this in mind, Listing 2-28 shows how to test this Gin ping route.

Listing 2-28.  Testing the Ping Route

package main

import (

 "net/http"

 "net/http/httptest"

 "testing"

 "github.com/stretchr/testify/assert"

)

func TestPingRoute(t *testing.T) {

 router := setupRouter()

 w := httptest.NewRecorder()

 req, _ := http.NewRequest("GET", "/ping", nil)

 router.ServeHTTP(w, req)

 assert.Equal(t, 200, w.Code)

 assert.Equal(t, "pong", w.Body.String())

}

To run the test in GoLand, you can use the green arrows in the Editor. You can run

each test one by one, or run all the tests in the current file (see Figure 2-18).

Chapter 2 Write a Tested HTTP Image Generator API

87

Figure 2-18.  Running the tests using GoLand’s green arrows

If you force the test to fail, for example by updating the expected code to be 400

instead of the actual 200, the test will fail with some useful output (see Figure 2-19).

Chapter 2 Write a Tested HTTP Image Generator API

88

Figure 2-19.  Analyze failing tests

The idea is to write tests that are easy to maintain and update and to be able to

determine the whys and whens of a failing test. Figure 2-20 pinpoints exactly why the test

is failing.

Chapter 2 Write a Tested HTTP Image Generator API

89

Figure 2-20.  Test failure analyses

Figure 2-21.  Fixing the tests

Figure 2-22.  All green!

Once you fix the cause of the failure, you can choose to rerun only the failing tests

(see Figure 2-21).

This time, the test is rightfully green, as shown in Figure 2-22.

That was it for the basics of testing a Gin route. Now you learn how to apply the same

technique to your freshly created image HTTP API.

Chapter 2 Write a Tested HTTP Image Generator API

90

�Testing the Image Generator
For the first test, you’ll check the return message from the /new/janus route, which

returns a JSON message of type ImageAnswer.

You can use the same technique as the Gin cookbook seen previously and

unmarshall the body of the recorded HTTP response as bytes into the custom Go struct.

Since the body is empty, you had nil to the GET request and then ask the router to

again “simulate” the request using ServerHTTP (see Listing 2-29).

Listing 2-29.  Testing the JSON Message Returned from the Image API

func TestAPIRouteNew(t *testing.T) {

 router := router()

 w := httptest.NewRecorder()

 req, _ := http.NewRequest("GET", "/new/janus", nil)

 router.ServeHTTP(w, req)

 var img ImageAnswer

 json.Unmarshal(w.Body.Bytes(), &img)

 assert.NotEmpty(t, img)

}

Running this test should give you a pass, as shown in Figure 2-23.

The next test you write is according to the job being dispatched in the queue. Here

are the things you to do:

	 1.	 Send a request to /new/generator.

	 2.	 Retrieve the ID of the image to be generated.

Figure 2-23.  Output of running the test

Chapter 2 Write a Tested HTTP Image Generator API

91

	 3.	 Receive an ID and create the URL using the ID.

	 4.	 Send the request a first time and determine if the image returned

is the temporary image (remember it was of type image/jpg so it’s

a different type than the generated PNG images).

	 5.	 Wait three seconds (modify the wait time to not wait too

long here).

	 6.	 Send the request in Step 4 again.

	 7.	 This time, the image is in the map and the Content-Type should

be image/png.

Listing 2-30 is simply an expansion of Listing 2-29, with the new extra steps included.

Listing 2-30.  Full Test of the Queued Image API

func TestAPIRouteLoad(t *testing.T) {

 router := router()

 w := httptest.NewRecorder()

 req, _ := http.NewRequest("GET", "/new/janus", nil)

 router.ServeHTTP(w, req)

 var img ImageAnswer

 json.Unmarshal(w.Body.Bytes(), &img)

 req, _ = http.NewRequest("GET", "/new/load/"+img.Id, nil)

 router.ServeHTTP(w, req)

 assert.Equal(t, "image/jpg", w.Header().Get("Content-Type"))

 time.Sleep(3 * time.Second)

 req, _ = http.NewRequest("GET", "/new/load/"+img.Id, nil)

 router.ServeHTTP(w, req)

 assert.Equal(t, "image/png", w.Header().Get("Content-Type"))

}

Running the test should result in a pass, as shown in Figure 2-24. Otherwise, it’s time

to analyze the failure.

Chapter 2 Write a Tested HTTP Image Generator API

92

Figure 2-24.  Full debugging messages of the passing test

�Summary
This concludes Chapter 2, where you learned how to write an asynchronous API for

image generation and how to write and run tests for it.

After completing this chapter and going through all the code examples, you should

know how to:

•	 Create a simple API using Gin routing techniques.

•	 Work with queues to distribute the load of the API asynchronously.

•	 Generate images using the generative art library.

•	 Use channels and synchronized maps to communicate data

throughout the API.

•	 Do some templating in or outside the Gin framework.

•	 Run simple Go testing using the included testing framework.

•	 Perform end-to-end testing of the API using the simple Gin feature to

emulate requests.

Chapter 2 Write a Tested HTTP Image Generator API

https://doi.org/10.1007/978-1-4842-9666-0_2

93

CHAPTER 3

Writing the Basics
for a 2D Game in Go

The game gives you a purpose. The real game is to find a purpose.

—Vineet Raj Kapoor

I’ve always been on the side of using a game engine instead of other UI tools to create

lively interfaces for interacting between systems, people, or both.

There have been a lot of new 2D gaming interfaces since the pandemic, be it

multiplayer games, like AmongUs (www.innersloth.com/games/among-us/), or

communication tools like Gather.town (www.gather.town/), WorkAdventure (https://

workadventu.re/) and the hobby-like SkyOffice (https://skyoffice.netlify.app/).

We have tried many here, in the Japan workplace, to enhance team collaboration

and enhance team collaboration. Many of those solutions come with a hefty price tag as

the number of user increases, so why not try developing your own? Or what about just

finding your life voice while developing a simple 2D game?

This is the goal of this chapter. Although you won’t see and implement a full game,

you will learn the technical basis for one, which should give you enough inspiration to

keep going.

�Some Tile Set History
Many of the early ’80s games in 2D used tile sets to load graphics. Think about

Nintendo’s Zelda and Capcom’s Rockman (aka Megaman). Bandai/Namco’s Pacman

(https://pacman.com/en/history/) displayed its tile sets on the big ALTA screen in

front of Tokyo’s Shinjuku station.

© Nicolas Modrzyk 2023
N. Modrzyk, Go Crazy, https://doi.org/10.1007/978-1-4842-9666-0_3

https://www.innersloth.com/games/among-us/
https://www.gather.town/
https://workadventu.re/
https://workadventu.re/
https://skyoffice.netlify.app/
https://pacman.com/en/history/
https://doi.org/10.1007/978-1-4842-9666-0_3#DOI

94

The first iteration of a tile set-based game was achieved with Galaxian, Namco’s

answer to Space Invaders. Galaxian had much better graphics and they loaded much

faster too.

When you want to display a graphic in a 2D game, you load or draw graphics into

a framebuffer, which is part of the available memory location that is used for graphic

rendering. Before the tile sets era, developers had to either draw each sprite directly in

the framebuffer or load a file per character. This was usually slow, and the number of

files you could use was largely restricted. The Galaxian developers engineered a way to

load one file once, with all the different tiles required for a proper character animation,

and only display or use a portion of that file.

The obvious advantage is that you could display and animated more beautifully

drawn characters, while at the same time limiting hardware access to them, a key way to

make games faster when resources were limited.

The process of loading and animating using a sprite sheet or tile sheet is how you are

going to develop the simple game in this chapter.

�Library Setup: Raylib
The chapter’s original plan was to present Ebiten, https://github.com/hajimehoshi/

ebiten/, a simple 2D game engine written entirely in Go. Having the whole library in

Go is quite a feat for an open-source game engine, and the collection of samples is very

impressive, so you should definitely take a look at it.

The game library you are going to use here, called Raylib (www.raylib.com/) is not

written in Go, but its bindings are available (https://github.com/gen2brain/raylib-go)

and this is what you are going to use to develop the game basics for the chapter.

Raylib’s core philosophy is close to this book’s:

raylib is a programming library to enjoy videogame programming; no
fancy interface, no visual helpers, no GUI tools or editors... just coding in a
pure Spartan-programmers way. Are you ready to enjoy coding?

There are a few steps you need to do to get ready to use raylib-go, depending on the

machine you are using. They are specified on the project’s GitHub page (see https://

github.com/gen2brain/raylib-go#requirements).

Chapter 3 Writing the Basics for a 2D Game in Go

https://github.com/hajimehoshi/ebiten/
https://github.com/hajimehoshi/ebiten/
https://www.raylib.com/
https://github.com/gen2brain/raylib-go
https://github.com/gen2brain/raylib-go#requirements
https://github.com/gen2brain/raylib-go#requirements

95

For the usual mainstream operating systems, the instructions are repeated here:

macOS

On macOS you need Xcode or Command Line Tools for Xcode.

Windows

On Windows you need C compiler, like Mingw-w64 or TDM-GCC. You can also

build binary in MSYS2 shell.

On other *ixes, it’s a matter of installing a few extra packages, notably libmesa3d (see

https://www.mesa3d.org/).

�Game Setup
Once you have installed the required libraries, it is time to start with a simple example

straight from the raylib-go front page. The first example simply opens a gaming window

and writes some text to it.

As usual, GoLand will do the project setup and dependencies for you. Therefore, in

a new folder, and with a new Go file in GoLand, copy and paste the code from GitHub.

Listing 3-1 shows the code.

Listing 3-1.  The raylib-go Simple Game Setup

package main

import "github.com/gen2brain/raylib-go/raylib"

func main() {

 rl.InitWindow(800, 450, "basic window")

 rl.SetTargetFPS(60)

 for !rl.WindowShouldClose() {

 rl.BeginDrawing()

 rl.ClearBackground(rl.Black)

 rl.DrawText("This is your game!", 190, 200, 20, rl.LightGray)

 rl.EndDrawing()

 }

 rl.CloseWindow()

}

Chapter 3 Writing the Basics for a 2D Game in Go

https://www.mesa3d.org/

96

Note these aspects of this code:

	 1.	 InitWindow sets the size and title parameters for the

gaming window.

	 2.	 SetTargetFPS asks the engine to reach a certain number of frames

per second.

	 3.	 WindowShouldClose checks whether the window is about to close.

Most simple games will use that information to determine when

it’s time to exit the game.

	 4.	 BeginDrawing and EndDrawing are the beginning and end of the

render phase, where you interact directly with the canvas, the

graphical content of the game.

	 5.	 ClearBackground sets the background color of the canvas.

	 6.	 DrawText is the simplest way to draw text onscreen.

	 7.	 CloseWindow is used when you press the Esc key to finish the game

loop and quit the game.

If you execute the program, you’ll see the window in Figure 3-1.

Figure 3-1.  The first raylib-go window

You could run some basic examples and learn from them, but let’s first see if using

ChatGPT can help you get up to speed faster here.

Chapter 3 Writing the Basics for a 2D Game in Go

97

�Quick Game Generation with ChatGPT
You saw in the first chapter how to interact with ChatGPT via code. Using either the Web

interface or the API you set up earlier, you can ask ChatGPT to write simple raylib-go

examples for you and get a grasp on how to use the library.

As usual, ChatGPT does not generate working code, but the basics are a good way to

see how to plug in the different methods of the raylib-go library.

�Display the Date in Real Time

The first example will simply display the date in real time using raylib. The prompt to

ChatGPT is as follows:

Use the raylib-go library to display the date in real time.

There are a few things you’ll want to correct in that script. Notably a few things do

not compile right away, as shown in Figure 3-2.

Figure 3-2.  Almost there ChatGPT

Note these changes:

	 1.	 To load a font to use in the game, you need to provide the font.

ttf file in the same folder. The Size function does not exist, so you

need to use a BaseSize to check whether the font has been loaded

properly. A free font has been provided in the samples, but you

can of course find and download a font you like.

Chapter 3 Writing the Basics for a 2D Game in Go

98

	 2.	 screenHeight and screenWidth should be moved to a const

section.

	 3.	 The loaded font was not used. To use a custom font, you need to

use DrawTextEx instead of DrawText.

	 4.	 To measure the text size of a font, you should use MeasureTextEx

instead of MeasureText.

This is a nice update from the first example that you hand-coded earlier. It includes

these changes:

–– Real-time drawing updates of a string on the canvas.

–– The position of the text is computed from an estimate size of text.

–– You now use DrawTextEx to draw text with a custom font.

The updated code is shown in Listing 3-2.

Listing 3-2.  A Date Display Example Using raylib-go

package main

import (

 "fmt"

 "time"

 rl "github.com/gen2brain/raylib-go/raylib"

)

const (

 screenWidth = 800

 screenHeight = 480

 fontSize = 36

)

func main() {

 rl.InitWindow(screenWidth, screenHeight, "Real-Time Date Display")

 rl.SetTargetFPS(60)

Chapter 3 Writing the Basics for a 2D Game in Go

99

 font := rl.LoadFont("font.ttf")

 if font.BaseSize == 0 {

 fmt.Println("Failed to load font")

 return

 }

 for !rl.WindowShouldClose() {

 rl.BeginDrawing()

 rl.ClearBackground(rl.LightGray)

 // Get current date and time

 now := time.Now()

 dateStr := now.Format("January 02, 2006 15:04:05")

 // Draw date and time

 �position := rl.Vector2{X: float32(screenWidth/2 -

rl.MeasureTextEx(font, dateStr, fontSize, 0).X/2), Y:

screenHeight/2 - 20}

 rl.DrawTextEx(font, dateStr, position, fontSize, 0, rl.Black)

 rl.EndDrawing()

 time.Sleep(time.Second)

 }

 rl.UnloadFont(font)

 rl.CloseWindow()

}

Figure 3-3 shows the results.

Chapter 3 Writing the Basics for a 2D Game in Go

100

Figure 3-3.  A simple real-time display

The data is displayed in real time, so you have effectively gained some nice coding

knowledge there.

In the next section, you learn how to do something slightly harder—create a small

hangman game.

�Hangman Game

This time, you’ll ask ChatGPT to generate another simple game using raylib-go—a

hangman game. Again, ChatGPT gets close.

The original prompt was the following:

Write a hangman game using the raylib-go library

The fixed generated code of the main function is shown in Listing 3-3.

Listing 3-3.  Hangman Generated by ChatGPT

func main() {

 rl.InitWindow(screenWidth, screenHeight, "Hangman")

 rl.SetTargetFPS(60)

 // Load word list

 words := loadWordList("words.txt")

Chapter 3 Writing the Basics for a 2D Game in Go

101

 if len(words) == 0 {

 fmt.Println("Failed to load word list")

 return

 }

 // Select a random word

 secretWord = strings.ToUpper(words[rand.Intn(len(words))])

 // Initialize guessed letters array

 guessedLetters = make([]string, len(secretWord))

 for i := range guessedLetters {

 guessedLetters[i] = "_"

 }

 // Main game loop

 for !rl.WindowShouldClose() {

 // Handle input

 if rl.IsKeyPressed(rl.KeyR) {

 restartGame(words)

 } else if !gameOver {

 handleInput()

 }

 // Draw graphics

 rl.BeginDrawing()

 rl.ClearBackground(rl.White)

 drawHangman()

 drawWord()

 drawGuessedLetters()

 if gameOver {

 if gameWin() {

 drawGameWin()

 } else {

 drawGameOver()

 }

Chapter 3 Writing the Basics for a 2D Game in Go

102

 }

 rl.EndDrawing()

 }

 rl.CloseWindow()

}

Note N ote the use of the continue trick a few times, in order for ChatGPT to
generate the full code. This is a limitation of the Web interface for now.

The full code listing is found in the samples that come with this book. The resulting

game is shown in Figure 3-4.

Figure 3-4.  Hangman and coffee

There were many minor problems with the originally AI-generated code, or things

you should get used to changing when asking ChatGPT to generate libs with raylib-go:

–– It was trying to load a font but was not using it.

–– While loading the fonts, it was also using a nonexistent function to

use that font.

–– The code was not detecting a game win properly (the logic was

completely missing).

Chapter 3 Writing the Basics for a 2D Game in Go

103

–– It was missing the random seeding, so the game had the same order

for the words.

–– It loaded the words from an external file using nonexistent file-read-

ing functions.

On the other hand, there were a few things to be impressed with:

–– The main game loop was functioning.

–– The drawing of the hangman is rather cute.

–– ChatGPT separated the different draw functions, each of them called

from the main game loop, instead of having everything inside one

function.

In parallel, what was equally instructive:

–– The font loading part was easy to fix, and it was a nice example of

how to use fonts in raylib-go.

–– Instructing ChatGPT to switch from if/else to switch statements

was easy too; you just tell it to do so.

–– The way ChatGPT randomly creates function names when it’s not

happy with what it knows was fun. You can tell ChatGPT that those

functions do not exist and it will give you a Pinocchio-like reason as

to why it put them in the code.

Now that we know the good, the bad, and the evil of an AI code-generation tool, it’s

time to start creating your own little game of a character moving on a 2D board.

�The Moyashi Game
We all carry the seeds of greatness within us, but we need an image as a
point of focus in order that they may sprout.

—Epictetus

This section was inspired by the lovely YouTube tutorial: “Making an Animal Crossing

type game for beginners - Go & Raylib,” by Avery.

Chapter 3 Writing the Basics for a 2D Game in Go

104

You will create a good working base to develop a small tile-based game, called

Moyashi. The character will be move on a map generated from tile sets, with music. You

will also give the player some input on what to implement next.

The game is called Moyashi, Japanese for Sprout, which is the name of the assets

package it uses.

The game will eventually look like Figure 3-5.

Figure 3-5.  Moyashi in the grass

This is the plan you will follow to get there:

Step 0: Prepare the base Go file with the game loop.

Step 1: Load a texture and draw it on the canvas.

Step 2: Draw sprites.

Step 3: Use keyboard inputs.

Step 4: Play some music.

Step 5: Set the 2D camera.

Step 6: Animate Moyashi while it is moving.

Step 7: Animate Moyashi while it is idle.

Step 8: Load one tile for the map and draw it.

Chapter 3 Writing the Basics for a 2D Game in Go

105

Step 9: Map a small level.

Step 10: Load a full map level.

The examples in the chapter use the same numbering as these steps, so it’s easy to

follow along. Let’s get started.

�The Basic Game Loop
The common structure for a basic 2D game is usually made of the following:

	 1.	 An init phase

	 2.	 A game loop; and within that game loop:

	 a.	 A keepRunning check to determine whether there is another turn of the

game, or if you should display the main menu or the Play Again menu.

	 b.	 An input-handling function.

	 c.	 A data/position update function.

	 d.	 A drawing function, which is usually a minor function or each kind of item

to update graphically.

	 3.	 A clean-up phase when the game is about to exit.

Listing 3-4 expands from the original raylib-go simple example and adds the basic

game loop structure.

Listing 3-4.  Basic Structure for the Game Program

package main

import rl "github.com/gen2brain/raylib-go/raylib"

const (

 screenWidth = 800

 screenHeight = 450

)

var (

 running = true

 backgroundColor = rl.Black

)

Chapter 3 Writing the Basics for a 2D Game in Go

106

func init() {

 rl.SetConfigFlags(rl.FlagVsyncHint)

 rl.InitWindow(screenWidth, screenHeight, "Moyashi")

 rl.SetExitKey(0)

 rl.SetTargetFPS(60)

}

func update() {

 running = !rl.WindowShouldClose()

}

func input() {

}

func quit() {

 rl.CloseWindow()

}

func render() {

 rl.BeginDrawing()

 rl.ClearBackground(backgroundColor)

 drawScene()

 rl.EndDrawing()

}

func drawScene() {

 rl.DrawText("Moyashi", 190, 200, 20, rl.LightGray)

}

func main() {

 for running {

 input()

Chapter 3 Writing the Basics for a 2D Game in Go

107

 update()

 render()

 }

 quit()

}

This does not nothing new from the original example; executing the program again

shows the Moyashi window, as shown in Figure 3-6.

Figure 3-6.  Basic Moyashi window

Note in the code the following:

–– The const section, with all the constants of the game.

–– The var section, with all the variables of the game.

–– All the game initialization is done in the init function.

Now that the basics are in place, you learn how to add some simple graphics to

this game.

�Loading Textures
Just like Avery’s example, you can get the graphics from:

https://cupnooble.itch.io/sprout-lands-asset-pack

There is a free version and a paid version. For the sake of those $2, you might also

want to tip when downloading.

Chapter 3 Writing the Basics for a 2D Game in Go

https://cupnooble.itch.io/sprout-lands-asset-pack

108

We make a living by what we get, but we make a life by what we give.

—Winston Churchill

When you have downloaded the assets, put them in an assets folder inside your

project files. Your folder setup should mirror the setup shown in Figure 3-7.

Figure 3-7.  Game files project structure with assets

The first file you use is the Grass.png file, so first make sure Grass.png exists:

assets/Tilesets/Grass.png

This is relative to the main Go file of the project.

The contents of the Grass.png file are shown in Figure 3-8.

Figure 3-8.  Some grass

Chapter 3 Writing the Basics for a 2D Game in Go

109

Now what you want to do is load that .png file and display it onscreen, in place of

drawing the text.

For reference, you can look at either or both of these:

•	 The Go bindings doc: https://pkg.go.dev/github.com/gen2brain/

raylib-go/raylib#CheckCollisionRecs

•	 The original raylib cheat sheet: https://www.raylib.com/

cheatsheet/cheatsheet_zh.html

A few notes about the code to come:

•	 When you use rl.LoadTexture, you get a rl.Texture2D object, so

you need to add a reference to that object in the var section of the Go

program.

•	 The rl.LoadTexture call will be in the init function.

•	 There are a few different ways to draw textures. For now the example

uses rl.DrawTexture, which takes a texture, a location, and a

background color.

•	 Let’s not forget to unload the texture when finishing the game, using

rl.UnloadTexture.

The parts of the new code are shown in Listing 3-5.

Listing 3-5.  Code for Loading a Texture from a File

var (

 running = true

 backgroundColor = rl.NewColor(147, 211, 196, 255)

 grassSprite rl.Texture2D

)

func init() {

// ...

 grassSprite = rl.LoadTexture("assets/Tilesets/Grass.png")

}

// ...

Chapter 3 Writing the Basics for a 2D Game in Go

https://pkg.go.dev/github.com/gen2brain/raylib-go/raylib#CheckCollisionRecs
https://pkg.go.dev/github.com/gen2brain/raylib-go/raylib#CheckCollisionRecs
https://www.raylib.com/cheatsheet/cheatsheet_zh.html
https://www.raylib.com/cheatsheet/cheatsheet_zh.html

110

func quit() {

 rl.UnloadTexture(grassSprite)

 rl.CloseWindow()

}

// ...

func drawScene() {

 rl.DrawTexture(grassSprite, 100, 50, rl.White)

}

The resulting window is shown in Figure 3-9.

Figure 3-9.  Loaded texture

The first spreadsheet has been loaded and displayed, so now you’ll load a texture for

your main player.

�Adding a Player Texture
In the “Loading Textures” section, you loaded the full PNG file and displayed the full

contents of that file. In a tile-based game, this is obviously not the way you want to load

assets. Assets are gathered in one file to limit the amount of disk access when loading

many assets.

In a 2D character animation, you load one file containing all the different frames for

all the character’s animation frames. The file is loaded, and then the game displays only

one part of the file.

Chapter 3 Writing the Basics for a 2D Game in Go

111

This can be done by using two rectangles:

•	 One to select the location in the loaded file.

•	 One to store the copy of the location adjusted in size in the

game’s canvas.

The sprite sheet for the game character is shown in Figure 3-10.

Figure 3-10.  Sprite sheet for Moyashi

Note that GoLand will show the overall size of the picture, and by simple division,

each single frame to use for Moyashi is 48x48 pixels.

The next example loads the texture and displays Moyashi. The updated parts of the

code to reach that goal are shown in Listing 3-6.

Listing 3-6.  Loading Moyashi’s Sprite

var (

 // ...

 playerSprite rl.Texture2D

 playerSrc rl.Rectangle

 playerDest rl.Rectangle

)

Chapter 3 Writing the Basics for a 2D Game in Go

112

func init() {

 // ...

 playerSprite = rl.LoadTexture("assets/Characters/Spritesheet.png")

 playerSrc = rl.NewRectangle(0, 0, 48, 48)

 playerDest = rl.NewRectangle(200, 200, 150, 150)

}

func quit() {

 rl.UnloadTexture(grassSprite)

 rl.UnloadTexture(playerSprite)

 rl.CloseWindow()

}

func drawScene() {

 rl.DrawTexture(grassSprite, 100, 50, rl.White)

 location := rl.NewVector2(100,-100)

 �rl.DrawTexturePro(playerSprite, playerSrc, playerDest, location, 0,

rl.White)

}

A few things to note:

	 1.	 In rl.NewRectangle(0, 0, 48, 48), 48x48 is the size of a single

tile in the loaded .png file. The first two 0s define the location to

load the 48x48 image.

	 2.	 You can use DrawTexturePro this time to use the two rectangles

and the adjusted location of the sprite.

	 3.	 The location is an adjusted location. The main onscreen location

is the one from playerDest (X and Y coordinates).

Running the program will give you an extended version of the first game window,

with the same green grass and Moyashi displayed on top of it (see Figure 3-11).

Chapter 3 Writing the Basics for a 2D Game in Go

113

Figure 3-11.  Moyashi in the grass

Before moving on to use inputs, try to change the value of the source rectangle and

load another Moyashi frame. For example, try rl.NewRectangle(96, 0, 48, 48) for

Moyashi. The result is shown Figure 3-12.

Figure 3-12.  Top row, third column

Or, use rl.NewRectangle(0, 96, 48, 48) for Moyashi, as shown in Figure 3-13.

Figure 3-13.  Third row, first column

Once you’ve had enough fun, you can move on to the next section, where you learn

how to move Moyashi using key inputs.

�Using Key Inputs
The input process is easy to code. You can add support for either the WASD keys (see

Figure 3-14) or for using the arrow keys (see Figure 3-15).

Chapter 3 Writing the Basics for a 2D Game in Go

114

Figure 3-14.  WASD keys

Figure 3-15.  Arrow keys

In the input function, the code determines if a key is pressed using rl.IsKeyDown.

When a key is pressed, the code updates the playerDest.X and playerDest.Y values to

the display function and updates the location of Moyashi on the canvas.

Only the input function is shown in Listing 3-7; the rest of the code remains

the same.

Listing 3-7.  Acting on Key Input

func input() {

 if rl.IsKeyDown(rl.KeyW) || rl.IsKeyDown(rl.KeyUp) {

 playerDest.Y -= playerSpeed

 }

 if rl.IsKeyDown(rl.KeyS) || rl.IsKeyDown(rl.KeyDown) {

 playerDest.Y += playerSpeed

 }

 if rl.IsKeyDown(rl.KeyA) || rl.IsKeyDown(rl.KeyLeft) {

 playerDest.X -= playerSpeed

 }

 if rl.IsKeyDown(rl.KeyD) || rl.IsKeyDown(rl.KeyRight) {

 playerDest.X += playerSpeed

 }

}

Chapter 3 Writing the Basics for a 2D Game in Go

115

playerSpeed is an integer value. It can be either a const defined at the top of the file,

or a var that’s set in the init function (here, playerSpeed = 3).

Figures 3-16 and 3-17 show the updated location of Moyashi on the canvas.

Figure 3-16.  Moyashi’s location after loading the game

Figure 3-17.  Moyashi’s location after pressing the right arrow key a few times

Moyashi can now move, so now you’ll see how to keep the walk in tempo by adding

some game music.

�Doing the Game Music
Just like with graphical assets, music is an expensive business where the obvious holy

grail is to create and record your own. This little game uses free music.

Chapter 3 Writing the Basics for a 2D Game in Go

116

The Free Music Archive has free audio files to get you started. For example, you can

search for nature-inspired tracks:

https://freemusicarchive.org/search?adv=1&quicksearch=nature%20&&

Also, pond5 has a few limited samples that are pretty good:

https://www.pond5.com/search?kw=game+walk+in+the+nature&media=music

Since we are about indie gaming in this chapter, IndieGameMusic should also be

of help:

https://www.indiegamemusic.com/

Wherever you decided to download the music from, place the downloaded music file

in the assets/music folder and update the file path in the code listing.

The new code for loading and playing music is shown in Listing 3-8.

Listing 3-8.  Playing the Game Music

var (

 // ...

 musicPaused = false

 music rl.Music

)

func init() {

 // ...

 rl.InitAudioDevice()

 �music = rl.LoadMusicStream("assets/music/cartoon-whistling-walk-

loop.mp3")

 rl.PlayMusicStream(music)

}

func update() {

 running = !rl.WindowShouldClose()

 rl.UpdateMusicStream(music)

}

func quit() {

 rl.UnloadMusicStream(music)

 // ...

}

Chapter 3 Writing the Basics for a 2D Game in Go

https://freemusicarchive.org/search?adv=1&quicksearch=nature &&
https://www.pond5.com/search?kw=game+walk+in+the+nature&media=music
https://www.indiegamemusic.com/

117

Things to pay attention to:

	 1.	 You need to call rl.InitAudioDevice() before using the

audio device.

	 2.	 PlayMusicStream tells the audio device to get the stream ready.

	 3.	 You cannot fire and forget playing music; you need to

continuously update the music in the game loop using

UpdateMusicStream.

	 4.	 When cleaning up assets, you also need to clean up the

loaded stream with UnloadMusicStream. This is the same as

UnloadTexture for textures. (Also, not included here, but you

should use rl.CloseAudioDevice in the quit function.)

There is no screenshot for music! Too bad. This would be a perfect feature for a

book—the music changes depending on the chapter you are reading.

Instead, Listing 3-9 stops/resumes the music using the corresponding raylib-go

functions. Note that the rest of the game continues to render as usual, even when the

music stops.

Listing 3-9.  Stop/Resume Playing the Music

func update() {

 running = !rl.WindowShouldClose()

 rl.UpdateMusicStream(music)

 if musicPaused {

 rl.PauseMusicStream(music)

 } else {

 rl.ResumeMusicStream(music)

 }

}

func input() {

 // ...

 if rl.IsKeyDown(rl.KeyM) {

 musicPaused = !musicPaused

 }

}

Chapter 3 Writing the Basics for a 2D Game in Go

118

Moyashi now has a nice tempo to walk around. In the next section, you learn how to

add a camera to follow Moyashi’s moves.

�Game Camera
Up to now, the game has used the X and Y coordinates in the map. As a reminder,

coordinates are from top to bottom for X, and from left to right for Y.

Moyashi’s location is set using X and Y, but how you view the whole land can be set

up with the object camera, rl.Camera2D.

By default, you set the camera so that even when Moyashi changes location, it will

be displayed in the center of the screen. The perception of movement is achieved by

moving the camera around the map.

The camera is set up in the init function, and then you update the target of the

camera to be where Moyashi is in the update function, as shown in Listing 3-10.

Listing 3-10.  Camera to Set Moyashi in the Center

var (

 // ...

 cam rl.Camera2D

)

func init() {

 // ...

 �cam = rl.NewCamera2D(rl.NewVector2(screenWidth/2.0, screenHeight/2.0),

rl.NewVector2(playerDest.X-playerDest.Width/2, playerDest.Y-playerDest.

Height/2), 0.0, 1.0)

}

func update() {

 // ...

 �cam.Target = rl.NewVector2(playerDest.X-playerDest.Width/2,

playerDest.Y-playerDest.Height/2)

}

Chapter 3 Writing the Basics for a 2D Game in Go

119

Now, when you move Moyashi using the key inputs you defined earlier, the camera

(or the screen) will move, but Moyashi will stay in the center, as shown in Figures 3-18

and 3-19.

Figure 3-18.  Moyashi in the center

Figure 3-19.  Moyashi still in the center

For some pure fun, you can set the camera to rotate or zoom, depending on the new

input keys in the input function, as shown in Listing 3-11.

Chapter 3 Writing the Basics for a 2D Game in Go

120

Listing 3-11.  Code to Rotate and Set the Zoom Factor for the Camera

func input() {

 // ...

 if rl.IsKeyDown(rl.KeyZ) {

 cam.Rotation = cam.Rotation + 1

 }

 if rl.IsKeyDown(rl.KeyX) {

 cam.Rotation = cam.Rotation - 1

 }

 if rl.IsKeyDown(rl.KeyC) {

 cam.Zoom = cam.Zoom + 0.1

 }

 if rl.IsKeyDown(rl.KeyV) {

 cam.Zoom = cam.Zoom - 0.1

 }

}

After running the new code again, try pressing the Z, X, C, and V keys to see how the

map and Moyashi rotate and zoom on demand. The effect is shown in Figure 3-20.

Figure 3-20.  Rotation and zoom effect

Nice! You now know how to play with the camera settings and maybe even have

some flashbacks of Mode 7 on the Super Famicon.

Chapter 3 Writing the Basics for a 2D Game in Go

121

Note  You could set up multiple cameras and switch from one to the other. This is
especially useful when you have multiple players on the same screen.

The next section gives Moyashi more movement by creating an animation from the

different frames found in the sprite sheet.

�Animate Sprites
Consider Moyashi’s sprite sheet again, as shown Figure 3-21.

Figure 3-21.  Annotated sprite sheet for Moyashi

Remember that there are four directions:

•	 Down

•	 Up

•	 Left

•	 Right

And each direction has four frames.

So, to animate Moyashi, you need to update the rl.Rectangle for playerSrc with

the proper X and Y values. That way, the source rectangle of the sprite sheet will be

correctly computed.

Chapter 3 Writing the Basics for a 2D Game in Go

122

The game is running at 60 frames per second, so this code will change the frame for

Moyashi every six game frames, or ten times per second. You can of course decide to

make that faster or slower.

To help create the animation, you will add a few vars to the var section:

	 1.	 playerMoving bool: This will be set to true when a key is pressed.

	 2.	 playerDir PlayerDirection: You will create an enum to indicate

which direction Moyashi is going. Recall that an enum is a list of

possible values.

	 3.	 playerFrame int: This is the frame of Moyashi, so based on

Figure 3-21, a number between 0 and 3 (four frames, counting

from zero).

	 4.	 frameCount int: The overall frame count of the game.

This is all reflected in Listing 3-12.

Listing 3-12.  New Vars to Animate Moyashi

var (

 // ...

 playerSrc rl.Rectangle

 playerDest rl.Rectangle

 playerMoving bool

 playerDir PlayerDirection

 playerFrame int

 frameCount int

 // ...

)

type PlayerDirection int

const (

 Down PlayerDirection = iota

 Up

 Left

Chapter 3 Writing the Basics for a 2D Game in Go

123

 Right

)

// ...

Note that the enum is using a combination of type and const. const uses iota, a Go

function that automatically assigns a number to each value of the enum. Also note that

you set Down first in the enum to reflect Moyashi’s frame order in the sprite sheet directly.

The code then updates the input function. When a movement key is pressed, it

marks the player as moving (playerMoving = true) and sets the playerDir to one of the

values of the PlayerDirection enum. This is shown in Listing 3-13.

Listing 3-13.  Input Function Updated for Animation

func input() {

 if rl.IsKeyDown(rl.KeyW) || rl.IsKeyDown(rl.KeyUp) {

 playerMoving = true

 playerDir = Up

 }

 if rl.IsKeyDown(rl.KeyS) || rl.IsKeyDown(rl.KeyDown) {

 playerMoving = true

 playerDir = Down

 }

 if rl.IsKeyDown(rl.KeyA) || rl.IsKeyDown(rl.KeyLeft) {

 playerMoving = true

 playerDir = Left

 }

 if rl.IsKeyDown(rl.KeyD) || rl.IsKeyDown(rl.KeyRight) {

 playerMoving = true

 playerDir = Right

 }

 // ...

}

The update function updates the location of player on the map according to the key

pressed. The playerFrame value is updated according to a certain number of elapsed

game frames.

Chapter 3 Writing the Basics for a 2D Game in Go

124

Lastly, the important part of all those variables is to properly set the X and Y of

playerSrc, which is done via playerFrame and playerDir. This is again according to

Figure 3-21 and is reflected in Listing 3-14.

Listing 3-14.  Computing X and Y for playerSrc

func update() {

 running = !rl.WindowShouldClose()

 if playerMoving {

 if playerDir == Up {

 playerDest.Y -= playerSpeed

 }

 if playerDir == Down {

 playerDest.Y += playerSpeed

 }

 if playerDir == Left {

 playerDest.X -= playerSpeed

 }

 if playerDir == Right {

 playerDest.X += playerSpeed

 }

 if frameCount%6 == 1 {

 playerFrame++

 }

 }

 frameCount++

 if playerFrame > 3 {

 playerFrame = 0

 }

 playerSrc.X = playerSrc.Width * float32(playerFrame)

 playerSrc.Y = playerSrc.Height * float32(playerDir)

Chapter 3 Writing the Basics for a 2D Game in Go

125

 // ...

 playerMoving = false

}

// ...

If all goes well, you will see an animated Moyashi running in the fields! Table 3-1

shows the X and Y values of playerSrc according to the animation frame.

There would be a similar table for Down, Up, Left, and Right. One thing that is

missing though is an animation for when the sprite is idle.

Table 3-1.  Frame and PlayerSrc X and Y Values

Image Frame Number/Player Direction PlayerSrc Coordinates

Frame 0 of PlayerDir Right X = 0, Y = 144

Frame 1 of PlayerDir Right X = 48, Y = 144

Frame 2 of PlayerDir Right X = 96, Y = 144

Frame 3 of PlayerDir Right X = 144, Y = 144

Chapter 3 Writing the Basics for a 2D Game in Go

126

�Animation for an Idle Moyashi
This is going to be quite short. Animating Moyashi when it is idle is just a matter of

updating the playerFrame value when playerMoving is set to false.

In the update function, you will:

	 1.	 Update the playerFrame every 30 frames, so every half second.

	 2.	 Only display frame 0 and frame 1 when Moyashi is not moving.

Those two updates are the only ones in the whole code listing, and they are shown in

Listing 3-15.

Listing 3-15.  Idle Animation

func update() {

 // ...

 // same as before

 if playerMoving {

 if playerDir == Up {

 playerDest.Y -= playerSpeed

 }

 if playerDir == Down {

 playerDest.Y += playerSpeed

 }

 if playerDir == Left {

 playerDest.X -= playerSpeed

 }

 if playerDir == Right {

 playerDest.X += playerSpeed

 }

 if frameCount%6 == 1 {

 playerFrame++

 }

 }

 // update the player frame even when not moving

 if frameCount%30 == 1 {

Chapter 3 Writing the Basics for a 2D Game in Go

127

 playerFrame++

 }

 // switch between frame 0 and frame 1

 // when Moyashi is not moving

 if !playerMoving && playerFrame > 1 {

 playerFrame = 0

 }

 // ...

}

Running the game will show Moyashi switching frames (see Figures 3-22 and 3-23).

Figure 3-22.  Idle frame 0

Figure 3-23.  Idle frame 1

Now it’s time to get Moyashi to walk on a proper patch of grass, with houses

and fences.

�Loading the World Map
In a 2D tile-based game, the map can be viewed as a set of squares, each loaded with a

different sprite. To create the world map that’s rendered onscreen, you need to create an

internal representation, with something preloaded.

Chapter 3 Writing the Basics for a 2D Game in Go

128

Let’s say for a start that the map you want to show onscreen is 5x5—five squares for

the width and five squares for the height. This would look like Figure 3-24.

Figure 3-24.  Image of the world map

The representation you will have internally is a list of integers, as shown in

Figure 3-25.

Figure 3-25.  Internal representation of the map

Figure 3-26 shows the contents of the sprite sheet for grass.png again.

Figure 3-26.  Grass.png file

Chapter 3 Writing the Basics for a 2D Game in Go

129

The file is 160x128, and each tile is 16x16: 16x10 horizontally and 16x8 vertically.

Each internal value of the map will be just like the player frame, which is a square in this

picture. The source location will have an X between 0 and 16x10=160 (0,16,32…144), and

an Y between 0 and 128. (0,16,32…128)

The internal array will represent the location on the target map, so from Figure 3-25

again, you get the following array:

[0 0] [0 1] [0 2] [0 3] [0 4] [1 0] [1 1] ... [4 4]

You’ll first create a random map with values between 0 and 80. The loadMap code is

shown in Listing 3-16.

Listing 3-16.  Creating the Map of the World

var (

 // ...

 tileDest rl.Rectangle

 tileSrc rl.Rectangle

 tileMap []int

 mapW, mapH int

 // ...

)

func loadMap() {

 mapW, mapH = 10, 10

 tileMap = make([]int, mapW*mapH)

 for i := 0; i < len(tileMap); i++ {

 tileMap[i] = rand.Intn(80)

 }

}

func init() {

 // ...

 loadMap()

}

Chapter 3 Writing the Basics for a 2D Game in Go

130

After loading the map, if you choose to debug or print the value of tileMap, it will

look like Listing 3-17, which is an array of random numbers between 0 and 80.

Listing 3-17.  Internal Representation of the World Map

tileMap: [1 47 7 59 1 38 25 60 56 20 54 31 2 49 8 74 11 5 37 66 15 26 8 18

47 27 47 8 70 55 21 8 27 31 69 76 57 71 45 66 13 50 74 3 33 67 78 4 79 73

37 41 69 39 40 65 8 58 23 75 51 30 45 76 26 68 41 2 63 66 43 56 42 38 7 54

57 23 76 20 63 73 17 13 41 59 73 3 51 2 78 56 66 67 20 23 72 3 45 78]

Now that you have the internal representation, it’s simply a matter of drawing things

onscreen. This is done using the drawScene function.

The location onscreen, represented by tileDest.X and tileDest.Y, is easily

computed from division and remainder (% and /) on tileMap versus the mapWidth, mapW

(remember Figure 3-25).

Assuming only the grass sprite sheet is used for now, you need to find the proper

square location in the grass.png file. You do the same % and / to the value contained

between 0 and 80 (remember Figure 3-26).

The code for drawScene is shown in Listing 3-18.

Listing 3-18.  Let’s Draw the World!

func drawScene() {

 for i := 0; i < len(tileMap); i++ {

 tileDest.X = tileDest.Width * float32(i%mapW)

 tileDest.Y = tileDest.Height * float32(i/mapW)

 �tileSrc.X = tileSrc.Width * float32((tileMap[i]-1)%int(grassSprite.

Width/int32(tileSrc.Width)))

 �tileSrc.Y = tileSrc.Height * float32((tileMap[i]-1)/int(grassSprite.

Height/int32(tileSrc.Height)))

 �rl.DrawTexturePro(grassSprite, tileSrc, tileDest,

rl.NewVector2(tileDest.Width, tileDest.Height), 0, rl.White)

 }

Chapter 3 Writing the Basics for a 2D Game in Go

131

 // Drawing the player same as before

 �rl.DrawTexturePro(playerSprite, playerSrc, playerDest,

rl.NewVector2(playerDest.Width, playerDest.Height), 0, rl.White)

}

The image in Figure 3-27 is obtained from loading a 10x10 map to make it

easier to see.

Figure 3-27.  World map

Next, you learn to load the map from a file and use more sprite sheets for the map.

�Loading the Full World Map
In this last exercise, you learn to load a full world map from a file. Each value in the map

should give you the following:

•	 Which spreadsheet to use

•	 Which index to use in that spreadsheet

Instead of using a single sprite sheet, you can use multiple files for other

spreadsheets (see Figure 3-28).

Chapter 3 Writing the Basics for a 2D Game in Go

132

Figure 3-28.  Spreadsheets for fences, hills, houses, and so on

You will declare variables and preload all of these textures in the init function

exactly as you did for the grass texture.

In the var section, you’ll declare all the textures to be loaded. Then you’ll add a

temporary texture named tex.

You’ll then have a srcMap, which knows which sprite sheet to use for which square,

just like you have a tileMap that says which index to load from that sheet.

This is just internal representation details. There are better ways to do this, but this

will do for now (see Listing 3-19).

Listing 3-19.  Variables for the World Map

var (

 // ...

 fencedSprite rl.Texture2D

 grassSprite rl.Texture2D

 hillSprite rl.Texture2D

 houseSprite rl.Texture2D

 tilledSprite rl.Texture2D

 waterSprite rl.Texture2D

 tex rl.Texture2D

 // ...

 tileDest rl.Rectangle

 tileSrc rl.Rectangle

 tileMap []int

Chapter 3 Writing the Basics for a 2D Game in Go

133

 srcMap []string

 mapW, mapH int

 // ...

)

The file format to use for the map is as follows:

WIDTH HEIGHT

MAP of Int

MAP of String

An example of a 5x5 map is shown in Listing 3-20.

Listing 3-20.  World Map File Example

5 5

1 1 1 1 1

1 8 1 1 1

1 2 3 3 1

1 4 1 11 1

1 1 1 1 1

g g g g g

g g g g g

g g g g g

g g g g g

g g l l w

Each value of the first map goes to tileMap, and the second map indicates which

sprite sheet to use:

•	 G for grass

•	 L for hill

•	 F for fence

•	 H for house

•	 W for water

•	 T for tilled

Chapter 3 Writing the Basics for a 2D Game in Go

134

The new loadMap takes a filename and pushes values in tileMap and srcMap (see

Listing 3-21).

Listing 3-21.  Loading the Map from a File

func loadMap(mapFile string) {

 fmt.Printf("Loading map: %s\n", mapFile)

 file, err := ioutil.ReadFile(mapFile)

 if err != nil {

 fmt.Printf("Error reading map file: %s: %s\n", mapFile, err)

 os.Exit(1)

 }

 �sliced := strings.Split(strings.ReplaceAll(string(file), "\n", "

"), " ")

 mapW, mapH = -1, -1

 tileMap = make([]int, mapW*mapH)

 srcMap = make([]string, mapW*mapH)

 for i := 0; i < len(sliced); i++ {

 m, _ := strconv.Atoi(sliced[i])

 if mapW == -1 {

 mapW = m

 } else if mapH == -1 {

 mapH = m

 } else if i < mapW*mapH+2 {

 tileMap = append(tileMap, m)

 } else {

 srcMap = append(srcMap, sliced[i])

 }

 }

}

Add this updated loadMap function to the init function of the game. You can load

the texture at the same time (see Listing 3-22).

Chapter 3 Writing the Basics for a 2D Game in Go

135

Listing 3-22.  Load the Sprites and the Map

func init() {

 //...

 fencedSprite = rl.LoadTexture("assets/Tilesets/Fences.png")

 grassSprite = rl.LoadTexture("assets/Tilesets/Grass.png")

 hillSprite = rl.LoadTexture("assets/Tilesets/Hills.png")

 houseSprite = rl.LoadTexture("assets/Tilesets/House.png")

 tilledSprite = rl.LoadTexture("assets/Tilesets/Tilled.png")

 waterSprite = rl.LoadTexture("assets/Tilesets/Water.png")

 tileSrc = rl.NewRectangle(0, 0, 16, 16)

 tileDest = rl.NewRectangle(0, 0, 16, 16)

 loadMap("world.map")

 //...

}

The final code for drawScene uses the tex “target texture” to determine which texture

to draw the sprite from, as a parameter to DrawTexturePro.

tileSrc.X and tileSrc.Y are computed just like in Listing 3-18; this time using

height and width as computed from tex, which contains the data for width and height of

the full picture.

See the resulting drawScene in Listing 3-23.

Listing 3-23.  Drawing Tiles of the World Map Depending on the Internal

Representation

func drawScene() {

 for i := 0; i < len(tileMap); i++ {

 tileDest.X = tileDest.Width * float32(i%mapW)

 tileDest.Y = tileDest.Height * float32(i/mapW)

 switch srcMap[i] {

 case "g":

 tex = grassSprite

Chapter 3 Writing the Basics for a 2D Game in Go

136

 case "l":

 tex = hillSprite

 case "f":

 tex = fencedSprite

 case "h":

 tex = houseSprite

 case "w":

 tex = waterSprite

 case "t":

 tex = tilledSprite

 default:

 tex = grassSprite

 }

 �tileSrc.X = tileSrc.Width * float32((tileMap[i]-1)%int(tex.Width/

int32(tileSrc.Width)))

 �tileSrc.Y = tileSrc.Height * float32((tileMap[i]-1)/int(tex.Width/

int32(tileSrc.Height)))

 �rl.DrawTexturePro(tex, tileSrc, tileDest, rl.NewVector2(tileDest.

Width, tileDest.Height), 0, rl.White)

 }

// ...

}

As opposed to the previous example, where you were loading random values in the

map, this time the map is statically loaded from the file and the render properly shows

the map on the canvas. See Figure 3-29.

Chapter 3 Writing the Basics for a 2D Game in Go

137

Figure 3-29.  Same ol’ world

Yes...the map is small. Let’s make it bigger!

�Full Map and Full Screen
To put the game into full screen mode and display the camera all over the map, you have

to change two things:

•	 Set the config flag in the init function to full screen mode

•	 Update the camera zoom

The updated init function code is shown in Listing 3-24.

Listing 3-24.  Setting the Zoom Parameter

func init() {

 rl.SetConfigFlags(rl.FlagVsyncHint | rl.FlagFullscreenMode)

 �cam = rl.NewCamera2D(rl.NewVector2(screenWidth/2.0, screenHeight/2.0),

rl.NewVector2(playerDest.X-playerDest.Width/2, playerDest.Y-playerDest.

Height/2), 0.0, 3)

 //cam.Zoom = 3

 loadMap("world.map")

}

Chapter 3 Writing the Basics for a 2D Game in Go

138

Note that there are two ways to update the camera—one you saw earlier by setting

the zoom factor directly on cam.Zoom or when you create the camera itself as the last

parameter.

If you look at the example, you find an updated map file in world.map. Moyashi looks

happier to run in full screen mode over the entire land. See Figure 3-30.

Figure 3-30.  World hero Moyashi

�Summary
This concludes Chapter 3. You now know how to prepare a basic loop for a 2D game in

Go using raylib-go.

To build on this, try the following:

•	 Add other moving animals, such as cows and sheep.

•	 Get the other sprites to move on the map randomly.

•	 Detect collision and block access to fences and water.

•	 Play sound when walking or bumping into other sprites.

•	 Display a score and increase it as the player collects and gives food to

the animals.

Chapter 3 Writing the Basics for a 2D Game in Go

https://doi.org/10.1007/978-1-4842-9666-0_3

139

CHAPTER 4

Trend Follower for
Blockchain Trading

�Go Crazy or Go Home
Perhaps times have changed a bit, but there certainly used to be an unwritten law on the

trading floor that expected all traders to go hard or go home.

Pressures run high when trading large amounts of money. The amount is subjective

of course, but the financial markets can make a person go crazy, quite literally. It is a

unique environment where emotions run wild, driven by fear and greed.

Does this always have to be the case? What if you could remove that emotional

rollercoaster ride when trading?

© Nicolas Modrzyk 2023
N. Modrzyk, Go Crazy, https://doi.org/10.1007/978-1-4842-9666-0_4

https://doi.org/10.1007/978-1-4842-9666-0_4#DOI

140

Before you start this chapter, the disclaimer. This is not financial advice. It’s

simply an introduction to the world in which technology meets the financial markets.

Hopefully a guide to things that you should think about before taking on the financial

markets. A collection of notes to help this preparation, if you will. And hopefully a bit of

entertainment as well.

Smart individuals are efficient and productive. Smart and rich people are efficient,

productive, and never sleep. The world of trading is no exception. In fact, the Wall Street

bankers with expensive suits looking tired is not just a cliché, it is a thing. The problem with

this, more often than not, ends up having a costly effect on mental and physical health.

These problems are exacerbated by the fact that most products can now be traded 24 hours

a day. Cryptocurrencies, for instance, never sleep. Not even on weekends.

Fortunately, some savvy smart individuals have, in recent years, figured out a

few quirks that manifest themselves as patterns. If you spend enough time reading

newsletters or listening to financial news, there is a very high probability you will come

across the words “history doesn’t repeat itself, but it rhymes.” While the booms and busts

in financial centers around the world are different each time, the logic when recounting

each “event” seems to have an uncanny similarity. Add to this the fact that human beings

are creatures of habit, who are driven by fear and greed. This provides a nice ecosystem

for financial industry experts to derive models based on cycles and probability of events

occurring in the free market economy.

This of course, is only half the equation. Given the 24/7 nature of the markets today,

simply modeling cycles in markets would create a lot of zombies walking around trading

floors or people looking like Neo in the matrix. This being said, if you could code like

Neo, there is a place for the autonomous trading bots in the financial markets.

Even simplistic bots with a high tendency to make errors of judgement often perform

better than human beings sitting between a keyboard and chair monitoring markets 24/7

and trading in a state of delirium.

Bots do not need sleep; they do not have a family to care for; and they certainly do

not get ulcers. If modeled correctly and built using a fine-tuned process, your daily task

could simply become a routine: 1) Check available funds to trade (make sure to top it

up from time to time), 2) Make sure the bots are running, and, 3) take the profits when a

good trade happens.

With a well-oiled machine and simple tools with processes, anyone who can code

can focus on finding a cool job, no need to be burnt out (ever). Let the side hustle

continue to earn more money with limited or almost no time invested. Simply focus on

the more important things in life…

Chapter 4 Trend Follower for Blockchain Trading

141

The trick is to “follow the smart money.” In other words, let the financial great minds

be the trail blazers and simply find a way to follow them into the booms.

The goal of this chapter is to cover a few of the simplified examples so you can set

things up to do just that—“follow the smart money.”

�Why Trade in the Financial Markets?
Before delving into trading, this chapter includes a small background on money, and

how the world has evolved with the use of money. This section includes a discussion of

how the real market works today and the relationship to the financial markets, as well as

some background as to why the financial markets are efficient and worth trading in.

�The Origins of Money

In human history, you can trace the development of money from barter systems to

the complex financial systems of today. At its core, money is a universal medium of

exchange that simplifies transactions and fosters cooperation between people.

Some historians argue that barter systems were the earliest form of trade. In these

systems, individuals exchanged goods and services directly. However, the limitations of

barter soon became apparent, as it was highly dependent on the “coincidence of wants.”

To overcome this issue, societies began to use various objects as mediums of exchange.

These objects, which eventually became money, possessed characteristics such as being

easily transportable, divisible, and non-perishable. Early forms of money included shells,

beads, and even livestock.

As societies became more complex, the need for a standard, universally accepted

form of money grew stronger. Some argue that the Lydians, an ancient civilization in

modern-day Turkey, were the first to introduce coinage around 640 BCE. These coins

were made of a naturally occurring alloy of gold and silver called electrum, which was

stamped with an official seal to guarantee its value. The use of coins revolutionized

trade, as it made transactions more efficient and allowed for the establishment of

standardized values for goods and services.

In the centuries that followed, money continued to evolve, eventually taking the form

of paper currency and, more recently, digital transactions. What is better than having a

tool to execute completely trustless operations in exchanging between value and goods?

Chapter 4 Trend Follower for Blockchain Trading

142

Add to that the power of networks and the ability to have billions of people leverage

this tool in reducing the complexities of barter and facilitating trade, money has played

a crucial role in the development of human societies, enabling the growth of large-scale

economies and the expansion of the global civilization.

Hopefully everyone agrees, the world needs money. If it weren’t for the invention

of money, you would have to carry a lot of very heavy things with you on a daily basis in

order to purchase things.

�The Financial Economy vs. the Real Economy

Some financial historians and professionals differentiate between the financial economy

and the real economy to underscore the varying aspects of an economy that impacts

people’s lives and the overall health of a nation.

The real economy, also referred to as the productive economy or the main street

economy, encompasses the tangible, day-to-day activities that drive economic growth.

These activities include the production, distribution, and consumption of goods

and services. The real economy represents the backbone of any nation’s economic

health, as it directly impacts employment, income levels, and overall living standards.

Key indicators of the real economy’s health include GDP growth, employment rates,

inflation, and productivity levels.

The financial economy, on the other hand, is centered on financial markets and

institutions that facilitate the exchange and allocation of capital. This includes the stock,

bond, and derivatives markets, as well as banks, investment firms, and other financial

intermediaries. The financial economy is driven by the trading of financial assets, such

as stocks, bonds, and other securities, and it plays a critical role in allocating resources

and managing risks in the economy. Key indicators of the financial economy’s health

include interest rates, stock market indices, and credit spreads.

While the real and financial economies are interconnected, they can experience

divergent trends, as the financial economy is more susceptible to fluctuations due to

market sentiment, speculation, and other factors that may not directly correlate with the

real economy’s fundamentals.

An important fact in investing or trading, in some cases, a thriving financial economy

may not accurately reflect the well-being of the real economy, leading to concerns

about financial bubbles or a growing wealth gap. Financial historians emphasize the

Chapter 4 Trend Follower for Blockchain Trading

143

importance of understanding the distinctions between these two facets of the economy,

as striking a balance between them is vital for sustainable economic growth and overall

societal prosperity.

Why is this important? It ties into the aforementioned cycles—the boom and bust

of the economies. You may recall some of the historical events that were caused by

these booms and busts. Th early 2000s boom, coined “the dotcom bubble,” and 2008

marked the end of “the subprime mortgage” and drove the world into a global financial

crisis. In the last few years, the world has seen a pandemic, the shortest recession in

history, global central banks going into quantitative easing, and inflation. These cycles

are extremely powerful drivers of the economy that is now hyper-financialized and

accessible to all.

�Market Efficiency

When shopping online, would you blindly buy an article from the top link on Google? Or

would you do a quick search and compare prices to save your hard-earned dollars? That

process can be abstracted away from the Internet in everyday life, into businesses of all

shapes and sizes, even at governments and global organizations levels.

The financial market, often epitomized by Wall Street, is not an isolated entity but

rather a complex system intertwined with the real economy, represented by Main Street.

Its efficiency, or lack thereof, has profound implications for the broader economy.

This information includes data about companies, economies, political

developments, and even investor sentiments, effectively bridging the gap between Main

Street and Wall Street.

Now, let’s delve into the relationship between Wall Street and Main Street. Wall

Street, or the financial economy, is supposed to serve Main Street, the real economy,

by efficiently allocating capital and managing risk. In an efficient market, Wall Street’s

activities directly support the growth and prosperity of Main Street. However, when the

financial economy becomes inefficient, or when it becomes too detached from the real

economy, as was the case leading up to the 2008 financial crisis, the consequences can

be dire for Main Street.

The distance between Wall Street and Main Street should be a close, symbiotic one.

But when Wall Street becomes an entity unto itself, the disconnect can lead to financial

instability, economic recessions, and severe socio-economic consequences.

Chapter 4 Trend Follower for Blockchain Trading

144

�Why Automate Trading?
Trading manually takes a toll on the mind and body. In the 1980s, it was still possible

for one person to track the market fluctuations. The trading world used to be like in the

movies, where traders and brokers were constantly on phones speaking to each other to

obtain the latest prices to execute trades.

Today, that task is considerably harder to do. Traders today rely on the use of

personal computers with lots of screens. There is a valid reason for the expensive setup,

and that is to monitor many financial assets concurrently, and across many markets.

As mentioned earlier, the global financial markets now operate close to 24 hours over

5.5 days for what is called trad-fi or traditional finance. Monday morning in New Zealand

marks the opening of the markets. A few hours later, Tokyo markets open, then Korea,

Hong Kong, and Singapore. At the close of the Asian markets, the day does not end.

There are the evening sessions. At the end of the evening session, it times in perfectly

with the opening of the European or London markets. Once the European and London

markets close, as you might have guessed, the New York market takes over. With the

exception of a few hours between the close of the American markets and the start of the

New Zealand market, affectionately called “the twilight zone,” some versions of most of

the heavily traded products can be traded globally.

Even if it was theoretically possible to stay awake 24 hours per day, tracking and

trading only a single stock is highly unlikely. All financial instruments’ prices fluctuate

up and down. It is never a straight arrow up. At times the down part might be prolonged.

Your money is better put to work on another financial product that may have the

possibility of gains while the previous one is consolidating.

Chapter 4 Trend Follower for Blockchain Trading

145

Figure 4-1.  Tracking multiple assets concurrently

Imagine tracking two arbitrary cryptos—A (in blue) and B (in orange)—as shown in

Figure 4-1. The trader takes on a position initially with trade “1” and sells the position

to get out of it toward the mid part of the image. While stock A goes downward, stock

B is breaking out. That is when the trader can take on a new position on stock B with

trade “2” while stock A is either on a downward move or consolidating. Just as the trader

is getting out of trade “2,” stock A is ready to break out and the trader takes on another

position with trade “3”.

Tracking two cryptos concurrently is a tough enough job to do. There are a lot of

moving parts and you should expect more than one indicator to follow on any particular

stock. While it is possible to draw superimposed charts and track more than one stock at

a time, it quickly becomes overwhelming.

Chapter 4 Trend Follower for Blockchain Trading

146

Figure 4-2.  Optical illusions caused by auto adjusting gains/losses calibrating for
multiple charts

Figure 4-2 is tracking the S&P 500 and comparing it to GOLD, WTI, TLT (bonds),

VIX, and DXY (the lines are a graphical representation to make a point and inexact). The

image has been zoomed out to fit six months. Since the products trade independently

and have various magnitudes of change, they can only be expressed in terms of

percentage moves. As the DXY is the least volatile product, it almost looks like a flat line

(in blue).

Figure 4-3.  DXY chart on its own (pulled out of Figure 4-2)

Figure 4-3 shows the DXY on its own over the same time period. If not monitored

carefully, many opportunities can be missed when traded manually.

Chapter 4 Trend Follower for Blockchain Trading

147

It is important to note that most traders will have numerous stocks and positions to

track at any one point in time so they have portfolio that is diversified enough to protect

their money. There is always an option to have numerous traders babysit a portfolio, but

that comes with a big price tag.

Last, but not least, all traders need to be reminded that it is a hyper-connected world

out there. The global markets have seen a tremendous amount of volatility increase.

Some macroeconomists attribute this phenomenon to the online businesses like

Robinhood and passive funds. Modern technology stacks have made investing easy. This

has opened the gate for many investors to “tweak” positions almost in real-time. There

is also a view that this phenomenon is caused by prominent figures leveraging social

networking services platforms to incentivize markets to move drastically.

Nobody is certain of course, and there are many potential reasons for these modern

market “features,” but one thing is for sure—the world is not going back to trading with

phone lines like in the 80s.

This is when you might assume this trading thing can only be done efficiently by

machines. Well, that is actually not true. You can easily do without automated trading

machines. In fact, there are numerous prominent traders around the world who trade only

with spreadsheets. Yes, they are rather large spreadsheets, but the point is that it is doable.

It is also extremely important to note that these traders have a wealth of knowledge

and experience. Most have the ability to see trends before they become anything the

world catches onto and execute everything six months to a year ahead of the rest.

But wait a minute, how many books must you read? How often do you need to read

up on events and restack information? What is the catch?

The catch is that most of these prominent traders have been trading for decades, and

as many attest, have made very costly mistakes in the past. That is the “experience” and

as most will confess, they went without a life for a long while.

�The Secret Sauce
There is a very good reason that most, if not all, financial firms spend a large amount of

their operating budget on technology and tools (and people). Walk into any bank, fund,

or broker, and you will most likely find departments and teams named with words like

tech, data, and strat(egy).

Let’s walk through some of these items and see if you can do it like the pros do, and

see if it makes sense for an individual trader to do the same.

Chapter 4 Trend Follower for Blockchain Trading

148

�Charts

A picture tells a thousand words. Once a trader develops an “eye” for charts, a quick

glance can provide crucial insights into the market tendencies at any given time. Some

are so good they are said to be able to predict future prices just looking at the charts for a

few seconds. In order to trade, debug, monitor, and be effective and efficient, charts are a

necessary tool.

Charts are so important to traders and investors that there was a time in history

when they were manually drawn. This is inconceivable for anyone actively trading today.

We should be thankful for the invention of machines and charting frameworks. Today

most of this work is automated.

�Data

Data is the lifeblood of modern investment management. Analyzing vast datasets is the

only efficient approach to identify trends, understand market dynamics, and uncover

hidden opportunities that others may overlook.

Data was, until very recently, very expensive to obtain. The Bloomberg terminal

was already available in the early 2000s, and it featured historical data for most of the

financial instruments around the world. Popular products were even available real time

on the traders’ desktops, even directly into their spreadsheets. Believe it or not, it was

impressive back in the early 2000s.

These days, a lot of the historical data can be found for free. Some of the data

vendors even aggregate the data for its users and provide it free of charge. Depending on

the products and the timeframes, even real-time data is available for free.

�News and Content

While the news and media are not the lifeblood of modern investment management,

they do have a place in the industry. This is where the great minds in the industry share

their views and thoughts. If markets are driven by the animal spirits and the respective

fear and greed, the news and media keep a close look on the pulse.

There was a time when financial news was monopolized by large media

conglomerates like CNBC, Bloomberg, and Reuters. During those times, information was

not easily accessible to the individual investor.

Chapter 4 Trend Follower for Blockchain Trading

149

These days, the landscape has completely changed. First, expensive bespoke

hardware is no longer needed. Most of the information can easily be accessed on a

phone or tablet. It is of paramount importance for all to formulate thoughts and see how

others model the world of finance in order to understand and hopefully expect some

market moves, at least at the macro level. It is a difficult task, and it often rewards those

who pay attention to the brilliant minds in finance.

�Strategy

In order to model certain market events, strategies are essential in trading. This also

provides the trader with an interchangeable tool to leverage through a number of market

cycles that tend to “rhyme,” or repeat in similar ways.

If you pay enough attention to the news and data, these cycles and similarities often

turn into patterns that can be modeled. Starting from the macroeconomy, you can see

trends and tell-tale signs where shifts happen. Diving deeper into these periods where

shifts take place, and you start seeing events that are out of the ordinary. These can be

modeled into signals to execute actions on.

�Backtesting

Backtesting is a critical component of any successful trading strategy. It involves testing a

trading idea or model on historical market data to evaluate its viability and performance.

By analyzing how a strategy would have fared in the past, traders can gain valuable

insights into its potential effectiveness in the future. Once more than one strategy is

implemented, backtesting also provides an opportunity to test strategies against each

other in understanding the performance against a known benchmark.

�Real-Time Trading

Real-time trading simulation, often referred to as paper trading or virtual trading, is a

crucial component in the development and implementation of an automated trading

strategy. By simulating trades using real-time market data, but without risking actual

capital, traders can gain invaluable insights into the performance of their strategy under

current market conditions. This chapter explores the importance of a real-time trading

simulation in building confidence, managing risk, and ultimately, ensuring that traders

can sleep comfortably at night, knowing that their automated trading system is well-

equipped to navigate the unpredictable world of financial markets.

Chapter 4 Trend Follower for Blockchain Trading

150

�The Recipe
The perfect recipe most probably does not exist. At the very least, it will vary quite a bit

depending on the individual’s preferences and tendencies.

That being said, it could be a bit closer to reality than a dream. If you have an

Internet connection and a laptop, of course.

Before dreaming about days at the beach, you need to prepare. Preparation makes

a world of difference in the trading world. Especially so for an autonomous trading bot

if you value your sleep. Failing to build the right framework and process and blindly

trusting a bot with your money is akin to asking a teenager with a fresh driver’s license to

drive a Ferrari. Not going to go well.

If done correctly, with a clear roadmap, a systematic approach, adequate risk

management, performance evaluation of the strategies, thorough testing and debugging,

and religiously performing every step, even a teenager can drive a Ferrari… One

would hope.

�Clear Objectives and a Structured Approach

A well-defined process starts with clear objectives and goals. This helps investors focus

on essential features and functions and ensures that you can effectively execute trading

strategies.

There may be a genius strategy that is completely polyvalent and perfectly adapted to

all geopolitical events or macroeconomic shifts and that performs well in any timeframe.

That person is more likely to be running a billion-dollar fund and protecting that strategy

rather than making it available for all to use. At the very least, running a quick search for

such a book seems to yield less than convincing results.

Crafting a strategy takes patience and a clear objective so the trader can properly

target narrow entry and exit signals. Additionally, having clear objectives and a

structured approach will enable traders to categorize strategies for later or for

combined use.

Alongside objectives, a structured process promotes a systematic approach to

development, which helps to identify, prioritize, and address various challenges and

requirements at different stages of the project. This can increase your chances of success

and prevent potential issues from arising.

Chapter 4 Trend Follower for Blockchain Trading

151

�Macroeconomic Tendencies

There are over 630,000 listed stocks in the global equity markets, tens of thousands of

fixed income products, thousands of commodities products, and an unknown amount of

real estate products.

While it could be exhilarating and fascinating to track events across all products

available globally, it is both detrimental to your health and cost prohibitive.

The first place to start is to understand macro trends. Figure 4-4 shows possibly

one of the simplest yet effective “cheat sheets” that cuts down 75 percent or more of

the noise.

More importantly, this is a practice that can save a lot of money (in terms of compute

cost) and time. As mentioned, there are a vast number of assets around the world still

to cover.

Figure 4-4.  Macroeconomic quadrants

Chapter 4 Trend Follower for Blockchain Trading

152

Knowing the macro market trends enables traders to narrow down on the number of

products to run tests with and, most importantly, allows you to pick out the applicable

strategies far more easily.

�Timeframe

There are mixed thoughts in identifying the timeframe. Many traders in the past have

used more than one timeframe at the same time to compute entry and exit points.

Others approximate by using multiple moving averages over varying periods. Note that

there seems to be a golden rule to follow—entry and exit points must be in the same

timeframe.

Typically trading timeframes vary from microseconds, to hours, to days, to months,

with everything in between.

Having gone through the process, you should come out with a clear understanding of

the timeframe with the highest probability to succeed.

�Risk Management

Risk management is the art of knowing how much and how often. A solid process allows

traders to identify potential risks and uncertainties in the trading environment and

implement mechanisms to manage them.

Even the most successful strategies in the world will experience drawdowns. It makes

no sense to run an aggressive strategy if the bot loses your entire capital in minutes.

On the other hand, there may be investors with a lot of money in the bank account

looking to run an ultra-high risk strategy, knowing something the market participants do

not know.

Building risk management into the process ensures that a trader can run an

autonomous trading bot through changing market conditions and adapt and manage

risks effectively.

�Testing and Debugging

Confidence building in the world of trading is key. If a strategy is not trustworthy,

constant second guessing will inevitably end in the trader taking over control rather than

letting the algorithm and the strategy do its trading.

Chapter 4 Trend Follower for Blockchain Trading

153

By backtesting a strategy, traders can gain a better understanding of the potential

risks associated with their chosen approach. The information obtained from testing can

then be used to develop effective risk management strategies, adjusting position sizes or

parameters, depending on how aggressive the trader wants to be.

Supplementing backtesting with real-time trading simulations provides an

opportunity for traders to assess the risk-reward profile of their automated trading

strategy under live market conditions. By analyzing the strategy’s performance in terms

of drawdowns, volatility, and other risk metrics, traders can develop a comprehensive

understanding of the potential risks associated with their strategy and make informed

decisions about position sizing, stop-loss orders, and other risk management tools.

A systematic development process ensures that the trading bot undergoes rigorous

testing and debugging at various stages. This is crucial for identifying and rectifying any

issues that may impact the bot’s performance, ensuring its reliability and reducing the

chances of making costly mistakes in real-world trading.

�Performance Evaluation

A well-built process includes methods for evaluating the trading bot’s performance and

adjusting its strategies accordingly. Most importantly, a trader should always be able to

identify timing at which a strategy needs to be replaced or parameters adjusted to meet

the risk management criteria. Continuous evaluation and improvement are necessary to

ensure that the bot remains competitive and profitable over time.

�Scalability and Maintainability

A well-structured process allows for the easy addition of new features and updates to

the trading bot. This ensures that the bot can adapt to changing market conditions,

technologies, and requirements, making it more scalable and maintainable.

While a drastic increase in the scale of testing data and subsequent real-time trading

data needs is unlikely, the process prior to live trading should provide feedback to the

trader or developer should anything change.

�Compliance and Regulation

Financial markets are highly regulated, and trading bots must adhere to specific rules

and guidelines. A comprehensive process helps ensure that the trading bot is compliant

with these regulations, reducing the risk of legal and financial consequences.

Chapter 4 Trend Follower for Blockchain Trading

154

Follow the necessary steps and incorporate regulatory requirements into the process

to make sure the strategies and operations clear the necessary regulatory requirements,

if applicable.

�Security

Perhaps the most important catch phrase in the crypto-verse is, “Not your key, not your

money.” Everyone should be mindful of security, and more importantly, where the

cryptos are stored. A lot of investors have lost money with centralized exchanges that

went out of business. Be sure to practice safe key management.

Note T he trad-fi (or traditional finance) world is far more regulated than the
crypto-verse. However, it is not without risk. Ensure adequate security measures
are taken.

�Building Confidence

Trading is as much about psychology as it is about strategy and analysis. Backtesting and

real-time testing can play a crucial role in building a trader’s confidence in their chosen

approach.

In order to build confidence, strategies need to manage the day-to-day trading risks

and violent market moves. Confidence levels will be boosted if backtesting incorporates

black swan events—rare but significant market occurrences that can have a dramatic

impact on a strategy’s performance. Examples in the recent past can easily be found on

Google. Most data vendors will have data going back (if lucky) to 2007/8. By preparing

for these extreme scenarios, traders can develop more robust strategies that can

withstand the unpredictable nature of financial markets.

The same cannot be so easy for real-time testing. By observing how a strategy

performs under live market conditions, traders can gain a deeper understanding of its

strengths and weaknesses. This firsthand experience can be instrumental in fostering

a sense of conviction in the strategy, which is crucial for maintaining discipline and

consistency in the face of market uncertainty.

Chapter 4 Trend Follower for Blockchain Trading

155

Note T esting is not the same as real money trading. As modern exchanges often
offer fractional shares (cryptos of course allow trading of fractions of coins), you
should at least try trading small amounts.

�Refining Trading Strategies

As is often the case, most investors or traders will find aspects of the strategy that need

updating after backtesting and real-time testing. You should expect to spend a fair

amount of time refining and tuning strategies before the start of trading.

Monitoring the strategy’s performance in real-time, traders can often spot

discrepancies between their expectations and the strategy’s actual results. This feedback

loop enables traders to make necessary adjustments and fine-tune their strategy to

better align with their trading objectives and risk tolerance.

�Utensils in the Kitchen
Before continuing, it might make sense for you to consider what the bare minimum

setup is going to look like to be able to run algo trading.

�Modern Trading Tool

Most modern exchanges will have charting tools embedded in their tools, but a lot of the

exchanges will feature a suite of tools to help the investor or trader. It’s very important to

be versed with all the tools and learn to trade manually on the exchanges.

You can only hope the bots will be stable and cater to most, if not all financial

conditions, but issues happen. It is important to be able to “manage” some situations

manually in case the bots fail.

Chapter 4 Trend Follower for Blockchain Trading

156

Figure 4-5.  Binance trading platform www.binance.com/en/trade/BTC_USDT?th
eme=dark&type=spot

Figure 4-5 shows the trading screen from Binance, a popular cryptocurrency

centralized exchange.

Chapter 4 Trend Follower for Blockchain Trading

https://www.binance.com/en/trade/BTC_USDT?theme=dark&type=spot
https://www.binance.com/en/trade/BTC_USDT?theme=dark&type=spot

157

Figure 4-6.  dY/dX trading platform https://trade.dydx.exchange/portfolio/
overview (requires connecting a metamask wallet)

Figure 4-6 shows the trading screen from dY/dX, a decentralized cryptocurrency

exchange.

Some may prefer to trade on a single platform that offers as many datasets as

possible, especially if they trade across asset classes (equities, bonds, cryptos, real

estate). There are a number of charting tools available today that offer direct connections

to the brokers. For instance, TradingView has connectivity to a number of brokers (see

Figure 4-7).

Chapter 4 Trend Follower for Blockchain Trading

https://trade.dydx.exchange/portfolio/overview
https://trade.dydx.exchange/portfolio/overview

158

Figure 4-7.  tradingview.com is an aggregated broker charting and trading
platform

One important note, however—it is possible these platforms do not cater to

all feature sets available on the exchange’s direct trading tool. While it is perfectly

acceptable to leverage multiple platforms to trade (you should have automated

platforms), it should be noted that keeping things simple is the secret to success.

Especially in trading. It should be noted that it pays to practice manual trading even

when the algorithms do the heavy lifting.

One last note on the charting tools. Today’s modern charting tools have many

standardized built-in tooling sets that are crucial for a trader’s debugging abilities.

Naturally, such tools are often only on offer behind a paywall.

Of course, you may opt to write many debugging lines and leverage debuggers to go

through the code breaking it up into steps. The problem is that eventually an algorithmic

trader will see a problem or a bug with code in production. Charting tools that offer

standardized tooling to build in indicators similar to those in use by the strategy

save time and provide the ability to spot check numbers during development and in

production.

Chapter 4 Trend Follower for Blockchain Trading

159

Traditional finance exchanges will have very similar feature sets. Bloomberg and

Reuters have a lot more built-in messaging services, built-in ChatGPT, and list goes on.

As these tools are often prohibitively expensive in the mainstream traditional finance

space, this chapter focuses on cryptocurrencies.

�Brokers

You can have the best autonomous trading engine in the world, but without a broker

to execute trades through, there is no money to be made. Several online brokers and

exchanges exist today. The decision process (on which to use) is a somewhat difficult

topic to cover. The choice will largely depend on the prices offered, of course, residence

of the account holder, fees that are applicable to perform trades, and taxation laws, to

name a few. Note that fees and prices on offer can change quite drastically. Be sure to

compare prices.

It is worthy to note that autonomous trading bots have become increasingly popular

in the world of cryptocurrencies. Trading is supported 24/7 in most exchanges without

the need for constant monitoring. However, in order to use these bots effectively,

traders need access to reliable and trustworthy brokers with stable APIs. The exchanges

themselves may be stable, but there have been blockchain outages that halted trading.

Even large market cap currencies like Solana are subjected to outages.

�Cloud Infrastructure

If you are a stay-at-home person who rarely ventures out and you have a stable Internet

connection with a stable electric grid, you can opt to set up a server at home. Some have

even started running containers on Raspberry Pis.

That being said, a cheap virtual machine on the cloud will make a world of sense,

especially taking into account the fact your family member could at some point unplug

the server in favor of the use of the electric socket to plug in a vacuum cleaner, a toy,

and son.

A lot can happen in the markets in the span of an hour, so it makes sense to keep a

machine protected from such elements and safely trade 24/7.

If your strategy does not involve too many concurrent calculations, you can easily get

away with a few dollars per month.

On a side note, leveraging a cloud virtual machine to run Proof of Stake instances

may be a good idea. Connectivity and network bandwidth are critically important to

avoid penalties. (Note, Proof of Stake is not covered in this chapter.)

Chapter 4 Trend Follower for Blockchain Trading

160

Version control and a CICD pipeline helps coding efficiently. This chapter is not

going to delve into the good practices, but you should explore the use of a Git account

certainly to make sure your code is saved at the very least.

Logs, logs, logs. Being able to perform forensic analysis is critically important.

Keeping a massive database to query at any point in time is the absolute ideal, but most

of the time, unless you’re attempting a high frequency strategy, you can use Google

workspace tools. You may find a good middle ground in the use of Google sheets.

It is true that logs are probably best stored elsewhere. However, tracking snapshots

of what the algorithm sees at any point in time (in table form) can pay dividends as you

encounter issues in production. The use of Google sheets via APIs comes in handy when

dumping large timeseries tables and may save you a lot of time, especially when running

virtual machines on the cloud and being able to monitor things on the go.

Lastly, docker containers, git pull, build, and run. As easy as one two three and save a

lot of time. Do it!

�Cooking
There is probably a valid reason why financial professionals like to use “cooking” in

market actions. If you spends enough time in financial media, terms like “cooking the

curve” or “cooking the books” might come across the screens.

Other than the colorful terminology used by the financial media, knowing what

ingredients to use, proper setting of the heating power, and the meticulous control over

the process ensures the result on the table is a success.

�Backtesting

Backtesting is a critical component of any successful trading strategy. Once enough time

is spent listening to the financial media or analysts from big banks, a very simplistic

model can be derived quite easily. Take the 50-day moving average and 200-day moving

averages for example—a vast majority of the financial professionals will come across the

two numbers in their respective analysis. It is therefore safe to assume they are indicators

that are being monitored industry wide.

But how do you go from an idea that seems to repeat and is being discussed often on

TV and podcasts to a functioning trading model?

Chapter 4 Trend Follower for Blockchain Trading

161

It involves testing a trading idea or model on historical market data to evaluate its

viability and performance. By analyzing how a strategy would have fared in the past,

traders can gain valuable insights into its potential effectiveness in the future. Once

more than one strategy is implemented, backtesting also provides an opportunity to

test strategies against each other in understanding the performance against a known

benchmark.

�Data

In order to start any kind of testing, once a strategy idea is born, it is time to think

about the data. Note the critical pieces—data will be required in many different forms

to properly test a strategy. First, let’s walk through the most common features that

traders use.

•	 Ticker or symbol. It is safe to say most will trade more than one

financial instrument. It’s best to be able to support one or more

products in data ingest and in the backtesting framework.

•	 Just as important is the time interval. Most data vendors will have

hourly, daily, and weekly timeframes. In case the data source does

not cater to this, a strategy might need further down-sampling, or in

some cases, higher frequency data.

•	 The ability to choose the exchange from which to obtain data. It is

rare, but price variations do happen from one exchange to another.

You may be testing an arbitrage between exchanges. For this reason,

it may be beneficial to build in testing of multiple exchange data even

if the rest of the parameters are unchanged.

•	 Timeframes. Some instruments do not have a very lengthy history.

Others may have been in business for a long time. It is important

to note strategies may be in play for just a few hours to months.

Backtesting needs to cater to all the variations possible.

For ease of use (debuggability by simply loading into a Google spreadsheet), let’s go

with a CSV file.

Chapter 4 Trend Follower for Blockchain Trading

162

func ReadHistoricalDataFromCsvFile(csvFile string) ([]MarketDataPriceOnly,

error) {

 file, err := os.Open(csvFile)

 if err != nil {

 log.Fatal(err)

 }

 defer file.Close()

 reader := csv.NewReader(file)

 records, err := reader.ReadAll()

 if err != nil {

 log.Fatal(err)

 }

 dateIndex, closeIndex := -1, -1

 for i, column := range records[0] {

 if column == "datetime" {

 dateIndex = i

 }

 if column == "close" {

 closeIndex = i

 }

 if dateIndex != -1 && closeIndex != -1 {

 break

 }

 }

 if dateIndex == -1 {

 log.Fatal("The 'datetime' column was not found in the CSV file.")

 }

 if closeIndex == -1 {

 log.Fatal("The 'close' column was not found in the CSV file.")

 }

 var dataPriceOnly []MarketDataPriceOnly

Chapter 4 Trend Follower for Blockchain Trading

163

 for _, record := range records[1:] {

 //date, err := time.Parse(time.RFC3339, record[dateIndex])

 date, err := time.Parse("2006-01-02 15:04:05", record[dateIndex])

 if err != nil {

 log.Fatal(err)

 }

 price, err := strconv.ParseFloat(record[closeIndex], 64)

 if err != nil {

 log.Fatal(err)

 }

 �dataPriceOnly = append(dataPriceOnly, MarketDataPriceOnly{Date:

date, Price: price})

 }

 return dataPriceOnly, nil

}

�Indicators

There are an unknowable number of indicators available in the trading world today.

Unfortunately, there is not a winning combo or recipe that you can use to generate all

necessary indicators. At the very least, the attempt might be a costly affair.

This being said, once you have a strategy in mind, you should have a number of

indicators to model the entry and exit signals. A good timesaver here is to modularize the

indicator portion of the code away from the strategy and signal generators so as to make

them interchangeable.

Before the strategy portion of the chapter, let’s delve into some of the indicators that

are going to be used and reasons behind them.

Levels

Trading on levels involves identifying key price points, known as support and resistance

levels, where the price of an asset is more likely to change direction. By understanding

the advantages and disadvantages or risks associated with trading on levels, you can

enhance your trading strategies and make more informed decisions.

Chapter 4 Trend Follower for Blockchain Trading

164

Figure 4-8.  Example of a resistance level

Figure 4-8 shows a resistance level. The stock repeatedly hits the resistance and

eventually loses momentum and reverses downward.

Figure 4-9.  Example of a support level

Figure 4-9 shows an example of a support level, where the financial instrument

consolidates, bouncing on the green support level to eventually reverse upward.

Advantages include:

•	 Simplicity: Trading on levels is a relatively simple method, which

makes it easy for investors to understand and implement. By focusing

on support and resistance levels, investors can identify areas where

the price of an asset is more likely to change direction.

Chapter 4 Trend Follower for Blockchain Trading

165

•	 Clear entry and exit points: Trading on levels provides traders with

clear entry and exit points. When the price of an asset reaches a key

level, traders can make decisions based on whether the price is likely

to break through the level or reverse course. This helps minimize

guesswork and enhance trading efficiency.

•	 Risk management: Trading on levels allows investors to effectively

manage their risk. By setting stop-loss orders around key levels,

investors can limit their potential losses if the market moves against

their position.

•	 Profit potential: Since trading on levels can help investors identify

potential trend reversals or breakouts, it offers opportunities for

substantial profit. This is especially true when an asset’s price breaks

through a key level, as it could signal the beginning of a new trend.

Disadvantages/risks include:

•	 False breakouts: One of the main risks associated with trading on

levels is the potential for false breakouts. Sometimes, the price of an

asset may appear to break through a key level, only to reverse course

shortly thereafter. This can result in losses for traders who entered

positions based on the apparent breakout.

•	 Dependence on technical analysis: Trading on levels relies

heavily on technical analysis, which involves examining past price

movements to predict future trends. While technical analysis can be

useful, it’s important to remember that it’s not a guarantee of future

performance. Additionally, it’s crucial to combine technical analysis

with other forms of research, such as fundamental analysis, to

develop a well-rounded trading strategy.

•	 Subjectivity: Identifying key levels can sometimes be subjective, as

different traders may interpret the same price chart differently. This

can lead to varying opinions on where the support and resistance

levels lie, and thus, different trading decisions.

Chapter 4 Trend Follower for Blockchain Trading

166

•	 Market noise: Trading on levels can be susceptible to market

noise, as short-term price fluctuations may cause an asset’s price to

temporarily breach a key level. This can lead to premature entry or

exit signals, which may result in losses for traders who act on these

signals.

Trading on levels is a valuable technique that can help investors identify potential

trend reversals and breakouts. By understanding the advantages and disadvantages

or risks associated with trading on levels, you can make more informed decisions

and enhance your trading strategies. Like any other trading approach, it’s essential to

continually learn, adapt, and refine your strategies to achieve consistent success in the

markets.

Simple Moving Averages

The simple moving average is perhaps the most commonly used indicator of them all.

Markets move all of the time. At times, markets may be volatile and cause the algorithms

to react too much. Take the blue line in Figure 4-10 as the original price. The use of the

orange line, the simple moving average, creates a much “smoother” line to work with.

Figure 4-10.  Simple moving average example

A few positive side-effects include the fact that you can also work out a “trend” or

tendency of the recent past, and when the price action largely exceeds the trend, this

could signal a strong move for the asset.

Chapter 4 Trend Follower for Blockchain Trading

167

Another nice side-effect of moving averages is that they can be applied to a lot of

different indicators. Price, of course, but this technique can be applied to volumes and

other momentum indicators as well.

It is worthy to note that averages also introduce lag. Naturally, the longer the period,

the longer the lag. For shorter periods, this is not so much of a concern, but longer

periods may introduce significant delays.

Exponential Moving Averages

Exponential moving averages (EMAs) are similar to simple moving averages. One of its

benefits is the fact that it has a recency bias and hence makes the overall result more

sensitive.

As most statisticians will attest, exponential moving averages are not applicable to all

indicators, however. Pay attention to the outcome of the numbers before embedding the

indicator deep into the strategy.

One small side note—exponential moving averages can be more expensive

computationally than the simple moving average. Care is needed in some cases where

analysis goes into the milliseconds or smaller.

Relative Strength Index

This is another industry favorite. Relative strength index (affectionately known as RSI) is

a phrase that will come across a lot of the trading desks and financial media platforms.

This is a popular momentum oscillator developed by J. Welles Wilder in 1978. It is a

technical indicator used to measure the speed and change of price movements, helping

traders identify overbought and oversold conditions in the market. RSI ranges from 0 to

100, and its calculation is based on the average gains and losses of an asset’s price over a

specified period, typically 14 days.

The RSI is primarily used to:

•	 Identify overbought and oversold conditions: An asset is

considered overbought when its RSI is above 70, indicating that it

may be overvalued and due for a price correction or a reversal in

trend. Conversely, an asset is considered oversold when its RSI is

below 30, suggesting that it may be undervalued and poised for a

price rebound.

Chapter 4 Trend Follower for Blockchain Trading

168

•	 Detect trend reversals: RSI can help traders spot potential trend

reversals by identifying bullish and bearish divergences. A bullish

divergence occurs when the price of an asset forms a lower low,

while the RSI forms a higher low, indicating a potential upward trend

reversal. On the other hand, a bearish divergence occurs when the

price forms a higher high, while the RSI forms a lower high, signaling

a potential downward trend reversal.

•	 Confirm trend strength: The RSI can also be used to gauge the

strength of a trend. Generally, an RSI reading above 50 indicates a

bullish trend, while a reading below 50 suggests a bearish trend.

It is essential to remember that the RSI should not be used as a standalone indicator.

Combining the RSI with other technical analysis tools, such as support and resistance

levels, moving averages, and chart patterns, can provide a more comprehensive

understanding of the market and improve the effectiveness of trading decisions.

The benefits of the indicator are hopefully self-explanatory. It is not without pitfalls,

however. If the entire world of finance reacted accordingly to this indicator, all traders

and investors should become instant millionaires via the use of the RSI. The problem is,

the levels where the accepted “overbought” and “oversold” as accepted by the markets,

“70” and “30” respectively, work most of the time, but when they do not, they can lead

an investor to troubled waters. A financial instrument can hit the RSI levels of “30,” but

happily continue going down past the “30” or “oversold” levels. As you would expect,

the reverse also applies, where the asset may continue climbing past the level of “70” or

“overbought” levels and aggressively continue climbing.

It cannot be stressed enough. Finance is a world of probabilities and should not be

taken as absolutes.

Additional Notes

There are a number of statistics libraries available for use. It is worthy to note that some

financially oriented libraries are available for all to use and can be a timesaver.

TA-Lib is one such library that is often used by numerous trading desks and quant

trading desks in the financial world.

Chapter 4 Trend Follower for Blockchain Trading

169

�Enhancing Discipline and Consistency

One of the greatest challenges traders face is maintaining discipline and consistency

in their trading. Backtesting can help to instill these qualities by providing a clear

framework for evaluating and refining a strategy. By consistently adhering to a well-

tested approach, traders can avoid the pitfalls of emotional decision-making and

impulsive behavior, which are often the root causes of trading losses.

�Why So Many Features?

Backtesting mechanisms must incorporate variable timeframes to account for the

dynamic nature of financial markets and the diverse range of trading strategies

employed by traders. There are several reasons that variable timeframes are essential in

the backtesting process:

•	 Adaptability to market conditions: Different market conditions

often require different trading strategies and timeframes. By

incorporating variable timeframes in the backtesting mechanism,

traders can test and optimize their strategies for various market

environments, ensuring that their approach remains relevant and

effective regardless of prevailing conditions.

•	 Evaluation of short-term and long-term strategies: Traders employ

a wide range of trading strategies, from short-term day trading to

long-term position trading. Variable timeframes in the backtesting

mechanism enable traders to evaluate and refine strategies across

different time horizons, ensuring that their chosen approach is well-

suited to their unique trading objectives and risk tolerance.

•	 Improved risk management: By testing strategies across different

timeframes, traders can gain a more comprehensive understanding

of the potential risks and rewards associated with their chosen

approach. This information can be invaluable in developing effective

risk management strategies and optimizing position sizing to achieve

a desired risk-reward profile.

Chapter 4 Trend Follower for Blockchain Trading

170

•	 Enhanced flexibility: Variable timeframes in backtesting

mechanisms allow traders to experiment with different time

horizons and adapt their strategies as market conditions change.

This flexibility is crucial in the ever-evolving world of trading, where

success often hinges on a trader’s ability to adapt and respond to

changing market dynamics.

�Sample Code

Exchange Connectivity (Listing 4-1)

Listing 4-1.  Exchange Connectivity and Obtain Data for the Indicators

package main

import (

 // note the use of the module below, list is trimmed

 "github.com/adshao/go-binance/v2"

)

func getClient() *binance.Client {

 �fileName := fmt.Sprintf("%s/.config/binance/binance.key",

os.Getenv("HOME"))

 file, _ := ioutil.ReadFile(fileName)

 lines := strings.Split(string(file), "\n")

 // first line is binance API key

 // second line is binance secret key

 binanceAPIKey := lines[0]

 binanceSecretKey := lines[1]

 return binance.NewClient(binanceAPIKey, binanceSecretKey)

}

func obtainDataFromBinanceExchange (client *binace.Client, ticker string,

interval string) ([]float64, error) {

 // an array to store obtained values

 var closingPrices []float64

Chapter 4 Trend Follower for Blockchain Trading

171

 // Fetch klines data for the specified symbol and interval

 �klines, err := client.NewKlinesService().Symbol(symbol).

Interval(interval).Do(context.Background())

 if err != nil {

 return closingPrices, err

 }

 // Extract the closing prices from the klines data

 for _, kline := range klines {

 closePrice, _ := strconv.ParseFloat(kline.Close, 64)

 closingPrices = append(closingPrices, closePrice)

 }

 return closingPrices, nil

}

Building Indicators (Listing 4-2)

Listing 4-2.  Building Indicators for Use in Building Entry and Exit Signals

func BuildIndicatorsFromMarketData (slb int, llb int, histData

[]MarketDataPriceOnly) ([]MarketData, error) {

 close := make([]float64, len(histData))

 for i := 0; i < len(histData); i++ {

 close[i] = histData[i].Price

 }

 rsi := talib.Rsi(close, 14)

 rsisma14 := talib.Sma(close, 14)

 rsisma14sma9 := talib.Sma(rsisma14, 9)

 emaShort := talib.Ema(close, slb)

 emaLong := talib.Ema(close, llb)

 sma5 := talib.Sma(close, 5)

 sma50 := talib.Sma(close, 50)

 sma200 := talib.Sma(close, 200)

 ema9 := talib.Ema(close, 9)

Chapter 4 Trend Follower for Blockchain Trading

172

 ema20 := talib.Ema(close, 20)

 ema30 := talib.Ema(close, 30)

 ema40 := talib.Ema(close, 40)

 ema50 := talib.Ema(close, 50)

 ema100 := talib.Ema(close, 100)

 var data []MarketData

 for i := 0; i < len(histData); i++ {

 data = append(

 data,

 MarketData{

 Date: histData[i].Date,

 Price: histData[i].Price,

 Rsi: rsi[i],

 RsiSma14Sma9: rsisma14sma9[i],

 Sma5: sma5[i],

 Sma50: sma50[i],

 Sma200: sma200[i],

 Ema9: ema9[i],

 Ema20: ema20[i],

 Ema30: ema30[i],

 Ema40: ema40[i],

 Ema50: ema50[i],

 Ema100: ema100[i],

 EmaShort: emaShort[i],

 EmaLong: emaLong[i]})

 }

 return data, nil

}

The Strategy

Let’s put the industry favorite into code. The Golden Cross is a widely recognized

technical indicator that signals a potential bullish trend reversal in the financial markets.

This classic trading strategy occurs when a short-term moving average, typically the

Chapter 4 Trend Follower for Blockchain Trading

173

50-day, crosses above a longer-term moving average, such as the 200-day. The Golden

Cross is revered for its simplicity and effectiveness in identifying trend reversals, making

it an ideal starting point for both novice and experienced traders.

While the strategy is praised for its ability to provide clear entry and exit signals, it

also has its drawbacks, such as generating false signals or being susceptible to lagging

effects. Nonetheless, the Golden Cross remains a popular and practical strategy for

traders to begin their foray into technical analysis and develop a solid foundation for

more advanced trading techniques. See Listing 4-3.

Listing 4-3.  Golden Cross Strategy

package main

type GoldenCrossStrategy interface {

 SetShortLookback(shortLookback int)

 SetLongLookback(longLookback int)

 ShouldEnterGoldenCrossMarket(data []MarketData, me_index int) bool

 ShouldExitGoldenCrossMarket(data []MarketData, me_index int) bool

}

type GoldenCrossMaStrategy struct {

 shortPeriod int

 longPeriod int

}

func (s *GoldenCrossMaStrategy) SetShortLookback(shortLookback int) {

 s.shortPeriod = shortLookback

}

func (s *GoldenCrossMaStrategy) SetLongLookback(longLookback int) {

 s.longPeriod = longLookback

}

func (s *GoldenCrossMaStrategy) ShouldEnterGoldenCrossMarket(data

[]MarketData, i int) bool {

 if i < 200 {

 return false

 }

Chapter 4 Trend Follower for Blockchain Trading

174

 // Check for Golden Cross

 �if data[i].Sma50 > data[i].Sma200 && data[i-1].Sma50 <= data[i-1].

Sma200 {

 return true

 }

 return false

}

func (s *GoldenCrossMaStrategy) ShouldExitGoldenCrossMarket(data

[]MarketData, i int) bool {

 if i < 200 {

 return false

 }

 // Check for Death Cross

 �if data[i].Sma50 < data[i].Sma200 && data[i-1].Sma50 >= data[i-1].

Sma200 {

 return true

 }

 return false

}

�Run the Bot

Once you put a strategy is together, the next step is to put it into an application that reads

data and replays the data in the strategy’s timeframe, one candle at a time. The keyword

being one candle at a time, a loop.

Most developers who have dealt with any data with size of consequence think of

loops as slow and resource intensive. There is a purpose in deliberately choosing the

slow design, however. Loops prevent the forward look bias, or the ability to “see the

future.” This is a trap most traders and investors fall into at some stage. An indicator

or a signal accidentally bakes in the future and therefore has an unrealistically high

probability of success. Looping through history one tick or candle at a time, by definition,

serves as an extra layer of security against “seeing the future.”

Chapter 4 Trend Follower for Blockchain Trading

175

�Performance Evaluation
Statistics are a trader’s friend. Simply put, it is a game of probabilities and there are no

absolutes. The use of mathematics has a place in trading, so certain situations can be

abstracted and understood easily. Moreover, comparing results makes the performance

evaluation of a strategy compared to another much easier.

As ever, it is important to follow the great minds in the industry and market

participants. Many will make research-based observations that are different, but there

are a select few statistical analysis tools that are used repeatedly.

�Stats

A trader or investor must be well-informed about the intricacies of investment strategies

and their evaluation. A keen understanding of these metrics is essential for making

informed decisions about the performance of the strategy.

By understanding and applying these statistical evaluation metrics, investors and

fund managers can assess the performance and risk associated with their financial

strategies and make informed decisions about their investments.

�PnL

Profit and loss (PnL) is a key performance metric used to evaluate the success of a

trading strategy. It represents the net gains or losses resulting from the trades executed

by a strategy over a specified period. By analyzing PnL during backtesting and real-

time testing, traders can gain valuable insights into the effectiveness of their strategy

and make data-driven decisions to optimize its performance. This chapter explores the

importance of PnL in both backtesting and real-time testing and discusses how it can

help traders refine their approach for greater success in the financial markets.

PnL in Backtesting

During the backtesting process, PnL is used to assess the historical performance of

a trading strategy. By calculating the net profit or loss that the strategy would have

generated based on historical market data, traders can determine whether the strategy

has been profitable in the past and gauge its potential for success in the future.

Chapter 4 Trend Follower for Blockchain Trading

176

Analyzing PnL during backtesting can also help traders identify areas for

improvement in their strategy. For example, a consistently negative PnL may indicate

that the strategy’s entry or exit signals need to be refined, or that the risk management

parameters, such as stop-loss orders or position sizing, need to be adjusted.

Furthermore, by comparing the PnL of different strategies or variations of the same

strategy, traders can make informed decisions about which approach is likely to yield the

best results in live trading.

PnL in Real-Time Testing

In real-time testing, or paper trading, PnL serves as a crucial indicator of a trading

strategy’s performance under current market conditions. By monitoring PnL during

real-time testing, traders can assess the effectiveness of their strategy and make any

necessary adjustments before deploying it with real capital.

Real-time PnL analysis can help traders identify potential issues with their strategy

that may not have been apparent during backtesting. For example, the strategy may

be struggling to adapt to changing market conditions or experiencing difficulties with

execution due to latency or slippage. By addressing these issues in real-time testing,

traders can ensure that their strategy is well-prepared for the challenges of live trading.

Moreover, tracking PnL during real-time testing can provide traders with valuable

insights into the risk-reward profile of their strategy. By comparing the strategy’s PnL

to other performance metrics, such as drawdowns or volatility, traders can develop a

comprehensive understanding of the potential risks and rewards associated with their

approach, allowing them to make informed decisions about risk management and

position sizing.

Hit Rate

Hit rate, also known as the win rate, is a key performance metric used to evaluate the

effectiveness of a trading strategy. It represents the percentage of trades that result in

a profit relative to the total number of trades executed. While a high hit rate may seem

desirable at first glance, it is essential to understand that an excessively high hit rate

can have a detrimental impact on PnL in certain circumstances. This section explores

the role of hit rate in trading strategy evaluation and discusses the potential negative

consequences of an overly high hit rate on PnL.

Chapter 4 Trend Follower for Blockchain Trading

177

Hit Rate in Trading Strategy Evaluation

Hit rate is a valuable metric for gauging the consistency of a trading strategy. A high

hit rate indicates that a strategy has been successful in identifying profitable trading

opportunities more often than not. Conversely, a low hit rate suggests that the strategy

may struggle to generate consistent profits, requiring further refinement or the

implementation of effective risk management measures.

However, it is important to note that hit rate alone does not provide a complete picture

of a trading strategy’s performance. It must be considered alongside other performance

metrics, such as the average profit per trade, risk-reward ratio, and maximum drawdown,

to develop a comprehensive understanding of a strategy’s effectiveness.

The Potential Drawbacks of an Excessively High Hit Rate

While a high hit rate might appear to be an indicator of a successful trading strategy, an

overly high hit rate can sometimes have a negative impact on PnL. This is because a high

hit rate may be masking underlying issues with the strategy, such as:

•	 Poor risk-reward ratio: A strategy with an excessively high hit rate

might be achieving this success by sacrificing the potential profit on

winning trades. For example, a strategy that consistently targets small

profits while risking large losses can result in a high hit rate, but a

poor overall PnL. In this case, the strategy may need to be adjusted to

improve the risk-reward ratio, even if it results in a lower hit rate.

•	 Overfitting: A high hit rate could be a sign of overfitting, where a strategy

has been tailored too closely to historical market data, making it less

effective in adapting to changing market conditions. An overfitted

strategy may perform well during backtesting but fail to generate

consistent profits during live trading, ultimately leading to a poor PnL.

•	 Frequent trading and high transaction costs: A strategy with

an excessively high hit rate might be generating a large number

of trades, resulting in high transaction costs. These costs, which

include fees and slippage, can eat into the PnL, reducing the overall

profitability of the strategy. In this case, it may be necessary to refine

the strategy to reduce the number of trades executed or find ways to

minimize transaction costs.

Chapter 4 Trend Follower for Blockchain Trading

178

�Sharpe Ratio

The Sharpe ratio is a widely-used performance metric in finance that measures the

risk-adjusted return of an investment or trading strategy. It is calculated by dividing the

difference between the strategy’s average return and the risk-free rate by the standard

deviation of the returns, which represents the strategy’s volatility. A Sharpe ratio of at

least 1 is often considered preferable, as it signifies that the strategy generates an excess

return that is equal to or greater than its level of risk. This section briefly explains why a

Sharpe ratio of at least 1 is desirable in trading strategy evaluation.

Risk-Adjusted Performance

A Sharpe ratio of at least 1 indicates that a trading strategy is generating returns that

adequately compensate for the level of risk taken. This is important because it suggests

that the strategy is not only generating profits, but doing so in a way that accounts for

the inherent risks associated with trading. A Sharpe ratio of less than 1 implies that the

strategy’s returns are not commensurate with the level of risk, which may signal the need

for adjustments to the strategy or risk management measures.

Benchmarking and Comparison

The Sharpe ratio provides a standardized measure that allows for easy comparison

between different trading strategies or investment opportunities. A Sharpe ratio of at

least 1 serves as a useful benchmark, as it indicates that a strategy is generating positive

risk-adjusted returns. By comparing the Sharpe ratios of various strategies, traders

can identify which approach offers the most attractive risk-reward profile and make

informed decisions about where to allocate their capital.

Portfolio Diversification

A trading strategy with a Sharpe ratio of at least 1 is more likely to contribute positively

to a diversified portfolio. When combined with other uncorrelated strategies or

assets, a strategy with a higher Sharpe ratio can help improve the overall risk-adjusted

performance of a portfolio, enhancing returns while reducing overall volatility.

Chapter 4 Trend Follower for Blockchain Trading

179

Potential Pitfalls

A Sharpe ratio of at least 1 is preferable in trading strategy evaluation because it signifies

that the strategy generates returns that are commensurate with its level of risk. This risk-

adjusted performance metric allows traders to easily compare different strategies and

make informed decisions about where to allocate capital. As you continue to develop

your GoLang-based Golden Cross trading tool, striving for a Sharpe ratio of at least 1

will be essential in ensuring that your strategy offers an attractive risk-reward profile and

contributes positively to a diversified trading portfolio. See Listing 4-4.

So far so good, but the ratio of 1 and above still does not guarantee success. In

fact, there are numerous cases where an insanely high ratio can be deceiving and hide

potential risks. Be sure to use Sharpe ratios in combination with other stats.

Listing 4-4.  Sharpe Ratio Calculation

package main

import (

 "math"

)

func SharpeRatio(returns []float64, riskFreeRate float64) float64 {

 n := len(returns)

 if n == 0 {

 return 0

 }

 // Calculate the average return

 var avgReturn float64

 for _, r := range returns {

 avgReturn += r

 }

 avgReturn /= float64(n)

 // Calculate the standard deviation of returns

 var stdDev float64

 for _, r := range returns {

 diff := r - avgReturn

Chapter 4 Trend Follower for Blockchain Trading

180

 stdDev += diff * diff

 }

 stdDev = math.Sqrt(stdDev / float64(n))

 // Calculate the Sharpe Ratio

 excessReturn := avgReturn - riskFreeRate

 sharpeRatio := excessReturn / stdDev

 return sharpeRatio

}

�MAR Ratio

The MAR (Managed Account Reports) ratio, also known as the Calmar ratio, is a

performance metric used to evaluate the risk-adjusted return of investment strategies,

particularly in the context of managed futures accounts and hedge funds. It is calculated

by dividing the annualized rate of return by the maximum drawdown experienced by the

strategy over a specified period. The MAR ratio provides a useful means of comparing

different trading strategies, as it takes into account both return and risk in a single

metric. This section briefly explains the MAR ratio and its benefits of comparing multiple

strategies against one another.

Emphasis on Drawdown Risk

One of the key advantages of the MAR ratio is its focus on drawdown risk, which is

the largest peak-to-trough decline in the value of a trading strategy or investment

portfolio. Drawdowns can be particularly damaging to a trader’s account, as they require

significant gains to recover from the losses. By incorporating the maximum drawdown

into its calculation, the MAR ratio highlights the importance of managing drawdown risk

and encourages traders to prioritize strategies that minimize this risk while generating

attractive returns.

Risk-Adjusted Performance

Like the Sharpe ratio, the MAR ratio measures the risk-adjusted performance of a

trading strategy. However, instead of using standard deviation as a measure of risk,

the MAR ratio uses maximum drawdown. This provides a different perspective on risk

management and allows traders to compare strategies based on their ability to generate

returns while minimizing drawdowns.

Chapter 4 Trend Follower for Blockchain Trading

181

Comparison of Strategies

The MAR ratio is a valuable tool for comparing different trading strategies or investment

opportunities, as it provides a single metric that accounts for both return and drawdown

risk. By comparing the MAR ratios of various strategies, traders can identify which

approach offers the most attractive risk-reward profile and make informed decisions

about where to allocate their capital.

Suitability for Trend-Following Strategies

The MAR ratio is particularly useful for evaluating trend-following strategies, which

often experience significant drawdowns during periods of market consolidation or trend

reversal. By taking into account the maximum drawdown, the MAR ratio enables traders

to assess the effectiveness of trend-following strategies in managing risk and generating

consistent returns.

Potential Pitfalls

The MAR ratio is a powerful performance metric that offers several benefits for

comparing trading strategies. By emphasizing drawdown risk and providing a measure

of risk-adjusted performance, the MAR ratio allows traders to make informed decisions

about where to allocate capital and which strategies offer the most attractive risk-reward

profiles.

Considering the MAR ratio as part of your performance evaluation process is

essential for ensuring that your strategy effectively manages risk while generating

consistent returns. See Listing 4-5.

Even with the combination of all of the statistical analysis and tools, risks are still

there. Don’t forget that markets are a kind of living organism, so constant periodic

retesting of strategies helps ensure that you are attuned to the changes in the behavior of

the markets.

Listing 4-5.  Example of MAR Ratio Calculation

package main

import (

 "math"

)

Chapter 4 Trend Follower for Blockchain Trading

182

func MARRatio(returns []float64) float64 {

 n := len(returns)

 if n == 0 {

 return 0

 }

 // Calculate the cumulative return

 cumulativeReturn := 1.0

 for _, r := range returns {

 cumulativeReturn *= (1 + r)

 }

 // Calculate the maximum drawdown

 maxDrawdown := 0.0

 peak := returns[0]

 trough := returns[0]

 for _, r := range returns[1:] {

 if r > peak {

 peak = r

 trough = r

 } else if r < trough {

 trough = r

 }

 drawdown := (peak - trough) / peak

 if drawdown > maxDrawdown {

 maxDrawdown = drawdown

 }

 }

 // Calculate the MAR Ratio

 marRatio := cumulativeReturn / maxDrawdown

 if marRatio < 0 {

 return 0.0

 }

 return marRatio

}

Chapter 4 Trend Follower for Blockchain Trading

183

�Success or Failure and Why

Possibly the most critical point of the process is to be able to objectively evaluate a

strategy and decide when it is good to take it to the next step.

Benchmark Comparison

Comparisons against a benchmark may potentially be the most important aspect of

trading. Everything moves, very quickly at times. Traders often like to know what to

compare against.

This is where you go back to objectives that were introduced in the process section

of the chapter earlier. Having an objective for the strategy, or strategies in some cases,

provides the trader or investor with the analogous North Star or some sort of benchmark

to constantly compare to.

For instance, when trading equities, you might choose the Golden Cross strategy

(not particularly performant as a strategy, just that there are many traders’ eyes on it)

to compare against the new strategy being worked on. For instance, comparing the

statistics of the two strategies (PnL, Sharpe ratio, and MAR ratio) against one another.

Others may simply use a threshold of the statistics, for example some trading desks

do not even look at strategies with a Sharpe ratio of 1.0.

Timeframe

There is a reason that timing and timeframes matter most in any financial transaction. It

is also the aspect in the performance evaluation of a strategy where a trader or investor

might spend the most amount of time.

More often than not, you might find numerous timeframes that perform for any

strategy. There are a multitude of reasons behind this phenomenon. From wars, to

global pandemics, to financial turmoil. One thing that a number of economists have

observed, and pertinent to this chapter, is that the growing participants of automated

trading algorithms have accelerated the financial cycles, which seem to have increased

the amplitude of volatility across the globe.

This phenomenon is also more noticeable in some asset classes. FX and

cryptocurrencies seem to be affected much more than traditional finance favorites, like

the bond markets.

Chapter 4 Trend Follower for Blockchain Trading

184

In short, the same strategy can work and cease to work for the same asset in different

market conditions; the same strategy across a number of assets may work better or

worse, depending on the particularities in an asset class.

Risk Management and Continuous Improvement

Appetite for risk and how to manage trading situations vary from one person to another

completely. Some of it may overlap with the trading strategy, but clear modeling of risk

will help in maximizing confidence in the strategy.

It helps to know how the strategy does over time in terms of its average returns on

trades, max and min, average loss, maximum loss, and minimum loss, and respective

capital levels. This enables the trader or investor to model and derive profit and stop loss

levels for every strategy.

Potential Pitfalls

Backtesting is an indispensable tool for traders looking to achieve success in the world of

trading. By providing a means to refine trading strategies, manage risk, build confidence,

and enhance discipline and consistency, backtesting serves as the foundation upon

which successful trading careers are built.

However, it is essential to be aware of the limitations of backtesting, such as

overfitting, data limitations, and curve-fitting, to ensure that results are interpreted

with caution. By understanding both the pros and cons of backtesting, traders can

make informed decisions about their strategies and set realistic expectations for their

performance in live markets.

Example of Backtesting Multiple Strategies

These statistical tools should have you pretty well set up to at least compare and contrast

various strategies and you should at least know whether the strategy passes the test of

time. Always remember to test market turmoil or crashes in the past. See Listings 4-6

and 4-7.

Chapter 4 Trend Follower for Blockchain Trading

185

Listing 4-6.  Example of a Backtesting Run

package main

import (

 "fmt"

)

func main() {

 // create all indicator data from price action data

 // this is done loading a CSV file with Open High Low Close

 // two variable length moving averages are set as arguments

 indicatorData, err := buildIndicators(5, 9)

 if err != nil {

 fmt.Println("Error fetching data:", err)

 return

 }

 // below two strategies are run sequentially

 EmaStrategy := &MovingAverageCrossoverStrategy{}

 EmaStrategy.SetShortLookback(5)

 EmaStrategy.SetLongLookback(9)

 GCStrategy := &GoldenCrossMaStrategy{}

 GCStrategy.SetShortLookback(50)

 GCStrategy.SetShortLookback(200)

 // �Assuming returns is a slice of float64 representing the

strategy's returns

 var profits []float64

 // �Assuming returns is a slice of float64 representing the

strategy's trades

 var trades []Trade

 // Fill the returns slice with your strategy's returns

 profits, trades = Backtest(EmaStrategy, indicatorData)

Chapter 4 Trend Follower for Blockchain Trading

186

 // output statistics to STDOUT

 err = generate_report("Ema100Strategy", profits)

 if err != nil {

 panic (err)

 }

 // storing all executed trades into a CSV file

 // this is particularly useful when comparing against a chart

 filename := "ema_trades.csv"

 err = saveTradesToCSV(trades, filename)

 if err != nil {

 fmt.Println("Error saving trades to CSV:", err)

 } else {

 fmt.Printf("Trades saved to %s\n", filename)

 }

 // �Assuming returns is a slice of float64 representing the

strategy's returns

 var gc_profits []float64

 // Fill the returns slice with your strategy's returns

 profits = BacktestGoldenCross(GCStrategy, indicatorData)

 // output statistics to STDOUT

 err = generate_report("GoldenCross", gc_profits)

 if err != nil {

 panic(err)

 }

 // storing all executed trades into a CSV file

 // this is particularly useful when comparing against a chart

 filename = "golden_cross_trades.csv"

 err = saveTradesToCSV(trades, filename)

 if err != nil {

 fmt.Println("Error saving trades to CSV:", err)

 } else {

 fmt.Printf("Trades saved to %s\n", filename)

 }

Chapter 4 Trend Follower for Blockchain Trading

187

 // export forensic analysis

 filename = "indicators.csv"

 err = saveIndicatorsToCsv(indicatorData, filename)

 if err != nil {

 fmt.Println("Error saving indicators to CSV:", err)

 } else {

 fmt.Println("Indicators saved to %s", filename)

 }

}

Listing 4-7.  The Output of Running the Code from Listing 4-6

$./runStrategy

Strategy: Ema100

PnL: 14419.56

Sharpe Ratio: 1.29

MAR Ratio: 0.00

Trades saved to ema_trades.csv

Strategy: GoldenCross

PnL: 0.00

Sharpe Ratio: 0.00

MAR Ratio: 0.00

Trades saved to golden_cross_trades.csv

�A Taste Before Serving the Meal
Real-time trading simulation, often referred to as paper trading or virtual trading, is a

crucial component in the development and implementation of an automated trading

strategy. By simulating trades using real-time market data, and without risking actual

capital, traders can gain invaluable insights into the performance of their strategy under

current market conditions. This section explores the importance of real-time trading

simulation in building confidence, and managing risk. This can mean that traders can

sleep comfortably at night, knowing that their automated trading system is well-

equipped to navigate the unpredictable world of financial markets.

Chapter 4 Trend Follower for Blockchain Trading

188

�Ensuring System Stability

The stability of an automated trading system is of paramount importance, particularly

when it comes to executing trades without constant supervision. Real-time trading

simulation allows traders to stress-test their systems under actual market conditions,

identifying any potential technical issues or bottlenecks that could compromise the

performance. By addressing these issues in a simulated environment, traders can ensure

that their system remains stable and reliable when it comes time to deploy it in live

trading.

�Hidden Difficulties

After a particular strategy or a number of strategies go through the grueling test phase

and subsequent improvement cycle(s), there might still be unexpected behaviors that

are difficult to see. This is the primary reason that it is important to re-run backtesting

over the time period that real-time testing was performed. There are numerous reasons

for this, but the two mains are slippage and forward look bias.

Slippage can be caused by numerous factors, but it often refers to the difference

between the price at the point of order and the price at the time of its fill. More often

than not, a trader or investor will see an initial loss. Slippage is hard to quantify and

model; it is therefore an important aspect of testing to continuously go back and monitor

the difference between backtesting and real-time testing in order to quantify or set

expectations.

If a strategy performs similarly in backtesting and remains fairly consistent in

real-time trading, the testing framework and the strategy may be sound. If, however,

backtesting and real-time testing consistently seem to perform differently where

backtesting trades are being profitable and real-time trades are not, it is time to revisit

the strategy and make sure no forward look bias is introduced.

Forensic Analysis

When strategies work over numerous indicators and concurrent calculations, it may be

difficult to track simply looking at trades and charts.

You might need to consider running the calculations under a more granular

timeframe in order to be able to catch the nature of slippage or forward look bias. Having

a charting tool with real-time data may offer insight as to where the issue is hiding.

Chapter 4 Trend Follower for Blockchain Trading

189

Note that a trader may be lucky and find that the slippage ends up helping a trader.

You should not count on this, however, as the markets have a tendency to go the

other way.

Table 4-1 shows a snippet of the CSV file called ema_trades.csv. In this case, hourly

data is used as an interval. Note that the time recorded goes down to second granularity.

In this case, only the trade execution times are recorded. As most exchanges offer the

order details report, it is important to track down the exact time of the fill (note a trade

may be partially filled over multiple fills that sum up to the order amount). The finer the

granularity in time, the easier it is to track slippage and other unexpected results.

Table 4-2 shows a snippet of the CSV file containing all indicators. The importance

here is that a trader might need a continuous timeseries with all of the indicators present

alongside each other to actively track progress the real-time charts mentioned earlier.

Table 4-2.  A Snippet of the Timeseries Data Containing Indicators

Datetime Price Rsi Sma5 Sma50 Sma200

2023-03-03T11:45:00Z 1565.51 23 1563.81 1628.63 1642.72

2023-03-03T12:00:00Z 1562.76 22.3 1565.64 1627.38 1642.5

2023-03-03T12:15:00Z 1568.09 26.94 1566.34 1626.2 1642.29

2023-03-03T12:30:00Z 1567.01 26.6 1565.72 1624.96 1642.07

2023-03-03T12:45:00Z 1566.25 26.34 1565.92 1623.73 1641.83

2023-03-03T13:00:00Z 1567.2 27.28 1566.26 1622.54 1641.58

Table 4-1.  List of Trades Executed by the Backtests from Listing 4-6

Datetime Indicator Price Quantity Position Length

2023-03-01T18:45:00Z buy 1653.17 1 0

2023-03-02T01:00:00Z sell 1647.36 1 26

2023-03-02T03:00:00Z buy 1656.39 1 0

2023-03-02T10:15:00Z sell 1654.07 1 30

2023-03-03T05:30:00Z buy 1648.72 1 0

2023-03-03T10:15:00Z sell 1600.66 1 20

Chapter 4 Trend Follower for Blockchain Trading

190

Potential Pitfalls

Real-time trading simulation is an indispensable tool for ensuring the success of

an automated trading strategy. By building confidence, identifying potential issues,

managing risk, and ensuring system stability, real-time trading simulation provides

traders with the peace of mind they need to sleep comfortably at night.

The importance of a fine-tuned, real-time trading simulation cannot be overstated. It

serves as a critical step in validating your strategy and ensuring that you are well-

prepared to navigate the complex and ever-changing landscape of financial markets with

confidence and ease.

As ever, having a wonderfully positive PnL experience in paper trading means almost

zero in the trading world. See Listing 4-8.

Listing 4-8.  Real-Time or Paper Trading Test Sample Code

func StartBot(ctx context.Context, symbol string, interval string,

rsiBuyThreshold float64, rsiSellThreshold float64, fastPeriod int,

slowPeriod int, capital float64) {

 client := getClient()

 select {

 case <-ctx.Done():

 fmt.Println("has just been canceled")

 default:

 time.Sleep(100 * time.Millisecond)

 runStrategy(client, symbol, interval, capital)

 }

}

func runStrategy(client *binance.Client, symbol string, interval string,

capital float64) bool {

 // Fetch klines data for the specified symbol and interval

 �klines, err := client.NewKlinesService().Symbol(symbol).

Interval(interval).Do(context.Background())

 if err != nil {

 log.Fatal(err)

 }

Chapter 4 Trend Follower for Blockchain Trading

191

 // Extract the closing prices from the klines data

 var closingPrices []float64

 for _, kline := range klines {

 closePrice, _ := strconv.ParseFloat(kline.Close, 64)

 closingPrices = append(closingPrices, closePrice)

 }

 // create all indicator data from price action data

 indicatorData, err := buildIndicators(5, 9, closingPrices)

 if err != nil {

 fmt.Println("Error fetching data:", err)

 return

 }

 positionOpen := false

 entryPrice := 0.0

 counter := 0

 profit := 0.0

 if !positionOpen && strategy.ShouldEnterMarket(indicatorData) {

 _, err := checkFunds(client, capital)

 if err {

 return true

 }

 // booking an order commenting out while tesing!

 //buy(symbol, capital, client)

 positionOpen = true

 fmt.Println("Entry price: ", price)

 } else if positionOpen && strategy.ShouldExitMarket(indicatorData) {

 // selling position

 positionOpen = false

 // commenting out while testing!

 //sell(symbol, capital, client)

 fmt.Println("Exit price: ", price)

 }

Chapter 4 Trend Follower for Blockchain Trading

192

 return false

}

func buy(symbol string, capital float64, client *binance.Client) {

 // Place a market buy order for the specified symbol and capital

 log.Printf("Buying %s with %f USDT\n", symbol, capital)

 if debug {

 } else {

 �order, err := client.NewCreateOrderService().Symbol(symbol).

Side(binance.SideTypeBuy).Type(binance.OrderTypeMarket).

QuoteOrderQty(strconv.FormatFloat(capital, 'f', 2, 64)).Do(context.

Background())

 if err != nil {

 log.Fatal(err)

 }

 �log.Printf("Market buy order %s executed at price %s\n", order.

OrderID, order.Price)

 }

 inPosition = true

}

func checkFunds(client *binance.Client, capital float64) (error, bool) {

 // Check if there are available funds to buy

 balance, err := client.NewGetAccountService().Do(context.Background())

 if err != nil {

 log.Fatal(err)

 }

 var availableBalance float64

 for _, b := range balance.Balances {

 if b.Asset == "USDT" {

 availableBalance, _ = strconv.ParseFloat(b.Free, 64)

 break

 }

 }

Chapter 4 Trend Follower for Blockchain Trading

193

 �log.Printf("Current balance (%f) to buy with capital %f",

availableBalance, capital)

 if availableBalance < capital {

 �log.Printf("Not enough available balance (%f) to buy with capital

%f", availableBalance, capital)

 return nil, true

 }

 return err, false

}

func sell(symbol string, capital float64, client *binance.Client) {

 // Place a market sell order for the specified symbol and quantity

 log.Printf("Selling %s with %f USDT\n", symbol, capital)

 if debug {

 } else {

 �order, err := client.NewCreateOrderService().Symbol(symbol).

Side(binance.SideTypeSell).Type(binance.OrderTypeMarket).

QuoteOrderQty(strconv.FormatFloat(capital, 'f', 2, 64)).Do(context.

Background())

 if err != nil {

 log.Fatal(err)

 }

 �log.Printf("Market sell order %s executed at price %s\n", order.

OrderID, order.Price)

 }

 inPosition = false

}

�Dinner Is Served
First things first—did the best performing strategy out of all the ones that were

backtested and forward tested beat the market?

Chapter 4 Trend Follower for Blockchain Trading

194

This seems to be one of the most important questions on traders’ minds when it

comes to trading. The reason is, if your money (trading in and out of the markets and

leveraging the best-performing strategy at hand) is not beating a trade on the S&P500, it

is a failure.

Depending on the financial instrument you are trading, that benchmark can be

S&P500, the ten-year treasury, or BTCUSD. This requires a little bit of thinking in making

sure you are comparing apples to apples.

Also worthy of note—if you’re trading high frequency (say, anything under four-

minute intervals), you could be subjected to the phenomenon of “up days” and “down

days.” For instance, the Federal Reserve Bank’s FOMC meetings can move markets

drastically depending on the forward guidance given by the chairman. You need to make

sure a long enough set of historical data is used at all times and ensure such market

movements do not overly bias the analysis one way or another.

�Skin in the Game

When it comes to trading, the grizzled vets have many unwritten rules. They are not

scientific law, but money and human emotions make humans act in a weird way. When

they say, “put some skin in the game”, it applies in many ways, but truth be told, there is a

difference between monopoly money and real money.

You might tend to find that a strategy that has worked almost perfectly in backtesting,

that went through the process to refine and finetune, and that finally proves its worth in

real-time testing, still fails to work in real trades with money.

As no amount of testing will ever make you feel the pain of missing a trade, or worse

yet, missing an exit, it is recommended that you put on a small amount of money (an

amount that is painful enough when it is gone) into the hands of the algorithm for

a while.

�Fear vs. Greed

For some traders, PnL is not everything. Sure, winning is an important aspect of trading.

But health is probably more meaningful to most. For some traders, their quality of life

can degrade considerably when real money is being put to risk.

Chapter 4 Trend Follower for Blockchain Trading

195

It is therefore not uncommon to find successful traders that opt for consistency

rather than maximum returns. Since markets never go up in a straight line nor go down

in a straight line, coupled with the fact everything is cyclical, there is a good chance

that favorable conditions will be back at some point. Having a highly consistent and

profitable strategy is also a very good approach.

�Which Products to Trade

There are numerous ways in which trades can be expressed. For instance, let’s say you

decides to trade cryptocurrencies. There are thousands that exist in the market. It will

also likely be the case where the particular strategy developed will work on most. How

can you decide what coin to choose?

Just as you quantify and test your trading strategy, you need to do the same for the

assets themselves. Take, for instance, the traditional finance assets. A risk curve can be

drawn based on risk versus returns (see Figure 4-11). The further out on the risk curve,

the higher return probabilities, but also the higher probability to be wiped out.

Figure 4-11.  Risk curve on traditional finance instruments

The same curve can be constructed for cryptocurrencies; see Figure 4-12.

Chapter 4 Trend Follower for Blockchain Trading

196

Figure 4-12.  Crypto-assets risk curve example

It is therefore possible to adapt your strategy and build in implicit risk by choosing

the coins out in the further part of the curve and maximize returns. If you can withstand

the gut checks.

Aside from the coins to trade based on the level of risks, derivative markets are

also available for some of the coins. Derivatives are probably for better suited for more

advanced traders. However, trade futures markets can take on long and short positions

to maximize winnings in both up and down turns of the cycles with added leverage. In

options markets, you can take on bigger risks and take on leverage only risking a premium.

�Machine Learning

As mentioned earlier, the sheer number of assets in the world today makes it difficult or

costly to cover all assets concurrently. Trading a select few instruments is tiring enough,

as you have seen in the previous sections. Attempting to extend the practice beyond the

select few instruments requires automation with smarts.

This chapter has delt mainly in the view of making life easier and better for those

who love to code (in GoLang preferably). The “smarts” is where it normally takes some

fuzzy logic and experience around the markets. That said, the world has seen massive

progress with machine learning. It is safe to say that it has become a thing in the world of

trading. While varied results and comments are coming from those who love to code in

the financial industry, it is prevalent and growing. It is safe to assume there are probably

billions invested today to bring ML algorithms to the trading world and teach it as much

information as possible. If hardware resources allow, just imagine having three million

Warren Buffets working for you 24 hours, 7 days a week.

Chapter 4 Trend Follower for Blockchain Trading

197

Although this chapter does not include the knowledge and experience from any

members of Berkshire Hathaway, let’s see what can be observed in the world where

machine learning meets GoLang. A brief search on the frameworks yields results that are

not very promising. A very large community seems to exist around most of the well-

known Python frameworks. For GoLang, however, the top search results from Google do

not demonstrate the fact that there is a vibrant community behind them.

Further digging seems to point toward the direction of Python for any machine

learning frameworks. Machine learning algorithms do not gain much in terms of faster

compilation or gains of performance on CPU. As 99.9 percent of the runtime is spent

on GPUs, most ML developers do not mind doing their work in Python, it seems. In

short, the GoLang communities for ML frameworks remain very small and are not

maintained often.

Running a quick search on Google or YouTube will return a plethora of links and

videos, with trading PnL that will get you dreaming of Lambo’s. Before putting real

money at work, think about placing the million-dollar strategies in the framework you’ve

learned in this chapter. With creative use of ChatGPT, you should be able to test the

strategies easily. There must be a good reason that the ML superpowers have not yet

turned into mega-hedge funds.

It might be a matter of time however…

�Dessert!
�The Exponential Age Is Here

Raoul Pal, the CEO from Real Vision and a staunch advocate of digital currencies, rightly

highlights the exponential age. In essence, it refers to a period of immense technological

evolution that we’re currently living in, where innovation isn’t linear but exponential,

leading to rapid changes in various sectors, particularly in finance and technology.

Cryptocurrencies are evolving, and they no longer simply store value. They are

programmable platforms that allow developers to build decentralized applications

(dApps) on top of their networks.

As per Metcalfe’s Law, the value of a network is proportional to the square of

the number of connected users of the system. Cryptocurrencies have recently seen

significant adoption, not just among individual users, but also among institutional

investors and businesses. This widespread adoption is a testament to their potential and

is likely to drive their growth in the coming years.

Chapter 4 Trend Follower for Blockchain Trading

198

Cryptocurrencies are becoming an integral part of the global financial system, a

trend often referred to as financialization. They are enabling new financial structures

and systems that are more accessible, transparent, and efficient. Just like how the

Eurodollar system reshaped global finance in the last century, these cryptos, and the

larger blockchain technology, have the potential to redefine finance in this century.

Trading leveraging successful processes and strategies will be profitable if done

properly. The true benefit of the application of these practices on the crypto-verse is the

fact that the ecosystem is growing exponentially. Trading algorithmically in a growing

ecosystem should by definition be a great opportunity. As with all financial systems, they

are not without their risks and challenges, which need to be thoroughly understood and

navigated. We can only hope the ecosystem grows into a regulated and safe environment

for all.

�The Proverbial “Cherry on Top”

In terms of GoLang, no more spaces and tabs. Enough said? It is nice to be reacquainted

with curly brackets! Other than the aesthetics of the code, it is nice to have a compiler

and fewer runtime errors that take hours to debug. But above all, it is fast. Mind blowing

compared to Python.

Truth be told, the community is smaller than Python and there remains a few

problems in the quality of libraries. Especially for those financially oriented, Python,

Java, or C++ is still the weapon of choice it seems. Possibly stemming from the fact that

the other languages are still dominant in the trading field, documentation is sparse and

features are missing from key exchanges.

That said, being fast in compilation and execution really is a killer combination.

Simply put, a lot more can be done than before. As time-to-market is potentially the

most critical aspect in developing strategies, this fast tracking of the processes will

at some point yield dollars in return. While rushing through the steps is not the best

practice when it comes to building trading strategies, it certainly helps turn epiphanies

into working models without losing context.

The real and only difficulty today in building strategies using Go, perhaps the only

missing feature as compared with Python, is the ability to build interactive charts on

the go like Python does using Jupyter notebooks and the various charting libraries.

Go plugins certainly exist to leverage Jupyter functionalities, but the charting tools are

unfortunately not available.

Chapter 4 Trend Follower for Blockchain Trading

199

Do note that there are some easy-to-use tools with plugins for GoLang to run on a

Jupyter notebook. Figure 4-13 shows one example, called gophernotes.

Figure 4-13.  Installing the kernel as described at https://github.com/
gopherdata/gophernotes

Listing 4-9 shows the sample charting code and Figure 4-14 shows a resultant chart.

Listing 4-9.  Sample Charting Code

package main

import (

 "encoding/csv"

 "image/color"

 "io"

 "log"

 "os"

 "strconv"

 "time"

Chapter 4 Trend Follower for Blockchain Trading

https://github.com/gopherdata/gophernotes
https://github.com/gopherdata/gophernotes

200

 "gonum.org/v1/plot"

 "gonum.org/v1/plot/plotter"

 "gonum.org/v1/plot/vg"

)

type OHLC struct {

 Time time.Time

 Open float64

 High float64

 Low float64

 Close float64

}

func readData(filename string) ([]OHLC, error) {

 file, err := os.Open(filename)

 if err != nil {

 return nil, err

 }

 defer file.Close()

 reader := csv.NewReader(file)

 // assuming first row is header

 reader.Read()

 data := []OHLC{}

 for {

 row, err := reader.Read()

 if err == io.EOF {

 break

 }

 if err != nil {

 return nil, err

 }

 t, _ := time.Parse("2006-01-02 15:04:05", row[1])

 o, _ := strconv.ParseFloat(row[3], 64)

 h, _ := strconv.ParseFloat(row[4], 64)

Chapter 4 Trend Follower for Blockchain Trading

201

 l, _ := strconv.ParseFloat(row[5], 64)

 c, _ := strconv.ParseFloat(row[6], 64)

 data = append(data, OHLC{t, o, h, l, c})

 }

 // only the latest 100 data points

 return data[len(data)-100:], nil

}

func plotData(data []OHLC) {

 p := plot.New()

 p.Title.Text = "ETHUSD Hourly OHLC"

 p.X.Label.Text = "Index"

 p.Y.Label.Text = "Price"

 // Define the points for each line

 openPoints := make(plotter.XYs, len(data))

 highPoints := make(plotter.XYs, len(data))

 lowPoints := make(plotter.XYs, len(data))

 closePoints := make(plotter.XYs, len(data))

 for i := range data {

 openPoints[i].X = float64(i)

 openPoints[i].Y = data[i].Open

 highPoints[i].X = float64(i)

 highPoints[i].Y = data[i].High

 lowPoints[i].X = float64(i)

 lowPoints[i].Y = data[i].Low

 closePoints[i].X = float64(i)

 closePoints[i].Y = data[i].Close

 }

 // Add the lines to the plot

 lines := []struct {

 xy plotter.XYs

 name string

 color color.Color

Chapter 4 Trend Follower for Blockchain Trading

202

 }{

 {openPoints, "Open", color.RGBA{R: 0, G: 0, B: 255, A: 255}},

 // blue

 {highPoints, "High", color.RGBA{R: 0, G: 255, B: 0, A: 255}},

 // green

 {lowPoints, "Low", color.RGBA{R: 255, G: 0, B: 0, A: 255}},

 // red

 �{closePoints, "Close", color.RGBA{R: 255, G: 165, B: 0,

A: 255}}, // orange

 }

 for _, line := range lines {

 l, err := plotter.NewLine(line.xy)

 if err != nil {

 log.Fatal(err)

 }

 l.LineStyle.Width = vg.Points(1)

 l.LineStyle.Color = line.color

 p.Add(l)

 p.Legend.Add(line.name, l)

 }

 if err := p.Save(10*vg.Inch, 4*vg.Inch, "ohlc.png"); err != nil {

 log.Fatal(err)

 }

 displayPlot(p)

}

func main() {

 data, err := readData("/tmp/ETHUSD_hourlies.csv")

 if err != nil {

 log.Fatal(err)

 }

 plotData(data)

}

main()

Chapter 4 Trend Follower for Blockchain Trading

203

Figure 4-14.  Easily chart using plotutil

Realistically, the only complaint would be the lack of a large community contributing

tools and millions of charting examples. In the world of finance, it is probably safe to

say some form of model or strategy you want to employ has already been implemented.

If somebody has already paved the way, it is often a big shortcut and there are literally

thousands of hours’ worth of explanations on YouTube and other media platforms.

This should not scare anybody, however. The missing libraries can probably be

overcome by writing libraries to run against APIs (thank you ChatGPT), or perhaps

completely transcribe them if they are easy enough. It might very well be a matter of time

before the world gives GoLang its due attention and provides for a healthy community of

contributors.

If I may, I would like to finish with a simple little note—the language is simply a

pleasure to work with.

Chapter 4 Trend Follower for Blockchain Trading

204

�Appendix
�Finance Jargon

Glossary

Amortization: The process of spreading the cost of an intangible asset over its useful life.

Ask: The price at which a seller is willing to sell an asset or a security.

Asset allocation: The strategy of dividing an investment portfolio among different

asset classes, such as stocks, bonds, and cash.

Bear market: A market condition characterized by falling prices and pessimism

among investors and traders.

Bid: The price at which a buyer is willing to buy an asset or a security.

Bonds: Debt securities that represent a loan from an investor to a borrower, such

as a government or a corporation. Bonds pay periodic interest and return the principal

amount at maturity.

Breakout: A trading strategy that involves buying or selling an asset or a security

when its price moves beyond a certain level of resistance or support, indicating a change

in trend or momentum.

Broker: An intermediary who facilitates the buying and selling of assets or securities

between buyers and sellers, usually for a commission or a fee.

Bull market: A market condition characterized by rising prices and optimism among

investors and traders.

Capital expenditure: Money spent by a business to acquire or improve long-term

assets, such as equipment or buildings.

Compound interest: Interest that is calculated on both the initial principal and the

accumulated interest of a loan or investment.

Correction: A temporary decline in the price or value of an asset or a security after a

period of rise or overvaluation.

Credit default swap: A financial contract that transfers the risk of default from a debt

issuer to another party, who agrees to pay the debt in case of default in exchange for a

periodic fee.

Day trading: The practice of buying and selling assets or securities the same trading

day, closing all positions before the market closes.

Dividend: A portion of a company’s profits that is distributed to its shareholders.

Chapter 4 Trend Follower for Blockchain Trading

205

Earnings per share: A measure of a company’s profitability, calculated by dividing

its net income by the number of outstanding shares.

FICO score: A numerical rating of a person’s creditworthiness, based on their credit

history and current financial situation. FICO scores range from 300 to 850, with higher

scores indicating lower risk.

Fill: The execution of an order by a broker or an exchange.

Fundamental analysis: The study of the intrinsic value and performance of assets

or securities, based on various factors such as financial statements, earnings, dividends,

economic conditions, industry trends, and so on.

Gross domestic product: The total value of all goods and services produced within a

country in a given period of time.

Hedge fund: A type of investment fund that uses sophisticated strategies and

techniques to generate high returns, often with high risk and low transparency.

Inflation: A general increase in the prices of goods and services over time, resulting

in a decrease in the purchasing power of money.

Junk bond: A bond that has a low credit rating and a high risk of default, but also

offers a high yield to attract investors.

Key performance indicator: A measurable value that shows how effectively a

company or an individual is achieving its goals or objectives.

Leverage: The use of borrowed money to increase the potential return of an

investment or a business operation.

Limit order: An order to buy or sell an asset or a security at a specified price

or better.

Liquidity: The ease with which an asset or a security can be bought or sold without

affecting its price significantly, depending on the availability of buyers and sellers in

the market.

Long position: The state of owning or buying an asset or a security, expecting its

price to rise in the future.

Margin: The amount of money that a trader or an investor must deposit with a

broker or an exchange to open or maintain a leveraged position.

Market capitalization: The total value of all shares of a company or an index,

calculated by multiplying the share price by the number of shares outstanding.

Market order: An order to buy or sell an asset or a security at the best available price

in the market at the time of execution.

Chapter 4 Trend Follower for Blockchain Trading

206

Net present value: The difference between the present value of an investment’s cash

inflows and outflows, used to evaluate its profitability and feasibility.

Opportunity cost: The value of the next best alternative that is forgone as a result of

making a decision.

Portfolio: A collection of investments held by an individual or an organization.

Quantitative easing: A monetary policy tool that involves the central bank buying

large amounts of government bonds or other securities to increase the money supply

and lower interest rates.

Rally: A sustained increase in the price or value of an asset or a security after a

period of decline or consolidation.

Resistance: A price level at which an asset or a security faces difficulty in rising

above due to selling pressure.

Return on equity: A measure of a company’s profitability, calculated by dividing its

net income by its shareholders’ equity.

Scalping: A trading strategy that involves taking small profits from frequent trades

over a short period of time, exploiting minor price movements and high leverage.

Securities and Exchange Commission: The U.S. federal agency that regulates the

securities markets and protects investors from fraud and abuse.

Short selling: The practice of selling an asset or a security that a trader does not own,

hoping to buy it back later at a lower price and profit from the price difference.

Slippage: The difference between the expected price of an order and the actual price

at which it is executed, which can be caused by market volatility, low liquidity, or delays

in execution.

Spread: The difference between the bid and ask prices of an asset or a security,

which reflects the liquidity and competitiveness of the market.

Stop order: An order to buy or sell an asset or a security when its price reaches a

certain level, which can be used to protect profits or limit losses.

Support: A price level at which an asset or a security faces difficulty in falling below

due to buying pressure.

Swing trading: The practice of buying and selling assets or securities over a period of

several days or weeks, taking advantage of short-term price fluctuations.

Technical analysis: The study of past price movements and patterns to predict

future price movements and trends of assets or securities, using various tools and

indicators such as charts, moving averages, trend lines, and so on.

Time value of money: The concept that money available today is worth more than

the same amount in the future, due to its potential earning capacity.

Chapter 4 Trend Follower for Blockchain Trading

207

Trend: The general direction of the price movement of an asset or a security over

time, which can be upward (bullish), downward (bearish), or sideways (range-bound).

Underwriting: The process of evaluating the risk and profitability of a loan,

insurance policy, or security issue, and setting its terms and conditions accordingly.

Volatility: The degree of variation in the price or value of an asset or a market over

time, often measured by standard deviation or beta.

One-liner

Trading one-liners are witty or humorous remarks related to trading or the markets. They

can be used to lighten the mood, poke fun at oneself or others, or make a point. Here are

some examples of trading one-liners:

•	 The market is a device for transferring money from the impatient to

the patient. —Warren Buffett

•	 I’m not a great investor. I’m just good at not losing money. —

George Soros

•	 The four most dangerous words in investing are “this time it’s

different.” —Sir John Templeton

•	 How do you make a small fortune in the stock market? Start with a

large one. —Anonymous

•	 Buy low, sell high. Easier said than done. —Anonymous

•	 The trend is your friend until the end when it bends. —Ed Seykota

•	 In trading, the impossible happens about twice a year. —Henri

M Simoes

•	 There are two types of traders: those who admit they don’t know

what they’re doing and those who lie about it. —Anonymous

•	 The only thing standing between you and your goal is the bullshit

story you keep telling yourself as to why you can’t achieve it. —

Jordan Belfort

•	 The stock market is a device for transferring money from the ignorant

to the informed. —Andre Kostolany

Chapter 4 Trend Follower for Blockchain Trading

208

�Extra Indicators of Interest

Tom Demark’s Indicators

Many successful and famous global investors speak of Tom Demark’s work, and the use

of his indicators. When they speak, we listen. See Figure 4-15.

Figure 4-15.  Demark’s sequential countdown

Some call it “a hack for everything.” A study in trend fatigue. A lot of famous fund

managers have used this indicator in conjunction with daily and weekly timeframes.

�Extra Statistics

Several statistical evaluation metrics are commonly used to assess the effectiveness of

these strategies. The following are not used in this chapter, but remain relevant and of

interest to many leading economists around the world:

Chapter 4 Trend Follower for Blockchain Trading

209

•	 Sortino ratio: Similar to the Sharpe ratio, the Sortino ratio also

measures risk-adjusted performance. However, it only considers

downside risk by using the downside deviation instead of the

standard deviation. This ratio is particularly useful for investors who

are more concerned about downside risk.

Sortino Ratio = (Portfolio Return - Risk-free Rate) / Downside

Deviation

•	 Information ratio: The Information ratio measures the risk-

adjusted performance of an active investment strategy relative to a

benchmark. It is calculated as the excess return of the portfolio over

the benchmark return, divided by the tracking error (the standard

deviation of the excess returns). A higher Information ratio indicates

better risk-adjusted performance compared to the benchmark.

Information Ratio = (Portfolio Excess Return) / Tracking Error

•	 Treynor ratio: Developed by Jack L. Treynor, the Treynor ratio

measures the risk-adjusted performance of a portfolio using beta as a

risk measure. Beta represents the sensitivity of the portfolio’s returns

to market movements. The Treynor ratio is calculated as the excess

return of the portfolio (portfolio return minus risk-free rate) divided

by its beta. A higher Treynor ratio indicates better risk-adjusted

performance.

Treynor Ratio = (Portfolio Return - Risk-free Rate) / Portfolio Beta

•	 Maximum drawdown: Maximum drawdown is a measure of risk

that represents the largest peak-to-trough decline in the value of a

portfolio over a specified period. It helps investors understand the

worst-case loss they could have experienced if they had invested

in a particular strategy. Lower maximum drawdowns are generally

preferred, as they indicate lower risk.

Maximum Drawdown = (Peak Portfolio Value - Trough Portfolio

Value) / Peak Portfolio Value

Chapter 4 Trend Follower for Blockchain Trading

210

�Side Notes on Geth

GoLang, also known as Go, is particularly well-suited for blockchain projects due to its

performance characteristics and ease of use. One of the main reasons for its popularity

in the blockchain space is that a significant portion of Ethereum, the world’s second-

largest cryptocurrency by market capitalization, is written in GoLang. This section

explores the connection between Ethereum and GoLang and discusses why this makes

Go a cool choice for blockchain projects.

Ethereum’s GoLang Implementation: Geth

Ethereum, a decentralized platform that runs smart contracts, has multiple

implementations in different programming languages. One of the most popular and

widely-used implementations is Geth, which is written in GoLang. Geth, short for Go

Ethereum, is the official command-line interface for running an Ethereum node and

interacting with the Ethereum blockchain.

By choosing GoLang for Geth, the Ethereum development team leveraged the

language’s efficiency, speed, and simplicity to create a robust and high-performance

implementation of the Ethereum protocol. As a result, GoLang has become an essential

part of the Ethereum ecosystem, with many developers using the language to build

decentralized applications (dApps), smart contracts, and other blockchain-related

projects on the Ethereum platform.

GoLang’s Advantages for Blockchain Development

The success of Geth and its impact on the Ethereum ecosystem have helped to establish

GoLang as a popular choice for blockchain development. Some of the key advantages of

GoLang for blockchain projects include:

•	 Performance: GoLang is designed for high performance and efficient

resource usage, making it ideal for handling the computational and

network demands of blockchain projects.

•	 Concurrency: GoLang’s built-in support for concurrency and

parallelism enables developers to easily manage multiple tasks

simultaneously, which is particularly important for blockchain

applications that need to process a high volume of transactions or

perform complex calculations.

Chapter 4 Trend Follower for Blockchain Trading

211

•	 Simplicity and maintainability: GoLang’s clean syntax and strong

typing make it easier to write, read, and maintain code, which is

crucial for the long-term success of blockchain projects that require

regular updates and enhancements.

•	 Growing ecosystem: Thanks to its popularity in the Ethereum

community, GoLang has a growing ecosystem of libraries, tools, and

resources specifically tailored for blockchain development.

The widespread use of GoLang in Ethereum, particularly in the Geth

implementation, has helped to establish the language as a cool choice for blockchain

projects. Its performance, concurrency support, simplicity, and maintainability make it

an ideal choice for developers working on decentralized applications, smart contracts,

and other blockchain-related projects. As we embark on creating a GoLang-

based trading tool for cryptocurrency markets, the connection between GoLang and

Ethereum’s success serves as a testament to the language’s potential in the world of

blockchain development.

�References

	 1.	 Peccatiello, A. (2021). “The Macro Compass: A Framework for

Global Macro Investing.” The Macro Compass. Retrieved from

https://themacrocompass.substack.com/p/the-macro-

compass-a-framework-for

	 2.	 Weinstein, S. (1988). Stan Weinstein’s Secrets for Profiting in Bull

and Bear Markets. New York: McGraw-Hill.

	 3.	 Ammous, S. (2018). The Bitcoin Standard: The Decentralized

Alternative to Central Banking. Hoboken, NJ: John Wiley & Sons.

	 4.	 Ferguson, N. (2008). The Ascent of Money: A Financial History of

the World. New York: Penguin Press.

	 5.	 Murphy, J. J. (1999). Technical Analysis of the Financial Markets:

A Comprehensive Guide to Trading Methods and Applications.

New York: New York Institute of Finance.

Chapter 4 Trend Follower for Blockchain Trading

https://themacrocompass.substack.com/p/the-macro-compass-a-framework-for
https://themacrocompass.substack.com/p/the-macro-compass-a-framework-for

212

	 6.	 Strauss, W., & Howe, N. (1997). The Fourth Turning: What the

Cycles of History Tell Us About America’s Next Rendezvous with

Destiny. Crown.

	 7.	 DeMARK Analytics. (n.d.). Sequential. Retrieved May 10, 2023,

from https://demark.com/sequential-indicator/

	 8.	 Pal, R. (Host). (2022-2023). The exponential age [Video

series]. Real Vision. https://realvision.com/shows/the-

exponential-age

	 9.	 Real Vision. (2022-2023). Daily briefing [Video series]. https://

realvision.com/shows/daily-briefing

	 10.	 Real Vision. (2022-2023). Daily briefing [Video series]. https://

realvision.com/shows/daily-briefing

	 11.	 Ethereum Foundation. (n.d.). Go-ethereum. Retrieved May 10,

2023, from https://geth.ethereum.org/

Chapter 4 Trend Follower for Blockchain Trading

https://demark.com/sequential-indicator/
https://realvision.com/shows/the-exponential-age
https://realvision.com/shows/the-exponential-age
https://realvision.com/shows/daily-briefing
https://realvision.com/shows/daily-briefing
https://realvision.com/shows/daily-briefing
https://realvision.com/shows/daily-briefing
https://geth.ethereum.org/

213

CHAPTER 5

Writing a Kubernetes
Operator to Run
EVM-Compatible
Blockchains

Simplicity is the ultimate sophistication.

—Leonardo da Vinci

With the rising popularity of blockchain technology, there is an increasing need for

efficient ways to deploy and manage blockchain networks.

© Nicolas Modrzyk 2023
N. Modrzyk, Go Crazy, https://doi.org/10.1007/978-1-4842-9666-0_5

https://doi.org/10.1007/978-1-4842-9666-0_5#DOI

214

Kubernetes is a popular container-orchestration platform that enables efficient

deployment and management of containerized applications.

This chapter explains to build a Kubernetes operator to run EVM-compatible

blockchain networks.

If you are reading this book, I doubt there is a need to explain what the word

blockchain means, but you might wonder what an EVM-compatible blockchain is.

To make it simple, it is a blockchain that can execute smart contracts and

decentralized applications written in the same programming language as the Ethereum

blockchain (Solidity). These blockchains expose the same set of json-rpc APIs as

Ethereum does (see https://ethereum.org/en/developers/docs/apis/json-rpc/)

and therefore it is possible to interact with EVM-compatible blockchains in the same way

you interact with Ethereum.

Some examples of EVM-compatible blockchains include Binance Smart Chain,

Polygon, Avalanche, and Celo.

Given that these blockchains applications present commonalities, it’s relevant to

have a strategy to configure and operate them in a generic way. This is where Kubernetes

operators come into play!

You’ve probably heard of Kubernetes before, but maybe you haven’t used it. Or

maybe you’re using it already, but have never had the opportunity to extend it and

customize it for specific needs. This is exactly what you’ll learn how to do in this chapter.

Let’s get started.

�Setting Up Kubernetes on Your Machine
For a long time, I did not know how or where to start with Kubernetes.

I constantly heard about it and honestly believed it was a fantastic tool, but I could

not find the right way to start with it. Every blog post I read mentioned nodes, pods,

stateful sets, services, ingresses, and config maps, but I did not get the big picture.

Surprisingly, the thing that finally removed my psychological barrier was watching

“Kubernetes: The Documentary” (you can find it on YouTube). The next thing I knew, I

had installed Minikube and Lens on my machine.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

https://skyoffice.netlify.app/

215

Let’s install the necessary components to start building with Kubernetes:

•	 Docker (www.docker.com) to build images.

•	 Access to an image registry such as https://hub.docker.com to

deploy the built images. You can create an account for free.

•	 Minikube (https://minikube.sigs.k8s.io/docs/start/) allows

you to run Kubernetes on your local machine.

•	 Kubectl (https://kubernetes.io/docs/tasks/tools/) is a

command-line tool that interacts with a Kubernetes cluster (or

Minikube in this case).

As usual, be sure to install the relevant versions for your operating system. The

instructions in this chapter are executed from a MacBook with an Apple ARM chip.

Additionally, a few other tools can greatly improve your day-to-day experience with

Kubernetes, and I highly recommend you install them:

•	 Lens (https://k8slens.dev) is the “Kubernetes IDE.” It is probably

the best tool you can install, especially if you start with Kubernetes.

•	 Kubectx and Kubens (https://github.com/ahmetb/kubectx) allow

to switch between clusters and between namespaces, respectively.

•	 The https://github.com/ahmetb/kubectl-aliases site contains a

collection of shell aliases to make it easier to send kubectl commands

(for example, you can type kpf instead of kubectl port-forward).

First verify that the components were correctly installed. Make sure that Docker is

running, then start Minikube by typing minikube start in your terminal.

You should see something like Figure 5-1.

Figure 5-1.  Minikube has started

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

https://www.docker.com
https://hub.docker.com
https://minikube.sigs.k8s.io/docs/start/
https://kubernetes.io/docs/tasks/tools/
https://k8slens.dev
https://github.com/ahmetb/kubectx
https://github.com/ahmetb/kubectl-aliases

216

Now open the Lens IDE.

From there, you should be able to connect to your Minikube local cluster and browse

the different tabs. Most of them will be empty at this stage (see Figure 5-2).

Figure 5-2.  Lens, the Kubernetes IDE

�Resources Overview
From a certain perspective, Kubernetes can be viewed as an API that lets you manipulate

a collection of resources. These resources are grouped into logical categories:

•	 Nodes: These are the machines on which the applications run.

•	 Workloads: At the foundational level, applications are running as

containers in so-called pods, which are the smallest operational

unit of a Kubernetes cluster. Those pods execute workloads and

their lifecycle is usually controlled by higher-level resources such as

deployments, daemonSets, StatefulSets and the like.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

217

•	 Config: ConfigMaps (think of them as a way to provide configurations

to your apps) and Secrets (think, credentials), as well as HPAs (to

automate scaling up and down of pods) and Pod Disruption Budgets

(to better control application upgrades) are the resources you will

find in this category.

•	 Network: This category include resources that control how

applications are reached out, either from within the cluster (services)

or from outside the cluster (ingresses).

•	 Storage: This category provides resources that abstract and decouple

the applications running in pods from the storage requirements they

may have, whether they use the disk storage of the nodes they are

scheduled to or network storage. Storage classes, persistent volumes,

and persistent volume claims offer ways to configure these aspects.

•	 Namespaces: These are a way to group Kubernetes resources under

logical entities.

•	 Events: Give access to the cluster internal events.

•	 Access controls: A group of resources that define and manage user

permissions and authentication mechanisms.

•	 Custom resource definitions: Provide a mechanism to extend

Kubernetes functionality; this is the category of resources that you

will leverage to create the blockchain operator.

Kubernetes is a complex ecosystem, and it is impossible to fully explore all these

resources and their possible combinations within the confines of a single chapter.

However, in the process of building the operator, you will manipulate many of the

important resources. Special attention is given to StatefulSets and Custom Resources

Definitions (or CRDs for short).

A graphical depiction of these concepts is shown in Figure 5-3.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

218

Figure 5-3.  Overview of a Kubernetes deployment

�Let’s Run a Pod
In this section, you learn how to deploy a simple application in your local cluster to get

your hands dirty and start manipulating native resources, kubectl, and Docker images.

Copy/paste the code in Listing 5-1 into a file and save it as nginx-pod.yaml.

Listing 5-1.  A Simple nginx Pod Definition

apiVersion: v1

kind: Pod

metadata:

 name: nginx-pod

 labels:

 app: nginx

spec:

 containers:

 - name: nginx-container

 image: nginx

 ports:

 - containerPort: 80

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

219

In this YAML definition, two fields are slightly more meaningful that the others:

•	 The kind field indicates the specific Kubernetes resource you want to

provision. Here, it is a simple Pod.

•	 The image field within spec.containers informs Kubernetes that

you want to run the nginx image located at https://hub.docker.

com/_/nginx.

The following code uses kubectl to create the pod in the local Minikube cluster:

kubectl apply -f nginx-pod.yaml

Look at the result in Lens, which is shown in Figure 5-4.

Figure 5-4.  Nginx pod running in the cluster

Congratulations! You created your first Kubernetes native resource running in

Minikube.

�Demystifying Kubernetes Operators
This chapter uses a framework called Operator-SDK (https://sdk.operatorframework.io/)

to build the blockchain operator.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

https://hub.docker.com/_/nginx
https://hub.docker.com/_/nginx
https://sdk.operatorframework.io/

220

When you use a framework, several aspects are abstracted and simplified, as

illustrated in Figure 5-5.

Figure 5-5.  What are Kubernetes operators?

This provides some benefits. However, as is often the case when using a framework,

it is not necessarily obvious what the basic blocks are that actually constitute the real

thing behind the framework, namely the Kubernetes operator.

This section breaks things down so you can see the basic blocks. That way, when

you’re using the facilities of Operator-SDK, you understand what you are doing.

At a foundational level, an operator has two parts:

•	 A Custom Resource Definition (CRD)

•	 A controller

�Custom Resource Definition
To understand this part, you’ll start from what you did previously.

When you submitted nginx-pod.yaml to kubectl, you actually submitted a payload

that conforms to the Kubernetes Pod specification, a portion of which is represented in

Listing 5-2.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

221

Listing 5-2.  The Pod Spec (Excerpt)

f:spec:

 f:containers:

 f:args: {}

 f:image: {}

 f:imagePullPolicy: {}

 f:name: {}

 f:ports:

 .: {}

 k:{"containerPort":8443,"protocol":"TCP"}:

 .: {}

 f:containerPort: {}

 f:name: {}

 f:protocol: {}

Basically, to make sense to Kubernetes, the nginx-pod.yaml payload had to conform

to that Pod specification. For instance, under spec.containers, you would not have

been allowed to add an arbitrarily new field nor omit a mandatory field (such as Name).

In other words, there are a set of fields, optional or mandatory, that compose the Pod

specification and its nested structures. A user must submit a payload that conforms to

that specification for the target resource to be created.

Now, as much as Kubernetes knows how to deal with kind:Pod or kind:Deployment,

it knows nothing about kind:Blockchain, unless you tell it.

It happens that the way to tell it is to submit a CRD resource to the cluster. That is,

a resource of kind CustomResourceDefinition with a spec field that’s a schema that

defines the fields that compose the target resource (Blockchain) that the controller

should manage.

For instance, if you want the blockchain resources to contain fields like image,

replicas, or p2pPort, you first have to submit a CustomResourceDefinition resource to

the cluster, which defines those fields as part of the schema of a blockchain kind.

After that, Kubernetes will understand what a blockchain kind is and will accept

payloads that conform to the blockchain spec.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

222

�Controller
The ability to submit a blockchain resource payload to the cluster is the essential first

part of making an operator. But that’s not very helpful until Kubernetes knows what to do

with it. That’s why you have controllers.

A controller is essentially a program running within a pod that listens to events

broadcasted by Kubernetes within the cluster and takes the necessary actions.

The events include the creation, update, or deletion of resources. The resulting

actions include creating native resources (like deployment, service, or configmap) to

reflect the state described by the resource definition. For that, the controller will use the

Kubernetes API, which can be programmed using the Go SDK.

The process of reflecting in the cluster the state described in the specification

is called the reconciliation loop. Technically, a controller’s Reconcile function is

continuously called and it is the controller ‘s job to bring the current state to the desired

state described in the resource definition.

If the current state does not match the desired state, the controller takes the

necessary actions. For instance, if the desired state is to have three pod replicas and only

two are running, the controller will ask Kubernetes to create another pod.

�Bootstrapping the Project with Operator-SDK
Go to https://sdk.operatorframework.io/build/ and follow the instructions to install

Operator-SDK.

Next, create a directory called blockchain-operator in your preferred location and

initialize the project with:

operator-sdk init --domain gocrazy.com --repo github.com/gocrazy/

blockchain-operator --plugins=go/v5-alpha

--domain is used as the prefix of the API group your custom resources will be

created in and --repo is necessary since scaffolded files require a valid module path.

--plugins=go/v5-alpha is required only if your local environment is Apple Silicon.

The directory structure shown in Figure 5-6 will be generated.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

https://sdk.operatorframework.io/build/

223

Figure 5-6.  Directory structure generated by Operator-SDK

At this point, you only have generic boilerplate code, which consists essentially

of a manager (defined in cmd/main.go), config YAML files, and the project’s utilities

(makefile, dockerfile, go.mod).

I suggest you take a quick look at the cmd/main.go file to see how the manager is

created. Again, there is nothing specific to your needs in this main.go file at this stage.

This is just a matter of getting familiar with the code.

�Creating an API
Now is the time to start defining the new kind of resources you want to manage with your

operator: the Blockchain kind.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

224

The following command is exactly about this:

operator-sdk create api --group learn --version v1alpha1 --kind Blockchain

--resource --controller

This command instructs Operator-SDK to create resource and controller boilerplate

files for a new custom resource of kind Blockchain under the learn group of the

gocrazy.com domain.

This will generate api/ and internal/ folders, as well as config files specifically for

the Blockchain custom resource under config/.

The command will also update the cmd/main.go file to register the controller for the

Blockchain custom resource.

At this stage, you need to focus on two files in order to implement the logic of the

controller:

•	 api/v1alpha1/blockchain_types.go

•	 internal/controller/blockchain_controller.go

The first file is used to implement the spec of the Blockchain custom resource. This

is where you define the fields and types that compose a resource of kind Blockchain, as

shown in Listing 5-3.

Listing 5-3.  The BlockchainSpec Type Generated by the SDK Operator

// BlockchainSpec defines the desired state of Blockchain

type BlockchainSpec struct {

 // INSERT ADDITIONAL SPEC FIELDS - desired state of cluster

 // Important: Run "make" to regenerate code after modifying this file

 // �Foo is an example field of Blockchain. Edit blockchain_types.go to

remove/update

 Foo string 'json:"foo,omitempty"'

}

The second file is where you implement the controller’s reconciliation logic

mentioned earlier. This implementation will take place in the Reconcile function, as

shown in Listing 5-4.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

225

Listing 5-4.  Blockchain Controller’s Reconciliation Function

func (r *BlockchainReconciler) Reconcile(ctx context.Context, req ctrl.

Request) (ctrl.Result, error) {

 _ = log.FromContext(ctx)

 // TODO(user): your logic here

 return ctrl.Result{}, nil

}

�Generating the Manifests
From the boilerplate code stored in api/v1alpha1/blockchain_types.go, Operator-

SDK can already generate a CustomResourceDefinition with a schema following the

fields of the BlockchainSpec struct.

You do this by running make manifests, which will generate a

CustomResourceDefinition called learn.gocrazy.com_blockchains.yaml for the

Blockchain kind. The manifest will be generated in config/crd/bases.

Whenever you modify blockchain_types.go, you need to also run make manifests

to regenerate the CRD for the Blockchain custom resource.

Take a look at the generated file and notice how the properties of the

BlockchainSpec struct are described under openAPIV3Schema.properties.spec.

learn.gocrazy.com_blockchains.yaml is the definition that will instruct

Kubernetes about your custom Blockchain kind.

�Configuring the Makefile
The development workflow involves running these make commands:

•	 make manifests will regenerate the files under config/.

•	 make generate will regenerate the api/v1alpha1/zz_generated.

deepcopy.go file.

•	 make docker-build will build the Docker image for your controller

based on the Dockerfile provided at the root of the project.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

226

•	 make docker-push will push the image to a registry of your choice

(you see how to set this up soon).

•	 make install will install your CRD into the cluster, along with the

required RBAC resources.

•	 Finally, make deploy will deploy your updated controller to the

cluster.

There are also commands to tear down the resources, like uninstall and undeploy.

Each command can be run independently. However, during development, it is very

likely that you will need to run most of them in sequence.

Personally, I find it convenient to add a new command called update to the makefile,

which will execute the other commands in the desired order.

If you agree, just add a new update entry within the undeploy entry (see Listing 5-5).

Listing 5-5.  Using Update to Run Commands

.PHONY: update

update: manifests generate docker-build docker-push install deploy

 kubectl rollout restart deployment blockchain-operator-controller-manager -n

blockchain-operator-system

You will notice that I also added a kubectl rollout restart command to restart

the controller every time a new image is pushed to Docker Hub.

The reason for this is because, out of simplicity, it’s easier to tag the controller image

with latest instead of updating the VERSION field in the makefile each time you build a

new image. As a result, the controller will not automatically restart (which is necessary

for you to see the changes).

Finally, you need to tell Operator-SDK where to push the controller-built image. You

need to update the IMG field in the makefile by referencing your Docker Hub account:

IMG ?= <dockerhub-account>/blockchain-operator:latest

It’s time to give the workflow a try. Run make update once. If everything was set up

correctly, you should be able to see the result in Lens, as depicted in Figures 5-7 and 5-8.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

227

Figure 5-7.  The Blockchain CRD is installed

Figure 5-8.  The Blockchain controller is running under the blockchain-operator-
system namespace

�Implementing the Operator Reconciliation Logic
Your local environment is now set up, so you can focus on implementing the logic of your

controller. In the coming sections, most of the changes will be implemented in the following:

•	 blockchain_types.go: Where you will iteratively define the spec of

the Blockchain custom resource.

•	 blockchain_controller.go: Where you will implement the

reconciliation logic.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

228

Let’s take a look at the target state you need to reconcile. To guide you in the

implementation of the reconciliation logic, refer to Listing 5-6 for a StatefulSet

definition.

Listing 5-6.  The StatefulSet State that the Blockchain Operator Will Reconcile

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: ethereum-goerli

 namespace: ethereum

 labels:

 app: ethereum-goerli

spec:

 serviceName: ethereum-goerli

 replicas: 1

 selector:

 matchLabels:

 app: ethereum-goerli

 template:

 metadata:

 labels:

 app: ethereum-goerli

 spec:

 containers:

 - name: client

 command: ['geth']

 args:

 - '--goerli'

 - '--syncmode=light'

 - '--datadir=data

 - '--cache=128'

 image: ethereum/client-go:stable

 imagePullPolicy: Always

 resources:

 limits:

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

229

 cpu: "500m"

 memory: 1Gi

 requests:

 cpu: "500m"

 memory: 1Gi

 ports:

 - containerPort: 30303

 name: p2p

 protocol: TCP

 - containerPort: 8545

 name: rpc

 protocol: TCP

 volumeMounts:

 - name: data

 mountPath: /data

 volumeClaimTemplates:

 - metadata:

 name: data

 spec:

 accessModes: ["ReadWriteOnce"]

 storageClassName: standard

 resources:

 requests:

 storage: 1Gi

Let’s break things down:

kind: StatefulSet

The target resource will be of kind StatefulSet (https://kubernetes.io/docs/

concepts/workloads/controllers/statefulset/).

Using a StatefulSet native resource is relevant in this case, because blockchain

nodes usually need storage as they sync blocks from their peer-to-peer network.

Persisting the data across the client application restarts is therefore important.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

230

StatefulSets are like deployments, but with one key difference. They are associated

with a storage resource. However, when deleting a pod replica managed by the

StatefulSet, the associated storage resource is not automatically deleted (it needs to be

deleted manually if required).

Another difference is that the pod names use an index that is bound to the number of

replicas so that the names are deterministic.

The next section in the listing is:

metadata:

 name: ethereum-goerli

 namespace: ethereum

 labels:

 app: ethereum-goerli

As the name suggests, the code intends to run the Ethereum Goerli testnet.

Furthermore, the resource will be scheduled to run in a dedicated namespace (called

ethereum).

The next section specifies how many replicas you want to create. This is a piece of

information that you expose in the Blockchain spec.

replicas: 1

Then, the selector field lets you define some key-value labels that can be used by

other resources to select the group of pods that will be managed by your StatefulSet.

 selector:

 matchLabels:

 app: ethereum-goerli

For instance, you can use them to expose the ethereum-goerli pods over the

network via a service.

The following section specifies the command, args, and image fields that tell

Kubernetes which software application and version you want to run and how you want

to start the container.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

231

command: ['geth']

args:

 - '--goerli'

 - '--syncmode=light'

 - '--cache=128'

image: ethereum/client-go:stable

The resources section defines how much CPU and memory should be allocated to

the designated container. You expose this detail in your CRD.

resources:

 limits:

 cpu: "500m"

 memory: 1Gi

 requests:

 cpu: "500m"

 memory: 1Gi

The following section, ports, specifies which ports should be exposed by the

container running in the pod. You can also make it possible to configure this detail in the

Blockchain CRD.

ports:

 - containerPort: 30303

 name: p2p

 protocol: TCP

 - containerPort: 8545

 name: rpc

 protocol: TCP

Then, the volumeMounts field allows you to specify one or more volumes to be

mounted into the container running in the pod.

volumeMounts:

 - name: data

 mountPath: /data

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

232

Finally, the volume in question is created by the volumClaimTemplates definition:

volumeClaimTemplates:

 - metadata:

 name: data

 spec:

 accessModes: ["ReadWriteOnce"]

 storageClassName: standard

 resources:

 requests:

 storage: 1Gi

To understand this last part, you can think of it in these terms: Upon creation,

the StatefulSet will submit a claim for storage to Kubernetes using a specific

storageClassName. This claim will be satisfied once Kubernetes creates a

persistent volume.

This example references the standard storage class, which is preinstalled when you

install Minikube. This class uses a default directory on your machine to persist the data

written by the container. This allows you to run your blockchain client on your local

machine and mimic what would happen in a real Kubernetes cluster (see Figure 5-9).

Figure 5-9.  The standard storage class available by default in Minikube

Now update your BlockchainSpec struct and capture some of the details that your

controller will use. Get rid of the boilerplate code and make it look like Listing 5-7.

Listing 5-7.  Defining the API of the Blockchain Custom Resource

// BlockchainSpec defines the desired state of Blockchain

type BlockchainSpec struct {

 // Number of pod replicas to run

 Replicas *int32 'json:"replicas,omitempty"'

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

233

 // url to the Docker image of the client blockchain to run

 Image string 'json:"image,omitempty"'

 // arguments that will be passed to the client container

 ClientArgs []string 'json:"client-args,omitempty"'

 // entry point for the main blockchain client container

 Command []string 'json:"command,omitempty"'

}

Notes from the code follow:

•	 The Replicas field is an int32 pointer. As you will see, this the type

expected by the StatefulSetSpec, as defined in the v1 package of the

Kubernetes Go SDK.

•	 The image field is a string that points to the actual Docker image that

the main container in your StatefulSet will run.

•	 ClientArgs is a list of strings that you will pass as arguments to the

main container.

•	 command is a list of strings to pass as the entry point command to the

main container.

Now to confirm that you are able to read the values from a custom Blockchain

resource submitted to Kubernetes, update the BlockchainReconciler::Reconcile

function to simply read those values.

Just remove the boilerplate code generated by Operator-SDK and update the

function, as shown in Listing 5-8.

Listing 5-8.  Logging the Values to Make Sure Things Work

// Reconcile is part of the main kubernetes reconciliation loop

which aims to

// move the current state of the cluster closer to the desired state.

func (r *BlockchainReconciler) Reconcile(ctx context.Context, req ctrl.

Request) (ctrl.Result, error) {

 log.SetPrefix("BlockchainReconciler")

 blockchain := &learnv1alpha1.Blockchain{}

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

234

 err := r.Get(ctx, req.NamespacedName, blockchain)

 if err != nil {

 return reconcile.Result{}, err

 }

 �log.Println("namespace", blockchain.Namespace, blockchain.

GetNamespace(), req.NamespacedName)

 log.Println("name", blockchain.Name)

 log.Println("replicas", *blockchain.Spec.Replicas)

 log.Println("image", blockchain.Spec.Image)

 for _, value := range blockchain.Spec.Command {

 log.Printf("command %s\n", value)

 }

 for _, value := range blockchain.Spec.ClientArgs {

 log.Printf("ClientArgs %s\n", value)

 }

 return reconcile.Result{}, nil

}

The updated code reads as follows:

•	 First, you populate a blockchain variable by fetching values using the

BlockchainReconciler Get function.

•	 Once the code holds a blockchain instance, it prints the values of the

different fields.

•	 If the field is of primitive type (like the image field, which is of type

string), the code simply prints its value from Blockchain.spec.

•	 If the field is of composite type (like ClientArgs), then it iterates over

the slice and prints each element in it using the range keyword.

Okay, so you have updated the BlockchainSpec struct and the controller

reconciliation logic. It is time to run make update to regenerate the manifests and

controller image, deploy a new CRD for your custom resource, and restart the controller.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

235

Wait until the controller manager has restarted and is ready (in Lens) and then test

the flow by submitting a sample Blockchain custom resource to the cluster.

Under config/samples/, you should have a learn_v1alpha1_blockchain.yaml

sample file generated by Operator-SDK. Make it look like Listing 5-9.

Listing 5-9.  A Sample Blockchain Custom Resource to Test the Flow

apiVersion: learn.gocrazy.com/v1alpha1

kind: Blockchain

metadata:

 labels:

 app.kubernetes.io/name: blockchain

 app.kubernetes.io/instance: blockchain-sample

 app.kubernetes.io/part-of: blockchain-operator

 app.kubernetes.io/managed-by: kustomize

 app.kubernetes.io/created-by: blockchain-operator

 name: blockchain-sample

 namespace: ethereum

spec:

 replicas: 1

 image: ethereum/client-go:stable

 command: ['geth']

 client-args:

 - '--goerli'

 - '--syncmode=light'

 - '--cache=128'

 - '--datadir=data'

As you can see in the definition, this blockchain-sample resource should be created

under the ethereum namespace.

You don’t have this namespace yet in your Minikube cluster. You can create it from

the command line using kubectl, as follows:

kubectl create namespace ethereum

The remaining part of the sample test resource provides the relevant details for the

number of replicas, the image to run, the command to invoke, and the arguments to be

passed to the Geth process (see Figure 5-10).

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

236

Figure 5-10.  The resources will be deployed under the ethereum namespace

Now you can create the blockchain-sample resource in the cluster by invoking

kubectl from the command line:

kubectl apply -f config/samples/learn_v1alpha1_blockchain.yaml

Doing this will store the custom resource in the Minikube cluster, as shown in

Figure 5-11.

Figure 5-11.  A blockchain-sample custom resource deployed to Minikube

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

237

From there, navigate to the Pods tab and check the log of the manager container for

the blockchain-operator-controller-manager pod.

You should see log output like the one shown in Figure 5-10.

The controller has effectively been notified of the existence of the blockchain-

sample custom resource and can fetch all the relevant details about it. That basically

means the points are connected and that the flow is working properly.

This is good news, because you no longer have to worry about it. Rather, you can

focus on iteratively improving the blockchain resource spec and reconciliation logic (see

Figure 5-12).

Figure 5-12.  blockchain-sample custom resource details

�Using the Kubernetes Go SDK
In this section, you are going to use the Kubernetes API to manage the native resource

that your operator needs to reconcile, that is the StatefulSet.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

238

To reach that goal, the first thing you need to ensure is that your blockchain

controller has the right to manage (that is, create/read/update/delete) StatefulSet

resources.

Using Operator-SDK, you grant these permissions by adding +kubebuilder

annotations to the code.

Update the annotations that precede the BlockchainReconciler main Reconcile

function so that they look like the ones in Listing 5-10.

Listing 5-10.  The kubebuilder Annotations that Manage RBAC

//+kubebuilder:rbac:groups=learn.gocrazy.com,resources=blockchains,verbs=

get;list;watch;create;update;patch;delete

//+kubebuilder:rbac:groups=learn.gocrazy.com,resources=blockchains/

status,verbs=get;update;patch

//+kubebuilder:rbac:groups=learn.gocrazy.com,resources=blockchains/

finalizers,verbs=update

//+kubebuilder:rbac:groups=apps,resources=statefulsets,verbs=get;list;

watch;create;update;patch;delete

Note that the last annotation grants the controller the rights to manage

statefulsets resources.

To learn more about RBAC and annotations, refer to https://kubebyexample.

com/learning-paths/operator-framework/operator-sdk-go/rbac-operator-

authorization.

Now you can implement the reconciliation logic to handle StatefulSet. You need to

update the Reconcile function, as shown in Listing 5-11.

Listing 5-11.  Updating the BlockchainReconciler Main Function

// Check if the statefulset already exists, if not create a new one

 foundSts := &appsv1.StatefulSet{}

 �err = r.Get(context.TODO(), types.NamespacedName{Name: blockchain.Name,

Namespace: blockchain.Namespace}, foundSts)

 if err != nil && errors.IsNotFound(err) {

 // Create a new StatefulSet

 sts := r.ReconcileStatefulSet(blockchain)

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

https://kubebyexample.com/learning-paths/operator-framework/operator-sdk-go/rbac-operator-authorization
https://kubebyexample.com/learning-paths/operator-framework/operator-sdk-go/rbac-operator-authorization
https://kubebyexample.com/learning-paths/operator-framework/operator-sdk-go/rbac-operator-authorization

239

 err = r.Client.Create(context.TODO(), sts)

 if err != nil {

 �log.Println("Failed to create new StatefulSet", err,

"Namespace", sts.Namespace, "Name", sts.Name)

 return reconcile.Result{}, err

 }

 // StatefulSet created successfully - return and requeue

 return reconcile.Result{Requeue: true}, nil

 } else if err != nil {

 log.Println("Failed to get StatefulSet", err)

 return reconcile.Result{}, err

 }

Note the following about this code:

	 1.	 First, it checks if a StatefulSet with the same name in the target

namespace already exists.

	 2.	 If not, it creates one.

	 3.	 If Statefulset already exists, the code will update it, as you will

see soon.

The ReconcileStatefulSet function is not implemented yet. Listing 5-12 adds it.

Listing 5-12.  The ReconcileStatefulSet Function

func (r *BlockchainReconciler) ReconcileStatefulSet(b *learnv1alpha1.

Blockchain) *appsv1.StatefulSet {

 log.Println("Creating a new StatefulSet")

 // Make sure to run at least 1 replicas

 if b.Spec.Replicas == nil {

 b.Spec.Replicas = pointer.Int32(1)

 }

 // provisioning a PVC to store this statefulset's data

 pvc := v1.PersistentVolumeClaim{

 ObjectMeta: metav1.ObjectMeta{

 Name: "data",

 },

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

240

 Spec: v1.PersistentVolumeClaimSpec{

 �AccessModes: []v1.PersistentVolumeAccessMode{v1.

ReadWriteOnce},

 StorageClassName: pointer.String("standard"),

 Resources: v1.ResourceRequirements{

 Requests: v1.ResourceList{

 �v1.ResourceStorage: apiResource.MustParse(fmt.

Sprintf("%dGi", 1)),

 },

 },

 },

 }

 // Specifying resources for the main container

 reqs := &v1.ResourceRequirements{

 Limits: v1.ResourceList{

 "cpu": apiResource.MustParse("500m"),

 "memory": apiResource.MustParse("1Gi"),

 },

 Requests: v1.ResourceList{

 "cpu": apiResource.MustParse("500m"),

 "memory": apiResource.MustParse("1Gi"),

 },

 }

 sts := &appsv1.StatefulSet{

 ObjectMeta: metav1.ObjectMeta{

 Name: b.Name,

 Namespace: b.Namespace,

 },

 Spec: appsv1.StatefulSetSpec{

 Replicas: b.Spec.Replicas,

 Selector: &metav1.LabelSelector{

 MatchLabels: b.ObjectMeta.Labels,

 },

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

241

 Template: corev1.PodTemplateSpec{

 ObjectMeta: metav1.ObjectMeta{

 Labels: b.ObjectMeta.Labels,

 },

 Spec: corev1.PodSpec{

 Containers: []corev1.Container{{

 Image: b.Spec.Image,

 ImagePullPolicy: "Always",

 Name: "app",

 Command: b.Spec.Command,

 Args: b.Spec.ClientArgs,

 Ports: []corev1.ContainerPort{{

 ContainerPort: 30303,

 Name: "p2p",

 Protocol: "TCP",

 }, {

 ContainerPort: 8545,

 Name: "api",

 Protocol: "TCP",

 }},

 Resources: *reqs,

 VolumeMounts: []corev1.VolumeMount{{

 Name: "data",

 MountPath: "/data",

 }},

 }},

 },

 },

 VolumeClaimTemplates: []v1.PersistentVolumeClaim{

 pvc,

 },

 },

 }

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

242

 // Set Learn instance as the owner and controller

 controllerutil.SetControllerReference(b, sts, r.Scheme)

 return sts

}

Don’t forget to update the import statements in the blockchain_controller.go file.

Make sure the following dependencies are included (see Listing 5-13).

Listing 5-13.  Importing the Required Dependency from the Kubernetes Go SDK

import (

 "context"

 "fmt"

 appsv1 "k8s.io/api/apps/v1"

 corev1 "k8s.io/api/core/v1"

 v1 "k8s.io/api/core/v1"

 "k8s.io/apimachinery/pkg/api/errors"

 apiResource "k8s.io/apimachinery/pkg/api/resource"

 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"

 "k8s.io/apimachinery/pkg/types"

 "k8s.io/utils/pointer"

 "log"

 "sigs.k8s.io/controller-runtime/pkg/controller/controllerutil"

 "sigs.k8s.io/controller-runtime/pkg/reconcile"

 learnv1alpha1 "github.com/gocrazy/blockchain-operator/api/v1alpha1"

 "k8s.io/apimachinery/pkg/runtime"

 ctrl "sigs.k8s.io/controller-runtime"

 "sigs.k8s.io/controller-runtime/pkg/client"

)

There is quite a lot of code in the ReconcileStatefulSet function.

By creating the StatefulSet, this function implements a good part of the operator

logic. Here are the important pieces of this function:

	 1.	 First, you need to make sure that the StatefulSet will create

at least one pod (one replica) by affecting b.Spec.Replicas =

pointer.Int32(1) in case the Replicas field is not provided when

the user submitted the custom resource.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

243

	 2.	 Second, you create a PersistentVolumeClaim object using the

standard storage class with the name data and 1Gi of initial

storage request.

	 3.	 Then, you create a ResourceRequirements object, where you

request 500 millicores of CPU and 1Gi of memory to be allocated

to the main container running the client blockchain.

Note that these values are actually too low to properly run

a blockchain client and they are used only for the sake of

illustration.

Be sure to consider the resource requirements for the blockchain

software that you intend to run (see https://geth.ethereum.

org/docs/getting-started/hardware-requirements for

instance).

Also keep in mind that, even if Minikube is for local development

purposes, it can be started with specific resource allocation by

using the --memory and --cpus flags.

	 4.	 Next, create the StatefulSet using the appsv1.StatefulSet API

from the Kubernetes Go SDK.

Provide the StatefulSet name and namespace in the blockchain

custom resource. You set the number of pod replicas and apply

the custom resource labels.

Then, using Template.Spec, you add one container by specifying

the image, commands, and args defined in the custom resource.

The Ports and Resources for now have been hard-coded as part

of the function. You’ll update these parts very soon.

You then configure the storage by referencing the

PersistentVolumeClaim you created earlier and making sure the

blockchain main container is allowed to read and write to that

storage by mounting it to the /data path.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

https://geth.ethereum.org/docs/getting-started/hardware-requirements
https://geth.ethereum.org/docs/getting-started/hardware-requirements

244

	 5.	 Finally, use the controllerutil.SetControllerReference

function to indicate that the StatefulSet resource is in fact

managed by a higher-level resource, which is your Blockchain

custom resource. This has the direct consequence that whenever

the parent custom resource is deleted, the child StatefulSet

resource will also be automatically deleted.

Time for a test!

Run make update to generate and install every asset, build and deploy the new

controller, and restart the controller manager.

Then create the custom resource in Minikube using kubectl apply -f config/

samples/learn_v1alpha1_blockchain.yaml.

You can observe the changes in action by interacting with Lens.

Navigate to the Pods tab and note that the blockchain-sample-0 pod is running.

Check the logs for the app container and ta-da! The Ethereum Goerli testnet is running

in your Minikube local cluster (see Figure 5-13).

Figure 5-13.  Ethereum Goerli running in Minikube

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

245

You can also execute a shell on the pod and run a few commands. Note that the Geth

files are found in the data directory that is mounted to your container.

If you execute the du -h /data command at regular intervals, you should see that

the disk usage under /data/geth/lightchaindata keeps increasing as new blocks are

produced and stored (see Figure 5-14).

Figure 5-14.  Opening a shell on the “app” container

Finally, browse to the Persistent Volume Claim and Persistent Volume tabs and

observe the child resources have been created there (see Figures 5-15 and 5-16).

Figure 5-15.  Persistent Volume Claim child resource

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

246

Figure 5-16.  Persistent Volume child resource

�Interacting with the JSON-RPC API
As stated at the beginning of this chapter, the goal is to run EVM-compatible

blockchains.

In that regard, those blockchains should adhere to the Ethereum JSON-RPC API

https://geth.ethereum.org/docs/interacting-with-geth/rpc such that it should

be possible to call the RPC methods and process the API results in the same fashion

regardless of the actual concrete blockchain client managed by the operator.

You can do a simple test by calling the eth_blockNumber rpc method. This is a

simple method that does not require parameters and returns the block number at the tip

of the chain.

In order to do this, you need to start your Geth client with a few more arguments. Update

the sample resource located at config/samples/learn_v1alpha1_blockchain.yaml and

add the new client arguments. For clarity, I reproduced the full spec in Listing 5-14.

Listing 5-14.  Enabling the HTTP Server on the Blockchain Resource

spec:

 replicas: 1

 image: ethereum/client-go:stable

 command: ['geth']

 client-args:

 - '--goerli'

 - '--syncmode=light'

 - '--cache=128'

 - '--datadir=data'

 - '--http'

 - '--http.api=eth,net,web3'

 - '--log.debug=true'

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

https://geth.ethereum.org/docs/interacting-with-geth/rpc

247

Adding these configs will enable the HTTP server for the eth, net, and web3

namespaces of the Geth json-rpc API. The API will be available on the default

port, 8545.

Now, since your operator controller does not support updates yet (you will add this

feature in the coming sections), you need to restart from a clean slate, before submitting

your changes.

Go ahead and delete the blockchain-sample custom resource using Lens. This

should automatically remove the child resources: the statefulset, the replicaset, and

the pod. However, the persistent volume claim resource won’t be deleted automatically.

You need to delete it manually.

Next, apply the custom resource again using the following:

kubectl apply -f config/samples/learn_v1alpha1_blockchain.yaml

�Using Port-Forward
The blockchain-sample-0 pod should be back in action. To reach out to its json-rpc

API, you can use a convenient Kubernetes feature known as port-forwarding (see

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-

access-application-cluster/).

As mentioned earlier, the client API is available on port 8545. You will map the local

8545 port to the same port on the pod by opening another terminal:

kubectl port-forward blockchain-sample-0 8545:8545

From now on, you should be able to reach the json-rpc API by sending curl requests

to http://localhost:8545. You can try it using the snippet in Listing 5-15.

Listing 5-15.  Testing the Blockchain with a Sample eth_blockNumber Request

curl http://localhost:8545/ \

 -X POST \

 -H "Content-Type: application/json" \

 --data '{"method":"eth_blockNumber","params":[],"id":1,"jsonrpc":"2.0"}'

You should get a response similar to this one (the value will be different of course):

{"jsonrpc":"2.0","id":1,"result":"0x73dcd0"}

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

248

I encourage you to explore the json-rpc API. You will take another look at it when

implementing health checks for your blockchain pods in the coming sections.

For now, let’s go back to the controller and tidy up the loose ends.

�Parameterizing Resources and Ports
In the previous sections, you hard-coded a couple of settings for StatefulSet in

the ReconcileStatefulSet function—namely the resources requirements and the

container ports.

You now learn how to expose those details via the Blockchain CRD.

You’ll see how to update the BlockchainSpec struct and add new fields to accommodate

the changes. After the Command field, make sure to add the new fields in Listing 5-16.

Listing 5-16.  Improving the BlockchainSpec

// number of cpus to allocate to the main blockchain container

Cpu string 'json:"cpu,omitempty"'

// memory to allocate to the main blockchain container

Memory string 'json:"memory,omitempty"'

// container port for the json-rpc api

ApiPort int32 'json:"api-port,omitempty"'

Now you need to update the ReconcileStatefulSet function and make the

necessary changes to account for the newly added fields.

After the pvc definition, add the logic to set default values for the CPU and memory

(see Listing 5-17).

Listing 5-17.  Reconciling CPU and Memory

// Specifying default resources for the main container

if b.Spec.Cpu == "" {

 b.Spec.Cpu = "500m"

}

if b.Spec.Memory == "" {

 b.Spec.Cpu = "1Gi"

}

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

249

As you know, in Golang non-initialized primitive type variables are assigned a

default value (empty string for string types, 0 for numeric types, so forth), so you need

to check on the default value and reassign the concrete value passed via the custom

resource.

You can use these new fields when creating the v1.ResourceRequirements object

(see Listing 5-18).

Listing 5-18.  Specifying Resources

reqs := &v1.ResourceRequirements{

 Limits: v1.ResourceList{

 "cpu": apiResource.MustParse(b.Spec.Cpu),

 "memory": apiResource.MustParse(b.Spec.Memory),

 },

 Requests: v1.ResourceList{

 "cpu": apiResource.MustParse(b.Spec.Cpu),

 "memory": apiResource.MustParse(b.Spec.Memory),

 },

}

Similarly, you need to add logic to handle a default value for the API port (see

Listing 5-19).

Listing 5-19.  Reconciling the API Port

if b.Spec.ApiPort == 0 {

 b.Spec.ApiPort = 8545

}

That should be it. Run make update again to deploy the updated CRD and the

controller.

Next, navigate to the Pods tab in Lens, click the blockchain-sample-0 pod, and

then click the pencil icon in the window. It that opens and shows the pod specification.

Visually confirm that the correct config is applied to that pod (see Figure 5-17).

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

250

Figure 5-17.  Container settings correctly configured

�Implementing the Update Logic
How does it feel?

Not too bad, right? You have an operator that can abstract a lot of the complexity of

setting up and configuring a statefulset and its associated storage. As well, you have

a workflow that makes it very easy to update your Blockchain API and test your changes

quickly in Minikube.

However, the implementation is lacking the ability to update the derived resources

whenever the custom resource changes.

Now you’ll add this feature to your controller logic.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

251

In the Reconcile function of the blockchain_controller.go file, after this

code block:

...

} else if err != nil {

 log.Println("Failed to get StatefulSet", err)

 return reconcile.Result{}, err

}

Add the code lines in Listing 5-20.

Listing 5-20.  Reconciling Subparts of the StatefulSet

// sts already exists. Updating to reflect the Blockchain spec

// Ensure the number of replicas matches the spec

r.reconcileReplicas(blockchain, foundSts)

// Ensure the container image size is the same as the spec

r.reconcileImage(blockchain, foundSts)

// Ensure the container ClientArgs are the same as the spec. The order does

not matter

r.reconcileArgs(blockchain, foundSts)

// Ensure the container command is the same as the spec. The order

does matter

r.reconcileCommand(blockchain, foundSts)

// Ensure the container resources are the same as the spec.

r.reconcileResources(blockchain, foundSts)

// Ensure the container ports are the same as the spec.

// r.reconcileContainerPorts(blockchain, foundSts)

return ctrl.Result{}, nil

As you see, for each property you expose via the Blockchain CRD, you want to have a

dedicated reconcile function that receives a pointer to the learnv1alpha1.Blockchain

struct and to the existing StatefulSet.

Listing 5-21 shows the implementation of the reconcileReplicas function.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

252

Listing 5-21.  Reconciling the Replicas Field

func (r *BlockchainReconciler) reconcileReplicas(blockchain *learnv1alpha1.

Blockchain, sts *appsv1.StatefulSet) (ctrl.Result, error) {

 specReplicas := *blockchain.Spec.Replicas

 stsReplicas := *sts.Spec.Replicas

 if stsReplicas != specReplicas {

 sts.Spec.Replicas = &specReplicas

 err := r.Client.Update(context.TODO(), sts)

 if err != nil {

 �log.Println("Failed to update StatefulSet Replicas", err,

"Namespace", sts.Namespace, "Name", sts.Name)

 return reconcile.Result{}, err

 }

 log.Println("Spec updated", "Replicas", *sts.Spec.Replicas)

 }

 // Spec unchanged or updated - return and requeue

 return reconcile.Result{Requeue: true}, nil

}

The logic is straightforward:

	 1.	 The code reads the replicas value from the deployed custom

resource.

	 2.	 The code reads the replicas value from the existing

StatefulSet.

	 3.	 If the two values are different, the code updates the replicas value

for the StatefulSet.

	 4.	 Then, the code sends a message to the Kubernetes API server

via the BlockchainReconciler and requests to update the

StatefulSet. In turn, this will result in an increase or a decrease

of the number of pods and persistent volume claims running in

the ethereum namespace.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

253

At a macro level, the logic will be the same for each reconcile* function. That’s

about reading the relevant value from the deployed custom resources and reading the

corresponding value from the running statefulset, then comparing those two values. If

there is a mismatch, the code requests an update to StatefulSet.

Go ahead and implement the reconcileImage function (see Listing 5-22).

Listing 5-22.  Reconciling the Image Field

func (r *BlockchainReconciler) reconcileImage(blockchain *learnv1alpha1.

Blockchain, sts *appsv1.StatefulSet) (ctrl.Result, error) {

 specImage := blockchain.Spec.Image

 stsImage := sts.Spec.Template.Spec.Containers[0].Image

 if stsImage != specImage {

 sts.Spec.Template.Spec.Containers[0].Image = specImage

 err := r.Client.Update(context.TODO(), sts)

 if err != nil {

 �log.Println("Failed to update StatefulSet Image", err,

"Namespace", sts.Namespace, "Name", sts.Name)

 return reconcile.Result{}, err

 }

 }

 return reconcile.Result{Requeue: true}, nil

}

As you can see, the function follows the same logic as before, but this time you read

the Image value set on the first (single) container managed by the StatefulSet.

The next two update functions—reconcileArgs and reconcileCommand—are just

slightly more complicated, as the values you need to compare are slices.

To help with the comparison, you’ll use a short compareSlices helper function.

This function compares two string slices and reports whether they are equal. You will

parameterize this function with a withPreOrdering bool parameter to indicate whether

the order of the elements also matters when doing the comparison.

Here it is in Listing 5-23.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

254

Listing 5-23.  A compareSlices Helper Function

func compareSlices(s1 []string, s2 []string, withPreOrdering bool) bool {

 if len(s1) != len(s2) {

 return false

 }

 // Sort the slices so that their elements are in the same order

 if withPreOrdering {

 sort.Strings(s1)

 sort.Strings(s2)

 }

 // Compare the elements of the sorted slices

 for i, v := range s1 {

 if v != s2[i] {

 return false

 }

 }

 return true

}

	 1.	 The function first checks if the lengths of the slices match. If

they don’t, the slices can’t be equal so the code returns false

prematurely.

	 2.	 The code then sorts the slices only if withPreOrdering is passed as

true (the default is false). By doing this, ["a", "b"] and ["b",

"a"] are considered equal.

	 3.	 Then the code loops over the elements and compares them.

	 4.	 The code returns true if it reaches the end of the function (which

means all the comparisons succeeded).

Thanks to this helper function, you can now implement reconcileArgs and

reconcileCommand easily.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

255

For the former one, you use compareSlices with preOrdering=true because the

order of the arguments passed to the client software does not matter and should not

cause the pods to restart.

By ordering the elements before comparing them, you ensure that the elements are

compared one-to-one (see Listing 5-24).

Listing 5-24.  Reconciling the ClientArgs Field

func (r *BlockchainReconciler) reconcileArgs(blockchain *learnv1alpha1.

Blockchain, sts *appsv1.StatefulSet) (ctrl.Result, error) {

 specClientArgs := blockchain.Spec.ClientArgs

 stsClientArgs := sts.Spec.Template.Spec.Containers[0].Args

 argsEquals := compareSlices(specClientArgs, stsClientArgs, true)

 if !argsEquals {

 sts.Spec.Template.Spec.Containers[0].Args = specClientArgs

 err := r.Client.Update(context.TODO(), sts)

 if err != nil {

 �log.Println("Failed to update StatefulSet ClientArgs", err,

"Namespace", sts.Namespace, "Name", sts.Name)

 return reconcile.Result{}, err

 }

 }

 return reconcile.Result{Requeue: true}, nil

}

Listing 5-25 shows the implementation of the reconcileCommand function.

Listing 5-25.  Reconciling the Command Field

func (r *BlockchainReconciler) reconcileCommand(blockchain *learnv1alpha1.

Blockchain, sts *appsv1.StatefulSet) (ctrl.Result, error) {

 specCommand := blockchain.Spec.Command

 stsContainerCommand := sts.Spec.Template.Spec.Containers[0].Command

 argsEquals := compareSlices(specCommand, stsContainerCommand, false)

 if !argsEquals {

 sts.Spec.Template.Spec.Containers[0].Command = specCommand

 err := r.Client.Update(context.TODO(), sts)

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

256

 if err != nil {

 �log.Println("Failed to update StatefulSet Command", err,

"Namespace", sts.Namespace, "Name", sts.Name)

 return reconcile.Result{}, err

 }

 }

 return reconcile.Result{Requeue: true}, nil

}

Finally, you will implement the reconcileResources function. You will not update

Cpu and Memory independently, but rather consider that any mismatch of Cpu or Memory

with respect to the custom resource spec should trigger a reconciliation (see Listing 5-26).

Listing 5-26.  Reconciling the CPU and Memory Fields

func (r *BlockchainReconciler) reconcileResources(blockchain

*learnv1alpha1.Blockchain, sts *appsv1.StatefulSet) (ctrl.Result, error) {

 specCpu := blockchain.Spec.Cpu

 stsContainerResources := sts.Spec.Template.Spec.Containers[0].Resources

 stsResourceRequestCpu := stsContainerResources.Requests.Cpu().String()

 specMemory := blockchain.Spec.Memory

 �stsResourceRequestMemory := stsContainerResources.Requests.Memory().

String()

 �if specCpu != stsResourceRequestCpu || specMemory !=

stsResourceRequestMemory {

 reqs := &v1.ResourceRequirements{

 Limits: v1.ResourceList{

 "cpu": apiResource.MustParse(specCpu),

 "memory": apiResource.MustParse(specMemory),

 },

 Requests: v1.ResourceList{

 "cpu": apiResource.MustParse(specCpu),

 "memory": apiResource.MustParse(specMemory),

 },

 }

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

257

 sts.Spec.Template.Spec.Containers[0].Resources = *reqs

 err := r.Client.Update(context.TODO(), sts)

 if err != nil {

 �log.Println("Failed to update StatefulSet Resources", err,

"Namespace", sts.Namespace, "Name", sts.Name)

 return reconcile.Result{}, err

 }

 }

 return reconcile.Result{Requeue: true}, nil

}

You only have the reconcileContainerPorts function left to implement. I leave this

one for you to implement as an exercise! The logic is the same as the other functions. The

only detail to consider more carefully is how you select the container port to compare

when reading from the StatefulSet, since you are exposing two ports (api and p2p).

Once this is done, go ahead and run make update to redeploy the controller.

Then, edit the spec in the learn_v1alpha1_blockchain.yaml file, try changing the

number of replicas or the Cpu values for instance, and submit the modified sample

resource to the cluster via kubectl.

You can observe the changes in Lens, as shown in see Figure 5-18.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

258

Figure 5-18.  An update to the custom resource triggering the creation of a
new replica

Well done! With the implementation of the update logic, your blockchain operator is

becoming more mature.

Of course, there are many things you could do to improve the blockchain spec and

the reconciliation logic. I can only encourage you to continue on this path and improve

the code you’ve added to blockchain_controller.go.

It’s now time to turn your attention to the topic of health checks.

�Implementing Health Checks
Container health checks are an essential aspect of managing applications in a

Kubernetes cluster.

In a containerized environment, it is important to ensure that the application

running inside the container is healthy and functioning as expected.

Health checks are built on top of a Kubernetes mechanism known as probes.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

259

There are two types of probes: readiness probes and liveness probes. The former

determines whether the container is ready to serve traffic while the latter determines

whether the container is still alive and functioning correctly.

Health checks involve periodically probing the container to verify that the

application is running as expected.

In practice, this is achieved by running another container (another application)

alongside the main container within a single pod and having this second container (also

referred to as a “sidecar” container) send requests to the main container and check its

responses.

If the responses are satisfying, the sidecar container will return HTTP OK to the

readiness probe and the entire pod will be marked healthy.

Any other response code will notify Kubernetes that the pod is not healthy and

should not be used to serve traffic.

Note that the sidecar container can reach the main container using the loop-

back address (localhost) given that both containers are running alongside within the

same pod.

(Since the health-check container is an autonomous application, you deploy it

independently of the blockchain operator. For that purpose, we create a distinct mini

sub-project to develop it.)

�Creating a Minimal Go HTTP Server
Go ahead and create a new project named health-checks.

The goal here is to illustrate the practical steps to implement and configure health

checks with readiness probes. As such, this project is small. You’ll use it in your main

blockchain-operator project.

A health check application is essentially a server application that exposes a single

endpoint, performs the required checks, and returns an HTTP status code.

The program prompts ChatGPT to generate minimal Go HTTP server code to start.

Here is the prompt:

Can you generate a template code for a minimal go http server listening on

port 8080. The server implements a single API endpoint called "readiness".

Listing 5-27 shows the code that ChatGPT generated.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

260

Listing 5-27.  A Minimal HTTP Server Generated by AI

package main

import (

 "log"

 "net/http"

)

func readinessHandler(w http.ResponseWriter, r *http.Request) {

 w.WriteHeader(http.StatusOK)

 w.Write([]byte("OK"))

}

func main() {

 http.HandleFunc("/readiness", readinessHandler)

 log.Println("Starting server on :8080...")

 if err := http.ListenAndServe(":8080", nil); err != nil {

 log.Fatal(err)

 }

}

This is all you need to start. Save this snippet of code in a main.go file. You will also

add a minimal Dockerfile to build the health-check image (see Listing 5-28).

Listing 5-28.  The Dockerfile that Builds the Health-Check Image

Use an official Go 1.19 module image as a parent image

FROM golang:1.19 as builder

WORKDIR /workspace

COPY go.mod go.mod

COPY go.sum go.sum

RUN go mod download

COPY main.go main.go

Build the Go app

RUN go build -o server .

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

261

RUN CGO_ENABLED=0 GOOS=${TARGETOS:-linux} GOARCH=${TARGETARCH} go build -a -o

server main.go

Expose port 8080 to the outside world

EXPOSE 8080

Define environment variables

ENV PORT=8080

Use distroless as minimal base image to package the manager binary

Refer to https://github.com/GoogleContainerTools/distroless for

more details

FROM gcr.io/distroless/static:nonroot

WORKDIR /

COPY --from=builder /workspace/server .

USER 65532:65532

Run the Go app when the container starts

CMD ["/server"]

Like you did for the blockchain operator, you will need access to a Docker registry to

publish and serve the health-check Docker image.

Be sure to create a registry for the health-check application and name it

blockchain-health-checks.

For future reference, use the following commands to build and publish the

health-check Docker image to your registry:

•	 docker build -t <dockerhub-account>/blockchain-health-

checks:latest

•	 docker push <dockerhub-account>/blockchain-health-

checks:latest

Or create a makefile and save those commands in it for convenience.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

262

�Performing a net_peerCount Health Check
As mentioned earlier, you are not going to develop a complex application in this last

section. All you need to understand is the principle of having a health-check sidecar

container to respond to Kubernetes readiness probes to only allow the traffic to be

routed toward healthy pods among a group of pod replicas.

Given this consideration, the health-checks application will only perform a single

check—whether or not the blockchain node running as the main container in the pod

has enough peers.

This is in fact a relevant check for a blockchain node, since without a decent number

of peers, the node cannot receive new blocks fast enough from the peer-to-peer network.

As a direct consequence, the node would lag behind the other nodes that compose the

decentralized network. It would serve out-of-sync or inconsistent data.

You certainly don’t want that, so add a peer count check to your application and

return HTTP OK only if the number of peers is above a defined number; otherwise, have

it return HTTP 503 (service unavailable)

To request the number of peers connected to a node, you can send a net_peerCount

HTTP request to the node. This is a json-rpc API that should be available on most EVM-

compatible networks. In order to send json-rpc requests to the node, you can use the

convenient github.com/ethereum/go-ethereum/ethclient library.

Again, use ChatGPT to generate the appropriate code:

Here is the prompt:

can you generate some code using "github.com/ethereum/go-ethereum/

ethclient" that sends a 'net_peerCount' request to a node reachable at

http://localhost:8545 and assess whether the number of peers returned is

above a defined threshold ?

Listing 5-29 shows what you get.

Listing 5-29.  HTTP Request and Comparison with the AI-Generated Result

package main

import (

 "context"

 "fmt"

 "log"

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

263

 "math/big"

 "github.com/ethereum/go-ethereum/ethclient"

)

func main() {

 // Connect to the Ethereum node

 client, err := ethclient.Dial("http://localhost:8545")

 if err != nil {

 log.Fatal(err)

 }

 // Send the net_peerCount request

 peerCount, err := client.NetPeerCount(context.Background())

 if err != nil {

 log.Fatal(err)

 }

 // Define the threshold for minimum number of peers

 minPeers := big.NewInt(10)

 // Compare the peer count with the minimum threshold

 if peerCount.Cmp(minPeers) > 0 {

 �fmt.Printf("Number of peers (%d) is above the threshold (%d)\n",

peerCount, minPeers)

 } else {

 �fmt.Printf("Number of peers (%d) is below the threshold (%d)\n",

peerCount, minPeers)

 }

}

This is a pretty good starting point for the purposes here. Just one thing is incorrect

and does not compile. That is peerCount.Cmp(minPeers), because peerCount is a uint64

and does not have a Cmp method.

You will now incorporate this code as part of the existing readinessHandler function

and make a few modifications.

Listing 5-30 shows the updated code of the readinessHandler function.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

264

Listing 5-30.  Updating the readinessHandler Function

func readinessHandler(w http.ResponseWriter, r *http.Request) {

 client, err := ethclient.Dial("http://localhost:8545")

 if err != nil {

 �http.Error(w, fmt.Sprint("Failed to connect to localhost: %v",

err), http.StatusServiceUnavailable)

 return

 }

 // first query the latest block

 peerCount, err := client.PeerCount(context.Background())

 if err != nil {

 �http.Error(w, fmt.Sprint("Failed to read peer count: %v", err),

http.StatusServiceUnavailable)

 return

 }

 // Define the threshold for minimum number of peers

 var minPeers uint64 = 10

 // Compare the peer count with the minimum threshold

 if peerCount < minPeers {

 �http.Error(w, fmt.Sprint("Number of peers is too low: %d",

peerCount), http.StatusServiceUnavailable)

 return

 }

 w.WriteHeader(http.StatusOK)

 w.Write([]byte("OK"))

}

Let’s see what is happening here:

	 1.	 The code establishes a connection to the node running in the

main container by connecting to a localhost on port 8545.

	 2.	 Then it sends a net_peerCount HTTP request (see https://geth.

ethereum.org/docs/interacting-with-geth/rpc/ns-net#net-

peercount) to the node via the client.PeerCount helper function.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-net#net-peercount
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-net#net-peercount
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-net#net-peercount

265

	 3.	 Finally, it compares the peerCount result against a defined

threshold and returns an HTTP OK response if it passes the test.

	 4.	 In all the other cases, it returns HTTP 503 Service Unavailable.

Also, don’t forget to update the import statement and make sure to include github.

com/ethereum/go-ethereum/ethclient, as shown in Listing 5-31.

Listing 5-31.  Updating the import Statement

import (

 "context"

 "fmt"

 "log"

 "net/http"

 "github.com/ethereum/go-ethereum/ethclient"

)

And that’s it. You are done with the health-checks application.

As an exercise, I suggest the following improvements:

	 1.	 The minPeers threshold variable is hard-coded in the

readinessHandler function. Update the function to read the

value from an environment variable so that it can be passed from

outside the container.

	 2.	 Implement additional checks and make sure all the checks

pass before returning HTTP OK. For instance, EVM-compatible

blockchains expose the https://ethereum.org/en/developers/

docs/apis/json-rpc/#eth_syncing json-rpc method, which can

be used to determine if the chain is synced or is lagging behind

the other peers of the network.

Make sure to build the image and host it in a public Docker registry.

You will now use it to configure a readiness probe in the Blockchain operator.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_syncing
https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_syncing

266

�Configuring the Readiness Probe
Back to the blockchain-operator project.

In the ReconcileStatefulSet function, under the App container, you need to

configure a second container to run the health-checks image in the same pod as the

blockchain app (see Listing 5-32).

Listing 5-32.  Adding the health-checks Sidecar Container to the StatefulSet

{

Image: "<your-dockerhub-account>/blockchain-health-

checks:latest",

ImagePullPolicy: "Always",

Name: "health-checks",

Ports: []corev1.ContainerPort{{

 ContainerPort: 8080,

 Name: "readiness",

 Protocol: "TCP",

}},

ReadinessProbe: &v1.Probe{

 ProbeHandler: v1.ProbeHandler{

 HTTPGet: &v1.HTTPGetAction{

 Path: "/readiness",

 Port: intstr.IntOrString{

 IntVal: 8080,

 },

 },

 },

 PeriodSeconds: 5,

 SuccessThreshold: 3,

 FailureThreshold: 3,

 },

 }

Note that this code uses the ReadinessProbe field of the new container to configure a

readiness probe that will be executed every five seconds.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

267

The overall flow is as follows:

	 1.	 Every five seconds, Kubernetes will send a HTTP GET request to

the health-checks container on the /readiness endpoint.

	 2.	 In turn, the server application running in that container will

intercept the request and execute the readinessHandler function.

	 3.	 As part of the logic defined in the readinessHandler function,

the server will send the net_peerCount json-rpc Post request

to http://localhost:8545, where the HTTP server of your

blockchain container app is running.

	 4.	 Upon receiving the response from the blockchain node:

If the number of peers connected to the blockchain client is above

the threshold, the health-checks app will return HTTP OK to

Kubernetes.

Otherwise, the health-checks app will return HTTP 503 to

Kubernetes.

•	 If the readiness probe receives an HTTP 503 status code three

times in a row, the entire pod is marked as unhealthy and as a

consequence Kubernetes won’t send any traffic to it.

•	 However, if the readiness probe receives an HTTP OK status code

three times in a row, the entire pod is marked as healthy again

and Kubernetes will start sending traffic to it.

Give the workflow a try. Run make update again and check the state in Lens.

Here is what you can observe:

	 1.	 At first, a newly created pod will be marked as unhealthy. This is

because it takes a little time for the HTTP server to start up within

the Geth client. It also takes a little time for the node to connect to

the peer-to-peer network and pass the threshold (see Figure 5-19).

	 2.	 After a few seconds, Geth is bootstrapped and the readiness probe

will start to receive success notifications. Eventually, the two

containers in the pod turn green and the entire pod is marked as

healthy (see Figure 5-20).

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

268

Figure 5-19.  A readiness probe failing at startup

Figure 5-20.  All containers are healthy and the pod can handle traffic

On that point, this chapter concludes. There are plenty of features you could

incorporate into your operator to make it more powerful. I suggest a few here:

	 1.	 Leverage service-, endpoint-, and ingress-native resources as part

of the operator reconciliation logic to expose the pods internally

and externally to the cluster.

	 2.	 Take advantage of the horizontal pod autoscaler resources to

upscale or downscale the number of replicas based on metrics like

CPU and memory usage.

	 3.	 Expose an API in the Blockchain spec to let the user of your CRD

choose which class of storage they want to use.

Kubernetes is a fantastic piece of machinery and I cannot wait to see what you build

with it.

�Summary
This chapter reviewed and implemented a lot of concepts:

	 1.	 It started by reviewing concepts related to a standard Kubernetes

deployment.

	 2.	 Then it showed you how to deploy standard pods and services on

Kubernetes.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

269

	 3.	 It moved to implementing a custom operator, interacting with a

locally deployed blockchain.

	 4.	 It showed you how to fine-tune the operator to properly propagate

updates.

	 5.	 Finally, the chapter showed you how to implement a custom

health check for your operator.

Chapter 5 Writing a Kubernetes Operator to Run EVM-Compatible Blockchains

271

CHAPTER 6

Go Beyond : Connecting
to C for a Performance
Boost

Once we accept our limits, we go beyond them.

—Albert Einstein

One of the features of Go that hasn’t been covered much so far is its out-of-the-box

integration with other native languages, like C, or even more native, like metal for GPU

programming on macOS-based machines.

© Nicolas Modrzyk 2023
N. Modrzyk, Go Crazy, https://doi.org/10.1007/978-1-4842-9666-0_6

https://doi.org/10.1007/978-1-4842-9666-0_6#DOI

272

This means you’ll get a little out of your comfort zone, especially having all those

battery-included memory safety nets provided by Go, but you also get to do more, and

differently.

As specified in the official documentation, using C is often not the best choice, and

maybe having a server running in another language or simply writing a new version of

your favorite algorithm is the best route.

But you may be short on time or have a proven library with proper C bindings, yet

you want the Go code and its build framework to handle clean interfacing.

So here goes—this chapter covers C, C++, and metal code integration with your Go

code, so you can achieve anything from image computations to simple GPU computing.

�C is for Change
To improve is to change; to be perfect is to change often.

—Winston Churchill

Cgo is the GoLang core library that enables you to create Go programs calling properly

interfaced C code.

To use Cgo, you basically write normal Go code that imports a pseudo-package

called C. The Go code can then refer directly to C functions and types such as C.int,

variables such as C.stdout, or functions such as C.putchar.

�Calling C
This first example prints a statement on the output. It simply calls the C code directly

from your main Go function.

You should still be in the GoLang editor, and the C code is inlined in the hello.go

file, as shown in Listing 6-1.

Listing 6-1.  Calling the Inline C Code

package main

//#include<stdio.h>

//void inC() {

// printf("Once we accept our limits, we go beyond them!\n");

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

273

//}

import "C"

func main() {

 C.inC()

}

See how the C code is written in the Go file, each line prepended with //? The C

code uses printf from the stdio core C library, so the header to include the C package

stdio.h is included at the top of the inline C code.

There is nothing extra to set up and the executed code indeed prints the quote on the

standard output.

Note the use of the Go import C, which tells Go which part of the code is coming from

C and should be resolved after compiling the inline C code.

�Calling C Code Located in a C File
This second example expands on the first one, this time splitting the C code into a

separate C file. See Listing 6-2.

Listing 6-2.  C Code in a Separate File

#include<stdio.h>

void inCFile() {

 printf("Once we accept our limits, we go beyond them!\n");

}

The Go code in its own hello.go file and calls the C code from the separate file.

Note that there is no reference to the filename of the C code, as long as the code is in

the same folder, and Cgo resolves things automatically, as shown in Listing 6-3.

Listing 6-3.  Go Calling C Code in Two Separate Files

package main

/*

void inCFile();

*/

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

274

import "C"

func main() {

 C.inCFile()

}

Note that the signature of the C function is still included in the Go code. You will see

later in the chapter how to have a separate C header file to better the integration.

�C Code Calling Go Code
Still building on your impressive progress, you will now get the C code to call the Go

code, using Cgo imports in the C file; see Listing 6-4.

Listing 6-4.  C Code About to Call Go Code

#include<stdio.h>

#include "_cgo_export.h"

void inCFile() {

 printf("Once we accept our limits, we go beyond them!\n");

 callFromC();

}

Note how the pre-processing directive _cgo_export.h makes the Go function

available to the C code. Then the Go code builds on Listing 6-3, this time adding

a function that is exported using the //export annotation on a Go function (see

Listing 6-5).

Listing 6-5.  Exporting a Go Function for Use from C

package main

/*

#include<stdio.h>

void inCFile();

*/

import "C"

import "fmt"

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

275

func main() {

 fmt.Println("GO: I am about to call C.")

 C.inCFile()

}

//export callFromC

func callFromC() {

 fmt.Println("GO: C is calling me...")

}

Executing the code compiled from Listings 6-4 and 6-5 gives you the output of

Listing 6-6, where you can see statements coming from the C and Go code.

Listing 6-6.  Output of GO Calling C Calling Go

GO: I am about to call C.

Once we accept our limits, we go beyond them!

GO: C is calling me...

�Passing Parameters
You have been coding mostly without parameters so far. Let’s see how things work when

passing some strings to the C code. Listing 6-7 shows how the C code receives strings via

char pointers, char*.

Listing 6-7.  Using the Go String and Returning a C String to Go

#include<stdio.h>

#include "_cgo_export.h"

char* inCFile(char *str) {

 char *ret = "C String";

 printf("Received string from Go: %s\n", str);

 return ret;

}

You must be extra careful when writing the Go code because C strings take memory,

and this memory allocation and deallocation is not handled by the Go garbage collector.

You have to free memory allocated to C constructs manually after using it.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

276

Apart from memory management, Listing 6-8 also shows how to:

•	 Use C.CString to create a C string from a Go string

•	 Use C.GoString to create a Go string from a C string

Listing 6-8.  Passing Strings from Go to C to Go

package main

/*

#include<stdio.h>

#include <stdlib.h>

char* inCFile(char *str);

*/

import "C"

import (

 "fmt"

 "unsafe"

)

func main() {

 cstr := C.CString("Go string!")

 defer C.free(unsafe.Pointer(cstr))

 cString := C.inCFile(cstr)

 gostr := C.GoString(cString)

 fmt.Println("Received string from C: " + gostr)

}

Compiling and executing this new code gives the output in Listing 6-9.

Listing 6-9.  Output of the Strings Passing Program

Received string from Go: Go string!

Received string from C: C String

Make sure you see and understand that the defer call frees the memory allocated for

the C string, using a pointer reference.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

277

�Using a Header File
In this next example, Greet, you use a header file for the C file and reference that from

both the Go and C code.

You will also get the return value of the greeting, generated in the C code, via a

memory pointer, not directly by its value.

Listing 6-10 shows the contents of hello.h file and Listing 6-11 shows the C file.

Listing 6-10.  Greet Header, hello.h

int greet(const char *name, char *out);

Listing 6-11.  Greet C Code, hello.c

#include "hello.h"

#include <stdio.h>

int greet(const char *name, char *out) {

 return sprintf(out, "%s", name);

}

The C code itself is quite succinct; you use sprintf to format a string, and the output

of the formatting is a char* pointer. The returned value of the C code is the size of the

string located at the char pointer location.

Listing 6-12 shows the Go code, where C.malloc prepares a pointer to a string

(a char*), and C.GoBytes retrieves the string from the pointer and the size of the

returned value of the C call.

Listing 6-12.  Greet’s Go Code

package main

// #cgo CFLAGS: -Wall

// #include <stdlib.h>

// #include "hello.h"

import "C"

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

278

import (

 "fmt"

 "unsafe"

)

func main() {

 �name := C.CString("Einstein used to say: Once we accept our limits, we

go beyond them.")

 defer C.free(unsafe.Pointer(name))

 ptr := C.malloc(C.sizeof_char * 1024)

 defer C.free(unsafe.Pointer(ptr))

 size := C.greet(name, (*C.char)(ptr))

 b := C.GoBytes(ptr, size)

 fmt.Println(string(b))

}

This is a lot of extra work just for a simple string, but you should now understand

how to handle pointers to strings back and forth between C and Go.

�Using a C Struct from Go
The following example achieves the same output, except this time you use a C struct to

pass the data to the C code.

The C struct will be defined in the header file, as shown in Listing 6-13.

Listing 6-13.  Passing Data to C Code via a C Struct

struct Greetings {

 const char *name;

 const char *quote;

};

int greet(struct Greetings *g, char *out);

The C code simply prints a string using data from the C struct (see Listing 6-14).

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

279

Listing 6-14.  C Code Handling a C struct

#include "hello.h"

#include <stdio.h>

int greet(struct Greetings *g, char *out) {

 return sprintf(out, "%s used to say: %s", g->name, g->quote);

}

The Go code is more involved, but it uses the same pieces you have seen up to now

in this chapter:

•	 CString to create a C string from within Go

•	 C.free to release memory taken by the C string (no garbage

collection here)

•	 C.malloc to allocate memory for a pointer

The new pieces of Listing 6-15 are as follows:

•	 C.struct_Greetings is made accessible by Cgo from the C code of

Listing 6-13, namely the Greetings struct.

•	 C.GoBytes creates a C byte array with the C pointer and makes a Go

string out of it.

Listing 6-15.  Using C structs from Go

package main

// #cgo CFLAGS: -g -Wall

// #include <stdlib.h>

// #include "hello.h"

import "C"

import (

 "fmt"

 "unsafe"

)

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

280

func main() {

 name := C.CString("Einstein")

 defer C.free(unsafe.Pointer(name))

 quote := C.CString("Once we accept our limits, we go beyond them.")

 defer C.free(unsafe.Pointer(quote))

 g := C.struct_Greetings{

 name: name,

 quote: quote,

 }

 ptr := C.malloc(C.sizeof_char * 1024)

 defer C.free(unsafe.Pointer(ptr))

 size := C.greet(&g, (*C.char)(ptr))

 b := C.GoBytes(ptr, size)

 fmt.Println(string(b))

}

Unfortunately, there is no easy way to call and use a Go struct from C. Your best bet is

to copy fields back and forth between Go and C.

Note T he Cgo preprocessing seems to get confused when using separate .h and
.c files, but putting it all together in one file allows for using the typedef struct,
instead of struct, which makes for slightly cleaner Go code.

Listing 6-16 shows how to call the C struct from Go.

Listing 6-16.  Slightly Simpler with C Code Within Go

package main

// #include <stdio.h>

// #include <stdlib.h>

// #include <string.h>

// typedef struct {

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

281

// const char *name;

// const char *quote;

//} Greetings;

// int greet(Greetings *g, char *out) {

// return sprintf(out, "%s used to say: %s", g->name, g->quote);

//}

import "C"

import (

 "fmt"

 "unsafe"

)

func main() {

 name := C.CString("Einstein")

 defer C.free(unsafe.Pointer(name))

 quote := C.CString("Once we accept our limits, we go beyond them.")

 defer C.free(unsafe.Pointer(quote))

 g := C.Greetings{

 name: name,

 quote: quote,

 }

 ptr := C.malloc(C.sizeof_char * 1024)

 defer C.free(unsafe.Pointer(ptr))

 size := C.greet(&g, (*C.char)(ptr))

 b := C.GoBytes(ptr, size)

 fmt.Println(string(b))

}

This is not a surprise anymore: in a few pages, you will be dealing with writing code

and implementing squares and averages and other statistical functions running on the

GPU threads natively.

To prepare for this, you’ll have a little adventure computing squares in Go via C. This

exercise takes you directly to calling C library functions from Go.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

282

Listing 6-17 shows how you can call sqrt, the square root function, from the core C

math library.

Listing 6-17.  Calling C Library Functions Directly

package main

/*

#include <math.h>

*/

import "C"

import "fmt"

func main() {

 number := 32.0

 result := float64(C.sqrt(C.double(number)))

 fmt.Printf("Square root of %.2f = %.2f\n", number, result)

}

// Output:

// Square root of 32.00 = 5.66

As observed, there is a need to convert between C and Go types, using C.double and

float64, but the code is quite concise and clear. The output is inline in the comments of

the listing, and as you can see, computing the square value of a single float is .. well .. fast.

Using the same C math library, and still in preparation for later GPU code, you’ll try

now to compute the power of 2 of each element of an array.

Here again you use the math.h library, this time from within the C code where the

main algorithm will be written this time. Then you’ll retrieve the array values in Go.

Each power of 2 is computed in-place, and thus you can simply use the array created

in Go (see Listing 6-18).

Listing 6-18.  Computing Powers of Two Using the C Math Library on a Go Array

package main

/*

#cgo CFLAGS: -g -Wall

#include <stdlib.h>

#include <math.h>

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

283

void square_array(double* arr, int length) {

 for (int i = 0; i < length; i++) {

 arr[i] = pow(arr[i], 2);

 }

}

*/

import "C"

import (

 "fmt"

 "unsafe"

)

func squareArray(arr []float64) {

 length := len(arr)

 cArr := (*C.double)(unsafe.Pointer(&arr[0]))

 C.square_array(cArr, C.int(length))

}

func main() {

 array := []float64{2.0, 3.0, 4.0, 5.0}

 squareArray(array)

 fmt.Printf("squared array:%v", array)

}

You can also enjoy a bit of speed Look how fast the C code can handle a 1M items

array, using the updated main function from Listing 6-19.

Listing 6-19.  1M Lines of Powers

func main() {

 const size = 1000000

 array := make([]float64, size)

 for i := 0; i < size; i++ {

 array[i] = float64(i)

 }

 squareArray(array)

 fmt.Printf("Last item of squared array:%f", array[size-1])

}

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

284

That new listing generates a random array of 1M value and then prints out the last

value on the output to give you an idea of the speed. Here again, the last statement prints

out almost before compilation has begun.

But enough of C exercises, let’s move on to something more exciting—applying

image transformation using a library coded in C.

�Matisse, ImageMagick, and Sepia
Building on this first batch of small examples, let’s put it all together and call a known

library with C bindings, in order to do some image processing with ImageMagick.

One sunny moment, moving inexorably toward sepia.

―Jonathan Galassi

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

285

ImageMagick is known for its CLI implementation directly in a shell, or sometimes

via Php. It’s no surprise that the Php code also calls the C-based binding.

The example code will turn a picture from color to sepia using those same

ImageMagick C bindings.

While the code itself is quite straight forward, the setup is a bit more involved.

�ImageMagick on OSX
Let’s go over the OSX version first, and then you will see the similarities and differences

when running the same code on Linux and Raspberry Pi. See Listing 6-20.

Listing 6-20.  Go Code to Use ImageMagick on OSX

package main

/*

#cgo CFLAGS: -g -Wall -I/opt/homebrew/include/ImageMagick-7

#cgo LDFLAGS: -L/opt/homebrew/lib -lMagickWand-7.Q16HDRI

 -lMagickCore-7.Q16HDRI

#include <MagickCore/magick-baseconfig.h>

#include <MagickWand/MagickWand.h>

void convertToSepia(const char* inputFile, const char* outputFile, const

double ratio);

*/

import "C"

func main() {

 inputFile := C.CString("../gopher3.jpeg")

 outputFile := C.CString("../gopher3-sepia.jpeg")

 ratio := C.double(0.98)

 C.convertToSepia(inputFile, outputFile, ratio)

}

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

286

You can see that:

•	 You use C.CString and C.double again to pass parameters to the C

code. (I left out C.free … but make sure to put them back in place

where needed for those strings.).

•	 The convertToSepia function is declared in the Go code and will be

implemented in the C code.

•	 ImageMagick library headers for OSX are:

•	 MagickCore/magick-baseconfig.h

•	 MagickWand/MagickWand.h

•	 You silently used them before, now you actively require them

•	 Settings for CFlags: This is where you find the header files for the

library. This is depending on the package installer used to install

ImageMagick, here Homebrew on OSX.

•	 Set an extra -I for each library header location

•	 Settings for LDFlags determine where to find the library when

creating the binary image.

•	 Set -L to specify a library path

•	 Set -l to specify library names

•	 Finally, the extra library headers to include ImageMagick in the

Go file:

•	 #include <MagickCore/magick-baseconfig.h>

•	 #include <MagickWand/MagickWand.h>

On to the C code now, which is pure ImageMagick code.

The C code in Listing 6-21 is mostly platform independent, so you can write very

similar code for Linux and later on for the Raspberry Pi

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

287

Listing 6-21.  ImageMagick Code (Not OSX Specific)

#include <MagickWand/MagickWand.h>

void convertToSepia(const char* inputFile, const char* outputFile, const

double ratio) {

 MagickWandGenesis();

 MagickWand *wand = NewMagickWand();

 MagickReadImage(wand, inputFile);

 int sepia = 65536 * ratio;

 MagickSepiaToneImage(wand, sepia);

 MagickWriteImage(wand, outputFile);

 wand = DestroyMagickWand(wand);

 MagickWandTerminus();

}

Sequentially, the code:

•	 Initializes the ImageMagick library.

•	 Reads the input file.

•	 Sets the Sepia tone. The magic value 65536 is the base for the image,

and then you multiply this by a value between 0 and 2, where values

for sepia, it’s mostly between 0.8 and 1.2.

•	 Writes the result to the output file.

•	 Cleans up.

The installation steps for OSX are briefly shown in Listing 6-22.

Listing 6-22.  Install ImageMagick C library on OSX Using Homebrew

#!/bin/bash

brew install imagemagick

With a sepia ration setting of 0.86, you would get something like the output of

Figure 6-1—quite deep rendering.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

288

Figure 6-1.  Matisse in sepia

�ImageMagick on Linux
Unfortunately, the packaging for ImageMagick, and any C library, is platform dependent.

So, the headers and flags for Linux are different, as shown in Listing 6-23.

Listing 6-23.  Headers to Use ImageMagick on Linux

//on linux arm ubuntu

#cgo CFLAGS: -g -Wall -I/usr/include/ImageMagick-6 -I/usr/include/aarch64-

linux-gnu/ImageMagick-6

#cgo LDFLAGS: -lMagickWand-6.Q16

#include <magick/magick-baseconfig.h>

#include <wand/MagickWand.h>

�ImageMagick on Raspberry Pi
Again, those headers change when running on Raspberry Pi, as shown in Listing 6-24.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

289

Listing 6-24.  Headers and Flags for Raspberry Pi

//on raspberry pi

#cgo CFLAGS: -g -Wall -I/usr/include/ImageMagick-6 -I/usr/include/arm-

linux-gnueabihf/ImageMagick-6

#cgo LDFLAGS: -lMagickWand-6.Q16

#include <magick/magick-baseconfig.h>

#include <wand/MagickWand.h>

void convertToSepia(const char* inputFile, const char* outputFile, const

double ratio);

That being said, the code runs fast on each platform and Matisse can be turned to

sepia on each of the different OSes.

�GPU Coding on OSX
Right in the middle of this big Go/C battle, you are going to get even more involved by

doing some processing on the GPU.

Unfortunately, this part will only focus on GPU coding using the metal API provided

by Apple on its M1/M2 based Mac, not particularly because there is a lack of bindings for

other platform, like CUDA, but because this one-off library makes it easy to achieve it,

and to illustrate the perfect point that using more processing efficient hardware should

not be that hard after all.

•	 The blog post presenting the library is here: https://

adrianhesketh.com/2022/03/31/use-m1-gpu-with-go/

•	 The companion project hosted on GitHub is here: https://github.

com/a-h/gpu

The M1 based basic MacBook air has 32 GPU cores, and the code presented earlier

makes it easy to use all those cores for custom computations.

The first example is taken directly from the examples, both the previous library one

and the metal library one: adding two arrays together within GPU code.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

https://adrianhesketh.com/2022/03/31/use-m1-gpu-with-go/
https://adrianhesketh.com/2022/03/31/use-m1-gpu-with-go/
https://github.com/a-h/gpu
https://github.com/a-h/gpu

290

�Basics: Adding Values from Two Arrays
The code for the GPU kernels looks almost like C code, with one more added library—

the metal_stdlib, which is the GPU library from Apple.

The design of the GPU library is such that each input and output has been turned

into a long 1D matrix, and the computation inside the kernel code is done on that

1D matrix.

So, proper indexes to locate a specific element from the input (so originally, whether

1D, 2D, or 3D) are computed via a custom made idx function that is included each time

in the GPU kernel code.

Obviously, the process function is the most interesting part of Listing 6-25.

Listing 6-25.  Metal Code for Adding Two Matrixes

#include <metal_stdlib>

using namespace metal;

typedef struct Params {

 int w_in, h_in, d_in;

 int w_out, h_out, d_out;

} Params;

int idx(int x, int y, int z, int w, int h, int d) {

 int i = z * w * h;

 i += y * w;

 i += x;

 return i;

}

kernel void process(device const Params* p,

 device const float* input,

 device float* output,

 uint3 gridSize[[threads_per_grid]],

 uint3 gid[[thread_position_in_grid]]) {

 // Only process once per row of data.

 if(gid.x != 0) {

 return;

 }

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

291

 // Since we know we're in the first column...

 // we can process the whole row.

 int input_index = idx(0, gid.y, gid.z,p->w_in, p->h_in, p->d_in);

 float a = input[input_index];

 float b = input[input_index+1];

 int output_index = idx(0, gid.y, gid.z, p->w_out, p->h_out, p->d_out);

 output[output_index] = a + b;

}

This first metal example is taken almost directly from the GPU library examples:

https://github.com/a-h/gpu/blob/main/examples/add/add.metal

The Go code itself has some specificities:

•	 It uses go:embed to import an external file as a string

•	 The GPU code is compiled directly from the Go code, via

gpu.Compile

•	 The code then creates an input and an output of custom sizes and

types via gpu.NewMatrix

•	 The code is run on the GPU when calling gpu.NewMatrix

Listing 6-26 shows the contents of the Go part calling the metal code.

Listing 6-26.  Go Code Calling the Metal Kernel Code

package main

import (

 _ "embed"

 "fmt"

 "github.com/a-h/gpu"

)

//go:embed add.metal

var source string

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

https://github.com/a-h/gpu/blob/main/examples/add/add.metal

292

func main() {

 // Compilation has to be done once.

 gpu.Compile(source)

 count := 100000000

 input := gpu.NewMatrix[float32](2, count, 1)

 z := input.D - 1

 for y := 0; y < input.H; y++ {

 for x := 0; x < input.W; x++ {

 input.Set(x, y, z, float32(y))

 }

 }

 output := gpu.NewMatrix[float32](1, input.H, 1)

 // Run code on GPU, includes copying the matrix to the GPU.

 gpu.Run(input, output)

 fmt.Printf("Output: %d\n", int(output.Get(0, input.H-1, 0)))

}

// Output: 200000000

Running this code, you can confirm and see the GPU activity generated by opening

the GPU view in the Activity Monitor of OSX, and typing Command+4 or using

Window ➤ GPU History (see Figure 6-2).

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

293

Figure 6-2.  GPU Activity from the Activity Monitor Menu

You can see the GPU threads in action in real time when running the Go code (see

Figure 6-3).

Figure 6-3.  GPU use

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

294

�Back to the Plot
Character is plot, plot is character.

—By F. Scott Fitzgerald

To visualize what is happening, not on the GPU directly, but on the output of the

computed values with the GPU, you need to prep the code for plotting data.

You will use plotter and add helper functions to format inputs (and outputs), as

shown in Listing 6-27.

Listing 6-27.  Plotter Code

package metal

import (

 "fmt"

 "github.com/a-h/gpu"

 "gonum.org/v1/plot"

 "gonum.org/v1/plot/plotter"

 "gonum.org/v1/plot/vg"

 "image/color"

)

func PlotMe(title string, input plotter.XYs) {

 p := plot.New()

 p.Title.Text = title

 p.X.Label.Text = "i"

 p.Y.Label.Text = "value"

 l, _ := plotter.NewLine(input)

 l.LineStyle.Width = vg.Points(1)

 l.LineStyle.Color = color.RGBA{R: 255, A: 255}

 p.Add(l)

 p.Save(16*vg.Inch, 4*vg.Inch, fmt.Sprintf("%s.png", title))

}

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

295

func FloatsToXY(input []float32) plotter.XYs {

 pts := make(plotter.XYs, len(input))

 for i := range pts {

 pts[i].Y = float64(input[i])

 pts[i].X = float64(float32(i))

 }

 return pts

}

func MatrixToXY(input *gpu.Matrix[float32]) plotter.XYs {

 pts := make(plotter.XYs, input.H)

 for i := range pts {

 pts[i].Y = float64(input.Get(i, 0, 0))

 pts[i].X = float64(float32(i))

 }

 return pts

}

This is mostly direct from plotter, converting a gpu.Matrix or an array of floats to

what the plotter library expects.

Building on Chapter 4, you’ll now implement loading and processing some hourly

data of ETDUSD quotes, open and close.

You load data from a CSV file. You could of course use a specific Go library, but let’s

do this directly using core Go code this time, as shown in Listing 6-28.

Listing 6-28.  Loading ETHUSD Data from CSV File

package metal

import (

 "encoding/csv"

 "os"

 "strconv"

)

func GetOpensCloses(filename string) ([]float32, []float32) {

 file, _ := os.Open(filename)

 defer file.Close()

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

https://doi.org/10.1007/978-1-4842-9666-0_4

296

 reader := csv.NewReader(file)

 data, _ := reader.ReadAll()

 var openPrice []float32

 var closePrice []float32

 for i, row := range data {

 if i == 0 {

 continue

 }

 o, _ := strconv.ParseFloat(row[3], 32)

 openPrice = append(openPrice, float32(o))

 c, _ := strconv.ParseFloat(row[6], 32)

 closePrice = append(closePrice, float32(c))

 }

 return openPrice, closePrice

}

Bridging Listings 6-27 and 6-28, you can now write a simple Go script that uses those

two helper functions and generates a graph from open quotes. See Listing 6-29.

Listing 6-29.  Loading and Plotting ETHUSD Hourly Open Quotes

package main

import (

 _ "embed"

 "github.com/hellonico/libgpu/pkg/metal"

)

func main() {

 opens, _ := metal.GetOpensCloses("sample-data/ETHUSD_hourlies.p.csv")

 metal.PlotMe("simple opens", metal.FloatsToXY(opens))

}

This time the output is slightly more visual, and you can see the quotes graph in the

simple opens.png file in Figure 6-4.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

297

Figure 6-4.  Simple plot for open quotes

But let’s go back for more and start processing data on the GPU and use the helper

functions to plot the diverse outputs.

�Generic GPU Processing Go Code
The few coming examples are all based on an almost identical Go template:

•	 Load data from the CSV file

•	 Format it as an input matrix for GPU processing

•	 Do the processing

•	 Plot the output

Only the GPU/metal code will really change, so the Go code is included only once in

the book and not repeated after.

This Go code iteration is indeed quite generic and builds on the first GPU example

that you had for adding values. It does the following:

•	 Embeds the metal code as a string using the nicely named embed.

•	 Compiles the embedded metal code for the GPU kernel via gpu.

Compile.

•	 Loads data from the sample CSV code to the input matrix.

•	 Prepares the output matrix.

•	 Runs the metal code.

•	 Displays the output in a chart.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

298

The full code is shown in Listing 6-30, but make sure you adapt it, depending on the

metal code you are working on.

Listing 6-30.  Go Code to Call GPU Processing and Plot the Output Matrix

package main

import (

 _ "embed"

 "fmt"

 "github.com/a-h/gpu"

 "github.com/hellonico/libgpu/pkg/metal"

)

//go:embed normalize.metal

var source string

func main() {

 gpu.Compile(source)

 opens, _ := metal.GetOpensCloses("sample-data/ETHUSD_hourlies.p.csv")

 input := gpu.NewMatrix[float32](1, len(opens), 1)

 output := gpu.NewMatrix[float32](1, len(opens), 1)

 for x := 0; x < input.H; x++ {

 input.Set(x, 0, 0, opens[x])

 }

 gpu.Run(input, output)

 for y := 0; y < output.H; y++ {

 fmt.Printf("Normalize: %v\n", output.Get(y, 0, 0))

 }

 fmt.Printf("Normalized for %d values\n", len(opens))

metal.PlotMe("Normalized", metal.MatrixToXY(output))

}

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

299

�Opens ETHUSD Hourlies Quotes: Moving Average
The next metal code computes the moving average for your dataset. The code was also

generated by ChatGPT using this prompt:

Using metal, generate the moving average of a 1x10 matrix.

As usual, you can then adapt the code proposed to your needs:

•	 The moving average window size is passed as a parameter in the

second column (I assume no input data in that second column)

•	 You update the value of the window size accordingly

You would thus have code similar to Listing 6-31.

Listing 6-31.  Plain Moving Average Metal Code

kernel void process(device const Params* p,

 device const float* input,

 device float* output,

 uint3 gridSize[[threads_per_grid]],

 uint3 gid[[thread_position_in_grid]]) {

 // Only process once per row of data.

 if(gid.x != 0) {

 return;

 }

 // Size of the moving average window

 const uint windowSize = input[0,1];

 for (uint i = windowSize; i <= p->h_in; i++) {

 float sum = 0.0;

 for (uint j = i - windowSize; j < i; j++) {

 sum += input[j];

 }

 output[i] = sum / windowSize;

 }

}

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

300

Note that the metal code:

•	 Assumes you know where the relevant input is (first column).

•	 Does a simple loop over all the input values and recomputes the loop

each time.

Plotting the generating output from the code gives you two days, as shown in

Figure 6-5.

FIgure 6-5.  Two days moving average

And for 100 days moving average, you get the image in Figure 6-6.

Figure 6-6.  100 days moving average

You can see a smoother line graph in Figure 6-6, as it should be on the 100 days

moving average graph.

�Slightly Better Moving Average on the GPU
The metal code was quite fast, but it doesn’t maximize the usage of the GPU by using

proper GPU threads.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

301

It uses a sequential C loop to compute each of the output values, while they could be

computed in parallel by different GPU threads.

Let’s take another approach and specify which index of the output matrix you are

working on in the kernel code, and then limiting the moving average computation loop,

thus allowing more threads to run in parallel (see Listing 6-32).

Listing 6-32.  Maximizing GPU Thread Use

kernel void process(device const Params* p,

 device const float* input,

 device float* output,

 uint3 gridSize[[threads_per_grid]],

 uint3 gid[[thread_position_in_grid]]) {

 int input_index = idx(gid.x, gid.y, 0,p->w_in, p->h_in, p->d_in);

 // Size of the moving average window

 const float windowSize = input[0,1];

 float sum = 0.0;

 for (int i = -windowSize / 2; i <= windowSize / 2; ++i) {

 int index = idx(gid.x, gid.y+i, 0,p->w_in, p->h_in, p->d_in);

 if (index >= 0 && index < p->h_in) {

 sum += input[index];

 }

 }

 output[input_index] = sum / windowSize;

}

The custom plotting code turns the output into a visual plot. Figure 6-7 shows the

Moving Average for a ten-day window size.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

302

Figure 6-7.  Faster ten days moving average

Sweet and fast.

�Normalized Set
This exercise adds an extra level of difficulty. Say you want to compute the normalized

set, from the input, so that all values of the input set are between 0 and 1. As you may

know, to achieve this, you need to first compute the sum of squares.

Obviously, you could recompute that sum every single time, given how fast the GPUs

are, but let’s try to be subtle and create a cache value of the sum of squares (and also the

normalization factor and the variance.)

You need to synchronize that value among the GPU threads while still keeping your

parallel processing ability. Listing 6-33 shows how it is done.

Listing 6-33.  Normalized Set with Cache and Synchronization Between Threads

kernel void process(device const Params* p,

 device const float* input,

 device float* output,

 uint3 gridSize[[threads_per_grid]],

 uint3 gid[[thread_position_in_grid]]) {

 int input_index =

 idx(gid.x, gid.y, gid.z,p->w_in, p->h_in, p->d_in);

 int output_index =

 idx(0, gid.y, 0,p->w_out, p->h_out, p->d_out);

 // Compute the sum of squares if it hasn't been cached yet

 if (input_index == 0) {

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

303

 float sumOfSquares = 0.0;

 float mean = 0.0;

 float variance = 0.0;

 for (uint i = 0; i < 100; i++) {

 float value = input[i];

 sumOfSquares += value * value;

 mean += value;

 }

 // mean average

 mean /= p->h_in;

 // The normalized standard deviation

 // (or Coefficient of Variance)

 // is just the standard deviation divided by the mean.

 variance /= p->h_in;

 // Compute the normalization factor

 float normalizationFactor = sqrt(sumOfSquares);

 // variance

 float variance = normalizationFactor / sumOfSquares;

 �output[idx(0,1,0,p->w_in, p->h_in, p->d_in)] =

normalizationFactor / sumOfSquares;

 }

 // Synchronize to ensure sumOfSquares

 // is available to all threads

 threadgroup_barrier(mem_flags::mem_threadgroup);

 // Read the cached sum of squares value

 float normalizationFactor =

 input[idx(0,1,0,p->w_in, p->h_in, p->d_in)];

 // Compute the normalized value and

 // store it in the output array

 output[input_index] = input[input_index] / normalizationFactor;

}

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

304

In Listing 6-33, you can see how:

•	 The sum of squares, the normalization factor, and variance are

computed only once (and stored using a spare cell of the output

matrix).

•	 threadgroup_barrier(mem_flags::mem_threadgroup) forces the

computation to wait for the cache to be ready.

•	 The rest of the computation can be as fast as possible using multiple

threads thereafter.

The resulting set from the Go code can be turned into a graph again, and Figure 6-8

shows the values of the normalized set.

Figure 6-8.  Normalized set using caching and parallel threads

�Pearson Coefficient Moving Factor
The last example mostly comes from ChatGPT tweaks. I wanted to see how good the AI

answer would be to compute a moving Pearson correlation coefficient.

The Pearson coefficient identifies if two sets have some kind of correlation, with

values between -1 and 1 where:

•	 -1 means the sets are probably negatively connected. (If one set

moves one way then the other set moves the other direction.)

•	 0 means no connection between the two sets (totally independent).

•	 1 means the sets moves in the same direction and are positively

correlated.

The Person coefficient moving factor is one value, but the moving factor version

computes the Pearson coefficient at any point in time of the input set.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

305

The AI came pretty close. After a few fixes, you get the code from Listing 6-34.

Listing 6-34.  Pearson Correlation Coefficient Using GPUs

kernel void process(device const Params* p,

 device const float* input,

 device float* output,

 uint3 gridSize[[threads_per_grid]],

 uint3 gid[[thread_position_in_grid]]) {

 constexpr uint windowSize = 120; // Size of the window

 int input_index = idx(gid.x, gid.y, gid.z,p->w_in, p->h_in, p->d_in);

 const uint rows = p->h_in;

 // Number of rows in the output matrix

 const uint outputRows = rows - windowSize + 1;

 uint colIndex = gid.x;

 for (uint rowIndex = 0; rowIndex < outputRows; rowIndex++) {

 float sumX = 0.0;

 float sumY = 0.0;

 float sumXY = 0.0;

 float sumX2 = 0.0;

 float sumY2 = 0.0;

 // Compute the starting index of the window

 uint windowStart = rowIndex;

 // Compute the ending index of the window

 uint windowEnd = rowIndex + windowSize - 1;

 // Compute the sums within the window

 for (uint i = windowStart; i <= windowEnd; i++) {

 float x = input[i * columns + colIndex];

 float y = input[i * columns + (colIndex + 1)];

 sumX += x;

 sumY += y;

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

306

 sumXY += x * y;

 sumX2 += x * x;

 sumY2 += y * y;

 }

 // Compute the Pearson correlation coefficient

 float numerator = (windowSize * sumXY) - (sumX * sumY);

 �float denominator = sqrt((windowSize * sumX2 - sumX * sumX) *

(windowSize * sumY2 - sumY * sumY));

 float correlation = numerator / denominator;

 // Store the correlation in the output matrix

 output[rowIndex * columns + colIndex] = correlation;

 }

}

Without going into too many details, you can see that the code is using a flat

sequential loop, so an exercise for you would be to write metal code (or prompt

ChatGPT) to maximize parallelism.

That being said, the values are correctly generated. The values for the moving

Pearson coefficient are shown in Figure 6-9.

Figure 6-9.  Pearson Correlation Coefficient

GPU usage goes up a slight bit, as shown in Figure 6-10.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

307

Figure 6-10.  Correlated GPU usage

As mentioned, it should go much higher if the algorithm is implemented correctly

for parallelism.

�Sepia Gopher
This last example, which ends your GPU voyage, takes you back to changing color like

you did for Matisse and the ImageMagick library.

The metal code is the code from the examples of the GPU library with custom

sepia values.

At this stage, you should be very proficient at reading metal code. One small note

here is that the kernel only does one pass per four values of the 1D matrix, since the pixel

(of four values each) are encoded one after the other, sequentially. See Listing 6-35.

Listing 6-35.  Sepia on the GPU

kernel void process(device const Params* p,

 device uint8_t* input,

 device uint8_t* output,

 uint3 gridSize[[threads_per_grid]],

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

308

 uint3 gid[[thread_position_in_grid]]) {

 // Only process once per pixel of data (4 uint8_t)

 if(gid.x % 4 != 0) {

 return;

 }

 int input_index = idx(gid.x, gid.y, gid.z, p->w_in, p->h_in, p->d_in);

 uint8_t r = input[input_index+0];

 uint8_t g = input[input_index+1];

 uint8_t b = input[input_index+2];

 uint8_t a = input[input_index+3];

 uint8_t avg = uint8_t((int(r) + int(g) + int(b)) / 3);

 // value for Red

 output[input_index+0] = avg * 0.99;

 // value for Green

 output[input_index+1] = avg * 0.90;

 // value for Blue

 output[input_index+2] = avg * 0.75;

 // value for alpha (seemingly not used here)

 output[input_index+3] = 0;

}

And the resulting happy sepia gopher is shown in Figure 6-11.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

309

Figure 6-11.  Sepia gopher here again

�Extreme Calling OpenCV/C++ from Go
A few of my readers know that I am a big OpenCV fan. While it is not recommended to

use in mission-critical production code without testing, I am going to sidestep a bit and

try to call OpenCV from Go.

What would be the problem, you might ask, since you have just seen how to use

ImageMagick? Well, OpenCV is written in C++ and the preprocessing performed by Cgo

does not allow calls directly to C++. Hmm.

If the plan doesn’t work, change the plan, not the goal.

—Anonymous

A trick that has been documented on StackOverflow:

https://stackoverflow.com/questions/1713214/how-to-use-c-in-go/1721230

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

https://stackoverflow.com/questions/1713214/how-to-use-c-in-go/1721230

310

As well as on GitHub:

https://github.com/arrieta/golang-cpp-basic-example/

These tricks use a custom library containing a C wrapper around the C++ code, and

then call that C wrapper from Go and execute the needed code.

Again, a bit extreme, not really documented, but working crazy well enough that it is

worth being presented in this book.

Figure 6-12 shows the folder structure and the files required for this C++ example to

work properly.

Figure 6-12.  Folder structure for wrapping C++ code

Here are explanations of each of these files:

•	 bridge.cpp: Contains the C++ code calling the OpenCV C++ code

•	 bridge.h: Contains the C header, with definitions of the functions

that will be called from Go to C++

•	 callopencv.go: The usual GoLang file

•	 input.jpeg: The gopher ready to be turned to sepia again

•	 Makefile: The magic glue to compile and link this custom library

Listing 6-36 shows the bridge.h file code.

Listing 6-36.  The Header File

#pragma once

#ifdef __cplusplus

extern "C" {

#endif

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

https://github.com/arrieta/golang-cpp-basic-example/

311

int callopencv();

#ifdef __cplusplus

} // extern "C"

#endif

Then onto the C++ code that calls the OpenCV functions, as shown in Listing 6-37.

Listing 6-37.  Calling Gophers from C++ OpenCV

#include <stdio.h>

#include "bridge.h"

#include <opencv2/opencv.hpp>

void convertToSepia(cv::Mat& image) {

 cv::Mat kernel = (cv::Mat_<float>(3, 3) <<

 0.272, 0.534, 0.131,

 0.349, 0.686, 0.168,

 0.393, 0.769, 0.189

);

 cv::transform(image, image, kernel);

 cv::threshold(image, image, 255, 255, cv::THRESH_TRUNC);

}

int callopencv() {

 // Load the image

 cv::Mat image = cv::imread("input.jpeg");

 if (image.empty()) {

 printf("Failed to load the image.\n");

 return -1;

 }

 // Convert the image to sepia

 convertToSepia(image);

 // Save the sepia image

 cv::imwrite("output.jpg", image);

 return 0;

}

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

312

The OpenCV code has again been generated by ChatGPT with the following prompt:

In opencv C++ code, using opencv operations on mat, show how to load and

turn an image into sepia.

Apart from the wrong headers, the generated code of Listing 6-37 contains almost no

modifications.

The makefile is the most involved part of this section. It assumes you are using

clang++ and that the OpenCV library has been installed using Homebrew (brew

install opencv). Then the makefile compiles and creates the shared library called

libmyopencv.so.

Listing 6-38 includes opencv_highgui, which is not required for this example, but

you may find it useful for other usual OpenCV tasks.

Listing 6-38.  Makefile to Compile the Custom Shared Library and Go Code

.PHONY: all

all: main

myopencv.so:

 �/usr/bin/clang++ -o libmyopencv.so *.cpp -std=c++20 -O3 -Wall -Wextra

-fPIC -shared -I/opt/homebrew/include/opencv4 -L/opt/homebrew/lib

 -lopencv_core -lopencv_imgcodecs -lopencv_imgproc -lopencv_highgui

main: myopencv.so

 go build callopencv.go

Make (pun intended) sure the path to the include and library folders are correct.

Those shown here are for OSX, so you will need to update those for Linux and others.

Finally, the simple Go code is shown in Listing 6-39.

Listing 6-39.  Go Code to Call OpenCV

package main

// #cgo LDFLAGS: -L. -lmyopencv

// #include "bridge.h"

import "C"

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

313

func main() {

 C.callopencv()

}

The only new part of the Go code is that it loads the custom library and calls the

function defined in the bridge.h header file.

Also note the inclusion of the current folder to locate the library generated by the

make call.

Calling make shows the libmyopencv.so library (from the C and C++ code) and the

callopencv binary (from the Go code) files that have been generated (see Figure 6-13).

Figure 6-13.  Generated files

Providing you execute the command from the same folder, you get a newly generated

output.jpg file, with a yellowed, but happy, gopher (see Figure 6-14).

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

314

Figure 6-14.  Yellow/sepia gopher

The next step is to tweak the kernel values used for the OpenCV transformation in

the bridge.cpp file. Then you can turn the gopher blue or red.

The other examples from the https://github.com/arrieta/golang-cpp-basic-

example/ GitHub repository are worth looking at, especially the goroutines folder,

which uses Go routines to run CPU-heavy tasks and proves that Go handles the load and

the scheduling between the tasks very well.

The irony is that the actual story starts from the moment we think that
everything has ended.

—Aaliya Mallick

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

https://github.com/arrieta/golang-cpp-basic-example/
https://github.com/arrieta/golang-cpp-basic-example/

315

�Summary
So, here you are, ending this longer-than-expected chapter. At this point, you should now

have complete understanding on how to:

•	 Write and call C code from Go and vice versa.

•	 Install and call C-based libraries from Go code and ensure that no

memory leaks are unintentionally created.

•	 Process datasets using metal on Apple GPUs.

•	 Do some statistical processing on sets using parallel GPUs.

•	 Do image processing, this time using GPUs.

•	 Have some new coding ideas by calling C++ from Go and using

OpenCV to perform fast image processing.

Chapter 6 Go Beyond : Connecting to C for a Performance Boost

317

CHAPTER 7

Alef from Plan 9

Then took the other, as just as fair, And having perhaps the better claim,
Because it was grassy and wanted wear; Though as for that the passing
there Had worn them really about the same ---

“The Road Not Taken” by Robert Frost

Computer science is a discipline filled with intricate narratives and complexities despite

its relatively short history. The evolution of operating systems and programming

languages follows a linear trajectory in the textbooks, with disruptive innovations

occasionally surfacing along the timeline. Unfortunately, many alternative systems

© Nicolas Modrzyk 2023
N. Modrzyk, Go Crazy, https://doi.org/10.1007/978-1-4842-9666-0_7

https://doi.org/10.1007/978-1-4842-9666-0_7#DOI

318

that failed to gain mainstream acceptance are often overlooked and forgotten. Yet,

hidden within these off-path branches lie invaluable lessons and insights waiting to be

rediscovered.

During my early days as a computer science student in the 1990s, I had the privilege

of experiencing firsthand the computer science renaissance. It was a period teeming

with innovation, where operating systems, computer architectures, and programming

languages bloomed like wildflowers. In this odd chapter, as I reflect upon my fond

memories of that era, I find great pleasure in recounting the journey shaped by the

offbeat systems of NeXT, Plan 9, and Alef.

The NeXT computer, a technological marvel ahead of its time, played a pivotal

role in my exploration of unconventional computing platforms. It was a machine that

embodied Steve Jobs’ vision, offering advanced features and a powerful development

environment. While the world was fixated on mainstream choices, I found solace in the

unique capabilities of the NeXT computer. Its sleek design, innovative object-oriented

programming model, and unparalleled multimedia capabilities ignited my passion for

seeking unconventional paths. While NeXT failed to go mainstream, NeXTSTEP found a

home in Mac OSX after Apple acquired NeXT in 1996.

I stumbled upon Plan 9 in a newsletter article that mentioned that Bell Labs had

ported Plan 9, an operating system that dared to challenge the established norms of

distributed computing. Developed by the brilliant minds at Bell Labs, Plan 9 envisioned

a future where seamless communication and collaboration between machines and

users would be the norm. Its revolutionary 9P protocol and distributed filesystem model

blurred the boundaries between local and remote systems. Plan 9 was designed to be the

successor to UNIX, the OS born in Bell Labs in the 1970s. Many of the original developers

of UNIX are on the Plan 9 team and saw it as a chance to “fix” UNIX. They took the ideas

they had for UNIX to their logical conclusion. As Ken Thompson said jokingly, “I’d

remember to spill ‘create’ correctly this time.”

The experience with Plan 9 was nothing short of awe-inspiring, fueling my curiosity

and expanding my understanding of distributed systems. At the heart of Plan 9 lay

Alef, a programming language specifically designed for system programming tasks.

Alef drew inspiration from many languages, merging the best features of Pascal, C, and

Concurrent Euclid. With its emphasis on concurrent programming and interprocess

communication, Alef shattered the conventional notions of sequential execution

that had dominated my studies. Its concise syntax and expressive power could tackle

complex system-level challenges easily. Through Alef, I delved into the realm of

Chapter 7 Alef from Plan 9

319

lightweight processes and built distributed applications that harnessed the full potential

of Plan 9. Although Alef disappeared after the second edition of Plan 9, its influence lived

on Limbo in the Inferno OS and the Go programming language.

As I wrote this unconventional chapter for a book centered on Go, a language with

a great Plan 9 and Alef heritage, I went on a nostalgic journey, with memories of the

intellectual fervor and the boundless sense of possibility that permeated the computer

science landscape of the 1990s. Ideas and concepts from those vibrant days, brimming

with a myriad of operating systems, diverse computer architectures, and a cornucopia

of programming languages, are now resurfacing as new systems are developed. Though

these alternative paths may not have attained widespread acceptance, their impact and

the lessons they offer remain undeniably significant and should not be overlooked.

In a world where dominant narratives often overshadow unconventional ideas, it is

vital to remember the contributions of the offbeat systems. They remind us that progress

is not solely measured by market share or popular opinion, but by the depth of ideas

explored and the impact they have on shaping our collective knowledge.

�Plan 9 from Bell Labs
UNIX has long reigned as a foundational pillar, shaping the modern computing

landscape. The design principles and elegant simplicity of Plan 9 propelled it to great

heights, powering many systems across the globe. Yet, within the halls of Bell Labs, a

team of visionaries who developed UNIX originally embarked on a bold endeavor to

push the boundaries of UNIX. Their creation was none other than Plan 9. Driven by a

desire to overcome the limitations of UNIX and explore new frontiers, the team set out

to design an operating system that would address the challenges of a distributed and

networked world.

At its core, Plan 9 sought to redefine the concept of distributed computing,

transcending the traditional boundaries of individual machines. It discarded the notions

of a centralized filesystem and embraced a decentralized model, where resources from

different systems seamlessly intermingled. The innovative 9P network protocol allowed

users and processes to access and manipulate files across networked machines as if they

were local, fostering collaboration and communication.

One of the fundamental tenets that set Plan 9 apart was its unified view of resources.

In the Plan 9 universe, everything, from devices to files, was represented as a file-like

object, opening up a wealth of possibilities for interactivity and abstraction.

Chapter 7 Alef from Plan 9

320

The Plan 9 operating system’s /net directory treats all network resources as files.

This directory serves as a virtual filesystem that encapsulates a wealth of information

and functionalities related to networking. By representing network resources as files,

Plan 9 simplifies the management and interaction with the network, providing a

unified and consistent approach. Within the /net directory, one can discover files

representing network interfaces, connections, and services. These files enable users to

manipulate network settings, establish connections to remote machines, and perform

various network-related tasks using familiar file operations and tools. The file-based

representation of network resources in the /net directory exemplifies Plan 9’s elegant

design philosophy, fostering simplicity and uniformity throughout the operating system

(see Figure 7-1).

Figure 7-1.  Contents of the /net folder

Everything is a file in Plan 9. Windows are viewed and interacted with as files in the

filesystem. This approach introduces a level of abstraction that allows for unified and

consistent handling of graphical user interfaces (GUI) and user interactions. Each window

Chapter 7 Alef from Plan 9

321

is represented as a file, and operations such as reading, writing, and seeking can be

performed on these window files. By treating windows as files, Plan 9 provides a seamless

integration of GUI elements into the overall file-based paradigm of the operating system.

This design choice simplifies the development of GUI applications and enables efficient

communication and sharing of data between different windows and processes. As you can

see in Figure 7-2, five windows correspond to five files under /dev/wsys.

Figure 7-2.  Five windows, five files

�The Network Is the Computer
The development of the Plan 9 operating system began in the late 1980s at Bell Labs,

AT&T’s research and development arm of AT&T. The same team that created the UNIX

operating system initiated the project, including notable individuals like Rob Pike,

Dennis Ritchie, and Ken Thompson. “The Network is the Computer” was a popular

paradigm in the late 80s, capturing the idea that the true power of computing lay in the

collective capabilities of a networked infrastructure. The Internet rapidly expanded

during this era, and the vision of interconnected computers held immense promise.

The paradigm emphasized the potential of distributed computing, where resources and

computing power could be shared seamlessly across a network.

Chapter 7 Alef from Plan 9

322

However, as the 90s progressed, a different paradigm gained popularity: centralizing

services through web browsers and servers. The rise of the World Wide Web shifted

focus from distributed computing to centralized architectures. The browser became the

primary interface through which users accessed applications and services hosted on

remote servers, similar to the mainframe paradigm that the distributed computation

tried to replace.

This centralization had its advantages: it simplified user experiences and reduced

the complexity of managing distributed resources. Web browsers and servers provide

a convenient and accessible platform for delivering content and applications to users.

However, it also resulted in a concentration of power and control within a few dominant

companies and centralized platforms.

Consequently, the original vision of distributed computing and the notion that “The

Network is the Computer” took a backseat for nearly two decades. The focus shifted

toward centralized services and the dominance of a handful of Internet giants. The

potential of leveraging the full capabilities of a networked infrastructure seemed to be

put on hold.

It was not until the emergence of Web3 and decentralized technologies that the

“The Network is the Computer” paradigm regained popularity. Web3, powered by

blockchain and other decentralized technologies, rekindled the vision of a distributed

and interconnected network. It aimed to empower users, foster trust, and create a more

open and equitable digital ecosystem.

Web3 envisions a future where users have greater control over their data, identities,

and digital interactions. It seeks to decentralize services, returning power to individual

users and enabling more peer-to-peer interactions. With the rise of decentralized

applications (dApps) and decentralized protocols, the paradigm of “The Network is the

Computer” has resurfaced, fueling innovation and exploring new possibilities in areas

such as decentralized finance, digital ownership, and governance.

As you embark on designing a new distributed computing framework with Web3

technologies, it is valuable to revisit the design principles and features of Plan 9. Plan

9 was ahead of its time in many ways, embodying a holistic and elegant approach to

distributed systems that still holds relevance today.

One of the most notable aspects of Plan 9 was its “everything is a file” philosophy.

This concept treated resources, devices, and even network connections as files within

a unified filesystem. By adopting this approach, Plan 9 simplified the interaction with

various system components and promoted a consistent and intuitive interface. Bringing

Chapter 7 Alef from Plan 9

323

this idea to the design of a Web3 distributed computing framework could provide a

unified abstraction layer that allows for seamless and uniform interactions with diverse

resources and protocols.

Additionally, Plan 9’s network transparency and remote file access capabilities are

worth considering in the context of Web3. The ability to treat remote resources as if they

were local files greatly simplifies distributed computing and fosters collaboration across

different nodes and networks. By incorporating similar features into a Web3 framework,

you can enable decentralized applications to transparently access and utilize resources

across a network, promoting a more inclusive and interoperable ecosystem.

Go, the programming language with lineage traced back to Plan 9 and popularity

among Web3 developers, is an ideal platform to welcome back some of the visitors

from Plan 9.

�The Alef Language
The Alef programming language was created in the late 1980s at Bell Labs, renowned

for its groundbreaking contributions to computer industries. Alef was developed as

an integral part of the Plan 9 operating system, which aimed to address the challenges

posed by distributed systems and parallel computing.

The origins of Alef can be traced back to the collaborative efforts of a talented team

of researchers and computer scientists at Bell Labs, primarily Phil Winterbottom with

contributions from Rob Pike and others. They sought to design a programming language

enabling efficient and scalable concurrent programming in distributed environments.

Alef drew inspiration from various programming languages and concurrency models,

incorporating ideas from C, Pascal, and concurrent languages like Newsqueak.

While Alef did not achieve widespread adoption, its influence and legacy can be seen

in subsequent programming languages. Notably, Alef’s design principles and concepts

played a significant role in shaping the development of the popular Go programming

language. Go adopted Alef’s lightweight goroutines and channels, emphasizing

concurrent programming as a first-class concept.

Over time, Alef was phased out from later editions of Plan 9 as the operating system

integrated distributed primitives and absorbed the concurrent programming features

of Alef into its thread library. However, the objective remains to provide readers with a

glimpse into the essence of Alef and Plan 9, with the aspiration that their concepts and

designs may serve as valuable inspiration for developing novel distributed systems.

Chapter 7 Alef from Plan 9

324

Note T his section intends not to provide a complete tutorial on Alef. Alef
Language Reference Manual by Phil Winterbottom is a great place to dig into the
language.

�Hello Tuple!
Tuples were a favored data structure in concurrent languages in the 1980s. Using

tuples in concurrent programming languages such as Alef stems from their ability

to encapsulate multiple values into a single entity, facilitating concise and efficient

handling of related data. With their immutability and support for heterogeneity, tuples

effectively organize and pass around data within concurrent programs. Instead of the

first-class language constructs, there are several projects, as shown in Listing 7-1.

Listing 7-1.  Tuples

(int, byte*, byte)

func()

{

 return (10, "hello", 'c');

}

void

main()

{

 int a;

 byte* str;

 byte c;

 (a, str, c) = func();

}

�Channels and Processes
Listing 7-2 shows a simple C program with channels.

Chapter 7 Alef from Plan 9

325

Listing 7-2.  Channels and Processes

#include <alef.h>

void

receive(chan(byte*) c)

{

 byte *s;

 s = <-c;

 print("%s\n", s);

 terminate(nil);

}

void

main(void)

{

 chan(byte*) c;

 alloc c;

 proc receive(c);

 c <-= "Hello, World!";

 terminate(nil);

}

Channels and processes are the cornerstones of Alef, establishing them as first-

class constructs within the language. Alef places significant emphasis on concurrent

programming, and channels and processes are the key components that enable effective

communication and synchronization between concurrent entities.

Channels serve as the primary means of communication and synchronization in

Alef. They provide a safe and efficient way for goroutines and processes to exchange data

and coordinate their actions. Channels are created using the channel declaration syntax,

allowing programmers to define the type of data that can be transmitted. Sending and

receiving messages on channels occur through dedicated send-and-receive operations.

This design choice ensures explicit synchronization between concurrent entities,

promoting orderly communication and preventing race conditions.

Chapter 7 Alef from Plan 9

326

The ability to declare and manipulate channels as first-class constructs grants Alef a

high degree of flexibility and expressiveness. Channels can be buffered, allowing them

to hold a limited number of messages, which introduces a level of decoupling between

senders and receivers. Buffered channels enable non-blocking operations when the

buffer is not full or empty, facilitating data flow between concurrent components

without unnecessary delays.

In Alef, processes are also treated as first-class constructs, elevating their significance in

concurrent programming. Processes are separate instances that execute concurrently, and

they communicate with each other using channels. This approach enables a higher level of

concurrency and encapsulation, as each process maintains its own set of goroutines and

executes independently. The isolation of processes enhances reliability, security, and fault

tolerance by preventing unintended interference between concurrent entities.

Including processes as first-class constructs enables Alef to handle complex

concurrent scenarios more effectively. By organizing concurrent entities into distinct

processes, programmers can structure their code in a modular and hierarchical manner,

leading to better code organization and maintainability. Spawning and terminating

processes provide fine-grained control over concurrent execution, allowing for the

dynamic creation and destruction of concurrent units as needed.

Alef’s treatment of channels and processes as first-class constructs underpins

the language’s ability to handle concurrency effectively. Channels facilitate safe

communication and synchronization between concurrent components, while processes

enable the encapsulation and coordination of concurrent execution. By providing

dedicated support for these constructs, Alef empowers programmers to write concurrent

programs that are expressive, reliable, and scalable. The integration of channels and

processes as first-class entities showcases Alef’s commitment to providing a strong

foundation for concurrent programming.

�Proc and Task
“In Plan 9, fork is not a system call, but a special version of the true system
call, rfork (resource fork) which has an argument consisting of a bit vector
that defines how the various resources belonging to the parent will be trans-
ferred to the child. Rather than having processes and threads as two distinct
things in the system, then, Plan 9 provides a general process-creation primi-
tive that permits the creation of processes of all weights.”

—Rob Pike

Chapter 7 Alef from Plan 9

327

The topic of OS-level threading and goroutines has been a subject of intense

discussion within the Go (GoLang) community, focusing on achieving effective

parallelism and concurrency. The debate surrounding processes versus threads remains

an ongoing issue in contemporary operating systems. In this context, the introduction of

user-space cooperative threads and OS-level threads adds complexity to the discussion.

Plan 9 recognized the challenges associated with processes and threads early on. It

identified the need for finer control over resources when creating new processes. In most

operating systems, the traditional fork() system call is a special version of rfork() in

Plan 9. This distinction allows for more precise management of resources and provides

greater flexibility in controlling the behavior of new processes.

By incorporating rfork() as a fundamental mechanism, Plan 9 introduced a novel

approach to process creation and resource control. This approach became instrumental

in addressing the complexities surrounding parallelism and concurrency. Plan 9’s

innovative design and resource management mechanisms set the stage for exploring

and developing efficient and scalable concurrent programming models.

In the Go programming language, goroutines serve as lightweight concurrent units

of execution, allowing for highly concurrent and efficient code. Goroutines are not tied to

OS-level threads directly but are multiplexed onto a smaller number of threads managed

by the Go runtime. This approach mitigates the overhead associated with OS-

level threads while still providing concurrency and parallelism in Go programs.

The consideration of process versus thread models, coupled with Plan 9’s insights

and Go’s goroutine model, showcases the ongoing evolution and exploration of

parallelism and concurrency in modern operating systems and programming languages.

By addressing the complexities early on and providing innovative solutions, Plan 9’s

influence can be seen in the design of Go, offering developers powerful tools to achieve

effective concurrency and parallelism while maintaining fine-grained control over

resources (see Figure 7-3).

Chapter 7 Alef from Plan 9

328

Figure 7-3.  Roots of Go’s concurrency model

As a concurrent programming language, Alef capitalized on the efficient and

lightweight process-creation mechanisms by Plan 9. Building on the foundations laid by

Plan 9, Alef introduced its own constructs, namely Proc and Task, to enable concurrent

programming. Leveraging Plan 9’s innovative resource control and process management

capabilities, Alef harnessed the power of lightweight processes to achieve concurrency

and parallelism.

With Proc, Alef provided a way to define concurrent processes that could execute

independently and concurrently. These processes in Alef exhibited characteristics

similar to Plan 9’s processes, offering fine-grained control over resources and

encapsulating execution units in the language. The Proc construct allowed developers to

model concurrent activities and manage them efficiently.

Additionally, Alef introduced the Task construct, inspired by Plan 9’s task-oriented

approach. With Task, Alef facilitated the creation of concurrent units of execution that

could operate in parallel with the main process. Similar to Plan 9’s lightweight processes,

Task entities in Alef leveraged the efficient process-creation mechanisms, enabling

developers to design and coordinate concurrent activities easily, as shown in Listing 7-3.

Listing 7-3.  Task Entities in Alef

Void

kbdtask(chan(int) kbdc)

{

 int r;

Chapter 7 Alef from Plan 9

329

 for(;;) {

 r = <−kbdc;
 /* process keyboard input */

 }

}

void

mousetask(chan(Mevent) mc)

{

 Mevent m;

 for(;;) {

 m = <−mc;
 /* process mouse input */

 }

}

void

main(void)

{

 chan(int)[100] kbd;

 chan(int) term;

 chan(Mevent) mouse;

 alloc kbd, mouse, term;

 proc kbdproc(kbd, term), mouseproc(mouse, term);

 task kbdtask(kbd), mousetask(mouse);

 <−term; /* main thread blocks here */
 postnote(PNPROC, mousepid, "kill");

 postnote(PNPROC, kbdpid, "kill");

 exits(nil);

}

By leveraging Plan 9’s efficient and lightweight process-creation capabilities, Alef

provided a robust foundation for concurrent programming. The introduction of Proc

and Task in Alef allowed developers to harness the power of lightweight processes

and achieve concurrency and parallelism in a controlled and efficient manner. Alef’s

integration of Plan 9’s process management mechanisms enhanced its ability to address

the challenges of concurrent programming.

Chapter 7 Alef from Plan 9

330

�Have Fun with Plan 9
Bell Labs initially provided the source code of the first and second editions of Plan 9 to

academics under a non-commercial license during the 1990s. However, in subsequent

years, Lucent Technologies took the step to release the third and fourth editions of

Plan 9 under an open-source license, marking a significant milestone in the operating

system’s availability. This move allowed a broader community to access and contribute

to the development of Plan 9. Since then, the open-source version of Plan 9 has sparked

a collective effort within the community to maintain and enhance the operating system.

Notably, 9front has emerged as the most active fork of Plan 9, showcasing the ongoing

dedication and commitment to advancing the capabilities and evolution of the system.

The source and the ISO images are available from 9p.io and 9front.org. Although

it is possible to boot the system in modern computers, setting it up and running using

virtual environments such as VirtualBox is easier. VirtualBox can be found and download

at the following location:

https://www.virtualbox.org/

With VirtualBox on your computer, follow these steps to get Plan 9 up and running

if you’re interested in having a back-to-the-future experience with this future OS from

the 90s.

	 1.	 Download the Plan 9 ISO. Visit the official Plan 9 website

(https://9p.io/plan9/) or the Plan 9 from Bell Labs website

(https://9p.io/plan9/download.html). Download your desired

platform’s latest stable ISO file (e.g., x86, amd64).

	 2.	 Set up a new virtual machine:

	 a.	 Open VirtualBox and click New to create a new virtual machine.

	 b.	 Provide a name for the virtual machine and select the appropriate Type and

Version (e.g., Other and Other/Unknown, respectively) (see Figure 7-4).

Chapter 7 Alef from Plan 9

https://www.virtualbox.org/
https://9p.io/plan9/
https://9p.io/plan9/download.html

331

Figure 7-4.  Create the Plan 9 virtual machine

	 3.	 Assign an appropriate amount of memory (RAM) to the virtual

machine. Although 32MB is enough, I use 128MB for high

resolution (see Figure 7-5).

Figure 7-5.  Assign just enough memory

Chapter 7 Alef from Plan 9

332

	 4.	 Choose to create a new virtual hard disk and select the

appropriate disk size and type (see Figure 7-6).

Figure 7-6.  Virtual machine disk size

	 5.	 Click Finish to create the virtual machine (see Figure 7-7).

Figure 7-7.  Create the virtual machine

Chapter 7 Alef from Plan 9

333

	 6.	 Configure the virtual machine settings:

	 a.	 Select the newly created virtual machine and click Settings

(see Figure 7-8).

Figure 7-8.  Settings screen of the VM

Chapter 7 Alef from Plan 9

334

	 b.	 In the Audio section, select SoundBlaster 16 (see Figure 7-9).

Figure 7-9.  Audio Controller Settings

	 c.	 Click OK to save the settings.

Chapter 7 Alef from Plan 9

335

	 7.	 Install Plan 9 on the virtual machine:

	 a.	 Start the virtual machine by clicking Start. The virtual machine

will boot from the Plan 9 ISO (see Figure 7-10).

Figure 7-10.  Booting the virtual machine

Chapter 7 Alef from Plan 9

336

	 b.	 Select 1 to install Plan 9 to the virtual machine (see Figure 7-11).

Figure 7-11.  Prepare to install Plan 9

Chapter 7 Alef from Plan 9

337

	 c.	 Use the configuration for the drive, mouse, and display (see Figure 7-12).

Figure 7-12.  Default configuration for monitor

Chapter 7 Alef from Plan 9

338

	 8.	 Boot up the system and begin the installation by configuring the

filesystem (see Figure 7-13).

Figure 7-13.  Installing the filesystem

Chapter 7 Alef from Plan 9

339

	 a.	 The Fossil filesystem works fine (see Figure 7-14).

Figure 7-14.  Installing the Fossil filesystem

Chapter 7 Alef from Plan 9

340

	 9.	 Partition the disk. Use sdC0 (see Figure 7-15).

Figure 7-15.  Disk partitioning

Chapter 7 Alef from Plan 9

341

	 a.	 Choose Y to install MBR (see Figure 7-16).

Figure 7-16.  Install the MBR

Chapter 7 Alef from Plan 9

342

	 b.	 Choose w and q to use the whole disk (see Figure 7-17).

Figure 7-17.  Use the whole disk

Chapter 7 Alef from Plan 9

343

	 c.	 Follow all the default with prepdisk (see Figure 7-18).

Figure 7-18.  Default for prepdisk

Chapter 7 Alef from Plan 9

344

	 d.	 Choose w and q to write the disk partition (see Figure 7-19).

Figure 7-19.  Write the disk partition

Chapter 7 Alef from Plan 9

345

	 10.	 Format the disk (see Figure 7-20).

Figure 7-20.  Format the disk

Chapter 7 Alef from Plan 9

346

	 11.	 Mount the filesystem. Use the defaults, as shown in Figure 7-21.

Figure 7-21.  Mounting the filesystem

Chapter 7 Alef from Plan 9

347

	 12.	 Install the distribution from the local media (see Figure 7-22).

Figure 7-22.  Install from the local distribution

Chapter 7 Alef from Plan 9

348

	 13.	 Mount the local ISO distribution (see Figure 7-23).

Figure 7-23.  Mount the local ISO

Chapter 7 Alef from Plan 9

349

	 14.	 The root / is the distribution. There is no need to browse (see

Figure 7-24).

Figure 7-24.  Location of archives at the root FS

Chapter 7 Alef from Plan 9

350

	 15.	 Start copying the OS files with copydist (see Figure 7-25).

Figure 7-25.  Copying the OS

Chapter 7 Alef from Plan 9

351

	 16.	 Installing the OS. It’s going to take a while. Go for a coffee break

(see Figure 7-26).

Figure 7-26.  Coffee break

Chapter 7 Alef from Plan 9

352

	 17.	 Boot Plan 9 by default (see Figure 7-27).

Figure 7-27.  Boot plan 9 by default

Chapter 7 Alef from Plan 9

353

	 18.	 Finish the installation (see Figure 7-28).

Figure 7-28.  Finish the installation

Chapter 7 Alef from Plan 9

354

	 19.	 Shut down the VM (see Figure 7-29).

Figure 7-29.  Shut down the VM after installation

	 20.	 Unmount the ISO disk by going to the Storage area (see

Figure 7-30).

Figure 7-30.  Unmount the installation disk

Chapter 7 Alef from Plan 9

355

	 21.	 Restart the VM.

	 22.	 Access Plan 9:

	 a.	 After the virtual machine restarts, boot the local filesystem by

pressing Enter, and then use glenda to log in (see Figure 7-31).

Figure 7-31.  Use glenda to log in to Plan 9

Chapter 7 Alef from Plan 9

356

	 b.	 You are welcomed to Plan 9 with the Rio window system. The

Terminal and the ACME editor are running by default (see

Figure 7-32).

Figure 7-32.  Plan 9 VM is ready!

Chapter 7 Alef from Plan 9

357

	 23.	 Shut down the system by typing fshalt in the terminal window

(see Figure 7-33).

Figure 7-33.  Shutting down the VM

Chapter 7 Alef from Plan 9

358

	 a.	 It’s safe to shut down the VM (see Figure 7-34).

Figure 7-34.  Plan 9 is shut down

Perhaps, on your way home, someone will pass you in the dark, and you
will never know it... for they will be from outer space.

—Plan 9 from outer space

Chapter 7 Alef from Plan 9

359

Index

A
Alef programming language, 318

Bell Labs, 323
channels/processing, 324–326
proc/task, 326–329
programming languages, 323
tuples, 324

B
Backtesting, 149, 153–155, 160–161,

175–176, 184, 185, 194
BindJSON function, 53
BlockchainReconciler Get function, 234
Blockchain trading

automate trading, 144–147
cooking

backsetting, 160
code, 170–174
data, 161–163
discipline/consistency, 169
EMAs, 167, 168
features, 169, 170
indicators, 163–166
run bot, 174

dessert, 197, 199, 201–203
dinner is served, 193, 194, 196
financial markets, 141–143
GoLang, advantages, 210
kitchen utensils, 155, 157–160
MAR ratio, 180–182
modeling cycles, 140

performance evaluation, 175–177
recipe

compliance, 153
confidence levels, 154
macroeconomic tendencies, 151
performance evaluation, 153
preparation, 150
risk management, 152
scalability/maintainability, 153
security, 154
structured approach, 150
testing/debugging, 152, 153
timeframe, 152
trading strategies, 155

secret sauce, 147–149
sharpe ratio, 178, 179
success/failure, 183–187
taste, before serving meal, 187–193
unique environment, 139
Wall Street bankers, 140

C
C

calling, 272, 273
code, 273, 274
Go code, 274, 275
header file, 277, 278
ImageMagick, 284, 285

Linux, 288
OSX, 285–288
Raspberry Pi, 288, 289

© Nicolas Modrzyk 2023
N. Modrzyk, Go Crazy, https://doi.org/10.1007/978-1-4842-9666-0

https://doi.org/10.1007/978-1-4842-9666-0#DOI

360

OpenCV from Go, 309–314
passing parameters, 275, 276
struct, Go, 278–283

Cgo, 272–274, 279, 280, 309
ChatGPT client

AI-trained chatbot, 1
API Keys, 34, 35
basic steps, 34
customize request, 38–40
debugging GoLand, 8, 10
first request, 36, 37
GoLand, 2, 8, 10
loop prompt, 41
query/custom models, 43, 44
run/debug program, 2, 5–7
streaming response, 42, 43

Classic trading strategy, 172
Cmp method, 263
compareSlices helper

function, 253–255
controllerutil.SetControllerReference

function, 244
Cryptocurrencies, 140, 159, 183, 195,

197, 198
Custom resource definition (CRD), 217,

220–221, 225–227, 248, 268

D
davinci model, 45
Debugging, 8–10, 92, 150, 152–153, 158
Decentralized applications (dApps), 197,

210, 211, 214, 322
dotenv library, 21–24
drawOne function, 73
drawScene function, 130

E
Ethereum, 210, 214, 230, 244, 246
EVM-compatible blockchain

networks, 214
EVM-compatible blockchains, 214,

246, 265
Exponential moving averages (EMAs), 167

F
Financial economy, 142–143

G
generativeart library, 68
generativearts algorithms, 71
Gin framework, 48, 56, 76, 84, 85
godotenv library, 23
Go function, 123, 272, 274
GoLand, 2, 3, 8–10, 24, 64, 87, 95
Go program

API key, custom library, 21, 23, 24
contexts, 30–33
custom data, 14–17
Go channels, 25, 26, 28, 30
Go routines, 25
new project, 11, 12
program arguments, slicing, 20
read from file, 13
read user input, 12, 13
structs, writing/reading, 17–20
techniques, 45

Go programming language (GoLang),
14–16, 47, 196–199, 210–211, 272,
310, 327

Go routines, 25–32, 57, 314
GPU coding, OSX

C (cont.)

INDEX

361

adding values, arrays, 290–293
CUDA, 289
ETHUSD Hourlies quotes, 299, 300
Go template, 297, 298
normalized set, 302–304
Pearson correlation

coefficient, 304–306
plot, 294–296
Sepia gopher, 307, 309
threads, 300–302

Graphical user interfaces (GUI), 94, 320, 321
Group function, 52

H
helper function, 254, 294
Hit rate, 176, 177
HTTP image generator API

Gin framework, 55, 56
Gin route, 51
Gin server, 50
gin tonic/templates, 76–79
Go HTTP frameworks, 49
Go performance, 47
POST request, 53, 54
synchronized map, 80–82, 84
testing API

full debugging messages, 92
Go/Gin testing, 84–86, 88, 89, 92
JSON message, 90

validation tags, 54

I
Image generators

color schema, 69, 70
creating circles, 68, 69
Gin, 71–75
libaries, 67

UNIX time, 69
ImageMagick, 284–289, 307, 309
init function, 107, 109, 115, 118, 132, 137

J
JSON function, 53

K, L
kubectl rollout restart command, 226
Kubernetes

API creation, 223–225
configuring makefile, 225, 226
container health checks

Go HTTP server, 259–262, 264–268
probes, 258

container-orchestration platform, 214
Go SDK, 237–245
JSON-RPC API, 246, 247
manifests, 225
operator reconciliation logic,

227, 229–237
operators

controller, 220, 222
CRD, 220

operator-SDK, boostraping, 222, 223
parameterizing resources and

ports, 248–250
resources, 216, 217
run a pod, 218, 219
setting up machine, 214, 216
update logic, 250–258

M
MacOS-based machines, 271
Mac OSX, 318
make commands, 225

INDEX

362

make function, 26
Managed Account Reports (MAR)

ratio, 180
Moyashi game

animate sprites, 121–125
animation, 126, 127
camera, 118–121
full world/full screen mode, 137, 138
full world map, 131–136
game loop, 105, 107
grass, 104
key inputs, 113–115
loading textures, 107, 109, 110
music, 115–117
player textures, 110–113
world map, load, 127–131

N
NewColorCircle2 algorithm, 68
NeXT computer, 318
Novel distributed systems, 323
nsqd, 63

O
OpenAI models, 44, 45
OpenCV functions, 311
Operator-SDK framework, 219, 220,

222–226, 233, 235, 238
os.Args, 20

P
Paper trading, 149, 176, 187, 190–193
Pearson correlation coefficient, 304–306
Plan 9

audio controller settings, 334
Bell Labs, 318–320
boot, 352
finish installation, 353, 354
Fossil filesystem, 339
installation, 336
local distribution, 347
local ISO, 348
login, 355
MBR installation, 341
Network is the Computer, 321, 322
prepdisk, 343–345
root FS, 349, 351
shut down, 358
UNIX, 318
VirtualBox, 330
virtual machine, 331–333, 356, 357

printNumbers function, 25
Probes, 258, 259, 262
Productive economy, 142
Profit and loss (PnL), 175–177, 183, 190,

194, 197

Q
Queues

concert, 56
custom data type, 61, 62
Go program’s output, 66
go-queue, 59, 60
Go routines, 57, 58
IDE, 65
jobData type, 61
JSON, 61
NSQ, 64, 65, 67
nsqlookupd, 63
single clerk handling, 57

INDEX

363

R
Raspberry Pi, 48, 61, 159, 285,

286, 288–289
Real-time trading simulation, 149, 153,

187, 188, 190
reconcileCommand function, 253–255
reconcileContainerPorts function, 257
reconcile function, 222, 224, 238, 251
reconcileResources function, 256
ReconcileStatefulSet function, 239–242,

248, 266

S
Sharpe ratio, 178–180, 183, 209
Size function, 97
sleepSomeTime function, 58, 61
stdio core C library, 273

T, U
Tile set-based game

ChatGPT
display date, real time, 97, 98, 100
hangman game, 100–103

framebuffer, 94
game setup, 95, 96
Raylib, library, 94

Tom Demark’s indicators, 208
Trading strategy, 149, 160, 172, 177–180,

190, 195, 204
2D gaming interfaces

multiplayer games, 93
tile set-based game, 94

V, W, X, Y, Z
Virtual trading, 149, 187

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Go to the Basics
	First Steps
	Run and Debug Your First Go Program
	A Short Note on Debugging with GoLand

	Before Talking to OpenAI: Reviewing Concepts
	Read from Input
	Reading from a File
	Custom Data: Go Structs
	Writing and Reading Structs from Files
	Reading a Struct from a File
	Slicing Program Arguments
	Using a Custom Library to Load the API Key
	Asynchronous Code: Go Routines
	Asynchronous Code: Go Routines and Channels
	Using Go Contexts

	Putting Things Together Into a ChatGPT Client
	Getting an API Key
	First Request
	Customize the ChatGPT Request
	Create a Loop Prompt
	Streaming the Response
	Query and Use a Custom Model

	Summary

	Chapter 2: Write a Tested HTTP Image Generator API
	Pour Me Some Gin!
	Working with Queues
	Image Generators
	Image Generator in a Gin
	Quick Gin Tonic and Templates
	Use a Synchronized Map
	Testing the API
	Simple Go and Gin Testing
	Testing the Image Generator

	Summary

	Chapter 3: Writing the Basics for a 2D Game in Go
	Some Tile Set History
	Library Setup: Raylib
	Game Setup
	Quick Game Generation with ChatGPT
	Display the Date in Real Time
	Hangman Game

	The Moyashi Game
	The Basic Game Loop
	Loading Textures
	Adding a Player Texture
	Using Key Inputs
	Doing the Game Music
	Game Camera
	Animate Sprites
	Animation for an Idle Moyashi
	Loading the World Map
	Loading the Full World Map
	Full Map and Full Screen

	Summary

	Chapter 4: Trend Follower for Blockchain Trading
	Go Crazy or Go Home
	Why Trade in the Financial Markets?
	The Origins of Money
	The Financial Economy vs. the Real Economy
	Market Efficiency

	Why Automate Trading?
	The Secret Sauce
	Charts
	Data
	News and Content
	Strategy
	Backtesting
	Real-Time Trading

	The Recipe
	Clear Objectives and a Structured Approach
	Macroeconomic Tendencies
	Timeframe
	Risk Management
	Testing and Debugging
	Performance Evaluation
	Scalability and Maintainability
	Compliance and Regulation
	Security
	Building Confidence
	Refining Trading Strategies

	Utensils in the Kitchen
	Modern Trading Tool
	Brokers
	Cloud Infrastructure

	Cooking
	Backtesting
	Data
	Indicators
	Levels
	Simple Moving Averages
	Exponential Moving Averages
	Relative Strength Index
	Additional Notes

	Enhancing Discipline and Consistency
	Why So Many Features?
	Sample Code
	Exchange Connectivity (Listing 4-1)
	Building Indicators (Listing 4-2)
	The Strategy

	Run the Bot

	Performance Evaluation
	Stats
	PnL
	PnL in Backtesting
	PnL in Real-Time Testing
	Hit Rate
	Hit Rate in Trading Strategy Evaluation
	The Potential Drawbacks of an Excessively High Hit Rate

	Sharpe Ratio
	Risk-Adjusted Performance
	Benchmarking and Comparison
	Portfolio Diversification
	Potential Pitfalls

	MAR Ratio
	Emphasis on Drawdown Risk
	Risk-Adjusted Performance
	Comparison of Strategies
	Suitability for Trend-Following Strategies
	Potential Pitfalls

	Success or Failure and Why
	Benchmark Comparison
	Timeframe
	Risk Management and Continuous Improvement
	Potential Pitfalls
	Example of Backtesting Multiple Strategies

	A Taste Before Serving the Meal
	Ensuring System Stability
	Hidden Difficulties
	Forensic Analysis
	Potential Pitfalls

	Dinner Is Served
	Skin in the Game
	Fear vs. Greed
	Which Products to Trade
	Machine Learning

	Dessert!
	The Exponential Age Is Here
	The Proverbial “Cherry on Top”

	Appendix
	Finance Jargon
	Glossary
	One-liner

	Extra Indicators of Interest
	Tom Demark’s Indicators

	Extra Statistics
	Side Notes on Geth
	Ethereum’s GoLang Implementation: Geth
	GoLang’s Advantages for Blockchain Development

	References

	Chapter 5: Writing a Kubernetes Operator to Run EVM-Compatible Blockchains
	Setting Up Kubernetes on Your Machine
	Resources Overview
	Let’s Run a Pod
	Demystifying Kubernetes Operators
	Custom Resource Definition
	Controller

	Bootstrapping the Project with Operator-SDK
	Creating an API
	Generating the Manifests
	Configuring the Makefile
	Implementing the Operator Reconciliation Logic
	Using the Kubernetes Go SDK
	Interacting with the JSON-RPC API
	Using Port-Forward

	Parameterizing Resources and Ports
	Implementing the Update Logic
	Implementing Health Checks
	Creating a Minimal Go HTTP Server
	Performing a net_peerCount Health Check
	Configuring the Readiness Probe

	Summary

	Chapter 6: Go Beyond: Connecting to C for a Performance Boost
	C is for Change
	Calling C
	Calling C Code Located in a C File
	C Code Calling Go Code
	Passing Parameters
	Using a Header File
	Using a C Struct from Go

	Matisse, ImageMagick, and Sepia
	ImageMagick on OSX
	ImageMagick on Linux
	ImageMagick on Raspberry Pi

	GPU Coding on OSX
	Basics: Adding Values from Two Arrays
	Back to the Plot
	Generic GPU Processing Go Code
	Opens ETHUSD Hourlies Quotes: Moving Average
	Slightly Better Moving Average on the GPU
	Normalized Set
	Pearson Coefficient Moving Factor
	Sepia Gopher

	Extreme Calling OpenCV/C++ from Go
	Summary

	Chapter 7: Alef from Plan 9
	Plan 9 from Bell Labs
	The Network Is the Computer
	The Alef Language
	Hello Tuple!
	Channels and Processes
	Proc and Task

	Have Fun with Plan 9

	Index
	df-Capture.PNG

