

 [image: Pragmatic Bookshelf]

Powerful Command-Line Applications in Go

Build Fast and Maintainable Tools

by Ricardo Gerardi

Version: P1.0 (December 2021)

Copyright © 2021 The Pragmatic Programmers, LLC.
 This book is licensed to
 the individual who purchased it. We don't copy-protect it
 because that would limit your ability to use it for your
 own purposes. Please don't break this trust—you can use
 this across all of your devices but please do not share this copy
 with other members of your team, with friends, or via
 file sharing services. Thanks.

 Many of the designations used by manufacturers and
 sellers to distinguish their products are claimed as
 trademarks. Where those designations appear in this book,
 and The Pragmatic Programmers, LLC was aware of a
 trademark claim, the designations have been printed in
 initial capital letters or in all capitals. The Pragmatic
 Starter Kit, The Pragmatic Programmer, Pragmatic
 Programming, Pragmatic Bookshelf and the linking g
 device are trademarks of The Pragmatic Programmers,
 LLC.

 Every precaution was taken in the preparation of this book.
 However, the publisher assumes no responsibility for errors
 or omissions, or for damages that may result from the use
 of information (including program listings) contained
 herein.

About the Pragmatic Bookshelf

 The Pragmatic Bookshelf is an agile publishing company.
 We’re here because we want to improve the lives of developers.
 We do this by creating timely, practical titles, written by programmers for programmers.

 Our Pragmatic courses, workshops, and other products can
 help you and your team create better software and have more
 fun. For more information, as well as the latest Pragmatic
 titles, please visit us at http://pragprog.com.

 Our ebooks do not contain any Digital Restrictions
 Management, and have always been DRM-free. We pioneered the
 beta book concept, where you can purchase and read a book
 while it’s still being written, and provide feedback to the
 author to help make a better book for everyone. Free
 resources for all purchasers include source code downloads
 (if applicable), errata and discussion forums, all
 available on the book's home page at pragprog.com. We’re
 here to make your life easier.

New Book Announcements

 Want to keep up on our latest titles and announcements, and
 occasional special offers? Just create an account on
 pragprog.com (an email address and a password is all it takes)
 and select the checkbox to receive newsletters. You can
 also follow us on twitter as @pragprog.

About Ebook Formats

 If you buy directly from
 pragprog.com, you get
 ebooks in all available formats for one price. You can
 synch your ebooks amongst all your devices (including
 iPhone/iPad, Android, laptops, etc.) via Dropbox.
 You get free updates for the life of the edition. And, of
 course, you can always come back and re-download your books
 when needed. Ebooks bought from the Amazon Kindle store are
 subject to Amazon's polices. Limitations in Amazon's file
 format may cause ebooks to display differently on different
 devices. For more information, please see our FAQ at
 pragprog.com/#about-ebooks. To learn
 more about this book and access the free resources, go to
 https://pragprog.com/book/rggo, the book's homepage.

 Thanks for your continued support,

 Andy Hunt

 The Pragmatic Programmers

The team that produced this book includes: Dave Rankin (CEO)Janet Furlow (COO)Tammy Coron (Managing Editor)Brian P. Hogan (Development Editor)Corina Lebegioara (Copy Editor)Potomac Indexing, LLC (Indexing)Gilson Graphics (Layout)Andy Hunt and Dave Thomas (Founders)

 For customer support, please contact
 support@pragprog.com.

 For international rights, please contact
 rights@pragprog.com.

To my beloved wife Kassia. My best friend, my greatest supporter. Sadly she passed away due to cancer before seeing this book completed.
To my four incredible daughters Gisele, Livia, Elena, and Alice. The reason for everything.

Table of Contents
	 Foreword
	 Acknowledgments
	 Preface	What’s in This Book
	How to Use This Book
	About the Example Code
	Go Modules
	Online Resources

	1. Your First Command-Line Program in Go	Building the Basic Word Counter
	Testing the Basic Word Counter
	Adding Command-Line Flags
	Compiling Your Tool for Different Platforms
	Exercises
	Wrapping Up

	2. Interacting with Your Users	Organizing Your Code
	Defining the To-Do API
	Creating the Initial To-Do Command-Line Tool
	Testing the Initial CLI Implementation
	Handling Multiple Command-Line Options
	Display Command-Line Tool Usage
	Improving the List Output Format
	Increasing Flexibility with Environment Variables
	Capturing Input from STDIN
	Exercises
	Wrapping Up

	3. Working with Files in Go	Creating a Basic Markdown Preview Tool
	Writing Tests for the Markdown Preview Tool
	Adding Temporary Files to the Markdown Preview Tool
	Using Interfaces to Automate Tests
	Adding an Auto-Preview Feature
	Cleaning Up Temporary Files
	Improving the Markdown Preview Tool with Templates
	Exercises
	Wrapping Up

	4. Navigating the File System	Developing a File System Crawler
	Testing with Table-Driven Testing
	Deleting Matched Files
	Testing with the Help of Test Helpers
	Logging Deleted Files
	Archiving Files
	Exercises
	Wrapping Up

	5. Improving the Performance of Your CLI Tools	Developing the Initial Version of colStats
	Writing Tests for colStats
	Benchmarking Your Tool
	Profiling Your Tool
	Reducing Memory Allocation
	Tracing Your Tool
	Improving the colStats Tool to Process Files Concurrently
	Reduce Scheduling Contention
	Exercises
	Wrapping Up

	6. Controlling Processes	Executing External Programs
	Handling Errors
	Writing Tests for Goci
	Defining a Pipeline
	Adding Another Step to the Pipeline
	Handling Output from External Programs
	Running Commands with Contexts
	Integration Tests with a Local Git Server
	Testing Commands with Mock Resources
	Handling Signals
	Exercises
	Wrapping Up

	7. Using the Cobra CLI Framework	Starting Your Cobra Application
	Navigating Your New Cobra Application
	Adding the First Subcommand to Your Application
	Starting the Scan Package
	Creating the Subcommands to Manage Hosts
	Testing the Manage Hosts Subcommands
	Adding the Port Scanning Functionality
	Using Viper for Configuration Management
	Generating Command Completion and Documentation
	Exercises
	Wrapping Up

	8. Talking to REST APIs	Developing a REST API Server
	Testing the REST API Server
	Completing the REST API Server
	Developing the Initial Client for the REST API
	Testing the Client Without Connecting to the API
	Viewing a Single Item
	Adding an Item
	Testing HTTP Requests Locally
	Completing and Deleting Items
	Executing Integration Tests
	Exercises
	Wrapping Up

	9. Developing Interactive Terminal Tools	Initializing the Pomodoro Application
	Storing Data with the Repository Pattern
	Testing the Pomodoro Functionality
	Building the Interface Widgets
	Organizing the Interface’s Layout
	Building the Interactive Interface
	Initializing the CLI with Cobra
	Exercises
	Wrapping Up

	10. Persisting Data in a SQL Database	Getting Started with SQLite
	Go, SQL, and SQLite
	Persisting Data in the Database
	Testing the Repository with SQLite
	Updating the Application to Use the SQLite Repository
	Displaying a Summary to the Users
	Exercises
	Wrapping Up

	11. Distributing Your Tool	Starting the Notify Package
	Including OS-Specific Data
	Including OS-Specific Files in the Build
	Testing the Notify Package
	Conditionally Building Your Application
	Cross-Compiling Your Application
	Compiling Your Go Application for Containers
	Distributing Your Application as Source Code
	Exercises
	Wrapping Up

Copyright © 2021, The Pragmatic Bookshelf.

 Early Praise for Powerful Command-Line Applications in Go

 Ricardo packs a lot of practical information in this book. Right off the bat he starts with a complete example of a command-line application, from coding, to testing to deploying. This book will show you many practical ways to work with Go and write command-line applications.

	→ 	Miki Tebeka
	
	CEO, 353solutions

 Go is great at creating command-line tools and Ricardo does a great job at explaining how to develop command-line utilities in Go. All kinds of Go programmers who read this book are going to learn how to develop powerful command-line tools easily and productively.

	→ 	Mihalis Tsoukalos
	
	Author, Mastering Go

 The best Go book I’ve read so far. I love that examples are something useful, not abstractions. I recommend the book for those who want to learn Go or who already have some knowledge. I’m sure everyone will learn something valuable.

	→ 	Renato Suero
	
	Senior Software Engineer, Proposify

Foreword

 In 2012 I began a journey of experimentation in investigating a new language,
Go, which was born at Google and had just reached the 1.0 milestone. I learn
best by building so I was looking for a project meaningful enough to actually
learn Go. I was growing frustrated with the increasing cost and
complexity of my WordPress-powered blog with entirely static content and
decided that building a static site generator was the project for me to learn
Go. I began writing my first Go project, Hugo[1].

 Having previously designed several CMSs and command-line tools, I had a good
sense of what I wanted to build. I opened up a terminal and began by typing
commands for this not yet existing program to effectively sketch out how the
user interface would be shaped. With this sketch in hand, I then began the
process of building the application. As I was inexperienced with Go, I hoped to
lean heavily on existing libraries, but as this was the dawn of the Go
ecosystem, more often than not, the libraries I needed didn’t exist.

 Unable to find the right library to support the design pattern of
 [application] [command] [flag] [argument], I set out to write it myself. I also
 needed config file management as there was too much configurability to
 anticipate everything passed via the command line. As my goal was building
 Hugo, these were just Hugo packages initially, but I thought maybe someone
 else would benefit from this functionality too, and I pulled them out into standalone libraries and named them Cobra[2] and Viper[3], featured in Chapter 7, ​Using the Cobra CLI Framework​ of this book.

 Through the experience of building Hugo, Cobra, and Viper, I had a
revelation: while Go was initially targeted at large-scale server applications,
the Go creators had developed a language perfectly suited for command-line
tools. It had everything you needed and most of what you wanted:

	
Static compilation, which created executables with no local dependencies: no runtimes or libraries needed. What could be easier to install than one file?

	
Cross-compilation, eliminating the need for build farms.

	
Lightning-fast builds so quick that it felt like a dynamic language.

	
Native concurrency, enabling your applications to take full advantage of multicore machines.

 Go had nearly all the advantages of a dynamic language during development and all
 the advantages of a compiled language during execution, plus additional unique
 advantages. In short, Go is uniquely perfect for both building and
 running command-line applications.

 At the time, I was leading product, client engineering, customer engineering,
 and developer relations for MongoDB. I eralized that if we had written our
 CLI applications in Go, our support ticket volume would drop by more than half
 as the majority of issues users experienced were due to complications with
 runtime and library incompatibilities present in the Java and Python ecosystems
 we were then using, and the same would be true for .Net, Ruby, JavaScript, and
 other popular languages. Due to Go’s focus on security and type safety, we
 would end up with far fewer issues to debug. We learned that in addition to
 these benefits, we also had happier, more productive developers writing Go.

 Sometimes in life, the smallest things have a profound impact. This experiment I began in 2012 with this new language led to:

	
MongoDB being one of Go’s earliest adopters, which in part contributed to its massive success as one of the most valuable open source companies ever.

	
My speaking at the first Gophercon, which led to several other speaking opportunities and established relationships that eventually led to me joining and co-leading the Go team at Google.

	
 Hugo growing to become the most popular static site generator in terms of number of public websites and in terms of GitHub stars with notable users such as Brave.com, LetsEncrypt.org, SmashingMagazine.com, and Digital.gov.

	
Building CLIs in Go, which is the second most popular use for Go with 65% of Go developers writing CLIs.

	
Cobra becoming the CLI framework for Go with virtually all major Go applications using it including Kubernetes, Docker and GitHub CLI.

 Through this, I’ve also had the good fortune of getting to know Ricardo Gerardi, who has also been on a profound journey, which you will read about in the preface. Part of Ricardo’s journey has been learning Go and discovering its power for creating CLI applications. Ricardo poured his experience into writing this excellent book on getting started with command-line applications in Go. It does a beautiful job of starting with basic concepts and slowly building on them with just the right balance of explanation so you can understand what is really happening. It takes the reader on a journey from building very small single-purpose tools to full-fledged command-line applications. Working through the book, I was able to relive the excitement I experienced a decade ago learning Go. This is a book that is best experienced alongside an editor and console.

 I now invite you to start your own journey of experimentation. Along the way, you’ll learn all you need to know about working with Go and designing command-line applications. You’ll learn the basic techniques and libraries used to build applications like Go itself, Hugo, Docker, and Kubernetes. Most importantly, you’ll discover the joy of programming. You’ll be amazed at the new superpower you’ve developed—the ability to create applications that work exactly like you need them to. This book is your guide to unlocking your new superpowers. Enjoy the journey.

Steve Francia
Author of Cobra, Viper, and Hugo, and the Go Product Lead at Google

Footnotes

	[1]
	
https://gohugo.io

	[2]
	
https://github.com/spf13/cobra

	[3]
	
https://github.com/spf13/viper

Copyright © 2021, The Pragmatic Bookshelf.

Acknowledgments

To start, I want to thank my late wife Kassia for her love and support during the 25 years we spent together. Kassia always believed in me, and she encouraged me to write this book. She kept pushing me to work on it even after she was diagnosed with incurable cancer. Kassia was an inspiring and brave woman who conquered cancer. Not because she was cured—sadly, she wasn’t—but because she never let cancer change her, and she continued to inspire all those around her. Writing this book throughout her journey with cancer, and then throughout my own grief was a challenging task.

Thank you to my daughters Gisele, Livia, Elena, and Alice for your love, support, and courage.

Thank you, Brian Hogan, for editing this book and for helping me find its real soul. Thank you also for your patience and understanding with all the difficulties I faced while writing this book. You’re a great mentor and a wonderful human being. I have learned a great deal from you.

Thank you, Andy Hunt and The Pragmatic Bookshelf, for publishing this book. You made a long-time dream come true.

Thank you, Tim Anema, Robert Bost, Ilija Eftimov, Mike Fridman, Philip Pearl, Petko Petkov, Renato Suero, and Will Langford, for reviewing the draft of this book, catching errors, and helping me improve it. This book wouldn’t be what it is without your invaluable suggestions and constructive feedback.

Thank you, Marcelo Paternostro, for your insights, suggestions, and friendship.

This book is only possible because the Go programming language exists. Thank you, Robert Griesemer, Rob Pike, and Ken Thompson, for designing this incredible language. Thanks to all Go contributors for developing and maintaining it. Your continuous efforts make Go an amazing language to work with.

A special thanks to all beta readers who read this book while it was still being written. Thank you for your excellent feedback and for finding and reporting errors that would be otherwise hard to spot. I know this book took a long time to complete. Thank you for your patience, support, and kind messages while I dealt with personal issues and continued to work on the book.

While writing this book, I witnessed firsthand the challenges that someone living with cancer faces. For those out there in this situation, particularly women dealing with breast cancer, I acknowledge your challenges, your efforts, and your perseverance. For the caregivers, I understand the toll it takes on you, especially on your mental health. Take care of yourselves so you can take care of your loved ones. In honor of my wife’s memory and out of respect for those impacted by cancer, I will donate part of the proceeds from this book to help those living with or caring for someone with cancer.

Copyright © 2021, The Pragmatic Bookshelf.

Preface

Whether you’re a system administrator, a network engineer, a DevOps specialist, or any other modern IT professional, you use command-line applications to automate your environment and increase your productivity. These tools play an increasingly critical role in your infrastructure and therefore require the same level of governance as other software components. In this book, you’ll use the Go programming language to develop command-line applications that are maintainable, cross-platform, fast, and reliable.

 Go is a modern programming language that combines the reliability provided by the compilation process with the flexibility of dynamic typing. Go’s ease of use and flexibility in prototyping new ideas make it a great choice for writing command-line tools. At the same time, Go allows the implementation of more complex scenarios by providing features like type safety, cross-compilation, testing, and benchmarks.

 Many popular command-line tools you use are developed with Go. These include Docker, Podman, Kubectl, Openshift CLI, Hugo, and Terraform. If you’ve ever wondered how you can make your own tools like these, this book will show you how.

You’ll apply your knowledge of Go’s basic syntax and also employ more advanced concepts to develop several command-line applications. You can use these applications to automate tasks, analyze data, parse logs, talk to network services, or address other system requirements. You’ll also employ different testing and benchmarking techniques to ensure your programs are fast and reliable.

What’s in This Book

In Chapter 1, ​Your First Command-Line Program in Go​, you’ll take a quick tour through the process of developing a command-line application with Go by building a word counter. You will start with the basic implementation, add some features, and explore testing. You’ll also add command-line flags and build this application for different platforms.

In Chapter 2, ​Interacting with Your Users​, you’ll design and write a command-line tool to manage lists of to-do items in accordance with common input/output standards by applying different techniques. You’ll take input from the standard input (STDIN) stream, parse command-line parameters, and define flags for your tool using the flags package. You’ll use environment variables to increase the flexibility of your tools. In addition, you’ll display information and results back to the user through the standard output (STDOUT) stream, and present errors using the standard error (STDERR) stream for proper error handling. Finally, you’ll explore Go interfaces by applying the io.Reader interface in particular.

Next, in Chapter 3, ​Working with Files in Go​, you’ll develop a tool to preview Markdown files using a web browser. You’ll create and open files for reading and writing. You’ll apply techniques to handle paths consistently across different operating systems. You’ll use temporary files and apply the defer keyword to clean them up. You’ll also make your tool flexible by using file templates. Finally, you’ll use Go interfaces to make your code flexible, while writing and executing tests to ensure your code matches the requirements.

In Chapter 4, ​Navigating the File System​, you’ll navigate through the file system and work with directories and file properties. You’ll develop a CLI application to find, delete, and back up files according to different criteria. You’ll perform common file system operations such as copying, compressing, and deleting files. You’ll also log information to the screen or log files. Finally, you’ll apply the concepts of table-driven testing and test helpers to write flexible and meaningful test cases for your application.

In Chapter 5, ​Improving the Performance of Your CLI Tools​, you’ll develop a command-line tool that processes data from CSV files. Then you’ll use Go’s benchmarking, profiling, and tracing tools to analyze its performance, find bottlenecks, and redesign your CLI to improve its performance. You’ll write and execute tests to ensure your application works reliably across the refactoring. You’ll also apply Go’s concurrency primitives such as goroutines and channels to ensure your application runs tasks concurrently in a safe way.

Chapter 6, ​Controlling Processes​, will allow you to expand your command-line applications’ capabilities by executing external tools. You’ll execute, control, and capture their output to develop a Continuous Integration tool for your Go programs. You’ll explore different ways to execute external programs with various options such as timeouts that ensure your program doesn’t run forever. You’ll also handle operating system signals correctly to allow your tool to gracefully shut down.

Next, in Chapter 7, ​Using the Cobra CLI Framework​, you’ll develop a network tool that executes a TCP port scan on remote machines by applying the Cobra CLI framework. Cobra is a popular framework that allows you to create flexible command-line tools that use subcommands compatible with the POSIX standard. You’ll use Cobra to generate the boilerplate code for your application, allowing you to focus on its business logic.

In Chapter 8, ​Talking to REST APIs​, you’ll improve your to-do application by making it available through a representational state transfer (REST) API. Then you’ll develop a command-line client that interacts with this API using several HTTP methods. You’ll parse JSON data and fine-tune specific parameters of your requests such as headers and timeouts. You’ll also apply proper testing techniques that ensure your application works reliably without overloading web servers unnecessarily.

In Chapter 9, ​Developing Interactive Terminal Tools​, you’ll build an interactive command-line application that uses terminal widgets to interact with the user. You’ll use external packages to design and develop the interface. You’ll also apply different Go concurrency techniques to manage this application asynchronously.

In Chapter 10, ​Persisting Data in a SQL Database​, you’ll expand your interactive application by allowing users to save its data into a SQL database. You’ll use Go’s standard library and external packages to connect to standard databases by executing SQL operations. You’ll query, insert, and delete data from databases and use a local Sqlite3 database to persist data for your tool. You’ll make this data available to the user by summarizing its content using the application interface.

And finally, in Chapter 11, ​Distributing Your Tool​, you’ll explore several techniques to build your tool, including different build and cross-compilation options, allowing your tool to run in multiple operating systems. You’ll apply build tags to change the behavior of your builds according to external conditions. You’ll take a quick look at using CGO to embed C code in your Go applications. Then you’ll apply techniques to package and distribute your application either as a Linux container or as source code via go get.

 This book doesn’t cover the basic syntax of the Go programming language. You should be familiar with declaring variables, types, custom types, flow control, and the general structure of a Go program. If you’re starting with Go, take a look at these books and articles that do a great job explaining the language’s syntax:
	Learning Go [Jon21]
	Go in Action [KKS15]
	A Tour of Go[4]
	Effective Go[5]

 This book uses the Go standard library as much as possible. Go has a rich and diverse standard library that includes packages that address most of the requirements for creating command-line tools in general. By using the standard library, we benefit from Go’s compatibility across different versions making the code accessible to a larger number of readers. cases, we’ll use external packages when no equivalent functionality is available but we generally prefer to use the standard library even if an external package makes it easier to address a requirement. The notable exception to this rule is the Cobra CLI framework that you’ll use in Chapter 7, ​Using the Cobra CLI Framework​, as this is a popular framework used by many developers and companies to extend Go’s capabilities to manage command-line applications.

In each chapter, you’ll typically develop a fully functional command-line tool. You’ll start with the basic functionality, write some tests, and then add more features. At the end of each chapter, you’ll find additional exercises to improve what you’ve learned in the chapter and practice your skills further. And you’re encouraged to add more features on your own.

 This book spends a fair amount of time on testing your code. In some cases, you’ll see that the test examples are more intricate than the code examples. This is done for two significant reasons: as command-line tools become more critical to your infrastructure, it’s essential that you ensure they work correctly; and Go provides out-of-the-box features to test and benchmark your code. You’ll start by creating basic test functions. Then you’ll develop more advanced concepts such as table-driven testing and dependency injection, culminating with mocking your own commands and artifacts for testing.

Finally, feel free to read this book in any order. If you have a particular interest or if one of the examples seems more appealing, feel free to jump around. Keep in mind that some chapters build on skills presented in previous chapters. A cross-reference usually points to where that concept was first discussed in the book so you can explore the topic in more detail.

How to Use This Book

 To best follow this book and test the code examples, you need Go 1.13 or higher installed on your machine. At the time of writing this book, the current version of Go is 1.16. You can find more information on installing Go in the official documentation.[6]

 The code examples in the book use Go modules to manage package dependencies. For details, consult ​Go Modules​. By using Go modules, you’re no longer required to code under the $GOPATH directory. Modules have been available since Go 1.11 and enabled by default since 1.13.

 Make sure the Go binary go is in your $PATH variable so you can execute Go commands from anywhere without prefixing the absolute path. For example, to run tests, you type go test, and to build programs, you run go build. Some examples also execute the binary version of your tools. These are typically installed in the directory $HOME/go/bin. We expect that this directory exists and is included in your $PATH variable.

You’ll also need a working Internet connection to download the source code and the external libraries required by some examples. Finally, you’ll need a text editor to write your programs and access to a command shell to test and run them. We recommend using the Bash shell as most of the examples presented in the book use it.

 For the most part, the example applications included in this book are compatible with any operating system supported by Go, such as Linux, macOS, and Windows. But when executing commands to interact with the operating system, for example, to create directories or list file contents, the book assumes you’re running an operating system compatible with Linux or Unix standards. If you’re using Windows, use the corresponding Windows commands to complete those tasks instead.

 Typically, when the book instructs you to type commands, they’ll look like this:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​

 The dollar sign ($) represents the shell prompt. You don’t need to type it when typing the commands. Simply type the rest of the line after it.

 Some examples present a series of commands and their output. In these cases, the lines starting with the dollar sign ($) represent the prompt and what you should type. The rest is the output from the commands:
	​ 	​$ ​​ls​
	​ 	exceptionStep.go main.go main_test.go step.go testdata
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/success
	​ 	=== RUN TestRun/fail
	​ 	=== RUN TestRun/failFormat
	​ 	--- PASS: Test_Run (0.95s)
	​ 	 --- PASS: TestRun/success (0.47s)
	​ 	 --- PASS: TestRun/fail (0.03s)
	​ 	 --- PASS: TestRun/failFormat (0.45s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/processes/goci 0.951s

 In addition, throughout the book, you’ll see that the examples are versioned from one section of the chapter to the next, by organizing the code into different directories, one for each version. This is necessary to make it easier to relate the examples with the source code shipped with the book. For example, in Chapter 5, ​Improving the Performance of Your CLI Tools​, the source code is split in the following directories:
	​ 	​$ ​​find​​ ​​.​​ ​​-maxdepth​​ ​​1​​ ​​-mindepth​​ ​​1​​ ​​-type​​ ​​d​​ ​​|​​ ​​sort​
	​ 	./colStats
	​ 	./colStats.v1
	​ 	./colStats.v2
	​ 	./colStats.v3

If you’re developing the programs following the book, you don’t need to create different directories for each version, unless you want to. In your case, it may be simpler to update the existing code according to the instructions in the book. You can also use a version control system, such as Git, to keep the different versions of your code available for reference.

 If you’ve programmed with Go before, you’ll notice that the code examples, as presented in the book, don’t follow Go’s formatting standards. In the book, the code is indented with spaces to ensure that the code fits the pages for printing. When copying the code from the book or downloading the examples, run gofmt to format the code automatically according to Go standards:

	​ 	​$ ​​gofmt​​ ​​-w​​ ​​<source_file>.go​

If your text editor is configured for automatic code reformatting, then save the file to update it according to the standards. Notice that there will be a difference between the code you see in the book’s pages and the code you see in your text editor.

About the Example Code

	
	 The code provided in this book aims to illustrate concepts of the language that are useful when you’re building your own programs and command-line tools.

This code isn’t production-ready.

Even though each chapter shows a complete example you can use, the code may require additional features and checks to be used in real-life scenarios.

Go Modules

	
	

 The code examples in this book rely on Go modules, the standard method to control and manage package dependencies for Go applications. By using Go modules, you can write your Go programs outside of the legacy $GOPATH required by older versions of Go prior to 1.11. Modules also enable reproducible builds as they record the specific version of Go and the external packages required to reliably build the application. You can find more information about Go modules in the official Go blog posts, Using Go Modules[7] and New module changes in Go 1.16.[8] To follow the examples, you need Go 1.13 or greater with modules enabled.
	
	

	
	
	 Modules provide a standard way to group related packages into a single unit that can be versioned together. They enable consistent dependency management for your Go applications. To use modules, create a directory for your code and use the go mod init command to initialize a new module, along with a unique module identifier. Typically, the unique module identifier is based on the version control path used to store the code. Since the code examples in the book aren’t stored in a publicly accessible version control system, we’ll use pragprog.com/rggo as the prefix for all example modules in the book. To better implement the book’s examples, place your code in the $HOME/pragprog.com/rggo directory with sub-directories for each chapter. For example, initialize a new module like this:
	
	
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/firstProgram/wc​
	​ 	​$ ​​go​​ ​​mod​​ ​​init​​ ​​pragprog.com/rggo/firstProgram/wc​
	​ 	go: creating new go.mod: module pragprog.com/rggo/firstProgram/wc

This directory is a suggestion. As long as you keep the same module path identifier when initializing the module, you can change the directory where you store the code, and you’re still able to follow the examples as is.

	
	Upon initializing a new module, Go creates a file go.mod in the root of your module directory and records the specific version of Go and the module path, like this:
	​ 	​$ ​​cat​​ ​​go.mod​
	​ 	module pragprog.com/rggo/firstProgram/wc
	​ 	
	​ 	go 1.16

	
	
	If your code has external dependencies, you can record the specific version required in the go.mod file like this:
	​ 	​$ ​​cat​​ ​​go.mod​
	​ 	module pragprog.com/rggo/workingFiles/mdp
	​ 	
	​ 	go 1.16
	​ 	
	​ 	require (
	​ 	 github.com/microcosm-cc/bluemonday v1.0.2
	​ 	 github.com/pmezard/go-difflib v1.0.0 // indirect
	​ 	 github.com/russross/blackfriday/v2 v2.0.1
	​ 	 github.com/shurcooL/sanitized_anchor_name v1.0.0 // indirect
	​)

For more details on how to use the external libraries with Go modules, consult their documentation.

	
	
	Modules are fully integrated with the Go tooling. If you don’t add the dependencies directly to your go.mod file, Go will automatically do that for you when you download it using go get. If you try to test or build your program using go test or go build, Go reports a missing dependency with a suggestion for how to obtain it. Go also creates a checksum file go.sum recording the specific checksum of each module used to build your program to ensure the next build uses the same version:
	​ 	​$ ​​cat​​ ​​go.sum​
	​ 	github.com/microcosm-cc/bluemonday v1.0.2 h1:5lPfLTTAvAbtS0VqT+94yOtFnGfUWY...
	​ 	github.com/microcosm-cc/bluemonday v1.0.2/go.mod h1:iVP4YcDBq+n/5fb23BhYFvI...
	​ 	github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/...
	​ 	github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsb...
	​ 	github.com/russross/blackfriday/v2 v2.0.1 h1:lPqVAte+HuHNfhJ/0LC98ESWRz8afy...
	​ 	github.com/russross/blackfriday/v2 v2.0.1/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylq...
	​ 	github.com/shurcooL/sanitized_anchor_name v1.0.0 h1:PdmoCO6wvbs+7yrJyMORt4/...
	​ 	github.com/shurcooL/sanitized_anchor_name v1.0.0/go.mod h1:1NzhyTcUVG4SuEtj...
	​ 	golang.org/x/net v0.0.0-20181220203305-927f97764cc3 h1:eH6Eip3UpmR+yM/qI9Ij...
	​ 	golang.org/x/net v0.0.0-20181220203305-927f97764cc3/go.mod h1:mL1N/T3taQHkD...

Notice that the output has been truncated to fit the book’s page.

By using the files go.mod and go.sum, you ensure you’re building the application with the same dependencies as the original developer. You can use these files provided with the book’s source code to ensure your code will build exactly as shown in the book’s examples.
	

Online Resources

	
	
 The book’s website[9] has links for downloading the source code and companion files.

 If you’re reading the electronic version of this book, you can click the box above the code excerpts to download that source code directly.

Now it’s time to "go get" your feet wet. Let’s start by developing a basic word counter command-line application that provides you with a working cross-platform tool. This also gives you an overview of the process for developing more complex applications.

Footnotes

	[4]
	
 https://tour.golang.org

	[5]
	
 https://golang.org/doc/effective_go.html

	[6]
	
 https://golang.org/doc/install

	[7]
	
 https://blog.golang.org/using-go-modules

	[8]
	
 https://blog.golang.org/go116-module-changes

	[9]
	
https://pragprog.com/titles/rggo/

Copyright © 2021, The Pragmatic Bookshelf.

 Chapter
 1
Your First Command-Line Program in Go

 Whether you’re looking to automate a task, analyze data, parse logs, talk to network services, or address other requirements, writing your own command-line tool may be the fastest—and perhaps the most fun—way to achieve your goal. Go is a modern programming language that combines the reliability of compiled languages with the ease of use and speed of dynamically typed languages. It makes writing cross-platform command-line applications more approachable while providing the features required to ensure these tools are well designed and tested.

Before you dive into more complex programs that read and write files, parse data files, and communicate over networks, you’ll create a word counter program that will give you an idea of how to build and test a command-line application using Go. You’ll start with a basic implementation, add some features, and explore test-driven development along the way. When you’re done, you’ll have a functional word counter program and a better understanding of how to build more complex apps.

Throughout the book you’ll develop other CLI applications to explore more advanced concepts.

Building the Basic Word Counter

	
	
	
	
	Let’s create a tool that counts the number of words or lines provided as input using the standard input (STDIN) connection. By default, this tool will count the number of words, unless it receives the -l flag, in which case it’ll count the number of lines instead.

We’ll start by creating the basic implementation. This version reads data from STDIN and displays the number of words. We’ll eventually add more features, but this initial version will let you get comfortable with the code for a Go-based command-line application.

	
	
	
	
	Before you dive into writing code for the word counter, let’s set up a project directory. In your home directory, create the subdirectory pragprog.com/rggo/firstProgram/wc and switch to it:
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/firstProgram/wc​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/firstProgram/wc​

	
	
	
	Go programs are composed of packages. A package consists of one or more Go source code files with code that can be combined into executable programs or libraries.

	
	
	
	Starting with Go 1.11, you can combine one or more packages into Go modules. Modules are a new Go standard for grouping related packages into a single unit that can be versioned together. Modules enable consistent dependency management for your Go applications. For more information about Go modules, consult the official wiki page.[10]

	
	
	Initialize a new Go module for your project:
	​ 	​$ ​​go​​ ​​mod​​ ​​init​​ ​​pragprog.com/rggo/firstProgram/wc​
	​ 	go: creating new go.mod: module pragprog.com/rggo/firstProgram/wc

	
	
	
	
	
	
	You create an executable program in Go by defining a package named main that contains a function called main. This function takes no arguments and returns no values. It serves as the entry point for your program.
	​ 	​package​ main
	​ 	
	​ 	​func​ main() {
	​ 	 main contents
	​ 	}

	
	Although not a requirement, by convention, the main package is usually defined in a file named main.go. You’ll use this convention throughout this book.
	Code Example File Path

	
 [image: images/aside-icons/important.png]
 	

	
 For brevity, the code example path omits the root directory $HOME/pragprog.com/rggo. For example, in the following code sample, the code path starts at firstProgram/wc.

Create the file main.go using your favorite text editor. Add the package main definition to the top of the file like this:
firstProgram/wc/main.go
	​ 	​package​ main

	
	
	
	Next, add the import section to bring in the libraries you’ll use to read data from STDIN and print results out.
firstProgram/wc/main.go
	​ 	​import​ (
	​ 	 ​"bufio"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​)

	
	
	
	
	For this tool, you import the bufio package to read text, the fmt package to print formatted output, the io package which provides the io.Reader interface, and the os package so you can use operating system resources.

	
	
	
	Your word counter will have two functions: main and count. The main function is the starting point of the program. All Go programs that will be compiled into executable files require this function. Create this function by adding the following code into your main.go file. This function will call the count function and print out that function’s return value using the fmt.Println function:
	
	
	
firstProgram/wc/main.go
	​ 	​func​ main() {
	​ 	 ​// Calling the count function to count the number of words​
	​ 	 ​// received from the Standard Input and printing it out​
	​ 	 fmt.Println(count(os.Stdin))
	​ 	}

	
	
	
	Next, define the count function, which will perform the actual counting of the words. This function receives a single input argument: an io.Reader interface. You’ll learn more about Go interfaces in Chapter 2, ​Interacting with Your Users​. For now, think of an io.Reader as any Go type from which you can read data. In this case, the function will receive the contents of the STDIN to process.
firstProgram/wc/main.go
	​ 	​func​ count(r io.Reader) ​int​ {
	​ 	 ​// A scanner is used to read text from a Reader (such as files)​
	​ 	 scanner := bufio.NewScanner(r)
	​ 	
	​ 	 ​// Define the scanner split type to words (default is split by lines)​
	​ 	 scanner.Split(bufio.ScanWords)
	​ 	
	​ 	 ​// Defining a counter​
	​ 	 wc := 0

	​ 	 ​// For every word scanned, increment the counter​
	​ 	 ​for​ scanner.Scan() {
	​ 	 wc++
	​ 	 }
	​ 	
	​ 	 ​// Return the total​
	​ 	 ​return​ wc
	​ 	}

	
	
	
	The count function uses the NewScanner function from the bufio package to create a new scanner. A scanner is a convenient way of reading data delimited by spaces or new lines. By default, a scanner reads lines of data, so we instruct the scanner to read words instead by setting the Split function of the scanner to bufio.ScanWords. We then define a variable, wc, to hold the word count and increment it by looping through each token using the scanner.Scan function and adding 1 to the counter each time. We then return the word count.

In this example, for simplicity’s sake, we are ignoring the error that may be generated during the scanning. In your code, always check for errors. You’ll learn more about dealing with errors in the context of a command-line tool in ​Creating the Initial To-Do Command-Line Tool​.

You’ve completed the basic implementation of the word count tool. Save the file main.go with your changes. Next, you’ll write tests to ensure this implementation works the way you expect it to.
	

Testing the Basic Word Counter

	
	
	Go lets you test your code automatically without requiring external tools or frameworks. You’ll learn more about how to test your command-line applications throughout the book. Right now, let’s write a basic test for the word counter to ensure that it correctly counts the words in the given input.

Create a file called main_test.go in the same directory as your main.go file. Include the following content, which defines a testing function that tests the count function you’ve already defined in the main program:
	
	
	
firstProgram/wc/main_test.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"testing"​
	​)
	​ 	
	​ 	​// TestCountWords tests the count function set to count words​
	​ 	​func​ TestCountWords(t *testing.T) {
	​ 	 b := bytes.NewBufferString(​"word1 word2 word3 word4​​\n​​"​)
	​ 	
	​ 	 exp := 4
	​ 	
	​ 	 res := count(b)
	​ 	
	​ 	 ​if​ res != exp {
	​ 	 t.Errorf(​"Expected %d, got %d instead.​​\n​​"​, exp, res)
	​ 	 }
	​ 	}

	
	This test file contains a single test called TestCountWords. In this test, we create a new buffer of bytes from a string containing four words and pass the buffer into the count function. If this function returns anything other than 4, the test doesn’t pass and we raise an error that shows what we expected and what we actually got instead.
	
	

	
	
	To execute the test, use the go test tool like this:
	​ 	​$ ​​ls​
	​ 	go.mod main.go main_test.go
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestCountWords
	​ 	--- PASS: TestCountWords (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/firstProgram/wc 0.002s

	
	
	
	The test passes, so you can compile the program with go build. You’ll learn more about the different options you can use to build Go programs in Chapter 11, ​Distributing Your Tool​. For now, build your command-line tool like this:
	​ 	​$ ​​go​​ ​​build​

This creates the wc executable in the current directory:
	​ 	​$ ​​ls​
	​ 	go.mod main.go main_test.go wc

Test the program out by passing it an input string:
	​ 	​$ ​​echo​​ ​​"My first command line tool with Go"​​ ​​|​​ ​​./wc​
	​ 	7

The program works as expected. Let’s add the ability to count lines to this tool.
	
	

Adding Command-Line Flags

	
	
	Good command-line tools provide flexibility through options. The current version of the word counter tool counts words. Let’s add the ability to count lines as well by giving the user the option to decide when to switch this behavior through command-line flags.

	
	Go provides the flag package, which you can use to create and manage command-line flags. You’ll learn about it in more detail in ​Handling Multiple Command-Line Options​. For now, open the main.go file and add this package to your imports section:

	​ 	​import​ (
	​ 	 ​"bufio"​
	»	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​)

	
	Next, update the main function by adding the definition for the new command-line flag:
	​ 	​func​ main() {
	​ 	 ​// Defining a boolean flag -l to count iines instead of words​
	​ 	 lines := flag.Bool(​"l"​, false, ​"Count lines"​)
	​ 	 ​// Parsing the flags provided by the user​
	​ 	 flag.Parse()

This defines a new -l option that we’ll use to indicate whether to count lines. The default value is false, which means that the normal behavior is to count words.

Complete the main function by updating the call to the function count, passing the value of the flag:
	​ 	 ​// Calling the count function to count the number of words (or lines)​
	​ 	 ​// received from the Standard Input and printing it out​
	​ 	 fmt.Println(count(os.Stdin, *lines))
	​ 	}

Finally, update the count function to accept this new Boolean argument and add a check to change the scanner.Split function to bufio.ScanWords only if this parameter is false, since the default behavior of the scanner type is to count lines:
	»	​func​ count(r io.Reader, countLines ​bool​) ​int​ {
	​ 	 ​// A scanner is used to read text from a Reader (such as files)​
	​ 	 scanner := bufio.NewScanner(r)
	​ 	
	»	 ​// If the count lines flag is not set, we want to count words so we define​
	»	 ​// the scanner split type to words (default is split by lines)​
	»	 ​if​ !countLines {
	»	 scanner.Split(bufio.ScanWords)
	»	 }
	​ 	
	​ 	 ​// Defining a counter​
	​ 	 wc := 0
	​ 	
	​ 	 ​// For every word or line scanned, add 1 to the counter​
	​ 	 ​for​ scanner.Scan() {
	​ 	 wc++
	​ 	 }
	​ 	
	​ 	 ​// Return the total​
	​ 	 ​return​ wc
	​ 	}

	
	
	Since you changed the count function, it’s a good idea to add another test to your test file to ensure the new feature works correctly. Do this by adding a new test function TestCountLines to your main_test.go file:
	​ 	​// TestCountLines tests the count function set to count lines​
	​ 	​func​ TestCountLines(t *testing.T) {
	​ 	 b := bytes.NewBufferString(​"word1 word2 word3​​\n​​line2​​\n​​line3 word1"​)
	​ 	
	​ 	 exp := 3
	​ 	
	​ 	 res := count(b, true)
	​ 	
	​ 	 ​if​ res != exp {
	​ 	 t.Errorf(​"Expected %d, got %d instead.​​\n​​"​, exp, res)
	​ 	 }
	​ 	}

This test uses a buffer to simulate an input with three lines by using the newline \n character. It then executes the updated count function with this buffer and the parameter countLines set to true to count lines.

Before executing the tests, update the existing test function TestCountWords by passing the value false as the new parameter to the count function, or the test will fail.
	​ 	​// TestCountWords tests the count function set to count words​
	​ 	​func​ TestCountWords(t *testing.T) {
	​ 	 b := bytes.NewBufferString(​"word1 word2 word3 word4​​\n​​"​)
	​ 	
	​ 	 exp := 4
	​ 	
	»	 res := count(b, false)
	​ 	
	​ 	 ​if​ res != exp {
	​ 	 t.Errorf(​"Expected %d, got %d instead.​​\n​​"​, exp, res)
	​ 	 }
	​ 	}

	
	
	Now execute all the tests to verify the function works for both cases:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestCountWords
	​ 	--- PASS: TestCountWords (0.00s)
	​ 	=== RUN TestCountLines
	​ 	--- PASS: TestCountLines (0.00s)
	​ 	PASS
	​ 	 ok pragprog.com/rggo/firstProgram/wc 0.003s

	
	Build the program again:
	​ 	​$ ​​go​​ ​​build​

 The wc tool now accepts the -l command-line flag to count lines instead of words. Use it to count
the number of lines in the main.go command:
	​ 	​$ ​​cat​​ ​​main.go​​ ​​|​​ ​​./wc​​ ​​-l​
	​ 	43

By using command-line flags, you can extend the functionality of your tools without compromising any flexibility for your users. Next, we’ll execute this tool on a different operating system.
	
	
	

Compiling Your Tool for Different Platforms

	
	
	
	
	
	By default, the go build tool builds an executable binary for the current operating system and architecture. You can also use go build to build your command-line tool for a different platform even if you don’t have access to that platform. For example, if you’re using Linux, you can build a Windows or macOS binary that can be executed on those platforms without Go installed. This process is called cross-compilation. Let’s build the word counter tool for the Windows platform by setting the GOOS environment variable to windows before running the build tool:
	​ 	​$ ​​GOOS=windows​​ ​​go​​ ​​build​
	​ 	​$ ​​ls​
	​ 	go.mod main.go main_test.go wc wc.exe

Use the file command to get information about the new wc.exe file:
	​ 	​$ ​​file​​ ​​wc.exe​
	​ 	wc.exe: PE32+ executable (console) x86-64 (stripped to external PDB),
	​ 	 for MS Windows

As you can see, this creates a 64-bit executable file wc.exe for the Windows platform.

	
	The documentation for go build contains a list[11] with all of the supported values for the GOOS environment variable.

Since this is a static binary, it doesn’t require any runtime dependencies or anything else to run. Transfer this file directly to a Windows machine using your favorite file-sharing service or tool, and execute it.
	​ 	​C:\Temp>​​dir​
	​ 	Volume in drive C has no label.
	​ 	Volume Serial Number is 741A-D791
	​ 	
	​ 	Directory of C:\Temp
	​ 	
	​ 	12/02/2018 07:00 PM <DIR> .
	​ 	12/02/2018 07:00 PM <DIR> ..
	​ 	06/02/2018 05:17 PM 2,083,840 wc.exe
	​ 	 1 File(s) 2,083,840 bytes
	​ 	 2 Dir(s) 31,320,055,808 bytes free
	​ 	
	​ 	​C:\Temp>​​echo​​ ​​"Testing wc command on Windows"​​ ​​|​​ ​​wc.exe​
	​ 	5

This command-line tool works as expected on a different platform and requires no additional components or runtimes to be installed.
	
	
	
	
	

Exercises

You can improve your understanding of the concepts discussed here by doing these exercises:
	
Add another command-line flag, -b, to count the number of bytes in addition to words and lines.

	
Then, update the count function to accept another parameter, countBytes. When this input parameter is set to true, the function should count bytes. (Hint: check all the methods available for the type bufio.Scanner in the Go documentation.[12])

	
Write tests to ensure the new feature works as intended.

Wrapping Up

In this chapter, you created your first command-line tool using Go. You tested it, built an executable file for two different operating systems, and executed it. This represents the basic workflow of writing command-line tools with Go.

Next, you’ll dive into the concepts required to write more complex command-line tools, starting with getting input from your users and displaying information back to them.

Footnotes

	[10]
	
 https://github.com/golang/go/wiki/Modules

	[11]
	
https://golang.org/src/go/build/syslist.go

	[12]
	
https://golang.org/pkg/bufio

Copyright © 2021, The Pragmatic Bookshelf.

 Chapter
 2
Interacting with Your Users

 Unlike with a graphical program, the user of a CLI tool generally provides up front all the input and parameters required for the tool to work. The tool uses that input to do its job and provides results back to the user as text output on the screen. When an error occurs, a CLI tool usually provides details about it in a way that’s easy and practical for the user to understand or potentially filter out.

 In this chapter, you’ll get comfortable working with input and output as you build a command-line tool for managing a list of "to-do" items. This tool will let you keep track of items left in a project or activity. The tool will save the list of items in a file using the JSON format.

To implement this tool, you’ll accept input data from your users in a variety of ways. You’ll get input from standard input (STDIN) and command-line parameters. You’ll also use environment variables to modify how your program works. In addition, you’ll display information back to the user through standard output (STDOUT) and output errors with the standard error (STDERR) stream for proper CLI error handling. Finally, you’ll explore Go interfaces in general and the io.Reader interface in particular.

Let’s start with a basic implementation of this tool and improve it along the way.

Organizing Your Code

	
	
	
	Before you start developing command-line tools, let’s talk a little about how to organize your code. Go is a relatively new programming language, so the community is still discussing different approaches for structuring Go programs. This section presents a common approach for developing command-line tools.

 As you learned in ​Building the Basic Word Counter​, Go programs are composed of packages, which consist of one or more Go source code files that can be combined into executable programs or libraries. To create an executable program, you define a package named main which contains a function named main that serves as the entry point for your executable program.

For this tool you’ll use another common Go pattern to create a separate package containing the business logic, which in this case is the logic for working with to-do items. The command-line interface that works with this business logic is defined in a subdirectory named cmd.

By using this pattern, you separate the business logic from the command-line implementation and enable other developers to reuse the to-do code in their own programs.

	
	This is the desired directory structure for this tool:
	​ 	todo
	​ 	├── cmd
	​ 	│ └── todo
	​ 	│ ├── main.go
	​ 	│ └── main_test.go
	​ 	├── go.mod
	​ 	├── todo.go
	​ 	└── todo_test.go

In this structure, the todo.go file represents the code for the todo package, which exposes a library to work with to-do items. The main.go file in the cmd/todo subdirectory contains the command-line interface implementation.

Let’s implement the logic for dealing with to-do items.
	
	
	
	

Defining the To-Do API

	
	To start your to-do tracking tool, you’ll implement some business logic and an API to deal with to-do items.

	
	
	
	
	
	
	
	
	In this version of the API, you’ll implement two new custom types:
	item:
	
This type represents a single to-do item. You’ll implement this type using a Go struct. A struct is a custom Go type composed of one or more named elements, or fields. Each field consists of a name and a type, each representing a property of the struct. You can find more information about Go structs in the official documentation.[13] This type won’t be exported, so it can’t be used by API users directly.

	List:
	
This type represents a list of to-do items. It’s implemented by a slice of instances of the type item. This type is exported and visible outside the package.

	
	
	
	These custom types represent the data about the to-do items your application manages. To implement actions, like adding an item to the list or saving the list, you’ll use methods associated with the List type. A method is a function that’s associated with a specific type. This association allows the function to execute directly on the type’s data. You can learn more about methods in the official documentation.[14]

Methods also allow types to implement interfaces, making your code more flexible and reusable. This will come in handy in ​Improving the List Output Format​.

For this application, you’ll implement the following methods:
	Complete:
	
Marks a to-do item as completed.

	Add:
	
Creates a new to-do item and appends it to the list.

	Delete:
	
Deletes a to-do item from the list.

	Save:
	
Saves the list of items to a file using the JSON format.

	Get:
	
Obtains a list of items from a saved JSON file.

You’ll add more methods when you need them.
	
	

	
	
	
	Start by creating the directory structure for this project under your book’s root directory:
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/interacting/todo​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interacting/todo​
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​cmd/todo​
	​ 	​$ ​​tree​
	​ 	.
	​ 	 └── cmd
	​ 	 └── todo
	​ 	 2 directories, 0 files

	
	Then, initialize the Go module for this project. Ensure that you’re in the top todo directory for this:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interacting/todo​
	​ 	​$ ​​go​​ ​​mod​​ ​​init​​ ​​pragprog.com/rggo/interacting/todo​
	​ 	go: creating new go.mod: module pragprog.com/rggo/interacting/todo

	
	
	
	
	
	Create the todo.go file under the topmost todo directory in the program structure. Define the package name as todo and include the import section:
interacting/todo/todo.go
	​ 	​package​ todo
	​ 	
	​ 	​import​ (
	​ 	 ​"encoding/json"​
	​ 	 ​"errors"​
	​ 	 ​"fmt"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"time"​
	​)

	
	
	
	
	
	Next, create the two data structures that will be used in this package. The first is the item struct and its fields: Task of type string, Done of type bool, CreatedAt of type time.Time, and CompletedAt also of type time.Time. Since we don’t want this type to be used outside this package, we don’t export it. You do this by defining its name starting with a lowercase character:
	
	
interacting/todo/todo.go
	​ 	​// item struct represents a ToDo item​
	​ 	​type​ item ​struct​ {
	​ 	 Task ​string​
	​ 	 Done ​bool​
	​ 	 CreatedAt time.Time
	​ 	 CompletedAt time.Time
	​ 	}

	Go Exported Types

	
 [image: images/aside-icons/important.png]
 	

	
	 In Go, the visibility of a type or function is controlled by the case of the first character of its name. Names that start with an uppercase character are exported while lowercase names are considered private to the package.

	
	
	The second data structure is the List type, which enables package users to manage the to-do items in the context of a list. Implement it as a slice of item instances ([]item). You could use the slice directly in your code, but by defining another type, you can attach methods to it and simplify the API. The List type must be visible outside the package so API users can use it. You define it as an exported type by specifying its name starting with an uppercase character:
	
	
interacting/todo/todo.go
	​ 	​// List represents a list of ToDo items​
	​ 	​type​ List []item

	
	
	This approach leverages Go’s statically typed nature to ensure, at compile time, that users of your API are using the appropriate type and methods to work with items in the context of a List. This avoids runtime errors that often happen in dynamic languages.
	
	
	
	
	
	

	
	
	Now you’ll attach the methods to the type List. Start with the Add method to add an item to the list. To implement a method, define the function with an extra parameter, called a receiver, which is declared before the name of the function. The receiver works as a parameter declaration so it must have an identifier and a type. Unlike other languages, the identifier doesn’t require any special name like this or that. You can use any valid Go identifier, but it’s common to use the first letter of the type name as the identifier—in this case, l (lowercase L) for List.

	
	
	
	
	The receiver type must be defined as the type you want to associate with the method or a pointer to this type. Generally speaking, you define the receiver as a pointer to the type when your method needs to modify the content of the receiver. Since the Add method modifies the List by adding more items, we’re using a pointer to the type *List as the receiver type. Otherwise, the method would change a copy of the list instead, and the change would be discarded when the method finishes. Declare the Add method like this:
interacting/todo/todo.go
	​ 	​// Add creates a new todo item and appends it to the list​
	​ 	​func​ (l *List) Add(task ​string​) {
	​ 	 t := item{
	​ 	 Task: task,
	​ 	 Done: false,
	​ 	 CreatedAt: time.Now(),
	​ 	 CompletedAt: time.Time{},
	​ 	 }
	​ 	
	​ 	 *l = append(*l, t)
	​ 	}

	
	
	
	Note that you need to dereference the pointer to the List type with *l in the append call to access the underlying slice.

Next, create the Complete method to mark an item as completed:
interacting/todo/todo.go
	​ 	​// Complete method marks a ToDo item as completed by​
	​ 	​// setting Done = true and CompletedAt to the current time​
	​ 	​func​ (l *List) Complete(i ​int​) ​error​ {
	​ 	 ls := *l
	​ 	 ​if​ i <= 0 || i > len(ls) {
	​ 	 ​return​ fmt.Errorf(​"Item %d does not exist"​, i)
	​ 	 }

	​ 	 ​// Adjusting index for 0 based index​
	​ 	 ls[i-1].Done = true
	​ 	 ls[i-1].CompletedAt = time.Now()
	​ 	
	​ 	 ​return​ nil
	​ 	}

Strictly speaking, the Complete method doesn’t modify the list, so it doesn’t require a pointer receiver. But it’s a good practice to keep the entire method set of a single type with the same receiver type. In this case, we opted to declare the Complete method with a pointer receiver as well.

Now, define the method Delete to remove an item from the list:
interacting/todo/todo.go
	​ 	​// Delete method deletes a ToDo item from the list​
	​ 	​func​ (l *List) Delete(i ​int​) ​error​ {
	​ 	 ls := *l
	​ 	 ​if​ i <= 0 || i > len(ls) {
	​ 	 ​return​ fmt.Errorf(​"Item %d does not exist"​, i)
	​ 	 }
	​ 	
	​ 	 ​// Adjusting index for 0 based index​
	​ 	 *l = append(ls[:i-1], ls[i:]...)
	​ 	
	​ 	 ​return​ nil
	​ 	}

	
	
	The next two methods you’ll implement are Save and Get, which save the list to a file and obtain the list from a file, respectively. This package uses the JSON format to save the list. Don’t worry about the implementation right now. You’ll learn about JSON in Chapter 8, ​Talking to REST APIs​, and about how to handle files in Chapter 3, ​Working with Files in Go​.

Add the Save method, which converts the data to JSON and writes it to a file using the provided file name:
interacting/todo/todo.go
	​ 	​// Save method encodes the List as JSON and saves it​
	​ 	​// using the provided file name​
	​ 	​func​ (l *List) Save(filename ​string​) ​error​ {
	​ 	 js, err := json.Marshal(l)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ ioutil.WriteFile(filename, js, 0644)
	​ 	}

	io/ioutil Package in Go 1.16

	
 [image: images/aside-icons/info.png]
 	

	
	
 Go 1.16 deprecated the package io/ioutil, and its functionality has been moved to other packages. This package will continue to work, and the book uses it to remain compatible with versions 1.13 and higher. If you’re using Go 1.16, consider using the new functionality in accordance with the official release notes.[15]

Next, add the Get method, which opens the file and decodes the JSON into the List data structure:
	
	
	
	​ 	​// Get method opens the provided file name, decodes​
	​ 	​// the JSON data and parses it into a List​
	​ 	​func​ (l *List) Get(filename ​string​) ​error​ {
	​ 	 file, err := ioutil.ReadFile(filename)
	​ 	 ​if​ err != nil {
	​ 	 ​if​ errors.Is(err, os.ErrNotExist) {
	​ 	 ​return​ nil
	​ 	 }
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​if​ len(file) == 0 {
	​ 	 ​return​ nil
	​ 	 }
	​ 	
	​ 	 ​return​ json.Unmarshal(file, l)
	​ 	}

This method also handles situations where the given file doesn’t exist or is empty.
	
	
	

	
	
	The code for the to-do API is complete. Let’s write some tests to ensure it’s working properly. Start by adding the package definition to a new file named todo_test.go:
interacting/todo/todo_test.go
	​ 	​package​ todo_test

	
	In general, all files in the same directory must belong to the same Go package. An exception to this rule is when writing tests. You can define a different package for your tests to access only the exported types, variables, and functions from the package you’re testing. This is a common practice when testing libraries because it ensures the tests only access the exposed API as a user would do. Define the package name as the original name followed by the "_test" suffix. In this case, we’re using the name todo_test.

	
	Now, add the import section with the required external libraries:
	​ 	​import​ (
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"testing"​
	​ 	
	​ 	 ​"pragprog.com/rggo/interacting/todo"​
	​)

	
	
	
	
	For this test, you’ll use the package ioutil to create temporary files, the package os to delete temporary files, and the testing package required for testing. Since you’re defining the tests in a different package, you also need to import the todo package you’re testing. Because we’re using Go modules, we can use the module path pragprog.com/rggo/interacting/todo as the import path for this package.

Next, create the test cases. Start by creating a test to ensure we can add an item to the list:
	​ 	​// TestAdd tests the Add method of the List type​
	​ 	​func​ TestAdd(t *testing.T) {
	​ 	 l := todo.List{}
	​ 	
	​ 	 taskName := ​"New Task"​
	​ 	 l.Add(taskName)
	​ 	
	​ 	 ​if​ l[0].Task != taskName {
	​ 	 t.Errorf(​"Expected %q, got %q instead."​, taskName, l[0].Task)
	​ 	 }
	​ 	
	​ 	}

Then, add a test to verify the Complete method:
	​ 	​// TestComplete tests the Complete method of the List type​
	​ 	​func​ TestComplete(t *testing.T) {
	​ 	 l := todo.List{}
	​ 	
	​ 	 taskName := ​"New Task"​
	​ 	 l.Add(taskName)
	​ 	
	​ 	 ​if​ l[0].Task != taskName {
	​ 	 t.Errorf(​"Expected %q, got %q instead."​, taskName, l[0].Task)
	​ 	 }
	​ 	
	​ 	 ​if​ l[0].Done {
	​ 	 t.Errorf(​"New task should not be completed."​)
	​ 	 }
	​ 	
	​ 	 l.Complete(1)
	​ 	
	​ 	 ​if​ !l[0].Done {
	​ 	 t.Errorf(​"New task should be completed."​)
	​ 	 }
	​ 	
	​ 	}

Now, add a test to validate the Delete method:
	​ 	​// TestDelete tests the Delete method of the List type​
	​ 	​func​ TestDelete(t *testing.T) {
	​ 	 l := todo.List{}
	​ 	
	​ 	 tasks := []​string​{
	​ 	 ​"New Task 1"​,
	​ 	 ​"New Task 2"​,
	​ 	 ​"New Task 3"​,
	​ 	 }
	​ 	
	​ 	 ​for​ _, v := ​range​ tasks {
	​ 	 l.Add(v)
	​ 	 }
	​ 	
	​ 	 ​if​ l[0].Task != tasks[0] {
	​ 	 t.Errorf(​"Expected %q, got %q instead."​, tasks[0], l[0].Task)
	​ 	 }
	​ 	
	​ 	 l.Delete(2)
	​ 	
	​ 	 ​if​ len(l) != 2 {
	​ 	 t.Errorf(​"Expected list length %d, got %d instead."​, 2, len(l))
	​ 	 }
	​ 	
	​ 	 ​if​ l[1].Task != tasks[2] {
	​ 	 t.Errorf(​"Expected %q, got %q instead."​, tasks[2], l[1].Task)
	​ 	 }
	​ 	}

Finally, include a test that ensures we can save and load tests from a file:
	​ 	​// TestSaveGet tests the Save and Get methods of the List type​
	​ 	​func​ TestSaveGet(t *testing.T) {
	​ 	 l1 := todo.List{}
	​ 	 l2 := todo.List{}
	​ 	
	​ 	 taskName := ​"New Task"​
	​ 	 l1.Add(taskName)
	​ 	
	​ 	 ​if​ l1[0].Task != taskName {
	​ 	 t.Errorf(​"Expected %q, got %q instead."​, taskName, l1[0].Task)
	​ 	 }
	​ 	
	​ 	 tf, err := ioutil.TempFile(​""​, ​""​)
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 t.Fatalf(​"Error creating temp file: %s"​, err)
	​ 	 }
	​ 	 ​defer​ os.Remove(tf.Name())
	​ 	
	​ 	 ​if​ err := l1.Save(tf.Name()); err != nil {
	​ 	 t.Fatalf(​"Error saving list to file: %s"​, err)
	​ 	 }

	​ 	 ​if​ err := l2.Get(tf.Name()); err != nil {
	​ 	 t.Fatalf(​"Error getting list from file: %s"​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ l1[0].Task != l2[0].Task {
	​ 	 t.Errorf(​"Task %q should match %q task."​, l1[0].Task, l2[0].Task)
	​ 	 }
	​ 	
	​ 	}

In this test case, you’re creating two variables, l1 and l2, both of type todo.List. You’re adding a task to l1 and saving it. Then you’re loading it into l2 and comparing both values. The test fails if the values don’t match, in which case you provide an error message showing the values you got.

	
	Note that this test uses the TempFile function from the ioutil package to create a temporary file. You then pass the temporary file’s name to the Save and Get functions using the method tf.Name. To ensure the temporary file is deleted at the end of the test, you defer the execution of the os.Remove function.
	
	
	

	
	
	Save the file and use the go test tool to execute the tests:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​​ ​​.​
	​ 	=== RUN TestAdd
	​ 	--- PASS: TestAdd (0.00s)
	​ 	=== RUN TestComplete
	​ 	--- PASS: TestComplete (0.00s)
	​ 	=== RUN TestDelete
	​ 	--- PASS: TestDelete (0.00s)
	​ 	=== RUN TestSaveGet
	​ 	--- PASS: TestSaveGet (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/interacting/todo 0.002s

As you can see, all tests are passing so the API code is ready. Let’s implement a command-line tool interface to use it.
	
	
	

Creating the Initial To-Do Command-Line Tool

	
	
	
 You have a working to-do API, so now you can build a command-line interface on top of it. We’ll start with an initial implementation that includes the following two features:
	
When executed without any arguments, the command will list the available to-do items.

	
When executed with one or more arguments, the command will concatenate the arguments as a new item and add it to the list.

Start by creating the file main.go in the cmd/todo directory as described in ​Organizing Your Code​.
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interacting/todo/cmd/todo​

Add the following code to the main.go file to define the package and imports you’ll use:
interacting/todo/cmd/todo/main.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"os"​
	​ 	 ​"strings"​
	​ 	
	​ 	 ​"pragprog.com/rggo/interacting/todo"​
	​)

	
	
	
	You’ll use the Args variable from the os package to verify the arguments provided during your tool’s execution. You’ll use the fmt and strings packages to process input and output.

Similarly to what you’ve done in the todo_test.go file, you’re importing your own todo package to use the to-do functionality.

Next, define a constant value for the file name. In this initial version you’re effectively hard-coding the name of the file. This is fine for now. You’ll change it later to something more flexible.
interacting/todo/cmd/todo/main.go
	​ 	​// Hardcoding the file name​
	​ 	​const​ todoFileName = ​".todo.json"​

Now, create the main function:
interacting/todo/cmd/todo/main.go
	​ 	​func​ main() {

	
	
	Next, create a variable l (lowercase L) as a pointer to the type todo.List by using the address operator & to extract the address of an empty instance of todo.List. This variable represents the to-do items list you’ll use throughout the code.
interacting/todo/cmd/todo/main.go
	​ 	​// Define an items list​
	​ 	l := &todo.List{}

	
	Then, attempt to read existing items from the file by calling the method Get of the List type. This method may return an error if it encounters any issues, so you can use it to check for potential errors. You can do this on the same line by using ; to separate the statements.
	
	
	
interacting/todo/cmd/todo/main.go
	​ 	​// Use the Get method to read to do items from file​
	​ 	​if​ err := l.Get(todoFileName); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	}

	
	
	When developing command-line tools, it’s a good practice to use the standard error (STDERR) output instead of the standard output (STDOUT) to display error messages as the user can easily filter them out if they desire.

	
	
	
	Another good practice is to exit your program with a return code different than 0 (zero) when errors occur as this is a convention that clearly indicates that the program had an error or abnormal condition. This practice facilitates the use of your programs by other programs or scripts.

	
	
	In this case, if the Get method returns an error, print its value to the STDERR output by using the function Fprintln of the fmt package and exit with code 1.

	
	Next, use a switch statement to decide what the program should do based on the arguments it received. If the user only specifies the program’s name, only one argument exists, so print out the items, one per line, by looping through the list using the function fmt.Println(item.Task):
interacting/todo/cmd/todo/main.go
	​ 	​// Decide what to do based on the number of arguments provided​
	​ 	​switch​ {
	​ 	​// For no extra arguments, print the list​
	​ 	​case​ len(os.Args) == 1:
	​ 	 ​// List current to do items​
	​ 	 ​for​ _, item := ​range​ *l {
	​ 	 fmt.Println(item.Task)
	​ 	 }

	
	
	
	Use a default case to check any other number of command-line arguments. To define the item that you add to the list, concatenate the arguments using the function strings.Join and provide the slice os.Args[1:] as the first parameter, which excludes the program name and a space as the character used to join the strings:
interacting/todo/cmd/todo/main.go
	​ 	​// Concatenate all provided arguments with a space and​
	​ 	​// add to the list as an item​
	​ 	​default​:
	​ 	 ​// Concatenate all arguments with a space​
	​ 	 item := strings.Join(os.Args[1:], ​" "​)

	
	
	Then add the item to the list by calling the method Add of the List type. Finally, try to save the file by using the method Save. If any errors occur, use the same technique as before to print the error messages to the STDERR output, exiting with the status code 1.
interacting/todo/cmd/todo/main.go
	​ 	 ​// Add the task​
	​ 	 l.Add(item)
	​ 	
	​ 	 ​// Save the new list​
	​ 	 ​if​ err := l.Save(todoFileName); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	 }
	​ 	}

The code is complete. Next, let’s write some tests to ensure the code is working as intended.
	
	
	
	

Testing the Initial CLI Implementation

	
	
	
	You can use different approaches to test your CLI tool. Since we already executed unit tests when developing the to-do API, we don’t need to repeat them here. Our CLI implementation is a wrapper around the API. Let’s leverage some of Go’s features and write integration tests instead. This way we’re testing the user interface of the tool instead of the business logic again.

	
	
	One of the main benefits of Go is that it provides tools for automating the execution of tests out of the box; no additional frameworks or libraries are required. Since you write tests using Go itself, you can use any resources and features available with the language to write your test cases. In this case we will use the os/exec package, which lets us execute external commands. You’ll learn more about this package in Chapter 6, ​Controlling Processes​.

For this test suite, we need to accomplish two main goals:
	Use the go build tool to compile the program into a binary file.
	Execute the binary file with different arguments and assert its correct behavior.

	
	
	The recommended way for executing extra setup before your tests is by using the TestMain function. This function helps you control the extra tasks required to set up or tear down the resources necessary for testing, keeping your test cases tidy and consistent.

	
	
	
	
	
	
	
	
	Define the package name and import the required packages into a new file main_test.go in the same directory of your main.go. For these tests, we’re using the following packages: fmt to print formatted output, os to use operating system types, os/exec to execute external commands, filepath to deal with directory paths, runtime to identify the running operating system, strings to compare strings, and testing to access testing tools.
interacting/todo/cmd/todo/main_test.go
	​ 	​package​ main_test
	​ 	
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"os"​
	​ 	 ​"os/exec"​
	​ 	 ​"path/filepath"​
	​ 	 ​"runtime"​
	​ 	 ​"strings"​
	​ 	 ​"testing"​
	​)

Then create two variables to hold the name of the binary file that we’ll build during tests and the file name required to save the to-do list.
interacting/todo/cmd/todo/main_test.go
	​ 	​var​ (
	​ 	 binName = ​"todo"​
	​ 	 fileName = ​".todo.json"​
	​)

	
	
	
	
	
	Next, create the TestMain function to call the go build tool that builds the executable binary for your tool, execute the tests using m.Run, and clean up the produced files after the test is completed using the function os.Remove:
interacting/todo/cmd/todo/main_test.go
	​ 	​func​ TestMain(m *testing.M) {
	​ 	
	​ 	 fmt.Println(​"Building tool..."​)
	​ 	
	​ 	 ​if​ runtime.GOOS == ​"windows"​ {
	​ 	 binName += ​".exe"​
	​ 	 }
	​ 	
	​ 	 build := exec.Command(​"go"​, ​"build"​, ​"-o"​, binName)
	​ 	
	​ 	 ​if​ err := build.Run(); err != nil {
	​ 	 fmt.Fprintf(os.Stderr, ​"Cannot build tool %s: %s"​, binName, err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	
	​ 	 fmt.Println(​"Running tests...."​)
	​ 	 result := m.Run()
	​ 	
	​ 	 fmt.Println(​"Cleaning up..."​)
	​ 	 os.Remove(binName)
	​ 	 os.Remove(fileName)
	​ 	
	​ 	 os.Exit(result)
	​ 	}

	
	We’re using the constant GOOS from the runtime package to check if the tests are running on the Windows operating system. In this case, we’re appending the suffix .exe to the binary name so Go finds the executable during tests.

Finally, create the test cases by defining a function TestTodoCLI. In this function, we use the subtests feature to execute tests that depend on each other by using the t.Run method of the testing package.

Define the function and some variables required by the test such as the task name task, the current directory dir, and the cmdPath containing the path to the tool you compiled in the function TestMain:
interacting/todo/cmd/todo/main_test.go
	​ 	​func​ TestTodoCLI(t *testing.T) {
	​ 	 task := ​"test task number 1"​
	​ 	
	​ 	 dir, err := os.Getwd()
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 cmdPath := filepath.Join(dir, binName)

Then, create the first test which ensures the tool can add a new task by using the t.Run method:
	​ 	t.Run(​"AddNewTask"​, ​func​(t *testing.T) {
	​ 	 cmd := exec.Command(cmdPath, strings.Split(task, ​" "​)...)
	​ 	
	​ 	 ​if​ err := cmd.Run(); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	})

Notice that we’re setting the name “AddNewTask” for this subtest as the first argument to t.Run to make it easier to see the results. Also, we’re executing the compiled binary with the expected argument by splitting the task variable. The test fails if an error occurs while adding the task.

Finally, include a test that ensures the tool can list the tasks:
	​ 	t.Run(​"ListTasks"​, ​func​(t *testing.T) {
	​ 	 cmd := exec.Command(cmdPath)
	​ 	 out, err := cmd.CombinedOutput()
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 expected := task + ​"​​\n​​"​

	​ 	 ​if​ expected != ​string​(out) {
	​ 	 t.Errorf(​"Expected %q, got %q instead​​\n​​"​, expected, ​string​(out))
	​ 	 }
	​ 	 })
	​ 	}

For this subtest, we’re setting the name to “ListTasks”. Then we execute the tool with no arguments capturing its output in the variable out. The test fails immediately if an error occurs while executing the tool. If the execution succeeds, we compare the output with the task name, failing the test if they don’t match.

	
	
	Save the file main_test.go and execute the tests by calling the go test tool:
	​ 	​$ ​​ls​
	​ 	main.go main_test.go
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	Building tool...
	​ 	Running tests....
	​ 	=== RUN TestTodoCLI
	​ 	=== RUN TestTodoCLI/AddNewTask
	​ 	=== RUN TestTodoCLI/ListTasks
	​ 	 --- PASS: TestTodoCLI (0.00s)
	​ 	 --- PASS: TestTodoCLI/AddNewTask (0.00s)
	​ 	 --- PASS: TestTodoCLI/ListTasks (0.00s)
	​ 	PASS
	​ 	Cleaning up...
	​ 	ok pragprog.com/rggo/interacting/todo 0.321s
	​ 	​$​

Once all tests pass, you can try the tool by using go run:
	​ 	​$ ​​ls​
	​ 	main.go main_test.go
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​

Executing the tool with no arguments tries to list the content of the file, but since this is the first run, no file and results are presented. Run the code with any number of arguments to add a new item do the list:
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​Add​​ ​​this​​ ​​to​​ ​​do​​ ​​item​​ ​​to​​ ​​the​​ ​​list​
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​
	​ 	Add this to do item to the list

The second call to the tool with no arguments lists the existing items from the file. You can also check the file content:
	​ 	​$ ​​ls​​ ​​-a​
	​ 	. .. main.go main_test.go .todo.json
	​ 	​$ ​​cat​​ ​​.todo.json​
	​ 	[{"Task":"Add this to do item to the list","Done":false,"CreatedAt":"2018
	​ 	​-03-25T07:46:01.224119421-04:00","CompletedAt":"0001-01-01T00:00:00Z"}]$​
	​ 	​$​

Note that, when trying this version of the tool, you’re constantly writing to the same file, .todo.json, since it’s hardcoded in the program. We’ll fix this shortly.

	
	As you can see, the os.Args slice provides you with a quick way to access command-line arguments, but it’s not very powerful. You can use it for simple programs, but if your tool requires many options, it can become complex quickly. For example, what if you wanted to add another option to this tool to complete items? You’d have to check every provided argument looking for the specific option. This approach isn’t scalable and Go provides an easier way to deal with this.
	
	
	
	

Handling Multiple Command-Line Options

	
	
	As you’ve seen while implementing the initial version of your command-line interface, using the os.Args variable isn’t a flexible way of handling command-line arguments. Let’s improve the tool by using the flag package to parse and handle multiple command-line options.

	
	
	The flag package enables you to define command-line flags of specific types such as int or string so you don’t need to convert them manually.

This version of the tool will accept three command-line arguments:
	
-list: A Boolean flag. When used, the tool will list all to-do items.

	
-task: A string flag. When used, the tool will include the string argument as a new to do item in the list.

	
-complete: An integer flag. When used, the tool will mark the item number as completed.

	Example Code

	
 [image: images/aside-icons/info.png]
 	

 The complete example code for this section is under a subdirectory named todo.v1 to make it easy to find. In your case, it may be easier to simply update the existing code.

To use the flag package, include it in the import section of your program:
interacting/todo.v1/cmd/todo/main.go
	​ 	​import​ (
	»	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"os"​
	​ 	
	​ 	 ​"pragprog.com/rggo/interacting/todo"​
	​)

Also, ensure that the strings package isn’t in the import list as it’s no longer used in this version of the code.

	
	
	
	
	
	To define a new flag using the flag package, call the function corresponding to the flag type you want to define. For example, to create a string flag, use flag.String. These functions take three arguments: the flag name, the default value, and the help message.

Now, update the main function by adding the three required flags to your program. Assign them to variables so that you can use their values in your program. After defining the flags, ensure that you call the function flag.Parse from the flag package to parse them. If you forget it, the assigned variables will be empty which can lead to hard-to-find bugs.
	
	
	
	
interacting/todo.v1/cmd/todo/main.go
	​ 	​func​ main() {
	​ 	 ​// Parsing command line flags​
	​ 	 task := flag.String(​"task"​, ​""​, ​"Task to be included in the ToDo list"​)
	​ 	 list := flag.Bool(​"list"​, false, ​"List all tasks"​)
	​ 	 complete := flag.Int(​"complete"​, 0, ​"Item to be completed"​)
	​ 	
	​ 	 flag.Parse()

	
	
	
	
	Keep in mind that the assigned variables are pointers so, to be used later, they have to be dereferenced using the operator *.
	
	

The next part of the main function remains unchanged:
interacting/todo.v1/cmd/todo/main.go
	​ 	​// Define an items list​
	​ 	l := &todo.List{}
	​ 	
	​ 	​// Use the Get command to read to do items from file​
	​ 	​if​ err := l.Get(todoFileName); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	}

	Update the switch statement to select the action based on the provided flag. In the first case statement, check if the -list flag was set. Use the * operator to get the value from the pointer variable list. Since the tool is now able to complete items, exclude the completed items from the output by checking the field item.Done before printing results:
interacting/todo.v1/cmd/todo/main.go
	​ 	​// Decide what to do based on the provided flags​
	​ 	​switch​ {
	​ 	​case​ *list:
	​ 	 ​// List current to do items​
	​ 	 ​for​ _, item := ​range​ *l {
	​ 	 ​if​ !item.Done {
	​ 	 fmt.Println(item.Task)
	​ 	 }
	​ 	 }

In the next case statement, verify if the -complete flag was set with a value greater than zero (the default) and use a call to the method Complete of the type List to complete the given item. Save the file afterward:
interacting/todo.v1/cmd/todo/main.go
	​ 	​case​ *complete > 0:
	​ 	 ​// Complete the given item​
	​ 	 ​if​ err := l.Complete(*complete); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	
	​ 	 ​// Save the new list​
	​ 	 ​if​ err := l.Save(todoFileName); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }

In the final case, verify if the -task flag was set with a value different than the empty string and use its value as the new item in the call to the method Add. Save the file afterward:
interacting/todo.v1/cmd/todo/main.go
	​ 	​case​ *task != ​""​:
	​ 	 ​// Add the task​
	​ 	 l.Add(*task)
	​ 	
	​ 	 ​// Save the new list​
	​ 	 ​if​ err := l.Save(todoFileName); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }

To complete the tool, change the default case to print an error message to STDERR output in case an invalid option was provided:
	
	
interacting/todo.v1/cmd/todo/main.go
	​ 	 ​default​:
	​ 	 ​// Invalid flag provided​
	​ 	 fmt.Fprintln(os.Stderr, ​"Invalid option"​)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	}

Save the changes to main.go, and then update the test cases in your test suite to handle the new flags by changing these two lines in the main_test.go file:
interacting/todo.v1/cmd/todo/main_test.go
	​ 	​func​ TestTodoCLI(t *testing.T) {
	​ 	 task := ​"test task number 1"​
	​ 	
	​ 	 dir, err := os.Getwd()
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 cmdPath := filepath.Join(dir, binName)
	​ 	
	​ 	 t.Run(​"AddNewTask"​, ​func​(t *testing.T) {
	»	 cmd := exec.Command(cmdPath, ​"-task"​, task)
	​ 	
	​ 	 ​if​ err := cmd.Run(); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	 })
	​ 	
	​ 	 t.Run(​"ListTasks"​, ​func​(t *testing.T) {
	»	 cmd := exec.Command(cmdPath, ​"-list"​)
	​ 	 out, err := cmd.CombinedOutput()
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 expected := task + ​"​​\n​​"​
	​ 	
	​ 	 ​if​ expected != ​string​(out) {
	​ 	 t.Errorf(​"Expected %q, got %q instead​​\n​​"​, expected, ​string​(out))
	​ 	 }
	​ 	 })
	​ 	}

Also, delete the package strings from the import list as it’s no longer used.

We won’t write tests for the new options since they are very similar, but you should do so as an exercise.

Before running the tests, delete the file .todo.json if it exists from a previous test or the test execution will fail:
	​ 	​$ ​​rm​​ ​​.todo.json​

Now, run the tests to ensure the tool is still working as intended:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	Building tool...
	​ 	Running tests....
	​ 	=== RUN TestTodoCLI
	​ 	=== RUN TestTodoCLI/AddNewTask
	​ 	=== RUN TestTodoCLI/ListTasks
	​ 	 --- PASS: TestTodoCLI (0.00s)
	​ 	 --- PASS: TestTodoCLI/AddNewTask (0.00s)
	​ 	 --- PASS: TestTodoCLI/ListTasks (0.00s)
	​ 	PASS
	​ 	Cleaning up...
	​ 	ok pragprog.com/rggo/interacting/todo 0.299s

You can now try the improved tool:
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-list​
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-task​​ ​​"One ToDo item"​
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-task​​ ​​"Another ToDo item"​
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-list​
	​ 	One ToDo item
	​ 	Another ToDo item
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-complete​​ ​​1​
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-list​
	​ 	Another ToDo item

Notice that after completing an item, it’s no longer displayed to the user. This is an improvement compared to the previous version.
The Flag Package

		
		
		The flag package contains many other useful options, including managing command-line flags of different data types, automatic help generation, and the FlagSet type for managing subcommands. These options are beyond the scope of this chapter.

Before moving on, you may want to check the documentation for the flag package[16] if you want to explore some of these additional options.

Now let’s present usage information to the user so they know how to use our tool.
	
	
	

Display Command-Line Tool Usage

	
	
	
	
	Command-line tools should be helpful. Sometimes the user doesn’t know how to use a tool or they don’t remember all the options, so it’s helpful if your tool displays usage information.

Another benefit of using the flag package is that it provides automatic usage information if the user gives an invalid option or specifically requests help. You don’t have to do anything special to take advantage of this behavior either. Try it out by running your program with the -h option:
	​ 	​$ ​​go​​ ​​build​​ ​​.​
	​ 	​$ ​​./todo​​ ​​-h​
	​ 	Usage of ./todo:
	​ 	 -complete int
	​ 	 Item to be completed
	​ 	 -list
	​ 	 List all tasks
	​ 	 -task string
	​ 	 Task to be included in the ToDo list

	
	
	You didn’t have to include the -h flag in your code; the help feature and output are provided by the flag package by default. By default, the message includes the help text you included as the third parameter when defining each flag.

In addition, the flag package displays the usage information in case the tool receives an invalid flag:
	​ 	​$ ​​./todo​​ ​​-test​
	​ 	flag provided but not defined: -test
	​ 	Usage of ./todo:
	​ 	 -complete int
	​ 	 Item to be completed
	​ 	 -list
	​ 	 List all tasks
	​ 	 -task string
	​ 	 Task to be included in the ToDo list

	
	
	You can also call the usage information from your code at any time by using the function flag.Usage. As a matter of fact, Usage is a variable that points to a function. You can change it to display a custom message. Inside your custom function, call the function PrintDefaults to print the usage information for each flag. Test it by including the following code at the top of your main function:
	​ 	flag.Usage = ​func​() {
	​ 	 fmt.Fprintf(flag.CommandLine.Output(),
	​ 	 ​"%s tool. Developed for The Pragmatic Bookshelf​​\n​​"​, os.Args[0])
	​ 	 fmt.Fprintf(flag.CommandLine.Output(), ​"Copyright 2020​​\n​​"​)
	​ 	 fmt.Fprintln(flag.CommandLine.Output(), ​"Usage information:"​)
	​ 	 flag.PrintDefaults()
	​ 	}

When you run the program again, you’ll see the custom usage information presented:
	​ 	​$ ​​./todo​​ ​​-h​
	​ 	./todo tool. Developed for The Pragmatic Bookshelf
	​ 	Copyright 2020
	​ 	Usage information:
	​ 	 -complete int
	​ 	 Item to be completed
	​ 	 -list
	​ 	 List all tasks
	​ 	 -task string
	​ 	 Task to be included in the ToDo list

Now that the user can get proper usage information, let’s improve this tool’s output.
	
	
	
	

Improving the List Output Format

	
	
	
	
	You’ve made good progress on your to-do list tool so far, but the list output is still not very informative. At this moment, this is what you see when executing the tool with the -list option:
	​ 	​$ ​​./todo​​ ​​-list​
	​ 	Another ToDo item
	​ 	Improve usage
	​ 	Improve output

Various ways exist for improving the output formatting. For instance, if you don’t own the API code, your only alternative is to format the output in the command-line tool implementation. But you own the API, so we can leverage the powerful Interfaces feature of Go to implement the list output formatting in the todo.List type directly. With this approach, anyone using your API experiences a consistent output format.
	
	

An interface in Go implements a contract but, unlike other languages, Go interfaces define only behavior and not state. This means that an interface defines what a type should do and not what type of data it should hold.

So, to satisfy an interface, a type needs only to implement all the methods defined in the interface with the same signature. In addition, satisfying an interface doesn’t require explicit declaration. Types will implicitly implement an interface by implementing all the defined methods.

This is a powerful concept that has a profound impact on how interfaces are used. By implicitly satisfying an interface, a given type can be used anywhere that interface is expected, enabling code decoupling and reuse.

	
	 You can get additional information about interfaces in the Go documentation.[17]

	
	
	Now we’ll implement the Stringer interface on the todo.List type. The Stringer interface is defined in the fmt package as follows:
	​ 	​type​ Stringer ​interface​ {
	​ 	 String() ​string​
	​ 	}

Any types that implement the method String, which returns a string, satisfy the Stringer interface. By satisfying this interface, you can provide the type to any formatting function that expects a string.

To implement the Stringer interface on the todo.List type, switch back to the topmost todo directory, and edit the todo.go file:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interacting/todo​

Add the String method like this:
interacting/todo.v2/todo.go
	​ 	​//String prints out a formatted list​
	​ 	​//Implements the fmt.Stringer interface​
	​ 	​func​ (l *List) String() ​string​ {
	​ 	 formatted := ​""​
	​ 	
	​ 	 ​for​ k, t := ​range​ *l {
	​ 	 prefix := ​" "​
	​ 	 ​if​ t.Done {
	​ 	 prefix = ​"X "​
	​ 	 }
	​ 	
	​ 	 ​// Adjust the item number k to print numbers starting from 1 instead of 0​
	​ 	 formatted += fmt.Sprintf(​"%s%d: %s​​\n​​"​, prefix, k+1, t.Task)
	​ 	 }
	​ 	
	​ 	 ​return​ formatted
	​ 	}

	
	This is a naive implementation that prints out all items, prefixed by an order number and an X if the item is completed. Save the file todo.go to complete the changes.

Now use this interface in the CLI implementation. Switch back to the cmd/todo subdirectory.
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interacting/todo/cmd/todo​

Open main.go in your editor and update the *list case in the switch statement like this:
interacting/todo.v2/cmd/todo/main.go
	​ 	​case​ *list:
	​ 	 ​// List current to do items​
	​ 	 fmt.Print(l)

	
	Notice that now you can call the fmt.Print function, which requires no format specifier, as the format comes from the Stringer interface implemented by the variable l of type todo.List.
	
	
	

	
	Now when you execute the test suite, the List_tasks test fails because the output has changed:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	Building tool...
	​ 	Running tests....
	​ 	=== RUN TestTodoCLI
	​ 	=== RUN TestTodoCLI/AddNewTask
	​ 	=== RUN TestTodoCLI/ListTasks
	​ 	--- FAIL: TestTodoCLI (0.01s)
	​ 	 --- PASS: TestTodoCLI/AddNewTask (0.00s)
	​ 	 --- FAIL: TestTodoCLI/ListTasks (0.00s)
	​ 	 main_test.go:54: Expected "test task number 1\n",
	​ 	 got " 1: test task number 1\n" instead
	​ 	FAIL
	​ 	Cleaning up...
	​ 	exit status 1
	​ 	FAIL pragprog.com/rggo/interacting/todo/cmd/todo 0.426s

	
	Fix this issue by updating the expected output in the corresponding test case, like this:
interacting/todo.v2/cmd/todo/main_test.go
	​ 	t.Run(​"ListTasks"​, ​func​(t *testing.T) {
	​ 	 cmd := exec.Command(cmdPath, ​"-list"​)
	​ 	 out, err := cmd.CombinedOutput()
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	»	 expected := fmt.Sprintf(​" 1: %s​​\n​​"​, task)
	​ 	
	​ 	 ​if​ expected != ​string​(out) {
	​ 	 t.Errorf(​"Expected %q, got %q instead​​\n​​"​, expected, ​string​(out))
	​ 	 }
	​ 	})

	
	Rerun the tests and ensure they pass:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	Building tool...
	​ 	Running tests....
	​ 	=== RUN TestTodoCLI
	​ 	=== RUN TestTodoCLI/AddNewTask
	​ 	=== RUN TestTodoCLI/ListTasks
	​ 	--- PASS: TestTodoCLI (0.01s)
	​ 	 --- PASS: TestTodoCLI/AddNewTask (0.00s)
	​ 	 --- PASS: TestTodoCLI/ListTasks (0.00s)
	​ 	PASS
	​ 	Cleaning up...
	​ 	ok pragprog.com/rggo/interacting/todo 0.299s

Now when you execute the tool using the -list option, you’ll see something similar to the following output:
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-list​
	​ 	X 1: Add this to do item to the list
	​ 	 2: Another ToDo item
	​ 	 3: Improve usage
	​ 	 4: Improve output
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-complete​​ ​​3​
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-list​
	​ 	X 1: Add this to do item to the list
	​ 	 2: Another ToDo item
	​ 	X 3: Improve usage
	​ 	 4: Improve output

This output looks much more informative. Now let’s implement an easier way to select the file we’ll use to save the to-do list.
	
	
	
	
	

Increasing Flexibility with Environment Variables

	
	
	
	
	With all the improvements you made to your to-do tool so far, you’ve provided your users with several useful features. But the user still can’t select which file to save to the list of to-do items. You could use different approaches in this situation, such as adding another flag to allow the user to specify the file name, but another way to make your tool more flexible is by using environment variables.

Using environment variables allows your users to specify options once in their shell configuration, which means the user avoids typing that option for every command execution. It also lets the user have different configurations for different environments.

	
	
	In Go, the os package provides functions to handle both the environment and environment variables. We’ll use the function os.Getenv("TODO_FILENAME") to retrieve the value of the environment variable identified by the name TODO_FILENAME.

To add this feature to your to-do tool, make two changes to the main.go file. First, update the line where you define the todoFileName from a constant to a variable so it can be changed later in case the environment variable is defined. This line works as the default file name when the user doesn’t set the environment variable:
interacting/todo.v3/cmd/todo/main.go
	​ 	​// Default file name​
	​ 	​var​ todoFileName = ​".todo.json"​

Next, inside the function main, include the following lines before you instantiate the todo.List type. The goal is to check if the environment variable TODO_FILENAME is set, assigning its value to the variable todoFileName. Otherwise, the variable will keep its default value.
interacting/todo.v3/cmd/todo/main.go
	​ 	​// Check if the user defined the ENV VAR for a custom file name​
	​ 	​if​ os.Getenv(​"TODO_FILENAME"​) != ​""​ {
	​ 	 todoFileName = os.Getenv(​"TODO_FILENAME"​)
	​ 	}

Execute the tool with the environment variable set to change the default file name:
	​ 	​$ ​​ls​
	​ 	main.go main_test.go
	​ 	​$ ​​export​​ ​​TODO_FILENAME=new-todo.json​
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-task​​ ​​"Test env vars design"​
	​ 	​$ ​​ls​
	​ 	main.go main_test.go new-todo.json
	​ 	​$ ​​cat​​ ​​new-todo.json​
	​ 	[{"Task":"Test env vars design","Done":false,"CreatedAt":"2018-03
	​ 	​-25T23:08:39.780125489-04:00","CompletedAt":"0001-01-01T00:00:00Z"}]$​
	​ 	​$​​ ​​go​​ ​​run​​ ​​main.go​​ ​​-list​
	​ 	 1: Test env vars design

Making your tools more flexible enables more use cases, increasing the overall satisfaction of your users. Speaking of flexibility, let’s provide another way to add new tasks.
	
	
	
	

Capturing Input from STDIN

	
	
	Good command-line tools interact well with your users, but they also work well with other tools. A common way command-line programs interact with one another is by accepting input from the standard input (STDIN) stream. Let’s add one last feature to the program: the ability to add new tasks via STDIN, allowing your users to pipe new tasks from other command-line tools.

	
	
	
	To start this update, add three new libraries to your main.go import list: bufio, io, and strings:
interacting/todo.v4/cmd/todo/main.go
	​ 	​import​ (
	»	 ​"bufio"​
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	
	»	 ​"io"​
	​ 	 ​"os"​
	​ 	
	»	 ​"strings"​
	​ 	
	​ 	 ​"pragprog.com/rggo/interacting/todo"​
	​)

	
	
	
	You’ll use the bufio package to read data from the STDIN input stream, the io package to use the io.Reader interface, and the function Join from the strings package to join command-line arguments to compose a task name.

Next, you’ll create a new helper function called getTask that will determine where to get the input task from. This function leverages Go interfaces again by accepting the io.Reader interface as input. In Go, it’s a good practice to take interfaces as function arguments instead of concrete types. This approach increases the flexibility of your functions by allowing different types to be used as input as long as they satisfy the given interface.

The io.Reader interface wraps up the Read method. As interfaces are implicitly satisfied, it’s common in Go to have simple interfaces composed of one or two methods. The io.Reader is an example of a simple interface that provides a lot of flexibility.

You can use this interface in your code whenever you expect to read data. Widely used types such as files, buffers, archives, HTTP requests, and others satisfy this interface. By using it, you decouple your implementation from specific types, allowing your code to work with any types that implement the io.Reader interface.

	
	
	For example, in this version, you’ll use the variable os.Stdin for STDIN input, but later on, you could change it to other types (such as files, buffers, or even network connections). For more information about this interface, check the io.Reader documentation.[18]

	
	
	The getTask function accepts as input the parameter r of type io.Reader interface and the parameter args, which consists of zero or more values of type string, represented by the ... operator preceding the parameter type. Go calls this function a variadic function.[19] The function getTask returns a string and a potential error. This function verifies if any arguments were provided as the parameter args. If so, it returns all of them concatenated with a space, using the strings.Join function. Otherwise, it uses the bufio.Scanner to scan for a single input line on the provided io.Reader interface. If an error occurs while reading the input or the input is blank, it returns an error. Define the function at the bottom of your main.go file, like this:
interacting/todo.v4/cmd/todo/main.go
	​ 	​// getTask function decides where to get the description for a new​
	​ 	​// task from: arguments or STDIN​
	​ 	​func​ getTask(r io.Reader, args ...​string​) (​string​, ​error​) {
	​ 	 ​if​ len(args) > 0 {
	​ 	 ​return​ strings.Join(args, ​" "​), nil
	​ 	 }
	​ 	
	​ 	 s := bufio.NewScanner(r)
	​ 	 s.Scan()
	​ 	 ​if​ err := s.Err(); err != nil {
	​ 	 ​return​ ​""​, err
	​ 	 }
	​ 	
	​ 	 ​if​ len(s.Text()) == 0 {
	​ 	 ​return​ ​""​, fmt.Errorf(​"Task cannot be blank"​)
	​ 	 }
	​ 	
	​ 	 ​return​ s.Text(), nil
	​ 	}

Next, update the main function to use the new getTask function to obtain the task name. Since you’re no longer getting the task directly from the flag, change the -task flag to -add with a boolean type instead of string. This new flag only indicates that something will be added, allowing you the flexibility to get the input from other sources.
interacting/todo.v4/cmd/todo/main.go
	​ 	​// Parsing command line flags​
	»	add := flag.Bool(​"add"​, false, ​"Add task to the ToDo list"​)
	​ 	list := flag.Bool(​"list"​, false, ​"List all tasks"​)
	​ 	complete := flag.Int(​"complete"​, 0, ​"Item to be completed"​)

To complete the updates, change the case *task != "" block to case *add, calling the new getTask function. Pass the variable os.Stdin, which represents the standard input - STDIN, as the first input parameter, and pass flag.Args()... as the second parameter:
interacting/todo.v4/cmd/todo/main.go
	​ 	​case​ *add:
	​ 	 ​// When any arguments (excluding flags) are provided, they will be​
	​ 	 ​// used as the new task​
	​ 	 t, err := getTask(os.Stdin, flag.Args()...)
	​ 	 ​if​ err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	 l.Add(t)
	​ 	
	​ 	 ​// Save the new list​
	​ 	 ​if​ err := l.Save(todoFileName); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }

	
	You can use the os.Stdin variable as the first parameter for the getTask function because its type *os.File implements the io.Reader interface. The flag.Args function returns all the remaining non-flag arguments provided by the user as input when executing the tool. Notice that we are using the operator ... to expand the slice into a list of values as expected by the function. If the getTask function returns an error, we’re printing it out to STDERR and exiting with code 1.

Save the main.go file to complete the changes.
	
	
	

	
	Now, update the test suite in the main_test.go file to include a test for this new case.

First, include the io package in the import list to use the function io.WriteString to write a string to an io.Writer:
interacting/todo.v4/cmd/todo/main_test.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"path/filepath"​
	​ 	 ​"runtime"​
	​ 	
	»	 ​"io"​
	​ 	 ​"os"​
	​ 	 ​"os/exec"​
	​ 	 ​"testing"​
	​)

Then, update the parameter to add a task from -task to -add in the existing AddNewTask test case. Include a new test case AddNewTaskFromSTDIN to test the new functionality you just added. In this test, use the method cmd.StdinPipe from the package os/exec to connect to the STDIN pipe of the command. Use the io.WriteString function to write the contents of the variable task2 into the pipe. It’s important to close the pipe by calling cmdStdIn.Close to ensure the function Run doesn’t wait forever for input.
interacting/todo.v4/cmd/todo/main_test.go
	​ 	​func​ TestTodoCLI(t *testing.T) {
	​ 	 task := ​"test task number 1"​
	​ 	
	​ 	 dir, err := os.Getwd()
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 cmdPath := filepath.Join(dir, binName)
	​ 	
	​ 	 t.Run(​"AddNewTaskFromArguments"​, ​func​(t *testing.T) {
	»	 cmd := exec.Command(cmdPath, ​"-add"​, task)
	​ 	
	​ 	 ​if​ err := cmd.Run(); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	 })
	​ 	
	»	 task2 := ​"test task number 2"​
	»	 t.Run(​"AddNewTaskFromSTDIN"​, ​func​(t *testing.T) {
	»	 cmd := exec.Command(cmdPath, ​"-add"​)
	»	 cmdStdIn, err := cmd.StdinPipe()
	»	 ​if​ err != nil {
	»	 t.Fatal(err)
	»	 }
	»	 io.WriteString(cmdStdIn, task2)
	»	 cmdStdIn.Close()
	»	
	»	 ​if​ err := cmd.Run(); err != nil {
	»	 t.Fatal(err)
	»	 }
	»	 })
	​ 	
	​ 	 t.Run(​"ListTasks"​, ​func​(t *testing.T) {
	​ 	 cmd := exec.Command(cmdPath, ​"-list"​)
	​ 	 out, err := cmd.CombinedOutput()
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	»	 expected := fmt.Sprintf(​" 1: %s​​\n​​ 2: %s​​\n​​"​, task, task2)
	​ 	
	​ 	 ​if​ expected != ​string​(out) {
	​ 	 t.Errorf(​"Expected %q, got %q instead​​\n​​"​, expected, ​string​(out))
	​ 	 }
	​ 	 })
	​ 	}

Save the main_test.go file and ensure the TODO_FILENAME environment variable isn’t set and the file .todo.json doesn’t exist before you run the tests.
	​ 	​$ ​​unset​​ ​​TODO_FILENAME​
	​ 	​$ ​​rm​​ ​​.todo.json​

Execute the tests and assert the new test case pass:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	Building tool...
	​ 	Running tests....
	​ 	=== RUN TestTodoCLI
	​ 	=== RUN TestTodoCLI/AddNewTaskFromArguments
	​ 	=== RUN TestTodoCLI/AddNewTaskFromSTDIN
	​ 	=== RUN TestTodoCLI/ListTasks
	​ 	--- PASS: TestTodoCLI (0.01s)
	​ 	 --- PASS: TestTodoCLI/AddNewTaskFromArguments (0.00s)
	​ 	 --- PASS: TestTodoCLI/AddNewTaskFromSTDIN (0.00s)
	​ 	 --- PASS: TestTodoCLI/ListTasks (0.00s)
	​ 	PASS
	​ 	Cleaning up...
	​ 	ok pragprog.com/rggo/interacting/todo 0.316s

Build and try this version of your tool:
	​ 	​$ ​​ls​
	​ 	main.go main_test.go
	​ 	​$ ​​go​​ ​​build​
	​ 	​$ ​​./todo​​ ​​-add​​ ​​Including​​ ​​item​​ ​​from​​ ​​Args​
	​ 	​$ ​​./todo​​ ​​-list​
	​ 	 1: Including item from Args
	​ 	​$ ​​echo​​ ​​"This item comes from STDIN"​​ ​​|​​ ​​./todo​​ ​​-add​
	​ 	​$ ​​./todo​​ ​​-list​
	​ 	 1: Including item from Args
	​ 	 2: This item comes from STDIN

 You’ve completed your command-line tool for managing to-do lists.
	
	
	
	
	

Exercises

You can try the following exercises to expand your skills:
	
Implement the flag -del to delete an item from the list. Use the Delete method from the API to perform the action.

	
Add another flag to enable verbose output, showing information like date/time.

	
Add another flag to prevent displaying completed items.

	
Update the custom usage function to include additional instructions on how to provide new tasks to the tool.

	
Include test cases for the remaining options, such as -complete.

	
Update the tests to use the TODO_FILENAME environment variable instead of hard-coding the test file name so that it doesn’t cause conflicts with an existing file.

	
Update the getTask function allowing it to handle multiline input from STDIN. Each line should be a new task in the list.

Wrapping Up

In this chapter, you explored a few ways to get input from your users. You used command-line arguments, environment variables, and standard input. More importantly, you got more comfortable producing your own command-line tools by using common standards and practices.

In the next chapter, you’ll build on these concepts by handling files, thus enabling you to create even more powerful and useful tools.

Footnotes

	[13]
	
https://golang.org/ref/spec#Struct_types

	[14]
	
https://golang.org/ref/spec#Method_declarations

	[15]
	
 https://golang.org/doc/go1.16#ioutil

	[16]
	
https://golang.org/pkg/flag/

	[17]
	
https://golang.org/ref/spec#Interface_types

	[18]
	
https://golang.org/pkg/io/#Reader

	[19]
	
 https://golang.org/ref/spec#Function_types

Copyright © 2021, The Pragmatic Bookshelf.

 Chapter
 3
Working with Files in Go

Working with files is one of the most frequent tasks you have to perform when building your command-line tools. Your programs pull data from files and also save results in them. This is particularly important when working with Linux or Unix because system resources are represented as files.

To get comfortable working with files in CLI apps, you’ll develop a tool to preview Markdown files locally, using a web browser.

 Markdown is a lightweight markup language that uses plain text with special syntax to represent formatting compatible with HTML. It’s used to write blog articles, comments, and README files for open source projects like those available in GitHub. Since it uses plain text, writing Markdown requires only a text editor, but it may be hard to visualize the end result.

	The tool you’ll write converts the Markdown source into HTML that can be viewed in a browser. To work with files in Go, you’ll use the packages os and io from the standard library. You’ll create and open files so that you can read data or save it to files using different methods. You’ll handle paths consistently across multiple platforms to make your code more flexible, ensuring your tool works in cross-platform scenarios. You’ll use the defer statement to effectively clean up used resources. In addition, you’ll apply the io.Writer interface, which is a powerful concept of the language. Finally, you’ll work with temporary files and templates.

Creating a Basic Markdown Preview Tool

 Let’s implement the initial version of the Markdown Preview tool. We’ll call this tool mdp (for MarkDown Preview) and accept the file name of the Markdown file to be previewed as its argument. This tool will perform four main steps:
	
Read the contents of the input Markdown file.

	
Use some Go external libraries to parse Markdown and generate a valid HTML block.

	
Wrap the results with an HTML header and footer.

	
Save the buffer to an HTML file that you can view in a browser.

	
	
	When writing Go programs, you can organize your code in many ways. For this tool, you’ll keep all the code in a single package main since this functionality won’t be used outside the CLI implementation. In Chapter 4, ​Navigating the File System​, you’ll see how to organize your code as a single package with many files. For now, you’ll keep the code in main.go.

	
	

	You already know that to create executable files in Go, the program has to start from the main function in the main package. But having all the code inside the main function is inconvenient and makes it harder to automate testing. To address this issue, a common pattern is to break the main function into smaller focused functions that can be tested independently. To coordinate the execution of these functions into a cohesive outcome, we use a coordinating function. In this case, we call this function run.
	
	
	
	

In addition to the main and run functions, you’ll also implement parseContent, to parse Markdown into HTML, and saveHTML, to save the result into a file.

	
	To transform Markdown into HTML, you’ll use an external Go package called blackfriday. This package is open source and provides a flexible implementation that supports several formatting options. You can find more information on the project’s GitHub page.[20]

	
	While Blackfriday converts Markdown into HTML, according to its documentation, it doesn’t sanitize the output to prevent malicious content. To ensure that your tool generates safe output, you’ll sanitize the content using another external package called bluemonday. For more information, check this package’s GitHub page.[21]

	
	Using external packages helps you speed up development by reusing software that was developed by someone else, but it also adds a dependency to your project that you have to manage. Always think about the benefits versus the constraints when using external packages.

	
	To use these external packages in your program, you need to first install them in your local machine. Before doing this, let’s set up the project directory. Create the directory for your new command-line tool in your book’s root directory. Switch to the new directory afterward.
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/workingFiles/mdp​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/workingFiles/mdp​

	
	
	Then initialize the Go module for this project:
	​ 	​$ ​​go​​ ​​mod​​ ​​init​​ ​​pragprog.com/rggo/workingFiles/mdp​
	​ 	go: creating new go.mod: module pragprog.com/rggo/workingFiles/mdp

	
	Now, download the required external packages. In Go, you install external packages by using the go get tool. To install these two packages, run the following commands:
	​ 	​$ ​​go​​ ​​get​​ ​​github.com/microcosm-cc/bluemonday​
	​ 	​$ ​​go​​ ​​get​​ ​​github.com/russross/blackfriday/v2​

	
	
	
	The command go get downloads the packages and adds them as a dependency in the go.mod file:
workingFiles/mdp/go.mod
	​ 	module pragprog.com/rggo/workingFiles/mdp
	​ 	
	​ 	go 1.16
	​ 	
	​ 	require (
	​ 	 github.com/microcosm-cc/bluemonday v1.0.15
	​ 	 github.com/russross/blackfriday/v2 v2.1.0
	​)

Next, create the main.go file and open it in your editor.

	
	
	Add the package and import sections. To use the external packages, you need to import them in the import section as you do with packages provided by the standard library, but specify them using the full module path, including the package path. For example, to import the package bluemonday, use github.com/microcosm-cc/bluemonday. If the module supports semantic versioning and you want to use a specific version, add the major version of the module as /vN at the end of the module path. For example, to use version 2.x of Blackfriday, use github.com/russross/blackfriday/v2. For more details, consult the package documentation and the Go Modules wiki.[22] Add this code to your main.go file:
workingFiles/mdp/main.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"path/filepath"​
	​ 	
	​ 	 ​"github.com/microcosm-cc/bluemonday"​
	​ 	 ​"github.com/russross/blackfriday/v2"​
	​)

	
	
	
	
	The blackfriday package generates the content based on the input Markdown, but it doesn’t include the HTML header and footer required to view it in a browser. You’ll add them to the file yourself and use them to wrap the results you get from Blackfriday. Define the constants header and footer to use later:
workingFiles/mdp/main.go
	​ 	​const​ (
	​ 	 header = ​`<!DOCTYPE html>​
	​ 	​<html>​
	​ 	​ <head>​
	​ 	​ <meta http-equiv="content-type" content="text/html; charset=utf-8">​
	​ 	​ <title>Markdown Preview Tool</title>​
	​ 	​ </head>​
	​ 	​ <body>​
	​ 	​`​
	​ 	 footer = ​`​
	​ 	​ </body>​
	​ 	​</html>​
	​ 	​`​
	​)

	
	Now create the main function by adding code to parse the flag -file that specifies the input Markdown file. Check if the flag has been set and use it as input to the run function. Otherwise, return the usage information to the user and terminate the program. Finally, check the error return value from the run function, exiting with an error message in case it isn’t nil.
	
	
	
	
	
	
workingFiles/mdp/main.go
	​ 	​func​ main() {
	​ 	 ​// Parse flags​
	​ 	 filename := flag.String(​"file"​, ​""​, ​"Markdown file to preview"​)
	​ 	 flag.Parse()
	​ 	
	​ 	 ​// If user did not provide input file, show usage​
	​ 	 ​if​ *filename == ​""​ {
	​ 	 flag.Usage()
	​ 	 os.Exit(1)
	​ 	 }
	​ 	
	​ 	 ​if​ err := run(*filename); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	}

	
	Next, define the run function to coordinate the execution of the remaining functions. This function receives one input, filename, representing the name of the Markdown file to preview, and returns a potential error. The function main uses the return value to decide whether to exit the program with an error code.
workingFiles/mdp/main.go
	​ 	​func​ run(filename ​string​) ​error​ {
	​ 	 ​// Read all the data from the input file and check for errors​
	​ 	 input, err := ioutil.ReadFile(filename)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 htmlData := parseContent(input)
	​ 	
	​ 	 outName := fmt.Sprintf(​"%s.html"​, filepath.Base(filename))
	​ 	 fmt.Println(outName)
	​ 	
	​ 	 ​return​ saveHTML(outName, htmlData)
	​ 	}

	
	
	
	
	This function reads the content of the input Markdown file into a slice of bytes by using the convenience function ReadFile(path) from the ioutil package. We pass this content as input to the parseContent function, responsible for converting Markdown to HTML. You’ll implement this function shortly. Finally, we’re using the htmlData returned from parseContent as input to the saveHTML function that saves the content to a file.

	
	
	The saveHTML function accepts another input parameter, outFname, which is the output HTML file name. For now, we’re using the filepath package’s Base function to derive the outFname parameter from the file name of the path provided by the user. The filepath package provides this and other functions designed to work with paths compatible with the target operating system, which makes your tool ready to use in cross-platform scenarios. The saveHTML function returns a potential error when writing the HTML file, which the function run also returns as its error.

	
	Now, let’s implement the parseContent function. This function receives a slice of bytes representing the content of the Markdown file and returns another slice of bytes with the converted content as HTML. Define it by adding the following code to the main.go file:
workingFiles/mdp/main.go
	​ 	​func​ parseContent(input []​byte​) []​byte​ {

	
	
	
	
	Blackfriday has various options and plugins you can use to customize the results; for a complete list of enabled extensions, take a look at the library’s documentation.[23] For this tool, you’ll use the Run([]byte) function that parses Markdown using the most common extensions, such as rendering tables and code blocks. This function requires a slice of bytes as input. Use the input parameter as input to Blackfriday and pass its returned content to Bluemonday, like this:
workingFiles/mdp/main.go
	​ 	​// Parse the markdown file through blackfriday and bluemonday​
	​ 	​// to generate a valid and safe HTML​
	​ 	output := blackfriday.Run(input)
	​ 	body := bluemonday.UGCPolicy().SanitizeBytes(output)

This block of code generated a valid block of HTML which constitutes the body of the page. Now combine this body with the header and footer defined as constants to generate the complete HTML content. Use a buffer of bytes bytes.Buffer from the bytes package to join all the HTML parts like this:
	
	
workingFiles/mdp/main.go
	​ 	 ​// Create a buffer of bytes to write to file​
	​ 	 ​var​ buffer bytes.Buffer
	​ 	
	​ 	 ​// Write html to bytes buffer​
	​ 	 buffer.WriteString(header)
	​ 	 buffer.Write(body)
	​ 	 buffer.WriteString(footer)
	​ 	
	​ 	 ​return​ buffer.Bytes()
	​ 	}

	
	The function returns the content of the buffer as a slice of bytes by using the buffer.Bytes method to extract the content of the buffer.
	
	

	
	
	
	Finally, implement the saveHTML function, which will receive the entire HTML content stored in the buffer and save it to a file specified by the parameter outFname. The ioutil package provides another convenient function to do this: ioutil.WriteFile. Save the HTML content by adding this code to the main.go file:
workingFiles/mdp/main.go
	​ 	​func​ saveHTML(outFname ​string​, data []​byte​) ​error​ {
	​ 	 ​// Write the bytes to the file​
	​ 	 ​return​ ioutil.WriteFile(outFname, data, 0644)
	​ 	}

	
	The third parameter represents the file permissions. We’re using 0644 for creating a file that’s both readable and writable by the owner but only readable by anyone else. The function returns any errors from the WriteFile call as output.

Now that the code is complete, let’s write some tests to ensure it’s working as designed.
	
	
	
	

Writing Tests for the Markdown Preview Tool

	
	
	
	
	
	When you tested the todo tool in ​Testing the Initial CLI Implementation​, you wrote something similar to an integration test by compiling the tool and running it in the test cases. This was necessary as all the code was part of the main function, which can’t be tested. For this application, you’ll take a different approach; you’ll write individual unit tests for each function, and use an integration test to test the run function. You can do this now because the run function returns values that can be used in tests.

This means you’re intentionally not testing some of the code that’s still in the main function, such as the block that parses the command-line flags. You don’t have to write tests for that code because you can assume it’s already been tested by the Go team. When using external libraries and packages, trust that they have been tested by the developers who provided them. If you don’t trust the developers, don’t use the library.

This also means you don’t need to write unit tests for the saveHTML function since it’s essentially a wrapper around a function from Go’s standard library. Its behavior is assured in the integration test you’ll write.

	
	
	You can use various techniques to test functions that require files. Later in ​Using Interfaces to Automate Tests​, you’ll use the interfaces io.Reader or io.Writer to mock tests. For this case, you’ll use a technique known as golden files where the expected results are saved into files that are loaded during the tests for validating the actual output. The benefit is that the results can be complex, such as an entire HTML file, and you can have many of them to test different cases.

For these tests, you’ll create two files: the input Markdown file test1.md and the golden file test1.md.html. It’s a good practice to put all files required by your tests in a subdirectory called testdata under your project’s directory. The testdata directory has a special meaning in Go tooling that’s ignored by the Go build tool when compiling your program to ensure that testing artifacts don’t end up in your build.
	
	
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/workingFiles/mdp​
	​ 	​$ ​​mkdir​​ ​​testdata​
	​ 	​$ ​​cd​​ ​​testdata​

Create the input Markdown file test1.md in the testdata directory using your favorite text editor.

Add the input Markdown code to test1.md:
workingFiles/mdp/testdata/test1.md
	​ 	# Test Markdown File
	​ 	
	​ 	Just a test
	​ 	
	​ 	## Bullets:
	​ 	* Links [Link1](​https://example.com​)
	​ 	
	​ 	## Code Block
	​ 	```
	​ 	​some code​
	​ 	```

Now create the golden file test1.md.html in the testdata directory, and add the expected HTML to it:
workingFiles/mdp/testdata/test1.md.html
	​ 	​<!DOCTYPE html>​
	​ 	<html>
	​ 	 <head>
	​ 	 <meta http-equiv=​"content-type"​ content=​"text/html; charset=utf-8"​>
	​ 	 <title>Markdown Preview Tool</title>
	​ 	 </head>
	​ 	 <body>
	​ 	<h1>Test Markdown File</h1>
	​ 	
	​ 	<p>Just a test</p>
	​ 	
	​ 	<h2>Bullets:</h2>
	​ 	
	​ 	
	​ 	Links Link1
	​ 	
	​ 	
	​ 	<h2>Code Block</h2>
	​ 	
	​ 	<pre><code>some code
	​ 	</code></pre>
	​ 	
	​ 	 </body>
	​ 	</html>

Then create the test file main_test.go in the same directory as your main.go file.
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/workingFiles/mdp​

Edit the main_test.go file, adding the code for defining the package name, the import section, and some constants that are used throughout the tests:
workingFiles/mdp/main_test.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"testing"​
	​)
	​ 	
	​ 	​const​ (
	​ 	 inputFile = ​"./testdata/test1.md"​
	​ 	 resultFile = ​"test1.md.html"​
	​ 	 goldenFile = ​"./testdata/test1.md.html"​
	​)

	
	
	
	You use the following packages: bytes to manipulate raw byte data, ioutil to read data from files, and os package to delete files. You also define three constants with the name of the files you’ll use in the tests.

Write the first test case to test the ParseContent function, by adding this code into main_test.go:
workingFiles/mdp/main_test.go
	​ 	​func​ TestParseContent(t *testing.T) {
	​ 	 input, err := ioutil.ReadFile(inputFile)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 result := parseContent(input)
	​ 	
	​ 	 expected, err := ioutil.ReadFile(goldenFile)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 ​if​ !bytes.Equal(expected, result) {
	​ 	 t.Logf(​"golden:​​\n​​%s​​\n​​"​, expected)
	​ 	 t.Logf(​"result:​​\n​​%s​​\n​​"​, result)
	​ 	 t.Error(​"Result content does not match golden file"​)
	​ 	 }
	​ 	}

This test reads the content of the input test file, parses it with parseContent, and compares it with the expected result in the golden file by using the function bytes.Equal, which compares two slices of bytes.

	
	
	Now write the integrated test case that tests the run function by adding this code:
workingFiles/mdp/main_test.go
	​ 	​func​ TestRun(t *testing.T) {
	​ 	 ​if​ err := run(inputFile); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 result, err := ioutil.ReadFile(resultFile)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 expected, err := ioutil.ReadFile(goldenFile)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 ​if​ !bytes.Equal(expected, result) {
	​ 	 t.Logf(​"golden:​​\n​​%s​​\n​​"​, expected)
	​ 	 t.Logf(​"result:​​\n​​%s​​\n​​"​, result)
	​ 	 t.Error(​"Result content does not match golden file"​)
	​ 	 }
	​ 	
	​ 	 os.Remove(resultFile)
	​ 	}

In this test case, we execute the run function that generates the result file. We then read both the results and golden files and compare them using the bytes.Equal function again. At the end, we clean up the result file using os.Remove.

Save the main_test.go file and execute the tests using the go test tool:
	
	
	
	​ 	​$ ​​ls​
	​ 	go.mod main.go main_test.go testdata
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestParseContent
	​ 	--- PASS: TestParseContent (0.00s)
	​ 	=== RUN TestRun
	​ 	test1.md.html
	​ 	--- PASS: TestRun (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/workingFiles/mdp 0.011s

Once all the tests pass, we’re ready to try the Markdown preview tool. Let’s first create a Markdown file like this:
workingFiles/mdp/README.md
	​ 	# Example Markdown File
	​ 	
	​ 	This is an example Markdown file to test the preview tool
	​ 	
	​ 	## Features:
	​ 	* Support for links [PragProg](​https://pragprog.com​)
	​ 	* Support for other features
	​ 	
	​ 	## How to install:
	​ 	```
	​ 	​go get github.com/user/program​
	​ 	```

Try your mdp tool providing this Markdown file as input:
	​ 	​$ ​​ls​
	​ 	go.mod go.sum main.go main_test.go README.md testdata
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-file​​ ​​README.md​
	​ 	README.md.html
	​ 	​$ ​​ls​
	​ 	go.mod go.sum main.go main_test.go README.md README.md.html testdata
	​ 	​$​

The mdp tool created a file README.md.html with the following contents:
workingFiles/mdp/README.md.html
	​ 	​<!DOCTYPE html>​
	​ 	<html>
	​ 	 <head>
	​ 	 <meta http-equiv=​"content-type"​ content=​"text/html; charset=utf-8"​>
	​ 	 <title>Markdown Preview Tool</title>
	​ 	 </head>
	​ 	 <body>
	​ 	<h1>Example Markdown File</h1>
	​ 	
	​ 	<p>This is an example Markdown file to test the preview tool</p>
	​ 	
	​ 	<h2>Features:</h2>
	​ 	
	​ 	
	​ 	Support for links <a href=​"https://pragprog.com"​
	​ 	 rel=​"nofollow"​>PragProg
	​ 	Support for other features
	​ 	
	​ 	
	​ 	<h2>How to install:</h2>
	​ 	
	​ 	<pre><code>go get github.com/user/program
	​ 	</code></pre>
	​ 	
	​ 	 </body>
	​ 	</html>

Open this file in a web browser to preview your Markdown file, as shown in Figure 1.
[image: images/files/mdp1.png]

Figure 1. mdp Preview

The mdp tool works as designed, but if you use it many times, it will create these HTML files all over your system. This isn’t ideal, so let’s address it next.
	
	

Adding Temporary Files to the Markdown Preview Tool

	
	
	
	In its current version, the mdp tool creates an HTML file with the same name as the Markdown file in the current directory. This isn’t ideal as these files can accumulate on your system or could cause a clash if two or more users are previewing the same file simultaneously.

	
	To address this issue, let’s make a change to the mdp tool to create and use temporary files instead of local files. The ioutil package provides a function TempFile to create temporary files with a random name. This allows it to run safely concurrently because the file names will never clash.

The ioutil.TempFile function takes two arguments. The first is the directory where you create the file. If left blank, it uses the system-defined temporary directory. The second argument is a pattern that helps generate file names that are easier to find if desired. To add this functionality to your tool, let’s change the run function.

First, delete the package path/filepath from your import section since you’re no longer using the function filepath.Base to extract the current file name.
	​ 	​"path/filepath"​

	
	Then, use the function ioutil.TempFile to create the temporary file using the pattern mdp*.html. The function TempFile replaces the * character with a random number, generating a random name with the mdp prefix and an .html extension. Check and return any errors. After creating the temporary file, use the temp.Close method to close it as we’re not writing any data to it at this point. Finally, assign the temporary file name to the variable outName so it can be passed to saveHTML later:
workingFiles/mdp.v1/main.go
	​ 	​func​ run(filename ​string​) ​error​ {
	​ 	 ​// Read all the data from the input file and check for errors​
	​ 	 input, err := ioutil.ReadFile(filename)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 htmlData := parseContent(input)
	​ 	
	»	 ​// Create temporary file and check for errors​
	»	 temp, err := ioutil.TempFile(​""​, ​"mdp*.html"​)
	»	 ​if​ err != nil {
	»	 ​return​ err
	»	 }
	»	 ​if​ err := temp.Close(); err != nil {
	»	 ​return​ err
	»	 }
	»	
	»	 outName := temp.Name()
	​ 	
	​ 	 fmt.Println(outName)
	​ 	
	​ 	 ​return​ saveHTML(outName, htmlData)
	​ 	}

This completes the updates to the run function. Save the file main.go.

Try to run the tests again and notice that a test fails because it expects a specific output file name:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestParseContent
	​ 	--- PASS: TestParseContent (0.00s)
	​ 	=== RUN TestRun
	»	/tmp/mdp842610791.html
	»	--- FAIL: TestRun (0.00s)
	»	 main_test.go:39: open test1.md.html: no such file or directory
	​ 	FAIL
	​ 	exit status 1
	​ 	FAIL pragprog.com/rggo/workingFiles/mdp 0.008s

The new version generates the file name dynamically, so we need to update the TestRun test case to handle this condition.
	
	
	
	

Using Interfaces to Automate Tests

	
	
	
	
	Sometimes you need a way to test output printed out to STDOUT. In this instance, when executing the integration tests, by testing the run function, the name of the output file is created dynamically. The function prints this value to the screen so the user can use the file, but to automate tests, we need to capture this output from within the test case.

	
	In Go, the idiomatic way to deal with this situation is by using interfaces, in this case io.Writer, to make your code more flexible. For this pattern, we update the function run so that it takes the interface as an input parameter. We do this so we can call run with different types that implement the interface depending on the situation: for the program, we use os.Stdout to print the output onscreen; for the tests, we use bytes.Buffer to capture the output in a buffer that we can use in the test.
	
	
	

	
	To start, include the io package in the import section in order to use the io.Writer interface:
workingFiles/mdp.v2/main.go
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	
	»	 ​"io"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	
	​ 	 ​"github.com/microcosm-cc/bluemonday"​
	​ 	 ​"github.com/russross/blackfriday/v2"​
	​)

Next, update the function run like this:
workingFiles/mdp.v2/main.go
	»	​func​ run(filename ​string​, out io.Writer) ​error​ {
	​ 	 ​// Read all the data from the input file and check for errors​
	​ 	 input, err := ioutil.ReadFile(filename)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 htmlData := parseContent(input)
	​ 	
	​ 	 ​// Create temporary file and check for errors​
	​ 	 temp, err := ioutil.TempFile(​""​, ​"mdp*.html"​)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 ​if​ err := temp.Close(); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 outName := temp.Name()
	​ 	
	»	 fmt.Fprintln(out, outName)
	​ 	
	​ 	 ​return​ saveHTML(outName, htmlData)
	​ 	}

We’re updating the function run to take the interface as a second input parameter as well as replacing the function fmt.Println with fmt.Fprintln. This function takes an interface as the first argument and prints the remaining arguments to that interface.

Lastly, update the function main to pass os.Stdout when calling run so it prints the output onscreen:
workingFiles/mdp.v2/main.go
	​ 	​func​ main() {
	​ 	 ​// Parse flags​
	​ 	 filename := flag.String(​"file"​, ​""​, ​"Markdown file to preview"​)
	​ 	 flag.Parse()
	​ 	
	​ 	 ​// If user did not provide input file, show usage​
	​ 	 ​if​ *filename == ​""​ {
	​ 	 flag.Usage()
	​ 	 os.Exit(1)
	​ 	 }
	​ 	
	»	 ​if​ err := run(*filename, os.Stdout); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	}

Once the function run has been changed, we can update the tests to use the io.Writer interface. First, delete the line where we hard-coded the file name as it’s no longer needed:
	​ 	resultFile = ​"test1.md.html"​

Next, update the test case function TestRun to use the bytes.Buffer to capture the output file name, and use it as the resultFile, like this:
workingFiles/mdp.v2/main_test.go
	​ 	​func​ TestRun(t *testing.T) {
	»	 ​var​ mockStdOut bytes.Buffer
	»	
	»	 ​if​ err := run(inputFile, &mockStdOut); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	»	 resultFile := strings.TrimSpace(mockStdOut.String())
	​ 	
	​ 	 result, err := ioutil.ReadFile(resultFile)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 expected, err := ioutil.ReadFile(goldenFile)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 ​if​ !bytes.Equal(expected, result) {
	​ 	 t.Logf(​"golden:​​\n​​%s​​\n​​"​, expected)
	​ 	 t.Logf(​"result:​​\n​​%s​​\n​​"​, result)
	​ 	 t.Error(​"Result content does not match golden file"​)
	​ 	 }
	​ 	
	​ 	 os.Remove(resultFile)
	​ 	}

We’re defining the variable mockStdOut of type bytes.Buffer. We then pass its address, using the address operator &, as input to the run call. This is necessary as the type bytes.Buffer satisfies the io.Writer interface using the pointer receiver. We get the value out of the buffer by using its String method and the function TrimSpace from the strings package to remove the newline character at the end of it.
	
	

Remember to add the package strings to the import section before using it:
workingFiles/mdp.v2/main_test.go
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	
	»	 ​"strings"​
	​ 	 ​"testing"​
	​)

Let’s execute the tests now:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestParseContent
	​ 	--- PASS: TestParseContent (0.00s)
	​ 	=== RUN TestRun
	​ 	--- PASS: TestRun (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/workingFiles/mdp 0.009s

This time, all the tests pass. Go ahead and try the tool out:
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-file​​ ​​README.md​
	​ 	/tmp/mdp807323568.html

The tool created the file mdp807323568.html in the standard temporary directory, in this case /tmp. Your results may be different depending on your operating system. Open this file in the browser to see the same preview as before.

Next, you’ll increase the level of automation by providing a feature to auto-preview the resulting file in a browser.
	
	
	
	

Adding an Auto-Preview Feature

	
	At this moment, your tool isn’t automating the entire process. It converts the Markdown to HTML, but the user still has to open it in a browser to see the results. While this is a valid approach, it would be nice for the user to be able to run the tool and automatically see the results. We’re assuming that most users want this feature, but it’s nice to provide an option to disable it in case they prefer to open the file at a different time. As part of this implementation, we’ll add another flag -s (skip-preview) to skip the auto-preview. This option also helps with executing the tests by avoiding automatically opening the files in the browser for every test.

To preview the file in a browser, let’s add another function to this program called preview. This function takes the temporary file name as input and returns an error in case it can’t open the file. Create this function by adding this code at the end of your main.go file:
workingFiles/mdp.v3/main.go
	​ 	​func​ preview(fname ​string​) ​error​ {
	​ 	 cName := ​""​
	​ 	 cParams := []​string​{}
	​ 	
	​ 	 ​// Define executable based on OS​
	​ 	 ​switch​ runtime.GOOS {
	​ 	 ​case​ ​"linux"​:
	​ 	 cName = ​"xdg-open"​
	​ 	 ​case​ ​"windows"​:
	​ 	 cName = ​"cmd.exe"​
	​ 	 cParams = []​string​{​"/C"​, ​"start"​}
	​ 	 ​case​ ​"darwin"​:
	​ 	 cName = ​"open"​
	​ 	 ​default​:
	​ 	 ​return​ fmt.Errorf(​"OS not supported"​)
	​ 	 }
	​ 	
	​ 	 ​// Append filename to parameters slice​
	​ 	 cParams = append(cParams, fname)
	​ 	
	​ 	 ​// Locate executable in PATH​
	​ 	 cPath, err := exec.LookPath(cName)

	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​// Open the file using default program​
	​ 	 ​return​ exec.Command(cPath, cParams...).Run()
	​ 	}

	
	
	The preview function uses the os/exec package to execute a separate process—in this case, a command that opens a default application based on the given file, such as xdg-open on Linux or open on macOS. You’ll learn about the os/exec package in detail in Chapter 6, ​Controlling Processes​. The function also uses the runtime package’s constant GOOS to determine the executable program and parameters based on the current operating system. You’ll explore adding operating system--dependent data in ​Including OS-Specific Data​. The preview function uses exec.LookPath to locate the executable in the $PATH and executes it, passing the extra parameters and the temporary file name as arguments.
	
	

Import the required packages by adding them to the import section, like this:
workingFiles/mdp.v3/main.go
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	
	»	 ​"os/exec"​
	»	 ​"runtime"​
	»	
	​ 	
	​ 	 ​"github.com/microcosm-cc/bluemonday"​
	​ 	 ​"github.com/russross/blackfriday/v2"​
	​)

Change the function run signature to take an additional parameter skipPreview of type bool to decide whether to skip the auto-preview:
workingFiles/mdp.v3/main.go
	​ 	​func​ run(filename ​string​, out io.Writer, skipPreview ​bool​) ​error​ {

Modify the line that calls the function saveHTML to check for the error instead of directly returning it as the function now continues to preview the file. Next, include the code to check if skipPreview is true, returning nil without calling preview. Otherwise, call preview and return its error:
workingFiles/mdp.v3/main.go
	​ 	​func​ run(filename ​string​, out io.Writer, skipPreview ​bool​) ​error​ {
	​ 	 ​// Read all the data from the input file and check for errors​
	​ 	 input, err := ioutil.ReadFile(filename)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 htmlData := parseContent(input)
	​ 	
	​ 	 ​// Create temporary file and check for errors​
	​ 	 temp, err := ioutil.TempFile(​""​, ​"mdp*.html"​)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 ​if​ err := temp.Close(); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 outName := temp.Name()
	​ 	
	​ 	 fmt.Fprintln(out, outName)
	​ 	
	»	 ​if​ err := saveHTML(outName, htmlData); err != nil {
	»	 ​return​ err
	»	 }
	»	
	»	 ​if​ skipPreview {
	»	 ​return​ nil
	»	 }
	»	
	»	 ​return​ preview(outName)
	​ 	}

Finally, update the function main by including the new flag and passing its value to the call to the run function:
workingFiles/mdp.v3/main.go
	​ 	​func​ main() {
	​ 	 ​// Parse flags​
	​ 	 filename := flag.String(​"file"​, ​""​, ​"Markdown file to preview"​)
	»	 skipPreview := flag.Bool(​"s"​, false, ​"Skip auto-preview"​)
	​ 	 flag.Parse()
	​ 	
	​ 	 ​// If user did not provide input file, show usage​
	​ 	 ​if​ *filename == ​""​ {
	​ 	 flag.Usage()
	​ 	 os.Exit(1)
	​ 	 }
	​ 	
	»	 ​if​ err := run(*filename, os.Stdout, *skipPreview); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	}

This completes the changes to the program. Before running the tests, update the call to the run function in the TestRun test case to skip previewing the file. Do this by setting the skipPreview argument to true in the main_test.go file:
workingFiles/mdp.v3/main_test.go
	​ 	​if​ err := run(inputFile, &mockStdOut, true); err != nil {

Execute the tests and ensure they all pass:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestParseContent
	​ 	--- PASS: TestParseContent (0.00s)
	​ 	=== RUN TestRun
	​ 	--- PASS: TestRun (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/workingFiles/mdp 0.009s
	​ 	​$​

Build and execute the new tool and notice the preview file opening automatically in the browser.
	​ 	​$ ​​go​​ ​​build​​ ​​-o​​ ​​mdp​
	​ 	​$ ​​./mdp​​ ​​-file​​ ​​README.md​
	​ 	/tmp/mdp575058439.html
	​ 	​$​

This is an improvement compared to the previous version, but it’s still not ideal as the files can accumulate in the temporary directory now. Let’s address it next.
	
	

Cleaning Up Temporary Files

	
	
	
	Currently, our program doesn’t clean up the temporary files because the method we used to create them doesn’t automatically clean them up. As you can see, running the tool multiple times creates different files:
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-file​​ ​​README.md​
	​ 	/tmp/mdp552496404.html
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-file​​ ​​README.md​
	​ 	/tmp/mdp016541878.html
	​ 	​$ ​​ls​​ ​​-ltr​​ ​​/tmp/​​ ​​|​​ ​​grep​​ ​​mdp​
	​ 	-rw------- 1 ricardo users 503 Apr 15 10:25 mdp807323568.html
	​ 	-rw------- 1 ricardo users 503 Apr 15 10:27 mdp552496404.html
	​ 	-rw------- 1 ricardo users 503 Apr 15 10:31 mdp016541878.html

	
	
	This is expected as the program can’t assume how and when the files will be used. It’s your responsibility to delete the temporary files to keep the system clean. In your program, you can use the function os.Remove to delete the files when they’re no longer needed. In general, you defer the call to this function using the defer statement to ensure the file is deleted when the current function returns.

Update the run function to delete the file like this:
workingFiles/mdp.v4/main.go
	​ 	​func​ run(filename ​string​, out io.Writer, skipPreview ​bool​) ​error​ {
	​ 	 ​// Read all the data from the input file and check for errors​
	​ 	 input, err := ioutil.ReadFile(filename)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 htmlData := parseContent(input)
	​ 	
	​ 	 ​// Create temporary file and check for errors​
	​ 	 temp, err := ioutil.TempFile(​""​, ​"mdp*.html"​)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 ​if​ err := temp.Close(); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 outName := temp.Name()
	​ 	
	​ 	 fmt.Fprintln(out, outName)
	​ 	
	​ 	 ​if​ err := saveHTML(outName, htmlData); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​if​ skipPreview {
	​ 	 ​return​ nil
	​ 	 }
	​ 	
	»	 ​defer​ os.Remove(outName)
	​ 	
	​ 	 ​return​ preview(outName)
	​ 	}

	
	This is another benefit of using the run function; since it returns a value, instead of relying on os.Exit to exit the program, you can safely use the defer statement to clean up the resources. Be cautious when using os.Exit to exit the program as it exits immediately, not running any of the deferred function calls.

By deleting the file automatically, you introduce a small race condition in the program: the browser may not have time to open the file before it gets deleted. You can solve this in different ways, but to keep things simple, add a small delay to the preview function before it returns, allowing the browser time to open the file. First, import the time package:
	
	
workingFiles/mdp.v4/main.go
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"os/exec"​
	​ 	 ​"runtime"​
	​ 	
	»	 ​"time"​
	​ 	
	​ 	 ​"github.com/microcosm-cc/bluemonday"​
	​ 	 ​"github.com/russross/blackfriday/v2"​
	​)

Then, add a two-second delay to preview like this:
workingFiles/mdp.v4/main.go
	​ 	​func​ preview(fname ​string​) ​error​ {
	​ 	 cName := ​""​
	​ 	 cParams := []​string​{}
	​ 	
	​ 	 ​// Define executable based on OS​
	​ 	 ​switch​ runtime.GOOS {
	​ 	 ​case​ ​"linux"​:
	​ 	 cName = ​"xdg-open"​
	​ 	 ​case​ ​"windows"​:
	​ 	 cName = ​"cmd.exe"​
	​ 	 cParams = []​string​{​"/C"​, ​"start"​}
	​ 	 ​case​ ​"darwin"​:
	​ 	 cName = ​"open"​
	​ 	 ​default​:
	​ 	 ​return​ fmt.Errorf(​"OS not supported"​)
	​ 	 }
	​ 	
	​ 	 ​// Append filename to parameters slice​
	​ 	 cParams = append(cParams, fname)
	​ 	
	​ 	 ​// Locate executable in PATH​
	​ 	 cPath, err := exec.LookPath(cName)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​// Open the file using default program​
	»	 err = exec.Command(cPath, cParams...).Run()
	»	
	»	 ​// Give the browser some time to open the file before deleting it​
	»	 time.Sleep(2 * time.Second)
	»	 ​return​ err
	​ 	}

	
	Keep in mind that adding a delay isn’t a recommended long-term solution. This is a quick fix so you can focus on the cleanup functionality. Once you’ve explored ​Handling Signals​, you can update this function to clean up resources using a signal. Or, after you’ve explored Chapter 8, ​Talking to REST APIs​, you can create a small web server that serves the file directly to the browser.

Execute the tests ensuring they all pass:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestParseContent
	​ 	--- PASS: TestParseContent (0.00s)
	​ 	=== RUN TestRun
	​ 	--- PASS: TestRun (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/workingFiles/mdp 0.009s

Build and execute the new tool and notice the preview file opening automatically in the browser as before. In addition, the file is automatically deleted from the temporary directory.
	​ 	​$ ​​go​​ ​​build​
	​ 	​$ ​​./mdp​​ ​​-file​​ ​​README.md​
	​ 	/tmp/mdp335221060.html
	​ 	​$ ​​ls​​ ​​-l​​ ​​/tmp/mdp335221060.html​
	​ 	ls: cannot access '/tmp/mdp335221060.html': No such file or directory

	
	Once your tool creates and deletes temporary files appropriately, you can take advantage of the fact that this is a command-line tool to do some fancy stuff. For example, on Linux/Unix-like systems, create this script to preview your Markdown file every time you change it:
workingFiles/mdp.v4/autopreview.sh
	​ 	​#! /bin/bash​
	​ 	
	​ 	FHASH=​`​md5sum $1​`​
	​ 	​while ​true; ​do​
	​ 	​ ​NHASH=​`​md5sum $1​`​
	​ 	 ​if​ [​"​$NHASH​"​ != ​"​$FHASH​"​]; ​then​
	​ 	 ./mdp -file $1
	​ 	 FHASH=$NHASH
	​ 	 ​fi​
	​ 	​ ​sleep 5
	​ 	​done​

This script receives the name of the file you want to preview as an argument. It calculates the checksum of this file every five seconds. If the result is different from the previous one, the content of the file was changed, triggering the execution of the mdp tool to preview it.

Make the script executable:
	​ 	​$ ​​chmod​​ ​​+x​​ ​​autopreview.sh​

Now run the script, providing the name of the file you want to watch:
	​ 	​$ ​​./autopreview.sh​​ ​​README.md​

With the script running, change the README.md file in a text editor, save it, and notice how the browser automatically shows the preview file. When you’re done, use Ctrl+C to stop the script.

Next, let’s use Go’s templating features to remove the hard-coded header and footer from the code, improving the tool’s maintainability.
	
	
	
	

Improving the Markdown Preview Tool with Templates

	
	
	
	As the final improvement to the mdp tool, you’ll update the way it writes the final HTML file. You currently have the HTML header and footer hard-coded in the program. It’s a good start, but it makes the tool less flexible and harder to maintain. To address this issue, use the html/template package to create a data-driven template that allows you to inject code at predefined places at runtime.

	
	Templates are perfect in situations where you need to write files with some fixed content and you want to inject dynamic data at runtime. Go provides another template package called text/template, but you should use the html/template when writing HTML content. Both packages share a similar interface, so understanding one makes it easier to use the other.

Let’s build an implementation that provides a hardcoded default template but also allows the user to specify their own alternate version using a command-line flag -t. By doing this, we allow users to change the preview format and appearance without changing the application code, increasing its flexibility and maintainability.

Start by adding the package html/template to the import list as usual:
workingFiles/mdp.v5/main.go
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	
	»	 ​"html/template"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"os/exec"​
	​ 	 ​"runtime"​
	​ 	 ​"time"​
	​ 	
	​ 	 ​"github.com/microcosm-cc/bluemonday"​
	​ 	 ​"github.com/russross/blackfriday/v2"​
	​)

Then replace the definition of the constants header and footer with a default template. This is the template that you’ll use if the user doesn’t specify an alternate template file with command-line options.
workingFiles/mdp.v5/main.go
	​ 	​const​ (
	​ 	 defaultTemplate = ​`<!DOCTYPE html>​
	​ 	​<html>​
	​ 	​ <head>​
	​ 	​ <meta http-equiv="content-type" content="text/html; charset=utf-8">​
	​ 	​ <title>{{ .Title }}</title>​
	​ 	​ </head>​
	​ 	​ <body>​
	​ 	​{{ .Body }}​
	​ 	​ </body>​
	​ 	​</html>​
	​ 	​`​
	​)

In this template the two special constructs {{ .Title }} and {{ .Body }} are the placeholders for injecting the dynamic data. Define these fields in a custom struct of type content that you’ll use later in the code:
workingFiles/mdp.v5/main.go
	​ 	​// content type represents the HTML content tto add into the template​
	​ 	​type​ content ​struct​ {
	​ 	 Title ​string​
	​ 	 Body template.HTML
	​ 	}

This struct type defines two fields with the same names you defined in the template earlier: Title of type string and Body of type template.HTML. You can use this type for the body as it contains preformatted HTML provided by the blackfriday library and sanitized by bluemonday. Since this HTML has been sanitized, you can trust it to pass as is. Never use this type with HTML from untrusted sources, as it could present a security risk.

Now update the parseContent function to parse and execute the template. First, update the function signature to include another input parameter tFname of type string. This parameter represents an alternate template file to load if the user provided one. Also, include an error return parameter. Since the html/template can return an error, we need to pass it back to the calling function:
workingFiles/mdp.v5/main.go
	​ 	​func​ parseContent(input []​byte​, tFname ​string​) ([]​byte​, ​error​) {

Then parse the input Markdown data through blackfriday and bluemonday to generate the HTML body exactly like before:
workingFiles/mdp.v5/main.go
	​ 	​// Parse the markdown file through blackfriday and bluemonday​
	​ 	​// to generate a valid and safe HTML​
	​ 	output := blackfriday.Run(input)
	​ 	body := bluemonday.UGCPolicy().SanitizeBytes(output)

	
	Next, use the template.New function from the package html/template to create a new Template instance and parse the contents of the defaultTemplate constant using the Parse method from the Template type. Check and return any errors:
workingFiles/mdp.v5/main.go
	​ 	​// Parse the contents of the defaultTemplate const into a new Template​
	​ 	t, err := template.New(​"mdp"​).Parse(defaultTemplate)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

	
	Now verify if the variable tFname contains the name of an alternate template file provided by the user. If so, replace the Template instance t with the contents of the template file parsed using the function template.ParseFiles. Check and return any errors:
workingFiles/mdp.v5/main.go
	​ 	​// If user provided alternate template file, replace template​
	​ 	​if​ tFname != ​""​ {
	​ 	 t, err = template.ParseFiles(tFname)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	}

By using this approach, you always have the default template ready to execute, but you can replace it with a user-provided template when necessary.

Next, instantiate a new variable of type content with the predefined title and body. Force a conversion of the body to type template.HTML:
workingFiles/mdp.v5/main.go
	​ 	​// Instantiate the content type, adding the title and body​
	​ 	c := content{
	​ 	 Title: ​"Markdown Preview Tool"​,
	​ 	 Body: template.HTML(body),
	​ 	}

Define a variable buffer of type bytes.Buffer to store the template execution’s result:
workingFiles/mdp.v5/main.go
	​ 	​// Create a buffer of bytes to write to file​
	​ 	​var​ buffer bytes.Buffer

Remove the block where you write data to the buffer directly as it’s no longer required. You’ll write data to the buffer by executing the template:
	​ 	​// Write html to bytes buffer​
	​ 	buffer.WriteString(header)
	​ 	buffer.Write(body)
	​ 	buffer.WriteString(footer)

	
	Then, use the method t.Execute(&buffer, c) of your newly defined template t to execute the template. This method injects the data from the variable c into the template and writes the results to the buffer:
workingFiles/mdp.v5/main.go
	​ 	​// Execute the template with the content type​
	​ 	​if​ err := t.Execute(&buffer, c); err != nil {
	​ 	 ​return​ nil, err
	​ 	}

Update the return statement to include value nil as the error return parameter, indicating the function completed successfully:
workingFiles/mdp.v5/main.go
	​ 	 ​return​ buffer.Bytes(), nil
	​ 	}

Here’s the complete new version of this function:
workingFiles/mdp.v5/main.go
	​ 	​func​ parseContent(input []​byte​, tFname ​string​) ([]​byte​, ​error​) {
	​ 	 ​// Parse the markdown file through blackfriday and bluemonday​
	​ 	 ​// to generate a valid and safe HTML​
	​ 	 output := blackfriday.Run(input)
	​ 	 body := bluemonday.UGCPolicy().SanitizeBytes(output)
	​ 	
	​ 	 ​// Parse the contents of the defaultTemplate const into a new Template​
	​ 	 t, err := template.New(​"mdp"​).Parse(defaultTemplate)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 ​// If user provided alternate template file, replace template​
	​ 	 ​if​ tFname != ​""​ {
	​ 	 t, err = template.ParseFiles(tFname)

	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​// Instantiate the content type, adding the title and body​
	​ 	 c := content{
	​ 	 Title: ​"Markdown Preview Tool"​,
	​ 	 Body: template.HTML(body),
	​ 	 }
	​ 	
	​ 	 ​// Create a buffer of bytes to write to file​
	​ 	 ​var​ buffer bytes.Buffer
	​ 	
	​ 	 ​// Execute the template with the content type​
	​ 	 ​if​ err := t.Execute(&buffer, c); err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 ​return​ buffer.Bytes(), nil
	​ 	}

Update the definition of the run function so it accepts another string input parameter called tFname that will represent the name of an alternate template file:
workingFiles/mdp.v5/main.go
	​ 	​func​ run(filename, tFname ​string​, out io.Writer, skipPreview ​bool​) ​error​ {

Since the parseContent function now also returns an error, update the run function to handle this condition when calling parseContent, like this:
workingFiles/mdp.v5/main.go
	​ 	​func​ run(filename, tFname ​string​, out io.Writer, skipPreview ​bool​) ​error​ {
	​ 	 ​// Read all the data from the input file and check for errors​
	​ 	 input, err := ioutil.ReadFile(filename)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	»	 htmlData, err := parseContent(input, tFname)
	»	 ​if​ err != nil {
	»	 ​return​ err
	»	 }
	​ 	
	​ 	 ​// Create temporary file and check for errors​
	​ 	 temp, err := ioutil.TempFile(​""​, ​"mdp*.html"​)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 ​if​ err := temp.Close(); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 outName := temp.Name()
	​ 	
	​ 	 fmt.Fprintln(out, outName)
	​ 	
	​ 	 ​if​ err := saveHTML(outName, htmlData); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​if​ skipPreview {
	​ 	 ​return​ nil
	​ 	 }
	​ 	
	​ 	 ​defer​ os.Remove(outName)
	​ 	
	​ 	 ​return​ preview(outName)
	​ 	}

Finally, update the function main to include a new command-line flag -t which allows the user to provide an alternate template file. Assign it to the variable tFname and pass it to the run function:
workingFiles/mdp.v5/main.go
	​ 	​func​ main() {
	​ 	 ​// Parse flags​
	​ 	 filename := flag.String(​"file"​, ​""​, ​"Markdown file to preview"​)
	​ 	 skipPreview := flag.Bool(​"s"​, false, ​"Skip auto-preview"​)
	»	 tFname := flag.String(​"t"​, ​""​, ​"Alternate template name"​)
	​ 	 flag.Parse()
	​ 	
	​ 	 ​// If user did not provide input file, show usage​
	​ 	 ​if​ *filename == ​""​ {
	​ 	 flag.Usage()
	​ 	 os.Exit(1)
	​ 	 }
	​ 	
	»	 ​if​ err := run(*filename, *tFname, os.Stdout, *skipPreview); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	}

The application code is complete. Save the main.go file and edit the file main_test.go to update the tests. Start by updating the test case TestParseContent, passing an empty string as the tFname parameter to parseContent. Also, handle the potential error returned by parseContent, like this:
workingFiles/mdp.v5/main_test.go
	​ 	​func​ TestParseContent(t *testing.T) {
	​ 	 input, err := ioutil.ReadFile(inputFile)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	»	 result, err := parseContent(input, ​""​)
	»	 ​if​ err != nil {
	»	 t.Fatal(err)
	»	 }
	​ 	
	​ 	 expected, err := ioutil.ReadFile(goldenFile)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 ​if​ !bytes.Equal(expected, result) {
	​ 	 t.Logf(​"golden:​​\n​​%s​​\n​​"​, expected)
	​ 	 t.Logf(​"result:​​\n​​%s​​\n​​"​, result)
	​ 	 t.Error(​"Result content does not match golden file"​)
	​ 	 }
	​ 	}

Then update the TestRun test case by passing an empty string as the tFname parameter to the run function:
workingFiles/mdp.v5/main_test.go
	​ 	​if​ err := run(inputFile, ​""​, &mockStdOut, true); err != nil {

For brevity, we’re not adding a test case to test an alternate template file, but you should do so as an additional exercise.

Save the main_test.go file and execute the tests to ensure that they pass and your code works as expected:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestParseContent
	​ 	--- PASS: TestParseContent (0.00s)
	​ 	=== RUN TestRun
	​ 	--- PASS: TestRun (0.00s)
	​ 	PASS
	​ 	 ok pragprog.com/rggo/workingFiles/mdp 0.014s

Now when you execute the tool, the result will be similar to the previous versions, but the header and footer are coming from the template. Executing the tool with the sample README.md file produces this HTML:
workingFiles/mdp.v5/mdpPreview.html
	​ 	​<!DOCTYPE html>​
	​ 	<html>
	​ 	 <head>
	​ 	 <meta http-equiv=​"content-type"​ content=​"text/html; charset=utf-8"​>
	​ 	 <title>Markdown Preview Tool</title>
	​ 	 </head>
	​ 	 <body>
	​ 	 <h1>Example Markdown File</h1>
	​ 	
	​ 	<p>This is an example Markdown file to test the preview tool</p>
	​ 	
	​ 	<h2>Features:</h2>
	​ 	
	​ 	
	​ 	Support for links
	​ 	 PragProg
	​ 	Support for other features
	​ 	
	​ 	
	​ 	<h2>How to install:</h2>
	​ 	
	​ 	<pre><code>go get github.com/user/program
	​ 	</code></pre>
	​ 	
	​ 	 </body>
	​ 	</html>

Notice that the placeholders for the title and body have been replaced with actual content according to the definitions in your tool.

Since your tool allows the user to specify an alternate template file, they can control the HTML formatting without changing the program. Create a new template file called template-fmt.html.tmpl with the same content as the default template, but add this CSS snippet to change the <h1> headings to blue instead of black:
workingFiles/mdp.v5/template-fmt.html.tmpl
	​ 	​<!DOCTYPE html>​
	​ 	<html>
	​ 	 <head>
	​ 	 <meta http-equiv=​"content-type"​ content=​"text/html; charset=utf-8"​>
	​ 	 <title>{{ .Title }}</title>
	​ 	 <style>
	​ 	 h1 {
	​ 	 color: blue
	​ 	 }
	​ 	 </style>
	​ 	
	​ 	 </head>
	​ 	 <body>
	​ 	 {{ .Body }}
	​ 	 </body>
	​ 	</html>

Execute the tool and verify that the first heading is displayed in blue:
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-file​​ ​​README.md​​ ​​-t​​ ​​template-fmt.html.tmpl​

You’ll see the output shown in Figure 2.
[image: images/files/mdp4.png]

Figure 2. mdp Preview Using Template

Templates are a great resource for increasing the flexibility of your tools. You can use them in a variety of situations, and they are well-suited to write dynamic configuration files, web pages, emails, and more.
	
	
	
	

Exercises

Try the following exercises to apply and improve the skills you’ve learned:
	
Go back to the example in Chapter 1, ​Your First Command-Line Program in Go​, and update the wc tool to read data from files in addition to STDIN.

	
Update the wc tool to process multiple files.

	
Update the mdp tool template by adding another field that shows the name of the file being previewed.

	
Update the mdp tool allowing the user to specify a default template using an environment variable.

	
Update the mdp tool allowing the user to provide the input Markdown via STDIN.

Wrapping Up

In this chapter, you used several packages and functions to work with files. You opened files for reading and writing, used temporary files, worked with templates, and used the defer statement to ensure resources are cleaned up. These skills allow you to create powerful CLIs tools.

To complement these concepts, in the next chapter, you’ll work with directories and file system objects.

Footnotes

	[20]
	
https://github.com/russross/blackfriday

	[21]
	
https://github.com/microcosm-cc/bluemonday

	[22]
	
 https://github.com/golang/go/wiki/Modules#version-selection

	[23]
	
https://godoc.org/gopkg.in/russross/blackfriday.v2#pkg-constants

Copyright © 2021, The Pragmatic Bookshelf.

 Chapter
 4
Navigating the File System

 When you’re developing your own command-line tools, you’ll often need to interact with the file system, navigate around the directory tree, or perform actions on files or directories. When you’re building a tool that’s supposed to work on multiple platforms, you have to pay special attention to how you manipulate paths and file names to ensure your tool works appropriately no matter where it’s run.

 For example, Windows uses a backslash \ as a path separator, such as C:\WINDOWS\SYSTEM, while most variations of UNIX use the forward slash / instead, as in /usr/lib. In these scenarios, hard-coding paths and file names into the program can lead to errors or unexpected results.

 To avoid these complications, Go provides the filepath package to manipulate paths, ensuring compatibility across different operating systems. You’ll use this package to develop a command-line tool called walk, which crawls into file system directories looking for specific files. When the tool finds the files it’s looking for, it can list, archive, or delete them. By developing this tool, you’ll apply the skills required to handle file system objects in your own programs, such as creating directories, copying and deleting files, and handling logs and compressed files. You’ll also end up with a useful tool that helps you back up and clean up file systems. You can use this tool manually, or even better, you can schedule it to run automatically by using a background job scheduler such as cron.

Developing a File System Crawler

 The walk tool has two main goals: descending into a directory tree to look for files that match a specified criteria and executing an action on these files. Let’s start this tool by implementing the search and filter functionality. The only action we will implement now is listing the files. This enables us to try the tool and ensure it’s finding the correct files. You’ll implement other actions such as delete and archive later.

This initial version accepts four command-line parameters:
	
 -root: The root of the directory tree to start the search. The default is the current directory.

	
 -list: List files found by the tool. When specified, no other actions will be executed.

	
 -ext: File extension to search. When specified, the tool will only match files with this extension.

	
 -size: Minimum file size in bytes. When specified, the tool will only match files whose size is larger than this value.

	
	
	Start by creating the directory fileSystem/walk for your new command-line tool in your book’s project directory:
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/fileSystem/walk​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/fileSystem/walk​

	
	
	Then, initialize the Go module for this project:
	​ 	​$ ​​go​​ ​​mod​​ ​​init​​ ​​pragprog.com/rggo/fileSystem/walk​
	​ 	go: creating new go.mod: module pragprog.com/rggo/fileSystem/walk

	
	
	
 For this example, instead of adding all the code to a single file, let’s break the code into different files. As the code base grows, splitting it into separate files makes it easier to maintain and check in your version control repository. Note that we are not creating a new package. All the code is still part of the package main.

	
	
	You can split your code in as many files as you want with no limit. Do what makes sense in terms of management according to your requirements. For this project, we’ll have two files: main.go, which contains the main and run functions as entry point to your program; and actions.go, which contains the function for file actions such as filter, list, and delete. Later, we’ll also add the corresponding test files: main_test.go and actions_test.go.

	
	
	
	Create the file main.go and add the package definition and the import section:
fileSystem/walk/main.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​ 	 ​"path/filepath"​
	​)

	
	
	
	
	
	For this tool, we’re using the following packages: flag to handle command-line flags, fmt to print formatted output, io to use the io.Writer interface, os to communicate with the operating system, and path/filepath to handle file paths appropriately across different operating systems.
	
	
	

Before creating the main function, define a new custom type config. To code this tool, you’ll use the same pattern you used in ​Creating a Basic Markdown Preview Tool​, with the coordinating function run to allow testing. But as the list of parameters to run will be long, it’s a common practice to provide some of these arguments packaged in a custom type. Functions with too many positional parameters become hard for humans to read and are error-prone.

	
	
	
	Define the custom type config like this:
fileSystem/walk/main.go
	​ 	​type​ config ​struct​ {
	​ 	 ​// extenstion to filter out​
	​ 	 ext ​string​
	​ 	 ​// min file size​
	​ 	 size ​int64​
	​ 	 ​// list files​
	​ 	 list ​bool​
	​ 	}

Now, add the function main including the definition of the initial flags:
fileSystem/walk/main.go
	​ 	​func​ main() {
	​ 	 ​// Parsing command line flags​
	​ 	 root := flag.String(​"root"​, ​"."​, ​"Root directory to start"​)
	​ 	 ​// Action options​
	​ 	 list := flag.Bool(​"list"​, false, ​"List files only"​)
	​ 	 ​// Filter options​
	​ 	 ext := flag.String(​"ext"​, ​""​, ​"File extension to filter out"​)
	​ 	 size := flag.Int64(​"size"​, 0, ​"Minimum file size"​)
	​ 	 flag.Parse()

Then, create an instance of the config struct, associating each of its fields with the flag values, so we can use them as input for run later:
fileSystem/walk/main.go
	​ 	c := config{
	​ 	 ext: *ext,
	​ 	 size: *size,
	​ 	 list: *list,
	​ 	}

Then, call the function run, check for errors, and print the errors out to STDERR if any occur. You’ll define this function shortly.
fileSystem/walk/main.go
	​ 	 ​if​ err := run(*root, os.Stdout, c); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	}

	
	
	
	
	Now create the run function. Its input parameters are root (a string representing the root directory to start the search), out of type io.Writer interface (representing the output destination), and cfg of custom type config (for the remaining optional parameters). By using the io.Writer interface as the output destination, you can print results to the STDOUT in the program and to a bytes.Buffer when testing, which makes it easier to verify the output.
	
	
fileSystem/walk/main.go
	​ 	​func​ run(root ​string​, out io.Writer, cfg config) ​error​ {

In the run function, define the logic to descend into the directory identified by the flag root and find all the files and sub-directories under it. The package filepath provides a function named Walk that does exactly that.

	
	
	
	The filepath.Walk(root string, walkFn WalkFunc) function finds all files and directories under root executing the function walkFn to each of them. The function walkFn is a function of type filepath.WalkFunc defined with the signature func(path string, info os.FileInfo, err error) error, where the arguments represent:
	
 path: A string representing the path of the file or directory currently processed by Walk.

	
 info: Of type os.FileInfo containing metadata about the file or directory named by path, such as name, size, permissions, and others.

	
 err: Of type error containing the error in case Walk has an issue walking to that specific file or directory.

In Go, functions are first-class citizens, which means you can pass them as arguments to other functions. In this case, you’ll pass an anonymous function as the walkFn parameter of function filepath.Walk. You can do this by defining the anonymous function with the same signature as the filepath.WalkFunc type. This anonymous function has two main responsibilities: it filters out files according to the parameters provided to the tool, and it executes the required action on the other files. Add the following code to call the filepath.Walk function:
fileSystem/walk/main.go
	​ 	 ​return​ filepath.Walk(root,
	​ 	 ​func​(path ​string​, info os.FileInfo, err ​error​) ​error​ {
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​if​ filterOut(path, cfg.ext, cfg.size, info) {
	​ 	 ​return​ nil
	​ 	 }
	​ 	
	​ 	 ​// If list was explicitly set, don't do anything else​
	​ 	 ​if​ cfg.list {
	​ 	 ​return​ listFile(path, out)
	​ 	 }
	​ 	
	​ 	 ​// List is the default option if nothing else was set​
	​ 	 ​return​ listFile(path, out)
	​ 	 })
	​ 	}

In this function, you’re checking to see if the provided error is not nil, which means that Walk was unable to walk to this file or directory. The error is exposed this way so you can handle it appropriately. In this case, you return the error to the calling function, which effectively stops processing any other files. Then you call a function named filterOut, which you’ll create shortly. It defines whether the current file or directory should be filtered out. If so, the function returns nil, which skips the rest of the function making Walk process the next file or directory. Finally, you’re executing the action which, for now, is to list the name of the file onscreen by calling the function listFile that you’ll create later.
	
	
	
	

	
	
	Now, define the two additional functions called by the anonymous function: filter and listFile in the actions.go file. Save the file main.go and open actions.go. Include the package definition and the import list:
fileSystem/walk/actions.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​ 	 ​"path/filepath"​
	​)

The filterOut function checks if the given path has to be filtered out from the results according to the following conditions: the path points to a directory, the file size is less than the minimum size provided by the user, or the file extension doesn’t match the extension provided by the user. This function returns a bool value indicating whether to filter out and ignore the current path. Implement this function by adding the following code to your actions.go file:
fileSystem/walk/actions.go
	​ 	​func​ filterOut(path, ext ​string​, minSize ​int64​, info os.FileInfo) ​bool​ {
	​ 	 ​if​ info.IsDir() || info.Size() < minSize {
	​ 	 ​return​ true
	​ 	 }
	​ 	
	​ 	 ​if​ ext != ​""​ && filepath.Ext(path) != ext {
	​ 	 ​return​ true
	​ 	 }
	​ 	 ​return​ false
	​ 	}

	
	In this function, you’re using the argument info of type os.FileInfo to evaluate some metadata about the file or directory identified by path. The info.IsDir function returns whether this is a directory while the info.Size returns the file size in bytes, which you use to compare to the minimum size minSize provided as an argument to this function.

	
	
	Finally, if the function received a value for the ext argument, you’re using the filepath.Ext function to extract the extension of the file and compare it to the ext argument.
	
	
	

	
	
	The last piece for the initial version of this tool is the action that will be executed, in this case, listing the file path. Implement the listFile function like this:
fileSystem/walk/actions.go
	​ 	​func​ listFile(path ​string​, out io.Writer) ​error​ {
	​ 	 _, err := fmt.Fprintln(out, path)
	​ 	 ​return​ err
	​ 	}

	
	
	
	This function prints out the path of the current file to the specified io.Writer returning any potential error from that operation. Note that we’re using the special blank identifier character _ to discard the first value returned from the fmt.Fprintln function as we’re not interested in the number of bytes written.

Save the file actions.go. Next, let’s write some tests for this tool using the table-driven testing pattern.

Testing with Table-Driven Testing

	
	
	
	When you’re writing tests for your command-line tool, you often want to write test cases that cover different variations of the function or tool usage. By doing this, you ensure that the different parts of your code are working, increasing the reliability of your tests and tool. For example, to test the filterOut function from the walk tool, it’s a good idea to define test cases for the different conditions such as filtering with or without extension, matching or not, and minimum size.

	
	
	
	One of the benefits of Go is that you can use Go itself to write test cases. You don’t need a different language or external frameworks. By leveraging Go, you use all the language’s features to help define your test cases. A common pattern for writing test cases that cover different variations of the function you’re testing is known as table-driven testing. In this type of testing, you define your test cases as a slice of anonymous struct, containing the data required to run your tests and the expected results. You then iterate over this slice using loops to execute all test cases without repeating code. The Go testing package provides a convenient function Run that runs a subtest with the specified name. Let’s use this approach to test this version of the tool.

Create a new file called actions_test.go in the same directory as your actions.go file. Add the package definition and the import statement at the top of this file:
fileSystem/walk/actions_test.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"os"​
	​ 	 ​"testing"​
	​)

You’ll use the package os to handle file details; and the testing package that provides functions required to test your Go code.

Now, create a test function to test the filterOut function.
fileSystem/walk/actions_test.go
	​ 	​func​ TestFilterOut(t *testing.T) {

Add the anonymous slice of struct with the definition of the test cases. The struct fields represent the values that we’ll use for each test such as the test’s name, file to read, extension to filter, minimum file size, and the expected test result:
fileSystem/walk/actions_test.go
	​ 	testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 file ​string​
	​ 	 ext ​string​
	​ 	 minSize ​int64​
	​ 	 expected ​bool​
	​ 	}{
	​ 	 {​"FilterNoExtension"​, ​"testdata/dir.log"​, ​""​, 0, false},
	​ 	 {​"FilterExtensionMatch"​, ​"testdata/dir.log"​, ​".log"​, 0, false},
	​ 	 {​"FilterExtensionNoMatch"​, ​"testdata/dir.log"​, ​".sh"​, 0, true},
	​ 	 {​"FilterExtensionSizeMatch"​, ​"testdata/dir.log"​, ​".log"​, 10, false},
	​ 	 {​"FilterExtensionSizeNoMatch"​, ​"testdata/dir.log"​, ​".log"​, 20, true},
	​ 	}

Each element of the slice represents a test case. For example, the first test case’s name is “FilterNoExtension”. This uses the file testdata/dir.log, the extension to filter is blank, the minimum size is zero, and we expect this test to return the Boolean value false. This is similar for the remaining test cases, each with different values.

Once you have the test cases defined, add the for loop to iterate over each test case. For each case, call the t.Run method, providing the test name as the first parameter and an anonymous function of type func(t *testing.T) as the second parameter. Inside the anonymous function run the tests using the test case attributes defined before:
fileSystem/walk/actions_test.go
	​ 	 ​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 info, err := os.Stat(tc.file)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 f := filterOut(tc.file, tc.ext, tc.minSize, info)
	​ 	
	​ 	 ​if​ f != tc.expected {
	​ 	 t.Errorf(​"Expected '%t', got '%t' instead​​\n​​"​, tc.expected, f)
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

For these tests, you first retrieve the file’s attributes using the function os.Stat. Then execute the filterOut function providing these attributes and the test case parameters. Finally, compare the result with the expected result from the test case, failing the test if they don’t match.

Now, let’s add the integration test cases. Save the file actions_test.go, create a file main_test.go, and edit it. Include the package definition and the import list:
fileSystem/walk/main_test.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"testing"​
	​)

You’ll use the package bytes to manipulate slices of bytes (such as the output of the tool) and the testing package that provides functions required to test your Go code.

Follow the same approach to test variations of the integration tests. Start by defining the test cases using the anonymous struct, followed by the loop to test each case. The main difference is that you use the run function defined in main.go instead of the function filterOut. Write the integration tests:
fileSystem/walk/main_test.go
	​ 	​func​ TestRun(t *testing.T) {
	​ 	 testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 root ​string​
	​ 	 cfg config
	​ 	 expected ​string​
	​ 	 }{
	​ 	 {name: ​"NoFilter"​, root: ​"testdata"​,
	​ 	 cfg: config{ext: ​""​, size: 0, list: true},
	​ 	 expected: ​"testdata/dir.log​​\n​​testdata/dir2/script.sh​​\n​​"​},
	​ 	 {name: ​"FilterExtensionMatch"​, root: ​"testdata"​,
	​ 	 cfg: config{ext: ​".log"​, size: 0, list: true},
	​ 	 expected: ​"testdata/dir.log​​\n​​"​},
	​ 	 {name: ​"FilterExtensionSizeMatch"​, root: ​"testdata"​,
	​ 	 cfg: config{ext: ​".log"​, size: 10, list: true},
	​ 	 expected: ​"testdata/dir.log​​\n​​"​},
	​ 	 {name: ​"FilterExtensionSizeNoMatch"​, root: ​"testdata"​,
	​ 	 cfg: config{ext: ​".log"​, size: 20, list: true},
	​ 	 expected: ​""​},
	​ 	 {name: ​"FilterExtensionNoMatch"​, root: ​"testdata"​,
	​ 	 cfg: config{ext: ​".gz"​, size: 0, list: true},
	​ 	 expected: ​""​},
	​ 	 }
	​ 	
	​ 	 ​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 ​var​ buffer bytes.Buffer
	​ 	
	​ 	 ​if​ err := run(tc.root, &buffer, tc.cfg); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 res := buffer.String()
	​ 	
	​ 	 ​if​ tc.expected != res {
	​ 	 t.Errorf(​"Expected %q, got %q instead​​\n​​"​, tc.expected, res)
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

	
	
	
	
	Save the main_test.go file and use a terminal to create the files required for testing. We need to create the directory containing the files we defined in the test cases earlier. We will use Go’s convention and name this directory testdata, similarly to what we did in ​Writing Tests for the Markdown Preview Tool​, so that the Go build tool ignores it when compiling the program.
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​testdata/dir2​
	​ 	​$ ​​echo​​ ​​"Just a test"​​ ​​>​​ ​​testdata/dir.log​
	​ 	​$ ​​touch​​ ​​testdata/dir2/script.sh​
	​ 	​$ ​​tree​​ ​​testdata​
	​ 	testdata
	​ 	├── dir2
	​ 	│ └── script.sh
	​ 	└── dir.log
	​ 	
	​ 	1 directory, 2 files

	
	Execute the tests using the go test -v tool:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestFilterOut
	​ 	=== RUN TestFilterOut/FilterNoExtension
	​ 	=== RUN TestFilterOut/FilterExtensionMatch
	​ 	=== RUN TestFilterOut/FilterExtensionNoMatch
	​ 	=== RUN TestFilterOut/FilterExtensionSizeMatch
	​ 	=== RUN TestFilterOut/FilterExtensionSizeNoMatch
	​ 	--- PASS: TestFilterOut (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterNoExtension (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionMatch (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionNoMatch (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionSizeMatch (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionSizeNoMatch (0.00s)
	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/NoFilter
	​ 	=== RUN TestRun/FilterExtensionMatch
	​ 	=== RUN TestRun/FilterExtensionSizeMatch
	​ 	=== RUN TestRun/FilterExtensionSizeNoMatch
	​ 	=== RUN TestRun/FilterExtensionNoMatch
	​ 	--- PASS: TestRun (0.00s)
	​ 	 --- PASS: TestRun/NoFilter (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionMatch (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionSizeMatch (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionSizeNoMatch (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionNoMatch (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/fileSystem/walk 0.005s

Notice that Go executes all test cases for each test function, using the test name you configured to present the results. This makes it easier to reference each test and troubleshoot them in case a test doesn’t pass.

Since the tool is passing all tests, let’s try it out. First, create a small directory tree in the /tmp directory that you can explore with your program. This structure will contain some .txt files and some .log files:
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​/tmp/testdir/{text,logs}​
	​ 	​$ ​​touch​​ ​​/tmp/testdir/file1.txt​
	​ 	​$ ​​touch​​ ​​/tmp/testdir/text/{text1,text2,text3}.txt​
	​ 	​$ ​​touch​​ ​​/tmp/testdir/logs/{log1,log2,log3}.log​
	​ 	​$ ​​ls​​ ​​/tmp/testdir/​
	​ 	file1.txt logs text

Now try your command-line tool, providing the -root parameter set to the newly created /tmp/testdir:
	​ 	​$ ​​go​​ ​​run​​ ​​.​​ ​​-root​​ ​​/tmp/testdir/​
	​ 	/tmp/testdir/file1.txt
	​ 	/tmp/testdir/logs/log1.log
	​ 	/tmp/testdir/logs/log2.log
	​ 	/tmp/testdir/logs/log3.log
	​ 	/tmp/testdir/text/text1.txt
	​ 	/tmp/testdir/text/text2.txt
	​ 	/tmp/testdir/text/text3.txt

All the files in the specified directory tree are listed. You can display only log files by providing the .log extension to the -ext parameter, like this:
	​ 	​$ ​​go​​ ​​run​​ ​​.​​ ​​-root​​ ​​/tmp/testdir/​​ ​​-ext​​ ​​.log​
	​ 	/tmp/testdir/logs/log1.log
	​ 	/tmp/testdir/logs/log2.log
	​ 	/tmp/testdir/logs/log3.log
	​ 	​$​

You can also filter results based on the file size, but I’ll leave that as an exercise for you to do later.

This initial version of the tool lists all the files in a directory tree, but listing the names isn’t useful. So we’ll add another action to make this tool more useful.
	
	
	
	

Deleting Matched Files

	
	
	Let’s make the walk tool a little more useful by adding the ability to delete the files it finds. To do this, you’ll add another action to the tool and a new flag del of type bool, allowing the user to enable file deletion.

Learning how to write code that deletes files is an important aspect of creating tools that work with files and perform system administration tasks, but it comes with the risk that you might accidentally delete files you didn’t intend to delete. Make sure that your code is correct to prevent the accidental deletion of files on your computer. Never run this code as a privileged user, as it could cause loss of data or damage to your operating system’s files.

	
	Let’s add another action function called delFile to the file actions.go. This function receives one argument: the file path to be deleted. It returns a potential error that can occur when deleting the file. In the function’s body, call the Remove function from the os package to delete the file. Return the potential error from os.Remove directly as the return value of your function. If os.Remove fails to delete the file, its error will bubble up, stopping the tool’s execution and showing the error message to the user. Define the function delFile like this:
fileSystem/walk.v1/actions.go
	​ 	​func​ delFile(path ​string​) ​error​ {
	​ 	 ​return​ os.Remove(path)
	​ 	}

Save the file actions.go and open the file main.go to use the delFile function. Start by including the new flag. Add the following line into your main function:
fileSystem/walk.v1/main.go
	​ 	​// Parsing command line flags​
	​ 	root := flag.String(​"root"​, ​"."​, ​"Root directory to start"​)
	​ 	​// Action options​
	​ 	list := flag.Bool(​"list"​, false, ​"List files only"​)
	»	del := flag.Bool(​"del"​, false, ​"Delete files"​)
	​ 	​// Filter options​
	​ 	ext := flag.String(​"ext"​, ​""​, ​"File extension to filter out"​)

Then, update the config struct to include a new field for the delete option:
fileSystem/walk.v1/main.go
	​ 	​type​ config ​struct​ {
	​ 	 ​// extenstion to filter out​
	​ 	 ext ​string​
	​ 	 ​// min file size​
	​ 	 size ​int64​
	​ 	 ​// list files​
	​ 	 list ​bool​
	»	 ​// delete files​
	»	 del ​bool​
	​ 	}

Now, update the config instance c, mapping the field del to the flag value so that it’s passed to run:
fileSystem/walk.v1/main.go
	​ 	c := config{
	​ 	 ext: *ext,
	​ 	 size: *size,
	​ 	 list: *list,
	»	 del: *del,
	​ 	}

Now, in the anonymous walkFn function call, check if the variable cfg.del is set, and, if so, call the delFile function to delete the file.
fileSystem/walk.v1/main.go
	​ 	​// If list was explicitly set, don't do anything else​
	​ 	​if​ cfg.list {
	​ 	 ​return​ listFile(path, out)
	​ 	}
	​ 	
	»	​// Delete files​
	»	​if​ cfg.del {
	»	 ​return​ delFile(path)
	»	}
	​ 	
	​ 	​// List is the default option if nothing else was set​

Save the file to complete the updates. Let’s update the test file to test the new functionality.
	
	
	

Testing with the Help of Test Helpers

	
	
	When you wrote the integration tests for the list functionality, you used the testdata directory and a set of files to support your test cases. This procedure works well when the directory structure doesn’t change. But if you want to test file deletion, this may not be the best option because the files will be deleted after the first test, and you would have to keep creating them for every test run.

	
	
	Instead, automate the creation and cleanup of the test directory and files for every test. In Go, you accomplish this by writing a test helper function and calling this function from within each test. A test helper function is similar to other functions, but you explicitly mark it as a test helper by calling the method t.Helper from the package testing. For example, when printing line and file information, if the helper function fails with t.Fatal, Go prints the line in the test function that called the helper function, instead of within the helper function. This helps with troubleshooting test errors, particularly if the helper function is called many times by different tests.

	
	
	
	It’s also important to clean up after your tests. Cleaning up prevents wasting system resources and ensures that previous tests artifacts don’t impact future tests. To clean up after these tests, your test helper function will return a cleanup function that the caller can defer executing until after the tests finish. If you’re using Go 1.14 or later, you can also use the method t.Cleanup to register a cleanup function instead of returning one. For more information consult Go’s testing documentation.[24]

Let’s add a helper function to the main_test.go file to create the directory structure to test file deletion. Before writing the function, add some more packages to the import list so that you can use them when writing the helper function. You’ll use fmt to format strings, ioutil to create files, os to interface with the operating system, and path/filepath to process path definition in a multiplatform fashion. Open the main_test.go file and add these packages to the import list:
fileSystem/walk.v1/main_test.go
	​ 	​import​ (
	​ 	 ​"bytes"​
	»	 ​"fmt"​
	»	 ​"io/ioutil"​
	»	 ​"os"​
	»	 ​"path/filepath"​
	»	
	​ 	 ​"testing"​
	​)

Add the helper function definition at the end of the file. This function takes two parameters: a pointer of type testing.T for calling testing-related functions and files of type map[string]int for defining the number of files this function will create for each extension. The function returns two values: the directory name of the created directory, so you can use it during testing, and the cleanup function cleanup of type func().
fileSystem/walk.v1/main_test.go
	​ 	​func​ createTempDir(t *testing.T,
	​ 	 files ​map​[​string​]​int​) (dirname ​string​, cleanup ​func​()) {

	
	Mark this function as a test helper by calling the t.Helper method:
fileSystem/walk.v1/main_test.go
	​ 	t.Helper()

	
	Next, create the temporary directory using the ioutil.TempDir function, with the prefix walktest:
fileSystem/walk.v1/main_test.go
	​ 	tempDir, err := ioutil.TempDir(​""​, ​"walktest"​)
	​ 	​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	}

Iterate over the files map, creating the specified number of dummy files for each provided extension:
fileSystem/walk.v1/main_test.go
	​ 	​for​ k, n := ​range​ files {
	​ 	 ​for​ j := 1; j <= n; j++ {
	​ 	 fname := fmt.Sprintf(​"file%d%s"​, j, k)
	​ 	 fpath := filepath.Join(tempDir, fname)
	​ 	 ​if​ err := ioutil.WriteFile(fpath, []​byte​(​"dummy"​), 0644); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	 }
	​ 	}

	
	Notice that we’re using the filepath.Join function to join the temporary directory name with the file name in order to have the full path in accordance with the target operating system’s rules. We use this path to create the dummy file using the ioutil.WriteFile function.

Finally, complete this function by returning the temporary directory name tempDir and an anonymous function which, when called, executes os.RemoveAll to completely remove the temporary directory.
fileSystem/walk.v1/main_test.go
	​ 	 ​return​ tempDir, ​func​() { os.RemoveAll(tempDir) }
	​ 	}

With the helper in place, add the test to ensure the deletion feature works. This function will be similar to the one you wrote to test the list feature. You could even update the original TestRun function to include additional cases, but since this is a different functionality, you’ll create a separate function with the specific deletion test cases. This keeps the test logic less complex, making it easier to manage the tests.

In the main_test.go file, add the definition for the new test function TestRunDelExtension and the anonymous struct with the test cases:
fileSystem/walk.v1/main_test.go
	​ 	​func​ TestRunDelExtension(t *testing.T) {
	​ 	 testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 cfg config
	​ 	 extNoDelete ​string​
	​ 	 nDelete ​int​
	​ 	 nNoDelete ​int​
	​ 	 expected ​string​
	​ 	 }{
	​ 	 {name: ​"DeleteExtensionNoMatch"​,
	​ 	 cfg: config{ext: ​".log"​, del: true},
	​ 	 extNoDelete: ​".gz"​, nDelete: 0, nNoDelete: 10,
	​ 	 expected: ​""​},
	​ 	 {name: ​"DeleteExtensionMatch"​,
	​ 	 cfg: config{ext: ​".log"​, del: true},
	​ 	 extNoDelete: ​""​, nDelete: 10, nNoDelete: 0,
	​ 	 expected: ​""​},
	​ 	 {name: ​"DeleteExtensionMixed"​,
	​ 	 cfg: config{ext: ​".log"​, del: true},
	​ 	 extNoDelete: ​".gz"​, nDelete: 5, nNoDelete: 5,
	​ 	 expected: ​""​},
	​ 	 }

	
	Next, iterate over each test case as before, executing the tests with t.Run. The main difference is that in this case, we will call the helper function to create the temporary directory and files:
fileSystem/walk.v1/main_test.go
	​ 	​// Execute RunDel test cases​
	​ 	​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 ​var​ buffer bytes.Buffer
	​ 	
	​ 	 tempDir, cleanup := createTempDir(t, ​map​[​string​]​int​{
	​ 	 tc.cfg.ext: tc.nDelete,
	​ 	 tc.extNoDelete: tc.nNoDelete,
	​ 	 })
	​ 	 ​defer​ cleanup()

	
	Notice that we’re also deferring the call to cleanup, which is the function returned from the helper’s call. This ensures that it gets executed at the end of the test, cleaning up the temporary directory.

Then, call the run function by passing the temporary directory path tempDir as input, and check the output, failing the test if it doesn’t match the expected value:
fileSystem/walk.v1/main_test.go
	​ 	​if​ err := run(tempDir, &buffer, tc.cfg); err != nil {
	​ 	 t.Fatal(err)
	​ 	}
	​ 	
	​ 	res := buffer.String()
	​ 	
	​ 	​if​ tc.expected != res {
	​ 	 t.Errorf(​"Expected %q, got %q instead​​\n​​"​, tc.expected, res)
	​ 	}

	
	Finally, read the files that were left in the directory after the delete operation by using the ioutil.ReadDir function on the temporary test directory. Compare the number of files left with the expected number, failing the test if they don’t match.
fileSystem/walk.v1/main_test.go
	​ 	 filesLeft, err := ioutil.ReadDir(tempDir)
	​ 	 ​if​ err != nil {
	​ 	 t.Error(err)
	​ 	 }
	​ 	
	​ 	 ​if​ len(filesLeft) != tc.nNoDelete {
	​ 	 t.Errorf(​"Expected %d files left, got %d instead​​\n​​"​,
	​ 	 tc.nNoDelete, len(filesLeft))
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

Save the file and execute the tests:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestFilterOut
	​ 	=== RUN TestFilterOut/FilterNoExtension
	​ 	=== RUN TestFilterOut/FilterExtensionMatch
	​ 	=== RUN TestFilterOut/FilterExtensionNoMatch
	​ 	=== RUN TestFilterOut/FilterExtensionSizeMatch
	​ 	=== RUN TestFilterOut/FilterExtensionSizeNoMatch
	​ 	--- PASS: TestFilterOut (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterNoExtension (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionMatch (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionNoMatch (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionSizeMatch (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionSizeNoMatch (0.00s)
	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/NoFilter
	​ 	=== RUN TestRun/FilterExtensionMatch
	​ 	=== RUN TestRun/FilterExtensionSizeMatch
	​ 	=== RUN TestRun/FilterExtensionSizeNoMatch
	​ 	=== RUN TestRun/FilterExtensionNoMatch
	​ 	--- PASS: TestRun (0.00s)
	​ 	 --- PASS: TestRun/NoFilter (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionMatch (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionSizeMatch (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionSizeNoMatch (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionNoMatch (0.00s)
	​ 	=== RUN TestRunDelExtension
	​ 	=== RUN TestRunDelExtension/DeleteExtensionNoMatch
	​ 	=== RUN TestRunDelExtension/DeleteExtensionMatch
	​ 	=== RUN TestRunDelExtension/DeleteExtensionMixed
	​ 	--- PASS: TestRunDelExtension (0.00s)
	​ 	 --- PASS: TestRunDelExtension/DeleteExtensionNoMatch (0.00s)
	​ 	 --- PASS: TestRunDelExtension/DeleteExtensionMatch (0.00s)
	​ 	 --- PASS: TestRunDelExtension/DeleteExtensionMixed (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/fileSystem/walk 0.006s

Once all tests are passing, you can try this version of the tool.
	Be Careful When Deleting Files

	
 [image: images/aside-icons/warning.png]
 	

	
	 Be careful when trying this tool on your system. The files will be deleted without any prompt or user confirmation.

 Never run this tool as a privileged user such as root or Administrator because it can cause irreversible damage to your system.

Let’s try this new functionality in the same /tmp/testdir directory tree you created in ​Developing a File System Crawler​. Suppose you want to delete all the log files under that directory. First, run the tool with the list flag and ext set to .log to list all log files:
	​ 	​$ ​​go​​ ​​run​​ ​​.​​ ​​-root​​ ​​/tmp/testdir/​​ ​​-ext​​ ​​.log​​ ​​-list​
	​ 	/tmp/testdir/logs/log1.log
	​ 	/tmp/testdir/logs/log2.log
	​ 	/tmp/testdir/logs/log3.log

This directory tree has three log files. Delete them using the del flag:
	​ 	​$ ​​go​​ ​​run​​ ​​.​​ ​​-root​​ ​​/tmp/testdir/​​ ​​-ext​​ ​​.log​​ ​​-del​

The tool doesn’t display anything while deleting the files. You can confirm that the log files have been deleted by running the tool again and listing all files under that directory:
	​ 	​$ ​​go​​ ​​run​​ ​​.​​ ​​-root​​ ​​/tmp/testdir/​​ ​​-list​
	​ 	/tmp/testdir/file1.txt
	​ 	/tmp/testdir/text/text1.txt
	​ 	/tmp/testdir/text/text2.txt
	​ 	/tmp/testdir/text/text3.txt

With command-line tools, it’s a good idea to provide constant feedback to the user so they know that the tool is working. Let’s do that next.
	
	
	

Logging Deleted Files

	
	
	Command-line tools can be executed interactively by a user, but they are often used as part of a larger script that coordinates several other tasks to automate a process. In both cases, it’s a good idea to provide constant feedback so the user or script knows that the tool is doing some work and it hasn’t hung unexpectedly.

In general, you use STDOUT to provide feedback to the user onscreen. For scripts or tools that are executed in the background, such as a batch job, it’s useful to provide feedback in log files so the user can verify them later.

	
	
	Go’s standard library provides the log package to facilitate logging information. By default, it will log information to STDERR, but you can configure it to log to a file instead. In addition to writing out the message, the logger automatically adds the date and time to each log entry. You can also configure it to add a prefix string to each entry which helps improve searchability.

Let’s update the walk tool to log deleted files using this package.

Begin by updating the imports section in the file actions.go, adding the log package:
fileSystem/walk.v2/actions.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	
	»	 ​"log"​
	​ 	 ​"os"​
	​ 	 ​"path/filepath"​
	​)

Next, update the delFile function so it accepts an additional argument called delLogger, which is a pointer to log.Logger. Use this logger in the body of the function to log information about the deleted file if the delete operation completed without errors:
fileSystem/walk.v2/actions.go
	​ 	​func​ delFile(path ​string​, delLogger *log.Logger) ​error​ {
	​ 	 ​if​ err := os.Remove(path); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 delLogger.Println(path)
	​ 	 ​return​ nil
	​ 	}

Now, save the actions.go file and open main.go. Add the log package to its import list as well:
fileSystem/walk.v2/main.go
	​ 	​import​ (
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	
	»	 ​"log"​
	​ 	 ​"os"​
	​ 	 ​"path/filepath"​
	​)

Then, add another field wLog of type io.Writer to the config struct. This field represents the log destination. By using the io.Writer interface here, we make our code flexible, accepting a file in the main program or a buffer that we can use while testing the tool.
fileSystem/walk.v2/main.go
	​ 	​type​ config ​struct​ {
	​ 	 ​// extenstion to filter out​
	​ 	 ext ​string​
	​ 	 ​// min file size​
	​ 	 size ​int64​
	​ 	 ​// list files​
	​ 	 list ​bool​
	​ 	 ​// delete files​
	​ 	 del ​bool​
	»	 ​// log destination writer​
	»	 wLog io.Writer
	​ 	}

Next, update the main function. First, add a new command-line flag to the tool, allowing the user to specify a log file name, like this:
fileSystem/walk.v2/main.go
	​ 	​// Parsing command line flags​
	​ 	root := flag.String(​"root"​, ​"."​, ​"Root directory to start"​)
	»	logFile := flag.String(​"log"​, ​""​, ​"Log deletes to this file"​)
	​ 	​// Action options​
	​ 	list := flag.Bool(​"list"​, false, ​"List files only"​)
	​ 	del := flag.Bool(​"del"​, false, ​"Delete files"​)

The default value for this flag is an empty string so if the user doesn’t provide a name, the program will send output to STDOUT.

	
	Then, check whether the user provided a value for this flag. If so, open the file for writing by using these parameters with the os.OpenFile function:
	
 *logFile: The name of the log file as provided by the user. Remember to dereference it using the operator * as flags are pointers.

	
 os.O_APPEND: Enables data to be appended to the end of the file in case it already exists.

	
 os.O_CREATE: Creates the file in case it doesn’t exist.

	
 os.O_RDWR: Opens the file for reading and writing.

	
 0644: Permissions for the file in case it’s created.

fileSystem/walk.v2/main.go
	​ 	​var​ (
	​ 	 f = os.Stdout
	​ 	 err ​error​
	​)
	​ 	
	​ 	​if​ *logFile != ​""​ {
	​ 	 f, err = os.OpenFile(*logFile, os.O_APPEND|os.O_CREATE|os.O_RDWR, 0644)
	​ 	 ​if​ err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	 ​defer​ f.Close()
	​ 	}

The os.OpenFile function returns a value f of type os.File that implements the io.Writer interface, which means you can use it as the value for the wLog field in the config struct.
	
	

Notice that by adding this block of code in the function main we aren’t able to test it. But it allows us to have the run function receive an io.Writer interface which makes it easier to test the logging functionality. This is a good trade-off since this block of code is opening a file using the standard library functionality which has already been tested by the Go team. If you require this block to be tested, you can follow other testing approaches as previously presented.

Now, complete the updates to the function main by mapping the variable f to the field wLog in the config instance c that’s passed to run:
fileSystem/walk.v2/main.go
	​ 	c := config{
	​ 	 ext: *ext,
	​ 	 size: *size,
	​ 	 list: *list,
	​ 	 del: *del,
	»	 wLog: f,
	​ 	}

	
	
	Next, update the run function. Create a new instance of log.Logger by using the function log.New from the log package:
fileSystem/walk.v2/main.go
	​ 	​func​ run(root ​string​, out io.Writer, cfg config) ​error​ {
	»	 delLogger := log.New(cfg.wLog, ​"DELETED FILE: "​, log.LstdFlags)
	​ 	
	​ 	 ​return​ filepath.Walk(root,

In this call, we’re creating the log.Logger instance to log deleted files to the provided io.Writer interface instance cfg.wLog. We’re also adding the prefix DELETED FILE: to every log line allowing users to use other tools—such as grep—to search for them. Finally, we’re specifying the constant log.LstdFlags as the third parameter to create the log.Logger instance using default log flags, such as date and time.

Finally, pass the delLogger instance as the second parameter to the new delFile function:
fileSystem/walk.v2/main.go
	​ 	​if​ cfg.list {
	​ 	 ​return​ listFile(path, out)
	​ 	}
	​ 	
	​ 	​// Delete files​
	​ 	​if​ cfg.del {
	»	 ​return​ delFile(path, delLogger)
	​ 	}
	​ 	
	​ 	​// List is the default option if nothing else was set​

You’re done with the code updates. Save the main.go file. Let’s update the test cases now to include tests for the logging functionality.

Open the file main_test.go, and update the test function TestRunDelExtension to verify that logging works.

In the body of the subtest execution function t.Run, define a new variable called logBuffer of type bytes.Buffer that you’ll use to capture the log as it implements the interface io.Writer:
fileSystem/walk.v2/main_test.go
	​ 	​var​ (
	​ 	 buffer bytes.Buffer
	​ 	 logBuffer bytes.Buffer
	​)

Assign the address of the logBuffer variable to the wLog field of the test case config instance tc.cfg.wLog. This is the config instance that you’ll pass as input to run.
fileSystem/walk.v2/main_test.go
	​ 	tc.cfg.wLog = &logBuffer

	
	
	
	
	Finally, at the end of the function, add the code to verify the log output. Since the program adds a log line for each deleted file, we can count the number of lines in the log output and compare it to the number of deleted files plus one for the final new line added to the end. If they don’t match, the test fails. To count the lines, use the bytes.Split function passing the newline character \n as an argument. This function outputs a slice so you can use the built-in len function to obtain its length.
fileSystem/walk.v2/main_test.go
	​ 	 expLogLines := tc.nDelete + 1
	​ 	 lines := bytes.Split(logBuffer.Bytes(), []​byte​(​"​​\n​​"​))
	​ 	 ​if​ len(lines) != expLogLines {
	​ 	 t.Errorf(​"Expected %d log lines, got %d instead​​\n​​"​,
	​ 	 expLogLines, len(lines))
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

Save the file and run the tests to ensure the code is working properly:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestFilterOut
	​ 	=== RUN TestFilterOut/FilterNoExtension
	​ 	=== RUN TestFilterOut/FilterExtensionMatch
	​ 	=== RUN TestFilterOut/FilterExtensionNoMatch
	​ 	=== RUN TestFilterOut/FilterExtensionSizeMatch
	​ 	=== RUN TestFilterOut/FilterExtensionSizeNoMatch
	​ 	--- PASS: TestFilterOut (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterNoExtension (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionMatch (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionNoMatch (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionSizeMatch (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionSizeNoMatch (0.00s)
	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/NoFilter
	​ 	=== RUN TestRun/FilterExtensionMatch
	​ 	=== RUN TestRun/FilterExtensionSizeMatch
	​ 	=== RUN TestRun/FilterExtensionSizeNoMatch
	​ 	=== RUN TestRun/FilterExtensionNoMatch
	​ 	--- PASS: TestRun (0.00s)
	​ 	 --- PASS: TestRun/NoFilter (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionMatch (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionSizeMatch (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionSizeNoMatch (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionNoMatch (0.00s)
	​ 	=== RUN TestRunDelExtension
	​ 	=== RUN TestRunDelExtension/DeleteExtensionNoMatch
	​ 	=== RUN TestRunDelExtension/DeleteExtensionMatch
	​ 	=== RUN TestRunDelExtension/DeleteExtensionMixed
	​ 	--- PASS: TestRunDelExtension (0.00s)
	​ 	 --- PASS: TestRunDelExtension/DeleteExtensionNoMatch (0.00s)
	​ 	 --- PASS: TestRunDelExtension/DeleteExtensionMatch (0.00s)
	​ 	 --- PASS: TestRunDelExtension/DeleteExtensionMixed (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/fileSystem/walk 0.009s

Try out the new logging option using the same testing directory /tmp/testdir you created before. First, list all files in that directory:
	​ 	​$ ​​go​​ ​​run​​ ​​.​​ ​​-root​​ ​​/tmp/testdir/​​ ​​-list​
	​ 	/tmp/testdir/file1.txt
	​ 	/tmp/testdir/text/text1.txt
	​ 	/tmp/testdir/text/text2.txt
	​ 	/tmp/testdir/text/text3.txt

Now remove all the .txt files, logging the information to a file named deleted_files.log:
	​ 	​$ ​​go​​ ​​run​​ ​​.​​ ​​-root​​ ​​/tmp/testdir/​​ ​​-ext​​ ​​.txt​​ ​​-log​​ ​​deleted_files.log​​ ​​-del​
	​ 	​$​

You still don’t see anything onscreen because the information was logged to the specified file. Check the contents of the deleted_files.log to see which files were deleted by the tool:
	​ 	​$ ​​cat​​ ​​deleted_files.log​
	​ 	DELETED FILE: 2018/05/19 09:13:34 /tmp/testdir/file1.txt
	​ 	DELETED FILE: 2018/05/19 09:13:34 /tmp/testdir/text/text1.txt
	​ 	DELETED FILE: 2018/05/19 09:13:34 /tmp/testdir/text/text2.txt
	​ 	DELETED FILE: 2018/05/19 09:13:34 /tmp/testdir/text/text3.txt
	​ 	​$​

Notice that all lines in this log file were prefixed by the string DELETED FILE. If there were additional entries in the file, you could use this string to search for all deleted files.

	
	
	Once you add the ability to log the information to a log file you enable more complex and useful scenarios, like scheduling a directory cleanup every day with cron. To do this, first build and install the binary version of walk:
	​ 	​$ ​​go​​ ​​install​
	​ 	​$ ​​type​​ ​​walk​
	​ 	walk is /home/ricardo/go/bin/walk

With the walk tool built and installed in your $GOPATH/bin directory, you can now schedule an automatic cleanup of all log files from an application directory where the size is above 10MB. To run this task with cron, execute the following command:
	
	
	​ 	​$ ​​crontab​​ ​​-e​

 Your visual editor opens. Add the following line to the file to schedule the task to run every day at 10 a.m.:

	​ 	00 10 * * * $GOPATH/bin/walk -root /myapp -ext .log -size 10485760
	​ 	 -log /tmp/myapp_deleted_files.log -del

Enter this as a single line. It’s only broken on multiple lines here because a single line is too long to fit on the page.

During a successful execution, this tool adds the deleted file information to the log file so you can check which files were deleted. After the tool runs, you’ll see results like these in its log file:
	​ 	​$ ​​cat​​ ​​/tmp/myapp_deleted_files.log​
	​ 	DELETED FILE: 2018/05/17 10:00:01 /myapp/logs/access.log
	​ 	DELETED FILE: 2018/05/18 10:00:03 /myapp/logs/error.log
	​ 	DELETED FILE: 2018/05/19 10:00:01 /myapp/logs/access.log
	​ 	​$​

The walk tool now has the ability to log deleted files. To complete this tool, let’s add one more feature: compressing and archiving files before deleting them.
	
	
	
	
	

Archiving Files

	
	
	Before deleting files that are consuming too much space, you might want to back them up in a compressed form so you can keep them around in case you need them later. Let’s add an archiving feature to the walk tool to enable this feature.

	
	
	To add this new feature, you’ll use the standard library package compress/gzip to compress data using the gzip format, and io, which provides functions to help with Input/Output operations such as copying data. The package io is already included in the import list. Add the compress/gzip package to the import list in the file actions.go:
fileSystem/walk.v3/actions.go
	​ 	​import​ (
	»	 ​"compress/gzip"​
	​ 	
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"log"​
	​ 	 ​"os"​
	​ 	 ​"path/filepath"​
	​)

Define the new action function archiveFile(destDir, root, path string) to archive the files. This function has two main responsibilities: to preserve the relative directory tree so the files are archived in the same directories relative to the source root and to compress the data. This function accepts the following arguments, all of type string:
	
 destDir: The destination directory where the files will be archived.

	
 root: The root directory where the search was started. You’ll use this value to determine the relative path of the files to archive so you can create a similar directory tree in the destination directory.

	
 path: The path of the file to be archived.

The function returns a potential error, so the calling function can check its value and interrupt processing when issues occur. Start with the function definition:
fileSystem/walk.v3/actions.go
	​ 	​func​ archiveFile(destDir, root, path ​string​) ​error​ {

First, check if the argument destDir is a directory. Do this by calling the os.Stat function and then the info.IsDir method of the os.FileInfo type, like this:
fileSystem/walk.v3/actions.go
	​ 	info, err := os.Stat(destDir)
	​ 	​if​ err != nil {
	​ 	 ​return​ err
	​ 	}
	​ 	
	​ 	​if​ !info.IsDir() {
	​ 	 ​return​ fmt.Errorf(​"%s is not a directory"​, destDir)
	​ 	}

	
	
	If the argument isn’t a directory, you return a new error using the fmt.Errorf function with the appropriate error message.

	
	
	Then determine the relative directory of the file to be archived in relation to its source root path using the function Rel from the package filepath:
fileSystem/walk.v3/actions.go
	​ 	relDir, err := filepath.Rel(root, filepath.Dir(path))
	​ 	​if​ err != nil {
	​ 	 ​return​ err
	​ 	}

	
	
	Create the new file name by adding the .gz suffix to the original file name which you obtain by calling the filepath.Base function. Define the target path by joining all three pieces together: the destination directory, the relative directory, and the file name, using the filepath.Join function:
	
	
	
fileSystem/walk.v3/actions.go
	​ 	dest := fmt.Sprintf(​"%s.gz"​, filepath.Base(path))
	​ 	targetPath := filepath.Join(destDir, relDir, dest)

By using the functions from the package filepath, you ensure the paths are built in accordance with the operating system where the program is running, making it cross-platform. With the target path defined, create the target directory tree using os.MkdirAll:
	
	
	
fileSystem/walk.v3/actions.go
	​ 	​if​ err := os.MkdirAll(filepath.Dir(targetPath), 0755); err != nil {
	​ 	 ​return​ err
	​ 	}

The os.MkdirAll function creates all the required directories at once but will do nothing if the directories already exist, which means you don’t have to write any additional checks.

	
	
	This completes the first goal of this function. Once you have the target path, you can create the compressed archive. To do this, you’ll use the io.Copy function to copy data from the source file to the destination file. But instead of using the destination file directly as an argument, you’ll use the type gzip.Writer.

	
	The gzip.Writer type implements the io.Writer interface, which allows it to be used as an argument to any functions that expect that interface as input, such as io.Copy, but it writes the data in compressed form. To create an instance of this type, call the gzip.NewWriter function, passing a pointer to the destination os.File type as input. This is the implementation:
	
	
fileSystem/walk.v3/actions.go
	​ 	 out, err := os.OpenFile(targetPath, os.O_RDWR|os.O_CREATE, 0644)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 ​defer​ out.Close()
	​ 	
	​ 	 in, err := os.Open(path)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 ​defer​ in.Close()
	​ 	
	​ 	 zw := gzip.NewWriter(out)
	​ 	
	​ 	 zw.Name = filepath.Base(path)
	​ 	
	​ 	 ​if​ _, err = io.Copy(zw, in); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​if​ err := zw.Close(); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ out.Close()
	​ 	}

	
	The gzip.Writer type accepts metadata about the compressed file. In this example, you’re using the zw.Name field to store the source file name in the compressed file. Notice also that we’re not deferring the call to zw.Close as we want to ensure we return any potential errors because, if the compressing fails, the calling function will get an error and decide how to proceed. At the end, we’re returning the error from closing the output file as well, to avoid any potential data loss.

This completes the changes to actions.go. Save the file and open main.go to update the main program.

Start by adding a new field called archive to the config struct to represent the target archive directory.
fileSystem/walk.v3/main.go
	​ 	​type​ config ​struct​ {
	​ 	 ​// extenstion to filter out​
	​ 	 ext ​string​
	​ 	 ​// min file size​
	​ 	 size ​int64​
	​ 	 ​// list files​
	​ 	 list ​bool​
	​ 	 ​// delete files​
	​ 	 del ​bool​
	​ 	 ​// log destination writer​
	​ 	 wLog io.Writer
	»	 ​// archive directory​
	»	 archive ​string​
	​ 	}

Now update the main function. To make it configurable, first add a flag called archive which allows the user to specify the directory in which to archive files. If this option is specified, we’ll assume the user wants to archive the files. If it’s not, the archiving will be skipped.
fileSystem/walk.v3/main.go
	​ 	​// Parsing command line flags​
	​ 	root := flag.String(​"root"​, ​"."​, ​"Root directory to start"​)
	​ 	logFile := flag.String(​"log"​, ​""​, ​"Log deletes to this file"​)
	​ 	​// Action options​
	​ 	list := flag.Bool(​"list"​, false, ​"List files only"​)
	»	archive := flag.String(​"archive"​, ​""​, ​"Archive directory"​)
	​ 	del := flag.Bool(​"del"​, false, ​"Delete files"​)

Next, map the archive flag value to the corresponding field in the config struct instance c so it will be passed to run:
fileSystem/walk.v3/main.go
	​ 	c := config{
	​ 	 ext: *ext,
	​ 	 size: *size,
	​ 	 list: *list,
	​ 	 del: *del,
	​ 	 wLog: f,
	»	 archive: *archive,
	​ 	}

Finally, update the run function to include a call to the archiveFile function if required:
fileSystem/walk.v3/main.go
	​ 	​// If list was explicitly set, don't do anything else​
	​ 	​if​ cfg.list {
	​ 	 ​return​ listFile(path, out)
	​ 	}
	​ 	
	»	​// Archive files and continue if successful​
	»	​if​ cfg.archive != ​""​ {
	»	 ​if​ err := archiveFile(cfg.archive, root, path); err != nil {
	»	 ​return​ err
	»	 }
	»	}
	​ 	
	​ 	​// Delete files​
	​ 	​if​ cfg.del {

Notice that when using the archiving option, the function should only return if there is an error, allowing the next action function delFile to execute if the user requested it.

	
	
	Save the file main.go.
Let’s include tests for the archiving feature next. Open the file main_test.go and add the package strings to the import list. You’ll use it to execute operations on strings such as joining or removing spaces:
fileSystem/walk.v3/main_test.go
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"fmt"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"path/filepath"​
	​ 	
	»	 ​"strings"​
	​ 	 ​"testing"​
	​)

Then, at the end of the file, add another test function called TestRunArchive to test the archiving functionality:
fileSystem/walk.v3/main_test.go
	​ 	​func​ TestRunArchive(t *testing.T) {

	
	
	Start by defining three test cases using the table-driven testing concepts that you used in ​Testing with Table-Driven Testing​: one where no match occurs, one where all files match the filter, and one where some files match the filter:
fileSystem/walk.v3/main_test.go
	​ 	​// Archiving test cases​
	​ 	testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 cfg config
	​ 	 extNoArchive ​string​
	​ 	 nArchive ​int​
	​ 	 nNoArchive ​int​
	​ 	}{
	​ 	 {name: ​"ArchiveExtensionNoMatch"​,
	​ 	 cfg: config{ext: ​".log"​},
	​ 	 extNoArchive: ​".gz"​, nArchive: 0, nNoArchive: 10},
	​ 	 {name: ​"ArchiveExtensionMatch"​,
	​ 	 cfg: config{ext: ​".log"​},
	​ 	 extNoArchive: ​""​, nArchive: 10, nNoArchive: 0},
	​ 	 {name: ​"ArchiveExtensionMixed"​,
	​ 	 cfg: config{ext: ​".log"​},
	​ 	 extNoArchive: ​".gz"​, nArchive: 5, nNoArchive: 5},
	​ 	}

Then, loop through the test cases and execute them using the t.Run subtest function:
fileSystem/walk.v3/main_test.go
	​ 	​// Execute RunArchive test cases​
	​ 	​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {

To start executing the test cases, define a buffer variable to capture the output of the tool:
fileSystem/walk.v3/main_test.go
	​ 	​// Buffer for RunArchive output​
	​ 	​var​ buffer bytes.Buffer

	
	For this test, you’ll use the same test helper function you used to develop tests for the delete functionality in ​Testing with the Help of Test Helpers​, but in this case, you’ll use createTempDir to create both the origin directory and the archiving directory.
fileSystem/walk.v3/main_test.go
	​ 	​// Create temp dirs for RunArchive test​
	​ 	tempDir, cleanup := createTempDir(t, ​map​[​string​]​int​{
	​ 	 tc.cfg.ext: tc.nArchive,
	​ 	 tc.extNoArchive: tc.nNoArchive,
	​ 	})
	​ 	​defer​ cleanup()
	​ 	
	​ 	archiveDir, cleanupArchive := createTempDir(t, nil)
	​ 	​defer​ cleanupArchive()

To create the temporary archive directory using the helper function, we provide a value of nil as the file map input since we don’t need any files in this directory.

Assign the archiveDir variable containing the name of the archive directory to the field tc.cfg.archive to be used as input for the function run. Then, execute the function run providing the temporary directory, the address to the buffer, and the config instance tc.cfg as input:
fileSystem/walk.v3/main_test.go
	​ 	tc.cfg.archive = archiveDir
	​ 	
	​ 	​if​ err := run(tempDir, &buffer, tc.cfg); err != nil {
	​ 	 t.Fatal(err)
	​ 	}

If the run function returns an error, we fail the test using the method t.Fatal from the testing type. Assuming the function completes successfully, we validate the output content and the number of files archived.

Start by validating the tool’s output. The archiving feature outputs the name of each archived file, so you’ll need a list of files that you expect to be archived to compare with the actual results. Since the test creates the directory and files dynamically for each test, you don’t have the name of the files beforehand. Create this list dynamically by reading the data from the temporary directory. Use the Glob function from the filepath package to find all file names from the temporary directory tempDir that match the archiving extension. Use the function Join from the filepath package to concatenate the pattern with the temporary directory path:
fileSystem/walk.v3/main_test.go
	​ 	pattern := filepath.Join(tempDir, fmt.Sprintf(​"*%s"​, tc.cfg.ext))
	​ 	expFiles, err := filepath.Glob(pattern)
	​ 	​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	}

To create the final list as a string to compare with the output, use the strings.Join function from the strings package to join each file path in the expFiles slice with the newline character:
fileSystem/walk.v3/main_test.go
	​ 	expOut := strings.Join(expFiles, ​"​​\n​​"​)

Before comparing the two values, remove the last new line from the output by using the strings.TrimSpace function on the output variable buffer.
fileSystem/walk.v3/main_test.go
	​ 	res := strings.TrimSpace(buffer.String())

We use the String method from the bytes.Buffer type to extract the content of the buffer as a string.

Now compare the expected output expOut with the actual output res, failing the test if they don’t match:
fileSystem/walk.v3/main_test.go
	​ 	​if​ expOut != res {
	​ 	 t.Errorf(​"Expected %q, got %q instead​​\n​​"​, expOut, res)
	​ 	}

Next, validate the number of files archived. Start by reading the content of the temporary archive directory archiveDir, using the ReadDir function again. Store the results into the slice filesArchived:
fileSystem/walk.v3/main_test.go
	​ 	filesArchived, err := ioutil.ReadDir(archiveDir)
	​ 	​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	}

	
	Then, compare the number of files archived with the expected number of files that should be archived, tc.nArchive, failing the test if they don’t match. Use the built-in function len to obtain the number of files in the filesArchived slice:
fileSystem/walk.v3/main_test.go
	​ 	 ​if​ len(filesArchived) != tc.nArchive {
	​ 	 t.Errorf(​"Expected %d files archived, got %d instead​​\n​​"​,
	​ 	 tc.nArchive, len(filesArchived))
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

The test function for archiving is complete. Save the file and execute the tests:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestFilterOut
	​ 	=== RUN TestFilterOut/FilterNoExtension
	​ 	=== RUN TestFilterOut/FilterExtensionMatch
	​ 	=== RUN TestFilterOut/FilterExtensionNoMatch
	​ 	=== RUN TestFilterOut/FilterExtensionSizeMatch
	​ 	=== RUN TestFilterOut/FilterExtensionSizeNoMatch
	​ 	--- PASS: TestFilterOut (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterNoExtension (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionMatch (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionNoMatch (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionSizeMatch (0.00s)
	​ 	 --- PASS: TestFilterOut/FilterExtensionSizeNoMatch (0.00s)
	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/NoFilter
	​ 	=== RUN TestRun/FilterExtensionMatch
	​ 	=== RUN TestRun/FilterExtensionSizeMatch
	​ 	=== RUN TestRun/FilterExtensionSizeNoMatch
	​ 	=== RUN TestRun/FilterExtensionNoMatch
	​ 	--- PASS: TestRun (0.00s)
	​ 	 --- PASS: TestRun/NoFilter (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionMatch (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionSizeMatch (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionSizeNoMatch (0.00s)
	​ 	 --- PASS: TestRun/FilterExtensionNoMatch (0.00s)
	​ 	=== RUN TestRunDelExtension
	​ 	=== RUN TestRunDelExtension/DeleteExtensionNoMatch
	​ 	=== RUN TestRunDelExtension/DeleteExtensionMatch
	​ 	=== RUN TestRunDelExtension/DeleteExtensionMixed
	​ 	--- PASS: TestRunDelExtension (0.00s)
	​ 	 --- PASS: TestRunDelExtension/DeleteExtensionNoMatch (0.00s)
	​ 	 --- PASS: TestRunDelExtension/DeleteExtensionMatch (0.00s)
	​ 	 --- PASS: TestRunDelExtension/DeleteExtensionMixed (0.00s)
	​ 	=== RUN TestRunArchive
	​ 	=== RUN TestRunArchive/ArchiveExtensionNoMatch
	​ 	=== RUN TestRunArchive/ArchiveExtensionMatch
	​ 	=== RUN TestRunArchive/ArchiveExtensionMixed
	​ 	--- PASS: TestRunArchive (0.01s)
	​ 	 --- PASS: TestRunArchive/ArchiveExtensionNoMatch (0.00s)
	​ 	 --- PASS: TestRunArchive/ArchiveExtensionMatch (0.01s)
	​ 	 --- PASS: TestRunArchive/ArchiveExtensionMixed (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/fileSystem/walk 0.016s

The new version of the walk tool is ready to try, but to do that, you need some files to archive. Your Go installation comes with a copy of its source code which contains several .go files. Let’s use the subdirectory misc to try the new tool. Since you may want to delete some files to check the functionality, first copy it to a temporary directory. You can find where the Go installation files are located on your system by running go env GOROOT, like this:
	
	
	
	​ 	​$ ​​go​​ ​​env​​ ​​GOROOT​
	​ 	/usr/lib/go

Create a local temporary directory and copy the Go misc tree to this local directory for testing:
	​ 	​$ ​​mkdir​​ ​​/tmp/gomisc​
	​ 	​$ ​​cd​​ ​​/tmp/gomisc​
	​ 	​$ ​​cp​​ ​​-r​​ ​​/usr/lib/go/misc/​​ ​​.​
	​ 	​$ ​​ls​
	​ 	misc
	​ 	​$ ​​cd​​ ​​-​

Use the walk tool to list all .go files under the gomisc directory:
	​ 	​$ ​​go​​ ​​run​​ ​​.​​ ​​-root​​ ​​/tmp/gomisc/​​ ​​-ext​​ ​​.go​​ ​​-list​
	​ 	/tmp/gomisc/misc/android/go_android_exec.go
	​ 	/tmp/gomisc/misc/cgo/errors/badsym_test.go
	​ 	/tmp/gomisc/misc/cgo/errors/errors_test.go
	​ 	​...​
	​ 	/tmp/gomisc/misc/swig/callback/callback_test.go
	​ 	/tmp/gomisc/misc/swig/stdio/file.go
	​ 	/tmp/gomisc/misc/swig/stdio/file_test.go
	​ 	​$​

Create a directory to archive the files and run the tool using the archive option to archive files into this directory:
	​ 	​$ ​​mkdir​​ ​​/tmp/gomisc_bkp​
	​ 	​$ ​​go​​ ​​run​​ ​​.​​ ​​-root​​ ​​/tmp/gomisc/​​ ​​-ext​​ ​​.go​​ ​​-archive​​ ​​/tmp/gomisc_bkp​
	​ 	/tmp/gomisc/misc/android/go_android_exec.go
	​ 	/tmp/gomisc/misc/cgo/errors/badsym_test.go
	​ 	/tmp/gomisc/misc/cgo/errors/errors_test.go
	​ 	​...​
	​ 	/tmp/gomisc/misc/swig/callback/callback_test.go
	​ 	/tmp/gomisc/misc/swig/stdio/file.go
	​ 	/tmp/gomisc/misc/swig/stdio/file_test.go

Check the contents of the /tmp/gomisc_bkp directory to see the go files compressed:
	​ 	​$ ​​cd​​ ​​/tmp/gomisc_bkp/misc/​
	​ 	​$ ​​ls​
	​ 	android cgo ios linkcheck reboot swig
	​ 	​$ ​​cd​​ ​​reboot​
	​ 	​$ ​​ls​
	​ 	experiment_toolid_test.go.gz overlaydir_test.go.gz reboot_test.go.gz

	​ 	​$ ​​gzip​​ ​​-l​​ ​​*​
	​ 	compressed uncompressed ratio uncompressed_name
	​ 	 1230 3048 61.1% experiment_toolid_test.go
	​ 	 920 1892 53.3% overlaydir_test.go
	​ 	 641 1236 50.8% reboot_test.go
	​ 	 2791 6176 55.3% (totals)

The command gzip -l shows details about the compressed files including the original name obtained from the metadata you added to the compressed file.

If you want, use the del and log options to try the entire functionality of your walk tool. This will archive, delete, and log all files:
	​ 	​$ ​​rm​​ ​​-r​​ ​​/tmp/gomisc_bkp/misc/​
	​ 	​$ ​​go​​ ​​run​​ ​​.​​ ​​-root​​ ​​/tmp/gomisc​​ ​​-ext​​ ​​.go​​ ​​-archive​​ ​​/tmp/gomisc_bkp/​​ ​​\​
	​ 	​>​​ ​​-del​​ ​​-log​​ ​​deleted_gomisc.log​
	​ 	​$ ​​cat​​ ​​deleted_gomisc.log​
	​ 	DELETED FILE: 2021/07/24 20:33:51 /tmp/gomisc/misc/android/go_android_exec.go
	​ 	DELETED FILE: 2021/07/24 20:33:51 /tmp/gomisc/misc/cgo/errors/badsym_test.go
	​ 	​...​
	​ 	DELETED FILE: 2021/07/24 20:33:51 /tmp/gomisc/misc/swig/stdio/file.go
	​ 	DELETED FILE: 2021/07/24 20:33:51 /tmp/gomisc/misc/swig/stdio/file_test.go
	​ 	​$​

This version of the tool is useful as it can archive and delete files to save space, but it may need some additional adjustments before you use it in a production scenario; you might want to check for symbolic links or special files. That’s something you can explore on your own later.
	
	
	
	
	

Exercises

You can try the following exercises to improve the skills you learned:
	
Update the walk tool so that it allows the user to provide more than one file extension.

	
Improve the walk tool by adding more filtering options, such as files modified after a certain date or files with long file names.

	
Create a companion tool for walk that restores the archived files in case they are needed again. Recreate the original directory by using the same approach you used to create the destination directory in the archiveFile function. Then use the gzip.Reader type from the compress/gzip package to uncompress the archive files.

Wrapping Up

In this chapter, you used several standard library packages to navigate the file system and deal with files and directories consistently across different operating systems. You performed common operations, such as copying and deleting files, and created entire directory structures. Finally, you used common packages to create log files and compressed archives.

In the next chapter, you’ll improve the performance of your command-line tools by using an iterative approach guided by Go benchmarks and profiling results. By leveraging tests appropriately, you’ll ensure that the code continues to do what it’s required to do, allowing for safer and quicker code refactoring.

Footnotes

	[24]
	
 https://pkg.go.dev/testing#T.Cleanup

Copyright © 2021, The Pragmatic Bookshelf.

 Chapter
 5
Improving the Performance of Your CLI Tools

 Ensuring that your command-line tools perform well is an important requirement, especially when designing tools that process a large amount of information, like data analysis tools. But designing tools that perform well isn’t an easy task. Performance is often a subjective concept; it varies from person to person and also according to the context. In this book, we’ll define performance as the speed of execution, or how fast our program can handle its workload.

Go provides tools that help you measure and analyze a program’s performance. It has integrated tools for testing, benchmarking, profiling, and tracing.

 To explore those tools, you’ll build a CLI application that executes statistical operations on a CSV file. The CSV format consists of tabular data separated by commas. This format is commonly used to store numeric data for statistical and data analysis.

Here is an example of a CSV file:
	​ 	IP Address,Timestamp,Response Time,Bytes
	​ 	192.168.0.199,1520698621,236,3475
	​ 	192.168.0.88,1520698776,220,3200
	​ 	192.168.0.199,1520699033,226,3200
	​ 	192.168.0.100,1520699142,218,3475
	​ 	192.168.0.199,1520699379,238,3822

You’ll build an initial version of this tool, test it to ensure it works correctly, and measure its performance by executing benchmarks. Then you’ll analyze its performance by executing profiling and tracing, and you’ll use an iterative approach to improve it. You’ll use different strategies to improve the program, including applying Go’s concurrency primitives to build a version of the tool that executes concurrently.

Let’s get started.

Developing the Initial Version of colStats

	
	
	
	
	 Let’s build the colStats tool and make sure it works before looking for ways to optimize it. The program will receive two optional input parameters each with a default value:

	-col: The column on which to execute the operation. It defaults to 1.
	-op: The operation to execute on the selected column. Initially, this tool will support two operations: sum, which calculates the sum of all values in the column, and avg, which determines the average value of the column. You can add more operations later if you want.

In addition to the two optional flags, this tool accepts any number of file names to process. If the user provides more than one file name, the tool combines the results for the same column in all files.

	
	Create the directory performance/colStats under your book project’s directory:
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/performance/colStats​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/performance/colStats​

	
	
	Then initialize the Go module for this project:
	​ 	​$ ​​go​​ ​​mod​​ ​​init​​ ​​pragprog.com/rggo/performance/colStats​
	​ 	go: creating new go.mod: module pragprog.com/rggo/performance/colStats

	
	
	

	
	For this tool, you’ll organize the code into multiple files again, similar to what you’ve done in ​Developing a File System Crawler​. You’ll create three files: errors.go (which contains error definitions), csv.go (which contains the functions to process CSV data), and main.go (which contains the main and run functions). You’ll also add the corresponding test files later.

	
	
	You’ll learn more about error handling in ​Handling Errors​. For now, start by creating the file errors.go to define some error values to use throughout the package. By defining error values, you can use them during error handling instead of defining only error strings. You can also wrap them with an additional message to provide more information for the user while keeping the original error available for inspection, using the function errors.Is from the errors package. You’ll use this during tests.

	
	
	
	Create the file and add the package definition and the import section. For this file, you’ll use the errors package to create new error values:
performance/colStats/errors.go
	​ 	​package​ main
	​ 	
	​ 	​import​ ​"errors"​

	
	Then define the error values as variables. By convention, these variables are exported and their names start with Err:
performance/colStats/errors.go
	​ 	​var​ (
	​ 	 ErrNotNumber = errors.New(​"Data is not numeric"​)
	​ 	 ErrInvalidColumn = errors.New(​"Invalid column number"​)
	​ 	 ErrNoFiles = errors.New(​"No input files"​)
	​ 	 ErrInvalidOperation = errors.New(​"Invalid operation"​)
	​)

	
	
	Save and close this file and create the file csv.go to define the function to process data from CSV files. Open it in your text editor, and add the package definition:
performance/colStats/csv.go
	​ 	​package​ main

	
	
	
	
	To develop these functions, you’ll use some standard library packages:
	encoding/csv: To read data from CSV files.
	fmt: To print formatted results out.
	io: To provide the io.Reader interface.
	strconv: To convert string data into numeric data.

The encoding/csv package provides methods that read data as string. To perform calculations you need to convert the data into a numeric type, such as float64.

Add the import section to include these packages in your program:
performance/colStats/csv.go
	​ 	​import​ (
	​ 	 ​"encoding/csv"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"strconv"​
	​)

	
	Then create the functions to perform calculations on the data, starting with sum and avg. You can add more functions later if you need them.
performance/colStats/csv.go
	​ 	​func​ sum(data []​float64​) ​float64​ {
	​ 	 sum := 0.0
	​ 	
	​ 	 ​for​ _, v := ​range​ data {
	​ 	 sum += v
	​ 	 }
	​ 	
	​ 	 ​return​ sum
	​ 	}

	​ 	​func​ avg(data []​float64​) ​float64​ {
	​ 	 ​return​ sum(data) / ​float64​(len(data))
	​ 	}

	
	
	
	Notice that both functions have the same signature; they take as input a slice of float64 numbers and return a float64 value: func(data []float64) float64. Let’s create an auxiliary type statsFunc using the same signature to make it easier to use these functions later. This new type represents a class of functions with this signature, which means that any function that matches the signature qualifies as this type. Add the new type definition like this:
performance/colStats/csv.go
	​ 	​// statsFunc defines a generic statistical function​
	​ 	​type​ statsFunc ​func​(data []​float64​) ​float64​

You can use this new type as the input parameter whenever you need a new calculation function. This makes the code more concise and easier to test.

	
	
	
	The last function you’ll implement in this file is the function csv2float, to parse the contents of the CSV file into a slice of floating point numbers that you can use to perform the calculations. This function accepts two input parameters: an io.Reader interface representing the source of CSV data and an int representing the column to extract data from. It returns a slice of float64 numbers and a potential error:
performance/colStats/csv.go
	​ 	​func​ csv2float(r io.Reader, column ​int​) ([]​float64​, ​error​) {

This uses a similar pattern to what you’ve done previously; you’re providing the io.Reader interface as the input parameter for the function. This makes testing easier because you can call the function passing a buffer that contains test data instead of a file.
	
	

	
	
	
	
	
	To read CSV data, you’ll use the csv.Reader type from the csv package. This type provides the methods ReadAll and Read to read in CSV data. This package handles some corner cases such as alternative separators, spacing, quotation marks, or multiline fields, which you may encounter when processing CSV data. By using the package you don’t need to handle these cases yourself.

	
	
	Use the function csv.NewReader to create a csv.Reader type from the provided input io.Reader:
performance/colStats/csv.go
	​ 	​// Create the CSV Reader used to read in data from CSV files​
	​ 	cr := csv.NewReader(r)

The program assumes the user will input the column starting from one (1) as it’s more natural for users to understand. Let’s adjust for a zero (0)-based slice index by subtracting one from the column variable:
performance/colStats/csv.go
	​ 	​// Adjusting for 0 based index​
	​ 	column--

	
	
	
	Next, use the method cr.ReadAll of your csv.Reader type to read in the entire CSV data into a variable allData. If a data-reading error occurs, return a new error using the function fmt.Errorf with the verb %w to wrap the original error. This allows you to decorate the error with additional information for the users while keeping the original error available for inspections:
performance/colStats/csv.go
	​ 	​// Read in all CSV data​
	​ 	allData, err := cr.ReadAll()
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, fmt.Errorf(​"Cannot read data from file: %w"​, err)
	​ 	}

The method ReadAll reads in all records (lines) from the CSV file as a slice of fields (columns), where each field is itself a slice of strings. Go represents this data structure as [][]string. Since this method reads data as strings, you need to convert it to a float64 number to perform calculations. Create a variable data of type slice of float64 to hold the results of this conversion:
performance/colStats/csv.go
	​ 	​var​ data []​float64​

	
	
	
	
	
	
	Now, loop through all the records by using the range operator on the variable allData. Inside the loop, first check if this is the first line (i == 0) and skip this iteration by using the continue keyword to discard the title line:
performance/colStats/csv.go
	​ 	​// Looping through all records​
	​ 	​for​ i, row := ​range​ allData {
	​ 	 ​if​ i == 0 {
	​ 	 ​continue​
	​ 	 }

Then compare the length of the variable row, which represents a single record, with the column number provided by the user. If the column is too large, return an error wrapping your error value ErrInvalidColumn so you can check for it during tests:
performance/colStats/csv.go
	​ 	​// Checking number of columns in CSV file​
	​ 	​if​ len(row) <= column {
	​ 	 ​// File does not have that many columns​
	​ 	 ​return​ nil,
	​ 	 fmt.Errorf(​"%w: File has only %d columns"​, ErrInvalidColumn, len(row))
	​ 	}

Finally, try to convert the value of the given column to a float64 by using the function ParseFloat of the strconv package. If the conversion fails, return an error wrapping ErrNotNumber. Otherwise, append the value to the data slice.
performance/colStats/csv.go
	​ 	 ​// Try to convert data read into a float number​
	​ 	 v, err := strconv.ParseFloat(row[column], 64)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, fmt.Errorf(​"%w: %s"​, ErrNotNumber, err)
	​ 	 }
	​ 	
	​ 	 data = append(data, v)
	​ 	}

When the loop finishes iterating over the entire slice, return the variable data and the value nil for the error:
performance/colStats/csv.go
	​ 	 ​// Return the slice of float64 and nil error​
	​ 	 ​return​ data, nil
	​ 	}

	
	
	
	Save the file csv.go and create the file main.go to define the main function. Open the file and add the package and import sections. You’ll need the flag package to parse command-line options, the fmt package to print formatted output and create new errors, the io package so you can use the io.Writer interface, and the os package to interact with the operating system:
performance/colStats/main.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​)

	
	
	
	Next, create the function main to parse the command-line arguments and call the function run, which is responsible for the main logic of the tool.
performance/colStats/main.go
	​ 	​func​ main() {
	​ 	 ​// Verify and parse arguments​
	​ 	 op := flag.String(​"op"​, ​"sum"​, ​"Operation to be executed"​)
	​ 	 column := flag.Int(​"col"​, 1, ​"CSV column on which to execute operation"​)
	​ 	
	​ 	 flag.Parse()
	​ 	
	​ 	 ​if​ err := run(flag.Args(), *op, *column, os.Stdout); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	}

If the run function returns any errors, print them out to STDERR and exit the program with the exit code 1.

	
	Next, define the run function.
performance/colStats/main.go
	​ 	​func​ run(filenames []​string​, op ​string​, column ​int​, out io.Writer) ​error​ {

This function accepts four input parameters:
	
filenames of type []string: A slice of strings representing the file names to process.

	
op of type string: A string representing the operation to execute, such as sum or average.

	
column of type int: An integer representing the column on which to execute the operation.

	
out of type io.Writer: An io.Writer interface to print out the results. By using the interface, you can print to STDOUT in the program while allowing tests to capture results using a buffer.

	
	The run function returns a potential error, which is useful in the main program to print out information to the user or in tests to validate if the function is executed correctly.

In the run function, start by creating an empty variable opFunc of type statsFunc. Later, this variable will store the calculation function corresponding to the desired operation according to the parameter the user provided.
performance/colStats/main.go
	​ 	​var​ opFunc statsFunc

Next, validate the user-provided parameters. Command-line tools are user interfaces, and it’s important to provide a good experience to users. Validating the user input allows the user to receive quick feedback if they make a mistake and prevents the program from running into a known error condition. For this scenario, let’s add the validations as part of the run function. For more complex validations you may want to write specific validation functions.

Check to see if the length of the filenames parameter equals zero. If it does, return the error ErrNoFiles indicating that the user didn’t provide any files to process.
performance/colStats/main.go
	​ 	​if​ len(filenames) == 0 {
	​ 	 ​return​ ErrNoFiles
	​ 	}

Then, check the column parameter. By using the flag.Int function from the flag package to capture the input, Go ensures the input is an integer number, so you don’t need to check that. But you still need to validate the column number, which is a number greater than one. Add the validation like this:
performance/colStats/main.go
	​ 	​if​ column < 1 {
	​ 	 ​return​ fmt.Errorf(​"%w: %d"​, ErrInvalidColumn, column)
	​ 	}

Use a switch statement to validate the user-provided operation, assigning the corresponding statsFunc function to the opFunc variable:
performance/colStats/main.go
	​ 	​// Validate the operation and define the opFunc accordingly​
	​ 	​switch​ op {
	​ 	​case​ ​"sum"​:
	​ 	 opFunc = sum
	​ 	​case​ ​"avg"​:
	​ 	 opFunc = avg
	​ 	​default​:
	​ 	 ​return​ fmt.Errorf(​"%w: %s"​, ErrInvalidOperation, op)
	​ 	}

The default clause returns a new error wrapping the ErrInvalidOperation error, indicating the user provided an invalid operation.
	
	
	

	
	
	Now add the logic to process the CSV files. Create a variable called consolidate of type []float64 (slice of float64) to consolidate the data that you’ll extract from the given column on each input file.
performance/colStats/main.go
	​ 	consolidate := make([]​float64​, 0)

	
	
	
	Loop through each input file, opening the file for reading using the os.Open function. Parse the given column into a slice of float64 numbers using the csv2float function you created earlier, and then close the file to release system resources immediately. Finally, append the parsed data into the consolidate variable.
performance/colStats/main.go
	​ 	​// Loop through all files adding their data to consolidate​
	​ 	​for​ _, fname := ​range​ filenames {
	​ 	 ​// Open the file for reading​
	​ 	 f, err := os.Open(fname)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ fmt.Errorf(​"Cannot open file: %w"​, err)
	​ 	 }
	​ 	
	​ 	 ​// Parse the CSV into a slice of float64 numbers​
	​ 	 data, err := csv2float(f, column)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​if​ err := f.Close(); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​// Append the data to consolidate​
	​ 	 consolidate = append(consolidate, data...)
	​ 	}

	
	Once you finish the loop and have the data consolidated for all input files, execute the specified operation by using the variable opFunc which stores the calculation function, print out the results, and return any potential errors:
	
	
	
performance/colStats/main.go
	​ 	 _, err := fmt.Fprintln(out, opFunc(consolidate))
	​ 	 ​return​ err
	​ 	}

	
	This prints the results to STDOUT via the out io.Writer interface. Later, when testing this function, you’ll set out to a buffer to capture and validate the print operation. This is the same pattern you used in ​Using Interfaces to Automate Tests​.

This is all the code for the colStats tool. Let’s write some tests to ensure it’s working properly.

Writing Tests for colStats

	
	You’re going to make a lot of changes to this code base to improve its performance. Before doing that, let’s write tests to make sure the program works correctly. Then you can use those tests to ensure the program still works as you change the underlying code.

For these tests, you’ll follow the same approach used to define tests in ​Writing Tests for the Markdown Preview Tool​. You’ll create unit tests for the avg and sum statistics functions as well as for the csv2float function. For the integration tests, you’ll test the function run. You’ll also apply table-driven testing as you did for ​Testing with Table-Driven Testing​.

	
	
	
	Let’s start by writing unit tests for the statistics operations. In the same directory as the csv.go file, create the tests file csv_test.go. Open it in your text editor and add the package section:
performance/colStats/csv_test.go
	​ 	​package​ main

	
	
	
	
	
	Add the import section. For these tests, you’ll use the bytes package to create buffers to capture the output, the errors package to validate errors, the io package to use the io.Reader interface, the testing package which is required to execute tests, and the iotest package to assist in executing tests that fail to read data.
performance/colStats/csv_test.go
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"errors"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"testing"​
	​ 	 ​"testing/iotest"​
	​)

Add the definition for the first test function TestOperations. You’ll use a single test function to test all operation functions by applying the statsFunc type you defined to abstract the operations functions:
performance/colStats/csv_test.go
	​ 	​func​ TestOperations(t *testing.T) {

Create a data variable to hold the input data for the tests as a slice of slices of floating point numbers:
performance/colStats/csv_test.go
	​ 	data := [][]​float64​{
	​ 	 {10, 20, 15, 30, 45, 50, 100, 30},
	​ 	 {5.5, 8, 2.2, 9.75, 8.45, 3, 2.5, 10.25, 4.75, 6.1, 7.67, 12.287, 5.47},
	​ 	 {-10, -20},
	​ 	 {102, 37, 44, 57, 67, 129},
	​ 	}

	
	
	Next, define the test cases by using the table-driven testing concept. Each test case has a name, the operation function to execute, and the expected results:
performance/colStats/csv_test.go
	​ 	​// Test cases for Operations Test​
	​ 	testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 op statsFunc
	​ 	 exp []​float64​
	​ 	}{
	​ 	 {​"Sum"​, sum, []​float64​{300, 85.927, -30, 436}},
	​ 	 {​"Avg"​, avg, []​float64​{37.5, 6.609769230769231, -15, 72.666666666666666}},
	​ 	}

	
	Finally, loop through all the test cases using the range operator. For each test case, iterate over all data/results to execute multiple tests with different data points. Execute each test as a subtest using the method Run from the testing.T type. Execute the test by applying the given operation stored in the variable tc.op with the corresponding input data, storing the result in the variable res. Then compare the result with the expected value exp, failing the test if they don’t match:
performance/colStats/csv_test.go
	​ 	 ​// Operations Tests execution​
	​ 	 ​for​ _, tc := ​range​ testCases {
	​ 	 ​for​ k, exp := ​range​ tc.exp {
	​ 	 name := fmt.Sprintf(​"%sData%d"​, tc.name, k)
	​ 	 t.Run(name, ​func​(t *testing.T) {
	​ 	 res := tc.op(data[k])
	​ 	
	​ 	 ​if​ res != exp {
	​ 	 t.Errorf(​"Expected %g, got %g instead"​, exp, res)
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	 }
	​ 	}

	Comparing Floating Point Numbers

	
 [image: images/aside-icons/tip.png]
 	

	
	 Comparing two floating point numbers like we’re doing in these tests can be tricky because floating point numbers are inherently imprecise. To work around this, you generally introduce a small tolerance for comparison, but this is beyond the scope of this book. For brevity, these tests execute a direct comparison, but for production code, you should write a specific compare function.

 Take a look at Go’s source code for the math package[25] for an example of how the standard library handles these kinds of tests.
	
	

	
	
	
	Now let’s write the tests for the csv2float function. Add the test function definition to your csv_test.go file:
performance/colStats/csv_test.go
	​ 	​func​ TestCSV2Float(t *testing.T) {

	
	
	
	Create the variable csvData of type string to hold the input data for the tests. Use the raw string literal operator ‘ (a backtick) to create a multiline string. You’ll use this variable for all subtests, so you don’t need to define data for each test case:
performance/colStats/csv_test.go
	​ 	 csvData := ​`IP Address,Requests,Response Time​
	​ 	​192.168.0.199,2056,236​
	​ 	​192.168.0.88,899,220​
	​ 	​192.168.0.199,3054,226​
	​ 	​192.168.0.100,4133,218​
	​ 	​192.168.0.199,950,238​
	​ 	​`​

	
	
	Next, define the use cases using table-driven tests again. For this test, each case contains the name, the column col, the expected result exp, the expected error expErr, and the input io.Reader r:
performance/colStats/csv_test.go
	​ 	​// Test cases for CSV2Float Test​
	​ 	testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 col ​int​
	​ 	 exp []​float64​
	​ 	 expErr ​error​
	​ 	 r io.Reader
	​ 	}{
	​ 	 {name: ​"Column2"​, col: 2,
	​ 	 exp: []​float64​{2056, 899, 3054, 4133, 950},
	​ 	 expErr: nil,
	​ 	 r: bytes.NewBufferString(csvData),
	​ 	 },
	​ 	 {name: ​"Column3"​, col: 3,
	​ 	 exp: []​float64​{236, 220, 226, 218, 238},
	​ 	 expErr: nil,
	​ 	 r: bytes.NewBufferString(csvData),
	​ 	 },
	​ 	 {name: ​"FailRead"​, col: 1,
	​ 	 exp: nil,
	​ 	 expErr: iotest.ErrTimeout,
	​ 	 r: iotest.TimeoutReader(bytes.NewReader([]​byte​{0})),
	​ 	 },
	​ 	 {name: ​"FailedNotNumber"​, col: 1,
	​ 	 exp: nil,
	​ 	 expErr: ErrNotNumber,
	​ 	 r: bytes.NewBufferString(csvData),
	​ 	 },
	​ 	 {name: ​"FailedInvalidColumn"​, col: 4,
	​ 	 exp: nil,
	​ 	 expErr: ErrInvalidColumn,
	​ 	 r: bytes.NewBufferString(csvData),
	​ 	 },
	​ 	}

	
	
	Notice that for the first two test cases, you’re defining a bytes.Buffer pointing to the csvData as the input variable r. You can do this because the bytes.Buffer type implements the io.Reader interface. But for the third test case, you’re using the function iotest.TimeoutReader to simulate a reading failure. This function returns an io.Reader that returns a timeout error when it tries to read the data from it.

Add this code to execute the tests by looping through the test cases the same way you did for the previous test function. For each case, execute the csv2float function providing the io.Reader and column from the test case:
performance/colStats/csv_test.go
	​ 	​// CSV2Float Tests execution​
	​ 	​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 res, err := csv2float(tc.r, tc.col)

	
	
	
	Since the csv2float function returns a potential error, for this test, first handle the cases where you expect an error when the variable tc.expErr isn’t nil. Validate that the err isn’t nil and use the function errors.Is to inspect the error. This function returns true if the err variable matches the expected error value or err wraps the expected error. This is useful because you can apply this function to validate expected errors even if you wrapped the original error to add more information for the user.
performance/colStats/csv_test.go
	​ 	​// Check for errors if expErr is not nil​
	​ 	​if​ tc.expErr != nil {
	​ 	 ​if​ err == nil {
	​ 	 t.Errorf(​"Expected error. Got nil instead"​)
	​ 	 }
	​ 	
	​ 	 ​if​ ! errors.Is(err, tc.expErr) {
	​ 	 t.Errorf(​"Expected error %q, got %q instead"​, tc.expErr, err)
	​ 	 }
	​ 	
	​ 	 ​return​
	​ 	}

Notice that you’re using the return statement to finish the subtest and prevent the execution of the remaining checks.

Using error values instead of comparing error strings makes your tests more resilient and more maintainable, preventing failures when the underlying message changes. But it’s still only a basic approach for error handling that is useful for small applications. For more complex scenarios, you may want to use another approach such as custom error types. You’ll learn more about error handling using custom types in ​Handling Errors​.

Now let’s handle the case where you don’t expect any errors. Ensure the err is nil, and fail the test otherwise. Then verify the result variable res. Since it’s a slice of float64, use a loop to check each element of the slice:
performance/colStats/csv_test.go
	​ 	 ​// Check results if errors are not expected​
	​ 	 ​if​ err != nil {
	​ 	 t.Errorf(​"Unexpected error: %q"​, err)
	​ 	 }
	​ 	
	​ 	 ​for​ i, exp := ​range​ tc.exp {
	​ 	 ​if​ res[i] != exp {
	​ 	 t.Errorf(​"Expected %g, got %g instead"​, exp, res[i])
	​ 	 }
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

	Comparing Complex Data Structures

	
 [image: images/aside-icons/info.png]
 	

	
	
	
	
	 As an alternative method to compare more complex data structures, such as slices or maps, you can write your own comparing function or test helper. You may use the reflect package that provides functions that introspect Go objects. For more information about this package, consult its documentation.[26]

 You can also use external packages to compare complex data structures. Several packages are available for this purpose with different features, but this is the scope of this book.

That completes the tests for the csv2float function. Let’s add the integration tests now by using the same table-driven testing approach. Save the csv_test.go file and create the main_test.go file.
	
	
	
	
	

	
	
	
	
	In the main_test.go file, add the package definition and the import section. For these tests, you’ll use the bytes package to create buffers to capture the output, the errors package to verify errors, the os package to validate operating system errors, and the testing package, which is required to execute tests.
performance/colStats/main_test.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"errors"​

	​ 	 ​"os"​
	​ 	 ​"testing"​
	​)

For the integration tests, test the function run that coordinates the entire program’s execution. Add the test function:
performance/colStats/main_test.go
	​ 	​func​ TestRun(t *testing.T) {

Inside the function block, define the test cases. For these tests, each case contains the name, the column col, the operation op, the expected result exp, a slice of strings with the name of the input files files, and the expected error expErr:
performance/colStats/main_test.go
	​ 	​// Test cases for Run Tests​
	​ 	testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 col ​int​
	​ 	 op ​string​
	​ 	 exp ​string​
	​ 	 files []​string​
	​ 	 expErr ​error​
	​ 	}{
	​ 	 {name: ​"RunAvg1File"​, col: 3, op: ​"avg"​, exp: ​"227.6​​\n​​"​,
	​ 	 files: []​string​{​"./testdata/example.csv"​},
	​ 	 expErr: nil,
	​ 	 },
	​ 	 {name: ​"RunAvgMultiFiles"​, col: 3, op: ​"avg"​, exp: ​"233.84​​\n​​"​,
	​ 	 files: []​string​{​"./testdata/example.csv"​, ​"./testdata/example2.csv"​},
	​ 	 expErr: nil,
	​ 	 },
	​ 	 {name: ​"RunFailRead"​, col: 2, op: ​"avg"​, exp: ​""​,
	​ 	 files: []​string​{​"./testdata/example.csv"​, ​"./testdata/fakefile.csv"​},
	​ 	 expErr: os.ErrNotExist,
	​ 	 },

	​ 	 {name: ​"RunFailColumn"​, col: 0, op: ​"avg"​, exp: ​""​,
	​ 	 files: []​string​{​"./testdata/example.csv"​},
	​ 	 expErr: ErrInvalidColumn,
	​ 	 },
	​ 	 {name: ​"RunFailNoFiles"​, col: 2, op: ​"avg"​, exp: ​""​,
	​ 	 files: []​string​{},
	​ 	 expErr: ErrNoFiles,
	​ 	 },
	​ 	 {name: ​"RunFailOperation"​, col: 2, op: ​"invalid"​, exp: ​""​,
	​ 	 files: []​string​{​"./testdata/example.csv"​},
	​ 	 expErr: ErrInvalidOperation,
	​ 	 },
	​ 	}

These test cases include executing tests that provide a single file or multiple files. They also include several failure cases such as providing no files or an invalid column number. Since you’re using files as input for these tests, you’ll create them in the testdata directory shortly.

Add this code to execute the tests, looping through the test cases and using the table-driven testing pattern:
performance/colStats/main_test.go
	​ 	 ​// Run tests execution​
	​ 	 ​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 ​var​ res bytes.Buffer
	​ 	 err := run(tc.files, tc.op, tc.col, &res)
	​ 	
	​ 	 ​if​ tc.expErr != nil {
	​ 	 ​if​ err == nil {
	​ 	 t.Errorf(​"Expected error. Got nil instead"​)
	​ 	 }
	​ 	
	​ 	 ​if​ ! errors.Is(err, tc.expErr) {
	​ 	 t.Errorf(​"Expected error %q, got %q instead"​, tc.expErr, err)
	​ 	 }
	​ 	
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 t.Errorf(​"Unexpected error: %q"​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ res.String() != tc.exp {
	​ 	 t.Errorf(​"Expected %q, got %q instead"​, tc.exp, &res)
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

This loop is almost the same as the previous one you wrote for the csv2float tests, including the error checking. The main difference is defining a bytes.Buffer to capture the output and executing the run function instead.

	
	Finally, to complete the tests you need to create the input CSV files for the integration tests. You’ll create them under the testdata subdirectory in the project directory. This is the recommended practice for adding files required by the tests as this directory is ignored by the Go build tools. In your project directory, create the subdirectory:
	​ 	​$ ​​mkdir​​ ​​testdata​

Then create the two files example.csv and example2.csv under the testdata directory:
	​ 	​$ ​​cat​​ ​​<<​​ ​​'EOF'​​ ​​>​​ ​​testdata/example.csv​
	​ 	​>​​ ​​IP​​ ​​Address,Timestamp,Response​​ ​​Time,Bytes​
	​ 	​>​​ ​​192.168.0.199,1520698621,236,3475​
	​ 	​>​​ ​​192.168.0.88,1520698776,220,3200​
	​ 	​>​​ ​​192.168.0.199,1520699033,226,3200​
	​ 	​>​​ ​​192.168.0.100,1520699142,218,3475​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​EOF​
	​ 	
	​ 	​$ ​​cat​​ ​​<<​​ ​​'EOF'​​ ​​>​​ ​​testdata/example2.csv​
	​ 	​>​​ ​​IP​​ ​​Address,Timestamp,Response​​ ​​Time,Bytes​
	​ 	​>​​ ​​192.168.0.199,1520698621,236,3475​
	​ 	​>​​ ​​192.168.0.88,1520698776,220,3200​
	​ 	​>​​ ​​192.168.0.199,1520699033,226,3200​
	​ 	​>​​ ​​192.168.0.100,1520699142,218,3475​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​192.168.0.199,1520699379,238,3822​
	​ 	​>​​ ​​EOF​

	
	Verify that the files are there with the tree command:
	​ 	​$ ​​tree​
	​ 	.
	​ 	├── csv.go
	​ 	├── csv_test.go
	​ 	├── errors.go
	​ 	├── go.mod
	​ 	├── main.go
	​ 	├── main_test.go
	​ 	└── testdata
	»	 ├── example2.csv
	»	 └── example.csv
	​ 	
	​ 	1 directory, 8 files

	
	
	You’re ready to test your tool. Execute all the tests in verbose mode, using go test -v to see detailed output for all the tests:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestOperations
	​ 	=== RUN TestOperations/SumData0
	​ 	=== RUN TestOperations/SumData1
	​ 	=== RUN TestOperations/SumData2
	​ 	=== RUN TestOperations/SumData3
	​ 	=== RUN TestOperations/AvgData0
	​ 	=== RUN TestOperations/AvgData1
	​ 	=== RUN TestOperations/AvgData2
	​ 	=== RUN TestOperations/AvgData3
	​ 	--- PASS: TestOperations (0.00s)
	​ 	 --- PASS: TestOperations/SumData0 (0.00s)
	​ 	 --- PASS: TestOperations/SumData1 (0.00s)
	​ 	 --- PASS: TestOperations/SumData2 (0.00s)
	​ 	 --- PASS: TestOperations/SumData3 (0.00s)
	​ 	 --- PASS: TestOperations/AvgData0 (0.00s)
	​ 	 --- PASS: TestOperations/AvgData1 (0.00s)
	​ 	 --- PASS: TestOperations/AvgData2 (0.00s)
	​ 	 --- PASS: TestOperations/AvgData3 (0.00s)
	​ 	=== RUN TestCSV2Float
	​ 	=== RUN TestCSV2Float/Column2
	​ 	=== RUN TestCSV2Float/Column3
	​ 	=== RUN TestCSV2Float/FailRead
	​ 	=== RUN TestCSV2Float/FailedNotNumber
	​ 	=== RUN TestCSV2Float/FailedInvalidColumn
	​ 	--- PASS: TestCSV2Float (0.00s)
	​ 	 --- PASS: TestCSV2Float/Column2 (0.00s)
	​ 	 --- PASS: TestCSV2Float/Column3 (0.00s)
	​ 	 --- PASS: TestCSV2Float/FailRead (0.00s)
	​ 	 --- PASS: TestCSV2Float/FailedNotNumber (0.00s)
	​ 	 --- PASS: TestCSV2Float/FailedInvalidColumn (0.00s)

	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/RunAvg1File
	​ 	=== RUN TestRun/RunAvgMultiFiles
	​ 	=== RUN TestRun/RunFailRead
	​ 	=== RUN TestRun/RunFailColumn
	​ 	=== RUN TestRun/RunFailNoFiles
	​ 	=== RUN TestRun/RunFailOperation
	​ 	--- PASS: TestRun (0.00s)
	​ 	 --- PASS: TestRun/RunAvg1File (0.00s)
	​ 	 --- PASS: TestRun/RunAvgMultiFiles (0.00s)
	​ 	 --- PASS: TestRun/RunFailRead (0.00s)
	​ 	 --- PASS: TestRun/RunFailColumn (0.00s)
	​ 	 --- PASS: TestRun/RunFailNoFiles (0.00s)
	​ 	 --- PASS: TestRun/RunFailOperation (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 0.004s

You can also build the program and try it out. Let’s use it to find the average value of the third column on the file testdata/example.csv:
	​ 	​$ ​​go​​ ​​build​
	​ 	​$ ​​./colStats​​ ​​-op​​ ​​avg​​ ​​-col​​ ​​3​​ ​​testdata/example.csv​
	​ 	227.6

The tool also works on multiple input files:
	​ 	​$ ​​./colStats​​ ​​-op​​ ​​avg​​ ​​-col​​ ​​3​​ ​​testdata/example.csv​​ ​​testdata/example2.csv​
	​ 	233.84

With your tests in place, you can quickly validate that the tool continues working as designed while you refactor it. Now let’s benchmark the tool to assess whether its performance is acceptable.
	
	

Benchmarking Your Tool

	
	
	 Before you start thinking about improving the performance of your tools or programs, you first need to determine what the current status is and define a baseline for comparison. For this exercise, we’ll state that performance means how fast the tool takes to process its workload. Perhaps it’s currently good enough, but we may not know. To determine the current state, we need to measure it.

	
	
	 In the Linux/Unix world the quickest way to determine how fast your applications works is by using the time command. The time command executes the application and prints out how long it took to run. For example, to measure how long your tool takes to process data from the two test files in the testdata directory, run this command:
	​ 	​$ ​​time​​ ​​./colStats​​ ​​-op​​ ​​avg​​ ​​-col​​ ​​3​​ ​​testdata/example.csv​​ ​​testdata/example2.csv​
	​ 	233.84
	​ 	
	​ 	real 0m0.008s
	​ 	user 0m0.001s
	​ 	sys 0m0.008s

In this example, it took 0.008 seconds to process those two files. The output line starting with real shows the total elapsed time.

This value doesn’t look bad. In fact, if all you’re planning to do with this tool is to process a few small files, then this is good enough and you don’t need to do anything more. But let’s assume that this tool will be used to process performance data coming from hundreds or thousands of files.

When you’re benchmarking your tools or programs, it’s important to know your workload. Programs behave differently depending on the type of load they’re submitted to. Let’s change our example to process a thousand files at once. The code included with this book has a tarball file containing one thousand CSV files. Copy the file colStatsBenchmarkData.tar.gz to your project’s root directory and extract the contents of this file into the testdata directory:
	​ 	​$ ​​tar​​ ​​-xzvf​​ ​​colStatsBenchmarkData.tar.gz​​ ​​-C​​ ​​testdata/​
	​ 	benchmark/
	​ 	benchmark/file307.csv
	​ 	benchmark/file932.csv
	​ 	... skipping long output...
	​ 	benchmark/file268.csv
	​ 	benchmark/file316.csv
	​ 	benchmark/file328.csv
	​ 	​$​
	​ 	​$​​ ​​ls​​ ​​testdata/​
	​ 	benchmark example2.csv example.csv

This command created the directory benchmark under testdata containing a thousand files. These files are simple CSV files with two columns: the first containing text and the second containing a random number. Take a look at one of the files using the head command:
	​ 	​$ ​​head​​ ​​-5​​ ​​testdata/benchmark/file1.csv​
	​ 	Col1,Col2
	​ 	Data0,60707
	​ 	Data1,25641
	​ 	Data2,79731
	​ 	Data3,18485

Each file has 2501 lines where the first is the title row. The total number of data lines for this set is 2.5 million:
	​ 	​$ ​​wc​​ ​​-l​​ ​​testdata/benchmark/file1.csv​
	​ 	2501 testdata/benchmark/file1.csv
	​ 	​$ ​​wc​​ ​​-l​​ ​​testdata/benchmark/*.csv​
	​ 	 2501 testdata/benchmark/file0.csv
	​ 	 2501 testdata/benchmark/file100.csv
	​ 	 ... skipping long output...
	​ 	 2501 testdata/benchmark/file99.csv
	​ 	 2501 testdata/benchmark/file9.csv
	​ 	 2501000 total

Execute the tool again to calculate the average of the second column in all these files:
	​ 	​$ ​​time​​ ​​./colStats​​ ​​-op​​ ​​avg​​ ​​-col​​ ​​2​​ ​​testdata/benchmark/*.csv​
	​ 	50006.0653788
	​ 	
	​ 	real 0m1.217s
	​ 	user 0m1.174s
	​ 	sys 0m0.083s
	​ 	​$​

As you can see, the time has increased to 1.2 seconds. This is still a small amount of time, but it’s orders of magnitude larger than the first one of 0.008 seconds. If you follow this trend, you can extrapolate this to an even larger number if you keep increasing the number of files to process.
	
	
	

	
	
	
	 Go provides a much richer benchmark feature included with the testing package. Running Go benchmarks is similar to executing tests. First, you write the benchmark functions in the test file using the testing.B type included in the testing package. Then you run the benchmarks using the go test tool with the -bench parameter. You can find more information about the benchmark tool in the documentation.[27]

	
	
	 Let’s write a benchmark function to benchmark the tool. Open the file main_test.go in your editor and add two new packages to the import section: ioutil, which provides Input/Output utilities, and filepath, which provides multiplatform functions to interact with the file system:
performance/colStats/main_test.go
	​ 	​"io/ioutil"​
	​ 	​"path/filepath"​

Then add the benchmark function definition at the bottom of the file, after all the tests:
performance/colStats/main_test.go
	​ 	​func​ BenchmarkRun(b *testing.B) {

The benchmark function takes a single input parameter: a pointer to a testing.B type. This type provides the methods and fields you can use to control your benchmark, such as the benchmark time or the number of iterations to perform.

	
	 Inside the function’s body, define a new variable called filenames which contains all the files you’ll use for the benchmark. You want to benchmark the tool according to the main use case: processing hundreds of files. Use the Glob function from the filepath module to create a slice containing the names of all files in the testdata/benchmark directory:
performance/colStats/main_test.go
	​ 	filenames, err := filepath.Glob(​"./testdata/benchmark/*.csv"​)
	​ 	​if​ err != nil {
	​ 	 b.Fatal(err)
	​ 	}

	
	 Then, before you run the main benchmark loop, use the ResetTimer function from the B type to reset the benchmark clock. This is important as it will ignore any time used in preparing for the benchmark’s execution.
performance/colStats/main_test.go
	​ 	b.ResetTimer()

Execute the benchmark using a loop where the upper limit is defined by b.N, where b.N is adjusted by the benchmark function according to the program’s speed to last roughly one second. For each iteration of the loop, execute the run function to benchmark the entire tool:
performance/colStats/main_test.go
	​ 	 ​for​ i := 0; i < b.N; i++ {
	​ 	 ​if​ err := run(filenames, ​"avg"​, 2, ioutil.Discard); err != nil {
	​ 	 b.Error(err)
	​ 	 }
	​ 	 }
	​ 	}

	
	 For this execution of run, you’re providing the variable ioutil.Discard as the output destination. This variable implements the io.Writer interface but discards anything written to it. Since the output itself is irrelevant for the benchmark, you can safely discard it.

	
	
	
	
	
	
	
	
	 Save the file so you can execute the benchmark. To run the benchmarks, use the go test tool with the -bench regexp parameter. The regexp parameter is a regular expression that matches the benchmarks you want to execute. In this case, you can use the . (dot) to execute all the benchmarks. In addition, provide the argument -run ^$ to skip running any of the tests in the test file while executing the benchmark to prevent impacting the results.
	​ 	​$ ​​go​​ ​​test​​ ​​-bench​​ ​​.​​ ​​-run​​ ​​^$​
	​ 	goos: linux
	​ 	goarch: amd64
	​ 	pkg: pragprog.com/rggo/performance/colStats
	​ 	Benchmark_Run-4 1 1181570105 ns/op
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 1.193s
	​ 	​$​

The benchmark only executed one time. This is because it processed a thousand files and it took more than one second to complete. The benchmark tool also prints the average time per operation in nanoseconds. In this case, each operation is taking 1,181,570,105 ns which is roughly 1.2 seconds.

	
	 Because you’re processing many files, the benchmark doesn’t have time to execute more than once. You can force additional executions by using the -benchtime parameter. This parameter accepts a duration in time for the benchmark or a fixed number of executions. For example, let’s set it for ten executions:
	​ 	​$ ​​go​​ ​​test​​ ​​-bench​​ ​​.​​ ​​-benchtime=10x​​ ​​-run​​ ​​^$​
	​ 	goos: linux
	​ 	goarch: amd64
	​ 	pkg: pragprog.com/rggo/performance/colStats
	​ 	Benchmark_Run-4 10 1024746971 ns/op
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 11.414s

By executing the benchmark more times, we get rid of potential noise that can skew the results. In this case, you can see that the tool is taking an average of about one second to process all the files.

	
	
	Save this output to a file so you can compare it with future executions later and see if it’s improving. You can use the tee command on a Linux/Unix system to output the results of the benchmark to STDOUT and to a file at the same time. This way you save the results for later while quickly reviewing the results onscreen.
	​ 	​$ ​​go​​ ​​test​​ ​​-bench​​ ​​.​​ ​​-benchtime=10x​​ ​​-run​​ ​​^$​​ ​​|​​ ​​tee​​ ​​benchresults00.txt​
	​ 	goos: linux
	​ 	goarch: amd64
	​ 	pkg: pragprog.com/rggo/performance/colStats
	​ 	Benchmark_Run-4 10 1020311416 ns/op
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 11.508s
	​ 	​$ ​​ls​
	​ 	benchresults00.txt colStats main.go main_test.go testdata

This result represents our baseline for comparison. Next, let’s profile the tool’s execution and look for improvement areas.
	
	
	
	
	

Profiling Your Tool

	
	
	Go provides several tools to help you analyze your programs for performance-related issues. You’ve already seen the benchmarking feature and how you can use it to accurately determine how fast your programs execute. In addition to benchmarks, Go provides two analytical tools to help you find contentions or bottlenecks in your programs: the profiling and tracing tools.

You’ll explore the tracing tool in ​Tracing Your Tool​. For now, let’s dive into the profiling tool.

The Go profiler shows you a breakdown of where your program spends its execution time. By running the profiler, you can determine which functions consume most of the program’s execution time and target them for optimization.

You have two ways to enable profiling on your programs: by adding code directly to your program or by running the profiler integrated with the testing and benchmarking tools. The first approach requires that you maintain additional code in your application and control the profiling execution yourself. The second approach tends to be easier since it’s already integrated with the benchmark tool, so you don’t need to add any more code to your program. You’ll use this approach in this example since you already have a benchmark available.

	
	
	
	Run the benchmarks again, but this time, enable the CPU profiler:
	​ 	​$ ​​go​​ ​​test​​ ​​-bench​​ ​​.​​ ​​-benchtime=10x​​ ​​-run​​ ​​^$​​ ​​-cpuprofile​​ ​​cpu00.pprof​
	​ 	goos: linux
	​ 	goarch: amd64
	​ 	pkg: pragprog.com/rggo/performance/colStats
	​ 	Benchmark_Run-4 10 1012377660 ns/op
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 11.438s
	​ 	​$ ​​ls​
	​ 	benchresults00.txt colStats colStats.test cpu00.pprof
	​ 	main.go main_test.go testdata

When you execute the profiler this way, it creates two files: the profile cpu00.pprof as specified in the command-line; and the compiled binary colStats.test. If you’re using a Go version older than 1.10, you need to pass this binary file when using the go tool pprof later to analyze the profile. This isn’t required for newer versions of Go.

	
	
	Analyze the profiling results by using the go tool pprof command, providing the profile name that you created previously:
	​ 	​$ ​​go​​ ​​tool​​ ​​pprof​​ ​​cpu00.pprof​
	​ 	File: colStats.test
	​ 	Type: cpu
	​ 	Time: Apr 9, 2019 at 11:21pm (EDT)
	​ 	Duration: 11.31s, Total samples = 12.04s (106.42%)
	​ 	Entering interactive mode (type "help" for commands, "o" for options)
	​ 	(pprof)

When the profiler is enabled, it stops the program execution every 10 milliseconds and takes a sample of the function stack. This sample contains all functions that are executing or waiting to execute at that time. The more often a function appears in these samples, the more time your program is spending on that function. Use the top command on the pprof prompt to see where your program is spending most of its time:
	
	
	​ 	(pprof) top
	​ 	Showing nodes accounting for 7770ms, 64.53% of 12040ms total
	​ 	Dropped 132 nodes (cum <= 60.20ms)
	​ 	Showing top 10 nodes out of 78
	​ 	 flat flat% sum% cum cum%
	​ 	 1810ms 15.03% 15.03% 1920ms 15.95% runtime.heapBitsSetType
	​ 	 1200ms 9.97% 25.00% 6980ms 57.97% encoding/csv.(*Reader).readRecord
	​ 	 870ms 7.23% 32.23% 4450ms 36.96% runtime.mallocgc
	​ 	 770ms 6.40% 38.62% 770ms 6.40% runtime.memmove
	​ 	 770ms 6.40% 45.02% 770ms 6.40% strconv.readFloat
	​ 	 690ms 5.73% 50.75% 690ms 5.73% indexbytebody
	​ 	 640ms 5.32% 56.06% 640ms 5.32% runtime.memclrNoHeapPointers
	​ 	 410ms 3.41% 59.47% 930ms 7.72% bufio.(*Reader).ReadSlice
	​ 	 340ms 2.82% 62.29% 340ms 2.82% runtime.nextFreeFast
	​ 	 270ms 2.24% 64.53% 8350ms 69.35% encoding/csv.(*Reader).ReadAll
	​ 	(pprof)

By default, the top subcommand sorts the function based on flat time, which means the time the function spends executing on the CPU. In this example, the program spent about 15% of its CPU time executing the function runtime.heapBitsSetType. But it’s difficult to understand the context from this view alone. You can sort based on the cumulative time by using the option -cum with the top command:
	
	
	​ 	(pprof) top -cum
	​ 	Showing nodes accounting for 4.42s, 36.71% of 12.04s total
	​ 	Dropped 132 nodes (cum <= 0.06s)

	​ 	Showing top 10 nodes out of 78
	​ 	 flat flat% sum% cum cum%
	​ 	 0 0% 0% 10.75s 89.29% pragprog.com/.../colStats.Benchmark_Run
	​ 	 0 0% 0% 10.75s 89.29% pragprog.com/.../colStats.run
	​ 	 0 0% 0% 10.75s 89.29% testing.(*B).runN
	​ 	 0.19s 1.58% 1.58% 10.24s 85.05% pragprog.com/.../colStats.csv2float
	​ 	 0 0% 1.58% 9.70s 80.56% testing.(*B).launch
	​ 	 0.27s 2.24% 3.82% 8.35s 69.35% encoding/csv.(*Reader).ReadAll
	​ 	 1.20s 9.97% 13.79% 6.98s 57.97% encoding/csv.(*Reader).readRecord
	​ 	 0.87s 7.23% 21.01% 4.45s 36.96% runtime.mallocgc
	​ 	 0.08s 0.66% 21.68% 2.68s 22.26% runtime.makeslice
	​ 	 1.81s 15.03% 36.71% 1.92s 15.95% runtime.heapBitsSetType
	​ 	(pprof)

The cumulative time accounts for the time the function was executing or waiting for a called function to return. In our example, the program spends most of its time on functions related to the benchmark functionality, which are irrelevant to us. You can see from this output that your program is spending over 85% of its time on the csv2float function. This is important since this is a function that you wrote.

You can take a deeper look at how this function is spending its time by using the list subcommand. This subcommand displays the source code of the function annotated with the time spent to run each line of code. This subcommand takes a regular expression parameter. It shows the source code for any functions matching the regular expression. Use it to list the contents of the csv2float function:
	
	
	​ 	(pprof) list csv2float
	​ 	Total: 12.04s
	​ 	... skipping long output...
	​ 	 . . 91: column--
	​ 	 . . 92:
	​ 	 . . 93: // Read in all CSV data
	​ 	 . 8.35s 94: allData, err := cr.ReadAll()
	​ 	 . . 95: if err != nil {
	​ 	... skipping long output...
	​ 	(pprof)

This output shows that the program is spending 8.35s of the total 12.04s that the benchmark took to complete the ReadAll function. That’s a long time. You need to dig into that function to see how it’s spending its time. You could continue to use the list subcommand to do this, but you have an easier, more visual way to find the relationship between the functions.

	
	
	Run the subcommand web to generate a relationship graph. The web subcommand requires the graphviz[28] libraries to work. You can install the required libraries using your Linux package manager. For other operating systems, check the Graphviz download page.[29] The resulting graph opens automatically in your default browser:
	
	
	​ 	(pprof) web

Take a look at the generated graph shown in Figure 3.
[image: images/performance/profile001.png]

Figure 3. CPU Profiler Graph

The graph shows the hot path, or the path where the program spends most of its time, in red. Based on this graph, the program spends close to 37% of the total time in runtime.mallocgc, which you can trace back to ReadAll from three different points. The runtime.mallocgc function allocates memory and runs the garbage collector. This means that we’re spending a lot of time in garbage collection due to memory allocation.

Quit the profile visualization tool by typing quit at the interactive prompt:
	
	
	​ 	(pprof) quit

	
	
	
	
	
	
	
	You can see how much memory the program is allocating by executing a memory profile. The procedure is similar to creating a CPU profile, but you use the -memprofile option instead. Run the benchmark again with this option to create a memory profile:
	​ 	​$ ​​go​​ ​​test​​ ​​-bench​​ ​​.​​ ​​-benchtime=10x​​ ​​-run​​ ​​^$​​ ​​-memprofile​​ ​​mem00.pprof​
	​ 	goos: linux
	​ 	goarch: amd64
	​ 	pkg: pragprog.com/rggo/performance/colStats
	​ 	Benchmark_Run-4 10 1030229000 ns/op
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 11.762s

	
	
	This command saved the memory profile to the mem00.pprof file. You can view the results using the go tool pprof again, passing the option -alloc_space to see the allocated memory:
	​ 	​$ ​​go​​ ​​tool​​ ​​pprof​​ ​​-alloc_space​​ ​​mem00.pprof​
	​ 	File: colStats.test
	​ 	Type: alloc_space
	​ 	Time: Apr 11, 2019 at 12:07am (EDT)
	​ 	Entering interactive mode (type "help" for commands, "o" for options)
	​ 	(pprof)

	
	Similarly to the CPU profiler, use the subcommand top -cum to see the cumulative allocated memory:
	​ 	(pprof) top -cum
	​ 	Showing nodes accounting for 5.81GB, 100% of 5.82GB total
	​ 	Dropped 10 nodes (cum <= 0.03GB)
	​ 	Showing top 10 nodes out of 11
	​ 	 flat flat% sum% cum cum%
	​ 	 0 0% 0% 5.81GB 100% pragprog.com/.../colStats.Benchmark_Run
	​ 	 1.05GB 18.03% 18.03% 5.81GB 100% pragprog.com/...ormance/colStats.run
	​ 	 0 0% 18.03% 5.81GB 100% testing.(*B).runN
	​ 	 0 0% 18.03% 5.27GB 90.55% testing.(*B).launch
	​ 	 0.80GB 13.84% 31.87% 4.76GB 81.93% pragprog.com/.../colStats.csv2float
	​ 	 2.66GB 45.78% 77.65% 3.92GB 67.38% encoding/csv.(*Reader).ReadAll
	​ 	 1.26GB 21.60% 99.26% 1.26GB 21.60% encoding/csv.(*Reader).readRecord
	​ 	 0 0% 99.26% 0.55GB 9.44% testing.(*B).run1.func1
	​ 	 0 0% 99.26% 0.04GB 0.71% bufio.NewReader
	​ 	 0.04GB 0.71% 100% 0.04GB 0.71% bufio.NewReaderSize
	​ 	(pprof)

As we suspected, the ReadAll function from the encoding/csv package is responsible for the allocation of almost 4GB of memory, which corresponds to 67% of all the memory allocation for this program. The more memory we allocate, the more garbage collection has to run, increasing the time it takes to run the program.
	
	
	
	
	

	
	
	
	We need to find a way to reduce the memory allocation, but before we try that, run the benchmark one more time, using the parameter -benchmem to display the total memory allocation. You can use this value later to compare and see if our modifications are improving it. Save the result to the file benchresults00m.txt piping it to the tee command:
	​ 	​$ ​​go​​ ​​test​​ ​​-bench​​ ​​.​​ ​​-benchtime=10x​​ ​​-run​​ ​​^$​​ ​​-benchmem​​ ​​|​​ ​​tee​​ ​​benchresults00m.txt​
	​ 	goos: linux
	​ 	goarch: amd64
	​ 	pkg: pragprog.com/rggo/performance/colStats
	​ 	 Benchmark_Run-4 10 1042029902 ns/op \
	​ 	 564385222 B/op 5043008 allocs/op
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 11.627s

Now you’re ready to address the memory allocation issue.
	
	

Reducing Memory Allocation

	
	
	
	You now know that the tool spends a lot of time with the garbage collector because it’s allocating too much memory. You also know that the bulk of the memory allocation comes from the ReadAll function of the encoding/csv package, which you’re calling from the csv2float function.

	
	
	If you follow the program’s logic, it’s reading all the records from each CSV file into memory and then processing them one at a time with a loop, storing the result in another slice. It’s not doing anything that requires the entire content of the file to be in memory, so you can replace the calls to ReadAll with the function Read from the encoding/csv package. This function reads one record at a time, so you can execute it directly inside the loop, preventing the whole file from being read at once.

Start by removing the call to ReadAll and the associated error check. Remove these lines from the csv2float function in the csv.go file:
	​ 	​// Read in all CSV data​
	​ 	allData, err := cr.ReadAll()
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, fmt.Errorf(​"Cannot read data from file: %w"​, err)
	​ 	}

	
	Next, replace the loop header. Instead of using the range operator on allData, use an infinite loop since you don’t know beforehand how many records it needs to read:
performance/colStats.v1/csv.go
	​ 	​for​ i := 0; ; i++ {

Inside the loop, use the Read function to read a record from the file:
performance/colStats.v1/csv.go
	​ 	row, err := cr.Read()

Since you’re using an infinite loop, you need to determine when you reach the end of the file and break out of the loop to ensure the program doesn’t run forever. Do this by checking if the call to Read returns an error of type io.EOF and then break out of the loop. Also, check and return any unexpected errors:
performance/colStats.v1/csv.go
	​ 	​if​ err == io.EOF {
	​ 	 ​break​
	​ 	}
	​ 	
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, fmt.Errorf(​"Cannot read data from file: %w"​, err)
	​ 	}

Finally, now that you’re using the Read method to read in each record, you can enable its ReuseRecord option to reuse the same slice for each read operation, reducing the memory allocation even more. Set this option to the variable cr of type csv.Reader right after you define it at the beginning of the function:
performance/colStats.v1/csv.go
	​ 	​// Create the CSV Reader used to read in data from CSV files​
	​ 	cr := csv.NewReader(r)
	​ 	cr.ReuseRecord = true

Your complete csv2float function now looks like this:
performance/colStats.v1/csv.go
	​ 	​func​ csv2float(r io.Reader, column ​int​) ([]​float64​, ​error​) {
	​ 	 ​// Create the CSV Reader used to read in data from CSV files​
	​ 	 cr := csv.NewReader(r)
	​ 	 cr.ReuseRecord = true
	​ 	
	​ 	 ​// Adjusting for 0 based index​
	​ 	 column--
	​ 	
	​ 	 ​var​ data []​float64​
	​ 	
	​ 	 ​// Looping through all records​
	​ 	 ​for​ i := 0; ; i++ {
	​ 	 row, err := cr.Read()
	​ 	 ​if​ err == io.EOF {
	​ 	 ​break​
	​ 	 }
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, fmt.Errorf(​"Cannot read data from file: %w"​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ i == 0 {
	​ 	 ​continue​
	​ 	 }
	​ 	
	​ 	 ​// Checking number of columns in CSV file​
	​ 	 ​if​ len(row) <= column {
	​ 	 ​// File does not have that many columns​
	​ 	 ​return​ nil,
	​ 	 fmt.Errorf(​"%w: File has only %d columns"​, ErrInvalidColumn, len(row))
	​ 	 }
	​ 	
	​ 	 ​// Try to convert data read into a float number​
	​ 	 v, err := strconv.ParseFloat(row[column], 64)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, fmt.Errorf(​"%w: %s"​, ErrNotNumber, err)
	​ 	 }
	​ 	
	​ 	 data = append(data, v)
	​ 	 }
	​ 	
	​ 	 ​// Return the slice of float64 and nil error​
	​ 	 ​return​ data, nil
	​ 	}

	
	
	Once you’re done refactoring the code, execute the tests again to ensure it still works as designed:
	​ 	​$ ​​go​​ ​​test​
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 0.006s

	
	
	All the tests passed, so execute the benchmark again to see if the updates improved the program. Run the benchmark and save the results to the file benchresults01m.txt to compare with the previous results:
	​ 	​$ ​​go​​ ​​test​​ ​​-bench​​ ​​.​​ ​​-benchtime=10x​​ ​​-run​​ ​​^$​​ ​​-benchmem​​ ​​|​​ ​​tee​​ ​​benchresults01m.txt​
	​ 	goos: linux
	​ 	goarch: amd64
	​ 	pkg: pragprog.com/rggo/performance/colStats
	​ 	Benchmark_Run-4 10 618936266 ns/op \
	​ 	 230447420 B/op 2527988 allocs/op
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 6.981s

	
	You can see right away that the benchmark executed faster, in almost 7 seconds, compared to the previous 12 seconds. That’s a good improvement. You can determine how much faster this new version is by comparing both benchmark results with a tool called benchcmp. Install it on your system by running this command:
	​ 	​$ ​​go​​ ​​get​​ ​​-u​​ ​​-v​​ ​​golang.org/x/tools/cmd/benchcmp​

Now, run benchcmp providing the previous and current benchmarks results files:
	​ 	​$ ​​benchcmp​​ ​​benchresults00m.txt​​ ​​benchresults01m.txt​
	​ 	benchmark old ns/op new ns/op delta
	​ 	Benchmark_Run-4 1018451552 618936266 -39.23%
	​ 	
	​ 	benchmark old allocs new allocs delta
	​ 	Benchmark_Run-4 5043009 2527988 -49.87%
	​ 	
	​ 	benchmark old bytes new bytes delta
	​ 	Benchmark_Run-4 564385358 230447420 -59.17%

As you can see, the changes improved the program’s execution time by close to 40% while reducing memory allocation by half. Less allocation, less garbage collection.

	
	
	Run the profiler again to see what the CPU utilization looks like now:
	​ 	​$ ​​go​​ ​​test​​ ​​-bench​​ ​​.​​ ​​-benchtime=10x​​ ​​-run​​ ​​^$​​ ​​-cpuprofile​​ ​​cpu01.pprof​
	​ 	goos: linux
	​ 	goarch: amd64
	​ 	pkg: pragprog.com/rggo/performance/colStats
	​ 	Benchmark_Run-4 10 617226982 ns/op
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 7.129s

	
	Use the go tool pprof on the new file to view the results. List the top 10 functions by cumulative time.
	​ 	​$ ​​go​​ ​​tool​​ ​​pprof​​ ​​cpu01.pprof​
	​ 	File: colStats.v1.test
	​ 	Type: cpu
	​ 	Time: Apr 11, 2019 at 12:40am (EDT)
	​ 	Duration: 7.11s, Total samples = 7.31s (102.83%)
	​ 	Entering interactive mode (type "help" for commands, "o" for options)
	​ 	(pprof) top -cum
	​ 	Showing nodes accounting for 2160ms, 29.55% of 7310ms total
	​ 	Dropped 84 nodes (cum <= 36.55ms)
	​ 	Showing top 10 nodes out of 77
	​ 	 flat flat% sum% cum cum%
	​ 	 0 0% 0% 6690ms 91.52% pragprog.com/...lStats%2ev1.Benchmark_Run
	​ 	 0 0% 0% 6690ms 91.52% pragprog.com/.../colStats%2ev1.run
	​ 	 0 0% 0% 6690ms 91.52% testing.(*B).runN
	​ 	 200ms 2.74% 2.74% 6280ms 85.91% pragprog.com/.../colStats%2ev1.csv2float
	​ 	 0 0% 2.74% 6020ms 82.35% testing.(*B).launch
	​ 	 200ms 2.74% 5.47% 4710ms 64.43% encoding/csv.(*Reader).Read
	​ 	 1250ms 17.10% 22.57% 4510ms 61.70% encoding/csv.(*Reader).readRecord
	​ 	 110ms 1.50% 24.08% 1220ms 16.69% strconv.ParseFloat
	​ 	 220ms 3.01% 27.09% 1110ms 15.18% strconv.atof64
	​ 	 180ms 2.46% 29.55% 1090ms 14.91% runtime.slicebytetostring
	​ 	(pprof)

The profiling has changed slightly. The top part is still the same, as the same functions are responsible for executing the program. The csv2float function is still there, which also makes sense. But in the bottom part of the output, the functions related to memory allocation and garbage collection are no longer in the top 10. This is the result of the changes you’ve made to the code.

You can continue to explore the profiler and look for other areas for improvement. When you’re done, type quit to close the pprof tool. For our example, let’s assume that we are satisfied with the current results.

Next, let’s run the tracer on the program to see if we can find other areas for improvement, outside the CPU execution time.
	
	
	

Tracing Your Tool

	
	
	The Go profiler is a great tool to help you understand how your program is spending CPU time. However, sometimes a program is spending time waiting for resources to be available. For example, it could be spending time waiting for a network connection or a file to be read. To help you understand those cases, Go provides another tool: the Tracer.

	
	
	Similarly to the profiler, the tracer is also integrated with the testing and benchmarking features through the go test tool. Run the benchmarks again with the -trace option to create a trace:
	​ 	​$ ​​go​​ ​​test​​ ​​-bench​​ ​​.​​ ​​-benchtime=10x​​ ​​-run​​ ​​^$​​ ​​-trace​​ ​​trace01.out​
	​ 	goos: linux
	​ 	goarch: amd64
	​ 	pkg: pragprog.com/rggo/performance/colStats
	​ 	Benchmark_Run-4 10 685356800 ns/op
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 7.712s

	
	
	Once the trace is created, view the results with the go tool trace command:
	​ 	​$ ​​go​​ ​​tool​​ ​​trace​​ ​​trace01.out​
	​ 	2019/04/14 14:55:26 Parsing trace...
	​ 	2019/04/14 14:55:27 Splitting trace...
	​ 	2019/04/14 14:55:28 Opening browser. Trace viewer is listening on
	​ 	 http://127.0.0.1:45561

The go tool trace command parses the contents of the trace file and makes the results available on a web server running on a random port on localhost. You can see the URL in the output. It will also try to open this URL in your default browser automatically. Switch to your browser to see the index page as shown in Figure 4:
[image: images/performance/trace01_index.png]

Figure 4. Go Tracer Results Index

	
	The Go tracer captures several types of events related to your program execution, such as details about Goroutines, syscalls, network calls, heap size, garbage collector activity, and more. The index page gives you an idea of resources you can check. Start viewing the trace by clicking the View trace link as shown in Figure 5:
[image: images/performance/trace01_trace.png]

Figure 5. Go Tracer Viewer

This opens the Trace Viewer interactive web tool. This tool only works on Chrome or Chromium browsers. This tool shows details about the program execution. You can zoom in or move around to see more granular detail. Zoom in by using the toolbar or by pressing 3 and moving the mouse to control the zoom amount as seen in Figure 6:
[image: images/performance/trace01_zoom.png]

Figure 6. Go Tracer Viewer - Zoom

	
	On the top screen, labeled STATS, you’ll see an overview of the distribution of Goroutines, memory allocation, and number of threads. In the middle of the screen, labeled PROCS you can see how the Goroutines are distributed across all the CPUs/cores on the executing machine. It also includes garbage collection and syscalls execution. The bottom part of the screen is reserved to present details about events. You can see details by clicking any area of the previous two screens. For example, click the Goroutines line to see details about running Goroutines at that specific time as shown in Figure 7:
[image: images/performance/trace01_details.png]

Figure 7. Go Tracer Viewer - Details

One thing that you’ll notice by looking at the tracer is that the program isn’t using all four available CPUs effectively. Only one Goroutine is running at a time. Since we’re processing several files, it would be more efficient to use more CPUs. Let’s address this issue next.
	
	
	
	

Improving the colStats Tool to Process Files Concurrently

	
	
	As you noticed from the tracer output, the tool is processing files sequentially. This isn’t efficient since several files have to be processed. By changing the program to process files concurrently, you can benefit from multiprocessor machines and use more CPUs, generally making the program run faster. The program will spend less time waiting for resources and more time processing files.

	
	
	One of the main benefits of Go is its concurrency model. Go includes concurrency primitives that allow you to add concurrency to your programs in a more intuitive way. By using goroutines and channels. you can modify the current colStats tool to process several files concurrently by making changes to the run function only. The other functions remain unchanged.

	
	
	First, add the sync package to the imports section, which provides synchronization types such as the WaitGroup:
performance/colStats.v2/main.go
	​ 	​import​ (
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​ 	 ​"sync"​
	​)

	
	
	
	
	You’ll update the run function to process files concurrently by creating a new goroutine for each file you need to process. But first you’ll need to create some channels to communicate between the goroutines. You’ll use three channels: resCh of type chan []float64 to communicate results of processing each file, errCh of type chan error to communicate potential errors, and doneCh of type chan struct{} to communicate when all files have been processed. Define these channels after defining the consolidate variable:
performance/colStats.v2/main.go
	​ 	​// Create the channel to receive results or errors of operations​
	​ 	resCh := make(​chan​ []​float64​)
	​ 	errCh := make(​chan​ ​error​)
	​ 	doneCh := make(​chan​ ​struct​{})

Notice that you’re using an empty struct as the type for the doneCh channel. This is a common pattern since this channel doesn’t need to send any data. It only sends a signal indicating the processing is done. By using the empty struct, the program doesn’t allocate any memory for this channel.

	
	
	Next, define a variable wg of type sync.WaitGroup. The WaitGroup provides a mechanism to coordinate the goroutines execution. For each goroutine you create, add 1 to the WaitGroup. When a goroutine is done, subtract 1 from the WaitGroup. Later in the code use the method Wait to wait until all the goroutines are done before continuing with the execution.
performance/colStats.v2/main.go
	​ 	wg := sync.WaitGroup{}

	
	
	
	
	Then, update the main loop. Instead of processing each file directly, wrap them in an anonymous function that you’ll call as a goroutine by prefixing it with the go keyword. Inside the loop, first add 1 to the WaitGroup:
performance/colStats.v2/main.go
	​ 	​// Loop through all files and create a goroutine to process​
	​ 	​// each one concurrently​
	​ 	​for​ _, fname := ​range​ filenames {
	​ 	 wg.Add(1)

	
	Next, define the anonymous function that takes the file name fname as an input parameter. You must redeclare or pass the variable fname as an argument to the anonymous function to prevent it from closing on the outside variable and effectively run all goroutines using the last known value of that variable. For more details on this, see the related Go FAQ article.[30]
performance/colStats.v2/main.go
	​ 	​go​ ​func​(fname ​string​) {

	
	Note that you’re calling this function with the go keyword to create a new goroutine.

	
	
	Inside the new function, defer a call to the method wg.Done to subtract 1 from the WaitGroup when the function finishes.
performance/colStats.v2/main.go
	​ 	​defer​ wg.Done()

Then execute the file processing as before, but this time you handle errors differently since this is a goroutine executing asynchronously. In this case, send any potential errors to the error channel ErrCh:
performance/colStats.v2/main.go
	​ 	​// Open the file for reading​
	​ 	f, err := os.Open(fname)
	​ 	​if​ err != nil {
	​ 	 errCh <- fmt.Errorf(​"Cannot open file: %w"​, err)
	​ 	 ​return​
	​ 	}
	​ 	
	​ 	​// Parse the CSV into a slice of float64 numbers​
	​ 	data, err := csv2float(f, column)
	​ 	​if​ err != nil {
	​ 	 errCh <- err
	​ 	}
	​ 	
	​ 	​if​ err := f.Close(); err != nil {
	​ 	 errCh <- err
	​ 	}

If the csv2float function returns the data with no errors, then send the result variable data into the result channel resCh. Later, another goroutine will consolidate this data to run the final operations.
performance/colStats.v2/main.go
	​ 	resCh <- data

	Data Race Condition

	
 [image: images/aside-icons/info.png]
 	

	
	
	 You might be wondering why we’re not using the consolidate variable to append the results directly in the goroutine. Since multiple goroutines can be running simultaneously and accessing the same variable, it would lead to a data race condition and cause unpredictable results or data loss.

 To prevent this, you could protect the variable with a sync.Mutex. In Go, it’s more idiomatic to use a channel to communicate the values between goroutines instead. By doing this, you can run the consolidation on another goroutine that has exclusive access to the consolidate variable, preventing the race condition.

Complete the anonymous function, ensuring that you also execute it and pass the variable fname as input:
performance/colStats.v2/main.go
	​ 	 }(fname)
	​ 	}

	
	Next, create another goroutine using an anonymous function to wait until all files have been processed. Use the function Wait from the WaitGroup type you created before to block the current goroutine from proceeding until all the other goroutines finish their work. When this happens, it unblocks the current goroutine allowing it to execute the next line which closes the channel doneCh signaling that the process is complete.
performance/colStats.v2/main.go
	​ 	​go​ ​func​() {
	​ 	 wg.Wait()
	​ 	 close(doneCh)
	​ 	}()

	
	
	Finally, back in the main goroutine (the default one that starts when you run the program), consolidate the results coming from the resCh channel into the consolidate variable. Then check for errors coming from the error channel errCh and decide when to stop processing. Then print the results. Do this by running an infinite loop with a select statement. The select statement works similarly to a switch statement where you evaluate multiple conditions. But for the select statement, the conditions are communication operations through a channel.

Create a select block with three conditions. For the first conditions, if you receive an error from the error channel errCh, return this error, terminating the function. In this program, returning the error effectively terminates the program, which cleans up any outstanding goroutines. This approach works for short-lived command-line tools like this. If you’re developing a long-running program like an API or web server, you may need to add code to clean up goroutines properly avoiding leaks.

Continuing with the second condition of the select block, if you receive data from the result channel resCh, consolidate the data into the consolidate slice using the built-in append function.,

In the final condition of the select block, if you receive the signal on the done channel doneCh, you know that you’re done processing files, so you run the desired operation, print the results, and return the potential error from fmt.Fprintln, completing the function.
performance/colStats.v2/main.go
	​ 	 ​for​ {
	​ 	 ​select​ {
	​ 	 ​case​ err := <-errCh:
	​ 	 ​return​ err
	​ 	 ​case​ data := <-resCh:
	​ 	 consolidate = append(consolidate, data...)
	​ 	 ​case​ <-doneCh:
	​ 	 _, err := fmt.Fprintln(out, opFunc(consolidate))
	​ 	 ​return​ err
	​ 	 }
	​ 	 }
	​ 	}

The select statement works in this case because it blocks the execution of the program until any of the channels is ready to communicate. It effectively selects on multiple channel operations. It’s a powerful concept in Go.

The complete refactored run function looks like this:
performance/colStats.v2/main.go
	​ 	​func​ run(filenames []​string​, op ​string​, column ​int​, out io.Writer) ​error​ {
	​ 	 ​var​ opFunc statsFunc
	​ 	
	​ 	 ​if​ len(filenames) == 0 {
	​ 	 ​return​ ErrNoFiles
	​ 	 }
	​ 	
	​ 	 ​if​ column < 1 {
	​ 	 ​return​ fmt.Errorf(​"%w: %d"​, ErrInvalidColumn, column)
	​ 	 }
	​ 	
	​ 	 ​// Validate the operation and define the opFunc accordingly​
	​ 	 ​switch​ op {
	​ 	 ​case​ ​"sum"​:
	​ 	 opFunc = sum
	​ 	 ​case​ ​"avg"​:
	​ 	 opFunc = avg
	​ 	 ​default​:
	​ 	 ​return​ fmt.Errorf(​"%w: %s"​, ErrInvalidOperation, op)
	​ 	 }
	​ 	
	​ 	 consolidate := make([]​float64​, 0)
	​ 	
	​ 	 ​// Create the channel to receive results or errors of operations​
	​ 	 resCh := make(​chan​ []​float64​)
	​ 	 errCh := make(​chan​ ​error​)
	​ 	 doneCh := make(​chan​ ​struct​{})
	​ 	
	​ 	 wg := sync.WaitGroup{}

	​ 	 ​// Loop through all files and create a goroutine to process​
	​ 	 ​// each one concurrently​
	​ 	 ​for​ _, fname := ​range​ filenames {
	​ 	 wg.Add(1)
	​ 	 ​go​ ​func​(fname ​string​) {
	​ 	
	​ 	 ​defer​ wg.Done()
	​ 	
	​ 	 ​// Open the file for reading​
	​ 	 f, err := os.Open(fname)
	​ 	 ​if​ err != nil {
	​ 	 errCh <- fmt.Errorf(​"Cannot open file: %w"​, err)
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 ​// Parse the CSV into a slice of float64 numbers​
	​ 	 data, err := csv2float(f, column)
	​ 	 ​if​ err != nil {
	​ 	 errCh <- err
	​ 	 }
	​ 	
	​ 	 ​if​ err := f.Close(); err != nil {
	​ 	 errCh <- err
	​ 	 }
	​ 	
	​ 	 resCh <- data
	​ 	 }(fname)
	​ 	 }
	​ 	
	​ 	 ​go​ ​func​() {
	​ 	 wg.Wait()
	​ 	 close(doneCh)
	​ 	 }()
	​ 	
	​ 	 ​for​ {
	​ 	 ​select​ {
	​ 	 ​case​ err := <-errCh:
	​ 	 ​return​ err
	​ 	 ​case​ data := <-resCh:
	​ 	 consolidate = append(consolidate, data...)
	​ 	 ​case​ <-doneCh:
	​ 	 _, err := fmt.Fprintln(out, opFunc(consolidate))
	​ 	 ​return​ err
	​ 	 }
	​ 	 }
	​ 	}

	
	The code is complete. Save your file with the changes and execute the tests to ensure it works properly:
	​ 	​$ ​​go​​ ​​test​
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 0.006s

	
	
	The tests passed. Execute the benchmark again to see if it improved the execution speed. Save the results into a file to compare:
	​ 	​$ ​​go​​ ​​test​​ ​​-bench​​ ​​.​​ ​​-benchtime=10x​​ ​​-run​​ ​​^$​​ ​​-benchmem​​ ​​|​​ ​​tee​​ ​​benchresults02m.txt​
	​ 	goos: linux
	​ 	goarch: amd64
	​ 	pkg: pragprog.com/rggo/performance/colStats
	​ 	 Benchmark_Run-4 10 345375068 ns/op \
	​ 	 230537908 B/op 2529105 allocs/op
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 3.913s

Now compare with the previous results:
	​ 	​$ ​​benchcmp​​ ​​benchresults01m.txt​​ ​​benchresults02m.txt​
	​ 	benchmark old ns/op new ns/op delta
	​ 	Benchmark_Run-4 618936266 345375068 -44.20%
	​ 	
	​ 	benchmark old allocs new allocs delta
	​ 	Benchmark_Run-4 2527988 2529105 +0.04%
	​ 	
	​ 	benchmark old bytes new bytes delta
	​ 	Benchmark_Run-4 230447420 230537908 +0.04%

	
	
	
	This is another great improvement; it’s almost twice as fast as the previous version. Run the tracer again to see how it looks now:
	​ 	​$ ​​go​​ ​​test​​ ​​-bench​​ ​​.​​ ​​-benchtime=10x​​ ​​-run​​ ​​^$​​ ​​-trace​​ ​​trace02.out​
	​ 	goos: linux
	​ 	goarch: amd64
	​ 	pkg: pragprog.com/rggo/performance/colStats
	​ 	Benchmark_Run-4 10 365519710 ns/op
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 4.140s

Open the results using the go tool trace:
	​ 	​$ ​​go​​ ​​tool​​ ​​trace​​ ​​trace02.out​
	​ 	2019/04/14 21:51:29 Parsing trace...
	​ 	2019/04/14 21:51:30 Splitting trace...
	​ 	2019/04/14 21:51:32 Opening browser. Trace viewer is listening on
	​ 	 http://127.0.0.1:41997

Switch to the browser and click the View Trace link to open the tracer viewer shown in Figure 8:
[image: images/performance/trace02_conc.png]

Figure 8. Go Tracer Viewer - Concurrent

As you can see, the program used all four CPUs, improving the speed of the tool. You can also see at the top of the screen the Goroutines showing spikes, which corresponds to the new logic where we create one goroutine per file. Click one of those spikes to see the details, as shown in Figure 9:
[image: images/performance/trace02_detail.png]

Figure 9. Go Tracer Viewer - Concurrent Details

In this example, a large number of goroutines are in the Runnable state, but only four are actually running. This could be an indication that we are creating too many goroutines, which can increase the time the scheduler spends scheduling them. Let’s see if that’s the case. Go back to the index page and click the Goroutine Analysis link to open the Goroutines details as seen in Figure 10.
[image: images/performance/trace02_goroutines.png]

Figure 10. Go Tracer - Goroutine Analysis

The Goroutine Analysis shows that the program created over eleven thousand goroutines for run.func1, which corresponds to the anonymous function you’re using to process each file. Click this link to open the details about these goroutines. Double-click the Scheduler wait column to sort based on this column as seen in Figure 11:
[image: images/performance/trace02_goroutine_func1.png]

Figure 11. Go Tracer - Goroutine Details

The results show that many of these goroutines are waiting too long to be scheduled. This confirms the scheduling contention you saw in the tracer viewer. Let’s reduce it.
	
	
	
	
	

Reduce Scheduling Contention

	
	
	
	Goroutines are relatively cheap, and in some cases it makes sense to create many of them. For example, if the goroutines wait a long time on IO or network response, then the scheduler can execute other goroutines while these are waiting, increasing the efficiency of the program. In our case, the goroutines are mostly CPU-bound, so creating many of them doesn’t improve the efficiency. Instead, creating too many causes scheduling contention. Let’s address this issue by modifying our program to use worker queues. Instead of creating one goroutine per file, you’ll create one goroutine per available CPU. These will be our workers. Another goroutine sends the jobs to be executed by the workers. When no more jobs exist, the workers are done and the program finishes.
	
	

	
	Start by adding another package to the import list. The package runtime contains several functions that deal with the Go runtime. You’ll use this package to determine the number of available CPUs:
performance/colStats.v3/main.go
	​ 	​import​ (
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​ 	 ​"runtime"​
	​ 	 ​"sync"​
	​)

	
	Next, edit the function run. Add another channel called filesCh of type chan string. This is the queue; you’ll add files to be processed to this channel, and the worker goroutines will take them from this channel and process them.
performance/colStats.v3/main.go
	​ 	filesCh := make(​chan​ ​string​)

Now create a goroutine to iterate through all the files, sending each file to the filesCh channel. At the end, close the channel, indicating no more work is left to do:
performance/colStats.v3/main.go
	​ 	​// Loop through all files sending them through the channel​
	​ 	​// so each one will be processed when a worker is available​
	​ 	​go​ ​func​() {
	​ 	 ​defer​ close(filesCh)
	​ 	 ​for​ _, fname := ​range​ filenames {
	​ 	 filesCh <- fname
	​ 	 }
	​ 	}()

Then update the main loop. Instead of ranging through all the files, use a regular loop with a counter i. The upper limit of the loop is the total number of CPUs available on the executing machine, which you obtain by calling the function runtime.NumCPU from the runtime package:
	
	
performance/colStats.v3/main.go
	​ 	​for​ i := 0; i < runtime.NumCPU(); i++ {

Inside the loop, you still add 1 to the WaitGroup to indicate a running goroutine, and you use the same logic for the rest of the program. Then, define the anonymous function to execute as the goroutine. This time you don’t need the input parameter because the function will get the file names via the channel:
performance/colStats.v3/main.go
	​ 	wg.Add(1)
	​ 	​go​ ​func​() {

	
	
	In the anonymous function’s body, use defer to ensure the function wg.Done executes at the end. Then define a loop using the range operator to range over the filesCh channel. When you range over a channel, the loop gets values from the channel until it’s closed. Because you close this channel when it’s done sending files, you ensure this loop terminates, causing the goroutine to finish.
performance/colStats.v3/main.go
	​ 	 ​defer​ wg.Done()
	​ 	 ​for​ fname := ​range​ filesCh {
	​ 	 ​// Open the file for reading​
	​ 	 f, err := os.Open(fname)
	​ 	 ​if​ err != nil {
	​ 	 errCh <- fmt.Errorf(​"Cannot open file: %w"​, err)
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 ​// Parse the CSV into a slice of float64 numbers​
	​ 	 data, err := csv2float(f, column)
	​ 	 ​if​ err != nil {
	​ 	 errCh <- err
	​ 	 }
	​ 	
	​ 	 ​if​ err := f.Close(); err != nil {
	​ 	 errCh <- err
	​ 	 }
	​ 	
	​ 	 resCh <- data
	​ 	 }
	​ 	}()

The rest of the body is the same as before. Open the file, process it, and send the data to the result channel. If errors occur, send it to the error channel.

This is the new version of the run function:
performance/colStats.v3/main.go
	​ 	​func​ run(filenames []​string​, op ​string​, column ​int​, out io.Writer) ​error​ {
	​ 	 ​var​ opFunc statsFunc
	​ 	
	​ 	 ​if​ len(filenames) == 0 {
	​ 	 ​return​ ErrNoFiles
	​ 	 }
	​ 	
	​ 	 ​if​ column < 1 {
	​ 	 ​return​ fmt.Errorf(​"%w: %d"​, ErrInvalidColumn, column)
	​ 	 }
	​ 	
	​ 	 ​// Validate the operation and define the opFunc accordingly​
	​ 	 ​switch​ op {
	​ 	 ​case​ ​"sum"​:
	​ 	 opFunc = sum
	​ 	 ​case​ ​"avg"​:
	​ 	 opFunc = avg
	​ 	 ​default​:
	​ 	 ​return​ fmt.Errorf(​"%w: %s"​, ErrInvalidOperation, op)
	​ 	 }
	​ 	
	​ 	 consolidate := make([]​float64​, 0)
	​ 	
	​ 	 ​// Create the channel to receive results or errors of operations​
	​ 	 resCh := make(​chan​ []​float64​)
	​ 	 errCh := make(​chan​ ​error​)
	​ 	 doneCh := make(​chan​ ​struct​{})
	​ 	 filesCh := make(​chan​ ​string​)
	​ 	
	​ 	 wg := sync.WaitGroup{}
	​ 	
	​ 	 ​// Loop through all files sending them through the channel​
	​ 	 ​// so each one will be processed when a worker is available​
	​ 	 ​go​ ​func​() {
	​ 	 ​defer​ close(filesCh)
	​ 	 ​for​ _, fname := ​range​ filenames {
	​ 	 filesCh <- fname
	​ 	 }
	​ 	 }()
	​ 	
	​ 	 ​for​ i := 0; i < runtime.NumCPU(); i++ {
	​ 	 wg.Add(1)
	​ 	 ​go​ ​func​() {
	​ 	 ​defer​ wg.Done()
	​ 	 ​for​ fname := ​range​ filesCh {
	​ 	 ​// Open the file for reading​
	​ 	 f, err := os.Open(fname)
	​ 	 ​if​ err != nil {
	​ 	 errCh <- fmt.Errorf(​"Cannot open file: %w"​, err)
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 ​// Parse the CSV into a slice of float64 numbers​
	​ 	 data, err := csv2float(f, column)
	​ 	 ​if​ err != nil {
	​ 	 errCh <- err
	​ 	 }
	​ 	
	​ 	 ​if​ err := f.Close(); err != nil {
	​ 	 errCh <- err
	​ 	 }
	​ 	
	​ 	 resCh <- data
	​ 	 }
	​ 	 }()
	​ 	 }
	​ 	
	​ 	 ​go​ ​func​() {
	​ 	 wg.Wait()
	​ 	 close(doneCh)
	​ 	 }()
	​ 	
	​ 	 ​for​ {
	​ 	 ​select​ {
	​ 	 ​case​ err := <-errCh:
	​ 	 ​return​ err
	​ 	 ​case​ data := <-resCh:
	​ 	 consolidate = append(consolidate, data...)
	​ 	 ​case​ <-doneCh:
	​ 	 _, err := fmt.Fprintln(out, opFunc(consolidate))
	​ 	 ​return​ err
	​ 	 }
	​ 	 }
	​ 	}

Save the file and run the tests to ensure the program is still working:
	​ 	​$ ​​go​​ ​​test​
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 0.004s

	
	
	Once all tests pass, run the benchmark to see if this update improved the performance. Save the results to a file to compare with the previous results:
	​ 	​$ ​​go​​ ​​test​​ ​​-bench​​ ​​.​​ ​​-benchtime=10x​​ ​​-run​​ ​​^$​​ ​​-benchmem​​ ​​|​​ ​​tee​​ ​​benchresults03m.txt​
	​ 	goos: linux
	​ 	goarch: amd64
	​ 	pkg: pragprog.com/rggo/performance/colStats
	​ 	 Benchmark_Run-4 10 308737148 ns/op \
	​ 	 230444710 B/op 2527944 allocs/op
	​ 	PASS
	​ 	ok pragprog.com/rggo/performance/colStats 3.602s

Compare with the previous results to assess improvements:
	​ 	​$ ​​benchcmp​​ ​​benchresults02m.txt​​ ​​benchresults03m.txt​
	​ 	benchmark old ns/op new ns/op delta
	​ 	Benchmark_Run-4 345375068 308737148 -10.61%
	​ 	
	​ 	benchmark old allocs new allocs delta
	​ 	Benchmark_Run-4 2529105 2527944 -0.05%
	​ 	
	​ 	benchmark old bytes new bytes delta
	​ 	Benchmark_Run-4 230537908 230444710 -0.04%

As you can see, this version runs over 10% faster than the previous version. Compare this benchmark result with the original version to see how much you’ve improved the performance in total:
	​ 	​$ ​​benchcmp​​ ​​benchresults00m.txt​​ ​​benchresults03m.txt​
	​ 	benchmark old ns/op new ns/op delta
	​ 	Benchmark_Run-4 1042029902 308737148 -70.37%
	​ 	
	​ 	benchmark old allocs new allocs delta
	​ 	Benchmark_Run-4 5043008 2527944 -49.87%
	​ 	
	​ 	benchmark old bytes new bytes delta
	​ 	Benchmark_Run-4 564385222 230444710 -59.17%

According to the benchmarks, this version of the tool is over three times faster than the original. It also allocates 60% less memory than the original.

To finish up, compile your tool and run it using the time command to compare with the original:
	​ 	​$ ​​go​​ ​​build​
	​ 	​$ ​​time​​ ​​./colStats​​ ​​-op​​ ​​avg​​ ​​-col​​ ​​2​​ ​​testdata/benchmark/*.csv​
	​ 	50006.0653788
	​ 	
	​ 	real 0m0.381s
	​ 	user 0m1.057s
	​ 	sys 0m0.104s

This time, the program processed all one thousand files in 0.38 seconds, compared to the original 1.2 seconds. This is around three times faster, which is similar to the results of our benchmarks.
	
	
	
	
	

Exercises

Before you move on, you may want to expand the skills and techniques you’ve explored in this chapter. Here are some suggestions:
	
Execute the tracer on the last version of the tool. Look for the new goroutine pattern. Is there a difference between this version and the previous version? Have you addressed the scheduling contention?

	
Improve the colStats tool by adding more functions such as Min and Max, which return the lowest and the largest values in a given column. Write tests for these functions.

	
Write benchmarks for the new functions Min and Max.

	
Profile the functions Min and Max, looking for improvement areas.

Wrapping Up

In this chapter, you used several tools provided by Go to measure and analyze the performance of your programs. You started by developing a tool that processes content from CSV files. You used benchmarks to measure its speed. Then you used the profiler to look for bottlenecks. You iteratively improved the tool by using the results of the profiler and tracer tools. You developed a new version of the tool that processes files concurrently. Finally, you used the same techniques to analyze this version and made improvements to run the code more efficiently across the available CPUs.

In the next chapter, you’ll design tools that execute external commands and capture their output. You’ll interact with system processes. You’ll use some of the concurrency techniques you’ve learned here to handle system signals and exit appropriately. You’ll also use contexts to time out of long-running external commands.

Footnotes

	[25]
	
 https://golang.org/src/math/all_test.go

	[26]
	
https://golang.org/pkg/reflect/

	[27]
	
https://golang.org/pkg/testing/#hdr-Benchmarks

	[28]
	
https://www.graphviz.org

	[29]
	
 https://www.graphviz.org/download/

	[30]
	
https://golang.org/doc/faq#closures_and_goroutines

Copyright © 2021, The Pragmatic Bookshelf.

 Chapter
 6
Controlling Processes

So far, you’ve developed several command-line tools with Go by executing tasks with your own algorithms. In some situations, it’s easier to delegate some of these tasks to more specialized programs that are already available on your system. For example, you may want to use git to execute version control commands against a Git repository or launch Firefox to display a web page on a browser, as you did in ​Adding an Auto-Preview Feature​, when you built the Markdown Preview tool.

 In some cases, these specialized programs have an API available that you can call directly from your program. When this isn’t available, you have to use their functionality by executing external commands from your Go program.

 Go provides some lower-level libraries, such as syscall, but, unless you have specific requirements, it’s best to use the higher-level interface provided by the os/exec package.

In this chapter, you’ll apply the os/exec package to develop a simple, but useful, implementation of a Continuous Integration (CI) tool for your Go programs. A typical CI pipeline consists of several automated steps that continuously ensure a code base or an application is ready to be merged with some other developer’s code, usually in a shared version control repository.

For this example, the CI pipeline consists of:
	
Building the program using go build to verify if the program structure is valid.

	
Executing tests using go test to ensure the program does what it’s intended to do.

	
Executing gofmt to ensure the program’s format conforms to the standards.

	
Executing git push to push the code to the remote shared Git repository that hosts the program code.

We’ll call this tool goci. As usual, you’ll start with a primitive implementation that will grow as you move along.

Executing External Programs

	
	
	
	In this initial version of the goci tool, you’ll define the main structure of your program and then execute the first step of the CI pipeline: building the program. Start by creating a directory called processes/goci for this tool under your book project’s root directory:
	
	
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/processes/goci​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/processes/goci​

Initialize a new Go module for this project called goci:
	​ 	​$ ​​go​​ ​​mod​​ ​​init​​ ​​pragprog.com/rggo/processes/goci​
	​ 	go: creating new go.mod: module pragprog.com/rggo/processes/goci

	
	

	
	
	
	For this tool, you’ll use the run function pattern that you saw in ​Creating a Basic Markdown Preview Tool​. The run function contains the main logic of the program, while the function main contains only the code that parses the command-line flags and calls the run function. This approach allows the execution of integration tests by executing the run function during tests.

	
	
	
	
	
	Create the file main.go in the goci directory and open it in your editor. Define the package name and add the import section. Import the flag package to parse command-line options, the fmt package to handle output, the io package that provides the io.Writer interface, the os package to interact with the operating system, and the os/exec package to execute external programs:
processes/goci/main.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​ 	 ​"os/exec"​
	​)

Now, define the run function, which contains the main logic of your program. This function takes two input parameters. The first parameter, proj of type string, represents the Go project directory on which to execute the CI pipeline steps. The second parameter, out is an io.Writer interface that you use for outputting the status of your tool. The function returns an error if something fails:
	
	
processes/goci/main.go
	​ 	​func​ run(proj ​string​, out io.Writer) ​error​ {

In the run function’s body, first check if the project directory was provided and return an error if it was not:
processes/goci/main.go
	​ 	​if​ proj == ​""​ {
	​ 	 ​return​ fmt.Errorf(​"Project directory is required"​)
	​ 	}

	
	
	Add code to execute the first step in the pipeline, go build. To execute external commands in Go, you’ll use the Cmd type from the os/exec package. The exec.Cmd type provides parameters and methods to execute commands with a variety of options. To create a new instance of the exec.Cmd type, you use the function exec.Command. It takes the name of the executable program as the first argument and zero or more arguments that will be passed to the executable during execution.

	
	
	
	The executable program is go. Since you’ll build the target project in this first step, define the list of arguments for the Go tool as a slice of strings where the first argument is build. The next argument is the current directory represented by a . (dot). The goal of executing go build as part of the pipeline is to validate the program’s correctness, rather than creating an executable file. To execute go build without creating an executable file, you’ll take advantage of the fact that go build doesn’t create a file when building multiple packages at the same time. So, for the last argument, use the name of a package from Go’s standard library, for example, the errors package. Define the arguments list like this:
processes/goci/main.go
	​ 	args := []​string​{​"build"​, ​"."​, ​"errors"​}

By using this approach you avoid creating a file that you would have to clean up after.

	
	Now, create an instance of the exec.Cmd type by using the function exec.Command like this:
processes/goci/main.go
	​ 	cmd := exec.Command(​"go"​, args...)

Notice that the exec.Command function expects a variable list of strings as the arguments for the command, so we’re using the ... operator on the args slice to expand it into a list of strings.
	
	
	

Then, before executing the command, set the working directory for the external command execution to the target project directory by setting the cmd.Dir field from the exec.Cmd type:
	
	
	
processes/goci/main.go
	​ 	cmd.Dir = proj

	
	
	
	Now execute the command by calling its Run method. Check for errors and return a new error if the command execution failed:
processes/goci/main.go
	​ 	​if​ err := cmd.Run(); err != nil {
	​ 	 ​return​ fmt.Errorf(​"'go build' failed: %s"​, err)
	​ 	}

	
	Complete the run function by printing out a success message to the user using the out interface, and return its error status:
processes/goci/main.go
	​ 	 _, err := fmt.Fprintln(out, ​"Go Build: SUCCESS"​)
	​ 	
	​ 	 ​return​ err
	​ 	}

	
	
	
	Once the run function is complete, define the function main. This function parses the command-line flags and then calls the function run. As we add more features to this tool later, we’ll modify the run function, but the main function won’t change. The goci tool accepts only one flag -p of type string, which represents the Go project directory on which to execute the CI pipeline steps.
processes/goci/main.go
	​ 	​func​ main() {
	​ 	 proj := flag.String(​"p"​, ​""​, ​"Project directory"​)
	​ 	 flag.Parse()
	​ 	
	​ 	 ​if​ err := run(*proj, os.Stdout); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	}

	
	
	We’re using the os.Stdout type as the value for the out parameter in the run function call to output results to the user’s screen. Later when testing, you’ll provide a bytes.Buffer to capture the output and verify its value.

The initial version of the code is completed, but we’re not handling errors effectively. Let’s address that next.
	
	
	
	

Handling Errors

	
	At this point your application handles errors by defining error strings, using the function fmt.Errorf from package fmt. This is a valid approach for small applications, but it’s harder to maintain as your application grows in complexity. For instance, relying only on comparing the error message isn’t a resilient method as the error message may change.

	
	
	
	As an alternative, in ​Developing the Initial Version of colStats​, you handled errors by defining error values as exported variables. You can use this approach here to handle simple errors, such as validating input parameters. Add a file errors.go to your project and edit it. Add the package definition and the import section. For this file, you’re using the package errors to define error values, and the package fmt to format messages:
processes/goci.v1/errors.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"errors"​
	​ 	 ​"fmt"​
	​)

	
	Now add the error value variable ErrValidation representing a validation error:
processes/goci.v1/errors.go
	​ 	​var​ (
	​ 	 ErrValidation = errors.New(​"Validation failed"​)
	​)

	
	
	Save and close this file and edit the file main.go. Update the line that returns the project directory validation error. Use the verb %w from fmt.Errorf to wrap your custom error value ErrValidation into the message:
processes/goci.v1/main.go
	​ 	​if​ proj == ​""​ {
	»	 ​return​ fmt.Errorf(​"Project directory is required: %w"​, ErrValidation)
	​ 	}

As discussed in ​Developing the Initial Version of colStats​, by wrapping an error you add context and information that are useful for the user as output but keep the error available for inspection regardless of whether it’s required by the business logic or tests.

	
	
	The package errors includes a function errors.Is that allows you to inspect errors. It returns true if a given error matches a target error, whether the error directly matches it or the target error is wrapped in the error at any level of the error chain. You’ll use this function to inspect errors in your tests.

Using error values works well for some types of errors, especially if you’re only interested in handling a particular category without checking specific conditions. You can extend these errors a bit using the wrapping technique but to handle specific cases, you have to either define a new error value or dig into the error message.

	
	
	
	The main goal of this application is defining different CI steps to perform different tasks. To handle errors for each step in a particular way you’d have to create different error values, which isn’t ideal. Instead, for handling these errors you can define your own custom error types.

	
	
	In Go, the built-in type error is an interface that defines a single method with the signature Error() string. You can use any types that implement this method as an error. Open the file errors.go again and define a new custom type stepErr representing a class of errors associated with the CI steps, with three fields: step to record the step name in an error; a message msg that describes the condition; and a cause to store the underlying error that caused this step error:
processes/goci.v1/errors.go
	​ 	​type​ stepErr ​struct​ {
	​ 	 step ​string​
	​ 	 msg ​string​
	​ 	 cause ​error​
	​ 	}

Then, attach the method Error to implement the error interface on this new type. Use fmt.Sprintf to return an error message that contains the step name, the message, and the underlying cause:
processes/goci.v1/errors.go
	​ 	​func​ (s *stepErr) Error() ​string​ {
	​ 	 ​return​ fmt.Sprintf(​"Step: %q: %s: Cause: %v"​, s.step, s.msg, s.cause)
	​ 	}

processes/goci.v1/errors.go
	​ 	​func​ (s *stepErr) Is(target ​error​) ​bool​ {
	​ 	 t, ok := target.(*stepErr)
	​ 	 ​if​ !ok {
	​ 	 ​return​ false
	​ 	 }
	​ 	
	​ 	 ​return​ t.step == s.step
	​ 	}

	
	Finally, function errors.Is may also try to unwrap the error to see if an underlying error matches the target, by calling a method Unwrap if the custom error implements it. Define this method returning the error stored in the cause field:
processes/goci.v1/errors.go
	​ 	​func​ (s *stepErr) Unwrap() ​error​ {
	​ 	 ​return​ s.cause
	​ 	}

Now, let’s use this new type to define a custom error for the application. Close and save this file and edit the main.go file. Replace the line that returns the error for the command execution by instantiating and returning a new stepErr defining the step name, message, and the underlying cause as the error obtained from executing the command:
processes/goci.v1/main.go
	​ 	​if​ err := cmd.Run(); err != nil {
	​ 	 ​return​ &stepErr{step: ​"go build"​, msg: ​"go build failed"​, cause: err}
	​ 	}

	
	You can find more information about handling errors in Go by consulting the errors package documentation[31] or by reading this blog post[32] on the official Go blog.

The initial version of the code is complete. Let’s write some tests to ensure it’s working as intended.
	
	
	
	
	

Writing Tests for Goci

	
	
	The goci tool executes tasks on a Go project. To write tests for it, we need to create a few small Go programs. Let’s start with two test cases, one for a successful build and one for a failed build so we can test the error handling. Create a directory testdata under your project directory to hold the files required for the testing. When building goci any files under this directory are ignored. In addition, create two subdirectories under testdata to hold the code for each case: tool and toolErr:
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/processes/goci/testdata/{tool,toolErr}​

Switch to the newly created testdata/tool directory and initialize a new dummy module for this project:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/processes/goci/testdata/tool​
	​ 	​$ ​​go​​ ​​mod​​ ​​init​​ ​​testdata/tool​
	​ 	go: creating new go.mod: module testdata/tool

Now, create a basic Go library to serve as test subject. Add a file add.go under testdata/tool with the following content:
processes/goci.v1/testdata/tool/add.go
	​ 	​package​ add
	​ 	
	​ 	​func​ add(a, b ​int​) ​int​ {
	​ 	 ​return​ a + b
	​ 	}

Verify that you can build testdata/tool/add.go without any errors:
	​ 	​$ ​​go​​ ​​build​

Then switch to the testdata/toolErr directory and copy both files from the tool directory:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/processes/goci/testdata/toolErr​
	​ 	​$ ​​cp​​ ​​../tool/{add.go,go.mod}​​ ​​.​

Edit the file add.go under testdata/toolErr, and introduce an invalid variable c in the return call of the add function to force a build error:
processes/goci.v1/testdata/toolErr/add.go
	​ 	​package​ add
	​ 	
	​ 	​func​ add(a, b ​int​) ​int​ {
	​ 	 ​return​ c + b
	​ 	}

Then, verify that building testdata/toolErr/add.go causes an error since the variable c is undefined:
	​ 	​$ ​​go​​ ​​build​
	​ 	​# testdata/tool​
	​ 	./add.go:4:9: undefined: c

	
	Switch back to the root directory of your project to create the test file:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/processes/goci​

Now create the file main_test.go in the root of your goci directory. Edit the file and add the package definition and import sections. For this test file, import the packages bytes to create a buffer to capture the output, the errors package to check errors, and the testing package which provides the testing functions:
processes/goci.v1/main_test.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"errors"​
	​ 	 ​"testing"​
	​)

	
	
	Add the function TestRun to test the run function of your program. This works as an integration test:
processes/goci.v1/main_test.go
	​ 	​func​ TestRun(t *testing.T) {

	
	
	You only need one test function for now since you’ll use the concept of Table Driven Testing that you used in ​Testing with Table-Driven Testing​. Using this approach, you can add more tests cases quickly when you add new features to the program. Define the test cases. You’ll have two tests at this time, matching the test data that you created before: a success test and a fail test:
processes/goci.v1/main_test.go
	​ 	​var​ testCases = []​struct​ {
	​ 	 name ​string​
	​ 	 proj ​string​
	​ 	 out ​string​
	​ 	 expErr ​error​
	​ 	}{
	​ 	 {name: ​"success"​, proj: ​"./testdata/tool/"​,
	​ 	 out: ​"Go Build: SUCCESS​​\n​​"​,
	​ 	 expErr: nil},
	​ 	 {name: ​"fail"​, proj: ​"./testdata/toolErr"​,
	​ 	 out: ​""​,
	​ 	 expErr: &stepErr{step: ​"go build"​}},
	​ 	}

For each test case, you’re defining a name, the target project directory, the expected output message, and the expected error, if any. For the fail test, define the expected error using your custom error type stepErr with the expected step &stepErr{step: "go build"}.

Next, loop through and execute each test case using the method t.Run, providing the test name tc.name as input:
processes/goci.v1/main_test.go
	​ 	​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {

	
	
	In the body of the anonymous testing function, define an out variable of type bytes.Buffer to capture the output. The type bytes.Buffer implements the io.Writer interface and can be used as the out parameter for the function run. Execute the function run, providing the project directory name tc.proj and the buffer as parameters:
processes/goci.v1/main_test.go
	​ 	​var​ out bytes.Buffer
	​ 	err := run(tc.proj, &out)

	
	Then verify the results. First, ensure the error handling works. When the test expects an error, verify that it received an error. Then use the function errors.Is to validate that the received error matches the expected error. Since your custom error type stepErr implements the method Is, function errors.Is calls it automatically to verify the received and expected errors are equivalent. Fail the test if they aren’t:
processes/goci.v1/main_test.go
	​ 	​if​ tc.expErr != nil {
	​ 	 ​if​ err == nil {
	​ 	 t.Errorf(​"Expected error: %q. Got 'nil' instead."​, tc.expErr)
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 ​if​ !errors.Is(err, tc.expErr) {
	​ 	 t.Errorf(​"Expected error: %q. Got %q."​, tc.expErr, err)
	​ 	 }
	​ 	 ​return​
	​ 	}

When the test doesn’t expect an error, verify that no error was generated and that the output matches the expected output message. Fail the test otherwise:
processes/goci.v1/main_test.go
	​ 	 ​if​ err != nil {
	​ 	 t.Errorf(​"Unexpected error: %q"​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ out.String() != tc.out {
	​ 	 t.Errorf(​"Expected output: %q. Got %q"​, tc.out, out.String())
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

Save the main_test.go file and execute the tests with go test -v:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/success
	​ 	=== RUN TestRun/fail
	​ 	--- PASS: TestRun (0.18s)
	​ 	 --- PASS: TestRun/success (0.09s)
	​ 	 --- PASS: TestRun/fail (0.09s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/processes/goci 0.178s

All the tests passed. You can also execute the tool manually to see it working:
	​ 	​$ ​​go​​ ​​run​​ ​​.​​ ​​-p​​ ​​testdata/tool​
	​ 	Go Build: SUCCESS

Now you can execute an external program, but the steps are hard-coded into the program. Let’s make some changes to the structure to make it more re-usable.
	
	
	
	
	
	

Defining a Pipeline

	
	At this point, your tool executes the first step in the CI pipeline: Go Build. In its current state, the information to execute this step is hard-coded into the run function. While this is a valid approach, adding more steps to this tool using the same approach would cause extensive code repetition. We want a tool that’s maintainable and easy to extend, so let’s make a change to the program’s structure to make the code more reusable.

	
	
	
	
	
	To do that, you’ll refactor the part of the run function that executes the external program into its own function. To make it easier to configure, let’s add a custom type step that represents a pipeline step and associate the method execute to it. You’ll also add a constructor function called newStep to create a new step. By doing this, when you want to add a new step to the pipeline, you instantiate the step type with the appropriate values.

	
	
 Before you do that, break the code into different files so it will be easier to maintain, as you did in ​Developing a File System Crawler​.

Create a file called step.go in the goci directory and open it in your editor. Include the package definition and the import sections. Use the os/exec package to execute external programs:
processes/goci.v2/step.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"os/exec"​
	​)

	
	
	Next, add the definition of the new type step. This custom type has five fields: name of type string representing the step name, exe also string representing the executable name of the external tool we want to execute, args of type slice of strings which contains the arguments for the executable, message of type string which is the output message in case of success, and proj of type string representing the target project on which to execute the task:
processes/goci.v2/step.go
	​ 	​type​ step ​struct​ {
	​ 	 name ​string​
	​ 	 exe ​string​
	​ 	 args []​string​
	​ 	 message ​string​
	​ 	 proj ​string​
	​ 	}

	
	
	
	Then, create the constructor function newStep that instantiates and returns a new step. This function accepts as input parameters values equivalent to the fields in the step type. Go doesn’t have formal constructors like other object-oriented languages, but this is a good practice to ensure callers instantiate types correctly:
processes/goci.v2/step.go
	​ 	​func​ newStep(name, exe, message, proj ​string​, args []​string​) step {
	​ 	 ​return​ step{
	​ 	 name: name,
	​ 	 exe: exe,
	​ 	 message: message,
	​ 	 args: args,
	​ 	 proj: proj,
	​ 	 }
	​ 	}

	
	
	
	Finally, define the method execute on the type step. This method takes no input parameters and returns a string and an error:
processes/goci.v2/step.go
	​ 	​func​ (s step) execute() (​string​, ​error​) {

Notice that to define a function as a method on the type step you’re adding the receiver (s step) parameter in the function definition. This makes all fields of the step instance available in the body of the function through the variable s.

The function contains the same code you used previously to execute the external program in the function run, except that it uses the step instance fields instead of hardcoded values. Define the body of the function like this:
processes/goci.v2/step.go
	​ 	cmd := exec.Command(s.exe, s.args...)
	​ 	cmd.Dir = s.proj
	​ 	
	​ 	​if​ err := cmd.Run(); err != nil {
	​ 	 ​return​ ​""​, &stepErr{
	​ 	 step: s.name,
	​ 	 msg: ​"failed to execute"​,
	​ 	 cause: err,
	​ 	 }
	​ 	}

If the execution is successful execution, return the successful message s.message and a nil value as the error:
processes/goci.v2/step.go
	​ 	 ​return​ s.message, nil
	​ 	}

This completes the definition of the step type and its execute method. Save and quit the step.go file. Let’s change the run function in the main.go file to use this type now. Open main.go to edit.

First, remove all the code you used to execute the external Go tool directly from the run function:
	​ 	args := []​string​{​"build"​, ​"."​, ​"errors"​}
	​ 	
	​ 	cmd := exec.Command(​"go"​, args...)
	​ 	
	​ 	cmd.Dir = proj
	​ 	
	​ 	​if​ err := cmd.Run(); err != nil {
	​ 	 ​return​ &stepErr{step: ​"go build"​, msg: ​"go build failed"​, cause: err}
	​ 	}
	​ 	
	​ 	_, err := fmt.Fprintln(out, ​"Go Build: SUCCESS"​)

Remove also the package os/exec from the import list:
	​ 	​"os/exec"​

Then, add the definition of the new pipeline. Define the variable pipeline as a slice of step []step:
processes/goci.v2/main.go
	​ 	pipeline := make([]step, 1)

For now, the pipeline contains only one element but you’ll add more later. Define the first element of the pipeline using the constructor function newStep with the field values required to run the Go build step:
processes/goci.v2/main.go
	​ 	pipeline[0] = newStep(
	​ 	 ​"go build"​,
	​ 	 ​"go"​,
	​ 	 ​"Go Build: SUCCESS"​,
	​ 	 proj,
	​ 	 []​string​{​"build"​, ​"."​, ​"errors"​},
	​)

Next, since you now have a slice of steps, loop through them executing each one:
processes/goci.v2/main.go
	​ 	​for​ _, s := ​range​ pipeline {
	​ 	 msg, err := s.execute()
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 _, err = fmt.Fprintln(out, msg)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	}

If the execution of any step returns an error, return it and exit the run function.

Finally, return the value nil as the error when the loop completes successfully.
processes/goci.v2/main.go
	​ 	 ​return​ nil
	​ 	}

This completes the updates. Save the main.go file and execute the tests to ensure the code still works as before:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/success
	​ 	=== RUN TestRun/fail
	​ 	--- PASS: TestRun (0.16s)
	​ 	 --- PASS: TestRun/success (0.08s)
	​ 	 --- PASS: TestRun/fail (0.08s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/processes/goci 0.163s

The program works the same way as before, but now you’ve structured the code so you can add more steps with less effort. So let’s add another step to the process.
	
	

Adding Another Step to the Pipeline

	
	
	
	You’ve structured your code so you can add more steps to the pipeline by instantiating a new step and adding it to the pipeline slice.
 According to the initial plan, the next step in the pipeline is the execution of tests using the go test command. But before you add that step, add a test file with a single test case to the add package you’re using for testing.

Switch to the subdirectory testdata/tool, where you have the file add.go:
	​ 	​$ ​​cd​​ ​​testdata/tool​

In this subdirectory, create the test file add_test.go, and add a single test case to test the add function:
processes/goci.v3/testdata/tool/add_test.go
	​ 	​package​ add
	​ 	
	​ 	​import​ (
	​ 	 ​"testing"​
	​)
	​ 	
	​ 	​func​ TestAdd(t *testing.T) {
	​ 	 a := 2
	​ 	 b := 3
	​ 	
	​ 	 exp := 5
	​ 	
	​ 	 res := add(a, b)
	​ 	
	​ 	 ​if​ exp != res {
	​ 	 t.Errorf(​"Expected %d, got %d."​, exp, res)
	​ 	 }
	​ 	}

Save the file and execute the test to ensure it works:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestAdd
	​ 	--- PASS: TestAdd (0.00s)
	​ 	PASS
	​ 	ok testdata/tool 0.003s

Copy the test file to the subdirectory testdata/toolErr where you have the test code that fails to build. Even though the pipeline stops in the first step due to the build failure, it’s a good idea to have the test file there in case you want to use it in the future:
	​ 	​$ ​​cp​​ ​​add_test.go​​ ​​../toolErr​

Switch back to the root of your project:
	​ 	​$ ​​cd​​ ​​../..​

Next, add the new step to the run function. Edit the file main.go and update the definition of the variable pipeline increasing its length to two:
processes/goci.v3/main.go
	​ 	pipeline := make([]step, 2)

Then, add the definition of the new step, which is similar to the previous one. Use go test as the step name, go as the executable, []string{"test", "-v"} as arguments for the Go executable to execute tests, and "Go Test: SUCCESS" as the output message:
processes/goci.v3/main.go
	​ 	pipeline[1] = newStep(
	​ 	 ​"go test"​,
	​ 	 ​"go"​,
	​ 	 ​"Go Test: SUCCESS"​,
	​ 	 proj,
	​ 	 []​string​{​"test"​, ​"-v"​},
	​)

Since the loop was already defined to iterate over all steps, you don’t need to make any more changes. Save the file to complete the updates.

Finally, update the success test case to include the new message as part of the expected output. Edit the file main_test.go and update the test case:
processes/goci.v3/main_test.go
	​ 	out: ​"Go Build: SUCCESS​​\n​​Go Test: SUCCESS​​\n​​"​,

You don’t need to update the fail test case since it’ll still fail at the build step. Save the file to complete the updates and execute the tests:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/success
	​ 	=== RUN TestRun/fail
	​ 	--- PASS: TestRun (0.50s)
	​ 	 --- PASS: TestRun/success (0.43s)
	​ 	 --- PASS: TestRun/fail (0.07s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/processes/goci 0.500s

All the tests pass, which means that the tool is executing both the build and test steps successfully. Try it for yourself. First, build the tool:
	​ 	​$ ​​go​​ ​​build​

Then execute the tool, using the -p option to pass a directory containing a Go project. Use the testdata/tool directory:
	​ 	​$ ​​./goci​​ ​​-p​​ ​​testdata/tool​
	​ 	Go Build: SUCCESS
	​ 	Go Test: SUCCESS

Next, you’ll include a pipeline step that requires you to parse the external program’s output to determine whether it succeeded or failed.
	
	
	
	

Handling Output from External Programs

	
	
	
	The two external programs you’ve executed are well-behaved; if something goes wrong, they return an error that you can capture and use to make decisions. Unfortunately, not all programs work like that.

	
	
	In some cases, the program exits with a successful return code even when something goes wrong. In these cases a message in STDOUT or STDERR generally provides details about the error condition. In other cases, a program completes successfully as designed but something on its output tells you that the condition represents an error.

When executing external programs in Go you can handle both of these scenarios by capturing the program’s output and parsing it to make decisions.

	
	
	
	
 The next step in the pipeline is the execution of the gofmt tool to validate whether the target project conforms to the Go code formatting standards or not. The gofmt tool doesn’t return an error. Its default behavior is to print the properly formatted version of the Go program to STDOUT. Typically, users run gofmt with the -w option to overwrite the original file with the correctly formatted version. But in this case, you only want to verify the program and validate the formatting as part of the CI pipeline. You can use the -l option which returns the name of the file if the file doesn’t match the correct formatting. You can find more information about the gofmt tool in the official documentation.[33]

In your next pipeline step, you’ll execute gofmt -l, examine its output, and verify if it’s different than an empty string, in which case you’ll return an error. The current version of the execute method of the step type doesn’t handle the program output. Instead of adding more complexity to the current method to handle this condition, you’ll create another type called exceptionStep that extends the step type, and implements another version of the execute method designed specifically for this purpose. This approach results in less complex functions that are easier to maintain.

You’ll also introduce a new interface called executer that expects a single execute method that returns a string and an error. You’ll use this interface in the pipeline definition, allowing any types that implement this interface to be added to the pipeline.

	
	
	Start by adding the new type. Create the file exceptionStep.go in the same goci directory where main.go exists and open it in your editor. Add the package definition and the import section. For this file, we’ll import packages fmt and os/exec again, and the package bytes to define a buffer to capture the program’s output:
processes/goci.v4/exceptionStep.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"fmt"​
	​ 	 ​"os/exec"​
	​)

	
	
	Next, define the new type exceptionStep by extending the step type. Do this by embedding the step type into the new type, like this:
processes/goci.v4/exceptionStep.go
	​ 	​type​ exceptionStep ​struct​ {
	​ 	 step
	​ 	}

You’re not adding any new fields to the new type. You’ll use the same fields as the step type, as you’re only implementing a new version of the execute method.

	
	
	Now, define a new constructor for this type. Since you’re not adding new fields, you can call the constructor function for the embedded step type:
processes/goci.v4/exceptionStep.go
	​ 	​func​ newExceptionStep(name, exe, message, proj ​string​,
	​ 	 args []​string​) exceptionStep {
	​ 	
	​ 	 s := exceptionStep{}
	​ 	
	​ 	 s.step = newStep(name, exe, message, proj, args)
	​ 	
	​ 	 ​return​ s
	​ 	}

By embedding one type into another, you make all the fields and methods of the embedded type available to the embedding type. This is a common re-usability pattern in Go.

	
	
	Then define the new version of the execute method. Use the same signature as the version defined in the type step to ensure this new type implements the executer interface, making it available to use in the pipeline.
processes/goci.v4/exceptionStep.go
	​ 	​func​ (s exceptionStep) execute() (​string​, ​error​) {

Define the variable cmd of type *exec.Cmd you’ll use to execute the command.
processes/goci.v4/exceptionStep.go
	​ 	cmd := exec.Command(s.exe, s.args...)

	
	
	Before executing the command, add a new bytes.Buffer variable out and attach it to the Stdout field of the instance cmd. Later when you execute the command its output will be copied to the buffer and available for inspection.
processes/goci.v4/exceptionStep.go
	​ 	​var​ out bytes.Buffer
	​ 	cmd.Stdout = &out

Also, ensure the program executes in the target project directory by defining the field cmd.Dir as the project path represented by the field s.proj from the step type you embedded into exceptionStep:
processes/goci.v4/exceptionStep.go
	​ 	cmd.Dir = s.proj

Now execute the command using its Run method. Check for potential errors and return them if needed. Even though the command itself doesn’t return an error, you could have other errors while trying to execute it, for example, permission errors. Always check and handle errors.
processes/goci.v4/exceptionStep.go
	​ 	​if​ err := cmd.Run(); err != nil {
	​ 	 ​return​ ​""​, &stepErr{
	​ 	 step: s.name,
	​ 	 msg: ​"failed to execute"​,
	​ 	 cause: err,
	​ 	 }
	​ 	}

	
	
	Once the command finishes executing with no errors, verify the size of the output buffer by using the method Len of the bytes.Buffer type. If it contains anything, the size will be greater than zero which indicates that at least one file in the project doesn’t match the format. In this case, return a new stepErr error including the captured output in the message, indicating which files failed the check. Define the cause of this error as nil as it doesn’t have an underlying cause:
processes/goci.v4/exceptionStep.go
	​ 	​if​ out.Len() > 0 {
	​ 	 ​return​ ​""​, &stepErr{
	​ 	 step: s.name,
	​ 	 msg: fmt.Sprintf(​"invalid format: %s"​, out.String()),
	​ 	 cause: nil,
	​ 	 }
	​ 	}

Finally, in case it worked, return the success message and nil as the error, completing the function.
processes/goci.v4/exceptionStep.go
	​ 	 ​return​ s.message, nil
	​ 	}

	
	
	The code for the new type is complete. Save and close the file. Let’s use this new type in the pipeline now. Open the file main.go and add the definition of the executer interface after the import section:
	
	
	
processes/goci.v4/main.go
	​ 	​type​ executer ​interface​ {
	​ 	 execute() (​string​, ​error​)
	​ 	}

Then, in the body of the function run, update the definition of the variable pipeline slice. It should now be a slice of the interface executer instead of type step. This lets you use any types that implement the executer interface as elements of this slice. Also, increase its size to three to include the new step:
processes/goci.v4/main.go
	​ 	pipeline := make([]executer, 3)

You don’t need to make any changes to any of the existing elements since they use the step type which implements the executer interface. This is the flexibility we get by using Go’s interfaces. Add the definition of the third element using the constructor function newExceptionStep to instantiate a new exceptionStep. Include the parameters required to run the gofmt -l tool:
	
	
	
	

processes/goci.v4/main.go
	​ 	pipeline[2] = newExceptionStep(
	​ 	 ​"go fmt"​,
	​ 	 ​"gofmt"​,
	​ 	 ​"Gofmt: SUCCESS"​,
	​ 	 proj,
	​ 	 []​string​{​"-l"​, ​"."​},
	​)

Save and close the main.go file. Let’s update the test to include a case to test the format fail. Before we do it, we need to add another project in the testdata directory with code that doesn’t conform to the formatting standard. Copy the testdata/tool subdirectory into a new subdirectory testdata/toolFmtErr:
	​ 	​$ ​​cp​​ ​​-r​​ ​​testdata/tool​​ ​​testdata/toolFmtErr​

Then, execute this command to replace the contents of file testdata/toolFmtErr/add.go with content that doesn’t match Go’s format standards:
	​ 	​$ ​​cat​​ ​​<<​​ ​​'EOF'​​ ​​>​​ ​​testdata/toolFmtErr/add.go​
	​ 	​>​​ ​​package​​ ​​add​
	​ 	​>​​ ​​func​​ ​​add(a,​​ ​​b​​ ​​int)​​ ​​int​​ ​​{​
	​ 	​>​​ ​​return​​ ​​a​​ ​​+​​ ​​b​
	​ 	​>​​ ​​}​
	​ 	​>​​ ​​EOF​

The new file looks like this:
processes/goci.v4/testdata/toolFmtErr/add.go
	​ 	​package​ add
	​ 	​func​ add(a, b ​int​) ​int​ {
	​ 	​return​ a + b
	​ 	}

This code is still functional, it compiles and runs, but it doesn’t match the Go format standard. Verify it by running gofmt -l:
	​ 	​$ ​​gofmt​​ ​​-l​​ ​​testdata/toolFmtErr/*.go​
	​ 	testdata/toolFmtErr/add.go

Also, to ensure that the tests pass, make sure the .go files in the other two test directories match the standard format. Run the command gofmt -w to update them if necessary:
	​ 	​$ ​​gofmt​​ ​​-w​​ ​​testdata/tool/*.go​
	​ 	​$ ​​gofmt​​ ​​-w​​ ​​testdata/toolErr/*.go​

	
	
	
	
	Next, open the file main_test.go and update the success case to include the new success message:
processes/goci.v4/main_test.go
	​ 	{name: ​"success"​, proj: ​"./testdata/tool/"​,
	​ 	 out: ​"Go Build: SUCCESS​​\n​​Go Test: SUCCESS​​\n​​Gofmt: SUCCESS​​\n​​"​,

Add another test case to the testCases struct to test the formatting fail condition. Use the directory testdata/toolFmtErr as the project and an instance of stepErr with step set to go fmt as the expected error:
processes/goci.v4/main_test.go
	​ 	{name: ​"failFormat"​, proj: ​"./testdata/toolFmtErr"​,
	​ 	 out: ​""​,
	​ 	 expErr: &stepErr{step: ​"go fmt"​}},

Save and close the file. Execute the tests to ensure the program is working:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/success
	​ 	=== RUN TestRun/fail

	​ 	=== RUN TestRun/failFormat
	​ 	--- PASS: TestRun (0.91s)
	​ 	 --- PASS: TestRun/success (0.41s)
	​ 	 --- PASS: TestRun/fail (0.08s)
	​ 	 --- PASS: TestRun/failFormat (0.42s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/processes/goci 0.910s

All tests passed. You can now execute the program to see it working. Use the directory testdata/toolFmtErr/ as the target project to see the formatting error message:
	​ 	​$ ​​go​​ ​​run​​ ​​.​​ ​​-p​​ ​​testdata/toolFmtErr/​
	​ 	Go Build: SUCCESS
	​ 	Go Test: SUCCESS
	​ 	Step: "go fmt": invalid format: add.go
	​ 	: Cause: <nil>
	​ 	exit status 1

The execution fails in the Go formatting check step, as expected, and it displays the name of the file that failed the check. Next, you’ll add the final step to the pipeline: pushing the changes to a remote Git repository.
	
	
	
	

Running Commands with Contexts

	
	
	
	
	
	
	The final step your Go CI has to perform is pushing code changes to the remote Git repository. For this step, you’ll use some concepts from the Git Version Control System, such as, commits, local and remote repositories, branches, and pushing commits to remote repositories. If you need more information about these concepts, take a look at Git’s official documentation.[34] If you want to try this tool locally, you’ll also need Git installed on your machine.

To push code you’ll add another step to your pipeline to execute the command git with the appropriate options. For now, let’s simplify it and assume that we’re pushing code to the remote repo identified by origin using the branch master. The complete command is git push origin master.
	
	

You could implement this feature by adding another step using the existing step type with the necessary options. But in this case, this command will try to push the code to a remote repository over the network - and potentially over the Internet. If there’s a network issue, it could cause the command to hang which would cause the goci tool to hang. If you’re executing the goci tool manually it’s not too bad as you can cancel its execution after a while, but if you’re running it as part of an automation process or script, this is an undesirable situation.

	
	
	
	
	As a rule of thumb, when running external commands that can potentially take a long time to complete, it is a good idea to set a timeout which, upon expiration, stops the command execution. In Go, you accomplish this by using the context package. You’ll put this into practice by extending the step type into a new type named timeoutStep. This new type shares the same fields with the original step, but it includes the timeout field of type time.Duration representing the timeout value for this step. Then, you’ll override the execute method to use the timeout field, stopping the command execution when the timeout expires, returning a timeout error.

	
	
	Create a new file named timeoutStep.go to hold the new type. Add the package definition and the import section to the file. For this type, you’ll use the context package to create a context to carry the timeout, the os/exec package to execute external commands, and the time package to define time values.
processes/goci.v5/timeoutStep.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"context"​
	​ 	 ​"os/exec"​
	​ 	 ​"time"​
	​)

Then define the new type timeoutStep as an extension of the existing step type by embedding the step type into the definition. Include the new timeout field of type time.Duration:
	
	
processes/goci.v5/timeoutStep.go
	​ 	​type​ timeoutStep ​struct​ {
	​ 	 step
	​ 	 timeout time.Duration
	​ 	}

Next, define the constructor function newTimeoutStep you’ll use to instantiate this new type. This is similar to the constructor function for the step and exceptionStep you defined before, but it also accepts the timeout parameter.
processes/goci.v5/timeoutStep.go
	​ 	​func​ newTimeoutStep(name, exe, message, proj ​string​,
	​ 	 args []​string​, timeout time.Duration) timeoutStep {
	​ 	 s := timeoutStep{}
	​ 	
	​ 	 s.step = newStep(name, exe, message, proj, args)

	​ 	 s.timeout = timeout
	​ 	 ​if​ s.timeout == 0 {
	​ 	 s.timeout = 30 * time.Second
	​ 	 }
	​ 	
	​ 	 ​return​ s
	​ 	}

Notice that this defines the value of the timeout field to use the value provided as input to the constructor function, but if no timeout was provided, it sets the value to a default of 30 seconds by multiplying 30 by the constant time.Second from the time package.
	
	

Now implement the execute method to execute the command. Add the function definition keeping the same inputs and outputs as the previous versions so it can implement the executer interface, allowing you to use it in the pipeline:
processes/goci.v5/timeoutStep.go
	​ 	​func​ (s timeoutStep) execute() (​string​, ​error​) {

	
	
	Then, define a context called ctx to carry the timeout value and use the context.WithTimeout function from the context package. This function accepts two input parameters: a parent context and the timeout value. For the parent context, since this is the first, and only, context you’re defining, use the context.Background function from the context package to add a new empty context. For the timeout value, use the s.timeout property from the current timeoutStep instance:
processes/goci.v5/timeoutStep.go
	​ 	ctx, cancel := context.WithTimeout(context.Background(), s.timeout)

The function context.WithTimeout returns two values: the context which you store in the variable ctx, and a cancellation function that you store in the variable cancel. You have to execute the cancellation function when the context is no longer required to free up its resources. Use a defer statement to run the cancellation function when the execute method returns:
	
	
processes/goci.v5/timeoutStep.go
	​ 	​defer​ cancel()

Once you have the context including the timeout, you can use it to create an instance of type exec.Cmd to execute the command. Instead of using the function exec.Command that you used in the previous versions, use the function exec.CommandContext to create a command that includes a context. The created command uses the context to kill the executing process in case the context becomes done before the command completes. In our case, it will kill the running process if the timeout defined in the context expires before the command completes:
processes/goci.v5/timeoutStep.go
	​ 	cmd := exec.CommandContext(ctx, s.exe, s.args...)

Ensure the command’s working directory is set to the target project directory:
processes/goci.v5/timeoutStep.go
	​ 	cmd.Dir = s.proj

Now execute the command with the Run method and check for errors. Add a condition to verify if the context ctx returned the error context.DeadlineExceeded which means the context timeout expired. In this case, return a new error that includes the message failed time out, indicating to the user that the command timed out before completing its execution. If there’s another error condition, return it instead.
processes/goci.v5/timeoutStep.go
	​ 	​if​ err := cmd.Run(); err != nil {
	​ 	 ​if​ ctx.Err() == context.DeadlineExceeded {
	​ 	 ​return​ ​""​, &stepErr{
	​ 	 step: s.name,
	​ 	 msg: ​"failed time out"​,
	​ 	 cause: context.DeadlineExceeded,
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​return​ ​""​, &stepErr{
	​ 	 step: s.name,
	​ 	 msg: ​"failed to execute"​,
	​ 	 cause: err,
	​ 	 }
	​ 	}

If the command completed successfully with no errors or timeouts, return the success message and nil as the error:
processes/goci.v5/timeoutStep.go
	​ 	 ​return​ s.message, nil
	​ 	}

	
	
	
	
	The timeoutStep type is complete. Save the file and open the main.go file to add another step to the pipeline.

In the main.go file, add the time package to the import list. You’ll use it to define the timeout value when adding the new step later:
processes/goci.v5/main.go
	​ 	​import​ (
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​ 	
	»	 ​"time"​
	​)

Then, in the body of the run function, update the pipeline variable definition increasing its length from 3 to 4 making room for another step.
processes/goci.v5/main.go
	​ 	pipeline := make([]executer, 4)

Finally, add the definition of the fourth element in the pipeline slice using the constructor function newTimeoutStep to instantiate a new timeoutStep. Include the parameters required to run the git push command, define the success message as Git Push: SUCCESS, and define the timeout value as ten seconds:
processes/goci.v5/main.go
	​ 	pipeline[3] = newTimeoutStep(
	​ 	 ​"git push"​,
	​ 	 ​"git"​,
	​ 	 ​"Git Push: SUCCESS"​,
	​ 	 proj,
	​ 	 []​string​{​"push"​, ​"origin"​, ​"master"​},
	​ 	 10*time.Second,
	​)

No other changes are required since the type timeoutStep implements the executer interface. The code will loop through all the steps, including this new one, executing each one of them in order. Save the main.go to complete the updates.

Lastly, update the success test case to include the expected success message from the Git push step. Edit the file main_test.go and update the test case message:
processes/goci.v5/main_test.go
	​ 	out: ​"Go Build: SUCCESS​​\n​​Go Test: SUCCESS​​\n​​Gofmt: SUCCESS​​\n​​Git Push: SUCCESS​​\n​​"​,

You’ll add more test cases later but for now this is the only change required. Save the file to finish the changes.
	Don’t Execute Tests if Using a Git Repository

	
 [image: images/aside-icons/warning.png]
 	

	
 If you’re writing your code in a directory that’s part of a Git repository associated with a remote repository, don’t execute this test right away as it will try to push changes directly to your remote Master branch. The example in the book assumes the code isn’t part of a Git repository yet.

Execute the tests. For this example, you’re running these tests in a project directory that’s not part of a Git repository and expecting this test to fail. First, ensure that this directory isn’t part of a Git repository:
	​ 	​$ ​​git​​ ​​status​
	​ 	fatal: not a git repository (or any parent up to mount point /)
	​ 	Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).

Next, switch to the directory testdata/tool and verify it’s also not a Git repository:
	​ 	​$ ​​cd​​ ​​testdata/tool​
	​ 	​$ ​​git​​ ​​status​
	​ 	fatal: not a git repository (or any parent up to mount point /)
	​ 	Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).

Then, switch back to your project directory where the file main_test.go resides and execute the tests:
	​ 	​$ ​​cd​​ ​​../..​
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/success
	​ 	main_test.go:44: Unexpected error: "Step: \"git push\": failed to execute:
	​ 	Cause: exit status 128"
	​ 	main_test.go:48: Expected output: "Go Build: SUCCESS\nGo Test: SUCCESS\n
	​ 	Gofmt: SUCCESS\nGit Push: SUCESS\n". Got "Go Build: SUCCESS\nGo Test: SUCCESS\n
	​ 	Gofmt: SUCCESS\n"
	​ 	=== RUN TestRun/fail
	​ 	=== RUN TestRun/failFormat
	​ 	--- FAIL: TestRun (0.83s)
	​ 	 --- FAIL: TestRun/success (0.42s)
	​ 	 --- PASS: TestRun/fail (0.07s)
	​ 	 --- PASS: TestRun/failFormat (0.33s)
	​ 	FAIL
	​ 	exit status 1
	​ 	FAIL pragprog.com/rggo/processes/goci 0.832s

Note that the output is different from the original to fit the book page. Your results will be slightly different.

The test failed as expected since there’s no Git repository to push the changes to. This is one challenge when testing external commands that depend on other services or that make irreversible changes to an external resource. There are essentially two ways to deal with this situation: instantiate the required service or resource to run an integration test; or use a mock service/resource to simulate it. Let’s try the first approach next.
	
	
	

Integration Tests with a Local Git Server

	
	
	
	When you’re writing tests for your application, you need to ensure that the tests run on a reproducible environment, to guarantee that the results match the expected values. This is a challenge when executing external commands that modify the state of an external resource, as the test conditions will be different the second time you execute the tests. The first strategy you’ll apply to handle this issue involves instantiating a local Git server by using a test helper function, similarly to what you did in ​Testing with the Help of Test Helpers​.

	
	
	The test helper function setupGit uses the git command to create a Bare Git repository that works like an external Git service such as GitLab or GitHub. A bare Git repository is a repository that contains only the git data but no working directory so it cannot be used to make local modifications to the code. This characteristic makes it well suited to serve as a remote repository. For more information about it, consult the official Git book.[35]

At a high level, the helper function will perform the following steps:
	
Create a temporary directory.

	
Create a Bare Git repository on this temporary directory.

	
Initialize a Git repository on the target project directory.

	
Add the Bare Git repository as a remote repository in the empty Git repository in the target project directory.

	
Stage a file to commit.

	
Commit the changes to the Git repository.

These steps prepare a reproducible environment to test the goci tool allowing it to perform the Git Push step, pushing the committed changes to the Bare Git repository on the temporary directory. The helper function returns a cleanup function that deletes everything at the end of the test, ensuring the test can be repeated again.

Start the changes by opening the file main_test.go for edit. Include the new packages in the import list. For this new version, in addition to packages bytes, errors, and testing, include the fmt package to print formatted output, the ioutil package to create the temporary directory, the os package to interact with the operating system, the os/exec package to execute external programs, and the path/filepath package to handle path operations consistently.
	
	
	
	
	
	
	
	
	
processes/goci.v6/main_test.go
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"errors"​
	​ 	 ​"fmt"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"os/exec"​
	​ 	 ​"path/filepath"​
	​ 	 ​"testing"​
	​)

Next, at the end of the file, add the definition for the helper function setupGit. This function takes two input parameters: an instance t of type *testing.T and the target project path proj of type string. It returns the cleanup function type func():
processes/goci.v6/main_test.go
	​ 	​func​ setupGit(t *testing.T, proj ​string​) ​func​() {

	
	Mark this function as a test helper function by using the method t.Helper of the type testing.T. This ensures that error messages generated during the execution of the helper function point to the line where this function was called during the test execution, facilitating troubleshooting. For more information, consult ​Testing with the Help of Test Helpers​:
processes/goci.v6/main_test.go
	​ 	t.Helper()

	
	Then use the function LookPath from the os/exec package to verify whether the command git is available or not. Since git is required to execute the setup steps, we cannot proceed without it. This is a good way to fail fast in case a required external command isn’t available on the system:
processes/goci.v6/main_test.go
	​ 	gitExec, err := exec.LookPath(​"git"​)
	​ 	​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	}

	
	
	Next, use the function ioutil.TempDir to create a temporary directory for the simulated remote Git repository. Prefix the temporary directory name with gocitest:
processes/goci.v6/main_test.go
	​ 	tempDir, err := ioutil.TempDir(​""​, ​"gocitest"​)
	​ 	​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	}

Now, define two variables that you’ll use during the setup: projPath which contains the full path of the target project directory; and remoteURI which stores the URI of the simulated remote Git repository. First, define projPath by using the function filepath.Abs to obtain the absolute path of the target project directory proj:
	
	
processes/goci.v6/main_test.go
	​ 	projPath, err := filepath.Abs(proj)
	​ 	​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	}

	
	Then, define the remoteURI by using the function fmt.Sprintf to print a formatted string into a variable. Since you’re simulating the remote repository locally, you can use the protocol file:// for the URI. The URI path points to the temporary directory tempDir:
processes/goci.v6/main_test.go
	​ 	remoteURI := fmt.Sprintf(​"file://%s"​, tempDir)

According to the initial outline, the helper function has to execute a series of five git commands to set up the test environment. Instead of adding the code to execute each step, you will use a loop. First, create a slice of structs that contains the data for the loop. This anonymous struct contains the fields args with the arguments for the git command, dir with the directory on which to execute the command, and env with a list of environment variables to use during the execution:
processes/goci.v6/main_test.go
	​ 	​var​ gitCmdList = []​struct​ {
	​ 	 args []​string​
	​ 	 dir ​string​
	​ 	 env []​string​
	​ 	}{
	​ 	 {[]​string​{​"init"​, ​"--bare"​}, tempDir, nil},
	​ 	 {[]​string​{​"init"​}, projPath, nil},
	​ 	 {[]​string​{​"remote"​, ​"add"​, ​"origin"​, remoteURI}, projPath, nil},
	​ 	 {[]​string​{​"add"​, ​"."​}, projPath, nil},
	​ 	 {[]​string​{​"commit"​, ​"-m"​, ​"test"​}, projPath,
	​ 	 []​string​{
	​ 	 ​"GIT_COMMITTER_NAME=test"​,
	​ 	 ​"GIT_COMMITTER_EMAIL=test@example.com"​,
	​ 	 ​"GIT_AUTHOR_NAME=test"​,
	​ 	 ​"GIT_AUTHOR_EMAIL=test@example.com"​,
	​ 	 }},
	​ 	}

	
	Use a for loop with the range operator to iterate over the command list, executing each one in sequence, by using the os/exec package, similarly to what you do in the goci tool:
processes/goci.v6/main_test.go
	​ 	​for​ _, g := ​range​ gitCmdList {
	​ 	 gitCmd := exec.Command(gitExec, g.args...)
	​ 	 gitCmd.Dir = g.dir
	​ 	
	​ 	 ​if​ g.env != nil {
	​ 	 gitCmd.Env = append(os.Environ(), g.env...)
	​ 	 }
	​ 	
	​ 	 ​if​ err := gitCmd.Run(); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	}

Notice that this uses the Env field from the type exec.Cmd to inject environment variables into the external command environment. The Env field contains a slice of strings where each represents an environment variable in the format key=value. You’re adding more environment variables by appending them to the existing environment with the built in append function.

	
	When the loop completes, return the cleanup function that deletes both the temporary directory and the local .git subdirectory from the target project directory:
processes/goci.v6/main_test.go
	​ 	 ​return​ ​func​() {
	​ 	 os.RemoveAll(tempDir)
	​ 	 os.RemoveAll(filepath.Join(projPath, ​".git"​))
	​ 	 }
	​ 	}

The setupGit helper function is complete. Update the test function TestRun to use the helper function. First, since the command git is required to execute this test, skip the test by using the function t.Skip if git isn’t available:
	
	
processes/goci.v6/main_test.go
	​ 	​func​ TestRun(t *testing.T) {
	​ 	 _, err := exec.LookPath(​"git"​)
	​ 	 ​if​ err != nil {
	​ 	 t.Skip(​"Git not installed. Skipping test."​)
	​ 	 }

Next, update the test cases by including a new parameter setupGit of type bool. This parameter indicates whether or not the test needs to call the helper function to setup the Git environment. Update the first test case with setupGit: true as this test case requires the Git environment. The remaining test cases fail before getting to the Git step, therefore setting up the environment isn’t required. Set setupGit: false for them to avoid spending time with an unnecessary setup:
processes/goci.v6/main_test.go
	​ 	​var​ testCases = []​struct​ {
	​ 	 name ​string​
	​ 	 proj ​string​
	​ 	 out ​string​
	​ 	 expErr ​error​
	​ 	 setupGit ​bool​
	​ 	}{
	​ 	 {name: ​"success"​, proj: ​"./testdata/tool/"​,
	​ 	 out: ​"Go Build: SUCCESS​​\n​​"​ +
	​ 	 ​"Go Test: SUCCESS​​\n​​"​ +
	​ 	 ​"Gofmt: SUCCESS​​\n​​"​ +
	​ 	 ​"Git Push: SUCCESS​​\n​​"​,
	​ 	 expErr: nil,
	​ 	 setupGit: true},
	​ 	 {name: ​"fail"​, proj: ​"./testdata/toolErr"​,
	​ 	 out: ​""​,
	​ 	 expErr: &stepErr{step: ​"go build"​},
	​ 	 setupGit: false},
	​ 	 {name: ​"failFormat"​, proj: ​"./testdata/toolFmtErr"​,
	​ 	 out: ​""​,
	​ 	 expErr: &stepErr{step: ​"go fmt"​},
	​ 	 setupGit: false},
	​ 	}

Finally, in the test case execution function t.Run, check if the parameter tc.setupGit is set, execute the helper function and defer the execution of the cleanup function to ensure the resources are deleted at the end:
processes/goci.v6/main_test.go
	​ 	​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 ​if​ tc.setupGit {
	​ 	 cleanup := setupGit(t, tc.proj)
	​ 	 ​defer​ cleanup()
	​ 	 }

No other changes are required as the test executes all the CI steps using the Git environment setup by the helper function. Save the file main_test.go and execute the tests:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/success
	​ 	=== RUN TestRun/fail
	​ 	=== RUN TestRun/failFormat
	​ 	--- PASS: TestRun (0.94s)
	​ 	 --- PASS: TestRun/success (0.44s)
	​ 	 --- PASS: TestRun/fail (0.11s)
	​ 	 --- PASS: TestRun/failFormat (0.39s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/processes/goci 0.942s

	Troubleshooting the Helper Function

	
 [image: images/aside-icons/info.png]
 	

	
	 If you need to troubleshoot the helper function, you can comment out the defer cleanup() line to prevent the cleanup function from deleting the resources. Remember to clean up the resources manually after you’re done.

You’ve successfully tested an external command execution by setting up a local Git repository. Next, you’ll apply a strategy to execute tests when the external command isn’t available.
	
	
	
	

Testing Commands with Mock Resources

	
	
	
	
	
	So far, you’ve been testing the external commands by executing them directly. This is a perfectly valid approach. But sometimes it’s not desirable or possible to execute a command directly on the machine where you’re testing the code. For these cases, you’ll mock the external commands by using Go function during tests. This approach also allows you to use Go code to simulate abnormal conditions, such as timeouts, which are harder to simulate using external services. Go’s standard library applies this approach to test the function from the os/exec package. For more information check the source code for the exec_test.go file from the standard library.[36]

	
	
	
	To use this approach you’ll write a test function that replaces the function exec.CommandContext from the exec package that you use to create the exec.Cmd type, during tests. First, edit the file timeoutStep.go and add a package variable command assigning the original function exec.CommandContext:
processes/goci.v7/timeoutStep.go
	​ 	 ​return​ s
	​ 	}
	​ 	
	»	​var​ command = exec.CommandContext
	»	
	​ 	
	​ 	​func​ (s timeoutStep) execute() (​string​, ​error​) {
	​ 	 ​return​ s.message, nil
	​ 	}

Since functions are first class types in Go, you can assign them to variables and pass them as arguments. In this case, you created a variable of type func (context.Context, string, ...string) *exec.Cmd and assigned the original exec.CommandContext value as its initial value. Later, when testing, you’ll use this variable to override the original function with the mock function.

Then, use the function stored in the variable to create the exec.Cmd instance in the execute method, instead of the original exec.CommandContext function:
processes/goci.v7/timeoutStep.go
	​ 	​func​ (s timeoutStep) execute() (​string​, ​error​) {
	​ 	 ctx, cancel := context.WithTimeout(context.Background(), s.timeout)
	​ 	 ​defer​ cancel()
	​ 	
	»	 cmd := command(ctx, s.exe, s.args...)
	​ 	 cmd.Dir = s.proj
	​ 	
	​ 	 ​if​ err := cmd.Run(); err != nil {
	​ 	 ​if​ ctx.Err() == context.DeadlineExceeded {
	​ 	 ​return​ ​""​, &stepErr{
	​ 	 step: s.name,
	​ 	 msg: ​"failed time out"​,
	​ 	 cause: context.DeadlineExceeded,
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​return​ ​""​, &stepErr{
	​ 	 step: s.name,
	​ 	 msg: ​"failed to execute"​,
	​ 	 cause: err,
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​return​ s.message, nil
	​ 	}

Note that this usage of a package variable is acceptable since you’re only overriding it during tests. It also lets you explore the concept without working through a more complicated example. For a more robust approach, you can pass the function you want to override as a parameter or use an interface.
	
	

The preparation step is complete. Save the file timeoutStep.go and edit the file main_test.go to update the tests.

	Add two packages to the import list: context to define command contexts, and package time to simulate a timeout.
	
	
	
processes/goci.v7/main_test.go
	​ 	​import​ (
	​ 	 ​"bytes"​
	»	 ​"context"​
	​ 	 ​"errors"​
	​ 	 ​"fmt"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"os/exec"​
	​ 	 ​"path/filepath"​
	​ 	 ​"testing"​
	​ 	
	»	 ​"time"​
	​)

To mock an executable command during tests, you’ll use a feature of Go testing. When you run go test to execute a test, Go actually compiles an executable program and runs it, passing any flags and parameters you set. You can see this if you list running processes while running go test:
	​ 	​$ ​​ps​​ ​​-eo​​ ​​args​​ ​​|​​ ​​grep​​ ​​go​
	​ 	go test -v
	​ 	/tmp/go-build498058748/b001/goci.test -test.v=true -test.timeout=10m0s

	
	
	
	Because Go is running a command, it stores the name of the executable in the os.Args[0] variable, and all additional arguments passed to it in the remaining slice elements os.Args[1:]. Our mock command creates a new command that executes the same test binary passing the flag -test.run to execute a specific test function. Following the standard library convention, you’ll name this function TestHelperProcess. It is this function that simulates the command behavior you want to test, in this case, the command git.

	
	Since this is a regular test function func Test... Go will try to execute it directly as part of the tests. You’ll use an environment variable called GO_WANT_HELPER_PROCESS to skip the test unless it was called as part of the mock test. You’ll add this environment variable to the simulated command environment so when Go runs the function TestHelperProcess as part of the simulation, it will not be skipped.

Create the function mockCmdContext to mock the exec.CommandContext function. It has the same signature as the original func (context.Context, string, ...string) *exec.Cmd:
processes/goci.v7/main_test.go
	​ 	​func​ mockCmdContext(ctx context.Context, exe ​string​,
	​ 	 args ...​string​) *exec.Cmd {

Create the arguments list that will be passed to the command. First the -test.run:
processes/goci.v7/main_test.go
	​ 	cs := []​string​{​"-test.run=TestHelperProcess"​}

Then, append the command and arguments that would be passed to the real command to execute your external command:
processes/goci.v7/main_test.go
	​ 	cs = append(cs, exe)
	​ 	cs = append(cs, args...)

Now, create an instance of the type exec.Cmd by calling the function exec.CommandContext. Use the variable os.Args[0] to run the test binary, and the arguments slice cs you defined earlier:
processes/goci.v7/main_test.go
	​ 	cmd := exec.CommandContext(ctx, os.Args[0], cs...)

	
	Add the environment variable GO_WANT_HELPER_PROCESS=1 to the cmd environment to ensure the test isn’t skipped, and return the newly created command cmd to complete the function:
processes/goci.v7/main_test.go
	​ 	 cmd.Env = []​string​{​"GO_WANT_HELPER_PROCESS=1"​}
	​ 	 ​return​ cmd
	​ 	}

	
	Next, add another mock function to simulate a command that times out. Execute the mockCmdContext function to create a command and append the environment variable GO_HELPER_TIMEOUT=1 to its environment. You’ll use this environment variable in the TestHelperProcess function to indicate it should simulate a long-running process.
processes/goci.v7/main_test.go
	​ 	​func​ mockCmdTimeout(ctx context.Context, exe ​string​,
	​ 	 args ...​string​) *exec.Cmd {
	​ 	
	​ 	 cmd := mockCmdContext(ctx, exe, args...)
	​ 	 cmd.Env = append(cmd.Env, ​"GO_HELPER_TIMEOUT=1"​)
	​ 	 ​return​ cmd
	​ 	}

Add the TestHelperProcess function that simulates the command. This is a regular test function so it takes an instance t of type *testing.T and doesn’t return any values:
processes/goci.v7/main_test.go
	​ 	​func​ TestHelperProcess(t *testing.T) {

Check if the environment variable GO_WANT_HELPER_PROCESS is different than one (1) and return immediately. This prevents the execution if it was not called from the mock command:
processes/goci.v7/main_test.go
	​ 	​if​ os.Getenv(​"GO_WANT_HELPER_PROCESS"​) != ​"1"​ {
	​ 	 ​return​
	​ 	}

Check if the environment variable GO_HELPER_TIMEOUT is set to one (1) and simulate a long=running process by using the time.Sleep function:
processes/goci.v7/main_test.go
	​ 	​if​ os.Getenv(​"GO_HELPER_TIMEOUT"​) == ​"1"​ {
	​ 	 time.Sleep(15 * time.Second)
	​ 	}

Next, check if the name of the executable provided to the mock function matches git. This is the command that would be executed by the real function. You want to ensure it matches the expected value. For completeness, you could also check the arguments provided, but for this test, the executable name is enough. If the executable name matches git return the expected output message and exit with a return code zero (0) indicating the command completed successfully. If any other executables are provided, exit with code one (1) indicating an error:
processes/goci.v7/main_test.go
	​ 	 ​if​ os.Args[2] == ​"git"​ {
	​ 	 fmt.Fprintln(os.Stdout, ​"Everything up-to-date"​)
	​ 	 os.Exit(0)
	​ 	 }
	​ 	
	​ 	 os.Exit(1)
	​ 	}

Now, all the functions required to mock the external command are ready. Let’s update the TestRun test to use them. First, remove the lines that skip the test if git isn’t installed, since you can now execute the test via mock commands. You’ll run this check later when running the test cases.
	​ 	_, err := exec.LookPath(​"git"​)
	​ 	​if​ err != nil {
	​ 	 t.Skip(​"Git not installed. Skipping test."​)
	​ 	}

Next, add a new field mockCmd to the test cases. This variable contains the function used to mock a command if required. Update the existing test cases setting this variable to nil. Include two new test cases using the mock commands: for successMock set the mockCmd field to mockCmdContext; for failTimeout use mockCmdTimeout:
processes/goci.v7/main_test.go
	​ 	​var​ testCases = []​struct​ {
	​ 	 name ​string​
	​ 	 proj ​string​
	​ 	 out ​string​
	​ 	 expErr ​error​
	​ 	 setupGit ​bool​
	​ 	 mockCmd ​func​(ctx context.Context, name ​string​, arg ...​string​) *exec.Cmd
	​ 	}{
	​ 	 {name: ​"success"​, proj: ​"./testdata/tool/"​,
	​ 	 out: ​"Go Build: SUCCESS​​\n​​"​+
	​ 	 ​"Go Test: SUCCESS​​\n​​"​+
	​ 	 ​"Gofmt: SUCCESS​​\n​​"​+
	​ 	 ​"Git Push: SUCCESS​​\n​​"​,
	​ 	 expErr: nil,
	​ 	 setupGit: true,
	​ 	 mockCmd: nil},
	​ 	 {name: ​"successMock"​, proj: ​"./testdata/tool/"​,
	​ 	 out: ​"Go Build: SUCCESS​​\n​​"​+
	​ 	 ​"Go Test: SUCCESS​​\n​​"​+
	​ 	 ​"Gofmt: SUCCESS​​\n​​"​+
	​ 	 ​"Git Push: SUCCESS​​\n​​"​,
	​ 	 expErr: nil,
	​ 	 setupGit: false,
	​ 	 mockCmd: mockCmdContext},
	​ 	 {name: ​"fail"​, proj: ​"./testdata/toolErr"​,
	​ 	 out: ​""​,
	​ 	 expErr: &stepErr{step: ​"go build"​},
	​ 	 setupGit: false,
	​ 	 mockCmd: nil},
	​ 	 {name: ​"failFormat"​, proj: ​"./testdata/toolFmtErr"​,
	​ 	 out: ​""​,
	​ 	 expErr: &stepErr{step: ​"go fmt"​},
	​ 	 setupGit: false,
	​ 	 mockCmd: nil},
	​ 	 {name: ​"failTimeout"​, proj: ​"./testdata/tool"​,
	​ 	 out: ​""​,
	​ 	 expErr: context.DeadlineExceeded,
	​ 	 setupGit: false,
	​ 	 mockCmd: mockCmdTimeout},
	​ 	}

	
	
	Then, read the git check during the test cases execution if setting up Git is required:
processes/goci.v7/main_test.go
	​ 	​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 ​if​ tc.setupGit {
	»	 _, err := exec.LookPath(​"git"​)
	»	 ​if​ err != nil {
	»	 t.Skip(​"Git not installed. Skipping test."​)
	»	 }
	​ 	
	​ 	 cleanup := setupGit(t, tc.proj)
	​ 	 ​defer​ cleanup()
	​ 	 }
	​ 	

	
	Finally, check if the tc.mockCmd is defined for the test case and override the package variable command with the given mock function:
processes/goci.v7/main_test.go
	​ 	 ​defer​ cleanup()
	​ 	}
	​ 	
	»	​if​ tc.mockCmd != nil {
	»	 command = tc.mockCmd
	»	}
	​ 	
	​ 	​var​ out bytes.Buffer

These are all the changes required. This is the complete new version of the TestRun function:
processes/goci.v7/main_test.go
	​ 	​func​ TestRun(t *testing.T) {
	​ 	 ​var​ testCases = []​struct​ {
	​ 	 name ​string​
	​ 	 proj ​string​
	​ 	 out ​string​
	​ 	 expErr ​error​
	​ 	 setupGit ​bool​
	​ 	 mockCmd ​func​(ctx context.Context, name ​string​, arg ...​string​) *exec.Cmd
	​ 	 }{
	​ 	 {name: ​"success"​, proj: ​"./testdata/tool/"​,
	​ 	 out: ​"Go Build: SUCCESS​​\n​​"​+
	​ 	 ​"Go Test: SUCCESS​​\n​​"​+
	​ 	 ​"Gofmt: SUCCESS​​\n​​"​+
	​ 	 ​"Git Push: SUCCESS​​\n​​"​,
	​ 	 expErr: nil,
	​ 	 setupGit: true,
	​ 	 mockCmd: nil},

	​ 	 {name: ​"successMock"​, proj: ​"./testdata/tool/"​,
	​ 	 out: ​"Go Build: SUCCESS​​\n​​"​+
	​ 	 ​"Go Test: SUCCESS​​\n​​"​+
	​ 	 ​"Gofmt: SUCCESS​​\n​​"​+
	​ 	 ​"Git Push: SUCCESS​​\n​​"​,
	​ 	 expErr: nil,
	​ 	 setupGit: false,
	​ 	 mockCmd: mockCmdContext},
	​ 	 {name: ​"fail"​, proj: ​"./testdata/toolErr"​,
	​ 	 out: ​""​,
	​ 	 expErr: &stepErr{step: ​"go build"​},
	​ 	 setupGit: false,
	​ 	 mockCmd: nil},
	​ 	 {name: ​"failFormat"​, proj: ​"./testdata/toolFmtErr"​,
	​ 	 out: ​""​,
	​ 	 expErr: &stepErr{step: ​"go fmt"​},
	​ 	 setupGit: false,
	​ 	 mockCmd: nil},
	​ 	 {name: ​"failTimeout"​, proj: ​"./testdata/tool"​,
	​ 	 out: ​""​,
	​ 	 expErr: context.DeadlineExceeded,
	​ 	 setupGit: false,
	​ 	 mockCmd: mockCmdTimeout},
	​ 	}
	​ 	
	​ 	​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 ​if​ tc.setupGit {
	»	 _, err := exec.LookPath(​"git"​)
	»	 ​if​ err != nil {
	»	 t.Skip(​"Git not installed. Skipping test."​)
	»	 }
	​ 	
	​ 	 cleanup := setupGit(t, tc.proj)
	​ 	 ​defer​ cleanup()
	​ 	 }
	​ 	
	»	 ​if​ tc.mockCmd != nil {
	»	 command = tc.mockCmd
	»	 }
	​ 	
	​ 	 ​var​ out bytes.Buffer
	​ 	 err := run(tc.proj, &out)
	​ 	
	​ 	 ​if​ tc.expErr != nil {
	​ 	 ​if​ err == nil {
	​ 	 t.Errorf(​"Expected error: %q. Got 'nil' instead."​, tc.expErr)
	​ 	 ​return​
	​ 	 }

	​ 	 ​if​ !errors.Is(err, tc.expErr) {
	​ 	 t.Errorf(​"Expected error: %q. Got %q."​, tc.expErr, err)
	​ 	 }
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 t.Errorf(​"Unexpected error: %q"​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ out.String() != tc.out {
	​ 	 t.Errorf(​"Expected output: %q. Got %q"​, tc.out, out.String())
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

Save the file main_test.go and execute the tests:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestHelperProcess
	​ 	--- PASS: TestHelperProcess (0.00s)
	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/success
	​ 	=== RUN TestRun/successMock
	​ 	=== RUN TestRun/fail
	​ 	=== RUN TestRun/failFormat
	​ 	=== RUN TestRun/failTimeout
	​ 	--- PASS: TestRun (11.69s)
	​ 	 --- PASS: TestRun/success (0.44s)
	​ 	 --- PASS: TestRun/successMock (0.40s)
	​ 	 --- PASS: TestRun/fail (0.08s)
	​ 	 --- PASS: TestRun/failFormat (0.39s)
	​ 	 --- PASS: TestRun/failTimeout (10.38s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/processes/goci 11.694s

While executing the tests, you can see the mock command executing by listing the running processes:
	​ 	​$ ​​ps​​ ​​-eo​​ ​​args​​ ​​|​​ ​​grep​​ ​​go​
	​ 	go test -v
	​ 	/tmp/go-build498058748/b001/goci.test -test.v=true -test.timeout=10m0s
	​ 	/tmp/go-build498058748/b001/goci.test -test.run=TestHelperProcess git push
	​ 	origin master

As expected, the mock test runs the test binary, passing the argument -test.run=TestHelperProcess followed by the original git command line git push origin master.

Now you can test the external command execution, using two different strategies. Next, let’s update goci to handle operating system signals.
	
	
	
	
	

Handling Signals

	
	
	
	
	
	
	The last feature you’ll add to goci is the ability to handle operating system signals. Signals are commonly used on Unix/Linux operating systems to communicate events among running processes. Typically, signals are used to terminate programs that aren’t responding or are running for a long time. For example, pressing Ctrl+C on the keyboard sends the 8nterrupt signal (SIGINT) to a running program, which interrupts its execution.

	
	In Go, you handle signals by using the os/signal package. For more information consult its documentation.[37]

By default, when a program receives an interrupt signal, it stops executing immediately. This can lead to data loss and other consequences. It’s important to handle signals appropriately so the program has a chance to clean up used resources, save data, and exit cleanly. This is even more relevant for an automation tool such as goci as it can receive a signal from other parts of the automation process.

For goci specifically, no cleanup is needed. When handling signals, the tool will exit cleanly but provide an appropriate error status and message, which makes downstream applications aware that goci didn’t finish properly, allowing them to decide which actions to take. Since this error occurs outside a CI step, handle it using another error value instead of your custom error type that was designed to handle step errors. Edit the file errors.go and add another error value ErrSignal representing an error when receiving a signal:
processes/goci.v8/errors.go
	​ 	​var​ (
	​ 	 ErrValidation = errors.New(​"Validation failed"​)
	»	 ErrSignal = errors.New(​"Received signal"​)
	​)

	
	Save and quit this file. To handle signals you’ll apply some of the concurrency concepts you used in ​Reduce Scheduling Contention​. such as channels and goroutines. Edit the file main.go and include two new packages to the import list: os/signal to handle signals and syscall to use the signal definitions:
	
	
	
processes/goci.v8/main.go
	​ 	​import​ (
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​

	​ 	 ​"os"​
	​ 	
	»	 ​"os/signal"​
	»	 ​"syscall"​
	»	
	​ 	 ​"time"​
	​)

	
	Go relays signals using a channel of type os.Signal. Add the signal definition right after defining all elements in the pipeline slice:
processes/goci.v8/main.go
	​ 	sig := make(​chan​ os.Signal, 1)

You’re creating a buffered channel of size one (1) which allows the application to handle at least one signal correctly in case it receives many signals.

	
	You’ll update this function to run the CI pipeline steps in a goroutine, concurrently with the signal notification. That’s why you add two more channels to communicate the status back to the main goroutine: an error channel to communicate potential errors, and the done channel of type struct{} to communicate the loop conclusion.
processes/goci.v8/main.go
	​ 	errCh := make(​chan​ ​error​)
	​ 	done := make(​chan​ ​struct​{})

Now use the function signal.Notify from the os/signal package to relay signals to the channel sig. You’re only interested in two termination signals: SIGINT and SIGTERM, so pass them as parameters to the function call. All other signals will be ignored and not relayed to this channel:
processes/goci.v8/main.go
	​ 	signal.Notify(sig, syscall.SIGINT, syscall.SIGTERM)

	
	Then, wrap the main loop in an anonymous goroutine, allowing its concurrent execution with the signal.Notify function. When the loop finishes, close the done channel to notify the loop completion:
processes/goci.v8/main.go
	​ 	​go​ ​func​() {
	​ 	 ​for​ _, s := ​range​ pipeline {
	​ 	 msg, err := s.execute()
	​ 	 ​if​ err != nil {
	​ 	 errCh <- err
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 _, err = fmt.Fprintln(out, msg)
	​ 	 ​if​ err != nil {
	​ 	 errCh <- err
	​ 	 ​return​
	​ 	 }
	​ 	 }
	​ 	 close(done)
	​ 	}()

Notice that in case of errors during the loop execution, you’re no longer returning them directly. You’re communicating to them using the errCh channel and then returning to exit the goroutine, ensuring no other steps run after an error.

Next, add an infinite loop with the select statement to decide what to do based on communication received in one of the three channels:
processes/goci.v8/main.go
	​ 	​for​ {
	​ 	 ​select​ {

In the first case, handle the signal. In case the application receives any of the monitored signals, they’ll be relayed to the sig channel. To handle it, use the function signal.Stop from the os/signal package to stop receiving more signals on the sig channel. Then return a new error that includes the name of the received signal and wraps the error value ErrSignal, which allows you to inspect it during tests. This effectively finishes the run function and exits the program with the error message and error code:
processes/goci.v8/main.go
	​ 	​case​ rec := <-sig:
	​ 	 signal.Stop(sig)
	​ 	 ​return​ fmt.Errorf(​"%s: Exiting: %w"​, rec, ErrSignal)

Finally, handle the communications on the remaining channels errCh or done returning, respectively, the error message or the value nil, completing the function run:
	
	
	
processes/goci.v8/main.go
	​ 	 ​case​ err := <-errCh:
	​ 	 ​return​ err
	​ 	 ​case​ <-done:
	​ 	 ​return​ nil
	​ 	 }
	​ 	 }
	​ 	}

Save the file main.go and open the file main_test.go to include a test for the signal-handling feature. Add the packages os/signal and syscall to the import list:
processes/goci.v8/main_test.go
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"context"​
	​ 	 ​"errors"​
	​ 	 ​"fmt"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"os/exec"​
	​ 	
	»	 ​"os/signal"​
	​ 	 ​"path/filepath"​
	​ 	
	»	 ​"syscall"​
	​ 	 ​"testing"​
	​ 	 ​"time"​
	​)

Add another test function TestRunKill to test the signal handling:
processes/goci.v8/main_test.go
	​ 	​func​ TestRunKill(t *testing.T) {

Define three test cases: one for each of the relevant signals you handle in the application and another one to ensure the application doesn’t handle a different signal:
processes/goci.v8/main_test.go
	​ 	​// RunKill Test Cases​
	​ 	​var​ testCases = []​struct​ {
	​ 	 name ​string​
	​ 	 proj ​string​
	​ 	 sig syscall.Signal
	​ 	 expErr ​error​
	​ 	}{
	​ 	 {​"SIGINT"​, ​"./testdata/tool"​, syscall.SIGINT, ErrSignal},
	​ 	 {​"SIGTERM"​, ​"./testdata/tool"​, syscall.SIGTERM, ErrSignal},
	​ 	 {​"SIGQUIT"​, ​"./testdata/tool"​, syscall.SIGQUIT, nil},
	​ 	}

	
	Then, execute each test case in a loop. To give the application some time to pass signals, override the package variable command with the function mockCmdTimeout you created in ​Testing Commands with Mock Resources​:
processes/goci.v8/main_test.go
	​ 	​// RunKill Test Execution​
	​ 	​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 command = mockCmdTimeout

	
	
	
	
	Since you’re still handling signals, the test will run the functions concurrently. Create three channels to deal with the communication from the goroutines: an error channel, an os.Signal channel to trap expected signals, and another os.signal channel to trap the remaining signal SIGQUIT which should be ignored. By trapping this signal here, the test can ensure the application doesn’t handle it because it’s not one of the signals that the application should handle:
processes/goci.v8/main_test.go
	​ 	errCh := make(​chan​ ​error​)
	​ 	ignSigCh := make(​chan​ os.Signal, 1)
	​ 	expSigCh := make(​chan​ os.Signal, 1)

	
	Use the signal.Notify function here to relay the SIGQUIT to the newly created ignSigCh channel, and defer the execution of the signal.Stop function to stop handling signals and cleanup after each test:
processes/goci.v8/main_test.go
	​ 	signal.Notify(ignSigCh, syscall.SIGQUIT)
	​ 	​defer​ signal.Stop(ignSigCh)

Use another call to signal.Notify to handle the expected signals and ensure the correct signal was processed. Defer calling signal.Stop again to clean up:
processes/goci.v8/main_test.go
	​ 	signal.Notify(expSigCh, tc.sig)
	​ 	​defer​ signal.Stop(expSigCh)

Now execute two goroutines. The first executes the run function sending the error to the error channel. The other sends the desired signal to the test executable by using the functions syscall.Kill to send the signal and syscall.Getpid to obtain the process ID of the running program:
processes/goci.v8/main_test.go
	​ 	​go​ ​func​() {
	​ 	 errCh <- run(tc.proj, ioutil.Discard)
	​ 	}()
	​ 	​go​ ​func​() {
	​ 	 time.Sleep(2 * time.Second)
	​ 	 syscall.Kill(syscall.Getpid(), tc.sig)
	​ 	}()

Then, use a select statement to determine what to do based on the channel communication. For the first two test cases, the test expects an error message on channel errCh that matches ErrSignal specified as the expErr in the test case. Fail the test if no error is received or if the error type doesn’t match the expected type:
processes/goci.v8/main_test.go
	​ 	​// select error​
	​ 	​select​ {
	​ 	​case​ err := <-errCh:
	​ 	 ​if​ err == nil {
	​ 	 t.Errorf(​"Expected error. Got 'nil' instead."​)
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 ​if​ !errors.Is(err, tc.expErr) {
	​ 	 t.Errorf(​"Expected error: %q. Got %q"​, tc.expErr, err)
	​ 	 }

Nest another select statement to verify if the correct signal was sent to the expSigCh channel. Fail the test if the signals don’t match. Use a default case to fail the test in case it received no signals:
processes/goci.v8/main_test.go
	​ 	​// select signal​
	​ 	​select​ {
	​ 	​case​ rec := <-expSigCh:
	​ 	 ​if​ rec != tc.sig {
	​ 	 t.Errorf(​"Expected signal %q, got %q"​, tc.sig, rec)
	​ 	 }
	​ 	​default​:
	​ 	 t.Errorf(​"Signal not received"​)
	​ 	}

The third test case expects the signal to be received on the ignSigCh channel:
processes/goci.v8/main_test.go
	​ 	 ​case​ <-ignSigCh:
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

Save the file main_test.go and execute the tests to ensure the application works as expected:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestHelperProcess
	​ 	--- PASS: TestHelperProcess (0.00s)
	​ 	=== RUN TestRun
	​ 	=== RUN TestRun/success
	​ 	=== RUN TestRun/successMock
	​ 	=== RUN TestRun/fail
	​ 	=== RUN TestRun/failFormat
	​ 	=== RUN TestRun/failTimeout

	​ 	--- PASS: TestRun (11.84s)
	​ 	 --- PASS: TestRun/success (0.51s)
	​ 	 --- PASS: TestRun/successMock (0.41s)
	​ 	 --- PASS: TestRun/fail (0.08s)
	​ 	 --- PASS: TestRun/failFormat (0.44s)
	​ 	 --- PASS: TestRun/failTimeout (10.40s)
	​ 	=== RUN TestRunKill
	​ 	=== RUN TestRunKill/SIGINT
	​ 	=== RUN TestRunKill/SIGTERM
	​ 	=== RUN TestRunKill/SIGQUIT
	​ 	--- PASS: TestRunKill (6.00s)
	​ 	 --- PASS: TestRunKill/SIGINT (2.00s)
	​ 	 --- PASS: TestRunKill/SIGTERM (2.00s)
	​ 	 --- PASS: TestRunKill/SIGQUIT (2.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/processes/goci 17.845s

This completes the goci tool. You have an application that automates the process of building and testing your Go projects while handling signals appropriately if required.
	
	
	
	
	
	

Exercises

Try these exercises to improve the skills you learned:
	
Add another step to the pipeline: code linting using golangci-lint. For more information consult its home page.[38]

	
Add gocyclo to the pipeline. Capture its output and return an error if gocyclo returns any functions with a complexity score of 10 or greater. For more information about this tool, consult its GitHub page.[39]

	
Add environment variables to handle Git authentication with remote repositories that require it.

	
Add another command-line flag to your tool asking for the Git branch to push. Update the Git step to accept a configurable branch instead of master.

	
Get the Pipeline configuration from a file instead of hard-coding it in the run function.

Wrapping Up

In this chapter, you designed and built a flexible tool that uses other tools and commands to execute specialized tasks in an automated way. You executed external commands, managed their error conditions, captured their output, and handled long-running processes appropriately. You tested your application using two different strategies: using a test helper to build a temporary local infrastructure, and mocking the external command. Finally, you ensured your application handles the operating system signal in a clean way to correctly communicate status to downstream applications and to prevent data loss.

In the next chapter, you’ll use the Cobra CLI framework to help you develop a command-line network port scanner by generating the boilerplate code for the application and handling flags and configuration in a more comprehensive way.

Footnotes

	[31]
	
 https://pkg.go.dev/errors

	[32]
	
 https://blog.golang.org/go1.13-errors

	[33]
	
https://golang.org/cmd/gofmt/

	[34]
	
 https://git-scm.com/docs

	[35]
	
 https://git-scm.com/book/en/v3/Git-on-the-Server-The-Protocols

	[36]
	
 https://golang.org/src/os/exec/exec_test.go

	[37]
	
 https://golang.org/pkg/os/signal/

	[38]
	
 https://golangci-lint.run/

	[39]
	
 https://github.com/fzipp/gocyclo

Copyright © 2021, The Pragmatic Bookshelf.

 Chapter
 7
Using the Cobra CLI Framework

 Up to this point, you’ve had to write all of the code to define the command-line interface for your programs. You’ve had to handle flags, environment variables, and the execution logic. Cobra[40] is a popular framework for designing CLI applications, and in this chapter, you’ll use it to handle the user interface of your program. If you work with Go and CLI tools, then it’s likely that you’ll encounter Cobra. Many modern tools are built with Cobra, including Kubernetes, Openshift, Podman, Hugo, and Docker.

 Cobra provides a library that allows you to design CLI applications supporting POSIX[41]-compliant flags, subcommands, suggestions, autocompletion, and automatic help creation. It integrates with Viper[42] to provide management of configuration and environment variables for your applications. Cobra also provides a generator program that creates boilerplate code for you, allowing you to focus on your tool’s business logic.

 In this chapter, you’ll use Cobra to develop pScan, a CLI tool that uses subcommands, similar to Git or Kubernetes. This tool executes a TCP port scan on a list of hosts similarly to the Nmap[43] command. It allows you to add, list, and delete hosts from the list using the subcommand hosts. It executes the scan on selected ports using the subcommand scan. Users can specify the ports using a command-line flag. It also features command completion using the subcommand completion and manual page generation with the subcommand docs. Cobra helps you define the subcommand structure by associating these subcommands in a tree data structure. When done, your application will have this subcommand layout:
	​ 	pScan
	​ 	├── completion
	​ 	├── docs
	​ 	├── help
	​ 	├── hosts
	​ 	│ ├── add
	​ 	│ ├── delete
	​ 	│ └── list
	​ 	└── scan

The purpose of this application is to demonstrate how to use Cobra to help you create command-line applications and use Go to create networking applications. You can use this application to monitor your system, but remember to never port scan systems you don’t own.

Let’s install Cobra and use it to initialize this application.

Starting Your Cobra Application

	
	Start this project by creating a directory structure for your pScan application under the book’s root directory, and switch to the new directory:
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/cobra/pScan​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/cobra/pScan​

Next, initialize the Go module for this application:
	​ 	​$ ​​go​​ ​​mod​​ ​​init​​ ​​pragprog.com/rggo/cobra/pScan​
	​ 	go: creating new go.mod: module pragprog.com/rggo/cobra/pScan

	
	
	The Cobra CLI framework works as a library to write CLI applications, and as a code generator to generate boilerplate code for a new CLI tool. You need to install the cobra executable command to generate code. Use go get to download and install Cobra:
	​ 	​$ ​​go​​ ​​get​​ ​​-u​​ ​​github.com/spf13/cobra/cobra@v1.1.3​

	
	This command downloads Cobra v1.1.3, which is what the book uses, including all its dependencies. If you want, you can use a later version, but you need to make a few minor adjustments to the code. This command also installs the cobra tool in the $GOBIN or $GOPATH/bin directories. Ensure the correct directory is included in the $PATH so you can execute cobra directly:
	​ 	​$ ​​export​​ ​​PATH=$(go​​ ​​env​​ ​​GOPATH)/bin:$PATH​

	
	
	To ensure you installed Cobra correctly and you’re able to run it, check the Cobra help:
	​ 	​$ ​​cobra​​ ​​--help​
	​ 	Cobra is a CLI library for Go that empowers applications.
	​ 	This application is a tool to generate the needed files
	​ 	to quickly create a Cobra application.
	​ 	
	​ 	Usage:
	​ 	 cobra [command]
	​ 	
	​ 	Available Commands:
	​ 	 add Add a command to a Cobra Application
	​ 	 help Help about any command
	​ 	 init Initialize a Cobra Application
	​ 	
	​ 	Flags:
	​ 	 -a, --author string author name for copyright attribution
	​ 	 (default "YOUR NAME")
	​ 	 --config string config file (default is $HOME/.cobra.yaml)
	​ 	 -h, --help help for cobra
	​ 	 -l, --license string name of license for the project
	​ 	 --viper use Viper for configuration (default true)
	​ 	
	​ 	Use "cobra [command] --help" for more information about a command.

This help shows the subcommands you can use when running the Cobra code generator. Shortly, you’ll use the init subcommand to initialize a new application.

	
	
	
	
	
	
	When Cobra generates code, it automatically includes copyright information, such as author’s name and license, in the generated code. By default, it uses YOUR NAME for the author and the Apache v2 license. You can change these options by specifying the flags -a for the author and -l for the license, every time you run the Cobra command. Since adding these two flags for every execution is tedious and error-prone, create a configuration file .cobra.yaml in your home directory to record your options. Cobra uses the values from this file automatically.
	​ 	author: ​The Pragmatic Programmers, LLC​
	​ 	license:
	​ 	 header: |
	​ 	 Copyrights apply to this source code.
	​ 	 Check LICENSE for details.
	​ 	 text: |
	​ 	 {{ .copyright }}
	​ 	
	​ 	 Copyrights apply to this source code. You may use the source code in your
	​ 	 own projects, however the source code may not be used to create training
	​ 	 material, courses, books, articles, and the like.
	​ 	 We make no guarantees that this source code is fit for any purpose.

In this example, we’re defining a custom license by specifying its content in the header and text fields. Before proceeding, adapt this configuration to your requirements, starting with updating the author field with your own name. Optionally, update the content of the header and text fields with your own license terms.

Alternatively, you can specify common open source licenses such as GPLv2, GPLv3, or MIT. To do this, remove the header and text fields and specify the license you want to use as the value for the license field. For example, you would use the MIT license by defining the configuration like this:
	​ 	author: ​The Pragmatic Programmers, LLC​
	​ 	license: ​MIT​

	
	
	
	Next, initialize your Cobra application using the init subcommand. You need to specify the package name you used when initializing the module for your application using the --pkg-name flag, like this:
	​ 	​$ ​​cobra​​ ​​init​​ ​​--pkg-name​​ ​​pragprog.com/rggo/cobra/pScan​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	Your Cobra application is ready at
	​ 	/home/ricardo/pragprog.com/rggo/cobra/pScan

	
	
	The Cobra generator created several files for your application, including a LICENSE file with the license content as per the configuration file:
	​ 	​$ ​​tree​
	​ 	.
	​ 	├── cmd
	​ 	│ └── root.go
	​ 	├── go.mod
	​ 	├── go.sum
	​ 	├── LICENSE
	​ 	└── main.go
	​ 	
	​ 	1 directory, 5 files

Verify the LICENSE content:
cobra/pScan/LICENSE
	​ 	Copyright © 2020 The Pragmatic Programmers, LLC
	​ 	
	​ 	Copyrights apply to this source code. You may use the source code in your
	​ 	own projects, however the source code may not be used to create training
	​ 	material, courses, books, articles, and the like.
	​ 	We make no guarantees that this source code is fit for any purpose.

	
	
	
	You now have a working application. It doesn’t do anything useful yet, but you can execute it to ensure it works. Before executing it, run the command go get to download any missing dependencies, and then run the application:
	
	
	
	​ 	​$ ​​go​​ ​​get​
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​
	​ 	A longer description that spans multiple lines and likely contains
	​ 	examples and usage of using your application. For example:
	​ 	
	​ 	Cobra is a CLI library for Go that empowers applications.
	​ 	This application is a tool to generate the needed files
	​ 	to quickly create a Cobra application.

The first time you execute the application, it looks for some of Cobra’s dependencies and adds them to the go.mod file. After that, it will only print the help information.

You created the general structure and initialized your Cobra application. Next, let’s start adding functionality to this tool.
	
	

Navigating Your New Cobra Application

	
	
	
	Cobra structures your application by creating a simple main.go file that only imports the package cmd and executes the application. The main.go file looks like this:
cobra/pScan/main.go
	​ 	​/*​
	​ 	​Copyright © 2020 The Pragmatic Programmers, LLC​
	​ 	​Copyrights apply to this source code.​
	​ 	​Check LICENSE for details.​
	​ 	
	​ 	​*/​
	​ 	​package​ main
	​ 	
	​ 	​import​ ​"pragprog.com/rggo/cobra/pScan/cmd"​
	​ 	
	​ 	​func​ main() {
	​ 	 cmd.Execute()
	​ 	}

	
	The core functionality of your application resides in the cmd package. When you run the command, the main function calls cmd.Execute to execute the root command of your application. You can find this function and the general structure of the program in the cmd/root.go file. The Execute function executes the rootCmd.Execute method on an instance of the cobra.Command type:
	
	
	
cobra/pScan/cmd/root.go
	​ 	​func​ Execute() {
	​ 	 ​if​ err := rootCmd.Execute(); err != nil {
	​ 	 fmt.Println(err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	}

	
	
	
	
	The cobra.Command type is the main type in the Cobra library. It represents a command or subcommand that your tool executes. You can combine commands in a parent-child relationship to form a tree structure of subcommands. When Cobra initializes the application, it starts this structure by defining a variable called rootCmd as an instance of the type cobra.Command in the cmd/root.go file. This type has several properties that you’ll use later to build your application. The general properties required to create a cobra.Command are: Use, which represents the command usage, and a Short or Long description. Here’s the default definition of the root command:
	
	
	
	
cobra/pScan/cmd/root.go
	​ 	​var​ rootCmd = &cobra.Command{
	​ 	 Use: ​"pScan"​,
	​ 	 Short: ​"A brief description of your application"​,
	​ 	 Long: ​`A longer description that spans multiple lines and likely contains​
	​ 	​examples and usage of using your application. For example:​
	​ 	
	​ 	​Cobra is a CLI library for Go that empowers applications.​
	​ 	​This application is a tool to generate the needed files​
	​ 	​to quickly create a Cobra application.`​,
	​ 	 ​// Uncomment the following line if your bare application​
	​ 	 ​// has an action associated with it:​
	​ 	 ​// Run: func(cmd *cobra.Command, args []string) { },​
	​ 	}

By default, the root command doesn’t execute any action, serving only as the parent for other subcommands. For that reason, the property Run is commented out. If you want the root command to execute actions, you can uncomment this property and implement its function. For this application, the root command doesn’t execute any actions, so we’ll leave it as is.
	
	
	
	
	
	

	
	Notice that the long description matches the message you got when executing the tool for the first time. Update the description to provide your users with an overview of your program’s functionality, like this:
cobra/pScan.v1/cmd/root.go
	​ 	 Short: ​"Fast TCP port scanner"​,
	​ 	 Long: ​`pScan - short for Port Scanner - executes TCP port scan​
	​ 	​on a list of hosts.​
	​ 	
	​ 	​pScan allows you to add, list, and delete hosts from the list.​
	​ 	
	​ 	​pScan executes a port scan on specified TCP ports. You can customize the​
	​ 	​target ports using a command line flag.`​,

Run the tool again to see your updated description:
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​
	​ 	pScan - short for Port Scanner - executes TCP port scan
	​ 	on a list of hosts.
	​ 	
	​ 	pScan allows you to add, list, and delete hosts from the list.
	​ 	
	​ 	pScan executes a port scan on specified TCP ports. You can customize the
	​ 	target ports using a command-line flag.

	
	You can also have Cobra automatically print your application’s version. Add the property Version to the rootCmd command and save the file:
cobra/pScan.v1/cmd/root.go
	​ 	Version: ​"0.1"​,

When you add this property, Cobra includes the command-line flag -v and --version in your application. Running the application with one of those flags prints the version information:
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-v​
	​ 	pScan version 0.1
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​--version​
	​ 	pScan version 0.1

	

	

	
	
	
	
	Cobra defines two additional functions for you in the cmd/root.go file: init and initConfig. The init function runs before main. Use it to include additional functionality in your command that can’t be defined as properties, such as adding command-line flags. For the root command, Cobra uses the cobra.OnInitialize function to run the initConfig function when the application runs. The function initConfig uses the package viper to include configuration management for your application. You’ll use this package later in ​Using Viper for Configuration Management​.

	
	
	For example, use the method rootCmd.SetVersionTemplate within the init function to update the version template so it prints the short description of your application with the version information:
cobra/pScan.v1/cmd/root.go
	​ 	​func​ init() {
	​ 	 cobra.OnInitialize(initConfig)
	​ 	
	​ 	 ​// Here you will define your flags and configuration settings.​
	​ 	 ​// Cobra supports persistent flags, which, if defined here,​
	​ 	 ​// will be global for your application.​
	​ 	
	​ 	 rootCmd.PersistentFlags().StringVar(&cfgFile, ​"config"​, ​""​,
	​ 	 ​"config file (default is $HOME/.pScan.yaml)"​)
	​ 	
	​ 	 ​// Cobra also supports local flags, which will only run​
	​ 	 ​// when this action is called directly.​
	​ 	 rootCmd.Flags().BoolP(​"toggle"​, ​"t"​, false, ​"Help message for toggle"​)
	​ 	
	»	 versionTemplate := ​`{{printf "%s: %s - version %s\n" .Name .Short .Version}}`​
	»	 rootCmd.SetVersionTemplate(versionTemplate)
	​ 	}

Save the file and run the application using the -v flag to see the new version information:
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​-v​
	​ 	pScan: Fast TCP port scanner - version 0.1

Now that you understand the general structure of a Cobra application, let’s add the first subcommand to it.
	
	

Adding the First Subcommand to Your Application

	
	
	
	
	After initializing the application, use the Cobra generator to add subcommands to it. The generator includes a file in the cmd directory for each subcommand. Each file includes boilerplate code for the subcommand. It also adds the subcommand to its parent, forming the tree-like structure.

Add a new subcommand called hosts to your application to manage hosts in the hosts list. By default, Cobra adds this subcommand to the root command:
	
	
	​ 	​$ ​​cobra​​ ​​add​​ ​​hosts​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	hosts created at /home/ricardo/pragprog.com/rggo/cobra/pScan

	
	At this point, your application directory looks like this:
	​ 	​$ ​​tree​
	​ 	.
	​ 	├── cmd
	​ 	│ ├── hosts.go
	​ 	│ └── root.go
	​ 	├── go.mod
	​ 	├── go.sum
	​ 	├── LICENSE
	​ 	└── main.go
	​ 	
	​ 	1 directory, 6 files

	
	Edit the cmd/hosts.go file and change the command’s short description to provide a one-line summary of the command’s purpose. Edit the long description to provide additional information on how to use the command and its suboptions:
cobra/pScan.v2/cmd/hosts.go
	​ 	​/*​
	​ 	​Copyright © 2020 The Pragmatic Programmers, LLC​
	​ 	​Copyrights apply to this source code.​
	​ 	​Check LICENSE for details.​
	​ 	
	​ 	​*/​
	​ 	​package​ cmd

	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	​)
	​ 	
	​ 	​// hostsCmd represents the hosts command​
	​ 	​var​ hostsCmd = &cobra.Command{
	​ 	 Use: ​"hosts"​,
	»	 Short: ​"Manage the hosts list"​,
	»	 Long: ​`Manages the hosts lists for pScan​
	»	
	»	​Add hosts with the add command​
	»	​Delete hosts with the delete command​
	»	​List hosts with the list command.`​,
	​ 	 Run: ​func​(cmd *cobra.Command, args []​string​) {
	​ 	 fmt.Println(​"hosts called"​)
	​ 	 },
	​ 	}
	​ 	
	​ 	​func​ init() {
	​ 	 rootCmd.AddCommand(hostsCmd)
	​ 	
	​ 	 ​// Here you will define your flags and configuration settings.​
	​ 	
	​ 	 ​// Cobra supports Persistent Flags which will work for this command​
	​ 	 ​// and all subcommands, e.g.:​
	​ 	 ​// hostsCmd.PersistentFlags().String("foo", "", "A help for foo")​
	​ 	
	​ 	 ​// Cobra supports local flags which will only run when this command​
	​ 	 ​// is called directly, e.g.:​
	​ 	 ​// hostsCmd.Flags().BoolP("toggle", "t", false, "Help message for toggle")​
	​ 	}

	
	The init function uses the AddCommand method of the root command instance rootCmd to attach the hostsCmd command to the root. Save the file and run the tool again to see if the output changes to include possible subcommands:
	​ 	$ go run main.go
	​ 	pScan - short ​for ​Port Scanner - executes TCP port scan
	​ 	on a list of hosts.
	​ 	
	​ 	pScan allows you to add, list, and delete hosts from the list.
	​ 	
	​ 	pScan executes a port scan on specified TCP ports. You can customize the
	​ 	target ports using a command-line flag.
	​ 	
	​ 	Usage:
	​ 	 pScan [command]
	​ 	
	​ 	Available Commands:
	​ 	 help Help about any command
	​ 	 hosts Manage the hosts list

	​ 	Flags:
	​ 	 --config string config file (default is $HOME/.pScan.yaml)
	​ 	 -h, --help help ​for ​pScan
	​ 	 -t, --toggle Help message ​for ​toggle
	​ 	 -v, --version version ​for ​pScan
	​ 	
	​ 	Use ​"pScan [command] --help"​ ​for ​more information about a command.

	
	
	Cobra also creates a help message for the new command. You can see it by running the help subcommand or using the flag -h with the hosts subcommand:
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​help​​ ​​hosts​
	​ 	Manages the hosts lists for pScan
	​ 	
	​ 	Add hosts with the add command
	​ 	Delete hosts with the delete command
	​ 	List hosts with the list command.
	​ 	
	​ 	Usage:
	​ 	 pScan hosts [flags]
	​ 	
	​ 	Flags:
	​ 	 -h, --help help for hosts
	​ 	
	​ 	Global Flags:
	​ 	 --config string config file (default is $HOME/.pScan.yaml)

The new command has a dummy implementation. Execute it to see the message hosts called:
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​hosts​
	​ 	hosts called

	
	Finally, Cobra also implements autosuggestions in case the users misspell a command. For example, if you type host instead of hosts, you see this suggestion:
	​ 	​$ ​​go​​ ​​run​​ ​​main.go​​ ​​host​
	​ 	Error: unknown command "host" for "pScan"
	​ 	
	​ 	Did you mean this?
	​ 	 hosts
	​ 	
	​ 	Run 'pScan --help' for usage.
	​ 	unknown command "host" for "pScan"
	​ 	
	​ 	Did you mean this?
	​ 	 hosts
	​ 	
	​ 	exit status 1

If you don’t want this behavior, you can disable it by setting the property DisableSuggestions to true in your instance of the root command. We’ll leave this enabled for now.

Your application is starting to look more polished from applying some of Cobra’s features. Next, you’ll add the functionality of managing hosts for the application.
	
	
	
	
	

Starting the Scan Package

	
	You have the skeleton of your application ready, so let’s add the port scanning functionality, starting with the hosts list management. For this tool, you’ll create a separate package scan to develop the business logic, similar to the approach you used in Chapter 2, ​Interacting with Your Users​.

In your application’s root directory, create a new directory named scan and switch to it:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/cobra/pScan​
	​ 	​$ ​​mkdir​​ ​​scan​
	​ 	​$ ​​cd​​ ​​scan​

	
	
	
	
	
	
	Now, create and edit the file hostsList.go. Start by defining the package name scan and the import list. For this package you’ll use the f0llowing packages: bufio to read data from files, errors to define error values, fmt to print formatted output, io/ioutil to write data to files, os for operating system-related functions, and sort to sort the hosts list content:
cobra/pScan.v3/scan/hostsList.go
	​ 	​// Package scan provides types and functions to perform TCP port​
	​ 	​// scans on a list of hosts​
	​ 	​package​ scan
	​ 	
	​ 	​import​ (
	​ 	 ​"bufio"​
	​ 	 ​"errors"​
	​ 	 ​"fmt"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"sort"​
	​)

	
	
	Define two error variables using the function errors.New from the errors package. The first error indicates that a host is already in the list, and the second error indicates that a host isn’t in the list. You’ll use these errors during tests and to help manage the host list:
cobra/pScan.v3/scan/hostsList.go
	​ 	​var​ (
	​ 	 ErrExists = errors.New(​"Host already in the list"​)
	​ 	 ErrNotExists = errors.New(​"Host not in the list"​)
	​)

	
	Next, define a new struct type HostsList that represents a list of hosts on which you can execute a port scan. This type wraps a slice of strings so we can add methods to it:
cobra/pScan.v3/scan/hostsList.go
	​ 	​// HostsList represents a list of hosts to run port scan​
	​ 	​type​ HostsList ​struct​ {
	​ 	 Hosts []​string​
	​ 	}

	
	Then define the methods for this new type. The first method is a private method search that searches for a host in the list. Other methods, such as the Add method, will use this method to ensure that no duplicate entries are present in the list:
cobra/pScan.v3/scan/hostsList.go
	​ 	​// search searches for hosts in the list​
	​ 	​func​ (hl *HostsList) search(host ​string​) (​bool​, ​int​) {
	​ 	 sort.Strings(hl.Hosts)
	​ 	
	​ 	 i := sort.SearchStrings(hl.Hosts, host)
	​ 	 ​if​ i < len(hl.Hosts) && hl.Hosts[i] == host {
	​ 	 ​return​ true, i
	​ 	 }
	​ 	
	​ 	 ​return​ false, -1
	​ 	}

	
	
	This method uses the function sort.Strings from the sort package to sort the HostsList alphabetically and then uses the function sort.SearchStrings also from the sort package to search for the host in the list. It returns true and the element index if it finds the host or false and the integer -1 if the host isn’t in the list.

	
	Next, define the Add method to include new hosts in the list:
cobra/pScan.v3/scan/hostsList.go
	​ 	​// Add adds a host to the list​
	​ 	​func​ (hl *HostsList) Add(host ​string​) ​error​ {
	​ 	 ​if​ found, _ := hl.search(host); found {
	​ 	 ​return​ fmt.Errorf(​"%w: %s"​, ErrExists, host)
	​ 	 }
	​ 	
	​ 	 hl.Hosts = append(hl.Hosts, host)
	​ 	 ​return​ nil
	​ 	}

This method uses the search method to search for the given host in the list and adds it to the list if it’s not there. If the element already exists, it returns an error that wraps the error ErrExists you defined before.

	
	Next, create the Remove method to delete a given host from the list. The name Delete isn’t a good choice because it can cause confusion with Go’s delete keyword:
cobra/pScan.v3/scan/hostsList.go
	​ 	​// Remove deletes a host from the list​
	​ 	​func​ (hl *HostsList) Remove(host ​string​) ​error​ {
	​ 	 ​if​ found, i := hl.search(host); found {
	​ 	 hl.Hosts = append(hl.Hosts[:i], hl.Hosts[i+1:]...)
	​ 	 ​return​ nil
	​ 	 }
	​ 	
	​ 	 ​return​ fmt.Errorf(​"%w: %s"​, ErrNotExists, host)
	​ 	}

This method is similar to the Add method but in reverse. It searches for the given host in the list, deleting it if found. It returns an error wrapping ErrNotExist if the host isn’t in the list.

	
	Finally, define methods to load and save the HostsList. First define the Load method, which tries to load hosts from a given hostsFile. This method does nothing if the file doesn’t exist but it returns an error if it can’t open the file:
cobra/pScan.v3/scan/hostsList.go
	​ 	​// Load obtains hosts from a hosts file​
	​ 	​func​ (hl *HostsList) Load(hostsFile ​string​) ​error​ {
	​ 	 f, err := os.Open(hostsFile)
	​ 	 ​if​ err != nil {
	​ 	 ​if​ errors.Is(err, os.ErrNotExist) {
	​ 	 ​return​ nil
	​ 	 }
	​ 	 ​return​ err
	​ 	 }
	​ 	 ​defer​ f.Close()
	​ 	
	​ 	 scanner := bufio.NewScanner(f)
	​ 	
	​ 	 ​for​ scanner.Scan() {
	​ 	 hl.Hosts = append(hl.Hosts, scanner.Text())
	​ 	 }
	​ 	
	​ 	 ​return​ nil
	​ 	}

	
	Finally, create the Save method that attempts to save the list into the given hostsFile, returning an error if it can’t complete the operation:
cobra/pScan.v3/scan/hostsList.go
	​ 	​// Save saves hosts to a hosts file​
	​ 	​func​ (hl *HostsList) Save(hostsFile ​string​) ​error​ {
	​ 	 output := ​""​

	​ 	 ​for​ _, h := ​range​ hl.Hosts {
	​ 	 output += fmt.Sprintln(h)
	​ 	 }
	​ 	
	​ 	 ​return​ ioutil.WriteFile(hostsFile, []​byte​(output), 0644)
	​ 	}

	
	
	Now, let’s write some tests for this package. Save the file hostsList.go and create and edit a new test file hostsList_test.go.

Then add the package definition. For these tests, you’ll use the same approach you used in ​Defining the To-Do API​ to test the exposed API, but here you’ll define the package name scan_test. Also, you’ll add the import list. You’ll use the errors package to perform error verification, the ioutil package to create temporary files, the os package to delete the temporary files, the testing package for the test functionality, and the scan package that you’re testing:
cobra/pScan.v3/scan/hostsList_test.go
	​ 	​package​ scan_test
	​ 	
	​ 	​import​ (
	​ 	 ​"errors"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"testing"​
	​ 	
	​ 	 ​"pragprog.com/rggo/cobra/pScan/scan"​
	​)

Next, include a function to test the method Add. This test function uses the table-driven testing technique that you first used in ​Testing with Table-Driven Testing​. Define two test cases, one to add a new host and another to add an existing host which should return an error.
cobra/pScan.v3/scan/hostsList_test.go
	​ 	​func​ TestAdd(t *testing.T) {
	​ 	 testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 host ​string​
	​ 	 expectLen ​int​
	​ 	 expectErr ​error​
	​ 	 }{
	​ 	 {​"AddNew"​, ​"host2"​, 2, nil},
	​ 	 {​"AddExisting"​, ​"host1"​, 1, scan.ErrExists},
	​ 	 }
	​ 	
	​ 	 ​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 hl := &scan.HostsList{}

	​ 	 ​// Initialize list​
	​ 	 ​if​ err := hl.Add(​"host1"​); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 err := hl.Add(tc.host)
	​ 	
	​ 	 ​if​ tc.expectErr != nil {
	​ 	 ​if​ err == nil {
	​ 	 t.Fatalf(​"Expected error, got nil instead​​\n​​"​)
	​ 	 }
	​ 	
	​ 	 ​if​ ! errors.Is(err, tc.expectErr) {
	​ 	 t.Errorf(​"Expected error %q, got %q instead​​\n​​"​,
	​ 	 tc.expectErr, err)
	​ 	 }
	​ 	
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q instead​​\n​​"​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ len(hl.Hosts) != tc.expectLen {
	​ 	 t.Errorf(​"Expected list length %d, got %d instead​​\n​​"​,
	​ 	 tc.expectLen, len(hl.Hosts))
	​ 	 }
	​ 	
	​ 	 ​if​ hl.Hosts[1] != tc.host {
	​ 	 t.Errorf(​"Expected host name %q as index 1, got %q instead​​\n​​"​,
	​ 	 tc.host, hl.Hosts[1])
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

The test loop initializes a HostsList instance and then executes the Add method on it with each test case parameter. Then it compares the expected values with the results, returning errors if they don’t match.

Now, define a test function to test the method Remove. This function also uses the table-driven testing technique with two test cases. This is similar to the TestAdd function, but it executes the Remove method instead:
cobra/pScan.v3/scan/hostsList_test.go
	​ 	​func​ TestRemove(t *testing.T) {
	​ 	 testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 host ​string​
	​ 	 expectLen ​int​
	​ 	 expectErr ​error​
	​ 	 }{

	​ 	 {​"RemoveExisting"​, ​"host1"​, 1, nil},
	​ 	 {​"RemoveNotFound"​, ​"host3"​, 1, scan.ErrNotExists},
	​ 	 }
	​ 	
	​ 	 ​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 hl := &scan.HostsList{}
	​ 	
	​ 	 ​// Initialize list​
	​ 	 ​for​ _, h := ​range​ []​string​{​"host1"​, ​"host2"​} {
	​ 	 ​if​ err := hl.Add(h); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	 }
	​ 	
	​ 	 err := hl.Remove(tc.host)
	​ 	
	​ 	 ​if​ tc.expectErr != nil {
	​ 	 ​if​ err == nil {
	​ 	 t.Fatalf(​"Expected error, got nil instead​​\n​​"​)
	​ 	 }
	​ 	
	​ 	 ​if​ ! errors.Is(err, tc.expectErr) {
	​ 	 t.Errorf(​"Expected error %q, got %q instead​​\n​​"​,
	​ 	 tc.expectErr, err)
	​ 	 }
	​ 	
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q instead​​\n​​"​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ len(hl.Hosts) != tc.expectLen {
	​ 	 t.Errorf(​"Expected list length %d, got %d instead​​\n​​"​,
	​ 	 tc.expectLen, len(hl.Hosts))
	​ 	 }
	​ 	
	​ 	 ​if​ hl.Hosts[0] == tc.host {
	​ 	 t.Errorf(​"Host name %q should not be in the list​​\n​​"​, tc.host)
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

Next, create a test function to test the Save and Load methods. This function creates two HostsList instances, initializes the first list, and uses the Save method to save it to a temporary file. Then, it uses the Load method to load the contents of the temporary file into the second list and compares both of them. The test fails if the contents of the lists don’t match.
cobra/pScan.v3/scan/hostsList_test.go
	​ 	​func​ TestSaveLoad(t *testing.T) {
	​ 	 hl1 := scan.HostsList{}
	​ 	 hl2 := scan.HostsList{}
	​ 	
	​ 	 hostName := ​"host1"​
	​ 	 hl1.Add(hostName)
	​ 	
	​ 	 tf, err := ioutil.TempFile(​""​, ​""​)
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 t.Fatalf(​"Error creating temp file: %s"​, err)
	​ 	
	​ 	 }
	​ 	 ​defer​ os.Remove(tf.Name())
	​ 	
	​ 	 ​if​ err := hl1.Save(tf.Name()); err != nil {
	​ 	 t.Fatalf(​"Error saving list to file: %s"​, err)
	​ 	
	​ 	 }
	​ 	
	​ 	 ​if​ err := hl2.Load(tf.Name()); err != nil {
	​ 	 t.Fatalf(​"Error getting list from file: %s"​, err)
	​ 	
	​ 	 }
	​ 	
	​ 	 ​if​ hl1.Hosts[0] != hl2.Hosts[0] {
	​ 	 t.Errorf(​"Host %q should match %q host."​, hl1.Hosts[0], hl2.Hosts[0])
	​ 	 }
	​ 	}

Finally, define a test case for a specific scenario where the Load method attempts to load a file that doesn’t exist.
cobra/pScan.v3/scan/hostsList_test.go
	​ 	​func​ TestLoadNoFile(t *testing.T) {
	​ 	 tf, err := ioutil.TempFile(​""​, ​""​)
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 t.Fatalf(​"Error creating temp file: %s"​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ err := os.Remove(tf.Name()); err != nil {
	​ 	 t.Fatalf(​"Error deleting temp file: %s"​, err)
	​ 	 }
	​ 	
	​ 	 hl := &scan.HostsList{}
	​ 	
	​ 	 ​if​ err := hl.Load(tf.Name()); err != nil {
	​ 	 t.Errorf(​"Expected no error, got %q instead​​\n​​"​, err)
	​ 	 }
	​ 	}

To ensure this test works reliably even when executed multiple times, it creates a temporary file and then deletes it. By creating the temporary file, it ensures it’s using a file name that doesn’t conflict with any existing file. By deleting the temporary file, the test ensures that the file doesn’t exist, which is the test goal.

This completes the test cases. Save the file and execute the tests to confirm the package works as desired:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestAdd
	​ 	=== RUN TestAdd/AddNew
	​ 	=== RUN TestAdd/AddExisting
	​ 	--- PASS: TestAdd (0.00s)
	​ 	 --- PASS: TestAdd/AddNew (0.00s)
	​ 	 --- PASS: TestAdd/AddExisting (0.00s)
	​ 	=== RUN TestRemove
	​ 	=== RUN TestRemove/RemoveExisting
	​ 	=== RUN TestRemove/RemoveNotFound
	​ 	--- PASS: TestRemove (0.00s)
	​ 	 --- PASS: TestRemove/RemoveExisting (0.00s)
	​ 	 --- PASS: TestRemove/RemoveNotFound (0.00s)
	​ 	=== RUN TestSaveLoad
	​ 	--- PASS: TestSaveLoad (0.00s)
	​ 	=== RUN TestLoadNoFile
	​ 	--- PASS: TestLoadNoFile (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/cobra/pScan/scan 0.003s

The business logic for the hosts list is complete. Let’s implement the subcommands to manage the hosts list.
	
	
	
	

Creating the Subcommands to Manage Hosts

	
	
	
	
	The business logic for the hosts list is ready, so let’s write the code to manage the hosts list under the hosts subcommand. These commands are: add to add a new host to the list, delete to delete a host from the list, and list to print all hosts in the list.

	
	
	These subcommands all require a file to save and load the hosts to. Before including these commands, make a change to the root command to add a persistent flag --hosts-file, allowing the user to specify the name of the file they want to use to save the hosts to. A persistent flag makes it available to the command and all subcommands under that command. By adding this flag to the root command, we make it global which makes sense in this case because all the subcommands under hosts and later the scan subcommand require it.

To add the persistent flag, edit the file cmd/root.go and then add the following line to the init function:
cobra/pScan.v3/cmd/root.go
	​ 	​func​ init() {
	​ 	 cobra.OnInitialize(initConfig)
	​ 	
	​ 	 ​// Here you will define your flags and configuration settings.​
	​ 	 ​// Cobra supports persistent flags, which, if defined here,​
	​ 	 ​// will be global for your application.​
	​ 	
	​ 	 rootCmd.PersistentFlags().StringVar(&cfgFile, ​"config"​, ​""​,
	​ 	 ​"config file (default is $HOME/.pScan.yaml)"​)
	​ 	
	»	 rootCmd.PersistentFlags().StringP(​"hosts-file"​, ​"f"​, ​"pScan.hosts"​,
	»	 ​"pScan hosts file"​)
	​ 	
	​ 	 versionTemplate := ​`{{printf "%s: %s - version %s\n" .Name .Short .Version}}`​
	​ 	 rootCmd.SetVersionTemplate(versionTemplate)
	​ 	}

	
	
	
	
	This adds a flag using the method StringP of the flag.FlagSet type obtained by using the rootCmd.PersistentFlags method of the rootCmd instance. The flag package is an alias to the package pflag, which is a replacement for Go’s standard flag package that includes support for POSIX flags. Cobra automatically imports the pflag package for you so you don’t have to do it explicitly. For more information about the pflag package, consult its GitHub page.[44]

The StringP method lets you specify a shorthand option for your flag. In this case, users can specify this flag as either --hosts-file or -f. If the user doesn’t specify this flag when running the command, it defaults to value pScan.hosts.

Since you’re editing the root.go file, remove the lines that define a dummy example flag that your application doesn’t require:
	​ 	​// Cobra also supports local flags, which will only run​
	​ 	​// when this action is called directly.​
	​ 	rootCmd.Flags().BoolP(​"toggle"​, ​"t"​, false, ​"Help message for toggle"​)

	
	
	In addition, we don’t want the hosts subcommand to execute any actions when called without a subcommand. This should work as a group for the remaining hosts management subcommands. To disable the action, edit the file cmd/hosts.go and delete the property Run from the hostsCmd instance:
	​ 	Run: ​func​(cmd *cobra.Command, args []​string​) {
	​ 	 fmt.Println(​"hosts called"​)
	​ 	},

The hostsCmd instance definition now looks like this:
cobra/pScan.v3/cmd/hosts.go
	​ 	​var​ hostsCmd = &cobra.Command{
	​ 	 Use: ​"hosts"​,
	​ 	 Short: ​"Manage the hosts list"​,
	​ 	 Long: ​`Manages the hosts lists for pScan​
	​ 	
	​ 	​Add hosts with the add command​
	​ 	​Delete hosts with the delete command​
	​ 	​List hosts with the list command.`​,
	​ 	}

	
	
	Now use the cobra add command again to generate the boilerplate code for the list subcommand and add it under the hosts command. Use the -p flag and the instance name hostsCmd to assign this command as the parent command instead of the root command:
	​ 	​$ ​​cobra​​ ​​add​​ ​​list​​ ​​-p​​ ​​hostsCmd​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	list created at /home/ricardo/pragprog.com/rggo/cobra/pScan

Even though the command name is hosts, you need to use the instance variable hostsCmd as the value for the parent command so Cobra makes the correct association. If you provide the value hosts, Cobra will try to associate this command with an instance variable that doesn’t exist, causing a build error.

	
	
	Now that the list command is in place, do the same for the add and delete subcommands:
	​ 	​$ ​​cobra​​ ​​add​​ ​​add​​ ​​-p​​ ​​hostsCmd​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	add created at /home/ricardo/pragprog.com/rggo/cobra/pScan

	​ 	​$ ​​cobra​​ ​​add​​ ​​delete​​ ​​-p​​ ​​hostsCmd​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	delete created at /home/ricardo/pragprog.com/rggo/cobra/pScan

At this point, Cobra added three additional files in the cmd directory, one for each of the new commands. Your directory structure looks like this now:
	
	
	​ 	​$ ​​tree​
	​ 	.
	​ 	├── cmd
	​ 	│ ├── add.go
	​ 	│ ├── delete.go
	​ 	│ ├── hosts.go
	​ 	│ ├── list.go
	​ 	│ └── root.go
	​ 	├── go.mod
	​ 	├── go.sum
	​ 	├── LICENSE
	​ 	├── main.go
	​ 	└── scan
	​ 	 ├── hostsList.go
	​ 	 └── hostsList_test.go
	​ 	
	​ 	2 directories, 11 files

	
	To add the subcommand under the hostsCmd command, Cobra uses the method hostsCmd.AddCommand in the init function for each subcommand. For example, the init function in the cmd/list.go file is this:
cobra/pScan.v3/cmd/list.go
	​ 	​func​ init() {
	​ 	 hostsCmd.AddCommand(listCmd)
	​ 	
	​ 	 ​// Here you will define your flags and configuration settings.​
	​ 	
	​ 	 ​// Cobra supports Persistent Flags which will work for this command​
	​ 	 ​// and all subcommands, e.g.:​
	​ 	 ​// listCmd.PersistentFlags().String("foo", "", "A help for foo")​
	​ 	
	​ 	 ​// Cobra supports local flags which will only run when this command​
	​ 	 ​// is called directly, e.g.:​
	​ 	 ​// listCmd.Flags().BoolP("toggle", "t", false, "Help message for toggle")​
	​ 	}

	
	These files currently contain only boilerplate code. Let’s modify them according to the application requirements. Start with the list command. Edit the file cmd/list.go and update the import section to include the io package to use the io.Writer interface, the os package to use os.Stdout for output, and your pragprog.com/rggo/cobra/pScan/scan package to use the application business logic you developed earlier:
cobra/pScan.v3/cmd/list.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	»	 ​"io"​
	»	 ​"os"​
	»	
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	»	 ​"pragprog.com/rggo/cobra/pScan/scan"​
	​)

Next, update the listCmd instance definition. Add the property Aliases to identify an alias to this subcommand so users can call it by using list or l:
	​ 	Aliases: []​string​{​"l"​},

Update the short description to List hosts in hosts list and delete the property Long to remove the long description for this command:
	​ 	Short: ​"List hosts in hosts list"​,

Now, you need to configure the command to execute an action. By default, Cobra adds the property Run to the boilerplate code. This property specifies a function that Cobra executes when running this command, but it doesn’t return an error. You’ll replace it with the property RunE, which returns an error that’s displayed to the user if needed.

For general functionality, you can implement this function directly. But since it’s implemented as a property of the command instance, it’s hard to test. To overcome this, you’ll define an external function called listAction that you can test independently. Then the function defined by the RunE property only has to parse command-line flags that depend on the command instance and use them as parameters to call the external action function. Define this property like this:
	​ 	RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	​ 	 hostsFile, err := cmd.Flags().GetString(​"hosts-file"​)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ listAction(os.Stdout, hostsFile, args)
	​ 	},

Cobra automatically makes all command-line flags available to the current command using the method cmd.Flags. This code gets the value for the hosts-file flag defined before using its name hosts-file as a parameter to the method GetString since this is a string type flag.

The complete definition for the listCmd instance looks like this:
cobra/pScan.v3/cmd/list.go
	​ 	​var​ listCmd = &cobra.Command{
	​ 	 Use: ​"list"​,
	​ 	 Aliases: []​string​{​"l"​},
	​ 	 Short: ​"List hosts in hosts list"​,
	​ 	 RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	​ 	 hostsFile, err := cmd.Flags().GetString(​"hosts-file"​)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ listAction(os.Stdout, hostsFile, args)
	​ 	 },
	​ 	}

Now, define the listAction function. It accepts an io.Writer interface representing where to print output to, the string hostsFile that contains the name of the file to load the hosts list from, and a slice of string args that has any other arguments passed by the user. It returns a potential error. Even though this function doesn’t use the args parameter, we’ll leave it there so it’s similar to other actions we’ll add later:
cobra/pScan.v3/cmd/list.go
	​ 	​func​ listAction(out io.Writer, hostsFile ​string​, args []​string​) ​error​ {
	​ 	 hl := &scan.HostsList{}
	​ 	
	​ 	 ​if​ err := hl.Load(hostsFile); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​for​ _, h := ​range​ hl.Hosts {
	​ 	 ​if​ _, err := fmt.Fprintln(out, h); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​return​ nil
	​ 	}

This function creates an instance of the HostsList type provided by the package scan you created before. Then, it loads the content of the hostsFile into the hosts list instance and iterates over each entry, printing each item into the io.Writer interface as a new line. If an error occurs when printing the results, it returns the error; otherwise, it returns nil.

	
	
	The list command is ready. Let’s implement the add subcommand now. Save this file and edit the file cmd/add.go. Update the import section. This file uses the same packages you used to implement the list subcommand:
cobra/pScan.v3/cmd/add.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	​ 	 ​"pragprog.com/rggo/cobra/pScan/scan"​
	​)

Now, update the addCmd command instance properties. First, update the Use property. By default, this property only shows the command name. In our case, this command allows the user to provide additional arguments as series of strings each representing a host to add to the list. Update the Use property to represent that:
	​ 	Use: ​"add <host1>...<hostn>"​,

Next, add an alias called a to this command:
	​ 	Aliases: []​string​{​"a"​},

Update the Short description to Add new host(s) to the list and delete the Long description:
	​ 	Short: ​"Add new host(s) to list"​,

Cobra can also validate the arguments provided to a command. It provides some validation functions out-of-the-box, such as a minimum or maximum number of arguments, among others. For more complex scenarios, you can implement your custom validation function. This command requires at least one argument to work, otherwise, it has no hosts to add to the list. Use the function cobra.MinimumNArgs(1) as the value for the Args property to ensure the user provides at least one argument:
	​ 	Args: cobra.MinimumNArgs(1),

	
	
	If the user provides an invalid number of arguments, Cobra returns an error. By default, Cobra also shows the command usage when an error occurs. In this case, it may be confusing for the user to understand what’s wrong. Let’s prevent the automatic usage display by setting the property SilenceUsage to true. The user can still see the command usage by providing the flag -h for help.
	​ 	SilenceUsage: true,

Finally, implement the command’s action by replacing the property Run with RunE similarly to what you did for the list command. This function handles the command-line flags and then calls the external function addAction that executes the command action. The complete addCmd definition is this:
cobra/pScan.v3/cmd/add.go
	​ 	​var​ addCmd = &cobra.Command{
	​ 	 Use: ​"add <host1>...<hostn>"​,
	​ 	 Aliases: []​string​{​"a"​},
	​ 	 Short: ​"Add new host(s) to list"​,
	​ 	 SilenceUsage: true,
	​ 	 Args: cobra.MinimumNArgs(1),
	​ 	 RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	​ 	 hostsFile, err := cmd.Flags().GetString(​"hosts-file"​)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ addAction(os.Stdout, hostsFile, args)
	​ 	 },
	​ 	}

Now, implement the function addAction to execute the command’s action. It takes the same input parameters as the listAction function. In this case, it uses the args parameter that represents the arguments the user provided to the command. This function also returns a potential error:
cobra/pScan.v3/cmd/add.go
	​ 	​func​ addAction(out io.Writer, hostsFile ​string​, args []​string​) ​error​ {
	​ 	 hl := &scan.HostsList{}
	​ 	
	​ 	 ​if​ err := hl.Load(hostsFile); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​for​ _, h := ​range​ args {
	​ 	 ​if​ err := hl.Add(h); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 fmt.Fprintln(out, ​"Added host:"​, h)
	​ 	 }
	​ 	
	​ 	 ​return​ hl.Save(hostsFile)
	​ 	}

This function creates an empty instance of scan.HostsList and uses the method Load to load the contents of hostsFile into the list. Then it iterates over each item of the slice args, using the method Add to add them to the list. Finally, it saves the file, returning an error if one occurs.

	
	
	Finally, implement the delete subcommand. Save the file cmd/add.go and edit the file cmd/delete.go. Start by updating the import section. It uses the same packages as the two previous commands:
cobra/pScan.v3/cmd/delete.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	​ 	 ​"pragprog.com/rggo/cobra/pScan/scan"​
	​)

Next, update the deleteCmd command instance, like this:
cobra/pScan.v3/cmd/delete.go
	​ 	​var​ deleteCmd = &cobra.Command{
	​ 	 Use: ​"delete <host1>...<host n>"​,
	​ 	 Aliases: []​string​{​"d"​},
	​ 	 Short: ​"Delete hosts(s) from list"​,
	​ 	 SilenceUsage: true,
	​ 	 Args: cobra.MinimumNArgs(1),
	​ 	 RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	​ 	 hostsFile, err := cmd.Flags().GetString(​"hosts-file"​)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ deleteAction(os.Stdout, hostsFile, args)
	​ 	 },
	​ 	}

This command uses d as the alias. The options are similar to the ones used for the addCmd command, with the exception of the descriptions. The function specified in RunE calls the deleteAction function.

Now, implement the deleteAction function. It works much the same as the addAction function but uses the Remove method in the loop to remove hosts instead. At the end, it saves the file, returning the error if it occurs.
cobra/pScan.v3/cmd/delete.go
	​ 	​func​ deleteAction(out io.Writer, hostsFile ​string​, args []​string​) ​error​ {
	​ 	 hl := &scan.HostsList{}
	​ 	
	​ 	 ​if​ err := hl.Load(hostsFile); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​for​ _, h := ​range​ args {
	​ 	 ​if​ err := hl.Remove(h); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 fmt.Fprintln(out, ​"Deleted host:"​, h)
	​ 	 }
	​ 	
	​ 	 ​return​ hl.Save(hostsFile)
	​ 	}

This completes the code for the hosts management. Save the file cmd/delete.go. Next, you’ll implement some tests for your command-line tool.
	
	
	
	
	
	

Testing the Manage Hosts Subcommands

	
	
	Using boilerplate code that Cobra generated for your project makes it a little bit harder to write tests for your application. You gain development speed at the expense of flexibility since you’re constrained by the generator’s choices. To overcome this restriction while still benefiting from the generated code, you developed the application using action functions such as listAction and deleteAction. Because these functions are independent from the generated code, you have the flexibility to test them. By doing this, you won’t be testing the part of the code generated by Cobra, but this is acceptable because we trust it was tested by Cobra’s developers.

	
	
	
	
	The action functions accept the parameters required to test them properly. You’re using the same pattern you used before in ​Using Interfaces to Automate Tests​. These functions take as input an instance of the io.Writer interface as the command’s output destination. In the main code, you use the os.Stdout type when calling the functions, so the output goes to the user’s screen. For your tests, you’ll use the type bytes.Buffer to capture the output and test it.

	
	
	Start your tests by creating and editing a file cmd/actions_test.go under your application’s cmd directory. Define the package and the import section. For these tests, you’ll use the bytes package to use the type bytes.Buffer to capture output, the fmt package for formatted output, the io package to use the io.Writer interface, the ioutil package to create temporary files, the os package to delete temporary files, the strings package to manipulate string data, the testing package for the testing functionality, and the scan package you created before to help add items to the list for testing:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​package​ cmd
	​ 	
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"strings"​
	​ 	 ​"testing"​
	​ 	
	​ 	 ​"pragprog.com/rggo/cobra/pScan/scan"​
	​)

	
	
	Since this application saves the hosts list to a file, these tests require temporary files. Let’s create an auxiliary function to set up the test environment. This includes creating a temporary file and initializing a list if required. This function accepts as input an instance of the type testing.T, a slice of strings representing hosts to initialize a list, and a bool to indicate whether the list should be initialized. It returns the name of the temporary file as string and a cleanup function that deletes the temporary file after it was used:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​func​ setup(t *testing.T, hosts []​string​, initList ​bool​) (​string​, ​func​()) {
	​ 	 ​// Create temp file​
	​ 	 tf, err := ioutil.TempFile(​""​, ​"pScan"​)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	 tf.Close()
	​ 	
	​ 	 ​// Inititialize list if needed​
	​ 	 ​if​ initList {
	​ 	 hl := &scan.HostsList{}
	​ 	
	​ 	 ​for​ _, h := ​range​ hosts {
	​ 	 hl.Add(h)
	​ 	 }

	​ 	 ​if​ err := hl.Save(tf.Name()); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​// Return temp file name and cleanup function​
	​ 	 ​return​ tf.Name(), ​func​() {
	​ 	 os.Remove(tf.Name())
	​ 	 }
	​ 	}

This function uses the TempFile function from the ioutil package to create a temporary file with the pscan prefix. It stops the tests immediately by using t.Fatal if it can’t create the file. Then it closes the file since the calling function only needs the name. Next, it initializes a list if required and saves it into the temporary file. Finally, it returns the file’s name and the cleanup function.
	
	
	
	

Now, define your first test function TestHostActions to test the action functions:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​func​ TestHostActions(t *testing.T) {

	
	
	For this test, use the table-driven testing approach you first used in ​Testing with Table-Driven Testing​. First, define a slice of strings representing some hosts for the tests:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​// Define hosts for actions test​
	​ 	hosts := []​string​{
	​ 	 ​"host1"​,
	​ 	 ​"host2"​,
	​ 	 ​"host3"​,
	​ 	}

Then define the test cases using the table-driven approach. Each test has a name as string, a list of arguments args to pass to the action function, an expected output expectedOut, a bool initList that indicates whether the list must be initialized before the test, and the actionFunction that represents which action function to test. This property accepts any function with the signature func(io.Writer, string, []string) error, which allows you to use any of the action functions you developed:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​// Test cases for Action test​
	​ 	testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 args []​string​
	​ 	 expectedOut ​string​
	​ 	 initList ​bool​
	​ 	 actionFunction ​func​(io.Writer, ​string​, []​string​) ​error​
	​ 	}{
	​ 	 {
	​ 	 name: ​"AddAction"​,
	​ 	 args: hosts,
	​ 	 expectedOut: ​"Added host: host1​​\n​​Added host: host2​​\n​​Added host: host3​​\n​​"​,
	​ 	 initList: false,
	​ 	 actionFunction: addAction,
	​ 	 },
	​ 	 {
	​ 	 name: ​"ListAction"​,
	​ 	 expectedOut: ​"host1​​\n​​host2​​\n​​host3​​\n​​"​,
	​ 	 initList: true,
	​ 	 actionFunction: listAction,
	​ 	 },
	​ 	 {
	​ 	 name: ​"DeleteAction"​,
	​ 	 args: []​string​{​"host1"​, ​"host2"​},
	​ 	 expectedOut: ​"Deleted host: host1​​\n​​Deleted host: host2​​\n​​"​,
	​ 	 initList: true,
	​ 	 actionFunction: deleteAction,
	​ 	 },
	​ 	}

Next, start the test loop, iterating over each test case:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {

	
	
	For each test case, run the setup function you defined before and defer the execution of the cleanup function to ensure the file is deleted after the tests:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​// Setup Action test​
	​ 	tf, cleanup := setup(t, hosts, tc.initList)
	​ 	​defer​ cleanup()

	
	Then, define a variable of type bytes.Buffer to capture the output of the action function, and execute the action function with the required parameters. If the function returns an error, fail the test immediately:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​// Define var to capture Action output​
	​ 	​var​ out bytes.Buffer
	​ 	
	​ 	​// Execute Action and capture output​
	​ 	​if​ err := tc.actionFunction(&out, tf, tc.args); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q​​\n​​"​, err)
	​ 	}

Finally, compare the output of the action function with the expected output, failing the test if they don’t match:
cobra/pScan.v4/cmd/actions_test.go
	​ 	 ​// Test Actions output​
	​ 	 ​if​ out.String() != tc.expectedOut {
	​ 	 t.Errorf(​"Expected output %q, got %q​​\n​​"​, tc.expectedOut, out.String())
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

	
	
	
	
	
	
	
	This completes the TestHostActions test. Let’s add an integration test now. The goal is to execute all commands in sequence, simulating what a user would do with the tool. For this test, we’ll simulate a flow where the user adds three hosts to the list, prints them out, deletes a host from the list, and prints the list again. Start by defining the test function:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​func​ TestIntegration(t *testing.T) {

Then add the slice of strings with some hosts to add to the list:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​// Define hosts for integration test​
	​ 	hosts := []​string​{
	​ 	 ​"host1"​,
	​ 	 ​"host2"​,
	​ 	 ​"host3"​,
	​ 	}

Next, set up the test using your setup function:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​// Setup integration test​
	​ 	tf, cleanup := setup(t, hosts, false)
	​ 	​defer​ cleanup()

Create a variable to hold the name of the host that will be deleted with the delete operation and another that represents the end state of the list of hosts after the delete operation:
cobra/pScan.v4/cmd/actions_test.go
	​ 	delHost := ​"host2"​
	​ 	
	​ 	hostsEnd := []​string​{
	​ 	 ​"host1"​,
	​ 	 ​"host3"​,
	​ 	}

	
	Next, define a variable of type bytes.Buffer to capture output for the integrated test:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​// Define var to capture output​
	​ 	​var​ out bytes.Buffer

Now, define the expected output by concatenating the output of all the operations that’ll be executed during this test. First, loop through the hosts slice to create the output for the add operation, then join the items of the hosts slice with a newline character \n as the output of the list operation, use a formatted print to include the output for the delete operation, and repeat the list output:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​// Define expected output for all actions​
	​ 	expectedOut := ​""​
	​ 	​for​ _, v := ​range​ hosts {
	​ 	 expectedOut += fmt.Sprintf(​"Added host: %s​​\n​​"​, v)
	​ 	}
	​ 	expectedOut += strings.Join(hosts, ​"​​\n​​"​)
	​ 	expectedOut += fmt.Sprintln()
	​ 	expectedOut += fmt.Sprintf(​"Deleted host: %s​​\n​​"​, delHost)
	​ 	expectedOut += strings.Join(hostsEnd, ​"​​\n​​"​)
	​ 	expectedOut += fmt.Sprintln()

Next, execute all the operations in the defined sequence add -> list -> delete -> list, using the proper parameters for each. Use the same buffer variable out to capture the output of all operations. If any of these operations results in an error, fail the test immediately:
cobra/pScan.v4/cmd/actions_test.go
	​ 	​// Add hosts to the list​
	​ 	​if​ err := addAction(&out, tf, hosts); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q​​\n​​"​, err)
	​ 	}
	​ 	
	​ 	​// List hosts​
	​ 	​if​ err := listAction(&out, tf, nil); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q​​\n​​"​, err)
	​ 	}
	​ 	
	​ 	​// Delete host2​
	​ 	​if​ err := deleteAction(&out, tf, []​string​{delHost}); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q​​\n​​"​, err)
	​ 	}
	​ 	
	​ 	​// List hosts after delete​
	​ 	​if​ err := listAction(&out, tf, nil); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q​​\n​​"​, err)
	​ 	}

Finally, compare the output of all the operations with the expected output, failing the test if they don’t match:
cobra/pScan.v4/cmd/actions_test.go
	​ 	 ​// Test integration output​
	​ 	 ​if​ out.String() != expectedOut {
	​ 	 t.Errorf(​"Expected output %q, got %q​​\n​​"​, expectedOut, out.String())
	​ 	 }
	​ 	}

Save this file and execute the tests. If you’re not in the cmd directory, change to it and then execute the tests:
	​ 	​$ ​​cd​​ ​​cmd​
	​ 	​$ ​​pwd​
	​ 	/home/ricardo/pragprog.com/rggo/cobra/pScan.v4/cmd
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestHostActions
	​ 	=== RUN TestHostActions/AddAction
	​ 	=== RUN TestHostActions/ListAction
	​ 	=== RUN TestHostActions/DeleteAction
	​ 	--- PASS: TestHostActions (0.00s)
	​ 	 --- PASS: TestHostActions/AddAction (0.00s)
	​ 	 --- PASS: TestHostActions/ListAction (0.00s)
	​ 	 --- PASS: TestHostActions/DeleteAction (0.00s)
	​ 	=== RUN TestIntegration
	​ 	--- PASS: TestIntegration (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/cobra/pScan/cmd 0.006s

Once all the tests pass, you can try your application. Switch back to the application’s root directory and build it with go build:
	​ 	​$ ​​cd​​ ​​..​
	​ 	​$ ​​pwd​
	​ 	/home/ricardo/pragprog.com/rggo/cobra/pScan.v4
	​ 	​$ ​​go​​ ​​build​
	​ 	​$ ​​ls​
	​ 	cmd go.mod go.sum LICENSE main.go pScan scan

	
	The go build command created your application’s executable file pScan. If you execute it with no parameters, you’ll see the same default help you got in ​Adding the First Subcommand to Your Application​. Execute it with the hosts command to see the list of subcommands you can use:
	​ 	​$ ​​./pScan​​ ​​hosts​
	​ 	Manages the hosts lists for pScan
	​ 	
	​ 	Add hosts with the add command
	​ 	Delete hosts with the delete command
	​ 	List hosts with the list command.
	​ 	
	​ 	Usage:
	​ 	 pScan hosts [command]
	​ 	
	​ 	Available Commands:
	​ 	 add Add new host(s) to list
	​ 	 delete Delete hosts(s) from list
	​ 	 list List hosts in hosts list
	​ 	
	​ 	Flags:
	​ 	 -h, --help help for hosts
	​ 	
	​ 	Global Flags:
	​ 	 --config string config file (default is $HOME/.pScan.yaml)
	​ 	 -f, --hosts-file string pScan hosts file (default "pScan.hosts")
	​ 	
	​ 	Use "pScan hosts [command] --help" for more information about a command.

	
	You can also see the help information for one of its subcommands by supplying the flag -h with that subcommand:
	​ 	​$ ​​./pScan​​ ​​hosts​​ ​​add​​ ​​-h​
	​ 	Add new host(s) to list
	​ 	
	​ 	Usage:
	​ 	 pScan hosts add <host1>...<hostn> [flags]
	​ 	
	​ 	Aliases:
	​ 	 add, a
	​ 	
	​ 	Flags:
	​ 	 -h, --help help for add
	​ 	
	​ 	Global Flags:
	​ 	 --config string config file (default is $HOME/.pScan.yaml)
	​ 	 -f, --hosts-file string pScan hosts file (default "pScan.hosts")

Now, add a host to the list:
	​ 	​$ ​​./pScan​​ ​​hosts​​ ​​add​​ ​​localhost​
	​ 	Added host: localhost

Or you can use the alias a instead of add:
	​ 	​$ ​​./pScan​​ ​​hosts​​ ​​a​​ ​​myhost​
	​ 	Added host: myhost

Since you did not specify the --hosts-file flag, the pScan command automatically saved your list in the file pScan.hosts. List the hosts in the file with the list command:
	​ 	​$ ​​./pScan​​ ​​hosts​​ ​​list​
	​ 	localhost
	​ 	myhost

Check the file created by the pScan tool:
	​ 	​$ ​​ls​​ ​​pScan.hosts​
	​ 	pScan.hosts
	​ 	​$ ​​cat​​ ​​pScan.hosts​
	​ 	localhost
	​ 	myhost

Before moving on to the next section, explore some of the other options such as the delete command or the --hosts-file flag. The hosts management capability is ready. Next, let’s add the port scanning functionality to the tool.
	
	
	
	

Adding the Port Scanning Functionality

	
	Your application is coming along nicely. You can manage hosts on which to execute a port scan. Let’s implement the port scanning functionality now. Let’s start by adding the functionality to the scan package. After that, we’ll implement the subcommand on the command-line tool. Switch to the scan subdirectory:
	​ 	​$ ​​cd​​ ​​scan​
	​ 	​$ ​​pwd​
	​ 	/home/ricardo/pragprog.com/rggo/cobra/pScan/scan

Create and edit the file scanHosts.go to hold the code related to the scan functionality. Add the package definition and the import list. For this functionality, you’ll use the package fmt for formatted printing, the package net for network-related functions, and the package time to define timeouts:
	
	
	
	
cobra/pScan.v5/scan/scanHosts.go
	​ 	​// Package scan provides types and functions to perform TCP port​
	​ 	​// scans on a list of hosts​
	​ 	​package​ scan
	​ 	
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"net"​
	​ 	 ​"time"​
	​)

	
	
	Next, define a new custom type PortState that represents the state for a single TCP port. This struct has two fields: Port of type int that corresponds to the TCP port and Open of type state that indicates whether the port is open or closed. You’ll define the type state shortly:
cobra/pScan.v5/scan/scanHosts.go
	​ 	​// PortState represents the state of a single TCP port​
	​ 	​type​ PortState ​struct​ {
	​ 	 Port ​int​
	​ 	 Open state
	​ 	}

Define the custom type state as a wrapper on the bool type. This type uses true or false to indicate whether a port is open or closed. By creating a custom type, we can associate methods to it. In this case, define the method String to this type to return open or closed instead of true or false when printing this value:

cobra/pScan.v5/scan/scanHosts.go
	​ 	​type​ state ​bool​
	​ 	
	​ 	​// String converts the boolean value of state to a human readable string​
	​ 	​func​ (s state) String() ​string​ {
	​ 	 ​if​ s {
	​ 	 ​return​ ​"open"​
	​ 	 }
	​ 	
	​ 	 ​return​ ​"closed"​
	​ 	}

By implementing the String method on the state type, you satisfy the Stringer interface, which allows you to use this type directly with print functions. You used this technique before in ​Improving the List Output Format​.

Next, implement the scanPort function to perform a port scan on a single TCP port. This function takes as input the host as string and the port as an integer number. It returns an instance of the type PortState you defined before:
cobra/pScan.v5/scan/scanHosts.go
	​ 	​// scanPort performs a port scan on a single TCP port​
	​ 	​func​ scanPort(host ​string​, port ​int​) PortState {

In the function’s body, start by defining an instance p of the type PortState. Assign the port number as the value for the property Port. You don’t need to assign a value for the Open property as it’s automatically initialized to false as the zero value for a Boolean:
cobra/pScan.v5/scan/scanHosts.go
	​ 	p := PortState{
	​ 	 Port: port,
	​ 	}

	
	To verify if the given port is open or closed, you’ll use the function DialTimeout from the net package. This function attempts to connect to a network address within a given time. If it can’t connect to the address within the specified time, it returns an error. For the purpose of this tool, assume that an error means the port is closed. If the connection attempt succeeds, consider the port to be open. This is a naive approach, but it works well enough for this example.

	
	Use the function net.JoinHostPort from the net package to define the network address based on the host and port you want to scan. Using this function is recommended over concatenating the values directly as it takes care of corner cases, such as the IPv6 value:
cobra/pScan.v5/scan/scanHosts.go
	​ 	address := net.JoinHostPort(host, fmt.Sprintf(​"%d"​, port))

Now use the address value with the net.DialTimeout function to perform the connection attempt. This function takes three input parameters, the network type, the address, and the timeout. For this example, run a TCP scan only by specifying the network type as tcp and hard-code the timeout as 1 second:
cobra/pScan.v5/scan/scanHosts.go
	​ 	scanConn, err := net.DialTimeout(​"tcp"​, address, 1*time.Second)

Next, verify if the function returned an error. If it did, assume the port is closed and return the PortState variable p as is, since it has the default value false for the Open property.
cobra/pScan.v5/scan/scanHosts.go
	​ 	​if​ err != nil {
	​ 	 ​return​ p
	​ 	}

	When the connection succeeds, close the connection using the scanConn.Close method, set the property value Open to true, and then return p:
cobra/pScan.v5/scan/scanHosts.go
	​ 	 scanConn.Close()
	​ 	 p.Open = true
	​ 	 ​return​ p
	​ 	}

The function scanPort is complete. Notice that we defined this function as private, with a lowercase letter as the first letter of its name. We don’t want users of this package to use this function directly. Let’s define an exported function Run that performs a port scan on the hosts list. The Run function uses the scanPort function to perform the scan on each port.

	
	
	Before defining the Run function, add a new custom type Results that represents the scan result for a host. The Run function returns a slice of Results, one for each host in the list:
cobra/pScan.v5/scan/scanHosts.go
	​ 	​// Results represents the scan results for a single host​
	​ 	​type​ Results ​struct​ {
	​ 	 Host ​string​
	​ 	 NotFound ​bool​
	​ 	 PortStates []PortState
	​ 	}

This new type has three fields: Host as string representing a host, NotFound as a bool indicating whether the host can be resolved to a valid IP Address in the network, and PortStates as a slice of the type PortState indicating the status for each port scanned.

Now, define the Run function that performs a port scan on the hosts list. This function takes a pointer to a HostsList type and a slice of integers representing the ports to scan. It returns a slice of Results:
cobra/pScan.v5/scan/scanHosts.go
	​ 	​// Run performs a port scan on the hosts list​
	​ 	​func​ Run(hl *HostsList, ports []​int​) []Results {

Initialize the slice of Results as a variable res with the capacity set to the number of hosts in the list. You’ll append the results for each host into this slice and return it at the end:
cobra/pScan.v5/scan/scanHosts.go
	​ 	res := make([]Results, 0, len(hl.Hosts))

Now loop through the list of hosts and define an instance of Results for each host:
cobra/pScan.v5/scan/scanHosts.go
	​ 	​for​ _, h := ​range​ hl.Hosts {
	​ 	 r := Results{
	​ 	 Host: h,
	​ 	 }

	
	Next, use the net.LookupHost function from the net package to resolve the host name into a valid IP address. If it returns an error, the host can’t be found, in which case you set the property NotFound to true, append the result to the slice res and skip the port scan on this host by using the continue statement to process the next item in the loop:
cobra/pScan.v5/scan/scanHosts.go
	​ 	​if​ _, err := net.LookupHost(h); err != nil {
	​ 	 r.NotFound = true
	​ 	 res = append(res, r)
	​ 	 ​continue​
	​ 	}

If the host was found, execute the port scan by looping through each port in the ports slice, using the function scanPort you defined before. Append the returned PortState into the PortStates slice. Finally, append the current result r into the Results slice res and return it when the loop finishes processing all hosts:
cobra/pScan.v5/scan/scanHosts.go
	​ 	 ​for​ _, p := ​range​ ports {
	​ 	 r.PortStates = append(r.PortStates, scanPort(h, p))
	​ 	 }
	​ 	
	​ 	 res = append(res, r)
	​ 	 }
	​ 	
	​ 	 ​return​ res
	​ 	}

	
	The code for the new scan functionality is complete. Next, let’s write some tests to ensure it works. Save this file and create and edit a new file scanHosts_test.go for the tests. Define the package package scan_test to test the exposed API only, as you did with the hosts tests:
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	​package​ scan_test

	
	
	
	Then, add the import section. For these tests, you’ll use the net package to create a local TCP server, the package strconv to convert strings to integer numbers, the testing package for the testing function, and the scan package that you’re testing:
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	​import​ (
	​ 	 ​"net"​
	​ 	 ​"strconv"​
	​ 	 ​"testing"​
	​ 	
	​ 	 ​"pragprog.com/rggo/cobra/pScan/scan"​
	​)

Now, add your first test function TestStateString to test the String method of the state type. We want to ensure it returns open or closed:
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	​func​ TestStateString(t *testing.T) {
	​ 	 ps := scan.PortState{}
	​ 	
	​ 	 ​if​ ps.Open.String() != ​"closed"​ {
	​ 	 t.Errorf(​"Expected %q, got %q instead​​\n​​"​, ​"closed"​, ps.Open.String())
	​ 	 }
	​ 	
	​ 	 ps.Open = true
	​ 	
	​ 	 ​if​ ps.Open.String() != ​"open"​ {
	​ 	 t.Errorf(​"Expected %q, got %q instead​​\n​​"​, ​"open"​, ps.Open.String())
	​ 	 }
	​ 	}

For this test, you’re defining an instance of the type scan.PortState. By default, the value of its Open property is false, so you’re testing that the String method returns closed. Then, you are switching the Open value to true and testing that it returns open.

Next, add a test function TestRunHostFound to test the Run function when the host exists. To ensure that the host exists, you’ll use localhost as the host. This test has two cases, open port and closed port.
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	​func​ TestRunHostFound(t *testing.T) {
	​ 	 testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 expectState ​string​
	​ 	 }{
	​ 	 {​"OpenPort"​, ​"open"​},
	​ 	 {​"ClosedPort"​, ​"closed"​},
	​ 	 }

	Local Network and Firewalls

	
 [image: images/aside-icons/warning.png]
 	

	
	 Since you’re using the host localhost, this test should work on most machines. But network configurations may vary. Check your network configuration to ensure localhost is configured.

 Most local firewalls allow traffic to localhost by default. If this test fails, ensure your firewall allows this traffic.

Create an instance of the scan.HostsList and add localhost to it:
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	host := ​"localhost"​
	​ 	hl := &scan.HostsList{}
	​ 	
	​ 	hl.Add(host)

Since this test involves testing TCP ports, ensure it’s reproducible in different machines. If you try to use a fixed port number, you could have a conflict as each machine environment is different. To overcome this challenge, use the port number 0 (zero) when executing the function net.Listen. This ensures that the function uses a port that’s available on the host. Then you extract the port from the Listener address using its Addr method and add it to a ports slice that we can use later as an argument to the Run function we’re testing:
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	ports := []​int​{}
	​ 	
	​ 	​// Init ports, 1 open, 1 closed​
	​ 	​for​ _, tc := ​range​ testCases {
	​ 	 ln, err := net.Listen(​"tcp"​, net.JoinHostPort(host, ​"0"​))
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 ​defer​ ln.Close()
	​ 	
	​ 	 _, portStr, err := net.SplitHostPort(ln.Addr().String())
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 port, err := strconv.Atoi(portStr)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 ports = append(ports, port)
	​ 	
	​ 	 ​if​ tc.name == ​"ClosedPort"​ {
	​ 	 ln.Close()
	​ 	 }
	​ 	}

For the ClosedPort case, we’re closing the port immediately after opening it, using the ln.Close method. This ensures that we’re using an available port and that it’s closed for the test.

Now, execute the Run method using the ports slice as an argument. Since the Run function accepts a slice of ports, you don’t need to execute the tests for each case.
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	res := scan.Run(hl, ports)

Next, test the results. There should be only one element in the Results slice returned by the Run function. The host name in the result should match the variable host, and the property NotFound should be false since we expect this host to exist:
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	​// Verify results for HostFound test​
	​ 	​if​ len(res) != 1 {
	​ 	 t.Fatalf(​"Expected 1 results, got %d instead​​\n​​"​, len(res))
	​ 	}
	​ 	
	​ 	​if​ res[0].Host != host {
	​ 	 t.Errorf(​"Expected host %q, got %q instead​​\n​​"​, host, res[0].Host)
	​ 	}
	​ 	
	​ 	​if​ res[0].NotFound {
	​ 	 t.Errorf(​"Expected host %q to be found​​\n​​"​, host)
	​ 	}

Then, verify that two ports are present in the PortStates slice:
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	​if​ len(res[0].PortStates) != 2 {
	​ 	 t.Fatalf(​"Expected 2 port states, got %d instead​​\n​​"​, len(res[0].PortStates))
	​ 	}

Finally, verify each port state by looping through each test case and that the port number and state match the expected values:
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	 ​for​ i, tc := ​range​ testCases {
	​ 	 ​if​ res[0].PortStates[i].Port != ports[i] {
	​ 	 t.Errorf(​"Expected port %d, got %d instead​​\n​​"​, ports[0],
	​ 	 res[0].PortStates[i].Port)
	​ 	 }
	​ 	
	​ 	 ​if​ res[0].PortStates[i].Open.String() != tc.expectState {
	​ 	 t.Errorf(​"Expected port %d to be %s​​\n​​"​, ports[i], tc.expectState)
	​ 	 }
	​ 	 }
	​ 	}

The test for whether the host is found is done. Add another function to test the case when the host isn’t found:
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	​func​ TestRunHostNotFound(t *testing.T) {

Create an instance of the scan.HostsList and add the host 389.389.389.389 to it. Name resolution on this host should fail unless you have it on your DNS:
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	host := ​"389.389.389.389"​
	​ 	hl := &scan.HostsList{}
	​ 	
	​ 	hl.Add(host)

Now execute the Run method using an empty slice as the ports argument. Since the host doesn’t exist, the ports are irrelevant as the function shouldn’t execute the scan.
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	res := scan.Run(hl, []​int​{})

To finish the test, verify the results. There should be only one element in the Results slice returned by the Run function. The host name in the result should match the variable host, the property NotFound should be true since we don’t expect this host to exist, and the PortStates slice should contain no elements as the scan should be skipped for this host:
cobra/pScan.v5/scan/scanHosts_test.go
	​ 	 ​// Verify results for HostNotFound test​
	​ 	 ​if​ len(res) != 1 {
	​ 	 t.Fatalf(​"Expected 1 results, got %d instead​​\n​​"​, len(res))
	​ 	 }
	​ 	
	​ 	 ​if​ res[0].Host != host {
	​ 	 t.Errorf(​"Expected host %q, got %q instead​​\n​​"​, host, res[0].Host)
	​ 	 }
	​ 	
	​ 	 ​if​ !res[0].NotFound {
	​ 	 t.Errorf(​"Expected host %q NOT to be found​​\n​​"​, host)
	​ 	 }
	​ 	
	​ 	 ​if​ len(res[0].PortStates) != 0 {
	​ 	 t.Fatalf(​"Expected 0 port states, got %d instead​​\n​​"​, len(res[0].PortStates))
	​ 	 }
	​ 	}

Save the file and execute the tests to ensure the new functionality works as designed:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestAdd
	​ 	=== RUN TestAdd/AddNew
	​ 	=== RUN TestAdd/AddExisting
	​ 	--- PASS: TestAdd (0.00s)
	​ 	 --- PASS: TestAdd/AddNew (0.00s)
	​ 	 --- PASS: TestAdd/AddExisting (0.00s)
	​ 	=== RUN TestRemove
	​ 	=== RUN TestRemove/RemoveExisting
	​ 	=== RUN TestRemove/RemoveNotFound
	​ 	--- PASS: TestRemove (0.00s)
	​ 	 --- PASS: TestRemove/RemoveExisting (0.00s)
	​ 	 --- PASS: TestRemove/RemoveNotFound (0.00s)
	​ 	=== RUN TestSaveLoad
	​ 	--- PASS: TestSaveLoad (0.00s)
	​ 	=== RUN TestLoadNoFile
	​ 	--- PASS: TestLoadNoFile (0.00s)
	​ 	=== RUN TestStateString
	​ 	--- PASS: TestStateString (0.00s)
	​ 	=== RUN TestRunHostFound
	​ 	--- PASS: TestRunHostFound (0.00s)
	​ 	=== RUN TestRunHostNotFound
	​ 	--- PASS: TestRunHostNotFound (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/cobra/pScan/scan 0.014s

	
	
	The tests pass, which means the new functionality of the scan package is complete. Let’s implement the command-line functionality now. Switch back to the root directory of your application:
	​ 	​$ ​​cd​​ ​​..​
	​ 	​$ ​​pwd​
	​ 	/home/ricardo/pragprog.com/rggo/cobra/pScan

	
	Use the cobra add generator to add the scan subcommand to your tool:
	​ 	​$ ​​cobra​​ ​​add​​ ​​scan​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	scan created at /home/ricardo/pragprog.com/rggo/cobra/pScan

Switch to the cmd directory and edit the file scan.go:
	​ 	​$ ​​cd​​ ​​cmd​
	​ 	​$ ​​pwd​
	​ 	/home/ricardo/pragprog.com/rggo/cobra/pScan/cmd

Edit the import section and add the io package to use the io.Writer interface, the os package to use the os.Stdout, and your scan package for the port scan functionality:
cobra/pScan.v5/cmd/scan.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	»	 ​"io"​
	»	 ​"os"​
	»	
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	»	 ​"pragprog.com/rggo/cobra/pScan/scan"​
	​)

Then edit the init function to include a local flag --ports or -p to allow the user to specify a slice of ports to be scanned. Use the method Flags of the type scanCmd to create a flag that is available only for this command:
cobra/pScan.v5/cmd/scan.go
	​ 	​func​ init() {
	​ 	 rootCmd.AddCommand(scanCmd)
	​ 	
	»	 scanCmd.Flags().IntSliceP(​"ports"​, ​"p"​, []​int​{22, 80, 443}, ​"ports to scan"​)
	​ 	}

In this function, you’re using the method IntSliceP to create a flag that takes a slice of integer numbers. By default, this flag sets the ports to be scanned as 22, 80, and 443.

Now, edit the scanCmd type definition according to the command requirements. Update the short description to Run a port scan on the hosts and remove the long description:
cobra/pScan.v5/cmd/scan.go
	​ 	​var​ scanCmd = &cobra.Command{
	​ 	 Use: ​"scan"​,
	​ 	 Short: ​"Run a port scan on the hosts"​,

Implement the action by replacing the Run property with RunE as you did when you implemented the hosts commands. This function handles both the hosts-file and ports command-line flags and then calls the external function scanAction to execute the command action:
cobra/pScan.v5/cmd/scan.go
	​ 	 RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	​ 	 hostsFile, err := cmd.Flags().GetString(​"hosts-file"​)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ports, err := cmd.Flags().GetIntSlice(​"ports"​)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ scanAction(os.Stdout, hostsFile, ports)
	​ 	 },
	​ 	}

Now, define the scanAction function. This function takes as input an io.Writer interface representing where to print output to, the string hostsFile which contains the name of the file to load the hosts list from, and a slice of integers ports representing the ports to scan. It returns a potential error:
cobra/pScan.v5/cmd/scan.go
	​ 	​func​ scanAction(out io.Writer, hostsFile ​string​, ports []​int​) ​error​ {
	​ 	 hl := &scan.HostsList{}
	​ 	
	​ 	 ​if​ err := hl.Load(hostsFile); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 results := scan.Run(hl, ports)
	​ 	
	​ 	 ​return​ printResults(out, results)
	​ 	}

This function creates an instance of the HostsList type provided by the package scan you created before. Then, it loads the content of the hostsFile into the hosts list instance and executes the port scan by calling the function scan.Run. Finally, it calls the function printResults, which you’ll define shortly, to print the results to the output assigned to the variable out, returning any errors from it.

To complete this command’s functionality, define the function printResults to print the results out. This function takes the io.Writer interface and a slice of scan.Results as input, and it returns an error:
cobra/pScan.v5/cmd/scan.go
	​ 	​func​ printResults(out io.Writer, results []scan.Results) ​error​ {

In the function’s body, define an empty string variable message to compose the output message:
cobra/pScan.v5/cmd/scan.go
	​ 	message := ​""​

Then loop through each result in the results slice. For each host, add the host name and the list of ports with each status to the message variable. If the host was not found, add Host not found after the host name to the message and move to the next iteration of the loop:
cobra/pScan.v5/cmd/scan.go
	​ 	​for​ _, r := ​range​ results {
	​ 	 message += fmt.Sprintf(​"%s:"​, r.Host)
	​ 	
	​ 	 ​if​ r.NotFound {
	​ 	 message += fmt.Sprintf(​" Host not found​​\n\n​​"​)
	​ 	 ​continue​
	​ 	 }
	​ 	
	​ 	 message += fmt.Sprintln()
	​ 	
	​ 	 ​for​ _, p := ​range​ r.PortStates {
	​ 	 message += fmt.Sprintf(​"​​\t​​%d: %s​​\n​​"​, p.Port, p.Open)
	​ 	 }
	​ 	
	​ 	 message += fmt.Sprintln()
	​ 	}

Finally, print the contents of message to the io.Writer interface and return the error:
cobra/pScan.v5/cmd/scan.go
	​ 	 _, err := fmt.Fprint(out, message)
	​ 	 ​return​ err
	​ 	}

	
	
	The code is done, so let’s update the test file to include tests for the scan functionality. Save and close the scan.go file and edit the actions_test.go test file. Start by updating the import section to include two additional packages: net to create a network listener and strconv to convert string data to integer numbers:
cobra/pScan.v5/cmd/actions_test.go
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"io/ioutil"​
	​ 	
	»	 ​"net"​
	​ 	 ​"os"​
	»	 ​"strconv"​
	​ 	 ​"strings"​
	​ 	 ​"testing"​
	​ 	
	​ 	 ​"pragprog.com/rggo/cobra/pScan/scan"​
	​)

Next, add another test function TestScanAction to this file to test the scanAction function:
cobra/pScan.v5/cmd/actions_test.go
	​ 	​func​ TestScanAction(t *testing.T) {

Define a list of hosts for this test that includes localhost and a host that doesn’t exist in your network, for example, unknownhostoutthere:
cobra/pScan.v5/cmd/actions_test.go
	​ 	​// Define hosts for scan test​
	​ 	hosts := []​string​{
	​ 	 ​"localhost"​,
	​ 	 ​"unknownhostoutthere"​,
	​ 	}

Then use the setup helper function to set up the tests using this list of hosts as input:
cobra/pScan.v5/cmd/actions_test.go
	​ 	​// Setup scan test​
	​ 	tf, cleanup := setup(t, hosts, true)
	​ 	​defer​ cleanup()

Next, initialize the ports for the localhost test, similar to what you did when testing the scan package before:
cobra/pScan.v5/cmd/actions_test.go
	​ 	ports := []​int​{}
	​ 	
	​ 	​// Init ports, 1 open, 1 closed​
	​ 	​for​ i := 0; i < 2; i++ {
	​ 	 ln, err := net.Listen(​"tcp"​, net.JoinHostPort(​"localhost"​, ​"0"​))
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 ​defer​ ln.Close()
	​ 	
	​ 	 _, portStr, err := net.SplitHostPort(ln.Addr().String())
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 port, err := strconv.Atoi(portStr)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 ports = append(ports, port)
	​ 	
	​ 	 ​if​ i == 1 {
	​ 	 ln.Close()
	​ 	 }
	​ 	}

Define the expected output expectedOut variable. For this test, we expect the localhost host to have two ports, one open and one closed, and the host unknownhostoutthere not to be found:
cobra/pScan.v5/cmd/actions_test.go
	​ 	​// Define expected output for scan action​
	​ 	expectedOut := fmt.Sprintln(​"localhost:"​)
	​ 	expectedOut += fmt.Sprintf(​"​​\t​​%d: open​​\n​​"​, ports[0])
	​ 	expectedOut += fmt.Sprintf(​"​​\t​​%d: closed​​\n​​"​, ports[1])
	​ 	expectedOut += fmt.Sprintln()
	​ 	expectedOut += fmt.Sprintln(​"unknownhostoutthere: Host not found"​)
	​ 	expectedOut += fmt.Sprintln()

Now, define a variable out of type bytes.Buffer to capture the output, execute the scanAction function, and compare its captured output with the expected output, failing the test if they don’t match:
cobra/pScan.v5/cmd/actions_test.go
	​ 	 ​// Define var to capture scan output​
	​ 	 ​var​ out bytes.Buffer
	​ 	
	​ 	 ​// Execute scan and capture output​
	​ 	 ​if​ err := scanAction(&out, tf, ports); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q​​\n​​"​, err)
	​ 	 }
	​ 	
	​ 	 ​// Test scan output​
	​ 	 ​if​ out.String() != expectedOut {
	​ 	 t.Errorf(​"Expected output %q, got %q​​\n​​"​, expectedOut, out.String())
	​ 	 }
	​ 	}

This completes this test case. Now update the integration test to include the hosts scan step.

First, update the expected output. We expect the two hosts, host1 and host3, that are in the final hosts list, to not exist:
cobra/pScan.v5/cmd/actions_test.go
	​ 	​// Define expected output for all actions​
	​ 	expectedOut := ​""​
	​ 	​for​ _, v := ​range​ hosts {
	​ 	 expectedOut += fmt.Sprintf(​"Added host: %s​​\n​​"​, v)
	​ 	}
	​ 	expectedOut += strings.Join(hosts, ​"​​\n​​"​)
	​ 	expectedOut += fmt.Sprintln()
	​ 	expectedOut += fmt.Sprintf(​"Deleted host: %s​​\n​​"​, delHost)
	​ 	expectedOut += strings.Join(hostsEnd, ​"​​\n​​"​)
	​ 	expectedOut += fmt.Sprintln()
	»	​for​ _, v := ​range​ hostsEnd {
	»	 expectedOut += fmt.Sprintf(​"%s: Host not found​​\n​​"​, v)
	»	 expectedOut += fmt.Sprintln()
	»	}

Then include the scanAction function as the last step in the test execution, capturing its output in the same variable out:
cobra/pScan.v5/cmd/actions_test.go
	​ 	 ​// List hosts after delete​
	​ 	 ​if​ err := listAction(&out, tf, nil); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q​​\n​​"​, err)
	​ 	 }
	​ 	
	»	 ​// Scan hosts​
	»	 ​if​ err := scanAction(&out, tf, nil); err != nil {
	»	 t.Fatalf(​"Expected no error, got %q​​\n​​"​, err)
	»	 }
	​ 	
	​ 	 ​// Test integration output​
	​ 	 ​if​ out.String() != expectedOut {
	​ 	 t.Errorf(​"Expected output %q, got %q​​\n​​"​, expectedOut, out.String())
	​ 	 }
	​ 	}

Save and close the actions_test.go file and execute the tests to ensure the new command works as designed:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestHostActions
	​ 	=== RUN TestHostActions/AddAction
	​ 	=== RUN TestHostActions/ListAction
	​ 	=== RUN TestHostActions/DeleteAction
	​ 	--- PASS: TestHostActions (0.00s)
	​ 	 --- PASS: TestHostActions/AddAction (0.00s)
	​ 	 --- PASS: TestHostActions/ListAction (0.00s)
	​ 	 --- PASS: TestHostActions/DeleteAction (0.00s)
	​ 	=== RUN TestScanAction
	​ 	--- PASS: TestScanAction (0.01s)
	​ 	=== RUN TestIntegration
	​ 	--- PASS: TestIntegration (0.01s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/cobra/pScan/cmd 0.018s

	
	Your tests pass, so give your application a try. Switch back to the root directory of your application and build it:
	​ 	​$ ​​cd​​ ​​..​
	​ 	​$ ​​pwd​
	​ 	/home/ricardo/pragprog.com/rggo/cobra/pScan
	​ 	​$ ​​go​​ ​​build​

Execute it with the hosts list subcommand to see if you have any hosts in the list:
	​ 	​$ ​​./pScan​​ ​​hosts​​ ​​list​

If you don’t have any hosts, use hosts add to add some hosts, for example, localhost. To make it more useful, add some hosts that exist on your local network, so you can scan their ports. Your list and output will be different from mine:
	​ 	​$ ​​./pScan​​ ​​hosts​​ ​​add​​ ​​localhost​​ ​​192.168.0.199​
	​ 	Added host: localhost
	​ 	Added host: 192.168.0.199

Now execute a port scan on these hosts using the scan subcommand. You can pass some ports that you expect to be open using the --ports flag:
	​ 	​$ ​​./pScan​​ ​​scan​​ ​​--ports​​ ​​22,80,443,6060​
	​ 	localhost:
	​ 	 22: closed
	​ 	 80: closed
	​ 	 443: closed
	​ 	 6060: open
	​ 	
	​ 	192.168.0.199:
	​ 	 22: open
	​ 	 80: closed
	​ 	 443: closed
	​ 	 6060: closed

In this case, port 6060 is open on localhost while port 22 is open on host 192.168.0.199. Your output will be different from this.

You have a working port scan application. Next, you’ll use Viper to increase the flexibility of your tool, allowing the user to configure it in different ways.
	
	

Using Viper for Configuration Management

	
	
	
	When you use the Cobra generator to create the boilerplate code for your application, it automatically enables Viper. Viper is a configuration management solution for Go applications which allows you to specify configuration options for your application in several ways, including configuration files, environment variables, and command-line flags.

Cobra enables Viper by running the function initConfig when initializing the application. This function is defined in the cmd/root.go file:
cobra/pScan.v6/cmd/root.go
	​ 	​func​ initConfig() {
	​ 	 ​if​ cfgFile != ​""​ {
	​ 	 ​// Use config file from the flag.​
	​ 	 viper.SetConfigFile(cfgFile)
	​ 	 } ​else​ {
	​ 	 ​// Find home directory.​
	​ 	 home, err := homedir.Dir()
	​ 	 ​if​ err != nil {
	​ 	 fmt.Println(err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	
	​ 	 ​// Search config in home directory with name ".pScan" (without extension).​
	​ 	 viper.AddConfigPath(home)
	​ 	 viper.SetConfigName(​".pScan"​)
	​ 	 }
	​ 	
	​ 	 viper.AutomaticEnv() ​// read in environment variables that match​
	​ 	
	​ 	 ​// If a config file is found, read it in.​
	​ 	 ​if​ err := viper.ReadInConfig(); err == nil {
	​ 	 fmt.Println(​"Using config file:"​, viper.ConfigFileUsed())
	​ 	 }
	​ 	}

	
	If the user specifies a config file using the flag --config, Viper sets it as the configuration file for the application. If not, it sets the configuration file as the file $HOME/.pScan.yaml. Then it uses the function viper.AutomaticEnv to read the configuration from environment variables that match any expected configuration keys. Finally, if the configuration file exists, Viper reads the configuration from it.

Even though Viper is enabled by default, it doesn’t set any configuration key. Since your application already sets its options using flags, you can create Viper configuration keys by binding them to those flags. Let’s bind a configuration key hosts-file to the persistent flag hosts-file, allowing users to specify the hosts file name using the configuration file or environment variables. Edit the file cmd/root.go, and update the import section to include the package strings to manipulate string data:
cobra/pScan.v6/cmd/root.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"os"​
	​ 	
	»	 ​"strings"​
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	​ 	
	​ 	 homedir ​"github.com/mitchellh/go-homedir"​
	​ 	 ​"github.com/spf13/viper"​
	​)

	
	Then add these lines into the init function to bind the configuration with the hosts-file flag and allow the user to specify it as an environment variable:
cobra/pScan.v6/cmd/root.go
	​ 	​func​ init() {
	​ 	 cobra.OnInitialize(initConfig)
	​ 	
	​ 	 ​// Here you will define your flags and configuration settings.​
	​ 	 ​// Cobra supports persistent flags, which, if defined here,​
	​ 	 ​// will be global for your application.​
	​ 	
	​ 	 rootCmd.PersistentFlags().StringVar(&cfgFile, ​"config"​, ​""​,
	​ 	 ​"config file (default is $HOME/.pScan.yaml)"​)
	​ 	
	​ 	 rootCmd.PersistentFlags().StringP(​"hosts-file"​, ​"f"​, ​"pScan.hosts"​,
	​ 	 ​"pScan hosts file"​)
	​ 	
	»	 replacer := strings.NewReplacer(​"-"​, ​"_"​)
	»	 viper.SetEnvKeyReplacer(replacer)
	»	 viper.SetEnvPrefix(​"PSCAN"​)
	»	
	»	 viper.BindPFlag(​"hosts-file"​, rootCmd.PersistentFlags().Lookup(​"hosts-file"​))
	​ 	
	​ 	 versionTemplate := ​`{{printf "%s: %s - version %s\n" .Name .Short .Version}}`​
	​ 	 rootCmd.SetVersionTemplate(versionTemplate)
	​ 	}

On some operating systems, you can’t use the dash (-) character in the environment variable name, so you need to use a strings.Replacer to replace the dash with the underscore character. You’re also setting the prefix PSCAN to the environment variables. In this case, the user can specify the hosts file name by setting the environment variable PSCAN_HOSTS_FILE. Then, you bind the hosts-file key to the flag --hosts-file by using the function viper.BindPFlag.

The initial setup for Viper is complete. Save and close the cmd/root.go file.
	
	

Next, you need to update the commands that use the hosts-file flag to use the Viper configuration key instead. Start with the add command. Edit the file cmd/add.go. Include the package github.com/spf13/viper in the import section:
cobra/pScan.v6/cmd/add.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	»	 ​"github.com/spf13/viper"​
	​ 	 ​"pragprog.com/rggo/cobra/pScan/scan"​
	​)

Replace all the lines you used to obtain the value of the hosts-file flag in the RunE property with this line to obtain the value from Viper:
cobra/pScan.v6/cmd/add.go
	​ 	RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	»	 hostsFile := viper.GetString(​"hosts-file"​)
	​ 	
	​ 	 ​return​ addAction(os.Stdout, hostsFile, args)
	​ 	},

That’s it, the add command is ready. Save and close the cmd/add.go file, and repeat this process with the other files: cmd/list.go, cmd/delete.go, and cmd/scan.go.

Since you didn’t make any changes to the action functions, there’s no impact on the tests. Just in case, execute the tests again to ensure the application still works as designed:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​​ ​​./cmd​
	​ 	=== RUN TestHostActions
	​ 	=== RUN TestHostActions/AddAction
	​ 	=== RUN TestHostActions/ListAction
	​ 	=== RUN TestHostActions/DeleteAction
	​ 	--- PASS: TestHostActions (0.00s)
	​ 	 --- PASS: TestHostActions/AddAction (0.00s)
	​ 	 --- PASS: TestHostActions/ListAction (0.00s)
	​ 	 --- PASS: TestHostActions/DeleteAction (0.00s)
	​ 	=== RUN TestScanAction
	​ 	--- PASS: TestScanAction (0.01s)
	​ 	=== RUN TestIntegration
	​ 	--- PASS: TestIntegration (0.01s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/cobra/pScan/cmd (cached)

Build the application again using go build:
	​ 	​$ ​​go​​ ​​build​

If you still have the hosts file pScan.hosts from the previous example, you can list the hosts. If not, add a few hosts to the default file:
	​ 	​$ ​​./pScan​​ ​​hosts​​ ​​list​
	​ 	localhost
	​ 	192.168.0.199

Now use the environment variable PSCAN_HOSTS_FILE to set a new hosts file name, and list the hosts:
	​ 	​$ ​​PSCAN_HOSTS_FILE=newFile.hosts​​ ​​./pScan​​ ​​hosts​​ ​​list​

It returns nothing because the file newFile.hosts doesn’t exist. Add some hosts to this new file:
	​ 	​$ ​​PSCAN_HOSTS_FILE=newFile.hosts​​ ​​./pScan​​ ​​hosts​​ ​​add​​ ​​host01​​ ​​host02​
	​ 	Added host: host01
	​ 	Added host: host02
	​ 	​$ ​​PSCAN_HOSTS_FILE=newFile.hosts​​ ​​./pScan​​ ​​hosts​​ ​​list​
	​ 	host01
	​ 	host02

You have two hosts files in your directory now:
	​ 	​$ ​​ls​​ ​​*.hosts​
	​ 	newFile.hosts pScan.hosts

	
	You can also specify the hosts file name using a configuration file. Create a configuration file config.yaml and add the key hosts-file with value newFile.hosts to it:
cobra/pScan.v6/config.yaml
	​ 	hosts-file: ​newFile.hosts​

Now execute the list command again, using the flag --config to specify config.yaml as the configuration file:
	​ 	​$ ​​./pScan​​ ​​hosts​​ ​​list​​ ​​--config​​ ​​config.yaml​
	​ 	Using config file: config.yaml
	​ 	host01
	​ 	host02

The command listed the hosts in the hosts file named newFile.hosts as specified in the configuration file.

By using Viper, you added some flexibility to your tool, enabling your users to configure it in different ways. Next, let’s use Cobra to generate command completion and documentation for your application.
	
	
	
	

Generating Command Completion and Documentation

	
	
	Two features that improve your user experience are command completion and documentation. Command completion guides the user by providing contextual suggestions when they press the TAB key. Documentation instructs users by providing additional information, context, and examples about using the application.

	Let’s add two new subcommands to your tool allowing the users to generate command completion and documentation for it. Start with the command completion subcommand completion. Use the Cobra generator again to add this subcommand to your application:
	​ 	​$ ​​cobra​​ ​​add​​ ​​completion​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	completion created at /home/ricardo/pragprog.com/rggo/cobra/pScan

Then edit the generated file cmd/completion.go. Update the import section by removing the fmt package as this command doesn’t use it. Also, add the io package to use the io.Writer interface and the os package to use the file os.Stdout to print the command completion to STDOUT.
	
	
cobra/pScan.v7/cmd/completion.go
	​ 	​import​ (
	»	 ​"io"​
	»	 ​"os"​
	»	
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	​)

Next, update the completionCmd definition by updating the Short description, including an example of how to use this feature in the Long description and replacing the property Run with RunE for the action the same way you did with other commands:
cobra/pScan.v7/cmd/completion.go
	​ 	​var​ completionCmd = &cobra.Command{
	​ 	 Use: ​"completion"​,
	​ 	 Short: ​"Generate bash completion for your command"​,
	​ 	 Long: ​`To load your completions run​
	​ 	​source <(pScan completion)​
	​ 	
	​ 	​To load completions automatically on login, add this line to you .bashrc file:​
	​ 	​$ ~/.bashrc​
	​ 	​source <(pScan completion)​
	​ 	​`​,

	​ 	 RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	​ 	 ​return​ completionAction(os.Stdout)
	​ 	 },
	​ 	}

The function assigned to the property RunE calls the function completionAction to perform the action. The completionAction function uses the method rootCmd.GenBashCompletion from Cobra on the rootCmd command to generate command completion for the entire application. It prints the completion to an io.Writer interface:
cobra/pScan.v7/cmd/completion.go
	​ 	​func​ completionAction(out io.Writer) ​error​ {
	​ 	 ​return​ rootCmd.GenBashCompletion(out)
	​ 	}

	Bash Completion

	
 [image: images/aside-icons/info.png]
 	

	
	 In this example, you’re adding command completion for the Bash shell only.

 To test this example on the Windows operating system, you need access to a Bash shell. You can use programs like Git Bash[45] or the Windows Subsystem for Linux WSL.[46] This book doesn’t cover the installation of these tools.

 Alternatively, you can use Cobra to generate command completion for Powershell[47] in addition to Bash.

Save and close the file cmd/completion.go and build your application:
	​ 	​$ ​​go​​ ​​build​

Now, open a Bash shell session and enable the command completion as suggested in the example you added to the completion command:
	​ 	​$ ​​source​​ ​​<(./pScan​​ ​​completion)​

Then, execute the application. Press the TAB key after typing its name to see the suggestions:
	​ 	​$ ​​./pScan​​ ​​<TAB>​
	​ 	completion hosts scan
	​ 	​$ ​​./pScan​​ ​​hosts​​ ​​<TAB>​
	​ 	add delete list
	​ 	​$ ​​./pScan​​ ​​hosts​​ ​​add​​ ​​--<TAB>​
	​ 	--config --config= --hosts-file --hosts-file=

As you type subcommands and options, if you press TAB, Bash suggests relevant ways to continue to use the application.
	
	
	

	
	
	
	
	
	
	
	
	Next, let’s add the command docs to your application, allowing the user to generate Markdown documentation for the tool. In addition to Markdown, Cobra generates Linux man pages, REST pages, or YAML documentation. It uses the package cobra/doc to generate documentation. For more information about this package, consult its GitHub page.[48]

	
	Use the Cobra generator one more time to add the docs subcommand to your application:
	​ 	​$ ​​cobra​​ ​​add​​ ​​docs​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	docs created at /home/ricardo/pragprog.com/rggo/cobra/pScan

Then edit the generated file cmd/docs.go. Modify the import section by adding the following packages: io to use the io.Writer interface, io/ioutil to create temporary files, os to use operating system functionality, and github.com/spf13/cobra/doc to generate command documentation:
cobra/pScan.v7/cmd/docs.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	»	 ​"io"​
	»	 ​"io/ioutil"​
	»	 ​"os"​
	»	
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	»	 ​"github.com/spf13/cobra/doc"​
	​)

Update the init function to add a local flag --dir, allowing the user to specify the target directory to place the generated docs:
cobra/pScan.v7/cmd/docs.go
	​ 	​func​ init() {
	​ 	 rootCmd.AddCommand(docsCmd)
	​ 	
	»	 docsCmd.Flags().StringP(​"dir"​, ​"d"​, ​""​, ​"Destination directory for docs"​)
	​ 	}

Edit the docsCmd definition by changing the Short description, deleting the Long description, and updating the RunE function the same as you did for the other subcommands:
cobra/pScan.v7/cmd/docs.go
	​ 	​var​ docsCmd = &cobra.Command{
	​ 	 Use: ​"docs"​,
	​ 	 Short: ​"Generate documentation for your command"​,
	​ 	 RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	​ 	 dir, err := cmd.Flags().GetString(​"dir"​)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​if​ dir == ​""​ {
	​ 	 ​if​ dir, err = ioutil.TempDir(​""​, ​"pScan"​); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​return​ docsAction(os.Stdout, dir)
	​ 	 },
	​ 	}

The function associated with the property RunE obtains the value for the --dir flag. If the user didn’t provide this flag, it creates a temporary file as the destination directory. Then it calls the function docsAction using this value as input.

	
	Now, define the function docsAction to generate the documentation. This function uses the function doc.GenMarkdownTree from the cobra/doc package to generate the documentation for the entire command tree starting from rootCmd in the given directory dir. Finally, it prints a message confirming where the user can find the documentation returning any potential errors:
cobra/pScan.v7/cmd/docs.go
	​ 	​func​ docsAction(out io.Writer, dir ​string​) ​error​ {
	​ 	 ​if​ err := doc.GenMarkdownTree(rootCmd, dir); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 _, err := fmt.Fprintf(out, ​"Documentation successfully created in %s​​\n​​"​, dir)
	​ 	 ​return​ err
	​ 	}

Save and close this file. It’s a good idea to write a test for this function since it prints output, but we won’t do it here for brevity. You can write it as an exercise.

Try out the new functionality. Rebuild your application using go build:
	​ 	​$ ​​go​​ ​​build​

Then create a directory docs for the documentation and execute the application with the docs command and this directory as the value for the --dir flag:
	​ 	​$ ​​mkdir​​ ​​docs​
	​ 	​$ ​​./pScan​​ ​​docs​​ ​​--dir​​ ​​./docs​
	​ 	Documentation successfully created in ./docs
	​ 	​$ ​​ls​​ ​​docs​
	​ 	pScan_completion.md pScan_docs.md pScan_hosts_add.md pScan_hosts_delete.md
	​ 	pScan_hosts_list.md pScan_hosts.md pScan.md pScan_scan.md

Verify the generated markdown documentation. For example, take a look at the hosts command documentation:
cobra/pScan.v7/docs/pScan_hosts.md
	​ 	## pScan hosts
	​ 	
	​ 	Manage the hosts list
	​ 	
	​ 	### Synopsis
	​ 	
	​ 	Manages the hosts lists for pScan
	​ 	
	​ 	Add hosts with the add command
	​ 	Delete hosts with the delete command
	​ 	List hosts with the list command.
	​ 	
	​ 	### Options
	​ 	
	​ 	```
	​ 	​ -h, --help help for hosts​
	​ 	```
	​ 	
	​ 	### Options inherited from parent commands
	​ 	
	​ 	```
	​ 	​ --config string config file (default is $HOME/.pScan.yaml)​
	​ 	​ -f, --hosts-file string pScan hosts file (default "pScan.hosts")​
	​ 	```
	​ 	
	​ 	### SEE ALSO
	​ 	
	​ 	* [pScan](​pScan.md​) - Fast TCP port scanner
	​ 	* [pScan hosts add](​pScan_hosts_add.md​) - Add new host(s) to list
	​ 	* [pScan hosts delete](​pScan_hosts_delete.md​) - Delete hosts(s) from list
	​ 	* [pScan hosts list](​pScan_hosts_list.md​) - List hosts in hosts list
	​ 	
	​ 	###### Auto generated by spf13/cobra on 14-May-2020

Since this is Markdown, your users can improve or add more information to the documentation and upload it to a documentation server or version control system.

Your application is complete, and it includes command completion and documentation to ensure users have the information and guidance they need to use it correctly.
	
	
	
	
	
	
	

Exercises

Before you move on, you should build on the skills and techniques you explored in this chapter. Here are some suggestions:
	
Allow the user to provide port ranges, such as 1-1024, in addition to specific ports for scan.

	
Validate the provided port numbers are within the proper range for TCP ports from 1 to 65535.

	
Allow the user to execute UDP port scans in addition to TCP. Update the scan package and the command-line tool accordingly.

	
Add a new flag to the scan subcommand allowing the user to specify a filter to show only open or closed ports.

	
Add a new flag to the scan subcommand allowing the user to specify a custom timeout for the scan.

Wrapping Up

You used Cobra to create a command-line application that looks professional. Your application includes detailed help and usage information, POSIX-compatible flags, configuration files, command completion, and documentation. You also used the Cobra generator to create the boilerplate code for these features allowing you to focus on your business logic to create a functional TCP port scanner for your network.

In the next chapter, you’ll use Cobra again to develop a command-line application that connects to web services using the REST standard.

Footnotes

	[40]
	
https://github.com/spf13/cobra

	[41]
	
https://en.wikipedia.org/wiki/POSIX

	[42]
	
 https://github.com/spf13/viper

	[43]
	
https://nmap.org/

	[44]
	
 https://github.com/spf13/pflag

	[45]
	
 https://gitforwindows.org/

	[46]
	
 https://docs.microsoft.com/en-us/windows/wsl/install-win10

	[47]
	
 https://godoc.org/github.com/spf13/cobra#Command.GenPowerShellCompletion

	[48]
	
 https://github.com/spf13/cobra/tree/master/doc

Copyright © 2021, The Pragmatic Bookshelf.

 Chapter
 8
Talking to REST APIs

	
	
	Web services that use the representational state transfer (REST) format provide a flexible and agnostic way of exchanging data between computers and different programming languages. Many applications and services on the Internet use this clear and concise format to expose their data to other applications. Using Go to interact with REST APIs opens the door to a large number of services that provide many resources for your command-line tools. It allows you to create flexible tools that were previously challenging to develop by integrating information from multiple sources.

	
	
	In this chapter, you’ll apply the concepts you learned in Chapter 7, ​Using the Cobra CLI Framework​, to design a command-line tool that connects to a REST API using Go’s net/http package. You’ll explore more advanced concepts such as the http.Client and http.Request types to fine-tune specific connection parameters like headers and timeouts, and you’ll use the encoding/json package to parse JSON response data.

You need access to a REST API to explore how to build a CLI that works with one. You could use one of the many web services available on the Internet. But because these services can change, there’s no guarantee they’ll be available by the time you’re reading this book. Instead, you’ll design and develop your own REST API server so you have a local server to test. This is also a good opportunity to explore the concepts of dealing with network and HTTP requests using Go. You’ll apply the same concepts to develop the command-line client in ​Developing the Initial Client for the REST API​, later in this chapter.

Finally, you’ll use several testing techniques to test your API server as well as your command-line client application, including local tests, simulated responses, mock servers, and integration tests.

Let’s begin by developing the REST API server.

Developing a REST API Server

	
	
	
	Let’s build an API for our command-line tool to talk to. To save some time, you’ll create a REST API server that exposes data from the to-do API you developed in ​Defining the To-Do API​. It will let users view, add, and modify to-do items using HTTP methods. You’ll reuse the code you developed before by importing the package todo from the module pragprog.com/rggo/interacting/todo.

	
	Start by creating the directory structure for the server under your book’s root directory:
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/apis/todoServer​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/apis/todoServer​

Then, initialize the Go module for this project:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/apis/todoServer​
	​ 	​$ ​​go​​ ​​mod​​ ​​init​​ ​​pragprog.com/rggo/apis/todoServer​
	​ 	go: creating new go.mod: module pragprog.com/rggo/apis/todoServer

	
	Next, you need to add the pragprog.com/rggo/interacting/todo module dependency to the go.mod file. In a normal workflow, with a module that’s available in a public repository, you don’t need to take additional actions. As explained in ​Go Modules​, by running the go build or go test tools, Go would automatically download the module and add the dependency to the go.mod file. But because we’re using a package that’s only available locally, you need to make changes to the go.mod file to ensure it can locate the package in your local machine. You can do this by editing the file directly or by using the go mod edit command. Let’s use the command. First, add the dependency:
	
	
	​ 	​$ ​​go​​ ​​mod​​ ​​edit​​ ​​-require=pragprog.com/rggo/interacting/todo@v0.0.0​

Since the module you’re importing isn’t versioned, you’re setting the version to v0.0.0. If you try to list the module dependencies at this time, it fails as Go can’t find the module online:
	
	
	​ 	​$ ​​go​​ ​​list​​ ​​-m​​ ​​all​
	​ 	go: pragprog.com/rggo/interacting/todo@v0.0.0: unrecognized import path
	​ 	"pragprog.com/rggo/interacting/todo" (parse
	​ 	https://pragprog.com/rggo/interacting/todo?go-get=1: no go-import meta tags ())

	
	To ensure that Go can find the module in the local machine, use the replace directive to replace the module path with the local path. You can use absolute or relative paths. Assuming the todo module is rooted in the book’s root directory, use a relative path:
	
	
	​ 	​$ ​​go​​ ​​mod​​ ​​edit​​ ​​-replace=pragprog.com/rggo/interacting/todo=../../interacting/todo​

Your go.mod file now looks like this:
	
	
	
	​ 	​$ ​​cat​​ ​​go.mod​
	​ 	module pragprog.com/rggo/apis/todoServer
	​ 	
	​ 	go 1.16
	​ 	
	​ 	require pragprog.com/rggo/interacting/todo v0.0.0
	​ 	
	​ 	replace pragprog.com/rggo/interacting/todo => ../../interacting/todo/

Now Go can find the module dependency in the local path:
	​ 	​$ ​​go​​ ​​list​​ ​​-m​​ ​​all​
	​ 	pragprog.com/rggo/apis/todoServer
	​ 	pragprog.com/rggo/interacting/todo v0.0.0 => ../../interacting/todo/

	
	With the to-do dependency sorted out, you can develop the REST API server. For now, you’ll create the basic structure of the server and the root route. You’ll add the remaining routes to complete the CRUD (create, read, update, and delete) operations later.

	
	
	
	
	
	Start by creating the file main.go in the todoServer directory. Edit the file and add the package definition and the import list. For this file, you’re importing the following packages: flag to handle command-line flags, fmt to format output, net/http to handle HTTP connections, os for operating system--related functions, and time to define variables based on time to handle timeouts:
apis/todoServer/main.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"flag"​
	​ 	 ​"fmt"​
	​ 	 ​"net/http"​
	​ 	 ​"os"​
	​ 	 ​"time"​
	​)

	
	Then, define the function main as the program entry point. Define three command-line flags to handle server options: h for the server hostname, p for the server listening port, and f for the file name to save the to-do list. Parse the flags using the function flag.Parse so you can use them in the program:
apis/todoServer/main.go
	​ 	​func​ main() {
	​ 	 host := flag.String(​"h"​, ​"localhost"​, ​"Server host"​)
	​ 	 port := flag.Int(​"p"​, 8080, ​"Server port"​)
	​ 	 todoFile := flag.String(​"f"​, ​"todoServer.json"​, ​"todo JSON file"​)
	​ 	 flag.Parse()

	
	
	
	
	
	Next, create an instance of the http.Server type to serve HTTP content. The net/http package provides the function ListenAndServe that allows you to serve HTTP without creating a custom server instance. But it’s a good practice to create your own custom instance so you have more control over server options such as read and write timeouts. The timeout options are particularly important to prevent issues with slow clients that could hang connections and extinguish server resources.

	
	
	The http.Server type takes many parameters. For now, you’ll set these four options:
	Addr:
	
The HTTP server listening address. This is a combination of hostname host and listening port port.

	Handler:
	
The handler to dispatch routes. You’ll create a custom multiplexer function newMux that accepts the name of the file where you’ll save the to-do list as input. By doing this you avoid passing the file name as a global variable. You’ll define this function momentarily.

	ReadTimeout:
	
The time limit to read the entire request including the body if available.

	WriteTimeout:
	
The time limit to send the response back to the client.

Instantiate a new HTTP server s like this:
apis/todoServer/main.go
	​ 	s := &http.Server{
	​ 	 Addr: fmt.Sprintf(​"%s:%d"​, *host, *port),
	​ 	 Handler: newMux(*todoFile),
	​ 	 ReadTimeout: 10 * time.Second,
	​ 	 WriteTimeout: 10 * time.Second,
	​ 	}

	
	
	Then, execute the method s.ListenAndServe from the type http.Server to listen for incoming requests at the provided listening address. If errors occur, display them and exit the program with exit code 1:
apis/todoServer/main.go
	​ 	 ​if​ err := s.ListenAndServe(); err != nil {
	​ 	 fmt.Fprintln(os.Stderr, err)
	​ 	 os.Exit(1)
	​ 	 }
	​ 	}

You could also control how the HTTP server behaves when a connection closes, or you could gracefully stop it. We don’t need to worry about those options since we’re using this server for testing and not for handling real workload. Save and close the main.go file.

	
	
	
	
	Next design the multiplexer function newMux and the handlers for the different routes. A multiplexer function, or Mux for short, maps incoming requests to the proper handlers based on the URL of the request. The handler function handles the request and responds to it. The net/http package provides a default multiplexer named DefaultServeMux. For security reasons, it’s a good practice to provide your own since the default Mux register routes globally. This could allow third-party packages to register routes that you may not be aware of, leading to accidental data exposure. In addition, writing your own custom multiplexer allows you to add dependencies for the routes, including file names or database connections. Finally, a custom multiplexer allows integrated testing.

	
	Create a new file called server.go and open it in your editor. Add the package definition and the import section. We’re using the package net/http to respond to HTTP requests:
apis/todoServer/server.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"net/http"​
	​)

	
	
	
	Now define the new multiplexer function newMux. This function takes as input the name of the file to save the to-do list to, and it returns a type that satisfies the http.Handler interface. An http.Handler is a type that responds to an HTTP request. It does this by implementing the function ServeHTTP(http.ResponseWriter, *http.Request), which takes a ResponseWriter to write the response to and a pointer to a Request that provides details about the incoming request.
apis/todoServer/server.go
	​ 	​func​ newMux(todoFile ​string​) http.Handler {

	
	
	In the function’s body, instantiate a new http.ServeMux by calling the function NewServerMux. The type http.ServMux provides a multiplexer that satisfies the http.Handler interface and allows us to map routes to handler functions:
apis/todoServer/server.go
	​ 	m := http.NewServeMux()

Then, attach the first route to the multiplexer m by using the method m.HandleFunc. This function maps the route / to the function that handles its response rootHandler. You’ll implement the handler function shortly:
apis/todoServer/server.go
	​ 	m.HandleFunc(​"/"​, rootHandler)

For now, this is the only route we’ll handle. To complete the custom mux function, return the http.ServeMux instance m:
apis/todoServer/server.go
	​ 	 ​return​ m
	​ 	}

	
	
	
	
	
	
	
	Save the file and create a new file handlers.go to create the handler functions. Add the package definition and the import section. For now, we’ll use only the net/http package to deal with HTTP requests and responses:
apis/todoServer/handlers.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"net/http"​
	​)

	
	
	
	Next, define the function rootHandler(w http.ResponseWriter, r *http.Request) to handle requests to the server root. Go provides an adapter type http.HandlerFunc that allows you to use any functions with the signature func(http.ResponseWriter, *http.Request) as a handler that responds to HTTP requests automatically:
apis/todoServer/handlers.go
	​ 	​func​ rootHandler(w http.ResponseWriter, r *http.Request) {

	
	In the function’s body, first check if the client requested the root path / explicitly. If not, use the function http.NotFound to respond with an HTTP Not Found error:
apis/todoServer/handlers.go
	​ 	​if​ r.URL.Path != ​"/"​ {
	​ 	 http.NotFound(w, r)
	​ 	 ​return​
	​ 	}

If the client requested the root path, reply with the content There’s an API here indicating that the server is up and running. Instead of adding the code to respond with the content directly, let’s use a custom function replyTextContent to write the response. By doing this, you can reuse the code in other places that require responding with text content later:
	
	
apis/todoServer/handlers.go
	​ 	 content := ​"There's an API here"​
	​ 	 replyTextContent(w, r, http.StatusOK, content)
	​ 	}

	
	
	Save this file and open the server.go file again to create the custom replyTextContent function. This function takes four input parameters: w of type http.ResponseWriter to write the response to, r of type *http.Request with details about the request, status which is an integer representing the HTTP status code, and content as string:
apis/todoServer/server.go
	​ 	​func​ replyTextContent(w http.ResponseWriter, r *http.Request,
	​ 	 status ​int​, content ​string​) {

To respond with text content, set the response header Content-Type as text/plain, write the headers with the given status code, and then write the body response by converting the variable content to a slice of bytes:
apis/todoServer/server.go
	​ 	 w.Header().Set(​"Content-Type"​, ​"text/plain"​)
	​ 	 w.WriteHeader(status)
	​ 	 w.Write([]​byte​(content))
	​ 	}

	
	
	
	
	
	Save the file to complete the initial version of the server. Verify the code is working by running the server with go run . (and be sure to include the dot):
	​ 	​$ ​​go​​ ​​run​​ ​​.​

You won’t see any output. Your terminal will be blocked, indicating the server is running. By default, your server uses port 8080 to listen to requests. If this port is already in use by another process on your machine, you’ll see an error that says listen tcp 127.0.0.1:8080: bind: address already in use. In this case, rerun the sever specifying an alternative port using the -p option:
	​ 	​$ ​​go​​ ​​run​​ ​​.​​ ​​-p​​ ​​9090​

	
	Check the server by using the curl command in a different terminal. When requesting the root path on the server, you’ll see the response There’s an API here:
	​ 	​$ ​​curl​​ ​​http://localhost:8080​
	​ 	There's an API here

If you try any other paths, you’ll get the 404 page not found response:
	​ 	​$ ​​curl​​ ​​http://localhost:8080/todo​
	​ 	404 page not found

When you’re done checking the server, finish it by using Ctrl+C on the same terminal where you’re running the server.

Next, let’s automate testing the server.

Testing the REST API Server

	
	
	
	In addition to manually checking the server with curl, let’s add some structured tests using Go’s testing package. Go provides the package net/http/httptest with additional types and functions for testing HTTP servers.

	
	One approach for testing HTTP servers is testing each handler function individually by using the type httptest.ResponseRecorder. This type allows the recording of an HTTP response for analysis or tests. This approach is useful if you’re using the DefaultServeMux as the server multiplexer.

	
	
	
	Because you implemented your own multiplexer function, newMux, you can use a different approach that allows integrated testing, including the route dispatching. You’ll use the type httptest.Server and instantiate a test server providing the multiplexer function as input. This approach creates a test server with an URL that simulates your server, allowing you to make requests similarly to using curl on the actual server. Then you can analyze and test the responses to ensure the server works as designed.

Since you’re going to create this test server multiple times, add a helper function to the test file to help with that. First, create a new test file server_test.go, edit it, and add the package and import sections. For these tests, we’ll use the following packages: io/ioutil to help read the response body, net/http to deal with HTTP requests and responses, net/http/httptest which provides HTTP testing utilities, strings to compare strings, and testing which provides testing utilities:
apis/todoServer/server_test.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"io/ioutil"​
	​ 	 ​"net/http"​
	​ 	 ​"net/http/httptest"​
	​ 	 ​"strings"​
	​ 	 ​"testing"​
	​)

	
	Now add the helper function setupAPI similarly to what you did in ​Testing with the Help of Test Helpers​. This function takes the testing.T type as input, returns the server URL as a string, and uses a function to clean up the test server after you complete the tests:
apis/todoServer/server_test.go
	​ 	​func​ setupAPI(t *testing.T) (​string​, ​func​()) {

	
	Mark this function as a test helper with t.Helper, and then create a new test server using the function httptest.NewServer from the httptest package. Provide your custom multiplexer function newMux as input with a blank string for the to-do file name as we’re not using it yet:
apis/todoServer/server_test.go
	​ 	t.Helper()
	​ 	
	​ 	ts := httptest.NewServer(newMux(​""​))

Complete this function by returning the test server URL and an anonymous function that closes the server when executed:
apis/todoServer/server_test.go
	​ 	 ​return​ ts.URL, ​func​() {
	​ 	 ts.Close()
	​ 	 }
	​ 	}

	
	
	Next, add the test function TestGet to test the HTTP GET method on the server’s root. Use the table-driven testing approach we first discussed in ​Testing with Table-Driven Testing​, so you can add more tests later. The test cases for this test have these parameters: name, path representing the server URL path to test, expCode representing the expected return code from the server, expItems as the expected number of items returned when querying the to-do API, and expContent with the expected body content of the response:
apis/todoServer/server_test.go
	​ 	​func​ TestGet(t *testing.T) {
	​ 	 testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 path ​string​
	​ 	 expCode ​int​
	​ 	 expItems ​int​
	​ 	 expContent ​string​
	​ 	 }{
	​ 	 {name: ​"GetRoot"​, path: ​"/"​,
	​ 	 expCode: http.StatusOK,
	​ 	 expContent: ​"There's an API here"​,
	​ 	 },
	​ 	 {name: ​"NotFound"​, path: ​"/todo/500"​,
	​ 	 expCode: http.StatusNotFound,
	​ 	 },
	​ 	 }

	
	For now, we’re testing two cases: the response from the server’s root and the Not Found error in case we query a route that’s not defined. Note that for the expected return code we’re using the constants provided by the net/http package, such as http.StatusOK, instead of the number 200. This makes the code more readable and easier to maintain.

	
	Instantiate a new test server using the helper function setupAPI. Defer the execution of the cleanup function to ensure Go closes the server at the end of the tests:
apis/todoServer/server_test.go
	​ 	url, cleanup := setupAPI(t)
	​ 	​defer​ cleanup()

	
	Loop through each case, executing the tests. For each test, obtain the response from the server using the function http.Get from the net/http package. Use the variable url to access the test server URL and tc.path to test the specific test case path. Check and fail the test if any errors are returned from the call to Get:
apis/todoServer/server_test.go
	​ 	​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 ​var​ (
	​ 	 body []​byte​
	​ 	 err ​error​
	​)
	​ 	
	​ 	 r, err := http.Get(url + tc.path)
	​ 	 ​if​ err != nil {
	​ 	 t.Error(err)
	​ 	 }

Defer closing the response’s body to ensure Go frees its resource at the end of the function execution:
apis/todoServer/server_test.go
	​ 	​defer​ r.Body.Close()

Then, validate the returned status code:
apis/todoServer/server_test.go
	​ 	​if​ r.StatusCode != tc.expCode {
	​ 	 t.Fatalf(​"Expected %q, got %q."​, http.StatusText(tc.expCode),
	​ 	 http.StatusText(r.StatusCode))
	​ 	}

Next, use a switch case to check the response’s content type. Use the method r.Header.Get("Content-Type") to obtain the content type from the response’s headers. For now, we’re only expecting the content as plain text. Read the entire content of the body and test whether it contains the expected content:
apis/todoServer/server_test.go
	​ 	​switch​ {
	​ 	​case​ strings.Contains(r.Header.Get(​"Content-Type"​), ​"text/plain"​):
	​ 	 ​if​ body, err = ioutil.ReadAll(r.Body); err != nil {
	​ 	 t.Error(err)
	​ 	 }
	​ 	 ​if​ !strings.Contains(​string​(body), tc.expContent) {
	​ 	 t.Errorf(​"Expected %q, got %q."​, tc.expContent,
	​ 	 ​string​(body))
	​ 	 }

Later you’ll use the same switch statement to check for other content types. Finally, use a default case to fail the test in case we receive any other content type:
apis/todoServer/server_test.go
	​ 	 ​default​:
	​ 	 t.Fatalf(​"Unsupported Content-Type: %q"​, r.Header.Get(​"Content-Type"​))
	​ 	 }
	​ 	
	​ 	 })
	​ 	 }
	​ 	}

The test code is complete. Save the file and execute the tests with go test -v:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestGet
	​ 	=== RUN TestGet/GetRoot
	​ 	=== RUN TestGet/NotFound
	​ 	--- PASS: TestGet (0.00s)
	​ 	 --- PASS: TestGet/GetRoot (0.00s)
	​ 	 --- PASS: TestGet/NotFound (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/apis/todoServer 0.009s

The API server works, but it doesn’t return anything useful. Let’s make it work with the to-do API now.
	
	
	
	
	

Completing the REST API Server

	
	
	
	With the general structure of your API server ready, let’s add the CRUD operations for the to-do list. You’ll use the to-do API you developed in ​Defining the To-Do API​.

Your to-do REST API supports these operations:
	
	
	
	
	

Table 1. To-Do REST API Operations
	Method	URL	Description
	GET	/todo	Retrieve all to-do items
	GET	/todo/{number}	Retrieve a to-do item {number}
	POST	/todo	Create a to-do item
	PATCH	/todo/{number}?complete	Mark a to-do item {number} as
 completed

	DELETE	/todo/{number}	Delete a to-do item {number}

The REST API serves all to-do--related content using the /todo URL path. It handles different operations based on the HTTP method, path, and parameters. The path may include a number for operations that act on a single to-do item. For example, to delete the third item from the list, the user sends a DELETE request to the URL path /todo/3.

	
	
	The first two GET operations on the list retrieve items from the list. For this example, the REST API responds with JSON data. Besides the to-do items, we want to include additional information with the response, such as the current date and the number of results included. A sample response for multiple items looks like this:
	​ 	{
	​ 	 ​"results"​: [
	​ 	 {
	​ 	 ​"Task"​: ​"Task Number 1"​,
	​ 	 ​"Done"​: ​true​,
	​ 	 ​"CreatedAt"​: ​"2019-10-13T11:16:00.756817096-04:00"​,
	​ 	 ​"CompletedAt"​: ​"2019-10-13T21:25:30.008877148-04:00"​
	​ 	 },
	​ 	 {
	​ 	 ​"Task"​: ​"Task Number 2"​,
	​ 	 ​"Done"​: ​false​,
	​ 	 ​"CreatedAt"​: ​"2019-10-14T15:55:48.273514272-04:00"​,
	​ 	 ​"CompletedAt"​: ​"0001-01-01T00:00:00Z"​
	​ 	 }
	​],
	​ 	 ​"date"​: 1575922413,
	​ 	 ​"total_results"​: 2
	​ 	}

The response includes the field results that wraps the to-do list. Let’s create a new type todoResponse to wrap the list. In the same directory where you have main.go, create a new file todoResponse.go. Add the package definition and the import section. For this file, we’re using the following packages: encoding/json to customize JSON output, time to work with time functions, and pragprog.com/rggo/interacting/todo that you developed in ​Defining the To-Do API​, to use the to-do API:
apis/todoServer.v1/todoResponse.go
	​ 	​package​ main
	​ 	
	​ 	​import​ (
	​ 	 ​"encoding/json"​
	​ 	 ​"time"​
	​ 	
	​ 	 ​"pragprog.com/rggo/interacting/todo"​
	​)

Then, add the new struct type todoResponse to wrap the todo.List type:
apis/todoServer.v1/todoResponse.go
	​ 	​type​ todoResponse ​struct​ {
	​ 	 Results todo.List ​`json:"results"`​
	​ 	}

	
	
	In this struct type, the field name Results is exported with the first character of its name capitalized. This ensures that it’s exported as JSON when using Go’s JSON encoding. We’re using a struct tag to change the name to results in the resulting JSON as it’s common to have all fields in JSON spelled with lowercase characters.

Using struct tags is the best way to do simple JSON customizations in Go. You can change the spelling of the fields, remap them to other fields, or even omit them. But if you need more complex customizations, then you need to associate a custom MarshalJSON method to your type. In this case, let’s associate this custom method to the todoResponse type to add the fields date and total_results to the JSON output while having them calculated dynamically at the time of using them:
apis/todoServer.v1/todoResponse.go
	​ 	​func​ (r *todoResponse) MarshalJSON() ([]​byte​, ​error​) {
	​ 	 resp := ​struct​ {
	​ 	 Results todo.List ​`json:"results"`​
	​ 	 Date ​int64​ ​`json:"date"`​
	​ 	 TotalResults ​int​ ​`json:"total_results"`​
	​ 	 }{
	​ 	 Results: r.Results,
	​ 	 Date: time.Now().Unix(),
	​ 	 TotalResults: len(r.Results),
	​ 	 }
	​ 	
	​ 	 ​return​ json.Marshal(resp)
	​ 	}

In this method, we’re creating an anonymous struct providing the original Results field. We’re also defining the Date field using the current time in Unix format and the TotalResults field by calculating the number of results in the list using the built-in len function on the original Results field. In addition, we’re using struct tags to encode their names with common JSON patterns such as snake case.

	
	Save and close the todoResponse.go file. Before we dive into routing for the /todo path, let’s add a couple of helper functions to prevent repetitive code when replying to requests. These are similar to the function replyTextContent you wrote in ​Developing a REST API Server​. Open the server.go file and update the import list to include the packages encoding/json to convert data to JSON and log to log errors:
apis/todoServer.v1/server.go
	​ 	​"encoding/json"​
	​ 	​"log"​

	
	Then, create the function replyJSONContent to reply to a request using JSON data:
apis/todoServer.v1/server.go
	​ 	​func​ replyJSONContent(w http.ResponseWriter, r *http.Request,
	​ 	 status ​int​, resp *todoResponse) {
	​ 	
	​ 	 body, err := json.Marshal(resp)
	​ 	 ​if​ err != nil {
	​ 	 replyError(w, r, http.StatusInternalServerError, err.Error())
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 w.Header().Set(​"Content-Type"​, ​"application/json"​)
	​ 	 w.WriteHeader(status)
	​ 	 w.Write(body)
	​ 	}

Next, add the function replyError to log an error and reply to the request with an appropriate HTTP error:
apis/todoServer.v1/server.go
	​ 	​func​ replyError(w http.ResponseWriter, r *http.Request,
	​ 	 status ​int​, message ​string​) {
	​ 	
	​ 	 log.Printf(​"%s %s: Error: %d %s"​, r.URL, r.Method, status, message)
	​ 	 http.Error(w, http.StatusText(status), status)
	​ 	}

To handle the requests to the /todo path, we need to associate the path to an http.Handler or http.HandlerFunc like the one we used to handle requests to the API root. The issue is that, by default, Go only handles requests based on the URL path, not on the HTTP method. Moreover, we would like to pass additional parameters to this function so it can deal with to-do lists. These include the file name to save the to-do list. Because handler functions require a specific function signature func(http.ResponseWriter, *http.Request), we’ll apply Go’s functional nature as well as the concept of closures to develop a custom function that makes an http.HandlerFunc. Then, you’ll use its output to route the requests to the /todo route.

Save the file server.go and open the file handlers.go. Include new packages in the import list. You’ll use the following packages: encoding/json to work with JSON data, errors to define and handle errors, fmt to print formatted output, strconv to convert strings to integer numbers, sync to use the type sync.Mutex to prevent racing conditions when accessing the to-do save file concurrently, and finally, todo to manipulate to-do items:
apis/todoServer.v1/handlers.go
	​ 	​import​ (
	​ 	
	»	 ​"encoding/json"​
	»	 ​"errors"​
	»	 ​"fmt"​
	»	
	​ 	 ​"net/http"​
	»	 ​"strconv"​
	»	 ​"sync"​
	»	
	»	 ​"pragprog.com/rggo/interacting/todo"​
	​)

Define two error values to indicate possible errors that need to be handled internally:
apis/todoServer.v1/handlers.go
	​ 	​var​ (
	​ 	 ErrNotFound = errors.New(​"not found"​)
	​ 	 ErrInvalidData = errors.New(​"invalid data"​)
	​)

Now, define the routing function named todoRouter. This function looks at the incoming request and dispatches to the appropriate replying function. This function takes two input parameters: the file name to save the list todoFile as string and an instance of interface sync.Locker l. This interface accepts any types that implement the methods Lock and Unlock such as sync.Mutex. This routing function returns another function of type http.HandlerFunc so you can use its output as a handling function in the newMux function:
apis/todoServer.v1/handlers.go
	​ 	​func​ todoRouter(todoFile ​string​, l sync.Locker) http.HandlerFunc {

Then, in the function’s body, return an anonymous function with the http.HandlerFunc signature:
apis/todoServer.v1/handlers.go
	​ 	​return​ ​func​(w http.ResponseWriter, r *http.Request) {

Next, define a variable list as an empty todo.List and load the contents of the todoFile into it using the method list.Get from the todo package. If errors occur, use the previously defined function replyError to respond to the request with the HTTP Internal Server Error:
apis/todoServer.v1/handlers.go
	​ 	list := &todo.List{}
	​ 	
	​ 	l.Lock()
	​ 	​defer​ l.Unlock()
	​ 	​if​ err := list.Get(todoFile); err != nil {
	​ 	 replyError(w, r, http.StatusInternalServerError, err.Error())
	​ 	 ​return​
	​ 	}

For this example, you’re using the method l.Lock from the sync.Locker interface to lock the entire request handling. This prevents concurrent access to the file represented by the variable todoFile which could lead to data loss. This is acceptable in this example as we’re not expecting any high load to the API. In a production scenario, this isn’t the ideal solution. But in a production scenario, you wouldn’t likely be saving the data directly to a file like this.

Now, you need to route the request appropriately. This decision is based on the path of the request and the HTTP method. First, check the request path. For this API, users can make a request to the /todo root to get all items or to create a new item, or they can make a request for an individual item by providing the item ID with the path, like /todo/1. To make it easier to evaluate the path, you’ll strip the /todo prefix from the path before calling this function. So the path will either be an empty string for the /todo root path or an item number for an individual request.

First, handle the /todo root path case by checking whether the path matches an empty string. Then, use a switch statement to route the request to the appropriate function based on the HTTP method. Go provides constant values for identifying the method, such as http.MethodGet for the GET method. Use them instead of the string value for cleaner and more maintainable code:
apis/todoServer.v1/handlers.go
	​ 	​if​ r.URL.Path == ​""​ {
	​ 	 ​switch​ r.Method {
	​ 	 ​case​ http.MethodGet:
	​ 	 getAllHandler(w, r, list)
	​ 	 ​case​ http.MethodPost:
	​ 	 addHandler(w, r, list, todoFile)
	​ 	 ​default​:
	​ 	 message := ​"Method not supported"​
	​ 	 replyError(w, r, http.StatusMethodNotAllowed, message)
	​ 	 }
	​ 	 ​return​
	​ 	}

The return statement at the end of switch ensures that we finish processing any requests to the /todo root. From now on, we know the request contains a value. Use the validateID function to ensure that this value is an integer number that matches an existing todo item. You’ll write this function shortly. If errors occur, return the appropriate status code using the replyError function. Finally, complete this function by checking the request method to dispatch the request to the correct handling function as you did before:
apis/todoServer.v1/handlers.go
	​ 	 id, err := validateID(r.URL.Path, list)
	​ 	 ​if​ err != nil {
	​ 	 ​if​ errors.Is(err, ErrNotFound) {
	​ 	 replyError(w, r, http.StatusNotFound, err.Error())
	​ 	 ​return​
	​ 	 }
	​ 	 replyError(w, r, http.StatusBadRequest, err.Error())
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 ​switch​ r.Method {
	​ 	 ​case​ http.MethodGet:
	​ 	 getOneHandler(w, r, list, id)
	​ 	 ​case​ http.MethodDelete:
	​ 	 deleteHandler(w, r, list, id, todoFile)
	​ 	 ​case​ http.MethodPatch:
	​ 	 patchHandler(w, r, list, id, todoFile)
	​ 	 ​default​:
	​ 	 message := ​"Method not supported"​
	​ 	 replyError(w, r, http.StatusMethodNotAllowed, message)
	​ 	 }
	​ 	 }
	​ 	}

	
	Now define the handling functions for each case. Start with the getAllHandler function to obtain all to-do items. This function wraps the current todo.List in a todoResponse type and then uses the function replyJSONContent to encode it into JSON and reply to the request:
apis/todoServer.v1/handlers.go
	​ 	​func​ getAllHandler(w http.ResponseWriter, r *http.Request, list *todo.List) {
	​ 	 resp := &todoResponse{
	​ 	 Results: *list,
	​ 	 }
	​ 	 replyJSONContent(w, r, http.StatusOK, resp)
	​ 	}

Next, define the function getOneHandler to reply with a single item. This is similar to the getAllHandler function, but it slices the original list into a list containing a single element by using the variable id and the slice expression (*list)[id-1: id]:
apis/todoServer.v1/handlers.go
	​ 	​func​ getOneHandler(w http.ResponseWriter, r *http.Request,
	​ 	 list *todo.List, id ​int​) {
	​ 	
	​ 	 resp := &todoResponse{
	​ 	 Results: (*list)[id-1 : id],
	​ 	 }
	​ 	 replyJSONContent(w, r, http.StatusOK, resp)
	​ 	}

	
	
	
	Then, define the function deleteHandler to delete the item represented by the variable id:
apis/todoServer.v1/handlers.go
	​ 	​func​ deleteHandler(w http.ResponseWriter, r *http.Request,
	​ 	 list *todo.List, id ​int​, todoFile ​string​) {
	​ 	
	​ 	 list.Delete(id)
	​ 	 ​if​ err := list.Save(todoFile); err != nil {
	​ 	 replyError(w, r, http.StatusInternalServerError, err.Error())
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 replyTextContent(w, r, http.StatusNoContent, ​""​)
	​ 	}

	
	Next, define the patchHandler function to complete a specific item. This function uses the method r.URL.Query to look for query parameters. If it finds the query parameter complete, it completes the item represented by id. Otherwise, it replies with the HTTP Bad Request error:
apis/todoServer.v1/handlers.go
	​ 	​func​ patchHandler(w http.ResponseWriter, r *http.Request,
	​ 	 list *todo.List, id ​int​, todoFile ​string​) {
	​ 	
	​ 	 q := r.URL.Query()
	​ 	
	​ 	 ​if​ _, ok := q[​"complete"​]; !ok {
	​ 	 message := ​"Missing query param 'complete'"​
	​ 	 replyError(w, r, http.StatusBadRequest, message)
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 list.Complete(id)
	​ 	 ​if​ err := list.Save(todoFile); err != nil {
	​ 	 replyError(w, r, http.StatusInternalServerError, err.Error())
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 replyTextContent(w, r, http.StatusNoContent, ​""​)
	​ 	}

	
	
	
	Define the function addHandler to add a new item to the list. This function reads the request body, expecting a JSON object with a single variable task representing the task name to include in the list. It decodes the JSON into an anonymous struct and uses it to add the new item. It replies with the HTTP Status Created if successful or an appropriate error status if errors occur:
apis/todoServer.v1/handlers.go
	​ 	​func​ addHandler(w http.ResponseWriter, r *http.Request,
	​ 	 list *todo.List, todoFile ​string​) {
	​ 	
	​ 	 item := ​struct​ {
	​ 	 Task ​string​ ​`json:"task"`​
	​ 	 }{}
	​ 	
	​ 	 ​if​ err := json.NewDecoder(r.Body).Decode(&item); err != nil {
	​ 	 message := fmt.Sprintf(​"Invalid JSON: %s"​, err)
	​ 	 replyError(w, r, http.StatusBadRequest, message)
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 list.Add(item.Task)
	​ 	 ​if​ err := list.Save(todoFile); err != nil {
	​ 	 replyError(w, r, http.StatusInternalServerError, err.Error())
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 replyTextContent(w, r, http.StatusCreated, ​""​)
	​ 	}

Then define the function validateID to ensure the ID provided by the user is valid. This function converts the string value to an integer number and validates that the number represents an existing item in the list. It returns the ID if successful or an appropriate error otherwise:
apis/todoServer.v1/handlers.go
	​ 	​func​ validateID(path ​string​, list *todo.List) (​int​, ​error​) {
	​ 	 id, err := strconv.Atoi(path)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ 0, fmt.Errorf(​"%w: Invalid ID: %s"​, ErrInvalidData, err)
	​ 	 }
	​ 	
	​ 	 ​if​ id < 1 {
	​ 	 ​return​ 0, fmt.Errorf(​"%w, Invalid ID: Less than one"​, ErrInvalidData)
	​ 	 }
	​ 	
	​ 	 ​if​ id > len(*list) {
	​ 	 ​return​ id, fmt.Errorf(​"%w: ID %d not found"​, ErrNotFound, id)
	​ 	 }
	​ 	
	​ 	 ​return​ id, nil
	​ 	}

Next, update the function rootHandler to use the replyError function when replying with an error instead of calling the http.NotFound function directly, like this:
apis/todoServer.v1/handlers.go
	​ 	​func​ rootHandler(w http.ResponseWriter, r *http.Request) {
	​ 	 ​if​ r.URL.Path != ​"/"​ {
	»	 replyError(w, r, http.StatusNotFound, ​""​)
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 content := ​"There's an API here"​
	​ 	 replyTextContent(w, r, http.StatusOK, content)
	​ 	}

Now update the newMux function to route the requests for the /todo path. Save the file handlers.go and open the file server.go. Update the function newMux by defining a new variable mu as a pointer to a sync.Mutex type. The pointer to Mutex implements the interface sync.Locker, so you can use it as an input to the todoRouter function. Then use the variables mu and todoFile to run the function todoRouter, assigning its output to a variable t. Finally, use the variable t in the function http.StripPrefix to strip the /todo prefix from the URL path, passing its output to the method m.Handle to handle requests to the /todo route. The complete, new version of newMux is this:
apis/todoServer.v1/server.go
	​ 	​func​ newMux(todoFile ​string​) http.Handler {
	​ 	 m := http.NewServeMux()
	»	 mu := &sync.Mutex{}
	​ 	
	​ 	 m.HandleFunc(​"/"​, rootHandler)
	​ 	
	»	 t := todoRouter(todoFile, mu)
	»	
	»	 m.Handle(​"/todo"​, http.StripPrefix(​"/todo"​, t))
	»	 m.Handle(​"/todo/"​, http.StripPrefix(​"/todo/"​, t))
	​ 	
	​ 	 ​return​ m
	​ 	}

In this function, you’re also routing the requests to the path /todo/ using the same routing function. This way users get the same result with or without the trailing slash.

Before saving the file, make sure to include the package sync in the import list to use the type sync.Mutex:
apis/todoServer.v1/server.go
	​ 	​"sync"​

	
	
	
	
	
	Now the code is complete. Let’s add more tests to ensure it does what we expect. Save the file server.go and edit the file server_test.go. Update the import section to include the new required packages. You’ll use the bytes package to capture output in a buffer, the encoding/json package to encode and decode JSON data, the fmt package to print formatted output, the log package to change logging options, the os package to handle operating system operations, and the pragprog.com/rggo/interacting/todo package to deal with to-do lists:
apis/todoServer.v1/server_test.go
	​ 	​import​ (
	»	 ​"bytes"​
	»	 ​"encoding/json"​
	»	 ​"fmt"​
	»	
	​ 	 ​"io/ioutil"​
	»	 ​"log"​
	​ 	 ​"net/http"​
	​ 	 ​"net/http/httptest"​
	​ 	
	»	 ​"os"​
	​ 	 ​"strings"​
	​ 	 ​"testing"​
	​ 	
	»	 ​"pragprog.com/rggo/interacting/todo"​
	​)

Then, update the function setupAPI to include a test to-do file and a few items for testing. Use the ioutil.TempFile function to create a temporary file to use when calling the newMux function to instantiate the test server. Then, use a for loop to add three test items using the server API. At the end, include a line in the cleanup function to remove the temporary file when you’re done with the tests:
apis/todoServer.v1/server_test.go
	​ 	​func​ setupAPI(t *testing.T) (​string​, ​func​()) {
	​ 	 t.Helper()
	»	 tempTodoFile, err := ioutil.TempFile(​""​, ​"todotest"​)
	»	 ​if​ err != nil {
	»	 t.Fatal(err)
	»	 }
	»	
	»	 ts := httptest.NewServer(newMux(tempTodoFile.Name()))
	»	
	»	 ​// Adding a couple of items for testing​
	»	 ​for​ i := 1; i < 3; i++ {
	»	 ​var​ body bytes.Buffer
	»	 taskName := fmt.Sprintf(​"Task number %d."​, i)
	»	 item := ​struct​ {
	»	 Task ​string​ ​`json:"task"`​
	»	 }{
	»	 Task: taskName,
	»	 }
	»	

	»	 ​if​ err := json.NewEncoder(&body).Encode(item); err != nil {
	»	 t.Fatal(err)
	»	 }
	»	
	»	 r, err := http.Post(ts.URL+​"/todo"​, ​"application/json"​, &body)
	»	 ​if​ err != nil {
	»	 t.Fatal(err)
	»	 }
	»	
	»	 ​if​ r.StatusCode != http.StatusCreated {
	»	 t.Fatalf(​"Failed to add initial items: Status: %d"​, r.StatusCode)
	»	 }
	»	 }
	​ 	
	​ 	 ​return​ ts.URL, ​func​() {
	​ 	 ts.Close()
	»	 os.Remove(tempTodoFile.Name())
	​ 	 }
	​ 	}

Next, update the test function TestGet to include tests for the /todo route. You’ll add one test case for getting all items and another test to get a single item:
apis/todoServer.v1/server_test.go
	​ 	​func​ TestGet(t *testing.T) {
	​ 	 testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 path ​string​
	​ 	 expCode ​int​
	​ 	 expItems ​int​
	​ 	 expContent ​string​
	​ 	 }{
	​ 	 {name: ​"GetRoot"​, path: ​"/"​,
	​ 	 expCode: http.StatusOK,
	​ 	 expContent: ​"There's an API here"​,
	​ 	 },
	»	 {name: ​"GetAll"​, path: ​"/todo"​,
	»	 expCode: http.StatusOK,
	»	 expItems: 2,
	»	 expContent: ​"Task number 1."​,
	»	 },
	»	 {name: ​"GetOne"​, path: ​"/todo/1"​,
	»	 expCode: http.StatusOK,
	»	 expItems: 1,
	»	 expContent: ​"Task number 1."​,
	»	 },
	​ 	 {name: ​"NotFound"​, path: ​"/todo/500"​,
	​ 	 expCode: http.StatusNotFound,
	​ 	 },
	​ 	 }
	​ 	
	​ 	 url, cleanup := setupAPI(t)

Now, define a variable resp as an anonymous struct with the response format:
apis/todoServer.v1/server_test.go
	​ 	​var​ (
	»	 resp ​struct​ {
	»	 Results todo.List ​`json:"results"`​
	»	 Date ​int64​ ​`json:"date"`​
	»	 TotalResults ​int​ ​`json:"total_results"`​
	»	 }
	​ 	 body []​byte​
	​ 	 err ​error​
	​)

Finally, add a case statement to the switch block to handle the situation where the response content type is application/json. Decode the response body into the resp variable and test whether the returned content matches the expected content in the test cases:
apis/todoServer.v1/server_test.go
	​ 	​switch​ {
	»	​case​ r.Header.Get(​"Content-Type"​) == ​"application/json"​:
	»	 ​if​ err = json.NewDecoder(r.Body).Decode(&resp); err != nil {
	»	 t.Error(err)
	»	 }
	»	 ​if​ resp.TotalResults != tc.expItems {
	»	 t.Errorf(​"Expected %d items, got %d."​, tc.expItems, resp.TotalResults)
	»	 }
	»	 ​if​ resp.Results[0].Task != tc.expContent {
	»	 t.Errorf(​"Expected %q, got %q."​, tc.expContent,
	»	 resp.Results[0].Task)
	»	 }
	​ 	​case​ strings.Contains(r.Header.Get(​"Content-Type"​), ​"text/plain"​):
	​ 	 ​if​ body, err = ioutil.ReadAll(r.Body); err != nil {
	​ 	 t.Error(err)
	​ 	 }
	​ 	
	​ 	 ​if​ !strings.Contains(​string​(body), tc.expContent) {
	​ 	 t.Errorf(​"Expected %q, got %q."​, tc.expContent,
	​ 	 ​string​(body))
	​ 	 }
	​ 	​default​:

Next, include a test to add new items to the list. Use two subtests: one to add the item and the other to ensure it was added correctly:
apis/todoServer.v1/server_test.go
	​ 	​func​ TestAdd(t *testing.T) {
	​ 	 url, cleanup := setupAPI(t)
	​ 	 ​defer​ cleanup()
	​ 	
	​ 	 taskName := ​"Task number 3."​
	​ 	 t.Run(​"Add"​, ​func​(t *testing.T) {
	​ 	 ​var​ body bytes.Buffer
	​ 	 item := ​struct​ {
	​ 	 Task ​string​ ​`json:"task"`​
	​ 	 }{
	​ 	 Task: taskName,
	​ 	 }
	​ 	
	​ 	 ​if​ err := json.NewEncoder(&body).Encode(item); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 r, err := http.Post(url+​"/todo"​, ​"application/json"​, &body)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 ​if​ r.StatusCode != http.StatusCreated {
	​ 	 t.Errorf(​"Expected %q, got %q."​,
	​ 	 http.StatusText(http.StatusCreated), http.StatusText(r.StatusCode))
	​ 	 }
	​ 	 })
	​ 	
	​ 	 t.Run(​"CheckAdd"​, ​func​(t *testing.T) {
	​ 	 r, err := http.Get(url + ​"/todo/3"​)
	​ 	 ​if​ err != nil {
	​ 	 t.Error(err)
	​ 	 }
	​ 	
	​ 	 ​if​ r.StatusCode != http.StatusOK {
	​ 	 t.Fatalf(​"Expected %q, got %q."​,
	​ 	 http.StatusText(http.StatusOK), http.StatusText(r.StatusCode))
	​ 	 }
	​ 	
	​ 	 ​var​ resp todoResponse
	​ 	 ​if​ err := json.NewDecoder(r.Body).Decode(&resp); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	 r.Body.Close()
	​ 	
	​ 	 ​if​ resp.Results[0].Task != taskName {
	​ 	 t.Errorf(​"Expected %q, got %q."​, taskName, resp.Results[0].Task)
	​ 	 }
	​ 	 })
	​ 	}

Then, include a test for the delete operation:
apis/todoServer.v1/server_test.go
	​ 	​func​ TestDelete(t *testing.T) {
	​ 	 url, cleanup := setupAPI(t)
	​ 	 ​defer​ cleanup()
	​ 	
	​ 	 t.Run(​"Delete"​, ​func​(t *testing.T) {
	​ 	 u := fmt.Sprintf(​"%s/todo/1"​, url)
	​ 	 req, err := http.NewRequest(http.MethodDelete, u, nil)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 r, err := http.DefaultClient.Do(req)
	​ 	 ​if​ err != nil {
	​ 	 t.Error(err)
	​ 	 }
	​ 	
	​ 	 ​if​ r.StatusCode != http.StatusNoContent {
	​ 	 t.Fatalf(​"Expected %q, got %q."​,
	​ 	 http.StatusText(http.StatusNoContent), http.StatusText(r.StatusCode))
	​ 	 }
	​ 	 })
	​ 	
	​ 	 t.Run(​"CheckDelete"​, ​func​(t *testing.T) {
	​ 	 r, err := http.Get(url + ​"/todo"​)
	​ 	 ​if​ err != nil {
	​ 	 t.Error(err)
	​ 	 }
	​ 	
	​ 	 ​if​ r.StatusCode != http.StatusOK {
	​ 	 t.Fatalf(​"Expected %q, got %q."​,
	​ 	 http.StatusText(http.StatusOK), http.StatusText(r.StatusCode))
	​ 	 }
	​ 	
	​ 	 ​var​ resp todoResponse
	​ 	 ​if​ err := json.NewDecoder(r.Body).Decode(&resp); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	 r.Body.Close()
	​ 	
	​ 	 ​if​ len(resp.Results) != 1 {
	​ 	 t.Errorf(​"Expected 1 item, got %d."​, len(resp.Results))
	​ 	 }
	​ 	
	​ 	 expTask := ​"Task number 2."​
	​ 	 ​if​ resp.Results[0].Task != expTask {
	​ 	 t.Errorf(​"Expected %q, got %q."​, expTask, resp.Results[0].Task)
	​ 	 }
	​ 	 })
	​ 	}

Finally, include a test for the complete operation:
apis/todoServer.v1/server_test.go
	​ 	​func​ TestComplete(t *testing.T) {
	​ 	 url, cleanup := setupAPI(t)
	​ 	 ​defer​ cleanup()
	​ 	
	​ 	 t.Run(​"Complete"​, ​func​(t *testing.T) {
	​ 	 u := fmt.Sprintf(​"%s/todo/1?complete"​, url)
	​ 	 req, err := http.NewRequest(http.MethodPatch, u, nil)

	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 r, err := http.DefaultClient.Do(req)
	​ 	 ​if​ err != nil {
	​ 	 t.Error(err)
	​ 	 }
	​ 	
	​ 	 ​if​ r.StatusCode != http.StatusNoContent {
	​ 	 t.Fatalf(​"Expected %q, got %q."​,
	​ 	 http.StatusText(http.StatusNoContent), http.StatusText(r.StatusCode))
	​ 	 }
	​ 	 })
	​ 	
	​ 	 t.Run(​"CheckComplete"​, ​func​(t *testing.T) {
	​ 	 r, err := http.Get(url + ​"/todo"​)
	​ 	 ​if​ err != nil {
	​ 	 t.Error(err)
	​ 	 }
	​ 	
	​ 	 ​if​ r.StatusCode != http.StatusOK {
	​ 	 t.Fatalf(​"Expected %q, got %q."​,
	​ 	 http.StatusText(http.StatusOK), http.StatusText(r.StatusCode))
	​ 	 }
	​ 	
	​ 	 ​var​ resp todoResponse
	​ 	 ​if​ err := json.NewDecoder(r.Body).Decode(&resp); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	 r.Body.Close()
	​ 	 ​if​ len(resp.Results) != 2 {
	​ 	 t.Errorf(​"Expected 2 items, got %d."​, len(resp.Results))
	​ 	 }
	​ 	
	​ 	 ​if​ !resp.Results[0].Done {
	​ 	 t.Error(​"Expected Item 1 to be completed"​)
	​ 	 }
	​ 	
	​ 	 ​if​ resp.Results[1].Done {
	​ 	 t.Error(​"Expected Item 2 not to be completed"​)
	​ 	 }
	​ 	 })
	​ 	}

Save the file server_test.go, and execute the tests using go test -v:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestGet
	​ 	=== RUN TestGet/GetRoot
	​ 	=== RUN TestGet/GetAll
	​ 	=== RUN TestGet/GetOne
	​ 	=== RUN TestGet/NotFound
	​ 	2019/12/16 21:44:51 500 GET: Error: 404 ID 500 not found
	​ 	--- PASS: TestGet (0.01s)
	​ 	 --- PASS: TestGet/GetRoot (0.00s)
	​ 	 --- PASS: TestGet/GetAll (0.00s)
	​ 	 --- PASS: TestGet/GetOne (0.00s)
	​ 	 --- PASS: TestGet/NotFound (0.00s)
	​ 	=== RUN TestAdd
	​ 	=== RUN TestAdd/Add
	​ 	=== RUN TestAdd/CheckAdd
	​ 	--- PASS: TestAdd (0.00s)
	​ 	 --- PASS: TestAdd/Add (0.00s)
	​ 	 --- PASS: TestAdd/CheckAdd (0.00s)
	​ 	=== RUN TestDelete
	​ 	=== RUN TestDelete/Delete
	​ 	=== RUN TestDelete/CheckDelete
	​ 	--- PASS: TestDelete (0.00s)
	​ 	 --- PASS: TestDelete/Delete (0.00s)
	​ 	 --- PASS: TestDelete/CheckDelete (0.00s)
	​ 	=== RUN TestComplete
	​ 	=== RUN TestComplete/Complete
	​ 	=== RUN TestComplete/CheckComplete
	​ 	--- PASS: TestComplete (0.00s)
	​ 	 --- PASS: TestComplete/Complete (0.00s)
	​ 	 --- PASS: TestComplete/CheckComplete (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/apis/todoServer 0.020s

Because you’re using the default logger from the log package, the log output from the server shows up in the test results. This can clutter the results and make it harder to read them. If you want to get rid of the log output, add a TestMain function to your server_test.go file and set the default log output for the tests to the ioutil.Discard variable, like this:
apis/todoServer.v1/server_test.go
	​ 	​func​ TestMain(m *testing.M) {
	​ 	 log.SetOutput(ioutil.Discard)
	​ 	 os.Exit(m.Run())
	​ 	}

Rerun the tests and verify that the log output is gone:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestGet
	​ 	=== RUN TestGet/GetRoot
	​ 	=== RUN TestGet/GetAll
	​ 	=== RUN TestGet/GetOne
	​ 	=== RUN TestGet/NotFound
	​ 	--- PASS: TestGet (0.01s)
	​ 	 --- PASS: TestGet/GetRoot (0.00s)
	​ 	 --- PASS: TestGet/GetAll (0.00s)

	​ 	 --- PASS: TestGet/GetOne (0.00s)
	​ 	 --- PASS: TestGet/NotFound (0.00s)
	​ 	=== RUN TestAdd
	​ 	=== RUN TestAdd/Add
	​ 	=== RUN TestAdd/CheckAdd
	​ 	--- PASS: TestAdd (0.00s)
	​ 	 --- PASS: TestAdd/Add (0.00s)
	​ 	 --- PASS: TestAdd/CheckAdd (0.00s)
	​ 	=== RUN TestDelete
	​ 	=== RUN TestDelete/Delete
	​ 	=== RUN TestDelete/CheckDelete
	​ 	--- PASS: TestDelete (0.00s)
	​ 	 --- PASS: TestDelete/Delete (0.00s)
	​ 	 --- PASS: TestDelete/CheckDelete (0.00s)
	​ 	=== RUN TestComplete
	​ 	=== RUN TestComplete/Complete
	​ 	=== RUN TestComplete/CheckComplete
	​ 	--- PASS: TestComplete (0.00s)
	​ 	 --- PASS: TestComplete/Complete (0.00s)
	​ 	 --- PASS: TestComplete/CheckComplete (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/apis/todoServer 0.018s

You completed your REST API server example.

Let’s develop the API client command line next.
	
	
	
	

Developing the Initial Client for the REST API

	
	
	
	With the to-do REST API server in place, you can now build a command-line application that uses the API to query, add, complete, and delete items.

	
	Start by creating the directory structure for your REST API client under your book’s root directory:
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/apis/todoClient​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/apis/todoClient​

	
	
	For this application, you’ll use the Cobra framework generator again as you did in Chapter 7, ​Using the Cobra CLI Framework​, to generate some of the boilerplate code for your application.

Initialize a Cobra application in this directory:
	​ 	​$ ​​cobra​​ ​​init​​ ​​--pkg-name​​ ​​pragprog.com/rggo/apis/todoClient​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	Your Cobra application is ready at
	​ 	/home/ricardo/pragprog.com/rggo/apis/todoClient

	Cobra Config File

	
 [image: images/aside-icons/warning.png]
 	

	
	
	This command assumes you have a Cobra configuration file in your home directory. If you executed the examples in Chapter 7, ​Using the Cobra CLI Framework​, you should have this file. Otherwise, take a look at ​Starting Your Cobra Application​, to create the configuration file.

 You can also initialize the application without the configuration file. Cobra uses its default options, so the LICENSE and comments in your code will be different from these examples.

Next, initialize the Go module for this project:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/apis/todoClient​
	​ 	​$ ​​go​​ ​​mod​​ ​​init​​ ​​pragprog.com/rggo/apis/todoClient​
	​ 	go: creating new go.mod: module pragprog.com/rggo/apis/todoClient

	
	
	
	Then, add a requirement to go.mod to ensure you’re using Cobra v1.1.3, which is what this book’s code uses. Again you can use a later version, but you may need to change the code a bit. Run go mod tidy to download the required dependencies:
	​ 	​$ ​​go​​ ​​mod​​ ​​edit​​ ​​--require​​ ​​github.com/spf13/cobra@v1.1.3​
	​ 	​$ ​​go​​ ​​mod​​ ​​tidy​

	
	This command-line application will have five subcommands:
	add <task>:
	
Followed by a task string, adds a new task to the list.

	list:
	
Lists all items in the list.

	complete <n>:
	
Completes item number n.

	del <n>:
	
Deletes item number n from the list.

	view <n>:
	
Views details about item number n.

	
	Let’s develop the skeleton for the application and implement the first operation, list, to list all items. You’ll implement the other operations later.

	
	Start by modifying the root command of your application generated by Cobra. Edit the file cmd/root.go and update the import section. Include the package strings to deal with string values:
apis/todoClient/cmd/root.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"os"​
	​ 	
	»	 ​"strings"​
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	​ 	
	​ 	 homedir ​"github.com/mitchellh/go-homedir"​
	​ 	 ​"github.com/spf13/viper"​
	​)

	
	
	
	Next, update the rootCmd command definition according to your tool’s requirements. Update the Short description and delete the Long description:
apis/todoClient/cmd/root.go
	​ 	​var​ rootCmd = &cobra.Command{
	​ 	 Use: ​"todoClient"​,
	​ 	 Short: ​"A Todo API client"​,
	​ 	 ​// Uncomment the following line if your bare application​
	​ 	 ​// has an action associated with it:​
	​ 	 ​// Run: func(cmd *cobra.Command, args []string) { },​
	​ 	}

	

	
	Then, modify the init function to include a new command-line flag --api-root that allows users to specify the URL for the to-do REST API. Use Viper to bind it to an environment variable TODO_API_ROOT by setting a replacer and a prefix, as you did in ​Using Viper for Configuration Management​:
apis/todoClient/cmd/root.go
	​ 	​func​ init() {
	​ 	 cobra.OnInitialize(initConfig)
	​ 	
	​ 	 ​// Here you will define your flags and configuration settings.​
	​ 	 ​// Cobra supports persistent flags, which, if defined here,​
	​ 	 ​// will be global for your application.​
	​ 	
	​ 	 rootCmd.PersistentFlags().StringVar(&cfgFile, ​"config"​, ​""​,
	​ 	 ​"config file (default is $HOME/.todoClient.yaml)"​)
	​ 	
	»	 rootCmd.PersistentFlags().String(​"api-root"​,
	»	 ​"http://localhost:8080"​, ​"Todo API URL"​)
	»	
	»	 replacer := strings.NewReplacer(​"-"​, ​"_"​)
	»	 viper.SetEnvKeyReplacer(replacer)
	»	 viper.SetEnvPrefix(​"TODO"​)
	»	
	»	 viper.BindPFlag(​"api-root"​, rootCmd.PersistentFlags().Lookup(​"api-root"​))
	​ 	}

	
	Save and close this file. Now, let’s define the logic to connect to the to-do REST API to retrieve to-do items. Create and edit the file cmd/client.go in the cmd directory. Add the package definition and the import list. For this file, you’re using the following packages: encoding/json to encode and decode JSON data, errors to define error values, fmt for formatted printing, ioutil to read the HTTP response body, net/http to handle HTTP connections, and time to define timeouts and time constants:
apis/todoClient/cmd/client.go
	​ 	​package​ cmd
	​ 	
	​ 	​import​ (
	​ 	 ​"encoding/json"​
	​ 	 ​"errors"​
	​ 	 ​"fmt"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"net/http"​
	​ 	 ​"time"​
	​)

	
	Define the required error values to use throughout the package. You’ll use these errors to wrap errors coming from the API and during test validation:
apis/todoClient/cmd/client.go
	​ 	​var​ (
	​ 	 ErrConnection = errors.New(​"Connection error"​)
	​ 	 ErrNotFound = errors.New(​"Not found"​)
	​ 	 ErrInvalidResponse = errors.New(​"Invalid server response"​)
	​ 	 ErrInvalid = errors.New(​"Invalid data"​)
	​ 	 ErrNotNumber = errors.New(​"Not a number"​)
	​)

	
	
	
	Next, define two custom types to obtain the results from the REST API calls. For this example, you should assume that you don’t control the actual API server, since this is what happens when you’re using a third-party API. You’ll have to consult the API documentation to understand what values it returns so that you can create the appropriate types. For the to-do REST API example, create one type to represent an item and another type to represent the API response:
apis/todoClient/cmd/client.go
	​ 	​type​ item ​struct​ {
	​ 	 Task ​string​
	​ 	 Done ​bool​
	​ 	 CreatedAt time.Time
	​ 	 CompletedAt time.Time
	​ 	}
	​ 	
	​ 	​type​ response ​struct​ {
	​ 	 Results []item ​`json:"results"`​
	​ 	 Date ​int​ ​`json:"date"`​
	​ 	 TotalResults ​int​ ​`json:"total_results"`​
	​ 	}

	
	
	
	
	To send an HTTP request to a server using Go, you need an instance of type http.Client. Go provides a default client that you can use for simple requests. But it’s recommended that you instantiate your own client so you can adjust parameters relevant to your requirements. One of the most important parameters is the connection timeout. The default client has no timeout set, which means your application could take a long time to return or hang forever if the server has an issue. Let’s define a function to instantiate a new client with a timeout of 10 seconds. If you want, you could make this value customizable. For now, we’ll keep it hardcoded:
apis/todoClient/cmd/client.go
	​ 	​func​ newClient() *http.Client {
	​ 	 c := &http.Client{
	​ 	 Timeout: 10 * time.Second,
	​ 	 }
	​ 	
	​ 	 ​return​ c
	​ 	}

The http.Client is safe to be reused for multiple connections so you shouldn’t create one every time. In our case, the command-line application executes a single task and then quits, so we don’t need to worry about adding more code to reuse it.

Next, define a function to retrieve to-do items from the REST API using the client. Because we want to be able to retrieve a single item or all items from the list, create a function that works for both cases named getItems. This function takes as input the URL as string, and it returns a slice of item and a potential error. Later, you’ll wrap this function with another function to retrieve all items or a single item:
apis/todoClient/cmd/client.go
	​ 	​func​ getItems(url ​string​) ([]item, ​error​) {

In the function’s body, instantiate a new http.Client using the newClient function. Because this function returns a pointer to the http.Client type, chain the method Get using the url as input to execute a GET request to the REST API on a single line. Verify and return potential errors for that operation:
apis/todoClient/cmd/client.go
	​ 	r, err := newClient().Get(url)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, fmt.Errorf(​"%w: %s"​, ErrConnection, err)
	​ 	}

If successful, you’ll need to read the content from the response body. To ensure you close the body after reading it, defer the call to its Close method:
apis/todoClient/cmd/client.go
	​ 	​defer​ r.Body.Close()

	
	
	
	For our REST API example, we expect that successfully retrieving to-do items returns an HTTP status of 200 or OK. Use the http.StatusOK constant instead of the literal value for more readable and maintainable code. If that’s not the case, the GET operation was successful but the API returned an error. Read the response’s body content to retrieve the error message, and return it as a new error wrapping one of the error values you defined before. If the HTTP status code matches http.StatusNotFound, wrap the error ErrNotFound, otherwise, wrap ErrInvalidResponse. This API returns errors as plain text, so you don’t need to decode data. In case you can’t read the body, return a new error with the message Cannot read body wrapping the original error:
apis/todoClient/cmd/client.go
	​ 	​if​ r.StatusCode != http.StatusOK {
	​ 	 msg, err := ioutil.ReadAll(r.Body)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, fmt.Errorf(​"Cannot read body: %w"​, err)
	​ 	 }
	​ 	 err = ErrInvalidResponse
	​ 	 ​if​ r.StatusCode == http.StatusNotFound {
	​ 	 err = ErrNotFound
	​ 	 }
	​ 	 ​return​ nil, fmt.Errorf(​"%w: %s"​, err, msg)
	​ 	}

If successful, the body contains JSON data that matches the response type you defined before. Create a new variable resp of type response and decode the body into it using the Decode method from the type Decoder provided by the package encoding/json:
apis/todoClient/cmd/client.go
	​ 	​var​ resp response
	​ 	
	​ 	​if​ err := json.NewDecoder(r.Body).Decode(&resp); err != nil {
	​ 	 ​return​ nil, err
	​ 	}

Verify that the response contains items by checking the TotalResults field. If no items exist, return an appropriate error:
apis/todoClient/cmd/client.go
	​ 	​if​ resp.TotalResults == 0 {
	​ 	 ​return​ nil, fmt.Errorf(​"%w: No results found"​, ErrNotFound)
	​ 	}

Otherwise, return the list of items from the resp.Results field and the value nil indicating no error exists:
	
	
apis/todoClient/cmd/client.go
	​ 	 ​return​ resp.Results, nil
	​ 	}

Finally, define the function getAll wrapping up the function getItems. Use the function fmt.Sprintf to append the correct URL path /todo to the variable apiRoot, which is needed to obtain all the items from the REST API. Then use the new value to call the function getItems:
apis/todoClient/cmd/client.go
	​ 	​func​ getAll(apiRoot ​string​) ([]item, ​error​) {
	​ 	 u := fmt.Sprintf(​"%s/todo"​, apiRoot)
	​ 	
	​ 	 ​return​ getItems(u)
	​ 	}

Save the file cmd/client.go to complete the code.

	
	
	
	
	
	Now you can use these functions to implement the first command list to list all to-do items from the API. Use the Cobra generator to add the list command to your application:
	​ 	​$ ​​cobra​​ ​​add​​ ​​list​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	list created at /home/ricardo/pragprog.com/rggo/apis/todoClient

	
	
	
	Edit the file cmd/list.go and update the import section to include the following packages: io to use the io.Writer interface for flexible output, os to use the os.Stdout for output, text/tabwriter to print formatted tabulated data, and github.com/spf13/viper to obtain configuration values:
apis/todoClient/cmd/list.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​ 	 ​"text/tabwriter"​
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	​ 	 ​"github.com/spf13/viper"​
	​)

Then edit the command instance definition. Delete the Long description, update the Short description, and set the property SilenceUsage to true to prevent automatic usage display with errors. For the command action, replace the property Run with RunE, which returns an error. This is the same pattern you used in ​Creating the Subcommands to Manage Hosts​:
apis/todoClient/cmd/list.go
	​ 	​var​ listCmd = &cobra.Command{
	​ 	 Use: ​"list"​,
	​ 	 Short: ​"List todo items"​,
	​ 	 SilenceUsage: true,
	​ 	 RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	​ 	 apiRoot := viper.GetString(​"api-root"​)
	​ 	
	​ 	 ​return​ listAction(os.Stdout, apiRoot)
	​ 	 },
	​ 	}

	
 In the body of the function defined by the RunE, we’re using Viper to obtain the value for the api-root configuration that represents the base URL for the to-do REST API. Then, we’re calling the listAction function that executes the action.
	
	
	
	

Now define the function listAction to execute the command action. In the function’s body, obtain all to-do items from the REST API, using the function getAll that you created before. Then, print all items using the function printAll, which you’ll define shortly:
apis/todoClient/cmd/list.go
	​ 	​func​ listAction(out io.Writer, apiRoot ​string​) ​error​ {
	​ 	 items, err := getAll(apiRoot)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ printAll(out, items)
	​ 	}

	
	Finally, define the function printAll to print all items from the list. It takes the io.Writer interface as the output destination and a slice of item as input, and it returns an error:
apis/todoClient/cmd/list.go
	​ 	​func​ printAll(out io.Writer, items []item) ​error​ {

	
	
	
	Use the standard library package text/tabwriter to print tabulated data. This package uses an algorithm that takes into account the minimum column width and adds padding to ensure the output columns are properly aligned. For more information about this package, consult its documentation.[49]

	
	
	Create an instance of the type tabwriter.Writer by using the function tabwriter.NewWriter. Set the final output to the given out variable. Set the minimum column width to 3 characters, the tabwidth to 2 characters, the padding to 0, the pad character to a space, and the value 0 to disable additional flags:
apis/todoClient/cmd/list.go
	​ 	w := tabwriter.NewWriter(out, 3, 2, 0, ​' '​, 0)

	
	The function tabwriter.NewWriter returns a type that implements the io.Writer interface. It expects the input to be tabulated data separated by the \t tab character. Print all the items to this io.Writer by looping through the slice of items and printing each one using the fmt.Fprintf function. Verify the property Done of each item, and, if the item is done, print the character X at the beginning of the line:
apis/todoClient/cmd/list.go
	​ 	​for​ k, v := ​range​ items {
	​ 	 done := ​"-"​
	​ 	 ​if​ v.Done {
	​ 	 done = ​"X"​
	​ 	 }
	​ 	 fmt.Fprintf(w, ​"%s​​\t​​%d​​\t​​%s​​\t\n​​"​, done, k+1, v.Task)
	​ 	}

	
	When the loop is done, use the method w.Flush to flush the output to the underlying io.Writer interface:
apis/todoClient/cmd/list.go
	​ 	 ​return​ w.Flush()
	​ 	}

This completes the code for the list command. Let’s write some tests for it next.
	
	
	
	

Testing the Client Without Connecting to the API

	
	
	
	Testing your API client by connecting to the real API is hard because you don’t always have full control over the API or the network. Even testing on your local server can be tricky because each test can impact the next. On a real live API, it’s even harder to ensure the tests are reproducible. You may also be unable to test error conditions such as invalid responses or empty lists.

In addition, it’s not nice to hit someone else’s server to test your code, especially if this is part of an automated test pipeline that runs periodically, for example, when using a continuous integration platform.

	
	To overcome these challenges, you mock the API locally for your tests, simulating the expected responses by using the httptest.Server type. This is similar to the approach you used to test the server implementation in ​Testing the REST API Server​.

But this approach isn’t perfect. The challenge here is to ensure that the mock data you use to simulate the API response is up-to-date with the actual API. Otherwise, your tests may work locally but your application will fail when connecting to the live API.

	
	
	The recommended approach is to have a balance between those two cases. For this application, you’ll use the mock API to run unit tests locally since these tests run often and you don’t want to hit the live API frequently. Later, in ​Executing Integration Tests​, you’ll add integration tests to your application to execute some final tests to ensure the application works with the live API before shipping it. The key is running the integration tests sporadically.

Start by defining the resources to mock the API locally. Create and edit the file cmd/mock_test.go. It’s a good practice to use the suffix _test to name files used only during tests to prevent them from being compiled into the final application binary. Add the package definition and the import list. For this file, you’ll use the packages net/http to handle HTTP requests and net/http/httptest to instantiate an HTTP test server:
	
	
	
apis/todoClient/cmd/mock_test.go
	​ 	​package​ cmd
	​ 	
	​ 	​import​ (
	​ 	 ​"net/http"​
	​ 	 ​"net/http/httptest"​
	​)

Add a variable testResp with some mock response data. This variable is of type map and maps a string key representing the data name to a struct that contains the properties Status as an integer and Body as string. The Status property represents the expected HTTP response status, while the Body contains the JSON or text response data. For these tests, define five keys (resultsMany, resultsOne, noResults, root, and notFound) with their respective data:
apis/todoClient/cmd/mock_test.go
	​ 	​var​ testResp = ​map​[​string​]​struct​ {
	​ 	 Status ​int​
	​ 	 Body ​string​
	​ 	}{
	​ 	 ​"resultsMany"​: {
	​ 	 Status: http.StatusOK,
	​ 	 Body: ​`{​
	​ 	​ "results": [​
	​ 	​ {​
	​ 	​ "Task": "Task 1",​
	​ 	​ "Done": false,​
	​ 	​ "CreatedAt": "2019-10-28T08:23:38.310097076-04:00",​
	​ 	​ "CompletedAt": "0001-01-01T00:00:00Z"​
	​ 	​ },​
	​ 	​ {​
	​ 	​ "Task": "Task 2",​
	​ 	​ "Done": false,​
	​ 	​ "CreatedAt": "2019-10-28T08:23:38.323447798-04:00",​
	​ 	​ "CompletedAt": "0001-01-01T00:00:00Z"​
	​ 	​ }​
	​ 	​],​
	​ 	​ "date": 1572265440,​
	​ 	​ "total_results": 2​
	​ 	​}`​,
	​ 	 },
	​ 	 ​"resultsOne"​: {
	​ 	 Status: http.StatusOK,
	​ 	 Body: ​`{​
	​ 	​ "results": [​
	​ 	​ {​
	​ 	​ "Task": "Task 1",​
	​ 	​ "Done": false,​
	​ 	​ "CreatedAt": "2019-10-28T08:23:38.310097076-04:00",​
	​ 	​ "CompletedAt": "0001-01-01T00:00:00Z"​
	​ 	​ }​
	​ 	​],​
	​ 	​ "date": 1572265440,​
	​ 	​ "total_results": 1​
	​ 	​}`​,
	​ 	 },
	​ 	
	​ 	 ​"noResults"​: {
	​ 	 Status: http.StatusOK,
	​ 	 Body: ​`{​
	​ 	​ "results": [],​
	​ 	​ "date": 1572265440,​
	​ 	​ "total_results": 0​
	​ 	​}`​,
	​ 	 },
	​ 	
	​ 	 ​"root"​: {
	​ 	 Status: http.StatusOK,
	​ 	 Body: ​"There's an API here"​,
	​ 	 },
	​ 	
	​ 	 ​"notFound"​: {
	​ 	 Status: http.StatusNotFound,
	​ 	 Body: ​"404 - not found"​,
	​ 	 },
	​ 	}

	
	Then add the function mockServer to create an HTTP server instance that will be used to execute tests. To make the implementation flexible and allow a variety of tests, this function takes as input a function of type http.HandlerFunc. You used this type earlier when you implemented the HTTP server in ​Developing a REST API Server​. This allows you to provide a custom response when instantiating the test server to test different cases. This function returns the URL for the test server and a cleanup function to close the server after the tests:
apis/todoClient/cmd/mock_test.go
	​ 	​func​ mockServer(h http.HandlerFunc) (​string​, ​func​()) {
	​ 	 ts := httptest.NewServer(h)
	​ 	
	​ 	 ​return​ ts.URL, ​func​() {
	​ 	 ts.Close()
	​ 	 }
	​ 	}

Now write the unit tests for the listAction function. Save and close the file cmd/mock_test.go. Create and edit a new file for the tests, cmd/actions_test.go. Add the package definition and the import list. For these tests, you’ll use the following packages: bytes to capture output, errors to check errors, fmt for formatted printing, net/http to deal with HTTP connections, and testing for the testing utilities:
	
	
	
	
	
	
apis/todoClient/cmd/actions_test.go
	​ 	​package​ cmd
	​ 	
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"errors"​
	​ 	 ​"fmt"​
	​ 	 ​"net/http"​
	​ 	 ​"testing"​
	​)

	
	
	Add the test function TestListAction to test the listAction function. Use the table-driven testing approach you used in ​Testing with Table-Driven Testing​, to test different cases. Each test case has a name, an expected error expError, an expected output expOut, a response resp that you’ll use to create the response function for the test server, and a flag closeServer indicating whether to close the server immediately to test error conditions:
apis/todoClient/cmd/actions_test.go
	​ 	​func​ TestListAction(t *testing.T) {
	​ 	 testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 expError ​error​
	​ 	 expOut ​string​
	​ 	 resp ​struct​ {
	​ 	 Status ​int​
	​ 	 Body ​string​
	​ 	 }
	​ 	 closeServer ​bool​
	​ 	 }{
	​ 	 {name: ​"Results"​,
	​ 	 expError: nil,
	​ 	 expOut: ​"- 1 Task 1​​\n​​- 2 Task 2​​\n​​"​,
	​ 	 resp: testResp[​"resultsMany"​],
	​ 	 },
	​ 	 {name: ​"NoResults"​,
	​ 	 expError: ErrNotFound,
	​ 	 resp: testResp[​"noResults"​]},
	​ 	 {name: ​"InvalidURL"​,
	​ 	 expError: ErrConnection,
	​ 	 resp: testResp[​"noResults"​],
	​ 	 closeServer: true},
	​ 	 }

For these tests, you’re defining three cases: one to test a response with results, another to test a valid response with no results, and an error condition where the server is unreachable. Each case associates a corresponding key from the testResp map you created before.

Next, loop through each case and execute it as a subtest using the tc.name property to identify the test:
apis/todoClient/cmd/actions_test.go
	​ 	​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {

	
	
	Instantiate a test server using the mockServer function you created before. Provide an anonymous function of type func(w http.ResponseWriter, r *http.Request) as input. This function works as an HTTP handler, and the test server uses this function to respond to any income requests. Use the values from tc.resp to reply with the correct HTTP status and data:
apis/todoClient/cmd/actions_test.go
	​ 	url, cleanup := mockServer(
	​ 	 ​func​(w http.ResponseWriter, r *http.Request) {
	​ 	 w.WriteHeader(tc.resp.Status)
	​ 	 fmt.Fprintln(w, tc.resp.Body)
	​ 	 })

Defer the execution of the cleanup function to ensure the server closes after the tests. If the tc.closeServer flag is true, close the server immediately to test error conditions:
apis/todoClient/cmd/actions_test.go
	​ 	​defer​ cleanup()
	​ 	
	​ 	​if​ tc.closeServer {
	​ 	 cleanup()
	​ 	}

	
	Next, define a variable out of type bytes.Buffer to capture the output, and execute the listAction function providing the test server URL url as input. Capture the error and output:
apis/todoClient/cmd/actions_test.go
	​ 	​var​ out bytes.Buffer
	​ 	
	​ 	err := listAction(&out, url)

Finally, complete the tests by comparing the actual values with the expected values, failing the test if they don’t match:
apis/todoClient/cmd/actions_test.go
	​ 	 ​if​ tc.expError != nil {
	​ 	 ​if​ err == nil {
	​ 	 t.Fatalf(​"Expected error %q, got no error."​, tc.expError)
	​ 	 }
	​ 	
	​ 	 ​if​ ! errors.Is(err, tc.expError) {
	​ 	 t.Errorf(​"Expected error %q, got %q."​, tc.expError, err)
	​ 	 }
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q."​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ tc.expOut != out.String() {
	​ 	 t.Errorf(​"Expected output %q, got %q"​, tc.expOut, out.String())
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

Save and close this file, and execute the tests to ensure the list commands work as expected:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​​ ​​./cmd​
	​ 	=== RUN TestListAction
	​ 	=== RUN TestListAction/Results
	​ 	=== RUN TestListAction/NoResults
	​ 	=== RUN TestListAction/InvalidURL
	​ 	--- PASS: TestListAction (0.00s)
	​ 	 --- PASS: TestListAction/Results (0.00s)
	​ 	 --- PASS: TestListAction/NoResults (0.00s)
	​ 	 --- PASS: TestListAction/InvalidURL (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/apis/todoClient/cmd 0.013s

Now try the new command with the actual REST API. If you don’t have your API server running, open a new terminal window, navigate to the server application’s root directory, and build the todoServer application:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/apis/todoServer​
	​ 	​$ ​​go​​ ​​build​

Then execute the server using a temporary file to ensure you’re starting with an empty list:
	​ 	​$ ​​./todoServer​​ ​​-f​​ ​​/tmp/testtodoclient01.json​

	
	This is going to block your terminal while the server is running. In a different terminal add some items to your list. Since the application doesn’t have that functionality yet, use the curl command to make a request to the server to add two new items:
	​ 	​$ ​​curl​​ ​​-L​​ ​​-XPOST​​ ​​-d​​ ​​'{"task":"Task 1"}'​​ ​​-H​​ ​​'Content-Type: application/json'​​ ​​\​
	​ 	​>​​ ​​http://localhost:8080/todo​
	​ 	​$ ​​curl​​ ​​-L​​ ​​-XPOST​​ ​​-d​​ ​​'{"task":"Task 2"}'​​ ​​-H​​ ​​'Content-Type: application/json'​​ ​​\​
	​ 	​>​​ ​​http://localhost:8080/todo​

If you’re in a different terminal, switch to your todoClient application directory, build your application, and execute it with the list command to see the items from the REST API:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/apis/todoClient​
	​ 	​$ ​​go​​ ​​build​
	​ 	​$ ​​./todoClient​​ ​​list​
	​ 	- 1 Task 1
	​ 	- 2 Task 2

The list command works. Let’s add another command to view details about a single item next.
	
	
	
	
	
	

Viewing a Single Item

	
	At this point, your application can query the to-do REST API for all items. Let’s add the ability to get details for a specific item.

The to-do REST API returns information about a single item by querying the URL /todo/id using the HTTP Get method. The id is a numeric identifier that represents an item from the list. You can find the item id using the list command. When you’re working with an API you’re unfamiliar with, consult the REST API documentation to understand how to make queries for particular resources that you’re interested in.

To obtain a single item from the REST API, first add a new function to the cmd/client.go file. This function wraps the getItems function similarly to the getAll function you developed for the list command, but providing the proper URL endpoint to query one item only. Name this function getOne. It takes as input the apiRoot and the integer id that represents the item identifier. It returns an instance of the item type and an error:
apis/todoClient.v1/cmd/client.go
	​ 	​func​ getOne(apiRoot ​string​, id ​int​) (item, ​error​) {
	​ 	 u := fmt.Sprintf(​"%s/todo/%d"​, apiRoot, id)
	​ 	
	​ 	 items, err := getItems(u)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ item{}, err
	​ 	 }
	​ 	
	​ 	 ​if​ len(items) != 1 {
	​ 	 ​return​ item{}, fmt.Errorf(​"%w: Invalid results"​, ErrInvalid)
	​ 	 }
	​ 	
	​ 	 ​return​ items[0], nil
	​ 	}

In this function, you’re using the input parameters apiRoot and id to compose the correct URL endpoint to query a single item. Then we query the REST API using the getItems function and check for errors. If successful, we’re returning the item.

	
	When printing details about the item, you’ll print the time the task was created and completed. The item type uses the type time.Time to represent the time data. If you print the time data without any formatting, it prints a long string including every detail about the time. While this may be useful in some situations, some of this information is irrelevant for our users. To print a shorter version of the time data including only the month, day, hour, and minute, define a constant timeFormat, which you’ll use later to format the time output. For more information about customizing the time format, consult the package time documentation:[50]
apis/todoClient.v1/cmd/client.go
	​ 	​const​ timeFormat = ​"Jan/02 @15:04"​

	
	
	
	
	Save and close this file, and then use the Cobra generator to add the view command to your application:
	​ 	​$ ​​cobra​​ ​​add​​ ​​view​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	view created at /home/ricardo/pragprog.com/rggo/apis/todoClient

Edit the generated file cmd/view.go. Update the import section to include the following packages: io to use the io.Writer interface, os to use os.Stdout for output, strconv to convert string to integer, text/tabwriter to print tabulated data, and github.com/spf13/viper to get the api-root configuration value:
apis/todoClient.v1/cmd/view.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	»	 ​"io"​
	»	 ​"os"​
	»	 ​"strconv"​
	»	 ​"text/tabwriter"​
	»	
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	»	 ​"github.com/spf13/viper"​
	​)

Then update the viewCmd command definition. Update the Use definition to include the id argument, edit the Short description, delete the Long description, and prevent automatic usage display by setting the property SilenceUsage to true:
apis/todoClient.v1/cmd/view.go
	​ 	​var​ viewCmd = &cobra.Command{
	​ 	 Use: ​"view <id>"​,
	​ 	 Short: ​"View details about a single item"​,
	​ 	 SilenceUsage: true,

Since this command requires a single argument id, validate that the user provides only one argument by setting the property Args to the validation function cobra.ExactArgs(1). This function returns an error if the user doesn’t provide the exact number of arguments, in this case 1.
	
	
apis/todoClient.v1/cmd/view.go
	​ 	Args: cobra.ExactArgs(1),

Following the same pattern you used to define previous command actions, replace the Run property with RunE and implement the function to obtain the api-root configuration value from Viper and execute the action function viewAction:
apis/todoClient.v1/cmd/view.go
	​ 	 RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	​ 	 apiRoot := viper.GetString(​"api-root"​)
	​ 	
	​ 	 ​return​ viewAction(os.Stdout, apiRoot, args[0])
	​ 	 },
	​ 	}

	
	
	Next, implement the action function viewAction. This function takes as input the io.Writer interface to print the output to, the apiRoot, and the arg argument as string provided by the user when executing the command. It returns an error. This function converts the argument arg from string to int using the function strconv.Atoi from the strconv package, returning an error if the user provided an argument that’s not an integer number. Then it queries the REST API using the getOne function you defined before, and it prints details about the item using the function printOne, which you’ll define shortly:
apis/todoClient.v1/cmd/view.go
	​ 	​func​ viewAction(out io.Writer, apiRoot, arg ​string​) ​error​ {
	​ 	 id, err := strconv.Atoi(arg)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ fmt.Errorf(​"%w: Item id must be a number"​, ErrNotNumber)
	​ 	 }
	​ 	
	​ 	 i, err := getOne(apiRoot, id)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ printOne(out, i)
	​ 	}

	
	Now, define the function printOne to print the details about the to-do item. This function takes the io.Writer interface as the output destination and the item. It returns an error. Use the package tabwriter again to ensure the columns align correctly. Print details about the task such as its name and creation date. If the task is completed, print its completion date also:
apis/todoClient.v1/cmd/view.go
	​ 	​func​ printOne(out io.Writer, i item) ​error​ {
	​ 	 w := tabwriter.NewWriter(out, 14, 2, 0, ​' '​, 0)
	​ 	 fmt.Fprintf(w, ​"Task:​​\t​​%s​​\n​​"​, i.Task)
	​ 	 fmt.Fprintf(w, ​"Created at:​​\t​​%s​​\n​​"​, i.CreatedAt.Format(timeFormat))
	​ 	 ​if​ i.Done {
	​ 	 fmt.Fprintf(w, ​"Completed:​​\t​​%s​​\n​​"​, ​"Yes"​)
	​ 	 fmt.Fprintf(w, ​"Completed At:​​\t​​%s​​\n​​"​, i.CompletedAt.Format(timeFormat))
	​ 	 ​return​ w.Flush()
	​ 	 }
	​ 	
	​ 	 fmt.Fprintf(w, ​"Completed:​​\t​​%s​​\n​​"​, ​"No"​)
	​ 	 ​return​ w.Flush()
	​ 	}

	
	In this function, you’re using the method Format on the instances of time.Time types such as CreatedAt and CompletedAt to format the date and time according to the constant timeFormat you defined in the file client.go.

The expected output for a completed item looks like this:
	​ 	Task: Task 1
	​ 	Created at: Oct/26 @17:37
	​ 	Completed: Yes
	​ 	Completed At: Nov/12 @01:09

Let’s write some tests for the new command. Save and close the file cmd/view.go, and edit the file cmd/actions_test.go. Add a new test function TestViewAction to test the viewAction function using the table-driven testing approach. This function is essentially the same as the TestListAction you created before. Define the testCases type with three test cases:
apis/todoClient.v1/cmd/actions_test.go
	​ 	​func​ TestViewAction(t *testing.T) {
	​ 	 ​// testCases for ViewAction test​
	​ 	 testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 expError ​error​
	​ 	 expOut ​string​
	​ 	 resp ​struct​ {
	​ 	 Status ​int​
	​ 	 Body ​string​
	​ 	 }
	​ 	 id ​string​
	​ 	 }{
	​ 	 {name: ​"ResultsOne"​,
	​ 	 expError: nil,
	​ 	 expOut: ​`Task: Task 1​
	​ 	​Created at: Oct/28 @08:23​
	​ 	​Completed: No​
	​ 	​`​,
	​ 	 resp: testResp[​"resultsOne"​],
	​ 	 id: ​"1"​,
	​ 	 },
	​ 	 {name: ​"NotFound"​,
	​ 	 expError: ErrNotFound,
	​ 	 resp: testResp[​"notFound"​],
	​ 	 id: ​"1"​,
	​ 	 },
	​ 	 {name: ​"InvalidID"​,
	​ 	 expError: ErrNotNumber,
	​ 	 resp: testResp[​"noResults"​],
	​ 	 id: ​"a"​},
	​ 	 }

The type testCases is similar to the one you used for the listAction test except that we don’t need to test the server error condition, so we’re removing the flag closeServer and adding a new parameter id of type string to specify the item id for the test.

Loop through each test case, executing the function viewAction and comparing the results with the expected values:
apis/todoClient.v1/cmd/actions_test.go
	​ 	 ​// Execute ViewAction test​
	​ 	 ​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 url, cleanup := mockServer(
	​ 	 ​func​(w http.ResponseWriter, r *http.Request) {
	​ 	 w.WriteHeader(tc.resp.Status)
	​ 	 fmt.Fprintln(w, tc.resp.Body)
	​ 	 })
	​ 	 ​defer​ cleanup()
	​ 	
	​ 	 ​var​ out bytes.Buffer
	​ 	
	​ 	 err := viewAction(&out, url, tc.id)
	​ 	
	​ 	 ​if​ tc.expError != nil {
	​ 	 ​if​ err == nil {
	​ 	 t.Fatalf(​"Expected error %q, got no error."​, tc.expError)
	​ 	 }
	​ 	
	​ 	 ​if​ ! errors.Is(err, tc.expError) {
	​ 	 t.Errorf(​"Expected error %q, got %q."​, tc.expError, err)
	​ 	 }
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q."​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ tc.expOut != out.String() {
	​ 	 t.Errorf(​"Expected output %q, got %q"​, tc.expOut, out.String())
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

Save and close the actions_test.go file. Execute the tests with go test -v:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​​ ​​./cmd​
	​ 	=== RUN TestListAction
	​ 	=== RUN TestListAction/Results
	​ 	=== RUN TestListAction/NoResults
	​ 	=== RUN TestListAction/InvalidURL
	​ 	--- PASS: TestListAction (0.00s)
	​ 	 --- PASS: TestListAction/Results (0.00s)
	​ 	 --- PASS: TestListAction/NoResults (0.00s)
	​ 	 --- PASS: TestListAction/InvalidURL (0.00s)
	​ 	=== RUN TestViewAction
	​ 	=== RUN TestViewAction/ResultsOne
	​ 	=== RUN TestViewAction/NotFound
	​ 	=== RUN TestViewAction/InvalidID

	​ 	--- PASS: TestViewAction (0.00s)
	​ 	 --- PASS: TestViewAction/ResultsOne (0.00s)
	​ 	 --- PASS: TestViewAction/NotFound (0.00s)
	​ 	 --- PASS: TestViewAction/InvalidID (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/apis/todoClient/cmd 0.015s

All tests passed, so test the new functionality with the actual API. If you still have the todoServer process running, execute the commands directly. If not, start the server as you did in ​Testing the Client Without Connecting to the API​.

Build the new version of the client using go build:
	​ 	​$ ​​go​​ ​​build​

With the server running, list all to-do items with the list command, and then view the details about item number 1 using the view command:
	​ 	​$ ​​./todoClient​​ ​​list​
	​ 	- 1 Task 1
	​ 	- 2 Task 2
	​ 	​$ ​​./todoClient​​ ​​view​​ ​​1​
	​ 	Task: Task 1
	​ 	Created at: May/19 @23:35
	​ 	Completed: No

You can view the details about to-do items from the REST API using the view command. Next, let’s include the ability to add new items to the list.
	

Adding an Item

	
	
	
	So far, your to-do REST API client is able to get all the items from the list and view details about specific items. Let’s include the ability to add new items to the list so users can track their new tasks.

To add new tasks to the to-do list using your REST API, the client must send an HTTP POST request to the /todo endpoint containing the task as a JSON payload. For details, consult ​Completing the REST API Server​. As usual, obtain this information from the API’s documentation to understand their requirements.

	
	
	Let’s define the logic to send the HTTP POST requests in the cmd/client.go file. Edit this file and update the import section by including two new dependencies: the bytes package to use a buffer of bytes as the content body and the io package to use the io.Reader interface:
apis/todoClient.v2/cmd/client.go
	​ 	​import​ (
	»	 ​"bytes"​
	​ 	 ​"encoding/json"​
	​ 	 ​"errors"​
	​ 	 ​"fmt"​
	​ 	
	»	 ​"io"​
	​ 	 ​"io/ioutil"​
	​ 	 ​"net/http"​
	​ 	 ​"time"​
	​)

To create an item, you have to send the HTTP POST request to add a new item, but in ​Completing and Deleting Items​, you’ll also send other types of requests to complete and delete items. Instead of defining a function that sends the POST request only, you’ll use the same approach you used to develop the getItems function in ​Developing the Initial Client for the REST API​, by defining a more generic function sendRequest that can send many different requests and then using it in a more specific function addItem that sends the specific request to add a new item to the list.

Define the function sendRequest. It takes as input the url as string to send the request to, the method also as string representing the HTTP method to use in the request, the contentType as string representing the type of body content to send, the expected HTTP status expStatus as an integer to verify if the response is correct, and the actual content body as the interface io.Reader. It returns a potential error:
	
	
apis/todoClient.v2/cmd/client.go
	​ 	​func​ sendRequest(url, method, contentType ​string​,
	​ 	 expStatus ​int​, body io.Reader) ​error​ {

	
	
	The type http.Client we’re using to connect to the REST API can issue POST requests directly with its Post method. But since we’re developing a function that can also issue other types of requests, instead of using that method, we’ll use the method Do that can send any type of request. Specify the request’s details by instantiating the type http.Request using the function NewRequest from the http package. Provide the HTTP Method, the target URL, and the request body as inputs:
apis/todoClient.v2/cmd/client.go
	​ 	req, err := http.NewRequest(method, url, body)
	​ 	​if​ err != nil {
	​ 	 ​return​ err
	​ 	}

By using the Request type, you can also specify additional request headers. If the variable contentType isn’t an empty string, set the Content-Type header to its value:
apis/todoClient.v2/cmd/client.go
	​ 	​if​ contentType != ​""​ {
	​ 	 req.Header.Set(​"Content-Type"​, contentType)
	​ 	}

	
	The property Header of the type http.Request is of type http.Header. This type maps a string key, representing the HTTP header to one or more string values. You can use it to set any headers your API call requires. A common use case is setting a header with the API token if the API requires authentication. Consult your API documentation to understand the requirements.

Execute the request by instantiating a new client and using its Do method, all in a single line. Provide the request req variable that you defined before as input. Check and return any errors that might have occurred:
apis/todoClient.v2/cmd/client.go
	​ 	r, err := newClient().Do(req)
	​ 	​if​ err != nil {
	​ 	 ​return​ err
	​ 	}
	​ 	​defer​ r.Body.Close()

	
	If the request is successful, the Do method returns a pointer to an instance of the type http.Response. We’re ensuring the response body will close by deferring the call to its Close method.

Next, verify the status code received with the Response matches the expected status code expStatus. If not, return the content of the response body as the error message wrapping your predefined error value ErrInvalidResponse or ErrNotFound if the HTTP status is http.StatusNotFound. Return cannot read body if an error reading the body occurs. If the status code matches the expected value, return nil, indicating the function completed successfully.
apis/todoClient.v2/cmd/client.go
	​ 	 ​if​ r.StatusCode != expStatus {
	​ 	 msg, err := ioutil.ReadAll(r.Body)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ fmt.Errorf(​"Cannot read body: %w"​, err)
	​ 	 }
	​ 	 err = ErrInvalidResponse
	​ 	 ​if​ r.StatusCode == http.StatusNotFound {
	​ 	 err = ErrNotFound
	​ 	 }
	​ 	 ​return​ fmt.Errorf(​"%w: %s"​, err, msg)
	​ 	 }
	​ 	
	​ 	 ​return​ nil
	​ 	}

Now define the function addItem to add the new item to the list. This function takes two input parameters: the apiRoot as string and the task to add to the list also as string. The function also returns an error:
apis/todoClient.v2/cmd/client.go
	​ 	​func​ addItem(apiRoot, task ​string​) ​error​ {

In the function’s body, compose the endpoint URL for this call by adding the suffix /todo to the apiRoot:
apis/todoClient.v2/cmd/client.go
	​ 	​// Define the Add endpoint URL​
	​ 	u := fmt.Sprintf(​"%s/todo"​, apiRoot)

Next, you need to define the body for the request. The to-do API expects to receive the task to add into the list as JSON with a single key-value pair where the key is task and the value is the task to add, like this:
	​ 	{
	​ 	 ​"task"​: ​"A task to add"​
	​ 	}

	
	To encode the JSON, create an anonymous struct type with a single field Task with the value set to the given parameter task. Use the struct tag ‘json:"task"‘ to ensure the field is encoded with the proper name, as you did in ​Completing the REST API Server​:
apis/todoClient.v2/cmd/client.go
	​ 	item := ​struct​ {
	​ 	 Task ​string​ ​`json:"task"`​
	​ 	}{
	​ 	 Task: task,
	​ 	}

Because this payload contains a single field, you can use an anonymous struct to represent it. For more complex payloads or if you need to reuse it, you should define a custom type.

Create a variable called body of type bytes.Buffer to encode the payload. This type is a good fit here since it implements both the interface io.Writer required by the JSON NewEncoder function and the io.Reader interface we need to use as an input for the function sendRequest you defined before:
apis/todoClient.v2/cmd/client.go
	​ 	​var​ body bytes.Buffer

	
	
	Then, encode the anonymous item struct into JSON by using the Encode method of the json.Encoder type. Obtain this type by using the NewEncoder function with the address of the variable &body as input to encode the JSON into this variable. Chain the method calls to execute them all in a single line, returning any errors:
apis/todoClient.v2/cmd/client.go
	​ 	​if​ err := json.NewEncoder(&body).Encode(item); err != nil {
	​ 	 ​return​ err
	​ 	}

	
	
	
	Finally, call the function sendRequest to send the POST request. Use the variable u as the URL, the constant http.MethodPost to specify the HTTP POST method, the value application/json as the content type, the constant http.StatusCreated as the expected response status code, and the address of the variable &body as the request body:
apis/todoClient.v2/cmd/client.go
	​ 	 ​return​ sendRequest(u, http.MethodPost, ​"application/json"​,
	​ 	 http.StatusCreated, &body)
	​ 	}

This completes the client code to add a new item. Now, let’s implement the command-line option. Save the file cmd/client.go and use the Cobra generator to add a new command add to your tool:
	​ 	​$ ​​cobra​​ ​​add​​ ​​add​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	add created at /home/ricardo/pragprog.com/rggo/apis/todoClient

Edit the generated file cmd/add.go. Update the import section to include the following packages: io to use the io.Writer interface, os to use os.Stdout for output, strings to manipulate string data, and github.com/spf13/viper to get the api-root configuration value:
apis/todoClient.v2/cmd/add.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	»	 ​"io"​
	»	 ​"os"​
	»	 ​"strings"​
	»	
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	»	 ​"github.com/spf13/viper"​
	​)

Next, update the addCmd command definition according to the command’s requirements. Update the Use property and the Short description, remove the Long description, set SilenceUsage to true, and ensure the user provides at least one argument by setting the property Args to cobra.MinimumNArgs(1):
apis/todoClient.v2/cmd/add.go
	​ 	​var​ addCmd = &cobra.Command{
	​ 	 Use: ​"add <task>"​,
	​ 	 Short: ​"Add a new task to the list"​,
	​ 	 SilenceUsage: true,
	​ 	 Args: cobra.MinimumNArgs(1),

Implement the command’s action the same way you’ve been doing for other Cobra commands. Replace the property Run with RunE to return an error, get the apiRoot value using Viper, and call the addAction function to execute the action:
apis/todoClient.v2/cmd/add.go
	​ 	 RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	​ 	 apiRoot := viper.GetString(​"api-root"​)
	​ 	
	​ 	 ​return​ addAction(os.Stdout, apiRoot, args)
	​ 	 },
	​ 	}

Now define the function addAction to add the new task to the list. This function joins all given arguments with a space using the strings.Join function, makes the request to the REST API using the function addItem you defined before, and if successful then prints a confirmation message using the printAdd function:
apis/todoClient.v2/cmd/add.go
	​ 	​func​ addAction(out io.Writer, apiRoot ​string​, args []​string​) ​error​ {
	​ 	 task := strings.Join(args, ​" "​)
	​ 	
	​ 	 ​if​ err := addItem(apiRoot, task); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ printAdd(out, task)
	​ 	}

Finally, define the function printAdd to print the confirmation message that the item was included:
apis/todoClient.v2/cmd/add.go
	​ 	​func​ printAdd(out io.Writer, task ​string​) ​error​ {
	​ 	 _, err := fmt.Fprintf(out, ​"Added task %q to the list.​​\n​​"​, task)
	​ 	 ​return​ err
	​ 	}

The code for adding a new task to the list is complete. Next, let’s write the test for it.
	
	
	
	

Testing HTTP Requests Locally

	
	
	So far, the tests that you’ve added to this application focused on the response you obtained from the REST API. This is acceptable as the requests were less complex than the responses for the commands list and view.

For the add command, the scenario is reversed. The simple response has a status and no body, but the request has more details, including a JSON payload and additional headers. We want our tests to ensure the application sends a valid request so we’re confident it’s going to work properly.

If you were testing this application by connecting directly to the actual API server, it wouldn’t be an issue since the server would throw an error if the request was invalid. But since you’re testing this locally using a mock HTTP server, the server doesn’t validate the request’s content.

The mock HTTP server accepts a function as input. Let’s use Go’s functional nature again and the concept of closures to include the required checks in the function we use when instantiating a new test server. You used a similar concept in ​Completing the REST API Server​, to define the todoRouter function that included the file name to save the list.

Before you do that, edit the file cmd/mock_test.go to include the simulated response for the add operation into the testResp map:
apis/todoClient.v2/cmd/mock_test.go
	​ 	 ​"notFound"​: {
	​ 	 Status: http.StatusNotFound,
	​ 	 Body: ​"404 - not found"​,
	​ 	 },
	​ 	
	»	 ​"created"​: {
	»	 Status: http.StatusCreated,
	»	 Body: ​""​,
	»	 },
	​ 	}

Save and close this file, and edit the cmd/actions_test.go file. Add the package io/ioutil to the import list. You’ll use this package to read the request’s body:
apis/todoClient.v2/cmd/actions_test.go
	​ 	​import​ (
	​ 	 ​"bytes"​
	​ 	 ​"errors"​
	​ 	 ​"fmt"​

	»	 ​"io/ioutil"​
	​ 	 ​"net/http"​
	​ 	 ​"testing"​
	​)

Next, define the test function TestAddAction to test the add command action. Add the expected values for the request and the arguments variable args to use in the test:
apis/todoClient.v2/cmd/actions_test.go
	​ 	​func​ TestAddAction(t *testing.T) {
	​ 	 expURLPath := ​"/todo"​
	​ 	 expMethod := http.MethodPost
	​ 	 expBody := ​"{​​\"​​task​​\"​​:​​\"​​Task 1​​\"​​}​​\n​​"​
	​ 	 expContentType := ​"application/json"​
	​ 	 expOut := ​"Added task ​​\"​​Task 1​​\"​​ to the list.​​\n​​"​
	​ 	 args := []​string​{​"Task"​, ​"1"​}

Then use the function mockServer to instantiate a new test server, providing as input an anonymous function that’s compatible with the http.HandlerFunc type, as you did before:
apis/todoClient.v2/cmd/actions_test.go
	​ 	​// Instantiate a test server for Add test​
	​ 	url, cleanup := mockServer(
	​ 	 ​func​(w http.ResponseWriter, r *http.Request) {

In this function, before responding to the request, verify the request parameters match the expected values. You can do this because this anonymous function closes on the outside scope, making those variables (such as the *testing.T t) and the expected values available inside the anonymous function.

Start by validating the request URL path r.URL.Path matches the expected value:
apis/todoClient.v2/cmd/actions_test.go
	​ 	​if​ r.URL.Path != expURLPath {
	​ 	 t.Errorf(​"Expected path %q, got %q"​, expURLPath, r.URL.Path)
	​ 	}

Then validate that the request method matches the expected value, in this case, a POST request:
apis/todoClient.v2/cmd/actions_test.go
	​ 	​if​ r.Method != expMethod {
	​ 	 t.Errorf(​"Expected method %q, got %q"​, expMethod, r.Method)
	​ 	}

Next, use the ReadAll function from the ioutil package to read the entire content of the request body r.Body and verify that it matches the expected body. Close the body after reading it:
apis/todoClient.v2/cmd/actions_test.go
	​ 	body, err := ioutil.ReadAll(r.Body)
	​ 	​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	}
	​ 	r.Body.Close()
	​ 	
	​ 	​if​ ​string​(body) != expBody {
	​ 	 t.Errorf(​"Expected body %q, got %q"​, expBody, ​string​(body))
	​ 	}

Verify that the request header Content-Type matches the expected value application/json. Get the request header by using the method r.Header.Get:
apis/todoClient.v2/cmd/actions_test.go
	​ 	contentType := r.Header.Get(​"Content-Type"​)
	​ 	​if​ contentType != expContentType {
	​ 	 t.Errorf(​"Expected Content-Type %q, got %q"​,
	​ 	 expContentType, contentType)
	​ 	}

Finally, respond to the request with the content of the created response from the testResp map you defined before:
apis/todoClient.v2/cmd/actions_test.go
	​ 	 w.WriteHeader(testResp[​"created"​].Status)
	​ 	 fmt.Fprintln(w, testResp[​"created"​].Body)
	​ 	 })
	​ 	​defer​ cleanup()

Now create a variable out of type bytes.Buffer to capture the output and execute the tests by running the function addAction and verifying the output matches the expected output. When you execute the addAction function, it will connect to the test server, executing a handler function that includes the request tests you defined before.
apis/todoClient.v2/cmd/actions_test.go
	​ 	 ​// Execute Add test​
	​ 	 ​var​ out bytes.Buffer
	​ 	
	​ 	 ​if​ err := addAction(&out, url, args); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q."​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ expOut != out.String() {
	​ 	 t.Errorf(​"Expected output %q, got %q"​, expOut, out.String())
	​ 	 }
	​ 	}

Save and close the file, and run the tests to ensure the application works as intended:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​​ ​​./cmd​
	​ 	=== RUN TestListAction
	​ 	=== RUN TestListAction/Results
	​ 	=== RUN TestListAction/NoResults
	​ 	=== RUN TestListAction/InvalidURL
	​ 	--- PASS: TestListAction (0.00s)
	​ 	 --- PASS: TestListAction/Results (0.00s)
	​ 	 --- PASS: TestListAction/NoResults (0.00s)
	​ 	 --- PASS: TestListAction/InvalidURL (0.00s)
	​ 	=== RUN TestViewAction
	​ 	=== RUN TestViewAction/ResultsOne
	​ 	=== RUN TestViewAction/NotFound
	​ 	=== RUN TestViewAction/InvalidID
	​ 	--- PASS: TestViewAction (0.00s)
	​ 	 --- PASS: TestViewAction/ResultsOne (0.00s)
	​ 	 --- PASS: TestViewAction/NotFound (0.00s)
	​ 	 --- PASS: TestViewAction/InvalidID (0.00s)
	​ 	=== RUN TestAddAction
	​ 	--- PASS: TestAddAction (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/apis/todoClient/cmd 0.012s

The add command works. Let’s try it out if you still have the todoServer running from the previous section. If not, start the REST API server now.

Build the client again:
	​ 	​$ ​​go​​ ​​build​

List the current tasks from the server:
	​ 	​$ ​​./todoClient​​ ​​list​
	​ 	- 1 Task 1
	​ 	- 2 Task 2

Add a new task to the list using the new add command:
	​ 	​$ ​​./todoClient​​ ​​add​​ ​​A​​ ​​New​​ ​​Task​
	​ 	Added task "A New Task" to the list.

List all the tasks again to verify that the new task was added:
	​ 	​$ ​​./todoClient​​ ​​list​
	​ 	- 1 Task 1
	​ 	- 2 Task 2
	​ 	- 3 A New Task

The task was added successfully. Next, you’ll add the ability to complete and delete tasks from the list.
	
	
	

Completing and Deleting Items

	
	
	Let’s complete the application functionality by adding the two missing features: the complete command to mark an item as done and the del command to delete an item from the list.

According to the to-do REST API requirements, to complete an item you must send an HTTP PATCH request to the endpoint /todo/id?complete, where id is an integer number representing the item in the list. To delete an item from the list, send an HTTP DELETE request to the endpoint /todo/id, where id is again a number that represents the item. For more information on this API’s requirements, see Table 1, ​To-Do REST API Operations​.

To send those requests, you’ll reuse the function sendRequest you implemented for the add command in ​Adding an Item​. Open and edit the file cmd/client.go. Define a new function completeItem that takes two parameters, the apiRoot as string and id as int. It returns an error. This function uses those two parameters to compose the final URL for the request and then uses the sendRequest function to send the request to the server:
apis/todoClient.v3/cmd/client.go
	​ 	​func​ completeItem(apiRoot ​string​, id ​int​) ​error​ {
	​ 	 u := fmt.Sprintf(​"%s/todo/%d?complete"​, apiRoot, id)
	​ 	
	​ 	 ​return​ sendRequest(u, http.MethodPatch, ​""​, http.StatusNoContent, nil)
	​ 	}

In this function, you use the constant http.MethodPatch as the HTTP method and the constant http.StatusNoContent as the expected HTTP status. This request doesn’t require a body, so you set the content type to an empty string and the body as nil.

Define an analogous function deleteItem to delete the item. Compose the proper URL according to the requirements and use the constant http.MethodDelete to send an HTTP DELETE request:
apis/todoClient.v3/cmd/client.go
	​ 	​func​ deleteItem(apiRoot ​string​, id ​int​) ​error​ {
	​ 	 u := fmt.Sprintf(​"%s/todo/%d"​, apiRoot, id)
	​ 	
	​ 	 ​return​ sendRequest(u, http.MethodDelete, ​""​, http.StatusNoContent, nil)
	​ 	}

Now implement the command-line options. Save and close the cmd/client.go file, and use the Cobra generator to add the complete command to your application:
	​ 	​$ ​​cobra​​ ​​add​​ ​​complete​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	complete created at /home/ricardo/pragprog.com/rggo/apis/todoClient

Then edit the generated file cmd/complete.go the same way you did for the previous commands. Update the import section to include the following packages: io to use the io.Writer interface, os to use os.Stdout for output, strconv to convert string to integer, and github.com/spf13/viper to get the api-root configuration value:
apis/todoClient.v3/cmd/complete.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	»	 ​"io"​
	»	 ​"os"​
	»	 ​"strconv"​
	»	
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	»	 ​"github.com/spf13/viper"​
	​)

Update the completeCmd command type definition according to the command’s requirements. Because this command requires the id to identify the task to complete, the options are similar to the view command you defined in ​Viewing a Single Item​. Use the function completeAction as the action function in the RunE property:
apis/todoClient.v3/cmd/complete.go
	​ 	​var​ completeCmd = &cobra.Command{
	​ 	 Use: ​"complete <id>"​,
	​ 	 Short: ​"Marks an item as completed"​,
	​ 	 SilenceUsage: true,
	​ 	 Args: cobra.ExactArgs(1),
	​ 	 RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	​ 	 apiRoot := viper.GetString(​"api-root"​)
	​ 	
	​ 	 ​return​ completeAction(os.Stdout, apiRoot, args[0])
	​ 	 },
	​ 	}

Next, define the function completeAction to execute the command action. This function converts the string arg to an integer representing the item id, uses the function completeItem to make the API call to mark the item as completed, and prints the results using the function printComplete:
apis/todoClient.v3/cmd/complete.go
	​ 	​func​ completeAction(out io.Writer, apiRoot, arg ​string​) ​error​ {
	​ 	 id, err := strconv.Atoi(arg)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ fmt.Errorf(​"%w: Item id must be a number"​, ErrNotNumber)
	​ 	 }
	​ 	
	​ 	 ​if​ err := completeItem(apiRoot, id); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ printComplete(out, id)
	​ 	}

Finally, define the function printComplete to print the results of the complete action:
apis/todoClient.v3/cmd/complete.go
	​ 	​func​ printComplete(out io.Writer, id ​int​) ​error​ {
	​ 	 _, err := fmt.Fprintf(out, ​"Item number %d marked as completed.​​\n​​"​, id)
	​ 	 ​return​ err
	​ 	}

Now implement the del command to delete items from the list. Save and close the file cmd/complete.go, and use the Cobra generator one more time to add the command:
	​ 	​$ ​​cobra​​ ​​add​​ ​​del​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	del created at /home/ricardo/pragprog.com/rggo/apis/todoClient

Edit the generated file cmd/del.go the same way you did for the complete command. Update the import section to include the same packages:
apis/todoClient.v3/cmd/del.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	»	 ​"io"​
	»	 ​"os"​
	»	 ​"strconv"​
	»	
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	»	 ​"github.com/spf13/viper"​
	​)

Update the delCmd command according to its requirements. This is almost the same as for the completeCmd command with the proper descriptions. Use the function delAction as the action function:
apis/todoClient.v3/cmd/del.go
	​ 	​var​ delCmd = &cobra.Command{
	​ 	 Use: ​"del <id>"​,
	​ 	 Short: ​"Deletes an item from the list"​,
	​ 	 SilenceUsage: true,
	​ 	 Args: cobra.ExactArgs(1),
	​ 	 RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	​ 	 apiRoot := viper.GetString(​"api-root"​)
	​ 	
	​ 	 ​return​ delAction(os.Stdout, apiRoot, args[0])
	​ 	 },
	​ 	}

Next, define the function delAction to execute the delete action. This function converts the string arg to an integer, uses the function deleteItem to make the REST API call to delete the item, and prints the results using the function printDel:
apis/todoClient.v3/cmd/del.go
	​ 	​func​ delAction(out io.Writer, apiRoot, arg ​string​) ​error​ {
	​ 	 id, err := strconv.Atoi(arg)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ fmt.Errorf(​"%w: Item id must be a number"​, ErrNotNumber)
	​ 	 }
	​ 	
	​ 	 ​if​ err := deleteItem(apiRoot, id); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ printDel(out, id)
	​ 	}

Complete this command by defining the function printDel to print the results of the delete action:
apis/todoClient.v3/cmd/del.go
	​ 	​func​ printDel(out io.Writer, id ​int​) ​error​ {
	​ 	 _, err := fmt.Fprintf(out, ​"Item number %d deleted.​​\n​​"​, id)
	​ 	 ​return​ err
	​ 	}

 Save and close the cmd/del.go file. Let’s add the tests for the two new commands.

Both of the new API calls expect a response with the status No Content. Open the file cmd/mock_test.go in your editor and add a new value to the testResp map to simulate this response:
apis/todoClient.v3/cmd/mock_test.go
	​ 	​"created"​: {
	​ 	 Status: http.StatusCreated,
	​ 	 Body: ​""​,
	​ 	},

	»	 ​"noContent"​: {
	»	 Status: http.StatusNoContent,
	»	 Body: ​""​,
	»	 },
	​ 	}

Save and close this file, and edit the cmd/actions_test.go file. Add a new test function TestCompleteAction to test the complete action. This test function applies the same concept as in ​Testing HTTP Requests Locally​, by using a closure to test and ensure the request has the correct parameters:
apis/todoClient.v3/cmd/actions_test.go
	​ 	​func​ TestCompleteAction(t *testing.T) {
	​ 	 expURLPath := ​"/todo/1"​
	​ 	 expMethod := http.MethodPatch
	​ 	 expQuery := ​"complete"​
	​ 	 expOut := ​"Item number 1 marked as completed.​​\n​​"​
	​ 	 arg := ​"1"​

	
	Instantiate the mock API server with the closure function to test the request parameters. In the anonymous function’s body, verify the URL path and the request HTTP method, as you did for the add command test. The API request to complete the item includes an URL query parameter. Verify if this expected query parameter exists by using the comma ok idiom.[51] Obtain the map with the query parameters by using the method r.URL.Query of the http.Request type:
apis/todoClient.v3/cmd/actions_test.go
	​ 	​// Instantiate a test server for Complete test​
	​ 	url, cleanup := mockServer(
	​ 	 ​func​(w http.ResponseWriter, r *http.Request) {
	​ 	 ​if​ r.URL.Path != expURLPath {
	​ 	 t.Errorf(​"Expected path %q, got %q"​, expURLPath, r.URL.Path)
	​ 	 }
	​ 	
	​ 	 ​if​ r.Method != expMethod {
	​ 	 t.Errorf(​"Expected method %q, got %q"​, expMethod, r.Method)
	​ 	 }
	​ 	
	​ 	 ​if​ _, ok := r.URL.Query()[expQuery]; !ok {
	​ 	 t.Errorf(​"Expected query %q not found in URL"​, expQuery)
	​ 	 }
	​ 	
	​ 	 w.WriteHeader(testResp[​"noContent"​].Status)
	​ 	 fmt.Fprintln(w, testResp[​"noContent"​].Body)
	​ 	 })
	​ 	​defer​ cleanup()

Test the function by defining a variable out to capture the output, execute the completeAction function, and verify the output matches the expected value, failing the test if it doesn’t:
apis/todoClient.v3/cmd/actions_test.go
	​ 	 ​// Execute Complete test​
	​ 	 ​var​ out bytes.Buffer
	​ 	
	​ 	 ​if​ err := completeAction(&out, url, arg); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q."​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ expOut != out.String() {
	​ 	 t.Errorf(​"Expected output %q, got %q"​, expOut, out.String())
	​ 	 }
	​ 	}

Finally, add a test function TestDelAction to test the delete action by applying the same concept. Use the constant http.MethodDelete as the expected method and Item number 1 deleted.\n as the expected output:
apis/todoClient.v3/cmd/actions_test.go
	​ 	​func​ TestDelAction(t *testing.T) {
	​ 	 expURLPath := ​"/todo/1"​
	​ 	 expMethod := http.MethodDelete
	​ 	 expOut := ​"Item number 1 deleted.​​\n​​"​
	​ 	 arg := ​"1"​
	​ 	
	​ 	 ​// Instantiate a test server for Del test​
	​ 	 url, cleanup := mockServer(
	​ 	 ​func​(w http.ResponseWriter, r *http.Request) {
	​ 	 ​if​ r.URL.Path != expURLPath {
	​ 	 t.Errorf(​"Expected path %q, got %q"​, expURLPath, r.URL.Path)
	​ 	 }
	​ 	
	​ 	 ​if​ r.Method != expMethod {
	​ 	 t.Errorf(​"Expected method %q, got %q"​, expMethod, r.Method)
	​ 	 }
	​ 	
	​ 	 w.WriteHeader(testResp[​"noContent"​].Status)
	​ 	 fmt.Fprintln(w, testResp[​"noContent"​].Body)
	​ 	 })
	​ 	 ​defer​ cleanup()
	​ 	 ​// Execute Del test​
	​ 	 ​var​ out bytes.Buffer
	​ 	
	​ 	 ​if​ err := delAction(&out, url, arg); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q."​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ expOut != out.String() {
	​ 	 t.Errorf(​"Expected output %q, got %q"​, expOut, out.String())
	​ 	 }
	​ 	}

Save and close the file cmd/actions_test.go and run the tests using go test:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​​ ​​./cmd​
	​ 	=== RUN TestListAction
	​ 	=== RUN TestListAction/Results
	​ 	=== RUN TestListAction/NoResults
	​ 	=== RUN TestListAction/InvalidURL
	​ 	--- PASS: TestListAction (0.00s)
	​ 	 --- PASS: TestListAction/Results (0.00s)
	​ 	 --- PASS: TestListAction/NoResults (0.00s)
	​ 	 --- PASS: TestListAction/InvalidURL (0.00s)
	​ 	=== RUN TestViewAction
	​ 	=== RUN TestViewAction/ResultsOne
	​ 	=== RUN TestViewAction/NotFound
	​ 	=== RUN TestViewAction/InvalidID
	​ 	--- PASS: TestViewAction (0.00s)
	​ 	 --- PASS: TestViewAction/ResultsOne (0.00s)
	​ 	 --- PASS: TestViewAction/NotFound (0.00s)
	​ 	 --- PASS: TestViewAction/InvalidID (0.00s)
	​ 	=== RUN TestAddAction
	​ 	--- PASS: TestAddAction (0.00s)
	​ 	=== RUN TestCompleteAction
	​ 	--- PASS: TestCompleteAction (0.00s)
	​ 	=== RUN TestDelAction
	​ 	--- PASS: TestDelAction (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/apis/todoClient/cmd 0.015s

The local tests passed and the application is almost done. Before we complete it, we need to ensure it works with the actual API by running integration tests.
	
	
	

Executing Integration Tests

	
	
	
	As you learned in ​Testing the Client Without Connecting to the API​, executing the unit tests locally allows you to execute these tests frequently without touching the actual REST API. This is particularly useful when you’re working on a disconnected environment or when using third-party APIs. It also provides a controlled and repeatable environment where you can test different conditions that may not be possible with the actual API, such as error conditions.

	
	This approach has a downside. If you missed a detail about the API or if the API changed, the application may not work properly, but the local tests will make you think it does. To overcome this challenge, you’ll run an integration test that connects to the actual API as the last step in your testing process. To ensure that this test doesn’t run all the time, you’ll use a Go build constraint. You’ll learn more about build constraints in Chapter 11, ​Distributing Your Tool​, so, for now, think of a build constraint as a condition that defines whether to include a file when building or testing the application.[52]

For this example, you’ll create a new test file cmd/integration_test.go with the build constraint integration. This prevents Go from selecting this file and consequently running this test unless you explicitly use the parameter -tags integration when running the tests.

Create and edit a new file called cmd/integration_test.go. Define the build constraint as a comment at the top of the file, before the package definition. Include the package definition as well:
apis/todoClient.v3/cmd/integration_test.go
	​ 	​// +build integration​
	​ 	
	​ 	​package​ cmd

Add the import list. For this test, you’ll use the following packages: bufio to read lines from the output, bytes to create buffers to capture output, fmt to define formatted strings, math/rand to help create a random task name for the test, os to read environment variables, strings to manipulate string data, testing that provides the testing features, and time to deal with time data:
apis/todoClient.v3/cmd/integration_test.go
	​ 	​import​ (
	​ 	 ​"bufio"​
	​ 	 ​"bytes"​
	​ 	 ​"fmt"​
	​ 	 ​"math/rand"​
	​ 	 ​"os"​
	​ 	 ​"strings"​
	​ 	 ​"testing"​
	​ 	 ​"time"​
	​)

One of the major challenges when testing with a live REST API is ensuring the test is reproducible. You want to avoid conflicts with existing data exposed by the API, as well as conflicts with other test data. In some cases, you may have control over the REST API, or you may have a separate development environment you can use to test. For this example, we’re assuming that you’re using a third-party API that you don’t control. To deal with this situation, you’ll create a random task name that will be different each time you execute the test.

Define a new helper function randomTaskName that uses the math/rand package and the strings.Builder type to generate a random 32-character--long string. The number 32 is arbitrary but should provide enough uniqueness to guarantee no conflict occurs with the existing data or other tests:
apis/todoClient.v3/cmd/integration_test.go
	​ 	​func​ randomTaskName(t *testing.T) ​string​ {
	​ 	 t.Helper()
	​ 	 ​const​ chars = ​"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"​
	​ 	
	​ 	 r := rand.New(rand.NewSource(time.Now().UnixNano()))
	​ 	
	​ 	 ​var​ p strings.Builder
	​ 	 ​for​ i := 0; i < 32; i++ {
	​ 	 p.WriteByte(chars[r.Intn(len(chars))])
	​ 	 }
	​ 	
	​ 	 ​return​ p.String()
	​ 	}

Add the test function TestIntegration to define the integration test:
apis/todoClient.v3/cmd/integration_test.go
	​ 	​func​ TestIntegration(t *testing.T) {

Create a variable called apiRoot with a default value for the REST API root URL, and allow the user to change it by setting the environment variable TODO_API_ROOT:
apis/todoClient.v3/cmd/integration_test.go
	​ 	apiRoot := ​"http://localhost:8080"​
	​ 	
	​ 	​if​ os.Getenv(​"TODO_API_ROOT"​) != ​""​ {
	​ 	 apiRoot = os.Getenv(​"TODO_API_ROOT"​)
	​ 	}

Then define a variable called today that contains the current date formatted with month and day. You’ll use this variable to check if the date format in the task details is correct. The task details also include the timestamp hour and minute, but it’s tricky to test those if you execute the test when the minute changes. By checking the day only, you minimize that risk, unless you execute the test around midnight:
apis/todoClient.v3/cmd/integration_test.go
	​ 	today := time.Now().Format(​"Jan/02"​)

Define the task name by using the randomTaskName function you defined before. Then define an empty variable taskId for setting the task ID later after the task is created using the API:
apis/todoClient.v3/cmd/integration_test.go
	​ 	task := randomTaskName(t)
	​ 	taskId := ​""​

You’re ready to start executing the tests. The integration test workflow is:
	AddTask
	ListTasks
	ViewTask
	CompleteTask
	ListCompletedTask
	DeleteTask
	ListDeletedTask

Organize each step of the integration test workflow as a subtest using the t.Run method. Define the first subtest AddTask:
apis/todoClient.v3/cmd/integration_test.go
	​ 	t.Run(​"AddTask"​, ​func​(t *testing.T) {
	​ 	 args := []​string​{task}
	​ 	 expOut := fmt.Sprintf(​"Added task %q to the list.​​\n​​"​, task)
	​ 	
	​ 	 ​// Execute Add test​
	​ 	 ​var​ out bytes.Buffer
	​ 	
	​ 	 ​if​ err := addAction(&out, apiRoot, args); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q."​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ expOut != out.String() {
	​ 	 t.Errorf(​"Expected output %q, got %q"​, expOut, out.String())
	​ 	 }
	​ 	})

Then define the ListTasks test. Because we don’t control the API, we don’t know how many items are in the list before the test, so we can’t test the number of items or the full command output. Use the bufio.Scanner type to look for the test task name in the list. Fail the test if the task you created in the previous subtest isn’t in the list. If the task is in the list, use the function strings.Fields to split the output by spaces and verify the task isn’t completed. Use the same function to extract the task ID to use in the following tests:
apis/todoClient.v3/cmd/integration_test.go
	​ 	t.Run(​"ListTasks"​, ​func​(t *testing.T) {
	​ 	 ​var​ out bytes.Buffer
	​ 	 ​if​ err := listAction(&out, apiRoot); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q."​, err)
	​ 	 }
	​ 	
	​ 	 outList := ​""​
	​ 	 scanner := bufio.NewScanner(&out)
	​ 	 ​for​ scanner.Scan() {
	​ 	 ​if​ strings.Contains(scanner.Text(), task) {
	​ 	 outList = scanner.Text()
	​ 	 ​break​
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​if​ outList == ​""​ {
	​ 	 t.Errorf(​"Task %q is not in the list"​, task)
	​ 	 }
	​ 	
	​ 	 taskCompleteStatus := strings.Fields(outList)[0]
	​ 	
	​ 	 ​if​ taskCompleteStatus != ​"-"​ {
	​ 	 t.Errorf(​"Expected status %q, got %q"​, ​"-"​, taskCompleteStatus)
	​ 	 }
	​ 	
	​ 	 taskId = strings.Fields(outList)[1]
	​ 	})

Now define the ViewTask subtest to view the task details. Capture its return value, assigning it to the variable vRes. Later, you’ll use this output to decide whether to continue the tests. Use the taskId variable you set in the previous test. Split the output by line using the function strings.Split, and then verify that the content of each line corresponds to the expected output, including the task name, date, and completion status. Fail the test using the t.Fatalf function to stop the subtest immediately:
apis/todoClient.v3/cmd/integration_test.go
	​ 	vRes := t.Run(​"ViewTask"​, ​func​(t *testing.T) {
	​ 	 ​var​ out bytes.Buffer
	​ 	 ​if​ err := viewAction(&out, apiRoot, taskId); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q."​, err)
	​ 	 }
	​ 	
	​ 	 viewOut := strings.Split(out.String(), ​"​​\n​​"​)
	​ 	
	​ 	 ​if​ !strings.Contains(viewOut[0], task) {
	​ 	 t.Fatalf(​"Expected task %q, got %q"​, task, viewOut[0])
	​ 	 }
	​ 	
	​ 	 ​if​ !strings.Contains(viewOut[1], today) {
	​ 	 t.Fatalf(​"Expected creation day/month %q, got %q"​, today, viewOut[1])
	​ 	 }
	​ 	
	​ 	 ​if​ !strings.Contains(viewOut[2], ​"No"​) {
	​ 	 t.Fatalf(​"Expected completed status %q, got %q"​, ​"No"​, viewOut[2])
	​ 	 }
	​ 	})

Verify that the previous subtest failed to complete, and fail the test here to prevent the rest of the subtests from running. This is a safeguard to ensure the next test doesn’t update or delete the incorrect item:
apis/todoClient.v3/cmd/integration_test.go
	​ 	​if​ !vRes {
	​ 	 t.Fatalf(​"View task failed. Stopping integration tests."​)
	​ 	}

Next, define the CompleteTask test to mark the item as completed. Verify the output and fail the test if it doesn’t match the expected value:
apis/todoClient.v3/cmd/integration_test.go
	​ 	t.Run(​"CompleteTask"​, ​func​(t *testing.T) {
	​ 	 ​var​ out bytes.Buffer
	​ 	 ​if​ err := completeAction(&out, apiRoot, taskId); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q."​, err)
	​ 	 }
	​ 	
	​ 	 expOut := fmt.Sprintf(​"Item number %s marked as completed.​​\n​​"​, taskId)
	​ 	
	​ 	 ​if​ expOut != out.String() {
	​ 	 t.Fatalf(​"Expected output %q, got %q"​, expOut, out.String())
	​ 	 }
	​ 	})

Add the next subtest ListCompletedTask. This is similar to the previous ListTasks subtest, but it verifies that the task is completed instead. You don’t need to set the task ID again:
apis/todoClient.v3/cmd/integration_test.go
	​ 	t.Run(​"ListCompletedTask"​, ​func​(t *testing.T) {
	​ 	 ​var​ out bytes.Buffer
	​ 	 ​if​ err := listAction(&out, apiRoot); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q."​, err)
	​ 	 }
	​ 	
	​ 	 outList := ​""​
	​ 	 scanner := bufio.NewScanner(&out)
	​ 	 ​for​ scanner.Scan() {
	​ 	 ​if​ strings.Contains(scanner.Text(), task) {
	​ 	 outList = scanner.Text()
	​ 	 ​break​
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​if​ outList == ​""​ {
	​ 	 t.Errorf(​"Task %q is not in the list"​, task)
	​ 	 }
	​ 	
	​ 	 taskCompleteStatus := strings.Fields(outList)[0]
	​ 	
	​ 	 ​if​ taskCompleteStatus != ​"X"​ {
	​ 	 t.Errorf(​"Expected status %q, got %q"​, ​"X"​, taskCompleteStatus)
	​ 	 }
	​ 	})

Then add the subtest DeleteTask to delete the task from the list. Since this is a destructive test, ensure safeguards are around it to prevent any data loss. In our case, we would stop the test before this point if the task details don’t match the expected values. In other cases, you may need to perform additional checks before running this type of test:
apis/todoClient.v3/cmd/integration_test.go
	​ 	t.Run(​"DeleteTask"​, ​func​(t *testing.T) {
	​ 	 ​var​ out bytes.Buffer
	​ 	 ​if​ err := delAction(&out, apiRoot, taskId); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q."​, err)
	​ 	 }
	​ 	
	​ 	 expOut := fmt.Sprintf(​"Item number %s deleted.​​\n​​"​, taskId)
	​ 	
	​ 	 ​if​ expOut != out.String() {
	​ 	 t.Fatalf(​"Expected output %q, got %q"​, expOut, out.String())
	​ 	 }
	​ 	})

Finally, define the subtest ListDeletedTask. This is a modified version of the ListTasks subtest, but, this time, you’re expecting to not find the item in the list:
apis/todoClient.v3/cmd/integration_test.go
	​ 	t.Run(​"ListDeletedTask"​, ​func​(t *testing.T) {
	​ 	 ​var​ out bytes.Buffer
	​ 	 ​if​ err := listAction(&out, apiRoot); err != nil {
	​ 	 t.Fatalf(​"Expected no error, got %q."​, err)
	​ 	 }
	​ 	
	​ 	 scanner := bufio.NewScanner(&out)
	​ 	 ​for​ scanner.Scan() {
	​ 	 ​if​ strings.Contains(scanner.Text(), task) {
	​ 	 t.Errorf(​"Task %q is still in the list"​, task)
	​ 	 ​break​
	​ 	 }
	​ 	 }
	​ 	})

This completes the definition of the integration tests. In some situations, you may need to perform additional cleanup actions after your tests. In our scenario, since your tests delete the task, you don’t need to do anything else.

Before executing the integration tests, let’s add a build constraint to the local tests to prevent them from executing when running the integration tests. Save and close the cmd/integration_test.go file, and edit the cmd/actions_test.go file. Add the build constraint // +build !integration as the first line in the file. The exclamation point ! character before the constraint name integration negates it. In this case, this file isn’t included in the build (or tests) when using the tag integration:
apis/todoClient.v3/cmd/actions_test.go
	​ 	​// +build !integration​
	​ 	
	​ 	​package​ cmd

Save and close the file cmd/actions_test.go, and execute the integration tests using the go test command with the -tags integration option to include the integration tests and exclude the local tests:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​​ ​​./cmd​​ ​​-tags​​ ​​integration​
	​ 	=== RUN TestIntegration
	​ 	=== RUN TestIntegration/AddTask
	​ 	=== RUN TestIntegration/ListTasks
	​ 	=== RUN TestIntegration/ViewTask
	​ 	=== RUN TestIntegration/CompleteTask
	​ 	=== RUN TestIntegration/ListCompletedTask
	​ 	=== RUN TestIntegration/DeleteTask
	​ 	=== RUN TestIntegration/ListDeletedTask
	​ 	--- PASS: TestIntegration (0.01s)
	​ 	 --- PASS: TestIntegration/AddTask (0.00s)
	​ 	 --- PASS: TestIntegration/ListTasks (0.00s)
	​ 	 --- PASS: TestIntegration/ViewTask (0.00s)
	​ 	 --- PASS: TestIntegration/CompleteTask (0.00s)
	​ 	 --- PASS: TestIntegration/ListCompletedTask (0.00s)
	​ 	 --- PASS: TestIntegration/DeleteTask (0.00s)
	​ 	 --- PASS: TestIntegration/ListDeletedTask (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/apis/todoClient/cmd 0.016s

If you execute the tests a second time, Go provides cached results to improve the speed if the code didn’t change since the first test execution. You can see this when the test results include the word (cached):
	​ 	​$ ​​go​​ ​​test​​ ​​./cmd​​ ​​-tags​​ ​​integration​
	​ 	ok pragprog.com/rggo/apis/todoClient/cmd (cached)

While this is a useful feature when running unit tests, it may not be desired when running the integration tests, as you want to touch the API to ensure it didn’t change. To make sure Go doesn’t provide cached results for the integration tests, append the option -count=1 to the go test command:
	​ 	​$ ​​go​​ ​​test​​ ​​./cmd​​ ​​-tags​​ ​​integration​​ ​​-count=1​
	​ 	ok pragprog.com/rggo/apis/todoClient/cmd 0.013s

If you execute the tests without the -tags integration option, Go executes only the local tests. Since this is the default, you can control when to execute the integration tests:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​​ ​​./cmd​
	​ 	=== RUN TestListAction
	​ 	=== RUN TestListAction/Results
	​ 	=== RUN TestListAction/NoResults
	​ 	=== RUN TestListAction/InvalidURL
	​ 	--- PASS: TestListAction (0.00s)
	​ 	 --- PASS: TestListAction/Results (0.00s)
	​ 	 --- PASS: TestListAction/NoResults (0.00s)
	​ 	 --- PASS: TestListAction/InvalidURL (0.00s)
	​ 	=== RUN TestViewAction
	​ 	=== RUN TestViewAction/ResultsOne
	​ 	=== RUN TestViewAction/NotFound
	​ 	=== RUN TestViewAction/InvalidID
	​ 	--- PASS: TestViewAction (0.00s)
	​ 	 --- PASS: TestViewAction/ResultsOne (0.00s)
	​ 	 --- PASS: TestViewAction/NotFound (0.00s)
	​ 	 --- PASS: TestViewAction/InvalidID (0.00s)
	​ 	=== RUN TestAddAction
	​ 	--- PASS: TestAddAction (0.00s)
	​ 	=== RUN TestCompleteAction
	​ 	--- PASS: TestCompleteAction (0.00s)
	​ 	=== RUN TestDelAction
	​ 	--- PASS: TestDelAction (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/apis/todoClient/cmd (cached)

Try your application now. Build it with go build:
	​ 	​$ ​​go​​ ​​build​

This assumes the todoServer from the previous section is still running. If not, start it now:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/apis/todoServer​
	​ 	​$ ​​./todoServer​​ ​​-f​​ ​​/tmp/testtodoclient01.json​

In a different terminal, list the existing tasks:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/apis/todoClient​
	​ 	​$ ​​./todoClient​​ ​​list​
	​ 	- 1 Task 1
	​ 	- 2 Task 2
	​ 	- 3 A New Task

Complete task number 2:
	​ 	​$ ​​./todoClient​​ ​​complete​​ ​​2​
	​ 	Item number 2 marked as completed.
	​ 	​$ ​​./todoClient​​ ​​list​
	​ 	- 1 Task 1
	​ 	X 2 Task 2
	​ 	- 3 A New Task

Delete item number 3:
	​ 	​$ ​​./todoClient​​ ​​del​​ ​​3​
	​ 	Item number 3 deleted.
	​ 	​$ ​​./todoClient​​ ​​list​
	​ 	- 1 Task 1
	​ 	X 2 Task 2

This completes your REST API client command-line application.
	
	
	
	
	

Exercises

Before you move on, you may want to expand the skills and techniques you’ve explored in this chapter. Here are some suggestions:
	
Add a flag --active to the list command to display only active tasks that aren’t completed.

	
Create a command-line tool that queries data from an API over the Internet using the principles you learned in this chapter. Some good starting points are the Movie DB[53] or the Open Weather API.[54]

Wrapping Up

In this chapter, you used the Cobra framework and the net/http package to develop a command-line application that interacts with a remote REST API using different techniques and options. You also used the encoding/json package to parse JSON data. These skills allow you to gather data from a variety of sources on the Internet or from your environment to create powerful and flexible tools.

You also explored and applied several techniques for testing your API server and your command-line client implementation. By combining unit tests with simulated responses and test servers, you can execute constant local tests while using integration tests sporadically to ensure your application works reliably across different environments.

In the next chapter, you’ll develop an interactive terminal application.

Footnotes

	[49]
	
 https://golang.org/pkg/text/tabwriter/

	[50]
	
 https://pkg.go.dev/time#pkg-constants

	[51]
	
 https://golang.org/doc/effective_go.html#maps

	[52]
	
 https://golang.org/pkg/go/build/#hdr-Build_Constraints

	[53]
	
 https://www.themoviedb.org/documentation/api

	[54]
	
 https://openweathermap.org/api

Copyright © 2021, The Pragmatic Bookshelf.

 Chapter
 9
Developing Interactive Terminal Tools

So far, you’ve built applications that run mostly unattended. This is one of the major benefits of command-line tools: you provide the required parameters, the tool performs some actions, and it then provides you with the results. But some applications are better suited for an interactive workflow where the user provides or receives feedback continuously, like the kinds of applications in a graphical user interface (GUI).

 In this chapter, you’ll develop an interactive Pomodoro timer application. The Pomodoro[55] is a time management approach that allows you to focus on tasks by defining a short time interval to concentrate on it, called Pomodoro, followed by short and long breaks to allow you to rest and reprioritize tasks. In general, a Pomodoro interval lasts 25 minutes while breaks are typically 5 and 15 minutes.

 Instead of developing a full GUI, you’ll design and implement an interactive CLI application that runs directly on a terminal. Compared to full GUI applications, interactive CLI apps use fewer resources, and often require fewer dependencies, making them more portable. Examples of this type of application include system monitoring applications, such as top or htop, and interactive disk utilities, such as ncdu.

 For your Pomodoro application, you’ll implement the Repository pattern[56] to abstract the data source, decoupling the business logic from the data. This way you can implement different data stores according to your requirements. For instance, in this chapter, you’ll implement an in-memory data store for this application. Later in Chapter 10, ​Persisting Data in a SQL Database​, you’ll expand this application by implementing another repository backed up by a SQL database.

At the end of this chapter, your Pomodoro tool will look like Figure 12:
[image: images/interactiveTools/pomo_screen_final.png]

Figure 12. Pomodoro Screen

After you add the summary widgets in Chapter 10, ​Persisting Data in a SQL Database​, the complete tool will look like Figure 13:
[image: images/interactiveTools/pomo_screen_db.png]

Figure 13. Pomodoro Screen with Summary

Let’s start by developing the business logic for the application.

Initializing the Pomodoro Application

	
	Start by creating the directory structure for your Pomodoro application under your book’s root directory:
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo​

Next, initialize the Go module for this project:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo​
	​ 	​$ ​​go​​ ​​mod​​ ​​init​​ ​​pragprog.com/rggo/interactiveTools/pomo​
	​ 	go: creating new go.mod: module pragprog.com/rggo/interactiveTools/pomo

	
	

	Let’s start this application by developing the pomodoro package that contains the business logic to create and use the pomodoro timer. By creating a separate package for the business logic, you can test it independently of the user interface and use the same package in other projects. Create the subdirectory pomodoro in your project directory and switch to it:
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo/pomodoro​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo/pomodoro​

	
	In this directory, create the file interval.go, which is where you’ll put the timer functionality. The Pomodoro technique records time in intervals that can be of different types such as Pomodoro, short breaks, or long breaks. Open this file in your text editor and add the package definition and import section. You’ll use the following packages: context to carry context and cancellation signals from the user interface, errors to define custom errors, fmt to format output, and time to handle time-related data:
interactiveTools/pomo/pomodoro/interval.go
	​ 	​package​ pomodoro
	​ 	
	​ 	​import​ (
	​ 	 ​"context"​
	​ 	 ​"errors"​
	​ 	 ​"fmt"​
	​ 	 ​"time"​
	​)

Next, define two sets of constants to represent the different categories and states for a Pomodoro interval. Start with the category. As mentioned before, a Pomodoro interval can be one of three categories: Pomodoro, short break, or long break. Create a set of constants CategoryPomodoro, CategoryShortBreak, and CategoryLongBreak to represent them:
interactiveTools/pomo/pomodoro/interval.go
	​ 	​// Category constants​
	​ 	​const​ (
	​ 	 CategoryPomodoro = ​"Pomodoro"​
	​ 	 CategoryShortBreak = ​"ShortBreak"​
	​ 	 CategoryLongBreak = ​"LongBreak"​
	​)

	
	
	
	Then, add the constant set for the state. Represent the state as an integer number to save space when saving this data in a database. This isn’t critical for this specific application, but we’ll use it as an example of a different data type later in Chapter 10, ​Persisting Data in a SQL Database​. Your pomodoro interval can be one of five states: StateNotStarted, StateRunning, StatePaused, StateDone, or StateCancelled. Use the iota operator to define sequential values like this:
	
	
interactiveTools/pomo/pomodoro/interval.go
	​ 	​// State constants​
	​ 	​const​ (
	​ 	 StateNotStarted = iota
	​ 	 StateRunning
	​ 	 StatePaused
	​ 	 StateDone
	​ 	 StateCancelled
	​)

By using the iota operator, Go automatically increases the number for each line, resulting in a set of constants from zero (0) for StateNotStarted to five (5) for StateCancelled.
	Now define a custom struct type named Interval to represent the pomodoro interval:

interactiveTools/pomo/pomodoro/interval.go
	​ 	​type​ Interval ​struct​ {
	​ 	 ID ​int64​
	​ 	 StartTime time.Time
	​ 	 PlannedDuration time.Duration
	​ 	 ActualDuration time.Duration
	​ 	 Category ​string​
	​ 	 State ​int​
	​ 	}

	
	
	
	
	As you saw in this chapter’s introduction, you’ll use the Repository pattern for this application, starting in ​Storing Data with the Repository Pattern​. To allow for that, abstract the data source by defining the Repository interface here. This interface defines the methods Create to create an interval, Update to update the interval, ByID to retrieve an interval by its ID, Last to find the last interval, and Breaks to retrieve intervals of type break. Define the interface like this:
interactiveTools/pomo/pomodoro/interval.go
	​ 	​type​ Repository ​interface​ {
	​ 	 Create(i Interval) (​int64​, ​error​)
	​ 	 Update(i Interval) ​error​
	​ 	 ByID(id ​int64​) (Interval, ​error​)
	​ 	 Last() (Interval, ​error​)
	​ 	 Breaks(n ​int​) ([]Interval, ​error​)
	​ 	}

	
	
	
	
	
	Then define new error values for this package representing particular errors that it may return. For this application, we’re especially interested in verifying errors that might occur in the business logic or during tests. For brevity, this isn’t a comprehensive set:
interactiveTools/pomo/pomodoro/interval.go
	​ 	​var​ (
	​ 	 ErrNoIntervals = errors.New(​"No intervals"​)
	​ 	 ErrIntervalNotRunning = errors.New(​"Interval not running"​)
	​ 	 ErrIntervalCompleted = errors.New(​"Interval is completed or cancelled"​)
	​ 	 ErrInvalidState = errors.New(​"Invalid State"​)
	​ 	 ErrInvalidID = errors.New(​"Invalid ID"​)
	​)

	
	Next, define the custom type IntervalConfig representing the configuration required to instantiate an interval. This type allows users to provide the desired duration for each interval type and the data store repository to use:
interactiveTools/pomo/pomodoro/interval.go
	​ 	​type​ IntervalConfig ​struct​ {
	​ 	 repo Repository
	​ 	 PomodoroDuration time.Duration
	​ 	 ShortBreakDuration time.Duration
	​ 	 LongBreakDuration time.Duration
	​ 	}

Add a new function NewConfig to instantiate a new IntervalConfig. This function uses the values provided by the user or sets default values for each interval type in case the user doesn’t provide them:
interactiveTools/pomo/pomodoro/interval.go
	​ 	​func​ NewConfig(repo Repository, pomodoro, shortBreak,
	​ 	 longBreak time.Duration) *IntervalConfig {
	​ 	
	​ 	 c := &IntervalConfig{
	​ 	 repo: repo,
	​ 	 PomodoroDuration: 25 * time.Minute,
	​ 	 ShortBreakDuration: 5 * time.Minute,
	​ 	 LongBreakDuration: 15 * time.Minute,
	​ 	 }
	​ 	
	​ 	 ​if​ pomodoro > 0 {
	​ 	 c.PomodoroDuration = pomodoro
	​ 	 }
	​ 	
	​ 	 ​if​ shortBreak > 0 {
	​ 	 c.ShortBreakDuration = shortBreak
	​ 	 }
	​ 	
	​ 	 ​if​ longBreak > 0 {
	​ 	 c.LongBreakDuration = longBreak
	​ 	 }
	​ 	
	​ 	 ​return​ c
	​ 	}

	
	Next, you’ll create a set of functions and methods to deal with the main Interval type. Start with the internal, non-exported functions. The first function, nextCategory, takes a reference to the repository as input and returns the next interval category as a string or an error:
interactiveTools/pomo/pomodoro/interval.go
	​ 	​func​ nextCategory(r Repository) (​string​, ​error​) {
	​ 	 li, err := r.Last()
	​ 	 ​if​ err != nil && err == ErrNoIntervals {
	​ 	 ​return​ CategoryPomodoro, nil
	​ 	 }
	​ 	 ​if​ err != nil {
	​ 	 ​return​ ​""​, err
	​ 	 }
	​ 	
	​ 	 ​if​ li.Category == CategoryLongBreak || li.Category == CategoryShortBreak {
	​ 	 ​return​ CategoryPomodoro, nil
	​ 	 }
	​ 	
	​ 	 lastBreaks, err := r.Breaks(3)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ ​""​, err
	​ 	 }
	​ 	
	​ 	 ​if​ len(lastBreaks) < 3 {
	​ 	 ​return​ CategoryShortBreak, nil
	​ 	 }
	​ 	
	​ 	 ​for​ _, i := ​range​ lastBreaks {
	​ 	 ​if​ i.Category == CategoryLongBreak {
	​ 	 ​return​ CategoryShortBreak, nil
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​return​ CategoryLongBreak, nil
	​ 	}

This function retrieves the last interval from the repository and determines the next interval category based on the Pomodoro Technique rules. After each Pomodoro interval, there’s a short break, and after four Pomodoros, there’s a long break. If the function can’t find the last interval, for example, for the first execution, it returns the category CategoryPomodoro.

	
	
	
	Next comes the tick function that controls the timer for each interval’s execution. Controlling time is the main goal of a Pomodoro application, but doing only this isn’t useful. We want to provide a way for callers of this package to perform tasks while the interval executes. These tasks are useful for providing feedback to users, such as updating a screen with a timer or another visual indicator, or notifying the users about something. To enable this functionality, this package allows callers to pass callback functions to execute during the interval. Before defining the tick function, define a new exported type Callback with the underlying type func(Interval). The Callback function accepts an instance of type Interval as input and returns no values:
interactiveTools/pomo/pomodoro/interval.go
	​ 	​type​ Callback ​func​(Interval)

Now define the tick function to control the interval timer. This function takes as input an instance of context.Context that indicates a cancellation, the id of the Interval to control, an instance of the configuration IntervalConfig, and three Callback functions that you defined before (one to execute at the start, one at the end, and one periodically). This function returns an error:
interactiveTools/pomo/pomodoro/interval.go
	​ 	​func​ tick(ctx context.Context, id ​int64​, config *IntervalConfig,
	​ 	 start, periodic, end Callback) ​error​ {
	​ 	
	​ 	 ticker := time.NewTicker(time.Second)
	​ 	 ​defer​ ticker.Stop()
	​ 	
	​ 	 i, err := config.repo.ByID(id)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 expire := time.After(i.PlannedDuration - i.ActualDuration)
	​ 	
	​ 	 start(i)
	​ 	
	​ 	 ​for​ {
	​ 	 ​select​ {
	​ 	 ​case​ <-ticker.C:
	​ 	 i, err := config.repo.ByID(id)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​if​ i.State == StatePaused {
	​ 	 ​return​ nil
	​ 	 }
	​ 	
	​ 	 i.ActualDuration += time.Second
	​ 	 ​if​ err := config.repo.Update(i); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 periodic(i)
	​ 	 ​case​ <-expire:
	​ 	 i, err := config.repo.ByID(id)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 i.State = StateDone
	​ 	 end(i)
	​ 	 ​return​ config.repo.Update(i)
	​ 	 ​case​ <-ctx.Done():
	​ 	 i, err := config.repo.ByID(id)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 i.State = StateCancelled
	​ 	 ​return​ config.repo.Update(i)
	​ 	 }
	​ 	 }
	​ 	}

	
	This function uses the time.Ticker type and a loop to execute actions every second while the interval time progresses. It uses a select statement to take actions, executing periodically when the time.Ticker goes off, finishing successfully when the interval time expires, or canceling when a signal is received from Context.

	
	
	
	The last non-exported function in this package, newInterval, takes an instance of the config IntervalConfig and returns a new Interval instance with the appropriate category and values:
interactiveTools/pomo/pomodoro/interval.go
	​ 	​func​ newInterval(config *IntervalConfig) (Interval, ​error​) {
	​ 	 i := Interval{}
	​ 	 category, err := nextCategory(config.repo)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ i, err
	​ 	 }
	​ 	
	​ 	 i.Category = category
	​ 	
	​ 	 ​switch​ category {
	​ 	 ​case​ CategoryPomodoro:
	​ 	 i.PlannedDuration = config.PomodoroDuration
	​ 	 ​case​ CategoryShortBreak:
	​ 	 i.PlannedDuration = config.ShortBreakDuration
	​ 	 ​case​ CategoryLongBreak:
	​ 	 i.PlannedDuration = config.LongBreakDuration
	​ 	 }
	​ 	
	​ 	 ​if​ i.ID, err = config.repo.Create(i); err != nil {
	​ 	 ​return​ i, err
	​ 	 }
	​ 	
	​ 	 ​return​ i, nil
	​ 	}

	
	Once you have the private functions in place, define the API for the Interval type. It consists of three exported functions: GetInterval, Start, and Pause. First, define the GetInterval function, which takes an instance of IntervalConfig as input, and returns either an instance of the Interval type or an error:
interactiveTools/pomo/pomodoro/interval.go
	​ 	​func​ GetInterval(config *IntervalConfig) (Interval, ​error​) {
	​ 	 i := Interval{}
	​ 	 ​var​ err ​error​
	​ 	
	​ 	 i, err = config.repo.Last()
	​ 	
	​ 	 ​if​ err != nil && err != ErrNoIntervals {
	​ 	 ​return​ i, err
	​ 	 }
	​ 	
	​ 	 ​if​ err == nil && i.State != StateCancelled && i.State != StateDone {
	​ 	 ​return​ i, nil
	​ 	 }
	​ 	
	​ 	 ​return​ newInterval(config)
	​ 	}

This function attempts to retrieve the last interval from the repository, returning it if it’s active or returning an error when there’s an issue accessing the repository. If the last interval is inactive or unavailable, this function returns a new interval using the previously defined function newInterval.

	
	Next, define the Start method that callers use to start the interval timer. This function checks the state of the current interval setting the appropriate options and then calls the tick function to time the interval. This function takes the same input parameters as the tick function, including the callbacks to pass to tick when required. It returns an error:
interactiveTools/pomo/pomodoro/interval.go
	​ 	​func​ (i Interval) Start(ctx context.Context, config *IntervalConfig,
	​ 	 start, periodic, end Callback) ​error​ {
	​ 	
	​ 	 ​switch​ i.State {
	​ 	 ​case​ StateRunning:
	​ 	 ​return​ nil
	​ 	 ​case​ StateNotStarted:
	​ 	 i.StartTime = time.Now()
	​ 	 ​fallthrough​
	​ 	 ​case​ StatePaused:
	​ 	 i.State = StateRunning
	​ 	 ​if​ err := config.repo.Update(i); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 ​return​ tick(ctx, i.ID, config, start, periodic, end)
	​ 	 ​case​ StateCancelled, StateDone:
	​ 	 ​return​ fmt.Errorf(​"%w: Cannot start"​, ErrIntervalCompleted)
	​ 	 ​default​:
	​ 	 ​return​ fmt.Errorf(​"%w: %d"​, ErrInvalidState, i.State)
	​ 	 }
	​ 	}

	
	Finally, define the Pause method that callers use to pause a running interval. This function takes an instance of IntervalConfig as input and returns an error. It verifies whether the instance of Interval is running and pauses it by setting the state to StatePaused:
interactiveTools/pomo/pomodoro/interval.go
	​ 	​func​ (i Interval) Pause(config *IntervalConfig) ​error​ {
	​ 	 ​if​ i.State != StateRunning {
	​ 	 ​return​ ErrIntervalNotRunning
	​ 	 }
	​ 	
	​ 	 i.State = StatePaused
	​ 	
	​ 	 ​return​ config.repo.Update(i)
	​ 	}

This completes the business logic for the Pomodoro timer. Next, you’ll implement a data source to save data using the Repository pattern.

Storing Data with the Repository Pattern

	
	
	Let’s implement a data store for Pomodoro intervals using the Repository pattern. With this approach, you decouple the data store implementation from the business logic, granting you flexibility for how you’ll store data. You can modify the implementation later or switch to a different database entirely, without impacting the business logic.

For instance, you’ll implement two different data stores with this application: an in-memory data store and another data store backed up by a SQLite database. Later you can implement another data store backed up by a different database such as PostgreSQL if you want.

	
	
	
	The Repository pattern requires two components. One is an interface that specifies all the methods that a given type must implement to qualify as a repository for this application. The other is a custom type which implements that interface working as the repository.

First, define the repository interface, in the same package where you use it. For this case, you already defined the Repository interface in ​Initializing the Pomodoro Application​. As a reminder, the Repository interface specifies these methods:
	Create: Creates/saves a new Interval in the data store.
	Update: Updates details about an Interval in the data store.
	Last: Retrieves the last Interval from the data store.
	ByID: Retrieves a specific Interval from the data store by its ID.
	Breaks: Retrieves a given number of Interval items from the data store that matches CategoryLongBreak or CategoryShortBreak.

	
	
	Let’s implement the in-memory data store, which will store the data using Go slices. With this method, the data doesn’t persist when the application stops. This is useful for testing or as an initial example, but you can also use it to store data that you don’t need to keep between sessions.

Implement the repository using a separate package to avoid duplication and potential circular dependencies. Create a directory for the repository package under the pomodoro directory:
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo/pomodoro/repository​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo/pomodoro/repository​

Create and edit the file inMemory.go in this directory. Begin by defining the package definition and the import list. For this file, you’ll use the fmt package to format errors, the sync package to prevent conflicts when executing this code concurrently, and the pomodoro package you created before to use the Interval type:
interactiveTools/pomo/pomodoro/repository/inMemory.go
	​ 	​package​ repository
	​ 	
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"sync"​
	​ 	
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro"​
	​)

Now define the inMemoryRepo type that represents your in-memory repository. You’ll implement all the Repository methods on this type to use it as a repository for the Pomodoro app. This type has one field, intervals of type slice of pomodoro.Interval, to store the intervals in memory. In addition, this type embeds the sync.RWMutex type, which lets you access its methods directly from the inMemoryRepo type. You’ll use mutexes to prevent concurrent access to the data store:
interactiveTools/pomo/pomodoro/repository/inMemory.go
	​ 	​type​ inMemoryRepo ​struct​ {
	​ 	 sync.RWMutex
	​ 	 intervals []pomodoro.Interval
	​ 	}

This type has no exported fields, and it’s not exported itself. By doing this, you ensure that callers can only access it through the exported methods that compose the Repository interface, guaranteeing data consistency.

	
	
	Next, create the NewInMemoryRepo function that instantiates a new inMemoryRepo type with an empty slice of pomodoro.Interval:
interactiveTools/pomo/pomodoro/repository/inMemory.go
	​ 	​func​ NewInMemoryRepo() *inMemoryRepo {
	​ 	 ​return​ &inMemoryRepo{
	​ 	 intervals: []pomodoro.Interval{},
	​ 	 }
	​ 	}

	
	
	
	
	
	
	Then implement all the methods that compose the Repository interface. Start with the Create method that takes an instance of pomodoro.Interval as input, saves its values to the data store, and returns the ID of the saved entry:
interactiveTools/pomo/pomodoro/repository/inMemory.go
	​ 	​func​ (r *inMemoryRepo) Create(i pomodoro.Interval) (​int64​, ​error​) {
	​ 	 r.Lock()
	​ 	 ​defer​ r.Unlock()
	​ 	
	​ 	 i.ID = ​int64​(len(r.intervals)) + 1
	​ 	
	​ 	 r.intervals = append(r.intervals, i)
	​ 	
	​ 	 ​return​ i.ID, nil
	​ 	}

	
	
	Because slices are not concurrent-safe, we’re using the mutex lock to prevent concurrent access to the data store while making changes to it. You’ll do the same for all methods.

Next, define the Update method that updates the values of an existing entry in the data store:
interactiveTools/pomo/pomodoro/repository/inMemory.go
	​ 	​func​ (r *inMemoryRepo) Update(i pomodoro.Interval) ​error​ {
	​ 	 r.Lock()
	​ 	 ​defer​ r.Unlock()
	​ 	 ​if​ i.ID == 0 {
	​ 	 ​return​ fmt.Errorf(​"%w: %d"​, pomodoro.ErrInvalidID, i.ID)
	​ 	 }
	​ 	
	​ 	 r.intervals[i.ID-1] = i
	​ 	 ​return​ nil
	​ 	}

Implement the ByID method to retrieve and return an item by its ID:
interactiveTools/pomo/pomodoro/repository/inMemory.go
	​ 	​func​ (r *inMemoryRepo) ByID(id ​int64​) (pomodoro.Interval, ​error​) {
	​ 	 r.RLock()
	​ 	 ​defer​ r.RUnlock()
	​ 	 i := pomodoro.Interval{}
	​ 	 ​if​ id == 0 {
	​ 	 ​return​ i, fmt.Errorf(​"%w: %d"​, pomodoro.ErrInvalidID, id)
	​ 	 }
	​ 	
	​ 	 i = r.intervals[id-1]
	​ 	 ​return​ i, nil
	​ 	}

Add the method Last to retrieve and return the last Interval from the data store:
interactiveTools/pomo/pomodoro/repository/inMemory.go
	​ 	​func​ (r *inMemoryRepo) Last() (pomodoro.Interval, ​error​) {
	​ 	 r.RLock()
	​ 	 ​defer​ r.RUnlock()
	​ 	 i := pomodoro.Interval{}
	​ 	 ​if​ len(r.intervals) == 0 {
	​ 	 ​return​ i, pomodoro.ErrNoIntervals
	​ 	 }
	​ 	
	​ 	 ​return​ r.intervals[len(r.intervals)-1], nil
	​ 	}

Finally, implement the Breaks method to retrieve a given number n of Intervals of category break:
interactiveTools/pomo/pomodoro/repository/inMemory.go
	​ 	​func​ (r *inMemoryRepo) Breaks(n ​int​) ([]pomodoro.Interval, ​error​) {
	​ 	 r.RLock()
	​ 	 ​defer​ r.RUnlock()
	​ 	 data := []pomodoro.Interval{}
	​ 	 ​for​ k := len(r.intervals) - 1; k >= 0; k-- {
	​ 	 ​if​ r.intervals[k].Category == pomodoro.CategoryPomodoro {
	​ 	 ​continue​
	​ 	 }
	​ 	
	​ 	 data = append(data, r.intervals[k])
	​ 	
	​ 	 ​if​ len(data) == n {
	​ 	 ​return​ data, nil
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​return​ data, nil
	​ 	}

Your first implementation of the repository is ready. Now it’s time to write some tests for the Pomodoro package.
	
	
	
	
	
	

Testing the Pomodoro Functionality

	
	
	Now that you have both implementations for the Pomodoro business logic and the in-memory repository, let’s write some tests for the business logic.

For brevity, you’ll add tests for the business logic only, which will indirectly test the repository when it’s used. For a real production application, we recommend that you write unit tests for the repository implementation as well.

Some of these tests require access to the repository. Because you can have different implementations of the repository, first let’s create a helper function getRepo to get an instance of the repository. You can implement different versions of this function for the different repository implementations without changing the test code. To do this, switch back to the pomodoro package directory and create a file named inmemory_test.go:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo/pomodoro​

Open the inmemory_test.go file in your editor to write the specific function for this repository implementation. Add the package definition and import section. You’ll use the testing package for the testing-related functions, and you’ll also use pomodoro and repository so you can use the repository:
interactiveTools/pomo/pomodoro/inmemory_test.go
	​ 	​package​ pomodoro_test
	​ 	
	​ 	​import​ (
	​ 	 ​"testing"​
	​ 	
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro"​
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro/repository"​
	​)

Finally, define the function getRepo that returns the repository instance and a cleanup function. The in-memory repository doesn’t require a cleanup function so return an empty function:
interactiveTools/pomo/pomodoro/inmemory_test.go
	​ 	​func​ getRepo(t *testing.T) (pomodoro.Repository, ​func​()) {
	​ 	 t.Helper()
	​ 	
	​ 	 ​return​ repository.NewInMemoryRepo(), ​func​() {}
	​ 	}

	
	
	
	
	Save and close this file. Create and edit the main test file interval_test.go. Add the package and import definitions. For these tests, you’ll use the following packages: context to define contexts that carry cancellation signals, fmt to format errors and output, testing for the test-related functions, time to handle and compare time-related data, and pomodoro to access Pomodoro’s functionality for testing:
interactiveTools/pomo/pomodoro/interval_test.go
	​ 	​package​ pomodoro_test
	​ 	
	​ 	​import​ (
	​ 	 ​"context"​
	​ 	 ​"errors"​
	​ 	 ​"fmt"​
	​ 	 ​"testing"​
	​ 	 ​"time"​
	​ 	
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro"​
	​)

	
	
	Add the first test, TestNewConfig, to test the NewConfig function. For this test, you’ll use the table-driven approach you first used in ​Testing with Table-Driven Testing​. Declare the function, and then add the anonymous struct with three test cases: Default to test setting the default values, SingleInput to test that the function takes a single input and sets the config accordingly, and MultiInput to test that it sets all the input values:
interactiveTools/pomo/pomodoro/interval_test.go
	​ 	​func​ TestNewConfig(t *testing.T) {
	​ 	 testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 input [3]time.Duration
	​ 	 expect pomodoro.IntervalConfig
	​ 	 }{
	​ 	 {name: ​"Default"​,
	​ 	 expect: pomodoro.IntervalConfig{
	​ 	 PomodoroDuration: 25 * time.Minute,
	​ 	 ShortBreakDuration: 5 * time.Minute,
	​ 	 LongBreakDuration: 15 * time.Minute,
	​ 	 },
	​ 	 },
	​ 	 {name: ​"SingleInput"​,
	​ 	 input: [3]time.Duration{
	​ 	 20 * time.Minute,
	​ 	 },
	​ 	 expect: pomodoro.IntervalConfig{
	​ 	 PomodoroDuration: 20 * time.Minute,
	​ 	 ShortBreakDuration: 5 * time.Minute,
	​ 	 LongBreakDuration: 15 * time.Minute,
	​ 	 },
	​ 	 },
	​ 	 {name: ​"MultiInput"​,
	​ 	 input: [3]time.Duration{
	​ 	 20 * time.Minute,
	​ 	 10 * time.Minute,
	​ 	 12 * time.Minute,
	​ 	 },
	​ 	 expect: pomodoro.IntervalConfig{
	​ 	 PomodoroDuration: 20 * time.Minute,
	​ 	 ShortBreakDuration: 10 * time.Minute,
	​ 	 LongBreakDuration: 12 * time.Minute,
	​ 	 },
	​ 	 },
	​ 	 }

Next, execute the tests by looping through all the test cases and by using the method t.Run to execute each test. For each case, use the function pomodoro.NewConfig to instantiate a new configuration using the input values from the test case. Then, assert that the config has the correct values, failing the test if it doesn’t:
interactiveTools/pomo/pomodoro/interval_test.go
	​ 	 ​// Execute tests for NewConfig​
	​ 	 ​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 ​var​ repo pomodoro.Repository
	​ 	 config := pomodoro.NewConfig(
	​ 	 repo,
	​ 	 tc.input[0],
	​ 	 tc.input[1],
	​ 	 tc.input[2],
	​)
	​ 	
	​ 	 ​if​ config.PomodoroDuration != tc.expect.PomodoroDuration {
	​ 	 t.Errorf(​"Expected Pomodoro Duration %q, got %q instead​​\n​​"​,
	​ 	 tc.expect.PomodoroDuration, config.PomodoroDuration)
	​ 	 }
	​ 	 ​if​ config.ShortBreakDuration != tc.expect.ShortBreakDuration {
	​ 	 t.Errorf(​"Expected ShortBreak Duration %q, got %q instead​​\n​​"​,
	​ 	 tc.expect.ShortBreakDuration, config.ShortBreakDuration)
	​ 	 }
	​ 	 ​if​ config.LongBreakDuration != tc.expect.LongBreakDuration {
	​ 	 t.Errorf(​"Expected LongBreak Duration %q, got %q instead​​\n​​"​,
	​ 	 tc.expect.LongBreakDuration, config.LongBreakDuration)
	​ 	 }
	​ 	
	​ 	 })
	​ 	 }
	​ 	}

Now add the test for the GetInterval function. This function obtains the current interval or creates a new one when needed. To test it, you’ll execute the GetInterval function 16 times to ensure it gets the interval with the proper category. You’ll need access to a repository to store the intervals so the function can determine the correct categories. Start by defining the function and obtaining the repository, using the getRepo function you created before:
interactiveTools/pomo/pomodoro/interval_test.go
	​ 	​func​ TestGetInterval(t *testing.T) {
	​ 	 repo, cleanup := getRepo(t)
	​ 	 ​defer​ cleanup()

For this test, you’ll need to start and complete each interval to allow the GetInterval function to obtain the next category. Define a Pomodoro configuration with a short duration of a few milliseconds so the test runs quickly:
interactiveTools/pomo/pomodoro/interval_test.go
	​ 	​const​ duration = 1 * time.Millisecond
	​ 	config := pomodoro.NewConfig(repo, 3*duration, duration, 2*duration)

Next, start the loop to execute the test 16 times. The expected category and duration depend on each iteration of the loop. Use a switch statement to define them. We expect a Pomodoro interval for every odd iteration, a long break for every eight iterations, and a short break for any other even number:
interactiveTools/pomo/pomodoro/interval_test.go
	​ 	​for​ i := 1; i <= 16; i++ {
	​ 	 ​var​ (
	​ 	 expCategory ​string​
	​ 	 expDuration time.Duration
	​)
	​ 	
	​ 	 ​switch​ {
	​ 	 ​case​ i%2 != 0:
	​ 	 expCategory = pomodoro.CategoryPomodoro
	​ 	 expDuration = 3 * duration
	​ 	 ​case​ i%8 == 0:
	​ 	 expCategory = pomodoro.CategoryLongBreak
	​ 	 expDuration = 2 * duration
	​ 	 ​case​ i%2 == 0:
	​ 	 expCategory = pomodoro.CategoryShortBreak
	​ 	 expDuration = duration
	​ 	 }

Then define a test name based on the iteration number and expected category, and execute the tests using the t.Run method. For each test, start the interval and test that the category and expected duration matches the expected values, failing the test if they don’t match. Because we’re not interested in what happens during the interval execution, define an empty function to use as a callback and use an empty context as the context:
	
	
interactiveTools/pomo/pomodoro/interval_test.go
	​ 	testName := fmt.Sprintf(​"%s%d"​, expCategory, i)
	​ 	t.Run(testName, ​func​(t *testing.T) {
	​ 	 res, err := pomodoro.GetInterval(config)
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 t.Errorf(​"Expected no error, got %q.​​\n​​"​, err)
	​ 	 }

	​ 	 noop := ​func​(pomodoro.Interval) {}
	​ 	
	​ 	 ​if​ err := res.Start(context.Background(), config,
	​ 	 noop, noop, noop); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 ​if​ res.Category != expCategory {
	​ 	 t.Errorf(​"Expected category %q, got %q.​​\n​​"​,
	​ 	 expCategory, res.Category)
	​ 	 }
	​ 	
	​ 	 ​if​ res.PlannedDuration != expDuration {
	​ 	 t.Errorf(​"Expected PlannedDuration %q, got %q.​​\n​​"​,
	​ 	 expDuration, res.PlannedDuration)
	​ 	 }
	​ 	
	​ 	 ​if​ res.State != pomodoro.StateNotStarted {
	​ 	 t.Errorf(​"Expected State = %q, got %q.​​\n​​"​,
	​ 	 pomodoro.StateNotStarted, res.State)
	​ 	 }
	​ 	
	​ 	 ui, err := repo.ByID(res.ID)
	​ 	 ​if​ err != nil {
	​ 	 t.Errorf(​"Expected no error. Got %q.​​\n​​"​, err)
	​ 	 }
	​ 	
	​ 	 ​if​ ui.State != pomodoro.StateDone {
	​ 	 t.Errorf(​"Expected State = %q, got %q.​​\n​​"​,
	​ 	 pomodoro.StateDone, res.State)
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

Now add a test for the Pause method. This test also needs to start the interval but, unlike the previous test, it can’t finish quickly. You need to set a duration that allows the tick function to check the status change, which happens every second. So set the duration to two seconds, allowing the check but still not taking long to complete the test. Add the test definition, set the required values to create an interval, and add two test cases using the table-driven testing approach: one case to test the method when the interval isn’t running and another to pause a running interval:
interactiveTools/pomo/pomodoro/interval_test.go
	​ 	​func​ TestPause(t *testing.T) {
	​ 	 ​const​ duration = 2 * time.Second
	​ 	
	​ 	 repo, cleanup := getRepo(t)
	​ 	 ​defer​ cleanup()
	​ 	
	​ 	 config := pomodoro.NewConfig(repo, duration, duration, duration)

	​ 	testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 start ​bool​
	​ 	 expState ​int​
	​ 	 expDuration time.Duration
	​ 	}{
	​ 	 {name: ​"NotStarted"​, start: false,
	​ 	 expState: pomodoro.StateNotStarted, expDuration: 0},
	​ 	 {name: ​"Paused"​, start: true,
	​ 	 expState: pomodoro.StatePaused, expDuration: duration / 2},
	​ 	}
	​ 	
	​ 	expError := pomodoro.ErrIntervalNotRunning

Next, execute the tests in the loop with the t.Run method. For each test, use the pomodoro.Callback function to execute actions and tests during the interval run. Use the end callback to test that nothing runs at the end, since the interval will be paused, and use the periodic callback to pause the interval. Verify that the values for the interval parameters match the expected values, failing the tests in case they don’t match:
interactiveTools/pomo/pomodoro/interval_test.go
	​ 	 ​// Execute tests for Pause​
	​ 	 ​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 ctx, cancel := context.WithCancel(context.Background())
	​ 	
	​ 	 i, err := pomodoro.GetInterval(config)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 start := ​func​(pomodoro.Interval) {}
	​ 	 end := ​func​(pomodoro.Interval) {
	​ 	 t.Errorf(​"End callback should not be executed"​)
	​ 	 }
	​ 	 periodic := ​func​(i pomodoro.Interval) {
	​ 	 ​if​ err := i.Pause(config); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​if​ tc.start {
	​ 	 ​if​ err := i.Start(ctx, config, start, periodic, end); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	 }
	​ 	
	​ 	 i, err = pomodoro.GetInterval(config)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 err = i.Pause(config)
	​ 	 ​if​ err != nil {
	​ 	 ​if​ ! errors.Is(err, expError) {
	​ 	 t.Fatalf(​"Expected error %q, got %q"​, expError, err)
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​if​ err == nil {
	​ 	 t.Errorf(​"Expected error %q, got nil"​, expError)
	​ 	 }
	​ 	
	​ 	 i, err = repo.ByID(i.ID)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 ​if​ i.State != tc.expState {
	​ 	 t.Errorf(​"Expected state %d, got %d.​​\n​​"​,
	​ 	 tc.expState, i.State)
	​ 	 }
	​ 	
	​ 	 ​if​ i.ActualDuration != tc.expDuration {
	​ 	 t.Errorf(​"Expected duration %q, got %q.​​\n​​"​,
	​ 	 tc.expDuration, i.ActualDuration)
	​ 	 }
	​ 	 cancel()
	​ 	 })
	​ 	 }
	​ 	}

Finally, add a test for the Start method similar to the Pause method test. Define a duration of two seconds to execute the interval, giving it time to run the callback functions. Define two test cases, one that executes until it finishes and another to cancel the run in the middle:
interactiveTools/pomo/pomodoro/interval_test.go
	​ 	​func​ TestStart(t *testing.T) {
	​ 	 ​const​ duration = 2 * time.Second
	​ 	
	​ 	 repo, cleanup := getRepo(t)
	​ 	 ​defer​ cleanup()
	​ 	
	​ 	 config := pomodoro.NewConfig(repo, duration, duration, duration)
	​ 	
	​ 	 testCases := []​struct​ {
	​ 	 name ​string​
	​ 	 cancel ​bool​
	​ 	 expState ​int​
	​ 	 expDuration time.Duration
	​ 	 }{
	​ 	
	​ 	 {name: ​"Finish"​, cancel: false,
	​ 	 expState: pomodoro.StateDone, expDuration: duration},

	​ 	 {name: ​"Cancel"​, cancel: true,
	​ 	 expState: pomodoro.StateCancelled, expDuration: duration / 2},
	​ 	}

Now execute the test cases following the table-driven test approach loop. Again, use pomodoro.Callback functions to perform actions and execute tests during the interval execution. Use a start callback to check for the interval status and duration while executing, the end callback to verify the end state, and the periodic callback to cancel the interval during the Cancel test case. Fail the tests if current values don’t match the expected ones:
interactiveTools/pomo/pomodoro/interval_test.go
	​ 	​// Execute tests for Start​
	​ 	​for​ _, tc := ​range​ testCases {
	​ 	 t.Run(tc.name, ​func​(t *testing.T) {
	​ 	 ctx, cancel := context.WithCancel(context.Background())
	​ 	
	​ 	 i, err := pomodoro.GetInterval(config)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 start := ​func​(i pomodoro.Interval) {
	​ 	 ​if​ i.State != pomodoro.StateRunning {
	​ 	 t.Errorf(​"Expected state %d, got %d.​​\n​​"​,
	​ 	 pomodoro.StateRunning, i.State)
	​ 	 }
	​ 	 ​if​ i.ActualDuration >= i.PlannedDuration {
	​ 	 t.Errorf(​"Expected ActualDuration %q, less than Planned %q.​​\n​​"​,
	​ 	 i.ActualDuration, i.PlannedDuration)
	​ 	 }
	​ 	 }
	​ 	
	​ 	 end := ​func​(i pomodoro.Interval) {
	​ 	 ​if​ i.State != tc.expState {
	​ 	 t.Errorf(​"Expected state %d, got %d.​​\n​​"​,
	​ 	 tc.expState, i.State)
	​ 	 }
	​ 	 ​if​ tc.cancel {
	​ 	 t.Errorf(​"End callback should not be executed"​)
	​ 	 }
	​ 	 }
	​ 	
	​ 	 periodic := ​func​(i pomodoro.Interval) {
	​ 	 ​if​ i.State != pomodoro.StateRunning {
	​ 	 t.Errorf(​"Expected state %d, got %d.​​\n​​"​,
	​ 	 pomodoro.StateRunning, i.State)
	​ 	 }
	​ 	 ​if​ tc.cancel {
	​ 	 cancel()
	​ 	 }
	​ 	 }

	​ 	 ​if​ err := i.Start(ctx, config, start, periodic, end); err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 i, err = repo.ByID(i.ID)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 ​if​ i.State != tc.expState {
	​ 	 t.Errorf(​"Expected state %d, got %d.​​\n​​"​,
	​ 	 tc.expState, i.State)
	​ 	 }
	​ 	 ​if​ i.ActualDuration != tc.expDuration {
	​ 	 t.Errorf(​"Expected ActualDuration %q, got %q.​​\n​​"​,
	​ 	 tc.expDuration, i.ActualDuration)
	​ 	 }
	​ 	 cancel()
	​ 	 })
	​ 	 }
	​ 	}

These are all the tests for this package. Save and close the file. Then, execute the tests:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​​ ​​.​
	​ 	=== RUN TestNewConfig
	​ 	=== RUN TestNewConfig/Default
	​ 	=== RUN TestNewConfig/SingleInput
	​ 	=== RUN TestNewConfig/MultiInput
	​ 	---- TRUNCATED OUTPUT ------
	​ 	PASS
	​ 	ok pragprog.com/rggo/interactiveTools/pomo/pomodoro 5.045s

Once all the tests pass, the business logic for your Pomodoro application is ready. Next, let’s build the initial version of the terminal GUI for the application.
	
	
	
	

Building the Interface Widgets

	
	
	Now that the business logic is ready and tested, you can build the terminal interface for your Pomodoro application. You’ll create the basic interface that has the controls required to run and display the Pomodoro status. When you are done, the interface will look like the image shown in Figure 14.
[image: images/interactiveTools/pomo_screen_basic.png]

Figure 14. Pomodoro Basic Screen

	
	
	
	To create this interface, you’ll use the Termdash[57] dashboard library. Termdash is a good option because it’s cross-platform, it’s under active development, and it has a good set of features. Among these features, Termdash provides a variety of graphical widgets, dashboard resizing, customizable layout, and handling of mouse and keyboard events. For more information about Termdash with a complete list of features, consult the project’s page. Termdash relies on other libraries to run as back end. For these examples, you’ll use the Tcell back-end library as it’s currently being developed and maintained.
	
	

	
	Before we dive into designing the interface, let’s review each of its four main sections as shown in the following images:
	[image: images/interactiveTools/pomo_timer.png]

The Timer section presents the time left in the current interval both in text form and in a graphical donut shape that fills up as time progresses.

You’ll implement the donut interface using the Donut Termdash widget and the text timer using Termdash’s Text widget.

	[image: images/interactiveTools/pomo_category.png]

The Type section displays the current interval’s type or category. You’ll implement this section using the SegmentDisplay widget from Termdash.

	[image: images/interactiveTools/pomo_messages.png]

The Info section presents relevant user messages and statuses. You’ll implement this item with the Text widget.

	[image: images/interactiveTools/pomo_buttons.png]

The Buttons section displays two buttons, Start and Pause, used to start and pause the interval respectively. You will implement them using Termdash’s Button widget.

	
	
	Termdash is in constant development and new versions may introduce breaking changes with its API. The examples in this chapter use Termdash v0.13.0. Use Go modules to specify this version as a dependency to ensure the examples work correctly:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo​
	​ 	​$ ​​go​​ ​​mod​​ ​​edit​​ ​​-require​​ ​​github.com/mum4k/termdash@v0.13.0​

Your go.mod file now has this content:
	​ 	​$ ​​cat​​ ​​go.mod​
	​ 	module pragprog.com/rggo/interactiveTools/pomo
	​ 	
	​ 	go 1.14
	​ 	
	​ 	require github.com/mum4k/termdash v0.13.0

Now let’s design the interface. Create a new subdirectory app under the main directory and switch to it:
	​ 	​$ ​​mkdir​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo/app​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo/app​

Develop the interface code in a new Go package named app. This allows the code to be self-contained and easier to maintain. Start by adding the main widgets to the interface. Create and edit the file widgets.go. Add the package definition and the import section. For this file, you’ll use the context package to pass a context that carries a cancellation signal to the widgets, the termdash/cell package to modify widgets’ properties such as color, the termdash/donut package to add a Donut widget, the termdash/segmentdisplay package to add a SegmentDisplay widget, and the termdash/text package to add a Text widget:
interactiveTools/pomo/app/widgets.go
	​ 	​package​ app
	​ 	
	​ 	​import​ (
	​ 	 ​"context"​
	​ 	
	​ 	 ​"github.com/mum4k/termdash/cell"​
	​ 	 ​"github.com/mum4k/termdash/widgets/donut"​
	​ 	 ​"github.com/mum4k/termdash/widgets/segmentdisplay"​
	​ 	 ​"github.com/mum4k/termdash/widgets/text"​
	​)

Next, define a new private custom type called widgets to represent a collection of widgets. This type defines a pointer to the four main status widgets in your application: donTimer for the Donut widget in the Timer section, txtTimer for the Text widget in the Timer section, disType for the SegmentDisplay widget in the Type section, and txtInfo for the Text widget in the Info section. It also includes four Go channels that you’ll use to update those widgets concurrently:
interactiveTools/pomo/app/widgets.go
	​ 	​type​ widgets ​struct​ {
	​ 	 donTimer *donut.Donut
	​ 	 disType *segmentdisplay.SegmentDisplay
	​ 	 txtInfo *text.Text
	​ 	 txtTimer *text.Text
	​ 	 updateDonTimer ​chan​ []​int​
	​ 	 updateTxtInfo ​chan​ ​string​
	​ 	 updateTxtTimer ​chan​ ​string​
	​ 	 updateTxtType ​chan​ ​string​
	​ 	}

Then add an update method to the widgets type to update the widgets with new data. This method will take five input parameters: timer of type []int to update the timer Donut, txtType to update the SegmentDisplay, txtInfo and txtTimer to update Text widgets for Info and Timer, and redrawCh which is a channel of bool that indicates when the app should redraw the screen. This method sends the update data to the respective widget channel if that value isn’t blank or empty:
interactiveTools/pomo/app/widgets.go
	​ 	​func​ (w *widgets) update(timer []​int​, txtType, txtInfo, txtTimer ​string​,
	​ 	 redrawCh ​chan​<- ​bool​) {
	​ 	
	​ 	 ​if​ txtInfo != ​""​ {
	​ 	 w.updateTxtInfo <- txtInfo
	​ 	 }
	​ 	
	​ 	 ​if​ txtType != ​""​ {
	​ 	 w.updateTxtType <- txtType
	​ 	 }
	​ 	
	​ 	 ​if​ txtTimer != ​""​ {
	​ 	 w.updateTxtTimer <- txtTimer
	​ 	 }
	​ 	
	​ 	 ​if​ len(timer) > 0 {
	​ 	 w.updateDonTimer <- timer
	​ 	 }
	​ 	
	​ 	 redrawCh <- true
	​ 	}

Next, create the function newWidgets to initialize the widgets type. This function calls other functions to instantiate each widget. You’ll write those functions shortly. The initializing functions are similar, so call each of them to initialize the corresponding widget and pass context for cancellation, the appropriate channel to update the widget, and an error channel to send errors to when running concurrently:
interactiveTools/pomo/app/widgets.go
	​ 	​func​ newWidgets(ctx context.Context, errorCh ​chan​<- ​error​) (*widgets, ​error​) {
	​ 	
	​ 	 w := &widgets{}
	​ 	 ​var​ err ​error​
	​ 	
	​ 	 w.updateDonTimer = make(​chan​ []​int​)
	​ 	 w.updateTxtType = make(​chan​ ​string​)
	​ 	 w.updateTxtInfo = make(​chan​ ​string​)
	​ 	 w.updateTxtTimer = make(​chan​ ​string​)
	​ 	
	​ 	 w.donTimer, err = newDonut(ctx, w.updateDonTimer, errorCh)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 w.disType, err = newSegmentDisplay(ctx, w.updateTxtType, errorCh)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 w.txtInfo, err = newText(ctx, w.updateTxtInfo, errorCh)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 w.txtTimer, err = newText(ctx, w.updateTxtTimer, errorCh)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 ​return​ w, nil
	​ 	}

	Now, create the functions to initialize each widget type. Each of those widget-initializing functions will follow a similar formula where you pass the context for cancellation, a channel to update the widget, and an error channel to send errors to when running concurrently. In each function, you’ll initialize the widget and then launch a new goroutine to update the widget when it receives data in the update channel.

	
	
	
	Start with the newText function, which will initialize a new Text widget. Define the function with the required input parameters. This function returns a pointer to an instance of Termdash text.Text type and a potential error:
interactiveTools/pomo/app/widgets.go
	​ 	​func​ newText(ctx context.Context, updateText <-​chan​ ​string​,
	​ 	 errorCh ​chan​<- ​error​) (*text.Text, ​error​) {

Instantiate the text.Text widget using the text.New function, assigning the result to a variable txt. Execute text.New without any arguments, since this widget doesn’t require any configuration. Check and return any errors:
interactiveTools/pomo/app/widgets.go
	​ 	txt, err := text.New()
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

	
	
	
	
	
	By default, Termdash runs the dashboard components concurrently. To update each widget, you’ll use Go’s concurrency features such as goroutines and channels. Use an anonymous function to create a closure and launch it as a new goroutine. By doing this, you can use the variable txt defined outside the closure to update the widget. This goroutine listens on the given update channel for new data and then updates the widget with it. If it receives a context cancellation, use return to exit the function and finish it. Use a select statement to block waiting for input on the channel or the context cancellation:
interactiveTools/pomo/app/widgets.go
	​ 	​// Goroutine to update Text​
	​ 	​go​ ​func​() {
	​ 	 ​for​ {
	​ 	 ​select​ {
	​ 	 ​case​ t := <-updateText:
	​ 	 txt.Reset()
	​ 	 errorCh <- txt.Write(t)
	​ 	 ​case​ <-ctx.Done():
	​ 	 ​return​
	​ 	 }
	​ 	 }
	​ 	}()

In the goroutine, you’re using the method txt.Reset to reset the text in the widget and then the method txt.Write to write the new value obtained from the update channel. Because this function runs concurrently, you can’t return an error, so forward any errors to the error channel errorCh. You’ll write the error-handling mechanism later.

To complete the newText function, return the widget instance txt and nil as the error.
interactiveTools/pomo/app/widgets.go
	​ 	 ​return​ txt, nil
	​ 	}

	
	
	Next, create a similar function to initialize the Donut widget for the Timer section:
interactiveTools/pomo/app/widgets.go
	​ 	​func​ newDonut(ctx context.Context, donUpdater <-​chan​ []​int​,
	​ 	 errorCh ​chan​<- ​error​) (*donut.Donut, ​error​) {

	
	Within the function’s body, use the function donut.New from Termdash to instantiate a new Donut widget. Unlike the Text widget, you’ll set options to change its behavior and appearance. The donut.New function accepts any number of options as input parameters. Termdash represents options using an interface, in this case donut.Option. It implements different options by providing functions that return a value that implements this interface. You can see a complete list of options in Termdash’s documentation.[58]

	
	
	For this case, set two options. Use donut.Clockwise to make the donut progress in a clockwise direction and use the donut.CellOpts to change its color to blue. To set the color using the Tcell back end, use the cell.FgColor function with the constant value cell.ColorBlue:
interactiveTools/pomo/app/widgets.go
	​ 	don, err := donut.New(
	​ 	 donut.Clockwise(),
	​ 	 donut.CellOpts(cell.FgColor(cell.ColorBlue)),
	​)
	​ 	
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

Then implement the goroutine that updates the Donut widget the same way you implemented the Text update. Use the method don.Absolute to set an absolute value for the Donut progress because it represents the absolute value of Interval duration at runtime:
interactiveTools/pomo/app/widgets.go
	​ 	​go​ ​func​() {
	​ 	 ​for​ {
	​ 	 ​select​ {
	​ 	 ​case​ d := <-donUpdater:
	​ 	 ​if​ d[0] <= d[1] {
	​ 	 errorCh <- don.Absolute(d[0], d[1])
	​ 	 }

	​ 	 ​case​ <-ctx.Done():
	​ 	 ​return​
	​ 	 }
	​ 	 }
	​ 	}()

Complete the newDonut function by returning the widget instance don and nil as the error.
interactiveTools/pomo/app/widgets.go
	​ 	 ​return​ don, nil
	​ 	}

	
	
	Next, add the newSegmentDisplay function to instantiate the SegmentDisplay widget, similar to the other two widget instantiating functions. Use Termdash’s segmentdisplay.New function to instantiate a new SegmentDisplay and a goroutine closure to update it. Return the new instance at the end:
interactiveTools/pomo/app/widgets.go
	​ 	​func​ newSegmentDisplay(ctx context.Context, updateText <-​chan​ ​string​,
	​ 	 errorCh ​chan​<- ​error​) (*segmentdisplay.SegmentDisplay, ​error​) {
	​ 	
	​ 	 sd, err := segmentdisplay.New()
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 ​// Goroutine to update SegmentDisplay​
	​ 	 ​go​ ​func​() {
	​ 	 ​for​ {
	​ 	 ​select​ {
	​ 	 ​case​ t := <-updateText:
	​ 	 ​if​ t == ​""​ {
	​ 	 t = ​" "​
	​ 	 }
	​ 	
	​ 	 errorCh <- sd.Write([]*segmentdisplay.TextChunk{
	​ 	 segmentdisplay.NewChunk(t),
	​ 	 })
	​ 	 ​case​ <-ctx.Done():
	​ 	 ​return​
	​ 	 }
	​ 	 }
	​ 	 }()
	​ 	
	​ 	 ​return​ sd, nil
	​ 	}

To update the SegmentDisplay widget, you use the method sd.Write, passing a slice of values of type segmentdisplay.TextChunk which allows passing multiple text segments to display. In our case, because we’re displaying a single segment, you’re passing a slice literal that contains a single element using the segmentdisplay.NewChunk function with the text value obtained from the channel.

Now that you added the main widgets, you can create the buttons to start and pause Pomodoro intervals. To make it easier to maintain and update the code, you’ll add the buttons in a different file. Save and close the widgets.go file and open a new file buttons.go for editing.
	
	

	
	Start by adding the package definition and the import list. For this file, you’ll use the following packages: context to carry cancellation signals, fmt to format strings, termdash/cell that provides customization options for widgets, termdash/widgets/button to define a button widget, and the pomodoro that you created with the business logic:
interactiveTools/pomo/app/buttons.go
	​ 	​package​ app
	​ 	
	​ 	​import​ (
	​ 	 ​"context"​
	​ 	 ​"fmt"​
	​ 	
	​ 	 ​"github.com/mum4k/termdash/cell"​
	​ 	 ​"github.com/mum4k/termdash/widgets/button"​
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro"​
	​)

Then define a new custom type, buttonSet, that includes the btStart and btPause fields of type button.Button, which represents a Termdash button:
interactiveTools/pomo/app/buttons.go
	​ 	​type​ buttonSet ​struct​ {
	​ 	 btStart *button.Button
	​ 	 btPause *button.Button
	​ 	}

Next, add the function newButtonSet to instantiate a buttonSet. This function takes the following inputs: a Context to carry cancellation signals, an instance of pomodoro.IntervalConfig to call Pomodoro functions, a pointer to the widgets type you created before to update widgets, and the channels redrawCh and errorCh to send data to the app signaling a screen redraw or an error respectively. It returns a pointer to a buttonSet or an error:
interactiveTools/pomo/app/buttons.go
	​ 	​func​ newButtonSet(ctx context.Context, config *pomodoro.IntervalConfig,
	​ 	 w *widgets, redrawCh ​chan​<- ​bool​, errorCh ​chan​<- ​error​) (*buttonSet, ​error​) {

When you create a Termdash button, you provide its action through a callback function. Termdash executes this function every time the user presses the button. Because the user can press the button many times, this function has to be lightweight. It also has to be nonblocking to allow the other components of the interface to update and redraw if necessary.

You can implement the button action in many ways. For example, you could implement a short callback that updates a value and finishes its execution and then another function could pick that value up and execute additional tasks. You could also use a channel to update another goroutine executing the code. Your choice of implementation depends on your requirements.

In our example, you’ll implement the button action by spawning a new goroutine that attempts to start or pause the interval using the corresponding method from the pomodoro.Interval type, from within the button callback. By executing a new goroutine, you ensure the code is non-blocking. The Pomodoro business logic returns back to the calling function quickly if the action isn’t required, allowing the user to press the button many times without restarting or pausing the interval many times.

Let’s begin by defining the action function to start an interval and assign it to a variable startInterval, making it easier to read and maintain, instead of having several layers of functions within functions. Define the function and use the pomodoro.GetInterval function to obtain the current interval. Because this function executes concurrently, it can’t return errors. Send any errors to the error channel errorCh for further processing:
interactiveTools/pomo/app/buttons.go
	​ 	startInterval := ​func​() {
	​ 	 i, err := pomodoro.GetInterval(config)
	​ 	 errorCh <- err

Then define the three callbacks required to call the Interval.Start method to start the Pomodoro interval. First, define the start callback. At the start of the interval, change the message displayed in the Info section of the application, depending on the type of interval. Use the method widgets.update you defined before, to update the Info message and the Type section according to the interval category:
interactiveTools/pomo/app/buttons.go
	​ 	start := ​func​(i pomodoro.Interval) {
	​ 	 message := ​"Take a break"​
	​ 	 ​if​ i.Category == pomodoro.CategoryPomodoro {
	​ 	 message = ​"Focus on your task"​
	​ 	 }
	​ 	
	​ 	 w.update([]​int​{}, i.Category, message, ​""​, redrawCh)
	​ 	}

Next define the end callback to execute at the end of the interval, setting the Info message to Nothing running...:
interactiveTools/pomo/app/buttons.go
	​ 	end := ​func​(pomodoro.Interval) {
	​ 	 w.update([]​int​{}, ​""​, ​"Nothing running..."​, ​""​, redrawCh)
	​ 	}

Define the periodic callback that executes every second. For this callback, use the widgets.update method to update the Timer section with the current interval time:
interactiveTools/pomo/app/buttons.go
	​ 	periodic := ​func​(i pomodoro.Interval) {
	​ 	 w.update(
	​ 	 []​int​{​int​(i.ActualDuration), ​int​(i.PlannedDuration)},
	​ 	 ​""​, ​""​,
	​ 	 fmt.Sprint(i.PlannedDuration-i.ActualDuration),
	​ 	 redrawCh,
	​)
	​ 	}

To complete this function, attempt to start the interval by calling the i.Start method, and send any errors to the error channel errorCh for handling:
interactiveTools/pomo/app/buttons.go
	​ 	 errorCh <- i.Start(ctx, config, start, periodic, end)
	​ 	}

Now define the action function to pause the interval and assign it to the pauseInterval variable. In this function, obtain the current interval and attempt to pause it using the i.Pause method. If it can’t pause the interval, use the return statement to terminate the function without taking any further action. If the pause succeeds, use the widgets.update method to update the Info message section of the interface. Send any errors to the error channel for further processing:
interactiveTools/pomo/app/buttons.go
	​ 	pauseInterval := ​func​() {
	​ 	 i, err := pomodoro.GetInterval(config)
	​ 	 ​if​ err != nil {
	​ 	 errorCh <- err
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 ​if​ err := i.Pause(config); err != nil {
	​ 	 ​if​ err == pomodoro.ErrIntervalNotRunning {
	​ 	 ​return​
	​ 	 }
	​ 	 errorCh <- err
	​ 	 ​return​
	​ 	 }
	​ 	 w.update([]​int​{}, ​""​, ​"Paused... press start to continue"​, ​""​, redrawCh)
	​ 	}

With the two action functions completed, instantiate the buttons by using Termdash’s button.New function. First, add the Start button by passing the button text (s)tart, the callback function that spawns a new goroutine using the startInterval function you created before, and the button options. If errors occur, return nil for the button set and the error:
interactiveTools/pomo/app/buttons.go
	​ 	btStart, err := button.New(​"(s)tart"​, ​func​() ​error​ {
	​ 	 ​go​ startInterval()
	​ 	 ​return​ nil
	​ 	},
	​ 	 button.GlobalKey(​'s'​),
	​ 	 button.WidthFor(​"(p)ause"​),
	​ 	 button.Height(2),
	​)
	​ 	
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

You’re setting three options for this button:
	
 button.GlobalKey('s'): Setting global key to s, allowing the users to use the button by pressing s on the keyboard.

	
 button.WidthFor("(p)ause"): Setting the button width to the length of string (p)ause matching the width of the next button. This is useful for keeping all buttons with the same size.

	
 button.Height(2): Setting the button height to two cells.

	
	
	Add the pause button in a similar way. Set the global key to p and height to two cells. Use the function button.FillColor to change the button color to the color number 220 by using the Tcell function cell.ColorNumber. This gives this button a shade of yellow to differentiate it from the standard blue you’re using for the Start button:
interactiveTools/pomo/app/buttons.go
	​ 	btPause, err := button.New(​"(p)ause"​, ​func​() ​error​ {
	​ 	 ​go​ pauseInterval()
	​ 	 ​return​ nil
	​ 	},
	​ 	 button.FillColor(cell.ColorNumber(220)),
	​ 	 button.GlobalKey(​'p'​),
	​ 	 button.Height(2),
	​)
	​ 	
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

Setting the color to 220 assumes that your user’s terminal supports 256 colors, which is common for modern terminal emulators. Set the color appropriately if you are targeting terminals that support fewer colors.

Complete this function by instantiating the type buttonSet, using the buttons you just created, and returning its address with the value nil for the error:
interactiveTools/pomo/app/buttons.go
	​ 	 ​return​ &buttonSet{btStart, btPause}, nil
	​ 	}

This completes the code for the buttons. Save and close this file. You have all the widgets ready for the initial interface. Let’s define the interface layout and functionality next.
	
	
	
	

Organizing the Interface’s Layout

	
	
	Once you have all the widgets for your interface, you need to organize and lay them out logically to compose the user interface.

	
	
	
	In Termdash you define the dashboard layout using containers represented by the type container.Container. Termdash requires at least one container to start the application. You can use multiple containers to split the screen and organize the widgets.

	
	
	
	You can create the containers in two different ways: using the container package to split containers resulting in a binary tree layout; or using the grid package to define a grid of rows and columns. You can find more information about the Container API on the Termdash wiki.[59]

For this application, you’ll organize the layout using the grid method, as it’s easier to organize the code to compose a layout like the one in Pomodoro Application Screen. The application layout consists of three main rows. The first row is split in two columns, which are further split in two additional rows. The second row has two columns, as well as the third row. For now, you’ll build the first two rows, leaving the third row as a placeholder for the summary widgets that you’ll design in ​Displaying a Summary to the Users​.

	
	
	
	Start by adding and editing the file grid.go under the app subdirectory in your application directory. Add the package definition and import section. You’ll use the termdash/align package to align widgets in containers, the container package to use the Container API, the container/grid package to define a grid layout, the termdash/linestyle package to define the container border’s line style, and the terminalapi package which you need to create Termdash containers:
interactiveTools/pomo/app/grid.go
	​ 	​package​ app
	​ 	
	​ 	​import​ (
	​ 	 ​"github.com/mum4k/termdash/align"​
	​ 	 ​"github.com/mum4k/termdash/container"​
	​ 	 ​"github.com/mum4k/termdash/container/grid"​
	​ 	 ​"github.com/mum4k/termdash/linestyle"​
	​ 	 ​"github.com/mum4k/termdash/terminal/terminalapi"​
	​)

	
	
	Next, define the function newGrid to define a new grid layout. This function takes as input a pointer to a buttonSet, a pointer to widgets, and an instance of Termdash terminalapi.Terminal. It returns a pointer to a container.Container and a potential error:
interactiveTools/pomo/app/grid.go
	​ 	​func​ newGrid(b *buttonSet, w *widgets,
	​ 	 t terminalapi.Terminal) (*container.Container, ​error​) {

	
	Termdash uses the grid.Builder type to build grid layouts. After you complete the layout, use the method Build to generate the corresponding container options to create a new container with the desired layout. Define a new grid.Builder by using the function grid.New:
interactiveTools/pomo/app/grid.go
	​ 	builder := grid.New()

	
	
	Use the method builder.Add to add the first row. This method takes any number of values of type grid.Element. A grid element can be a row, a column, or a widget. Use rows and columns to subdivide the container and then place a widget within the container. You can create rows and columns with fixed lengths or by using a percentage of the parent container space. For this project you’ll use percentages to allow dynamic resizing of the application. Add the first row, which will occupy 30% of the terminal’s height, using the function grid.RowHeightPerc:
	
	
interactiveTools/pomo/app/grid.go
	​ 	​// Add first row​
	​ 	builder.Add(
	​ 	 grid.RowHeightPerc(30,

	
	Within this row, add a column to the left that will occupy 30% of the available space. Use the function grid.ColWidthPercWithOpts to specify additional options for this column, such as the line style and the title Press Q to Quit informing the user what they have to do to quit the application:
interactiveTools/pomo/app/grid.go
	​ 	grid.ColWidthPercWithOpts(30,
	​ 	 []container.Option{
	​ 	 container.Border(linestyle.Light),
	​ 	 container.BorderTitle(​"Press Q to Quit"​),
	​ 	 },

In the left column, define a row that takes 80% of the space and add the w.donTimer donut widget in it:
interactiveTools/pomo/app/grid.go
	​ 	​// Add inside row​
	​ 	grid.RowHeightPerc(80,
	​ 	 grid.Widget(w.donTimer)),

Then add another row taking the remaining 20% of the column and add the w.txtTimer text widget with options to align it in the middle of the column:
interactiveTools/pomo/app/grid.go
	​ 	 grid.RowHeightPercWithOpts(20,
	​ 	 []container.Option{
	​ 	 container.AlignHorizontal(align.HorizontalCenter),
	​ 	 },
	​ 	 grid.Widget(w.txtTimer,
	​ 	 container.AlignHorizontal(align.HorizontalCenter),
	​ 	 container.AlignVertical(align.VerticalMiddle),
	​ 	 container.PaddingLeftPercent(49),
	​),
	​),
	​),

Now, add the column to the right using the remaining 70% of the first row. Add two rows in it, using 80% and 20% of the space, respectively. Add the w.disType segment display widget in the top row and the w.txtInfo info text widget in the bottom row. Use a light line-style border on both widgets:
interactiveTools/pomo/app/grid.go
	​ 	 grid.ColWidthPerc(70,
	​ 	 grid.RowHeightPerc(80,
	​ 	 grid.Widget(w.disType, container.Border(linestyle.Light)),
	​),
	​ 	 grid.RowHeightPerc(20,
	​ 	 grid.Widget(w.txtInfo, container.Border(linestyle.Light)),
	​),
	​),
	​),
	​)

This completes the first row. Now add the second row using 10% of the space. Add two columns with the same size, with each taking 50% of the available space, and add the Start and Pause buttons on each:
interactiveTools/pomo/app/grid.go
	​ 	​// Add second row​
	​ 	builder.Add(
	​ 	 grid.RowHeightPerc(10,
	​ 	 grid.ColWidthPerc(50,
	​ 	 grid.Widget(b.btStart),
	​),
	​ 	 grid.ColWidthPerc(50,
	​ 	 grid.Widget(b.btPause),
	​),
	​),
	​)

Next, add the placeholder for the third line, using the remaining 60% of the screen space:
interactiveTools/pomo/app/grid.go
	​ 	​// Add third row​
	​ 	builder.Add(
	​ 	 grid.RowHeightPerc(60),
	​)

	
	Now that you have the initial layout complete, use the builder.Build method to build the layout and create the container options required to instantiate a container following the desired layout. Return the error from builder.Build if it fails to execute:
interactiveTools/pomo/app/grid.go
	​ 	gridOpts, err := builder.Build()
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

	
	
	Use the generated container options to instantiate the container using the method container.New. In addition to the container options, this function takes an instance of type terminalapi.Terminal, which is received as an input parameter by function newGrid:
interactiveTools/pomo/app/grid.go
	​ 	c, err := container.New(t, gridOpts...)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

Then, complete your newGrid function by returning the newly created container c and nil for the error, indicating a successful completion:
	
	
	
	
	
	
interactiveTools/pomo/app/grid.go
	​ 	 ​return​ c, nil
	​ 	}

Building the Interactive Interface

	
	
	
	Now that you have the widgets and layout ready, let’s put everything together to create an app that launches and manages the interface. Termdash provides two ways to run dashboard applications:
	
	
	
	
termdash.Run: Starts and manages the application automatically. Using this function, Termdash periodically redraws the screen and handles resizing for you.

	
 termdash.NewController: Creates a new instance of termdash.Controller that allows you to manually manage your application’s redrawing and resizing processes.

It’s easier to get started with Termdash by using termdash.Run since Termdash manages the application for you. But due to the periodic screen redraw, it continuously consumes system resources. This is fine if you have an application that provides constant feedback, such as a system dashboard or monitoring application. For the Pomodoro application you’re developing, this isn’t ideal because the application would consume system resources when it’s stopped or paused. For this reason, you’ll use an instance of termdash.Controller to manage this application.

Ensure that you’re in the app subdirectory under your application directory:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo/app​

	
	
	
	
	
	
	Create and edit the file app.go. Include the package definition and import section. For this file, you’ll use the following packages: context to handle cancellation contexts, image to use 2D geometry functions necessary to resize the screen, time to use time-related types, the Termdash related termdash, terminal/tcell, and terminal/terminalapi to draw the interface on the terminal, and your pomodoro to access the Pomodoro configuration:
interactiveTools/pomo/app/app.go
	​ 	​package​ app
	​ 	
	​ 	​import​ (
	​ 	 ​"context"​
	​ 	 ​"image"​
	​ 	 ​"time"​
	​ 	
	​ 	 ​"github.com/mum4k/termdash"​
	​ 	 ​"github.com/mum4k/termdash/terminal/tcell"​
	​ 	 ​"github.com/mum4k/termdash/terminal/terminalapi"​
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro"​
	​)

Now define the exported type App that callers will use to instantiate and control the interface. This new type includes private fields required to control, redraw, and resize the interface:
interactiveTools/pomo/app/app.go
	​ 	​type​ App ​struct​ {
	​ 	 ctx context.Context
	​ 	 controller *termdash.Controller
	​ 	 redrawCh ​chan​ ​bool​
	​ 	 errorCh ​chan​ ​error​
	​ 	 term *tcell.Terminal
	​ 	 size image.Point
	​ 	}

These fields are private because you’ll control the behavior through a set of methods. Before adding the methods, define a function New to instantiate a new App. This function instantiates the required widgets, buttons, and grid, and puts them together in a new instance of termdash.Controller. Start by defining the function:
	
	
interactiveTools/pomo/app/app.go
	​ 	​func​ New(config *pomodoro.IntervalConfig) (*App, ​error​) {

Within the function’s body, define a new cancellation context that you’ll use to close all widgets when the application closes:
interactiveTools/pomo/app/app.go
	​ 	ctx, cancel := context.WithCancel(context.Background())

Next, define the function quitter to map the keyboard key Q q to the context cancel function, allowing the user to quit the application by pressing Q. You’ll provide this function as an input parameter when instantiating termdash.Controller later:
interactiveTools/pomo/app/app.go
	​ 	quitter := ​func​(k *terminalapi.Keyboard) {
	​ 	 ​if​ k.Key == ​'q'​ || k.Key == ​'Q'​ {
	​ 	 cancel()
	​ 	 }
	​ 	}

	
	
	Define two channels to control the application’s asynchronous redrawing redrawCh and errorCh:
interactiveTools/pomo/app/app.go
	​ 	redrawCh := make(​chan​ ​bool​)
	​ 	errorCh := make(​chan​ ​error​)

Then instantiate the widgets and buttons that compose your interface using the newWidgets and newButtonSet functions that you defined before:
interactiveTools/pomo/app/app.go
	​ 	w, err := newWidgets(ctx, errorCh)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}
	​ 	
	​ 	b, err := newButtonSet(ctx, config, w, redrawCh, errorCh)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

	
	
	
	
	Define a new instance of tcell.Terminal to use as the back end for the application. Then use it to instantiate a new termdash.Container using the grid layout you defined before:
interactiveTools/pomo/app/app.go
	​ 	term, err := tcell.New()
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}
	​ 	
	​ 	c, err := newGrid(b, w, term)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

	
	With all the components defined, use the termdash.NewController function to instantiate a new termdash.Controller to control your application. Provide the tcell.Terminal instance term, the container c, and a new keyboard subscriber, using the quitter function you defined before, as input parameters:
interactiveTools/pomo/app/app.go
	​ 	controller, err := termdash.NewController(term, c,
	​ 	 termdash.KeyboardSubscriber(quitter))
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

Complete the New function by returning a pointer to an instance of type App using the instances you defined within the function’s body:
interactiveTools/pomo/app/app.go
	​ 	 ​return​ &App{
	​ 	 ctx: ctx,
	​ 	 controller: controller,
	​ 	 redrawCh: redrawCh,
	​ 	 errorCh: errorCh,
	​ 	 term: term,
	​ 	 }, nil
	​ 	}

Next, define the resize method to resize the interface if needed. We’ll run this function periodically to verify whether the application requires a resize. Use the method Eq from the image package to check if the underlying terminal size has changed. To avoid using too many system resources, return immediately if a resize isn’t required. In case the terminal size has changed, store the new size in the size field for future comparison and then resize the terminal by using the terminal method Clear to clear the terminal, followed by calling the method controller.Redraw to redraw the widgets:
	
	
interactiveTools/pomo/app/app.go
	​ 	​func​ (a *App) resize() ​error​ {
	​ 	 ​if​ a.size.Eq(a.term.Size()) {
	​ 	 ​return​ nil
	​ 	 }
	​ 	
	​ 	 a.size = a.term.Size()
	​ 	 ​if​ err := a.term.Clear(); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ a.controller.Redraw()
	​ 	}

Define the exported method Run to run and control the application:
interactiveTools/pomo/app/app.go
	​ 	​func​ (a *App) Run() ​error​ {

Within the function’s body, defer closing the controller and terminal to clean up resources when the application finishes:
interactiveTools/pomo/app/app.go
	​ 	​defer​ a.term.Close()
	​ 	​defer​ a.controller.Close()

	
	Define a new time.Ticker with a two seconds interval to periodically check if a resize is needed. Defer stopping ticker when the application finishes:
interactiveTools/pomo/app/app.go
	​ 	ticker := time.NewTicker(2 * time.Second)
	​ 	​defer​ ticker.Stop()

Then, run the main loop using a select statement to take actions based on data arriving in one of the four channels:
	
a.redrawCh: Redraw the application by calling termdash.Controller method a.controller.Redraw.

	
a.errorCh: Return the error received by the channel finishing the application.

	
a.ctx.Done: Data received in this channel indicates the main context was cancelled by the user typing q. Return nil as error, finishing the application successfully.

	
ticker.C: The ticker timer expired. Use the method a.resize to resize the application if required.

interactiveTools/pomo/app/app.go
	​ 	 ​for​ {
	​ 	 ​select​ {
	​ 	 ​case​ <-a.redrawCh:
	​ 	 ​if​ err := a.controller.Redraw(); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 ​case​ err := <-a.errorCh:
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 ​case​ <-a.ctx.Done():
	​ 	 ​return​ nil
	​ 	 ​case​ <-ticker.C:
	​ 	 ​if​ err := a.resize(); err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 }
	​ 	 }
	​ 	}

Save and close this file to complete the code for your application’s interactive interface. Next, you’ll add code to launch the application.
	
	
	
	
	
	
	

Initializing the CLI with Cobra

	
	
	
	Now that the interface and the back-end code are ready, you need a way to launch your application. You’ll use the Cobra framework again to have a standard way to handle command-line parameters and configuration files. Switch back to your application’s root directory and use the Cobra framework generator as you did in Chapter 7, ​Using the Cobra CLI Framework​, to generate the initial boilerplate code:
	
	
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo​
	​ 	​$ ​​cobra​​ ​​init​​ ​​--pkg-name​​ ​​pragprog.com/rggo/interactiveTools/pomo​
	​ 	Using config file: /home/ricardo/.cobra.yaml
	​ 	Your Cobra application is ready at
	​ 	/home/ricardo/pragprog.com/rggo/interactiveTools/pomo

	Cobra Config File

	
 [image: images/aside-icons/warning.png]
 	

	
	
	This command uses the default Cobra configuration file in your home directory. You created this configuration file in Chapter 7, ​Using the Cobra CLI Framework​. If you need to create it again, take a look at ​Starting Your Cobra Application​.

 You can also initialize the application without a configuration file. In that case, Cobra will use its default options for LICENSE and comments. The contents of your files will be different from these examples.

Then, add a requirement to go.mod to ensure you’re using Cobra v1.1.3, which is what the book’s code uses. Again, you can use a later version but you may need to change the code somewhat. Run go mod tidy to download the required dependencies:
	
	
	
	​ 	​$ ​​go​​ ​​mod​​ ​​edit​​ ​​--require​​ ​​github.com/spf13/cobra@v1.1.3​
	​ 	​$ ​​go​​ ​​mod​​ ​​tidy​

After initializing the application, Cobra created the subdirectory cmd and three files: LICENSE, main.go, and cmd/root.go. This application doesn’t require subcommands, so you only need to update cmd/root.go to start it.

To start this application, you’ll need the instance of pomodoro.IntervalConfig, which is required to create an instance of your app.App type. To create a new configuration, you also need an instance of pomodoro.Repository. To make this application extensive, let’s create a getRepo function to get the repository. Later you can implement different versions of this function to obtain different repositories. First, switch to the cmd subdirectory:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo/cmd​

Then create and open the file repoinmemory.go. Add the package definition and import section; you’ll use your pomodoro and pomodoro/repository packages to instantiate and return a new repository:
interactiveTools/pomo/cmd/repoinmemory.go
	​ 	​package​ cmd
	​ 	
	​ 	​import​ (
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro"​
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro/repository"​
	​)

Add the function getRepo, which returns an instance of pomodoro.Repository and an error. For the in-memory repository, the error is always nil, but you may use this value later for other repositories:
interactiveTools/pomo/cmd/repoinmemory.go
	​ 	​func​ getRepo() (pomodoro.Repository, ​error​) {
	​ 	 ​return​ repository.NewInMemoryRepo(), nil
	​ 	}

Save and close this file. Then open the cmd/root.go file Cobra’s generator created. Include the io package to use the io.Writer interface, the time package to create time-related types and variables, your app package to instantiate the application interface, and the pomodoro package to access the Pomodoro configuration:
interactiveTools/pomo/cmd/root.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"io"​
	​ 	 ​"os"​
	​ 	 ​"time"​
	​ 	
	​ 	 ​"github.com/spf13/cobra"​
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/app"​
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro"​
	​ 	
	​ 	 homedir ​"github.com/mitchellh/go-homedir"​
	​ 	 ​"github.com/spf13/viper"​
	​)

	
	

	
	Then edit the init function to include three command-line parameters, allowing users to customize the Pomodoro, short break, and long break interval durations. Set default values and associate them with the Viper configuration, enabling the setting of these options in a configuration file automatically:
interactiveTools/pomo/cmd/root.go
	​ 	​func​ init() {
	​ 	 cobra.OnInitialize(initConfig)
	​ 	
	​ 	 rootCmd.PersistentFlags().StringVar(&cfgFile, ​"config"​, ​""​,
	​ 	 ​"config file (default is $HOME/.pomo.yaml)"​)
	​ 	
	​ 	 rootCmd.Flags().DurationP(​"pomo"​, ​"p"​, 25*time.Minute,
	​ 	 ​"Pomodoro duration"​)
	​ 	 rootCmd.Flags().DurationP(​"short"​, ​"s"​, 5*time.Minute,
	​ 	 ​"Short break duration"​)
	​ 	 rootCmd.Flags().DurationP(​"long"​, ​"l"​, 15*time.Minute,
	​ 	 ​"Long break duration"​)
	​ 	
	​ 	 viper.BindPFlag(​"pomo"​, rootCmd.Flags().Lookup(​"pomo"​))
	​ 	 viper.BindPFlag(​"short"​, rootCmd.Flags().Lookup(​"short"​))
	​ 	 viper.BindPFlag(​"long"​, rootCmd.Flags().Lookup(​"long"​))
	​ 	}

	
	
	Next, update the rootCmd command definition to customize it according to your requirements. Delete the Long description and include a Short description, Interactive Pomodoro Timer, to help users. By default, Cobra’s root command doesn’t run any actions, but—since this tool doesn’t have any subcommands—add the RunE property and assign it to an anonymous action function. This function obtains the repository by calling the function getRepo, creates a new Pomodoro configuration using pomodoro.NewConfig, and then calls the function rootAction to start the application. You’ll define rootAction shortly:
interactiveTools/pomo/cmd/root.go
	​ 	​var​ rootCmd = &cobra.Command{
	​ 	 Use: ​"pomo"​,
	​ 	 Short: ​"Interactive Pomodoro Timer"​,
	​ 	 ​// Uncomment the following line if your bare application​
	​ 	 ​// has an action associated with it:​
	​ 	 ​// Run: func(cmd *cobra.Command, args []string) { },​
	​ 	 RunE: ​func​(cmd *cobra.Command, args []​string​) ​error​ {
	​ 	 repo, err := getRepo()
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 config := pomodoro.NewConfig(
	​ 	 repo,
	​ 	 viper.GetDuration(​"pomo"​),
	​ 	 viper.GetDuration(​"short"​),
	​ 	 viper.GetDuration(​"long"​),
	​)
	​ 	 ​return​ rootAction(os.Stdout, config)
	​ 	 },
	​ 	}

Finally, define the function rootAction to start the application. Create a new App instance by using the function app.New, providing the Pomodoro configuration as input. Then run the app by using its a.Run method:
interactiveTools/pomo/cmd/root.go
	​ 	​func​ rootAction(out io.Writer, config *pomodoro.IntervalConfig) ​error​ {
	​ 	 a, err := app.New(config)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ a.Run()
	​ 	}

Save and close the file. Switch back to your application’s root directory and use go build to build it:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo​
	​ 	​$ ​​go​​ ​​build​

	
	Run your application by executing the pomo binary directly, for default interval durations:
	​ 	​$ ​​./pomo​

You’ll see your application interface onscreen. Use the Start and Pause buttons to start and pause your intervals. When you’re done, press Q to quit the application. For a quicker test, change the default interval duration by providing command-line parameters. You can see all the options by using --help:
	​ 	​$ ​​./pomo​​ ​​--help​
	​ 	Interactive Pomodoro Timer
	​ 	
	​ 	Usage:
	​ 	 pomo [flags]
	​ 	
	​ 	Flags:
	​ 	 --config string config file (default is $HOME/.pomo.yaml)
	​ 	 -h, --help help for pomo
	​ 	 -l, --long duration Long break duration (default 15m0s)
	​ 	 -p, --pomo duration Pomodoro duration (default 25m0s)
	​ 	 -s, --short duration Short break duration (default 5m0s)

	

	Because you used Viper to bind configuration options, you can also set them in a configuration file. For example, you can permanently modify your Pomodoro application’s behavior by setting the Pomodoro interval to 10 minutes, the short break to 2 minutes, and the long break to 4 minutes, using the configuration file $HOME/.pomo.yaml with this content:
	​ 	pomo: ​10m​
	​ 	short: ​2m​
	​ 	long: ​4m​

When you start the application now, it uses your configuration file and sets the corresponding options. You can see it’s using the configuration file after starting the application as it displays the file name, as shown in Figure 15.
	​ 	​$ ​​./pomo​
	​ 	Using config file: /home/ricardo/.pomo.yaml

[image: images/interactiveTools/pomo_screen_final.png]

Figure 15. The completed Pomodoro application

Your interactive Pomodoro timer application is complete. Run it a few times to understand how the several timers work. Because you’re using an in-memory repository, the interval resets to a Pomodoro interval every time you start the application. You’ll improve its functionality in the next chapter by saving your history to a SQL database. You can also test the resizing functionality by changing the size of your terminal window. The application will resize accordingly.
	
	
	
	
	

Exercises

Before moving on, exercise the skills you learned in this chapter. Here are some suggestions:
	
Investigate some of the other widgets available with Termdash to understand what’s available for future projects.

	
In the next chapter, you’ll use two more widgets: BarChart and LineChart to add an activity summary for this application. Before then, test some of the other widgets. For example, replace the Donut widget with the Gauge widget to represent the time elapsed in the interval.

	
Use a SegmentDisplay widget to represent the time instead of the text widget.

Wrapping Up

You developed your first interactive CLI application that displays and controls a Pomodoro timer. You designed an application that provides constant user feedback and allows users to control its flow interactively by starting and pausing the timer at will.

In this version of the application, you applied different interactive widgets to compose your application, and you employed concurrent Go techniques to control the application flow asynchronously.

In the next chapter, you’ll expand this application by allowing users to save its data to a Structured Query Language (SQL) database. By running queries on saved data, you’ll implement two additional widgets for your application, providing the user with the ability to see how much time they spend focusing on their tasks daily and weekly.

Footnotes

	[55]
	
https://en.wikipedia.org/wiki/Pomodoro_Technique

	[56]
	
https://martinfowler.com/eaaCatalog/repository.html

	[57]
	
 https://github.com/mum4k/termdash

	[58]
	
 https://godoc.org/github.com/mum4k/termdash/widgets/donut

	[59]
	
 https://github.com/mum4k/termdash/wiki/Container-API

Copyright © 2021, The Pragmatic Bookshelf.

 Chapter
 10
Persisting Data in a SQL Database

In Chapter 9, ​Developing Interactive Terminal Tools​, you developed a Pomodoro timer application. It’s a fully functional application, but it doesn’t persist data. It doesn’t keep track of previous intervals, so it always begins at the first Pomodoro interval every time you start it.

 In this chapter, you’ll improve the pomo tool by persisting data to a relational database using Structured Query Language (SQL).[60]

 Because you developed this application using the Repository pattern, you can integrate a new data store by adding a new repository without changing the business logic and application. This is a powerful resource that allows your applications to persist data in different ways according to different requirements. For example, you could implement an in-memory data store for tests and a database engine for production. For more details on how you implement the Repository pattern, take a look at ​Storing Data with the Repository Pattern​.

 The Pomodoro application is a personal application, making it a good candidate for an embedded database. You’ll implement a data store using SQLite,[61] which is a popular choice for embeddable databases. SQLite is fast, small, and supports multiple operating systems.

Once your Pomodoro application is capable of saving data, you’ll implement two additional widgets to show users a summary of historical data in daily and weekly summaries. When you’re done, the new version of your application will look like Figure 16.
[image: images/persistentDataSQL/pomo_screen_db.png]

Figure 16. Pomodoro Screen

To make it easier to follow the examples in the book, you can copy the existing version of your Pomodoro application to a new working environment. By doing this, your application source files will match the description provided in this chapter. This isn’t strictly necessary, and you can continue to develop your application in its original directory. If you prefer this alternative, ensure you’re changing the appropriate files and adding new files to the correct path relative to the original directory.

First, switch to your book’s root directory and create the directory persistentDataSQL for the new version of your application:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/​
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/persistentDataSQL​

Then copy the directory pomo from the original directory $HOME/pragprog.com/rggo/interactiveTools to the newly created directory recursively, and switch to it:
	​ 	​$ ​​cp​​ ​​-r​​ ​​$HOME/pragprog.com/rggo/interactiveTools/pomo​​ ​​\​
	​ 	​ ​​$HOME/pragprog.com/rggo/persistentDataSQL​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/persistentDataSQL/pomo​

Once you switch to the new directory, you’ll be able to continue developing your application from the same point. Because you’re using Go modules, you don’t need to take any extra actions. Go modules will resolve the modules to the current directory for you automatically.

Now that the application is ready for you to continue developing it, let’s install SQLite.
	
	

Getting Started with SQLite

	
	
	
	SQLite implements both a library to access the database and a file format to store the data. To use it with other applications, you need SQLite installed on your system.

If you’re running Linux, there’s a good chance you already have SQLite installed, since many applications use it to store data. You can use your distribution’s package manager to check for and install SQLite if it’s not installed yet. SQLite is available with most popular Linux distributions. For more details, consult your distribution’s documentation and package repositories.

If you’re using macOS, install SQLite by using Homebrew:[62]
	​ 	​$ ​​brew​​ ​​install​​ ​​sqlite3​

In Windows, you can download a precompiled version of SQLite from its download page,[63] or use Chocolatey:[64]
	​ 	​C:\>​​ ​​choco​​ ​​install​​ ​​SQLite​

Once SQLite is installed, ensure it works correctly. First, switch to your application directory:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/persistentDataSQL/pomo​

	
	SQLite databases consist of a single file that uses the .db extension by convention. Saving the entire database in a single file makes it more portable, and is one of SQLite’s main benefits. Start the SQLite client with the command sqlite3, followed by the filename pomo.db to save the database in:
	​ 	​$ ​​sqlite3​​ ​​pomo.db​
	​ 	SQLite version 3.34.1 2021-01-20 14:10:07
	​ 	Enter ".help" for usage hints.
	​ 	​sqlite>​

	
	
	
	The SQLite client launches. You can run SQLite commands by prepending them with a period (.). For example, to see a list of tables, type .tables, and to quit the client interface, type .quit. Type .help for an exhaustive list of available commands.

Try to list existing tables:
	​ 	​sqlite>​​ ​​.tables​
	​ 	​sqlite>​

	
	
	
	
	Since this is a newly created database, it has no tables yet. Let’s create a new table. You can execute database queries and statements by typing them directly into the client and followed by a semicolon ; character. SQLite allows multiline input to keep your queries organized and readable. Create a table interval to hold data for your Pomodoro application using the CREATE TABLE SQL statement:
	​ 	​sqlite>​​ ​​CREATE​​ ​​TABLE​​ ​​"interval"​​ ​​(​
	​ 	​ ...>​​ ​​"id"​​ ​​INTEGER,​
	​ 	​ ...>​​ ​​"start_time"​​ ​​DATETIME​​ ​​NOT​​ ​​NULL,​
	​ 	​ ...>​​ ​​"planned_duration"​​ ​​INTEGER​​ ​​DEFAULT​​ ​​0,​
	​ 	​ ...>​​ ​​"actual_duration"​​ ​​INTEGER​​ ​​DEFAULT​​ ​​0,​
	​ 	​ ...>​​ ​​"category"​​ ​​TEXT​​ ​​NOT​​ ​​NULL,​
	​ 	​ ...>​​ ​​"state"​​ ​​INTEGER​​ ​​DEFAULT​​ ​​1,​
	​ 	​ ...>​​ ​​PRIMARY​​ ​​KEY(​​"id"​​)​
	​ 	​ ...>​​ ​​);​
	​ 	​sqlite>​

List the tables again to confirm the table was created:
	​ 	​sqlite>​​ ​​.tables​
	​ 	interval

	
	
	The table was created but it has no data. Add a few entries in the table using the INSERT SQL statement. Provide a value for each field of the database. Use NULL as a value for the id column to allow it to autoincrement and the function date(’now’) to insert the current date in the start_time column:
	​ 	​sqlite>​​ ​​INSERT​​ ​​INTO​​ ​​interval​​ ​​VALUES(NULL,​​ ​​date(​​'now'​​),25,25,​​"Pomodoro"​​,3);​
	​ 	​sqlite>​​ ​​INSERT​​ ​​INTO​​ ​​interval​​ ​​VALUES(NULL,​​ ​​date(​​'now'​​),5,5,​​"ShortBreak"​​,3);​
	​ 	​sqlite>​​ ​​INSERT​​ ​​INTO​​ ​​interval​​ ​​VALUES(NULL,​​ ​​date(​​'now'​​),15,15,​​"LongBreak"​​,3);​

	
	
	Now, use SQL SELECT statements to select data from the table. For example, to see all rows and columns, use SELECT *:
	​ 	​sqlite>​​ ​​SELECT​​ ​​*​​ ​​FROM​​ ​​interval;​
	​ 	1|2021-02-16|25|25|Pomodoro|3
	​ 	2|2021-02-16|5|5|ShortBreak|3
	​ 	3|2021-02-16|15|15|LongBreak|3

	
	
	You can also limit the rows of your query using the WHERE statement followed by a condition. For example, query all rows where the category column matches Pomodoro:
	​ 	​sqlite>​​ ​​SELECT​​ ​​*​​ ​​FROM​​ ​​interval​​ ​​WHERE​​ ​​category=​​'Pomodoro'​​;​
	​ 	1|2021-02-16|25|25|Pomodoro|3

	
	
	Once you’re done testing, delete the data from the table using the DELETE statement. Use a WHERE statement to limit the rows. Always pay attention when using DELETE because the default behavior, without a WHERE condition, deletes all the data from table. In this case, you can delete all the rows since the application will manage the data within the table:
	​ 	​sqlite>​​ ​​DELETE​​ ​​FROM​​ ​​interval;​
	​ 	​sqlite>​​ ​​SELECT​​ ​​COUNT(*)​​ ​​FROM​​ ​​interval;​
	​ 	0
	​ 	​sqlite>​​ ​​.quit​

	
	To get more familiar with SQL and how to use it with SQLite, consult SQLite’s documentation.[65]

You’ll use some of these queries and statements later when developing the integration between your application and SQLite, but your application will manage the data within the database. To accomplish that, first, let’s connect Go to SQLite.
	
	
	
	

Go, SQL, and SQLite

	
	
	Go talks to SQL databases using the package database/sql. This package provides a generic interface to databases that use SQL. It allows you to connect to and interface with different databases by providing the queries and statements to execute.

The database/sql package provides a balance between a low-level and high-level interface. It abstracts data types, connections, and other lower-level aspects of connecting to a database engine, but it still requires you to execute queries through SQL statements. It allows great flexibility for developing applications that rely on databases but requires writing your own functions to process data.

	
	
	In addition to the package database/sql, you need access to a specific driver to connect to the required database. The driver works together with the database/sql package, implementing the details to interface with the desired database engine. These database drivers are not part of Go’s standard library and are generally developed and maintained by the open source community. For a complete list of available drivers, consult Go’s SQL database drivers wiki.[66]

	
	
	For this application, you’ll use the go-sqlite3 driver.[67] This driver uses C bindings to connect to SQLite, so you need to have CGO[68] enabled and a C compiler available. CGO is part of the Go tools and the standard way to call C/C++ libraries from Go.

	
	
	
	
	
	For Linux, you can use gcc, which is available with most Linux distributions by default. If it isn’t installed, install it using your distribution’s package manager. For macOS, install XCode[69] to have access to Apple’s C compiler and other developer tools.

	
	
	
	
	For Windows, you need to install a C compiler and toolchain, such as TDM-GCC[70] or MINGW.[71] If you use Chocolatey, you can install the MINGW gcc toolchain directly from it, like this:
	
	
	​ 	​C:\>​​ ​​choco​​ ​​install​​ ​​mingw​

After installing a gcc toolchain, ensure that it’s available on the system PATH so the Go compiler can access it.

Before downloading and building the driver, ensure that CGO is enabled using go env:
	
	
	
	​ 	​$ ​​go​​ ​​env​​ ​​CGO_ENABLED​
	​ 	1

If CGO isn’t enabled, you can enable it permanently by using go env, like this:
	​ 	​$ ​​go​​ ​​env​​ ​​-w​​ ​​CGO_ENABLED=1​
	​ 	​$ ​​go​​ ​​env​​ ​​CGO_ENABLED​
	​ 	1

If you prefer to temporarily enable CGO to build the SQLite driver, use the shell export command instead:
	
	
	​ 	​$ ​​export​​ ​​CGO_ENABLED=1​

At the time of writing this book, there’s an issue with SQLite libraries and GCC 10 or greater that causes the driver to display warning messages every time you connect to a database. These messages aren’t critical, but they disrupt the application flow and interface. You can prevent this from happening by setting the GCC flag -Wno-return-local-addr before installing the driver:
	​ 	​$ ​​go​​ ​​env​​ ​​-w​​ ​​CGO_CFLAGS=​​"-g -O2 -Wno-return-local-addr"​

	
	
	Now download and install go-sqlite3 using the go command:
	​ 	​$ ​​go​​ ​​get​​ ​​github.com/mattn/go-sqlite3​
	​ 	​$ ​​go​​ ​​install​​ ​​github.com/mattn/go-sqlite3​

By installing the driver, you compile and cache the library, which lets you use it to build your application without requiring GCC again and without recompiling every time, which saves you time, especially while developing and testing your application.
	
	

Your environment is ready. Next, let’s add the new SQLite repository to your Pomodoro application.
	
	

Persisting Data in the Database

	
	
 Now that your environment is ready, you’ll add a new repository to save pomo’s application data into SQLite. Currently, the application supports only the inMemory repository. When you add more repositories, you need to provide a way for your users to choose how to store data. You can do this at compile time or run time.

Providing this choice at run time makes your application more flexible, allowing users to choose which data store to use for every execution. To do this, you need to compile your application with support for all required data stores and allow the user to choose one, using command-line parameters or configuration options.

	
	
	You can also compile the application with support for a specific data store, creating a binary file with fewer dependencies and a smaller size. The application will be less flexible but more efficient. To do this, you include specific files in your build according to different criteria. The criteria depend on your requirements. For example, you can include different data stores for testing, production environments, or when compiling for an operating system that doesn’t support a required dependency.

For this example, you’ll take the second approach and define the data store at compile time so you can build this application and test it using the inMemory repository in case you are unable to install SQLite. You’ll do this by including specific files in your build using build tags. You used them in ​Executing Integration Tests​, to execute integration tests when using a specific tag. You’ll learn more about build tags in Chapter 11, ​Distributing Your Tool​.

Since saving the data to the database gives the application more functionality, let’s make it the default option, so when you build the application without any tags, it will include the SQLite repository and not the inMemory one. When you want to build the application with support for inMemory storage, you’ll use the build tag inmemory.

Update the files related to the inMemory repository with the inmemory build tag by adding the line // +build inmemory at the top of each file. First, edit pomodoro/repository/inMemory.go:
persistentDataSQL/pomo/pomodoro/repository/inMemory.go
	​ 	​// +build inmemory​
	​ 	
	​ 	​package​ repository

It’s critical to leave a blank line between the build tag comment and the package definition. If you don’t, Go will consider it to be a regular comment and will ignore the build tag.

Next, include the same build tag for the remaining two files: pomodoro/inmemory_test.go and cmd/repoinmemory.go:
persistentDataSQL/pomo/pomodoro/inmemory_test.go
	​ 	​// +build inmemory​
	​ 	
	​ 	​package​ pomodoro_test

persistentDataSQL/pomo/cmd/repoinmemory.go
	​ 	​// +build inmemory​
	​ 	
	​ 	​package​ cmd

Create a new file called sqlite3.go in the repository package directory pomodoro/repository, which will contain the code for the SQLite repository. Open the file in your editor and add the build tag to include this file when the tag inmemory isn’t available. Use the character ! to negate the tag:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​// +build !inmemory​

	
	
	
	
	
	
	Then add the package definition and the import list. For this file, you’ll use the database/sql package to interface with a SQL database, the sync package to use a mutex to prevent concurrent access to the database, the time package to use time and date functions, the SQLite driver package github.com/mattn/go-sqlite3, and your pomodoro package that contains the repository interface definition:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​package​ repository
	​ 	
	​ 	​import​ (
	​ 	 ​"database/sql"​
	​ 	 ​"sync"​
	​ 	 ​"time"​
	​ 	
	​ 	 ​// Blank import for sqlite3 driver only​
	​ 	 _ ​"github.com/mattn/go-sqlite3"​
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro"​
	​)

	
	
	You import the SQLite driver using the blank identifier _ to ensure Go doesn’t throw a build error because you’re not using any functions directly from that package. You import this package to enable the database/sql package to interface with the desired database.

Next, define a constant string to represent the SQL statement required to create the interval table where you’ll store the Pomodoro interval data. You’ll use this constant later to initialize the database with a single table. This statement is similar to the one you used when testing the SQLite database before, but it uses CREATE TABLE IF NOT EXISTS to create the table only if it’s not already created, avoiding additional checks.
	
	
	

When you were testing SQLite, you created the table manually, but it’s not a good user experience to make your users do that. Generally speaking, you want to initialize your database with the required structure and, in some cases, with data. You have different options for doing that. Because SQLite stores databases in a single file, you could provide the database file directly, but that’s another file for you to maintain and package.

Another common practice is to provide scripts or migration files to initialize your databases. For large and complex applications, you may need several files, and it’s worth managing and version controlling them separately.

Since you’re creating a small application that uses a single table, you can provide the table initialization statement as a constant within your source code.
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​const​ (
	​ 	 createTableInterval ​string​ = ​`CREATE TABLE IF NOT EXISTS "interval" (​
	​ 	​ "id" INTEGER,​
	​ 	​ "start_time" DATETIME NOT NULL,​
	​ 	​ "planned_duration" INTEGER DEFAULT 0,​
	​ 	​ "actual_duration" INTEGER DEFAULT 0,​
	​ 	​ "category" TEXT NOT NULL,​
	​ 	​ "state" INTEGER DEFAULT 1,​
	​ 	​ PRIMARY KEY("id")​
	​ 	​);`​
	​)

	
	The database table structure represents the pomodoro/Interval type, with columns matching each of the Interval’s fields, according to the table.
	Field	Field Type	Column	Column Data Type	Comment
	ID	int64	id	INTEGER	This is the table’s PRIMARY KEY. SQLite automatically sets autoincrement for a PRIMARY KEY column of type INTEGER.
	StartTime	time.Time	start_time	DATETIME	The sqlite3 driver automatically handles conversion between Go’s time.Time type and SQLite DATETIME.

	PlannedDuration	time.Duration	planned_duration	INTEGER	The driver handles the conversion between the data types implicitly.
	Actual-
Duration
	time.Duration	actual_duration	INTEGER	The driver handles the conversion between the data types implicitly.
	Category	string	category	TEXT	Setting the NOT NULL constraint as category is always required.
	State	int	state	INTEGER	

Next, define the dbRepo type that represents your SQLIte repository. To use it as a repository, you’ll implement the methods from the pomodoro.Repository interface. This type has a single unexported field, db, which is a pointer to the sql.DB type, representing the database handle. It also embeds the sync.Mutex type, allowing you to access its fields as methods directly from instances of your type. You’ll use mutexes to prevent concurrent access to the database.
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​type​ dbRepo ​struct​ {
	​ 	 db *sql.DB
	​ 	 sync.RWMutex
	​ 	}

Define a constructor function NewSQLite3Repo to instantiate a new dbRepo. This function takes a dbfile string parameter representing the database file to connect to and returns a pointer to the dbRepo instance or an error.
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​func​ NewSQLite3Repo(dbfile ​string​) (*dbRepo, ​error​) {

	
	
	To connect to the database, use the function sql.Open from the database/sql package, providing the driver name sqlite3 and the connection string, which in this case is the path to the database file represented by the dbfile parameter. Return an error if necessary:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	db, err := sql.Open(​"sqlite3"​, dbfile)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

	
	For more complex applications, you can pass additional database parameters using the connection string, including authentication, encryption, cache options, and more. For a full list, consult the sqlite3 driver documentation.[72]

The driver also takes care of connection details, such as opening an existing database file or creating a new one if necessary, so you don’t need to worry about that.

After opening the database connection, you can use the db handler to specify additional connection options such as the maximum number of open connections or the database connection’s maximum lifetime. Correctly adjusting these parameters may improve your program’s performance or its use of system resources. For this application, these considerations are not critical but, as an example, use db.SetConnMaxLifetime to set the maximum connection time to 30 minutes, and set the maximum number of connections, db.SetMaxOpenConns to one because this is a single-user application:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	db.SetConnMaxLifetime(30 * time.Minute)
	​ 	db.SetMaxOpenConns(1)

	
	Verify that the connection with the DB was established by using the Ping method. In this example, for brevity, return the error if necessary. For more complex applications, you’ll include additional logic to handle the issue or retry the connection a few times if required:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​if​ err := db.Ping(); err != nil {
	​ 	 ​return​ nil, err
	​ 	}

Next, initialize the database using the constant statement createTableInterval, which you defined before. Since your statement uses the instruction CREATE TABLE IF NOT EXISTS, it’s safe to run it every time as it will create the table only if needed:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​if​ _, err := db.Exec(createTableInterval); err != nil {
	​ 	 ​return​ nil, err
	​ 	}

After completing the setup, return a pointer to a new dbRepo type, setting the field db to your database handler:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	 ​return​ &dbRepo{
	​ 	 db: db,
	​ 	 }, nil
	​ 	}

Now implement the methods required to make dbRepo act like a pomodoro.Repository. You defined this interface in ​Storing Data with the Repository Pattern​, with these methods:
	​ 	​type​ Repository ​interface​ {
	​ 	 Create(i Interval) (​int64​, ​error​)
	​ 	 Update(i Interval) ​error​
	​ 	 ByID(id ​int64​) (Interval, ​error​)
	​ 	 Last() (Interval, ​error​)
	​ 	 Breaks(n ​int​) ([]Interval, ​error​)
	​ 	}

First, implement the Create method to add a new interval to the repository. This method receives an instance of type pomodoro.Interval, attempts to add it to the repository, and returns its id if it succeeded or an error if it failed. Define the method with the signature required by the Repository interface, associating it with the dbRepo type by setting it as the method receiver:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​func​ (r *dbRepo) Create(i pomodoro.Interval) (​int64​, ​error​) {

Then, within the method’s body, use the embedded function Lock from the sync package to lock the repository, preventing concurrent access to it. Since this is a single-user application and performance isn’t a concern, locking the repository prevents concurrency issues and avoids adding more logic to handle it. Defer the Unlock execution to ensure the repository is unlocked when the function returns:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​// Create entry in the repository​
	​ 	r.Lock()
	​ 	​defer​ r.Unlock()

	
	
	
	Next, prepare the INSERT SQL statement to insert data into the database. Preparing a statement sends the statement with placeholders for the parameters to the database. The database compiles and caches the statement, allowing you to execute the same query multiple times with different parameters more efficiently. Prepared statements can also improve security by preventing SQL injection issues.[73] Since this is a local application, performance and security aren’t major concerns, so using prepared statements isn’t strictly necessary. It’s still cleaner than concatenating strings and parameters to define query statements. Add the following code to define the prepared statement:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​// Prepare INSERT statement​
	​ 	insStmt, err := r.db.Prepare(​"INSERT INTO interval VALUES(NULL, ?,?,?,?,?)"​)
	​ 	​if​ err != nil {
	​ 	 ​return​ 0, err
	​ 	}
	​ 	​defer​ insStmt.Close()

	
	
	SQLite uses the question mark character ? as the placeholder for parameters. Other database engines use different characters, so check your database documentation for specific details. In this block, you’re also deferring closing the prepared statements to ensure Go cleans up resources.

Next, execute the query using the prepared statement passing all required parameters you want to insert into the database and storing the results in a variable named res of the type sql.Results. Check for any issues and return an error if something went wrong:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​// Exec INSERT statement​
	​ 	res, err := insStmt.Exec(i.StartTime, i.PlannedDuration,
	​ 	 i.ActualDuration, i.Category, i.State)
	​ 	​if​ err != nil {
	​ 	 ​return​ 0, err
	​ 	}

Then use the method res.LastInsertId from the sql.Results type to obtain the ID of the row you inserted. Return this ID to complete the method:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	 ​// INSERT results​
	​ 	 ​var​ id ​int64​
	​ 	 ​if​ id, err = res.LastInsertId(); err != nil {
	​ 	 ​return​ 0, err
	​ 	 }
	​ 	
	​ 	 ​return​ id, nil
	​ 	}

	
	
	Next, define the Update method to modify an existing Interval entry in the repository. This method follows the same structure as the Create method you just defined. This method uses an UPDATE SQL statement to update a single row based on the existing record’s ID, using the condition WHERE id=?. It then uses the method res.RowsAffected from sql.Results to check for errors:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​func​ (r *dbRepo) Update(i pomodoro.Interval) ​error​ {
	​ 	 ​// Update entry in the repository​
	​ 	 r.Lock()
	​ 	 ​defer​ r.Unlock()
	​ 	
	​ 	 ​// Prepare UPDATE statement​
	​ 	 updStmt, err := r.db.Prepare(
	​ 	 ​"UPDATE interval SET start_time=?, actual_duration=?, state=? WHERE id=?"​)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	 ​defer​ updStmt.Close()
	​ 	
	​ 	 ​// Exec UPDATE statement​
	​ 	 res, err := updStmt.Exec(i.StartTime, i.ActualDuration, i.State, i.ID)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​// UPDATE results​
	​ 	 _, err = res.RowsAffected()
	​ 	 ​return​ err
	​ 	}

Now define the method ByID, which returns a single interval from the repository based on its ID:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​func​ (r *dbRepo) ByID(id ​int64​) (pomodoro.Interval, ​error​) {

Lock the database for reading by using the embedded function RLock from the package sync. This lock blocks and waits if the database is locked for writing, providing safe concurrent read and write operations, while allowing multiple reads to improve performance:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​// Search items in the repository by ID​
	​ 	r.RLock()
	​ 	​defer​ r.RUnlock()

	
	
	The database/sql package provides a series of methods for executing database queries that return rows. Use the method QueryRow to execute a SELECT query that returns a single row based on its ID:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​// Query DB row based on ID​
	​ 	row := r.db.QueryRow(​"SELECT * FROM interval WHERE id=?"​, id)

The method QueryRow returns a single result of type sql.Row. Use its Scan method to parse the returned columns into pointers to Interval field values. Scan expects a number of parameters that match the number of returned rows in the same order that they are returned:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​// Parse row into Interval struct​
	​ 	i := pomodoro.Interval{}
	​ 	err := row.Scan(&i.ID, &i.StartTime, &i.PlannedDuration,
	​ 	 &i.ActualDuration, &i.Category, &i.State)

	
	The Scan method converts columns to Go types automatically for most of Go’s built-in types such as string or int. For a complete list of supported types and rules, consult the documentation.[74] In addition to built-in types, the sqlite3 driver converts the SQLite DATETIME column to Go’s time.Time automatically.

Complete your method by returning the Interval and any errors:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	 ​return​ i, err
	​ 	}

Next, follow a similar structure to implement the Last method, which queries and returns the last Interval from the repository:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​func​ (r *dbRepo) Last() (pomodoro.Interval, ​error​) {
	​ 	 ​// Search last item in the repository​
	​ 	 r.RLock()
	​ 	 ​defer​ r.RUnlock()
	​ 	
	​ 	 ​// Query and parse last row into Interval struct​
	​ 	 last := pomodoro.Interval{}

	​ 	 err := r.db.QueryRow(​"SELECT * FROM interval ORDER BY id desc LIMIT 1"​).Scan(
	​ 	 &last.ID, &last.StartTime, &last.PlannedDuration,
	​ 	 &last.ActualDuration, &last.Category, &last.State,
	​)
	​ 	
	​ 	 ​if​ err == sql.ErrNoRows {
	​ 	 ​return​ last, pomodoro.ErrNoIntervals
	​ 	 }
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 ​return​ last, err
	​ 	 }
	​ 	
	​ 	 ​return​ last, nil
	​ 	}

Now add the method Breaks to query and return n intervals, which category matches to either ShortBreak or LongBreak:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​func​ (r *dbRepo) Breaks(n ​int​) ([]pomodoro.Interval, ​error​) {

	
	
	
	
	Lock the database for reading and define the SELECT query to search for breaks. Use the SQL LIKE operator and the percent sign % to query a pattern that ends with Break:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	 ​// Search last n items of type break in the repository​
	​ 	 r.RLock()
	​ 	 ​defer​ r.RUnlock()
	​ 	
	​ 	 ​// Define SELECT query for breaks​
	​ 	 stmt := ​`SELECT * FROM interval WHERE category LIKE '%Break'​
	​ 	​ ORDER BY id DESC LIMIT ?`​
	​ 	
	​ 	 ​// Query DB for breaks​
	​ 	 rows, err := r.db.Query(stmt, n)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	 ​defer​ rows.Close()
	​ 	
	​ 	 ​// Parse data into slice of Interval​
	​ 	 data := []pomodoro.Interval{}
	​ 	 ​for​ rows.Next() {
	​ 	 i := pomodoro.Interval{}
	​ 	 err = rows.Scan(&i.ID, &i.StartTime, &i.PlannedDuration,
	​ 	 &i.ActualDuration, &i.Category, &i.State)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 data = append(data, i)
	​ 	 }
	​ 	 err = rows.Err()
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 ​// Return data​
	​ 	 ​return​ data, nil
	​ 	}
	​ 	
	​ 	​func​ (r *dbRepo) CategorySummary(day time.Time,
	​ 	 filter ​string​) (time.Duration, ​error​) {
	​ 	
	​ 	 ​// Return a daily summary​
	​ 	 r.RLock()
	​ 	 ​defer​ r.RUnlock()
	​ 	
	​ 	 ​// Define SELECT query for daily summary​
	​ 	 stmt := ​`SELECT sum(actual_duration) FROM interval​
	​ 	​ WHERE category LIKE ? AND​
	​ 	​ strftime('%Y-%m-%d', start_time, 'localtime')=​
	​ 	​ strftime('%Y-%m-%d', ?, 'localtime')`​
	​ 	
	​ 	 ​var​ ds sql.NullInt64
	​ 	 err := r.db.QueryRow(stmt, filter, day).Scan(&ds)
	​ 	
	​ 	 ​var​ d time.Duration
	​ 	 ​if​ ds.Valid {
	​ 	 d = time.Duration(ds.Int64)
	​ 	 }
	​ 	
	​ 	 ​return​ d, err
	​ 	}

This will look different on your system because here the query statement is broken into two lines to keep the lines within the book’s margins.

Execute the query using the Query method that returns multiple rows, providing the parameter n to replace the query statement placeholder. This method returns rows using the type sql.Rows. Defer executing rows.Close to ensure Go releases resources at the end of the function:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​// Query DB for breaks​
	​ 	rows, err := r.db.Query(stmt, n)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}
	​ 	​defer​ rows.Close()

Parse the results into a slice of Interval. Use the rows.Next method to iterate through the returned rows. This method returns true when results are present to be processed, or false when no more results exist or an error occurs. Within the loop, use Scan to parse each row the same way you used it for the other methods:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​// Parse data into slice of Interval​
	​ 	data := []pomodoro.Interval{}
	​ 	​for​ rows.Next() {
	​ 	 i := pomodoro.Interval{}
	​ 	 err = rows.Scan(&i.ID, &i.StartTime, &i.PlannedDuration,
	​ 	 &i.ActualDuration, &i.Category, &i.State)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 data = append(data, i)
	​ 	}
	​ 	err = rows.Err()
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

After the loop, the code checks for an error using rows.Err to ensure the loop processed all the results.

Complete the method by returning the data:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	 ​// Return data​
	​ 	 ​return​ data, nil
	​ 	}

Your SQLite repository is complete. Save and close this file. Now, let’s test the pomodoro package using this repository.
	
	
	

Testing the Repository with SQLite

	
	
	In ​Testing the Pomodoro Functionality​, you wrote tests for the pomodoro package using a helper function getRepo to obtain the repository. At that time, only the inMemory repository was available. Now that you’ve added the sqlite3 repository, you’ll provide an alternative version of this function that returns the new repository. You can control when to use each by applying build tags. Switch back to the pomodoro package directory and create a file named sqlite3_test.go:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/persistentDataSQL/pomo/pomodoro​

Open the sqlite3_test.go file in your editor to write the specific function for this repository implementation. Add the build tag +build !inmemory to use this file unless you provide the tag inmemory, in which case it’ll include the file inmemory_test.go instead. You already added the equivalent build tag to that file. Skip a line and add the package definition:
persistentDataSQL/pomo/pomodoro/sqlite3_test.go
	​ 	​//+build !inmemory​
	​ 	
	​ 	​package​ pomodoro_test

Next, add the import section. You’ll use the io/ioutil package to create a temporary file, the os package to delete the file, the testing package for the testing-related functions, and your pomodoro and repository packages to use the repository interface:
persistentDataSQL/pomo/pomodoro/sqlite3_test.go
	​ 	​import​ (
	​ 	 ​"io/ioutil"​
	​ 	 ​"os"​
	​ 	 ​"testing"​
	​ 	
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro"​
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro/repository"​
	​)

Finally, define the function getRepo, which will return the repository instance and a cleanup function. Use ioutil.TempFile to create a temporary file and use its name to define a new sqlite3 repository. Return this repository and a cleanup function that deletes the file:
persistentDataSQL/pomo/pomodoro/sqlite3_test.go
	​ 	​func​ getRepo(t *testing.T) (pomodoro.Repository, ​func​()) {
	​ 	 t.Helper()
	​ 	
	​ 	 tf, err := ioutil.TempFile(​""​, ​"pomo"​)
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	 tf.Close()
	​ 	
	​ 	 dbRepo, err := repository.NewSQLite3Repo(tf.Name())
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 t.Fatal(err)
	​ 	 }
	​ 	
	​ 	 ​return​ dbRepo, ​func​() {
	​ 	 os.Remove(tf.Name())
	​ 	 }
	​ 	}

Save and close the file, and execute the tests again to test the new repository:
	​ 	​$ ​​go​​ ​​test​
	​ 	PASS
	​ 	ok pragprog.com/rggo/interactiveTools/pomo/pomodoro 5.075s

To execute the tests using the inMemory repository, provide the inmemory tag to the test command:
	​ 	​$ ​​go​​ ​​test​​ ​​-tags=inmemory​
	​ 	PASS
	​ 	ok pragprog.com/rggo/interactiveTools/pomo/pomodoro 5.043s

The test result doesn’t show which repository back end it uses, because the test relies on the higher-level Repository interface. If you want to make sure the test is using the SQLite repository, you can monitor the temp directory to verify it creates temporary database files following the pattern pomo211866403; or you can print a message, such as Using SQLite repository, using the method t.Log in the getRepo function to provide some quick visual feedback.

Now that the new repository tests pass, let’s update the application to use it.
	
	
	

Updating the Application to Use the SQLite Repository

	
	
	Once the SQLite repository is available, you need to update the Pomo application to use it. Start by switching into the cmd directory:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/persistentDataSQL/pomo/cmd​

	
	
	
 Edit the file root.go to add a new command-line parameter that lets the user specify the database file to use. Bind that flag with viper so the user can set it in the configuration file as well:
persistentDataSQL/pomo/cmd/root.go
	​ 	​func​ init() {
	​ 	 cobra.OnInitialize(initConfig)
	​ 	
	​ 	 rootCmd.PersistentFlags().StringVar(&cfgFile, ​"config"​, ​""​,
	​ 	 ​"config file (default is $HOME/.pomo.yaml)"​)
	​ 	
	»	 rootCmd.Flags().StringP(​"db"​, ​"d"​, ​"pomo.db"​, ​"Database file"​)
	​ 	
	​ 	 rootCmd.Flags().DurationP(​"pomo"​, ​"p"​, 25*time.Minute,
	​ 	 ​"Pomodoro duration"​)
	​ 	 rootCmd.Flags().DurationP(​"short"​, ​"s"​, 5*time.Minute,
	​ 	 ​"Short break duration"​)
	​ 	 rootCmd.Flags().DurationP(​"long"​, ​"l"​, 15*time.Minute,
	​ 	 ​"Long break duration"​)
	​ 	
	»	 viper.BindPFlag(​"db"​, rootCmd.Flags().Lookup(​"db"​))
	​ 	 viper.BindPFlag(​"pomo"​, rootCmd.Flags().Lookup(​"pomo"​))
	​ 	 viper.BindPFlag(​"short"​, rootCmd.Flags().Lookup(​"short"​))
	​ 	 viper.BindPFlag(​"long"​, rootCmd.Flags().Lookup(​"long"​))
	​ 	}

Save and close this file. Create a new file called reposqlite.go, which will contain the function getRepo used to obtain a SQLite repository instance. To use this file as the default, add the build tag +build !inmemory. You already added the counterpart build tag to that file. Then skip a line and add the package definition:
persistentDataSQL/pomo/cmd/reposqlite.go
	​ 	​// +build !inmemory​
	​ 	
	​ 	​package​ cmd

	
 Add the import section. You’ll use the viper package to obtain the database file name and your pomodoro and repository packages to use the repository interface:
persistentDataSQL/pomo/cmd/reposqlite.go
	​ 	​import​ (
	​ 	 ​"github.com/spf13/viper"​
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro"​
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro/repository"​
	​)

Finally, define the getRepo function to return the repository instance based on the configured database file name:
persistentDataSQL/pomo/cmd/reposqlite.go
	​ 	​func​ getRepo() (pomodoro.Repository, ​error​) {
	​ 	 repo, err := repository.NewSQLite3Repo(viper.GetString(​"db"​))
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 ​return​ repo, nil
	​ 	}

 Save this file, switch back to the application’s root directory, and build your application to test it using the new repository:
	
	
	​ 	​$ ​​cd​​ ​​..​
	​ 	​$ ​​go​​ ​​build​

Run the application with --help to see the new --db option. By default, if not specified, pomo creates and uses a database file pomo.db:
	​ 	​$ ​​./pomo​​ ​​--help​
	​ 	Interactive Pomodoro Timer
	​ 	
	​ 	Usage:
	​ 	 pomo [flags]
	​ 	
	​ 	Flags:
	​ 	 --config string config file (default is $HOME/.pomo.yaml)
	​ 	 -d, --db string Database file (default "pomo.db")
	​ 	 -h, --help help for pomo

	​ 	-l, --long duration Long break duration (default 15m0s)
	​ 	-p, --pomo duration Pomodoro duration (default 25m0s)
	​ 	-s, --short duration Short break duration (default 5m0s)

Execute your application to see that it creates this file:
	​ 	​$ ​​./pomo​

Open a new terminal, switch into your application’s root directory, and check that the file pomo.db exists:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/persistentDataSQL/pomo​
	​ 	​$ ​​ls​​ ​​podmo.db​
	​ 	pomo.db

	
	
	Use the sqlite3 client to connect to this database. Execute a SELECT query on interval. It should return no results as the application has just created this database and table:
	​ 	​$ ​​sqlite3​​ ​​pomo.db​
	​ 	SQLite version 3.34.1 2021-01-20 14:10:07
	​ 	Enter ".help" for usage hints.
	​ 	​sqlite>​​ ​​select​​ ​​*​​ ​​from​​ ​​interval;​
	​ 	​sqlite>​

Switch back to your original terminal and start an interval using the application’s Start button. Switch back to the terminal running the sqlite3 client, and reexecute the same query to see that a new entry now exists:
	​ 	​sqlite>​​ ​​select​​ ​​*​​ ​​from​​ ​​interval;​
	​ 	1|2021-02-20 15:05:43.998875893-05:00|10000000000|1000000000|Pomodoro|1
	​ 	​sqlite>​​ ​​select​​ ​​*​​ ​​from​​ ​​interval;​
	​ 	1|2021-02-20 15:05:43.998875893-05:00|10000000000|10000000000|Pomodoro|3

Your results may vary a little depending on your Pomodoro configuration and interval state when you run the queries.

Your application is now capable of saving historical data about your intervals in a database. Let’s use the historical data to display a summary of the activities to the users.
	
	
	

Displaying a Summary to the Users

	
	One of the benefits of having the data stored in a SQL database is that you can use its expressive power to query and summarize the data in many ways. Let’s use that to present a summary of the users’ activities in the application.

To display the data to the users, you’ll add two new sections to your application’s interface as shown in the figures.
	
	
	
	[image: images/persistentDataSQL/pomo_daily.png]

The Daily Summary section presents a summary of the current day’s activities in minutes broken down by Pomodoro and Breaks.

You’ll implement the Daily Summary interface using the BarChart Termdash widget.

	[image: images/persistentDataSQL/pomo_weekly.png]

The Weekly Summary section displays the current week’s activities broken down by Pomodoro and Breaks, using the Termdash LIneChart widget.

These widgets require data to display. You can extract the required data using a single SQL query with the appropriate filters. You’ll add a single method to the Repository interface to query the data and then use a pair of functions to transform the data according to each widget’s requirements.
	
	
	

Start by modifying the Repository interface. Switch to directory pomodoro under your application’s root directory:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/persistentDataSQL/pomo/pomodoro​

Edit the file interval.go and add a new method called CategorySummary to the Repository interface:
persistentDataSQL/pomo/pomodoro/interval.go
	​ 	​type​ Repository ​interface​ {
	​ 	 Create(i Interval) (​int64​, ​error​)
	​ 	 Update(i Interval) ​error​
	​ 	 ByID(id ​int64​) (Interval, ​error​)
	​ 	 Last() (Interval, ​error​)
	​ 	 Breaks(n ​int​) ([]Interval, ​error​)
	»	 CategorySummary(day time.Time, filter ​string​) (time.Duration, ​error​)
	​ 	}

This method takes two inputs: a time.Time type representing the day to summarize and a string filter to filter the category. It returns a value of type time.Duration as a sum of the time spent on that category for a given day.

You need to implement this new method on both repositories, so start with the inMemory repository. Open the file repository/inMemory.go and add the new method CategorySummary with the same signature as the one defined in the interface:
persistentDataSQL/pomo/pomodoro/repository/inMemory.go
	​ 	​func​ (r *inMemoryRepo) CategorySummary(day time.Time,
	​ 	 filter ​string​) (time.Duration, ​error​) {
	​ 	
	​ 	 ​// Return a daily summary​
	​ 	 r.RLock()
	​ 	 ​defer​ r.RUnlock()
	​ 	
	​ 	 ​var​ d time.Duration
	​ 	
	​ 	 filter = strings.Trim(filter, ​"%"​)
	​ 	
	​ 	 ​for​ _, i := ​range​ r.intervals {
	​ 	 ​if​ i.StartTime.Year() == day.Year() &&
	​ 	 i.StartTime.YearDay() == day.YearDay() {
	​ 	 ​if​ strings.Contains(i.Category, filter) {
	​ 	 d += i.ActualDuration
	​ 	 }
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​return​ d, nil
	​ 	}

This is similar to the other function in this repository. You iterate over all the entries, and, if the StartTime matches the given year and day and the Category matches the given filter, add the ActualDuration to the total. You return the total at the end.

	
	
	Next, implement the method for the sqlite3 repository.
 Save and close the inMemory file and open repository/sqlite3.go. Add the method’s definition following the required signature:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​func​ (r *dbRepo) CategorySummary(day time.Time,
	​ 	 filter ​string​) (time.Duration, ​error​) {

Within the method’s body, first lock the repository for reading as you did for other querying methods:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​// Return a daily summary​
	​ 	r.RLock()
	​ 	​defer​ r.RUnlock()

Then define the SQL SELECT statement to retrieve the required data. Start by defining the stmt variable and use a raw literal string with the backtick character to write the query on multiple lines. Use the SQL aggregation function sum to add the values directly in the database:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​// Define SELECT query for daily summary​
	​ 	stmt := ​`SELECT sum(actual_duration) FROM interval​

Next, define the WHERE condition to limit the entries queried. The first condition is category LIKE, followed by an expression. Leave the question mark as a placeholder for the query. You use the given filter as this value during the actual query.
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	WHERE category LIKE ​?​ AND

For the next condition, compare the record date with the given variable day. Use the SQL function strftime with the parameter ’%Y-%m-%d’ to extract the date part and ignore the time, allowing it to query all records for the same day. Use the SQL column start_time for the first side of the comparison, and leave the ? placeholder for the second. Use the parameter localtime to ensure SQLite doesn’t convert the time to UTC, which would result in shifting some dates:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	strftime(​'​%Y-%m-%d​'​, start_time, ​'​localtime​'​)=
	​ 	strftime(​'​%Y-%m-%d​'​, ​?​, ​'​localtime​'​)​`​

When you execute this query, the result will be NULL if you’re querying a day or category for which there’s no data. When using the database/sql package, you need to handle potential NULL values explicitly as Go won’t perform automatic conversion. This package provides a series of types that you can use to represent values from the database that can be NULL. For this program, create a variable called ds of type sql.NullInt64, which is an int64 that can be NULL:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​var​ ds sql.NullInt64

Then execute the query using the method QueryRow since we expect only one result with the sum of all values. Provide the given input parameters filter and day to replace the placeholders, and scan the results into the nullable variable ds:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	err := r.db.QueryRow(stmt, filter, day).Scan(&ds)

Now use the ds variable to verify whether the value is NULL. Create a variable d of type time.Duration that Go initializes as zero. Use the field ds.Valid to check that ds contains a valid int64 instead of NULL. In this case, extract the value using the field ds.Int64, convert it to time.Duration, and assign it to d.
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	​var​ d time.Duration
	​ 	​if​ ds.Valid {
	​ 	 d = time.Duration(ds.Int64)
	​ 	}

If ds contains a NULL value, the variable d won’t be updated, and it’ll still be set to zero. Return this variable and the error to finish the method:
persistentDataSQL/pomo/pomodoro/repository/sqlite3.go
	​ 	 ​return​ d, err
	​ 	}

	
	
	Save and close this file. Next, you’ll add two functions to generate data in the format the widgets need. You’ll add these two functions to the pomodoro package since the repository isn’t exported.
	
	
	

Create and edit a new file called summary.go under the pomodoro directory. Add the package definition and import section, and use the fmt package to format strings and the time package to use time and date functions:
persistentDataSQL/pomo/pomodoro/summary.go
	​ 	​package​ pomodoro
	​ 	
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"time"​
	​)

	
	Each widget requires different data. The bar chart widget requires a slice of integers, with each element representing a bar in the chart. For this app, you’ll have two bars: one representing Pomodoro time and another representing Breaks. Define the function DailySummary that takes a time.Time type representing the day and a pointer to IntervalConfig to access the repository. It returns a slice of time.Duration and an error.
persistentDataSQL/pomo/pomodoro/summary.go
	​ 	​func​ DailySummary(day time.Time,
	​ 	 config *IntervalConfig) ([]time.Duration, ​error​) {

Even though the bar chart uses integers instead of time.Duration, you define the function with the latter type so that you can also use it to extract the data for the weekly summary. Later when you use this data in the bar chart widget, you’ll convert it to integers.

Next, use the repository method CategorySummary to extract data for the Pomodoro category. Use the constant value CategoryPomodoro as the filter:
persistentDataSQL/pomo/pomodoro/summary.go
	​ 	dPomo, err := config.repo.CategorySummary(day, CategoryPomodoro)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

Use the same approach to obtain the data for breaks. To sum both the long breaks and the short breaks in a single query, use the value %Break as the filter so the database searches for this pattern instead of the constant value:
persistentDataSQL/pomo/pomodoro/summary.go
	​ 	dBreaks, err := config.repo.CategorySummary(day, ​"%Break"​)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

Complete the function by returning both values as a slice of time.Duration values:
persistentDataSQL/pomo/pomodoro/summary.go
	​ 	 ​return​ []time.Duration{
	​ 	 dPomo,
	​ 	 dBreaks,
	​ 	 }, nil
	​ 	}

	
	
	The Line Chart widget needs a slice of float64 numbers representing each value on the chart’s y-axis for each line. In addition to this slice, you’ll also provide a map with dates to use as the x-axis label.

Define a new custom type LineSeries to represent this data:
persistentDataSQL/pomo/pomodoro/summary.go
	​ 	​type​ LineSeries ​struct​ {
	​ 	 Name ​string​
	​ 	 Labels ​map​[​int​]​string​
	​ 	 Values []​float64​
	​ 	}

Then define the function RangeSummary to obtain the data for the Line Chart widget. This function takes a time.Time instance representing the starting day, an integer n representing the number of days to look back from the start, and a pointer to IntervalConfig to access the repository. It returns a slice of LineSeries representing the data required for all lines in the line chart and an error. Add the following code to define the function:
persistentDataSQL/pomo/pomodoro/summary.go
	​ 	​func​ RangeSummary(start time.Time, n ​int​,
	​ 	 config *IntervalConfig) ([]LineSeries, ​error​) {

Then initialize two instances of LineSeries: one for Pomodoro data and another for Breaks data:
persistentDataSQL/pomo/pomodoro/summary.go
	​ 	pomodoroSeries := LineSeries{
	​ 	 Name: ​"Pomodoro"​,
	​ 	 Labels: make(​map​[​int​]​string​),
	​ 	 Values: make([]​float64​, n),
	​ 	}
	​ 	
	​ 	breakSeries := LineSeries{
	​ 	 Name: ​"Break"​,
	​ 	 Labels: make(​map​[​int​]​string​),
	​ 	 Values: make([]​float64​, n),
	​ 	}

Next, iterate over the number of days n to extract. For each iteration of the loop, subtract n days from the start date using the AddDate method with a negative number for the days parameter. Use your function DailySummary to extract the data for the given day, create the label for that date, and assign the values to the corresponding elements of each series. Use the number of seconds as the y-axis values.
persistentDataSQL/pomo/pomodoro/summary.go
	​ 	​for​ i := 0; i < n; i++ {
	​ 	 day := start.AddDate(0, 0, -i)
	​ 	 ds, err := DailySummary(day, config)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 label := fmt.Sprintf(​"%02d/%s"​, day.Day(), day.Format(​"Jan"​))
	​ 	
	​ 	 pomodoroSeries.Labels[i] = label
	​ 	 pomodoroSeries.Values[i] = ds[0].Seconds()
	​ 	
	​ 	 breakSeries.Labels[i] = label
	​ 	 breakSeries.Values[i] = ds[1].Seconds()
	​ 	}

Finally, return the slice of LineSeries including both series to conclude the function:
persistentDataSQL/pomo/pomodoro/summary.go
	​ 	 ​return​ []LineSeries{
	​ 	 pomodoroSeries,
	​ 	 breakSeries,
	​ 	 }, nil
	​ 	}

Save and close this file. Now, let’s update the application interface to display the two new widgets. Switch to the app directory:
	​ 	​$ ​​cd​​ ​​../app​

	
	Create and edit a new file called summaryWidgets.go to define the new widgets. Add the package definition and import list. You’ll use the context package to define a cancellation context to close the widgets, the math package to use some mathematical functions, the time package to deal with times and dates, the cell, widgets/barchart, and widgets/linechart packages to create the required widgets, and your pomodoro package to access the repository:
persistentDataSQL/pomo/app/summaryWidgets.go
	​ 	​package​ app
	​ 	
	​ 	​import​ (
	​ 	 ​"context"​
	​ 	 ​"math"​
	​ 	 ​"time"​
	​ 	
	​ 	 ​"github.com/mum4k/termdash/cell"​
	​ 	 ​"github.com/mum4k/termdash/widgets/barchart"​
	​ 	 ​"github.com/mum4k/termdash/widgets/linechart"​
	​ 	 ​"pragprog.com/rggo/interactiveTools/pomo/pomodoro"​
	​)

 Create a custom type summary as a collection of summary widgets.
 This is similar to how you defined the other widgets in ​Building the Interface Widgets​. You’ll use this type to connect the widgets to the app and update them:
persistentDataSQL/pomo/app/summaryWidgets.go
	​ 	​type​ summary ​struct​ {
	​ 	 bcDay *barchart.BarChart
	​ 	 lcWeekly *linechart.LineChart
	​ 	 updateDaily ​chan​ ​bool​
	​ 	 updateWeekly ​chan​ ​bool​
	​ 	}

Define an update method for the summary type, which will update all summary widgets by sending a value to the update channels. Each widget will have a goroutine waiting for data coming from this channel to update. This is the same approach you used for all the previous widgets:
persistentDataSQL/pomo/app/summaryWidgets.go
	​ 	​func​ (s *summary) update(redrawCh ​chan​<- ​bool​) {
	​ 	 s.updateDaily <- true
	​ 	 s.updateWeekly <- true
	​ 	 redrawCh <- true
	​ 	}

Now define a newSummary function that initializes both widgets and returns an instance of summary with them. You’ll define the widget initialization functions shortly:
persistentDataSQL/pomo/app/summaryWidgets.go
	​ 	​func​ newSummary(ctx context.Context, config *pomodoro.IntervalConfig,
	​ 	 redrawCh ​chan​<- ​bool​, errorCh ​chan​<- ​error​) (*summary, ​error​) {
	​ 	
	​ 	 s := &summary{}
	​ 	 ​var​ err ​error​
	​ 	
	​ 	 s.updateDaily = make(​chan​ ​bool​)
	​ 	 s.updateWeekly = make(​chan​ ​bool​)
	​ 	
	​ 	 s.bcDay, err = newBarChart(ctx, config, s.updateDaily, errorCh)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 s.lcWeekly, err = newLineChart(ctx, config, s.updateWeekly, errorCh)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 ​return​ s, nil
	​ 	}

Next, define the widget initialization functions newBarChart and newLineChart. You’ll use the same pattern for both functions: you’ll initialize the widget, define an update function, run a goroutine to update, and return the widget. This is similar to the approach you used to develop the other widgets. Start by defining the newBarChart function to instantiate a new bar chart widget:
persistentDataSQL/pomo/app/summaryWidgets.go
	​ 	​func​ newBarChart(ctx context.Context, config *pomodoro.IntervalConfig,
	​ 	 update <-​chan​ ​bool​, errorCh ​chan​<- ​error​) (*barchart.BarChart, ​error​) {

Then initialize a new bar chart using barchart.New from Termdash. Set the colors for each bar, using blue for Pomodoros and yellow for breaks. Set the foreground value color to black and add the corresponding labels:
persistentDataSQL/pomo/app/summaryWidgets.go
	​ 	​// Initialize BarChart​
	​ 	bc, err := barchart.New(
	​ 	 barchart.ShowValues(),
	​ 	 barchart.BarColors([]cell.Color{
	​ 	 cell.ColorBlue,
	​ 	 cell.ColorYellow,
	​ 	 }),
	​ 	 barchart.ValueColors([]cell.Color{
	​ 	 cell.ColorBlack,
	​ 	 cell.ColorBlack,
	​ 	 }),
	​ 	 barchart.Labels([]​string​{
	​ 	 ​"Pomodoro"​,
	​ 	 ​"Break"​,
	​ 	 }),
	​)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

Define an anonymous function to update the widget. Use the function pomodoro.DailySummary that you developed to obtain the data. Set the values using the barchart method bc.Values. Convert the values to be integers. Set the maximum value of the bars to the largest of both series plus 10% to leave a little space above the chart for clarity. Otherwise, the bar would take all the widget’s space:
persistentDataSQL/pomo/app/summaryWidgets.go
	​ 	​// Update function for BarChart​
	​ 	updateWidget := ​func​() ​error​ {
	​ 	 ds, err := pomodoro.DailySummary(time.Now(), config)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ bc.Values(
	​ 	 []​int​{​int​(ds[0].Minutes()),
	​ 	 ​int​(ds[1].Minutes())},
	​ 	 ​int​(math.Max(ds[0].Minutes(),
	​ 	 ds[1].Minutes())*1.1)+1,
	​)
	​ 	}

Next, execute an anonymous goroutine to update or close the widget depending on which channel it receives data from. Use the select statement to block and sleep until it receives data in one of the two channels:
persistentDataSQL/pomo/app/summaryWidgets.go
	​ 	​// Update goroutine for BarChart​
	​ 	​go​ ​func​() {
	​ 	 ​for​ {
	​ 	 ​select​ {
	​ 	 ​case​ <-update:
	​ 	 errorCh <- updateWidget()
	​ 	 ​case​ <-ctx.Done():
	​ 	 ​return​
	​ 	 }
	​ 	 }
	​ 	}()

Run the updateWidget function once to populate the widget when the application starts and then return the new widget and a nil error to complete the function.
persistentDataSQL/pomo/app/summaryWidgets.go
	​ 	 ​// Force Update BarChart at start​
	​ 	 ​if​ err := updateWidget(); err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 ​return​ bc, nil
	​ 	}

Next, define the function newLineChart to instantiate a new Line Chart widget:
persistentDataSQL/pomo/app/summaryWidgets.go
	​ 	​func​ newLineChart(ctx context.Context, config *pomodoro.IntervalConfig,
	​ 	 update <-​chan​ ​bool​, errorCh ​chan​<- ​error​) (*linechart.LineChart, ​error​) {

Initialize a new line chart using linechart.New from Termdash. Set the axes colors to red, the y-axis foreground to blue, and the x-axis foreground to Cyan. Also set a dynamic formatter for the y-axis value, expecting a time.Duration value rounded to 0 decimals:
persistentDataSQL/pomo/app/summaryWidgets.go
	​ 	​// Initialize LineChart​
	​ 	lc, err := linechart.New(
	​ 	 linechart.AxesCellOpts(cell.FgColor(cell.ColorRed)),
	​ 	 linechart.YLabelCellOpts(cell.FgColor(cell.ColorBlue)),
	​ 	 linechart.XLabelCellOpts(cell.FgColor(cell.ColorCyan)),
	​ 	 linechart.YAxisFormattedValues(
	​ 	 linechart.ValueFormatterSingleUnitDuration(time.Second, 0),
	​),
	​)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}

The dynamic axis formatter will update the y-axis labels depending on the values received, assuming they represent a time duration in seconds. It uses the appropriate unit to represent the current values. For example, initially, it can show seconds, switching to minutes or hours as values grow.

Next, define an anonymous function to update the widget. Use the function pomodoro.RangeSummary that you developed before to obtain the data. Since you want to display a weekly summary, set the number of days to seven. Set the chart values using the linechart method lc.Series. Set the series names and values from the custom LineSeries type you defined. The first slice element represents the Pomodoro series and the second represents the Breaks. Set the Pomodoro series line color to blue and the breaks line color to yellow, matching the bar chart. Finally, set the x-axis labels using data from the custom type:
persistentDataSQL/pomo/app/summaryWidgets.go
	​ 	​// Update function for LineChart​
	​ 	updateWidget := ​func​() ​error​ {
	​ 	 ws, err := pomodoro.RangeSummary(time.Now(), 7, config)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 err = lc.Series(ws[0].Name, ws[0].Values,
	​ 	 linechart.SeriesCellOpts(cell.FgColor(cell.ColorBlue)),
	​ 	 linechart.SeriesXLabels(ws[0].Labels),
	​)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 ​return​ lc.Series(ws[1].Name, ws[1].Values,
	​ 	 linechart.SeriesCellOpts(cell.FgColor(cell.ColorYellow)),
	​ 	 linechart.SeriesXLabels(ws[1].Labels),
	​)
	​ 	}

Then, like the previous function, run the update goroutine, force a chart update at start, and return the newly created widget:
persistentDataSQL/pomo/app/summaryWidgets.go
	​ 	​// Update goroutine for LineChart​
	​ 	​go​ ​func​() {
	​ 	 ​for​ {
	​ 	 ​select​ {
	​ 	 ​case​ <-update:
	​ 	 errorCh <- updateWidget()

	​ 	 ​case​ <-ctx.Done():
	​ 	 ​return​
	​ 	 }
	​ 	 }
	​ 	 }()
	​ 	
	​ 	 ​// Force Update LineChart at start​
	​ 	 ​if​ err := updateWidget(); err != nil {
	​ 	 ​return​ nil, err
	​ 	 }
	​ 	
	​ 	 ​return​ lc, nil
	​ 	}

The widgets are ready. Let’s integrate them in the application now. Save and close this file.

Open the file grid.go and update the newGrid definition to take in a collection of summary widgets in addition to all the other input parameters:
persistentDataSQL/pomo/app/grid.go
	​ 	​func​ newGrid(b *buttonSet, w *widgets, s *summary,
	​ 	 t terminalapi.Terminal) (*container.Container, ​error​) {

Then update the placeholder you left for the third row with the two new widgets you created. Split the row into two containers, placing the bar chart on the left with 30% of the space and the line chart on the right. Label the containers Daily Summary (minutes) and Weekly Summary, respectively:
persistentDataSQL/pomo/app/grid.go
	​ 	​// Add third row​
	​ 	builder.Add(
	»	 grid.RowHeightPerc(60,
	»	 grid.ColWidthPerc(30,
	»	 grid.Widget(s.bcDay,
	»	 container.Border(linestyle.Light),
	»	 container.BorderTitle(​"Daily Summary (minutes)"​),
	»),
	»),
	»	 grid.ColWidthPerc(70,
	»	 grid.Widget(s.lcWeekly,
	»	 container.Border(linestyle.Light),
	»	 container.BorderTitle(​"Weekly Summary"​),
	»),
	»),
	»),
	​)

Save and close this file. Now open the file buttons.go to update the button definition. Start by including the summary collection as an input parameter for the newButtonSet function:
persistentDataSQL/pomo/app/buttons.go
	​ 	​func​ newButtonSet(ctx context.Context, config *pomodoro.IntervalConfig,
	​ 	 w *widgets, s *summary,
	​ 	 redrawCh ​chan​<- ​bool​, errorCh ​chan​<- ​error​) (*buttonSet, ​error​) {

Then update the summary widgets at the end of each interval by adding a call to s.update in the end callback function:
persistentDataSQL/pomo/app/buttons.go
	​ 	end := ​func​(pomodoro.Interval) {
	​ 	 w.update([]​int​{}, ​""​, ​"Nothing running..."​, ​""​, redrawCh)
	»	 s.update(redrawCh)
	​ 	}

Save and close this file and edit the file app.go to pull everything together. Update the New function to instantiate a new collection of summary widgets after instantiating the other widgets. Then pass this collection to the function newButtonSet:
persistentDataSQL/pomo/app/app.go
	​ 	w, err := newWidgets(ctx, errorCh)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}
	​ 	
	»	s, err := newSummary(ctx, config, redrawCh, errorCh)
	»	​if​ err != nil {
	»	 ​return​ nil, err
	»	}
	»	
	»	b, err := newButtonSet(ctx, config, w, s, redrawCh, errorCh)
	​ 	​if​ err != nil {
	​ 	 ​return​ nil, err
	​ 	}
	​ 	
	​ 	term, err := tcell.New()

Finally, update the call to newGrid by adding the s parameter representing the summary collection:
persistentDataSQL/pomo/app/app.go
	​ 	c, err := newGrid(b, w, s, term)

Save and close this file. Switch back to your application’s root directory and build your new application to test it:
	​ 	​$ ​​cd​​ ​​..​
	​ 	​$ ​​go​​ ​​build​

	
	
	Run the application to see the new widgets. At first, they may be blank if you have no history saved. Run a few intervals to see that both widgets update with summary data at the end of each interval as seen in Figure 17.
[image: images/persistentDataSQL/pomo_screen_db.png]

Figure 17. Pomodoro Final Screen

To compile your application using the in-memory data store, use the command-line parameter -tags=inmemory with go build. The application will display summarized data while it’s open, but reset to blank if you close it since data in memory is lost.

Your Pomodoro application is complete. Using interactive widgets and SQL databases, you can build powerful command-line applications.
	
	
	

Exercises

Before moving to the final chapter, apply the skills you developed in this chapter by working on these exercises:
	
Add tests for the functions DailySummary and RangeSummary. Create a helper function to instantiate a database and insert some data that you can use to query and test these functions.

	
Integrate another database engine, such as PostgreSQL or MariaDB, with this application to understand what changes when connecting to different databases. You can reuse most of the code you developed to integrate with SQLite, but you’ll need to update some queries according to the target database’s specific syntax.

Wrapping Up

Your Pomodoro timer application is complete. It saves historical data into a SQL database and displays summarized data to the user using interactive charts.

You can use the concepts you applied in this chapter to develop other applications that interface with databases, whether to manage your application data or to query data for processing. The principles are the same. You can also use the package database/sql with the appropriate drivers to connect to other SQL databases such as PostgreSQL or MariaDB.

In the next chapter, you’ll explore some options for building your application for multiple operating systems, and you’ll learn how to make them available to your users.

Footnotes

	[60]
	
 https://en.wikipedia.org/wiki/SQL

	[61]
	
 https://www.sqlite.org/index.html

	[62]
	
 https://brew.sh/

	[63]
	
 https://www.sqlite.org/download.html

	[64]
	
 https://chocolatey.org/

	[65]
	
 https://www.sqlite.org/docs.html

	[66]
	
 https://github.com/golang/go/wiki/SQLDrivers

	[67]
	
 https://github.com/mattn/go-sqlite3

	[68]
	
 https://golang.org/cmd/go/#hdr-Calling_between_Go_and_C

	[69]
	
 https://en.wikipedia.org/wiki/Xcode

	[70]
	
 https://sourceforge.net/projects/tdm-gcc/

	[71]
	
 https://sourceforge.net/projects/mingw-w64

	[72]
	
 https://github.com/mattn/go-sqlite3#connection-string

	[73]
	
 https://en.wikipedia.org/wiki/SQL_injection

	[74]
	
 https://pkg.go.dev/database/sql#Rows.Scan

Copyright © 2021, The Pragmatic Bookshelf.

 Chapter
 11
Distributing Your Tool

 By using what you’ve learned in this book, you can develop powerful tools that are flexible, fast, and well-tested. But the tools you build need to reach your users and work in their environment. As briefly discussed in ​Compiling Your Tool for Different Platforms​, one of the benefits of Go is that you can create command-line applications that run on multiple operating systems. You can even cross-compile an application for operating systems other than the one you’re currently using.

In some cases, your tool may use libraries or programs that were built specifically for one particular operating system but may not work on another. In these situations, your command-line tool may not run in all required environments as is. In this chapter, you’ll explore different options you can use to provide operating system--specific data and components for your applications.

 To explore these concepts, you’ll build a new package called notify to enable visual notifications for your applications, you’ll apply techniques to include and exclude files from your builds, and you will include operating system--specific data, or operating system--specific files in your package. Then, you’ll add notifications to the Pomodoro tool that you built in Chapter 9, ​Developing Interactive Terminal Tools​, and cross-compile this application for different operating systems.

Finally, you’ll make this application available to your users using go get, and you’ll distribute your application using Linux containers.

Let’s start by creating the notify package and setting up the environment.

Starting the Notify Package

Unlike other applications you developed, notify won’t be an executable application. It will be a library that allows you to include system notifications in other applications. You’ll develop a naive but functional implementation that uses the os/exec package to call external programs that send a system notification. Because notifications vary according to the operating system, this is a practical example of how to use operating system--specific data and files in your applications. You’ll provide support for three operating systems: Linux, macOS, and Windows.
	
	

	
	
	
	
	
	
	
	
	
	To use this package, you need these tools installed on your system, according to your operating system:
	Linux:
	
notify-send: Included as part of libnotify.[75] This package is usually available with many Linux distributions. Install it using your Linux distribution package manager.

	Windows:
	
powershell.exe: You’ll use Powershell to execute a custom script. Powershell is usually installed with Windows 10. If not, install it by following the official documentation.[76]

	macOS:
	
terminal-notifier: It’s a custom terminal notification application for macOS. Find more information on the project’s GitHub page.[77] You can install it using Homebrew.

	
	Once you have the prerequisite tool installed, create the directory structure for your notify package under your book’s root directory:
	​ 	​$ ​​mkdir​​ ​​-p​​ ​​$HOME/pragprog.com/rggo/distributing/notify​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/distributing/notify​

Next, initialize the Go module for this project:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/distributing/notify​
	​ 	​$ ​​go​​ ​​mod​​ ​​init​​ ​​pragprog.com/rggo/distributing/notify​
	​ 	go: creating new go.mod: module pragprog.com/rggo/distributing/notify

	
	
	Now, create and edit the file notify.go. Add the package definition and the import section. For this file, you’ll use the package runtime to check the running operating system and the package strings to execute operations with string values:
distributing/notify/notify.go
	​ 	​package​ notify
	​ 	
	​ 	​import​ (
	​ 	 ​"runtime"​
	​ 	 ​"strings"​
	​)

	
	Next, define a series of constants using the operator iota to represent the notification severities (SeverityLow, SeverityNormal, and SeverityUrgent):
distributing/notify/notify.go
	​ 	​const​ (
	​ 	 SeverityLow = iota
	​ 	 SeverityNormal
	​ 	 SeverityUrgent
	​)

Define a custom type Severity with an underlying type int to represent the severity. By doing this, you can attach methods to this type. Later you’ll define the method String that returns the severity’s string representation to use in the external tools:
distributing/notify/notify.go
	​ 	​type​ Severity ​int​

Next, define the Notify type that represents a notification. This type has three non-exported fields: title, message, and severity. Define an initialization function for this type that returns a new Notify instance according to the values provided by the user:
distributing/notify/notify.go
	​ 	​type​ Notify ​struct​ {
	​ 	 title ​string​
	​ 	 message ​string​
	​ 	 severity Severity
	​ 	}
	​ 	
	​ 	​func​ New(title, message ​string​, severity Severity) *Notify {
	​ 	 ​return​ &Notify{
	​ 	 title: title,
	​ 	 message: message,
	​ 	 severity: severity,
	​ 	 }
	​ 	}

Save the file, but leave it open. Next, you’ll use the running operating system to return different string representations of the severity.

Including OS-Specific Data

	
	
	
	
	
	Each one of the tools you’re using to send the system notification has a different requirement for the notification severity. For example, on Linux notify-send expects severities as low, normal, or critical, while on Windows your script defines the type of icons such as Info, Warning, or Error. Finally, terminal-notifier on macOS doesn’t use severities so you’ll display the notification as text with the notification title.

The users of your package define the severity using a constant value of the Severity type. Let’s write a method String that converts the value to a string representation according to each tool’s specific requirements based on the running operating system.

	
	
	
	In Go, you can use the runtime package to obtain information from the Go runtime component about its environment, including the running operating system, through the constant GOOS. To obtain a list of possible values for GOOS, use the go tool command:
	
	
	​ 	​$ ​​go​​ ​​tool​​ ​​dist​​ ​​list​
	​ 	aix/ppc64
	​ 	android/386
	​ 	​...​​ ​​TRUNCATED​​ ​​...​
	​ 	darwin/amd64
	​ 	darwin/arm64
	​ 	​...​​ ​​TRUNCATED​​ ​​...​
	​ 	linux/386
	​ 	linux/amd64
	​ 	linux/arm
	​ 	linux/arm64
	​ 	​...​​ ​​TRUNCATED​​ ​​...​
	​ 	windows/386
	​ 	windows/amd64
	​ 	windows/arm

	
	The go tool command lists values grouped as Operating System/Architecture. For example, linux/amd64 is Linux for x86_64 architecture, while darwin/arm64 is macOS for ARM64. For this package you’re only interested in the operating system’s name, not the architecture.

Based on this output, define a method called String for the Severity type that returns the correct string for the severity for each operating system by comparing runtime.GOOS with the target operating system. Use Linux as the default, so you don’t need a comparison for it. For macOS capitalize the first letter to use it with the notification title:
distributing/notify/notify.go
	​ 	​func​ (s Severity) String() ​string​ {
	​ 	 sev := ​"low"​
	​ 	
	​ 	 ​switch​ s {
	​ 	 ​case​ SeverityLow:
	​ 	 sev = ​"low"​
	​ 	 ​case​ SeverityNormal:
	​ 	 sev = ​"normal"​
	​ 	 ​case​ SeverityUrgent:
	​ 	 sev = ​"critical"​
	​ 	 }
	​ 	
	​ 	 ​if​ runtime.GOOS == ​"darwin"​ {
	​ 	 sev = strings.Title(sev)
	​ 	 }
	​ 	
	​ 	 ​if​ runtime.GOOS == ​"windows"​ {
	​ 	 ​switch​ s {
	​ 	 ​case​ SeverityLow:
	​ 	 sev = ​"Info"​
	​ 	 ​case​ SeverityNormal:
	​ 	 sev = ​"Warning"​
	​ 	 ​case​ SeverityUrgent:
	​ 	 sev = ​"Error"​
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​return​ sev
	​ 	}

Using this method, you can make decisions and use different parameters and data depending on the operating system where your tool is running. You could also include a condition informing the user they’re running on an unsupported platform if it doesn’t match one of the expected operating system values.

Save and close this file. Next, you’ll implement the Send method of type Notify to send the notification for each operating system.
	
	
	
	
	
	

Including OS-Specific Files in the Build

	
	
	
	
	
	
	Using runtime.GOOS to verify the current operating system is a practical way to include OS-specific parameters and data in your application. But it’s not a good approach to include larger pieces of code because doing so may lead to convoluted code and it may not be possible in some cases to redefine the code within the condition block.

	
	In these cases, you can use build constraints,[78] also known as build tags, which are a mechanism that lets you include and exclude files from your build and your tests according to different criteria.

In their most basic form, you can use build tags to tag Go source files and include them in your build when you provide the respective tag as a value to the parameter -tags=TAG when building or testing your code. You already used this concept in ​Executing Integration Tests​, to include integration test files when required.

	
	Go also allows you to provide tags based on the operating system and architecture. For example, if you add the build constraint // +build linux, Go automatically includes this file in the build when targeting the Linux operating system.

Instead of providing the build tag, you can include the target operating system or architecture as a suffix in the file name, in front of the extension. For example, Go automatically includes the file notify_darwin.go when building your code for macOS. Using this technique simplifies the process because you don’t have to maintain the build tag, and it’s easier to identify which file will be included with the build by looking at its name.

Let’s use this technique to define specific Send methods for each operating system. You’ll create three files: notify_linux.go, notify_darwin.go, and notify_windows.go. In each file, you’ll implement the same method Send using the same signature but the specific operating system implementation. Since Go will only include the file for the target operating system, there will be no conflict.

	
	
	Start by creating and editing the Linux file notify_linux.go. Add the package definition and the import section. For this file, you’ll use the os/exec package to execute an external command:
distributing/notify/notify_linux.go
	​ 	​package​ notify
	​ 	
	​ 	​import​ ​"os/exec"​

Since this package uses external commands, you’ll mock the command to execute tests simulating the command execution, as you did in ​Testing Commands with Mock Resources​. Define the variable command to substitute with the mock implementation during tests:
	
	
	
distributing/notify/notify_linux.go
	​ 	​var​ command = exec.Command

	
	
	
	Then, define the method Send for the type Notify. Use the os/exec module to create an instance of exec.Cmd using the function you saved in the variable command. For Linux, you’re using the command notify-send with the parameters -u SEVERITY, TITLE, and MESSAGE. Execute the command and return the error to complete the function:
distributing/notify/notify_linux.go
	​ 	​func​ (n *Notify) Send() ​error​ {
	​ 	 notifyCmdName := ​"notify-send"​
	​ 	
	​ 	 notifyCmd, err := exec.LookPath(notifyCmdName)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 notifyCommand := command(notifyCmd, ​"-u"​, n.severity.String(),
	​ 	 n.title, n.message)
	​ 	 ​return​ notifyCommand.Run()
	​ 	}

	
	
	Save and close this file and then create and edit notify_darwin.go for macOS. Define the file’s content similar to the notify_linux.go file. Use the terminal-notifier too with the options -title TITLE and -message MESSAGE. Because terminal-notifier doesn’t support severity, add the severity to the title using fmt.Sprintf to format the title string:
distributing/notify/notify_darwin.go
	​ 	​package​ notify
	​ 	
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"os/exec"​
	​)
	​ 	
	​ 	​var​ command = exec.Command
	​ 	
	​ 	​func​ (n *Notify) Send() ​error​ {
	​ 	 notifyCmdName := ​"terminal-notifier"​
	​ 	
	​ 	 notifyCmd, err := exec.LookPath(notifyCmdName)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }
	​ 	
	​ 	 title := fmt.Sprintf(​"(%s) %s"​, n.severity, n.title)
	​ 	
	​ 	 notifyCommand := command(notifyCmd, ​"-title"​, title, ​"-message"​, n.message)
	​ 	 ​return​ notifyCommand.Run()
	​ 	}

	
	
	Save and close this file. Now create and edit notify_windows.go for Windows. Define the package, import section, and the variable command like before:
distributing/notify/notify_windows.go
	​ 	​package​ notify
	​ 	
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"os/exec"​
	​)
	​ 	
	​ 	​var​ command = exec.Command

Then, define the Send method and set the command name to powershell.exe. For Windows, you’ll execute a Powershell script to send the notification.
distributing/notify/notify_windows.go
	​ 	​func​ (n *Notify) Send() ​error​ {
	​ 	 notifyCmdName := ​"powershell.exe"​
	​ 	
	​ 	 notifyCmd, err := exec.LookPath(notifyCmdName)
	​ 	 ​if​ err != nil {
	​ 	 ​return​ err
	​ 	 }

	
	Add the Powershell notification script. This script is loosely based on the BaloonTip script developed by Boe Prox.[79] Use fmt.Sprintf to format the script by including values from the Notify fields n.severity, n.title, and n.message:
distributing/notify/notify_windows.go
	​ 	psscript := fmt.Sprintf(​`Add-Type -AssemblyName System.Windows.Forms​
	​ 	​ $notify = New-Object System.Windows.Forms.NotifyIcon​
	​ 	​ $notify.Icon = [System.Drawing.SystemIcons]::Information​
	​ 	​ $notify.BalloonTipIcon = %q​
	​ 	​ $notify.BalloonTipTitle = %q​
	​ 	​ $notify.BalloonTipText = %q​
	​ 	​ $notify.Visible = $True​
	​ 	​ $notify.ShowBalloonTip(10000)`​,
	​ 	 n.severity, n.title, n.message,
	​)

Define a slice of strings with the required Powershell arguments to run it silently:
distributing/notify/notify_windows.go
	​ 	args := []​string​{
	​ 	 ​"-NoProfile"​,
	​ 	 ​"-NonInteractive"​,
	​ 	}

Append the script to the arguments slice to pass it to the function that creates the command:
distributing/notify/notify_windows.go
	​ 	args = append(args, psscript)

Then use the command and parameters slice to create and run the command. Return the potential error to complete the function:
distributing/notify/notify_windows.go
	​ 	 notifyCommand := command(notifyCmd, args...)
	​ 	 ​return​ notifyCommand.Run()
	​ 	}

The code for this package is complete. Save and close this file. Next, you’ll test the notification system.
	
	
	
	
	
	
	
	

Testing the Notify Package

	
	
	
	Let’s write some tests for this package. To fully test this package, you’ll write unit tests and integration tests.

First, you’ll write unit tests for the package functions and methods, using a test file within the same package notify. For these tests, you’ll mock the command implementation using the same technique you applied in ​Testing Commands with Mock Resources​, allowing you to fully automate the unit tests without generating screen notifications.

	
	
	Then, you’ll also write integration tests to test the exposed API and ensure the notifications come up onscreen. This test is particularly important because this package doesn’t produce an executable file to try it out. To avoid having notifications displayed every time, you’ll limit the execution of these tests by providing the build tag +build integration. You’ll only execute this test by providing the same tag to the go test tool.

	
	
	Let’s start by writing the unit tests. Create and edit the file notify_test.go for the unit tests. Add the build constraint +build !integration to execute this file without the integration build tag. Skip a line to ensure Go processes the comments as a build constraint instead of documentation, then add the package definition:
distributing/notify/notify_test.go
	​ 	​// +build !integration​
	​ 	
	​ 	​package​ notify

Next, add the import section. For these tests, you’ll use the following packages: fmt to process formatted strings, os to interact with the operating system, os/exec to mock external commands, runtime to obtain the current operating system, strings to format string values, and testing to use test-related functions:
distributing/notify/notify_test.go
	​ 	​import​ (
	​ 	 ​"fmt"​
	​ 	 ​"os"​
	​ 	 ​"os/exec"​
	​ 	 ​"runtime"​
	​ 	 ​"strings"​
	​ 	 ​"testing"​
	​)

	
	
	Add the first test function TestNew to test the New function. Use table-driven tests to test creating a new instance of type Notify with all severities:
distributing/notify/notify_test.go
	​ 	​func​ TestNew(t *testing.T) {
	​ 	 testCases := []​struct​ {
	​ 	 s Severity
	​ 	 }{
	​ 	 {SeverityLow},
	​ 	 {SeverityNormal},
	​ 	 {SeverityUrgent},
	​ 	 }
	​ 	
	​ 	 ​for​ _, tc := ​range​ testCases {
	​ 	 name := tc.s.String()
	​ 	 expMessage := ​"Message"​
	​ 	 expTitle := ​"Title"​
	​ 	 t.Run(name, ​func​(t *testing.T) {
	​ 	 n := New(expTitle, expMessage, tc.s)
	​ 	 ​if​ n.message != expMessage {
	​ 	 t.Errorf(​"Expected %q, got %q instead​​\n​​"​, expMessage, n.message)
	​ 	 }
	​ 	 ​if​ n.title != expTitle {
	​ 	 t.Errorf(​"Expected %q, got %q instead​​\n​​"​, expTitle, n.title)
	​ 	 }
	​ 	 ​if​ n.severity != tc.s {
	​ 	 t.Errorf(​"Expected %q, got %q instead​​\n​​"​, tc.s, n.severity)
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

Next, test the method Severity.String by using the table-driven testing approach again. Define one test case per severity per supported operating system. You won’t be able to test all cases from the same operating system since the code depends on the constant runtime.GOOS. Therefore use the constant runtime.GOOS again to check the current operating system and call t.Skip to skip the tests unless the expected operating system matches the current platform. This makes your test portable to all supported platforms:
distributing/notify/notify_test.go
	​ 	​func​ TestSeverityString(t *testing.T) {
	​ 	 testCases := []​struct​ {
	​ 	 s Severity
	​ 	 exp ​string​
	​ 	 os ​string​
	​ 	 }{
	​ 	 {SeverityLow, ​"low"​, ​"linux"​},
	​ 	 {SeverityNormal, ​"normal"​, ​"linux"​},
	​ 	 {SeverityUrgent, ​"critical"​, ​"linux"​},
	​ 	 {SeverityLow, ​"Low"​, ​"darwin"​},
	​ 	 {SeverityNormal, ​"Normal"​, ​"darwin"​},
	​ 	 {SeverityUrgent, ​"Critical"​, ​"darwin"​},
	​ 	 {SeverityLow, ​"Info"​, ​"windows"​},
	​ 	 {SeverityNormal, ​"Warning"​, ​"windows"​},
	​ 	 {SeverityUrgent, ​"Error"​, ​"windows"​},
	​ 	 }
	​ 	
	​ 	 ​for​ _, tc := ​range​ testCases {
	​ 	 name := fmt.Sprintf(​"%s%d"​, tc.os, tc.s)
	​ 	 t.Run(name, ​func​(t *testing.T) {
	​ 	 ​if​ runtime.GOOS != tc.os {
	​ 	 t.Skip(​"Skipped: not OS"​, runtime.GOOS)
	​ 	 }
	​ 	 sev := tc.s.String()
	​ 	 ​if​ sev != tc.exp {
	​ 	 t.Errorf(​"Expected %q, got %q instead​​\n​​"​, tc.exp, sev)
	​ 	 }
	​ 	 })
	​ 	 }
	​ 	}

	
	
	Then mock the command functionality to test the external command by creating the functions mockCmd and TestHelperProcess the same way you did in ​Testing Commands with Mock Resources​. In the TestHelperProcess function, use a switch block to define the variable cmdName depending on the operating system. Assign the value corresponding to the expected external command that you would run for each platform. Then, use this value to compare with the value received by the function. If they match, the correct tool is used, in which case you can exit with code zero (0) representing a successful command execution. Otherwise, exit with code 1 otherwise.
distributing/notify/notify_test.go
	​ 	​func​ mockCmd(exe ​string​, args ...​string​) *exec.Cmd {
	​ 	 cs := []​string​{​"-test.run=TestHelperProcess"​}
	​ 	 cs = append(cs, exe)
	​ 	 cs = append(cs, args...)
	​ 	 cmd := exec.Command(os.Args[0], cs...)

	​ 	 cmd.Env = []​string​{​"GO_WANT_HELPER_PROCESS=1"​}
	​ 	 ​return​ cmd
	​ 	}
	​ 	
	​ 	​func​ TestHelperProcess(t *testing.T) {
	​ 	 ​if​ os.Getenv(​"GO_WANT_HELPER_PROCESS"​) != ​"1"​ {
	​ 	 ​return​
	​ 	 }
	​ 	
	​ 	 cmdName := ​""​
	​ 	
	​ 	 ​switch​ runtime.GOOS {
	​ 	 ​case​ ​"linux"​:
	​ 	 cmdName = ​"notify-send"​
	​ 	 ​case​ ​"darwin"​:
	​ 	 cmdName = ​"terminal-notifier"​
	​ 	 ​case​ ​"windows"​:
	​ 	 cmdName = ​"powershell"​
	​ 	 }
	​ 	
	​ 	 ​if​ strings.Contains(os.Args[2], cmdName) {
	​ 	 os.Exit(0)
	​ 	 }
	​ 	
	​ 	 os.Exit(1)
	​ 	}

Using this technique, you can simulate the command execution and check that the correct tool is used, without executing it. For a more complete test, you could also check for the parameters, but for brevity, we’re only checking for the command name.

Finally, add the function TestSend to test sending the notification using the mocked up command. Assign the function definition mockCmd to the variable command to mock it instead of creating the real command. Execute the Send method and verify that no errors occur. The test fails if the wrong external tool is used:
distributing/notify/notify_test.go
	​ 	​func​ TestSend(t *testing.T) {
	​ 	 n := New(​"test title"​, ​"test msg"​, SeverityNormal)
	​ 	
	​ 	 command = mockCmd
	​ 	
	​ 	 err := n.Send()
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 t.Error(err)
	​ 	 }
	​ 	}

Save and close this file. Execute the tests with go test to ensure the package works correctly:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​
	​ 	=== RUN TestNew
	​ 	=== RUN TestNew/low
	​ 	=== RUN TestNew/normal
	​ 	=== RUN TestNew/critical
	​ 	--- PASS: TestNew (0.00s)
	​ 	 --- PASS: TestNew/low (0.00s)
	​ 	 --- PASS: TestNew/normal (0.00s)
	​ 	 --- PASS: TestNew/critical (0.00s)
	​ 	=== RUN TestSeverityString
	​ 	=== RUN TestSeverityString/linux0
	​ 	=== RUN TestSeverityString/linux1
	​ 	=== RUN TestSeverityString/linux2
	​ 	=== RUN TestSeverityString/darwin0
	​ 	 notify_test.go:63: Skipped: not OS linux
	​ 	=== RUN TestSeverityString/darwin1
	​ 	 notify_test.go:63: Skipped: not OS linux
	​ 	=== RUN TestSeverityString/darwin2
	​ 	 notify_test.go:63: Skipped: not OS linux
	​ 	=== RUN TestSeverityString/windows0
	​ 	 notify_test.go:63: Skipped: not OS linux
	​ 	=== RUN TestSeverityString/windows1
	​ 	 notify_test.go:63: Skipped: not OS linux
	​ 	=== RUN TestSeverityString/windows2
	​ 	 notify_test.go:63: Skipped: not OS linux
	​ 	--- PASS: TestSeverityString (0.00s)
	​ 	 --- PASS: TestSeverityString/linux0 (0.00s)
	​ 	 --- PASS: TestSeverityString/linux1 (0.00s)
	​ 	 --- PASS: TestSeverityString/linux2 (0.00s)
	​ 	 --- SKIP: TestSeverityString/darwin0 (0.00s)
	​ 	 --- SKIP: TestSeverityString/darwin1 (0.00s)
	​ 	 --- SKIP: TestSeverityString/darwin2 (0.00s)
	​ 	 --- SKIP: TestSeverityString/windows0 (0.00s)
	​ 	 --- SKIP: TestSeverityString/windows1 (0.00s)
	​ 	 --- SKIP: TestSeverityString/windows2 (0.00s)
	​ 	=== RUN TestHelperProcess
	​ 	--- PASS: TestHelperProcess (0.00s)
	​ 	=== RUN TestSend
	​ 	--- PASS: TestSend (0.00s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/distributing/notify 0.005s

Note that the Go test tool skipped the severity tests for macOS and Windows because these tests ran on Linux.
	
	
	

	
	
	
	
	Now create the integration test to test an actual notification execution. Create and edit the file integration_test.go. Add the build tag +build integration to execute this test when you pass the tag integration when you run the tests. Then define the package notify_test to test it as an external consumer, testing the exported API only:
distributing/notify/integration_test.go
	​ 	​// +build integration​
	​ 	
	​ 	​package​ notify_test

Add the import section. For this test, you’ll use the testing package to execute testing functions and the notify package that you’re testing:
distributing/notify/integration_test.go
	​ 	​import​ (
	​ 	 ​"testing"​
	​ 	
	​ 	 ​"pragprog.com/rggo/distributing/notify"​
	​)

Then, add the test function TestSend to test sending a notification. Create a new instance of type Notify using the function notify.New passing test values. Send the notification using the method n.Send and verify that no errors occur:
distributing/notify/integration_test.go
	​ 	​func​ TestSend(t *testing.T) {
	​ 	 n := notify.New(​"test title"​, ​"test msg"​, notify.SeverityNormal)
	​ 	
	​ 	 err := n.Send()
	​ 	
	​ 	 ​if​ err != nil {
	​ 	 t.Error(err)
	​ 	 }
	​ 	}

Note that you’re not using the mock command. Because you’re testing this as an external consumer and the variables required for mocking the test are private, it’s not even possible to do that.

Now, save and close the file, and execute the tests using -tag=integration and assess whether the notification shows up:
	​ 	​$ ​​go​​ ​​test​​ ​​-v​​ ​​-tags=integration​
	​ 	=== RUN TestSend
	​ 	--- PASS: TestSend (0.01s)
	​ 	PASS
	​ 	ok pragprog.com/rggo/distributing/notify 0.009s

The test passed, which means the notification executed without errors. You’ll also see the notification displayed if your system notification is enabled. The notification varies according to each operating system. On Linux it will be similar to the image shown in Figure 18.
[image: images/distributing/notification_linux.png]

Figure 18. Notification Test Linux

Your notification package is completed and tested. Next, you will use this package to add notifications to the Pomodoro tool.

Conditionally Building Your Application

	
	
	
	
	
	To keep the examples in this chapter clear and easier to follow, copy the existing version of your Pomodoro application to a new working environment. This ensures your application source files will match the description provided in this chapter. If you want to continue developing the Pomodoro application in its original directory, make sure you’re changing the appropriate files and adding new files to the correct path relative to the original directory.

Copy the directory pomo from the directory $HOME/pragprog.com/rggo/persistentDataSQL to the current chapter directory recursively, and switch to it:
	​ 	​$ ​​cp​​ ​​-r​​ ​​$HOME/pragprog.com/rggo/persistentDataSQL/pomo​​ ​​\​
	​ 	​ ​​$HOME/pragprog.com/rggo/distributing​
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/distributing/pomo​

Once you switch to the new directory, you can continue developing your application from the same point. Because you’re using Go modules, you don’t need to take any extra actions. Go modules will resolve the modules to the current directory for you automatically.

To use your notify package to send out notifications with the Pomodoro app, add the dependency to the file go.mod under the subdirectory pomo. Also, because your packages are local only, replace the path to the package pointing it to the local directory with its source code, by using the replace directive:
	
	
distributing/pomo/go.mod
	​ 	module pragprog.com/rggo/interactiveTools/pomo
	​ 	
	​ 	go 1.16
	​ 	
	​ 	require (
	​ 	 github.com/mattn/go-sqlite3 v1.14.5
	​ 	 github.com/mitchellh/go-homedir v1.1.0
	​ 	 github.com/mum4k/termdash v0.13.0
	​ 	 github.com/spf13/cobra v1.1.1
	​ 	 github.com/spf13/viper v1.7.1
	​ 	 pragprog.com/rggo/distributing/notify v0.0.0
	​)
	​ 	
	​ 	replace pragprog.com/rggo/distributing/notify => ../../distributing/notify

This last step wouldn’t be necessary if your package was available on an external Git repository, as the Go tools would download it when required.

Now add the notification functionality in the package app, but let’s make it optional. When the users are building the application, it will include the notification by default, but the user can disable it by providing the build tag disable_notification.

To do this, instead of calling package notify directly, you’ll add a helper function send_notification. By default, this function calls notify and sends out the notification. You’ll also deploy a second version of this function that doesn’t do anything in another file using the build tag disable_notification.

Go accepts multiple build tags for a single file. Separate the tags with spaces to evaluate them with an OR condition, which means Go includes the file if the user provides any of the tags. For an AND condition, separate the tags with a comma, in which case Go will include the file if the user provides all the tags.

Let’s use this idea to build the notification integration. First, add the stub function that does nothing by adding a new file notification_stub.go under the directory pomo/app. Define the condition to include this file in the build by adding the build tags disable_notification and containers, separated by spaces:
	
	
	
distributing/pomo/app/notification_stub.go
	​ 	​// +build containers disable_notification​
	​ 	
	​ 	​package​ app
	​ 	
	​ 	​func​ send_notification(msg ​string​) {
	​ 	 ​return​
	​ 	}

Save and close this file. Then create the file pomo/app/notification.go to enable notifications when building the application without providing the tags disable_notification AND containers:
distributing/pomo/app/notification.go
	​ 	​// +build !containers,!disable_notification​
	​ 	
	​ 	​package​ app
	​ 	
	​ 	​import​ ​"pragprog.com/rggo/distributing/notify"​
	​ 	
	​ 	​func​ send_notification(msg ​string​) {
	​ 	 n := notify.New(​"Pomodoro"​, msg, notify.SeverityNormal)
	​ 	
	​ 	 n.Send()
	​ 	}

Save and close the file. Now call this newly defined function from the Pomodoro application. Edit the file app/buttons.go and call send_notification from the start callback to send a notification when an Interval starts:
distributing/pomo/app/buttons.go
	​ 	start := ​func​(i pomodoro.Interval) {
	​ 	 message := ​"Take a break"​
	​ 	 ​if​ i.Category == pomodoro.CategoryPomodoro {
	​ 	 message = ​"Focus on your task"​
	​ 	 }
	​ 	
	​ 	 w.update([]​int​{}, i.Category, message, ​""​, redrawCh)
	»	 send_notification(message)
	​ 	}

Call the function from the end callback to notify users when an interval finishes. Since the end callback didn’t have a message ready, include the instance i in the callback function call and use its field i.Category to inform the user which type of interval finished:
distributing/pomo/app/buttons.go
	»	end := ​func​(i pomodoro.Interval) {
	​ 	 w.update([]​int​{}, ​""​, ​"Nothing running..."​, ​""​, redrawCh)
	​ 	 s.update(redrawCh)
	»	 message := fmt.Sprintf(​"%s finished !"​, i.Category)
	»	 send_notification(message)
	​ 	}

Save and close this file. Rebuild your application without any tags to enable notifications. To disable notifications, rebuild the application providing either the disable_notification or containers tags.

When you run your application with notifications enabled it will display notifications when an interval starts or finishes. For example, in Linux you would see a notification like this when a Pomodoro interval starts:
[image: images/distributing/notification_pomodo_start.png]

Figure 19. Notification Pomodoro Start

By using build constraints, you can create flexible tools that provide many build options for your users. For example, imagine that you wanted to provide a standard build targeted to run Pomodoro in a Linux container. To do this, you would use specific compilation options for containers, which you’ll explore in ​Compiling Your Go Application for Containers​. For now, you’ll define which application features will be included in the container build. To make it easier to run in an ephemeral environment, disable integration with SQLite and provide only the inMemory repository.

 Edit the build tags in the repository files to include only inMemory when the user provides the tag containers. First, edit pomodoro/repository/inMemory.go and add the containers build tag with an OR condition:
distributing/pomo/pomodoro/repository/inMemory.go
	​ 	​// +build inmemory containers​

Next, disable SQLite repository by adding the tag !containers to pomodoro/repository/sqlite3.go:
distributing/pomo/pomodoro/repository/sqlite3.go
	​ 	​// +build !inmemory,!containers​

Do the same to include the inMemory repository by editing cmd/repoinmemory.go:
distributing/pomo/cmd/repoinmemory.go
	​ 	​// +build inmemory containers​

Finally, disable the SQLite repository definition in cmd/reposqlite.go:
distributing/pomo/cmd/reposqlite.go
	​ 	​// +build !inmemory,!containers​

In addition, containers won’t have access to the system to run notifications, so you’ll want to disable notifications. You’re already doing that because you included the tag containers in the notification-related files.

 To verify which files Go will include in a particular build according to the selected tags, use the go list command. This command is a powerful resource to help you understand the content of your packages, and it has many features. For a complete list of them, check the help with go help list. To list the source files included in a build, use the option -f to custom format the list providing the parameter ’{{ .GoFiles }}’ to list the source code files. For example, check which will be used to build the application without any build tags:

	​ 	​$ ​​go​​ ​​list​​ ​​-f​​ ​​'{{ .GoFiles }}'​​ ​​./...​
	​ 	[main.go]
	​ 	[app.go buttons.go grid.go notification.go summaryWidgets.go widgets.go]
	​ 	[reposqlite.go root.go]
	​ 	[interval.go summary.go]
	​ 	[sqlite3.go]

Now execute the same command using the tag inmemory. Notice that the list of files changes, showing files related to the inMemory repository instead of SQLite. It still includes a notification with this build:
	​ 	​$ ​​go​​ ​​list​​ ​​-tags=inmemory​​ ​​-f​​ ​​'{{ .GoFiles }}'​​ ​​./...​
	​ 	[main.go]
	​ 	[app.go buttons.go grid.go notification.go summaryWidgets.go widgets.go]
	​ 	[repoinmemory.go root.go]
	​ 	[interval.go summary.go]
	​ 	[inMemory.go]

Execute the command one more time using the tag containers and verify that in addition to using the repository inMemory, it disabled notification by including the stub file.
	​ 	​$ ​​go​​ ​​list​​ ​​-tags=containers​​ ​​-f​​ ​​'{{ .GoFiles }}'​​ ​​./...​
	​ 	[main.go]
	​ 	[app.go buttons.go grid.go notification_stub.go summaryWidgets.go widgets.go]
	​ 	[repoinmemory.go root.go]
	​ 	[interval.go summary.go]
	​ 	[inMemory.go]

Using go list provides visibility of all the files included with a specific build option, making it easier to see if the application matches the requirements instead of compiling and executing it. Because go list provides textual output, you can also use it in tests to automate verification of build contents.

Next, you’ll use these predefined build options to compile your application for multiple operating systems.
	
	
	
	
	
	
	
	

Cross-Compiling Your Application

	
	
	
	
	
	Unlike interpreted languages such as Python or Nodejs, Go is a compiled language, which means it produces a binary executable file that contains all the requirements to run your application.

When you’re planning to distribute your application, this is a major benefit as users can run your application by running the binary executable without having to install any interpreters or runtimes. This makes Go applications extremely portable.

When building the executable file, Go creates a file that contains instructions that are specific for a target operating system and architecture. Because of this, you can’t take a file that is compiled for Linux and try to run it on Windows, or a file that was compiled for the Linux x86_64 architecture and try to run it on the Linux ARM system.

	
	To help you with that, Go allows you to cross-compile or cross-build your applications. You can use the Go tools such as go build to compile a binary file for supported operating systems and architectures from a single platform. For example, if you’re running Go on Linux, you can compile a binary for Linux but also for Windows, macOS, and different CPU architectures. To see a list of supported combinations of operating systems and architectures, use go tool dist list:
	
	
	
	​ 	​$ ​​go​​ ​​tool​​ ​​dist​​ ​​list​
	​ 	aix/ppc64
	​ 	android/386
	​ 	​...​​ ​​TRUNCATED​​ ​​...​
	​ 	darwin/amd64
	​ 	darwin/arm64
	​ 	​...​​ ​​TRUNCATED​​ ​​...​
	​ 	linux/386
	​ 	linux/amd64
	​ 	linux/arm
	​ 	linux/arm64
	​ 	​...​​ ​​TRUNCATED​​ ​​...​
	​ 	windows/386
	​ 	windows/amd64
	​ 	windows/arm

By default, when you use go build to build your application, it compiles the application for the running platform, which is the combination of the running operating system and architecture. You can see which values Go uses by default in your Go environment by using the go env command. If you run this command without any parameters, it displays all configured Go environment values. You can provide specific variables to see their value. For example, verify the current operating system and architecture using go env like this:
	
	
	
	
	
	
	​ 	​$ ​​go​​ ​​env​​ ​​GOOS​
	​ 	linux
	​ 	​$ ​​go​​ ​​env​​ ​​GOARCH​
	​ 	amd64

Your results may be different depending on which platform you’re running these examples.

Switch into the Pomodoro directory and run go build to build your application binary for the current platform.
	
	
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/distributing/pomo​
	​ 	​$ ​​go​​ ​​build​

	
	
	
	Then use the file command on Linux or macOS to inspect the file. Note that it shows the file is specific to Linux on the x86_64 architecture in the following example:
	​ 	​$ ​​file​​ ​​pomo​
	​ 	pomo: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
	​ 	 dynamically linked ...

	
	
	
	Notice that by default, Go produces a binary that’s dynamically linked, which means the binary will load any required shared libraries dynamically at run time. While this approach has many benefits, especially for system efficiency and memory management, it can cause the program to fail if the user executes it in a platform that doesn’t support dynamically linked libraries. To make your application binary more portable, you can enable statically linked libraries by setting the variable CGO_ENABLED=0 before running go build:
	
	
	​ 	​$ ​​CGO_ENABLED=0​​ ​​go​​ ​​build​
	​ 	​$ ​​file​​ ​​pomo​
	​ 	pomo: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
	​ 	 statically linked ...

	
	
	
	
	To cross-compile your applications for different platforms, set the variables GOOS and GOARCH to the target operating system and platform before running go build. For example, to build the app for Windows running on the x86_64 architecture, use GOOS=windows and GOARCH=amd64:
	​ 	​$ ​​GOOS=windows​​ ​​GOARCH=amd64​​ ​​go​​ ​​build​

But specifically for the Pomodoro tool, this command will fail. The reason is that the application by default uses the SQLite repository which requires you to compile a dependency with SQLite libraries written in C. You’ll explore that example a little later in the chapter. For now, to test this command, use the build tag inmemory to use the inMemory repository that doesn’t have external dependencies:
	​ 	​$ ​​GOOS=windows​​ ​​GOARCH=amd64​​ ​​go​​ ​​build​​ ​​-tags=inmemory​

Use the file command again to inspect the produced binary file. Go automatically adds the .exe extension to Windows binaries:
	​ 	​$ ​​file​​ ​​pomo.exe​
	​ 	pomo.exe: PE32+ executable (console) x86-64 (stripped to external PDB),
	​ 	 for MS Windows

	
	You can use this approach to release your application for your users in binary form, by building it to all platforms you support. Because these values are known, you create a program or script that automates the entire process for you. Let’s create a Bash script that builds the Pomodoro application, using the inMemory repository for all the platforms we support: Linux, Windows, and macOS. In addition, imagine that we also want to support different architectures such as x86_64, ARM, and ARM64.

Create the subdirectory scripts under the Pomodoro root directory:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/distributing/pomo​
	​ 	​$ ​​mkdir​​ ​​scripts​

Then, add the script file cross_build.sh. The script file runs two loops, combining the supported operating systems and architectures. It excludes the invalid combinations windows/arm64 and darwin/arm. Then it runs go build, setting the cross-compile variable and the parameter -o to specify where to put the resulting binary, and organizing the output in subdirectories by operating system and architecture:
distributing/pomo/scripts/cross_build.sh
	​ 	​#!/bin/bash​
	​ 	
	​ 	OSLIST=​"linux windows darwin"​
	​ 	ARCHLIST=​"amd64 arm arm64"​
	​ 	
	​ 	​for ​os ​in​ ​${​OSLIST​}​; ​do​
	​ 	​ for ​arch ​in​ ​${​ARCHLIST​}​; ​do​
	​ 	​ if​ [[​"​$os​/​$arch​"​ =~ ^(windows/arm64|darwin/arm)$]]; ​then continue​; ​fi​
	​ 	
	​ 	​ ​echo Building binary ​for​ $os $arch
	​ 	 mkdir -p releases/​${​os​}​/​${​arch​}​
	​ 	 CGO_ENABLED=0 GOOS=$os GOARCH=$arch go build -tags=inmemory ​\​
	​ 	 -o releases/​${​os​}​/​${​arch​}​/
	​ 	 ​done​
	​ 	​done​

Now run the script to create binaries for all supported platforms under the releases subdirectory:
	​ 	​$ ​​./scripts/cross_build.sh​
	​ 	Building binary for linux amd64
	​ 	Building binary for linux arm
	​ 	Building binary for linux arm64
	​ 	Building binary for windows amd64
	​ 	Building binary for windows arm
	​ 	Building binary for darwin amd64
	​ 	Building binary for darwin arm64

	
	You can also inspect the resulting binaries to ensure they match the correct platforms:
	​ 	​$ ​​file​​ ​​release/*/*/*​
	​ 	releases/darwin/amd64/pomo: Mach-O 64-bit x86_64 executable
	​ 	releases/darwin/arm64/pomo: Mach-O 64-bit arm64 executable,
	​ 	 flags:<|DYLDLINK|PIE>
	​ 	releases/linux/amd64/pomo: ELF 64-bit LSB executable, x86-64, version 1
	​ 	 (SYSV), statically linked, ...
	​ 	releases/linux/arm64/pomo: ELF 64-bit LSB executable, ARM aarch64,
	​ 	 version 1
	​ 	 (SYSV), statically linked, ...
	​ 	releases/linux/arm/pomo: ELF 32-bit LSB executable, ARM, EABI5
	​ 	 version 1
	​ 	 (SYSV), statically linked, ...
	​ 	releases/windows/amd64/pomo.exe: PE32+ executable (console) x86-64
	​ 	 (stripped to external PDB), for MS Windows
	​ 	releases/windows/arm/pomo.exe: PE32 executable (console) ARMv7 Thumb
	​ 	 (stripped to external PDB), for MS Windows

	
 Now, let’s go back to the example of cross-compiling the Windows binary with support for the SQLite repository. Go also allows you to cross-build applications that depend on external C libraries. This process may vary for each application, so make sure to consult the documentation for the dependency you’re using to understand its specific requirements.

For the go-sqlite3 package, you can cross-build your Windows binary by providing an alternative C compiler that supports Windows, such as MINGW.[80] To follow this example, install MINGW on your Linux system by using your distribution’s package manager. This book won’t cover specific installation details as they vary for each distribution. For more details, consult your distribution’s documentation.

When you have the Windows C compiler toolchain installed, instruct Go build to use MINGW as the C compiler to cross-build the tool:
	​ 	​$ ​​CGO_ENABLED=1​​ ​​CC=x86_64-w64-mingw32-gcc​​ ​​CXX=x86_64-w64-mingw32-g++​​ ​​\​
	​ 	​>​​ ​​GOOS=windows​​ ​​GOARCH=amd64​​ ​​go​​ ​​build​

To run this code, you still need SQLite installed on the target operating system.

The Go toolchain is powerful and flexible, allowing you to use many combinations of parameters and tags to build different versions of your application to support your users’ requirements, without requiring access to all the different target platforms.

If you’re distributing your application in binary form to your users, you can take the resulting binary files and host them online to ensure your users can access them.

Next, let’s compile the application to run in Linux containers.
	
	
	
	
	
	

Compiling Your Go Application for Containers

	
	
	
	
	
	
	Another alternative way to distribute your application that has become increasingly popular in recent years is allowing your users to run the application in Linux containers.[81] Containers package your application and all the required dependencies using a standard image format, and they run the application in isolation from other processes running on the same system. Containers use Linux kernel resources such as Namespaces and Cgroups to provide isolation and resource management.

There are different container runtimes available, such as Podman[82] and Docker.[83] If you’re running these examples on a Linux system, you can use either one interchangeably. If you’re running on Windows or macOS, Docker provides a desktop version that makes it easier to start. You can also use Podman on these operating systems, but you need to install a Virtual Machine to enable it. We’ll not cover a container runtime installation process here. For more details, check the respective project’s documentation.

To distribute your application as a container, you have to create a container image. You can do this in several ways, but a common way is by using a Dockerfile, which contains a recipe for how to create an image. Then you pass this file as input to docker or podman commands to build the image. For more details on how to create the Dockerfile, consult its documentation.[84]

The focus of this section is to provide some build options to optimize your application to run in containers. Go is a great choice for creating applications that run in containers because it generates a single binary file that you can add to the container image without additional runtimes or dependencies.

To make the binary file even more suitable to run in a container, you can pass additional build options. For example, you’ll enable a statically linked binary by setting CGO_ENABLED=0, and you can pass additional linker options using the flag -ldflags. To reduce the binary size, use the options -ldflags="-s -w" to strip the binary of debug symbols. Before you get started, take a closer look at some of the build options that you’ll use:
	
CGO_ENABLED=0: Enables statically linked binaries to make the application more portable. It allows you to use the binary with source images that don’t support shared libraries when building your container image.

	
GOOS=linux: Since containers run Linux, set this option to enable repeatable builds even when building the application on a different platform.

	
-ldflags="-s -w": The parameter -ldflags allows you to specify additional linker options that go build uses at the link stage of the build process. In this case, the option -s -w strips the binary of debugging symbols, decreasing its size. Without these symbols, it’s harder to debug the application, but this is usually not a major concern when running in a container. To see all linker options you can use, run go tool link.

	
-tags=containers: This is specific to your Pomodoro application. Build the application using the files specified with the container tag to remove dependency on SQLite and notifications as you did in ​Conditionally Building Your Application​.

Now build your binary using these options:
	​ 	​$ ​​CGO_ENABLED=0​​ ​​GOOS=linux​​ ​​go​​ ​​build​​ ​​-ldflags=​​"-s -w"​​ ​​-tags=containers​

Inspect this file to verify its properties and size:
	​ 	​$ ​​ls​​ ​​-lh​​ ​​pomo​
	​ 	-rwxr-xr-x 1 ricardo users 7.2M Feb 28 12:06 pomo
	​ 	​$ ​​file​​ ​​pomo​
	​ 	pomo: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked,
	​ 	​ ...​​ ​​...​​ ​​,​​ ​​stripped​

Notice the file size is about 7MB and the file is statically linked and stripped.

Compare this with building the application without these options:
	​ 	​$ ​​go​​ ​​build​
	​ 	​$ ​​ls​​ ​​-lh​​ ​​pomo​
	​ 	-rwxr-xr-x 1 ricardo users 13M Feb 28 12:09 pomo
	​ 	​$ ​​file​​ ​​pomo​
	​ 	pomo: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
	​ 	 dynamically linked,
	​ 	interpreter /lib64/ld-linux-x86-64.so.2, ..., for GNU/Linux 4.4.0,
	​ 	 not stripped

The binary file optimized for containers is almost 50% smaller than the original. It’s also statically linked and stripped of debugging symbols.

Once you have the binary, you’ll create a container image by using a Dockerfile. Switch back to the chapter’s root directory and create a new subdirectory containers:
	​ 	​$ ​​cd​​ ​​$HOME/pragprog.com/rggo/distributing​
	​ 	​$ ​​mkdir​​ ​​containers​

Create and edit a file called Dockerfile in this subdirectory. Add the following contents to create a new image from the base image alpine:latest, create a regular user pomo to run the application, and copy the binary file pomo/pomo you built before to the image under directory /app:
distributing/containers/Dockerfile
	​ 	FROM alpine:latest
	​ 	RUN mkdir /app && adduser -h /app -D pomo
	​ 	WORKDIR /app
	​ 	COPY --chown=pomo /pomo/pomo .
	​ 	CMD ["/app/pomo"]

Build your image using the docker build command providing this Dockerfile as input:
	​ 	​$ ​​docker​​ ​​build​​ ​​-t​​ ​​pomo/pomo:latest​​ ​​-f​​ ​​containers/Dockerfile​​ ​​.​
	​ 	STEP 1: FROM alpine:latest
	​ 	STEP 2: RUN mkdir /app && adduser -h /app -D pomo
	​ 	​-->​​ ​​500286ad2c9​
	​ 	STEP 3: WORKDIR /app
	​ 	​-->​​ ​​175d6b43663​
	​ 	STEP 4: COPY --chown=pomo /pomo/pomo .
	​ 	​-->​​ ​​2b05fa6dbba​
	​ 	STEP 5: CMD ["/app/pomo"]
	​ 	STEP 6: COMMIT pomo/pomo:latest
	​ 	​-->​​ ​​998e1c2cc75​
	​ 	998e1c2cc75dc865f57890cb6294c2f25725da97ce8535909216ea27a4a56a38

This command creates an image tagged with pomo/pomo:latest. List it using docker images:
	​ 	​$ ​​docker​​ ​​images​
	​ 	REPOSITORY TAG IMAGE ID CREATED SIZE
	​ 	localhost/pomo/pomo latest 998e1c2cc75d 47 minutes ago 13.4 MB
	​ 	docker.io/library/alpine latest e50c909a8df2 4 weeks ago 5.88 MB

Run your application using Docker, providing the -it flags to enable a terminal emulator, which is required to run Pomodoro’s interactive CLI:
	​ 	​$ ​​docker​​ ​​run​​ ​​--rm​​ ​​-it​​ ​​localhost/pomo/pomo​

You can also use Docker to build the application with Go’s official image and a multistage Dockerfile. A multistage Dockerfile instantiates a container to compile the application and then copies the resulting file to a second image, similar to the previous Dockerfile you created. Create a new file called Dockerfile.builder in the containers subdirectory. Define the multistage build using the following code:
distributing/containers/Dockerfile.builder
	​ 	​FROM​​ golang:1.15 AS builder​
	​ 	​RUN ​mkdir /distributing
	​ 	​WORKDIR​​ /distributing​
	​ 	​COPY​​ notify/ notify/​
	​ 	​COPY​​ pomo/ pomo/​
	​ 	​WORKDIR​​ /distributing/pomo​
	​ 	​RUN ​CGO_ENABLED=0 GOOS=linux go build -ldflags=​"-s -w"​ -tags=containers
	​ 	
	​ 	​FROM​​ alpine:latest​
	​ 	​RUN ​mkdir /app && adduser -h /app -D pomo
	​ 	​WORKDIR​​ /app​
	​ 	​COPY​​ --chown=pomo --from=builder /distributing/pomo/pomo .​
	​ 	​CMD​​ ["/app/pomo"]​

Now use this image to build the binary and the container image for your application:
	​ 	​$ ​​docker​​ ​​build​​ ​​-t​​ ​​pomo/pomo:latest​​ ​​-f​​ ​​containers/Dockerfile.builder​​ ​​.​
	​ 	STEP 1: FROM golang:1.15 AS builder
	​ 	STEP 2: RUN mkdir /distributing
	​ 	​-->​​ ​​e8e2ea98b04​
	​ 	STEP 3: WORKDIR /distributing
	​ 	​-->​​ ​​81cee711389​
	​ 	STEP 4: COPY notify/ notify/
	​ 	​-->​​ ​​ac86b302a7a​
	​ 	STEP 5: COPY pomo/ pomo/
	​ 	​-->​​ ​​5353bc4d73e​
	​ 	STEP 6: WORKDIR /distributing/pomo
	​ 	​-->​​ ​​bfddd5217bf​
	​ 	STEP 7: RUN CGO_ENABLED=0 GOOS=linux go build -ldflags="-s -w" -tags=containers
	​ 	go: downloading github.com/spf13/viper v1.7.1
	​ 	go: downloading github.com/spf13/cobra v1.1.1
	​ 	go: downloading github.com/mitchellh/go-homedir v1.1.0
	​ 	go: downloading github.com/mum4k/termdash v0.13.0
	​ 	go: downloading github.com/spf13/afero v1.1.2
	​ 	go: downloading github.com/spf13/cast v1.3.0
	​ 	go: downloading github.com/pelletier/go-toml v1.2.0
	​ 	go: downloading gopkg.in/yaml.v2 v2.2.8
	​ 	go: downloading github.com/mitchellh/mapstructure v1.1.2
	​ 	go: downloading github.com/spf13/pflag v1.0.5
	​ 	go: downloading golang.org/x/text v0.3.4
	​ 	go: downloading github.com/subosito/gotenv v1.2.0
	​ 	go: downloading github.com/magiconair/properties v1.8.1
	​ 	go: downloading github.com/fsnotify/fsnotify v1.4.7
	​ 	go: downloading github.com/mattn/go-runewidth v0.0.9
	​ 	go: downloading github.com/spf13/jwalterweatherman v1.0.0
	​ 	go: downloading github.com/hashicorp/hcl v1.0.0
	​ 	go: downloading github.com/gdamore/tcell/v2 v2.0.0
	​ 	go: downloading gopkg.in/ini.v1 v1.51.0
	​ 	go: downloading golang.org/x/sys v0.0.0-20201113233024-12cec1faf1ba
	​ 	go: downloading github.com/gdamore/encoding v1.0.0
	​ 	go: downloading github.com/lucasb-eyer/go-colorful v1.0.3
	​ 	​-->​​ ​​de7b70a3753​
	​ 	STEP 8: FROM alpine:latest
	​ 	STEP 9: RUN mkdir /app && adduser -h /app -D pomo
	​ 	​-->​​ ​​Using​​ ​​cache​​ ​​500286ad2c9f1242184343eedb016d53e36e1401675eb6769fb9c64146...​
	​ 	​-->​​ ​​500286ad2c9​
	​ 	STEP 10: WORKDIR /app
	​ 	​-->​​ ​​Using​​ ​​cache​​ ​​175d6b43663f6db66fd8e61d80a82e5976b27078b79d59feebcc517d44...​
	​ 	​-->​​ ​​175d6b43663​
	​ 	STEP 11: COPY --chown=pomo --from=builder /distributing/pomo/pomo .
	​ 	​-->​​ ​​0292f63c58f​
	​ 	STEP 12: CMD ["/app/pomo"]
	​ 	STEP 13: COMMIT pomo/pomo:latest
	​ 	​-->​​ ​​3c3ec9fafb8​
	​ 	3c3ec9fafb8f463aa2776f1e45c216dc60f7490df1875c133bb962ffcceab050

The result is the same image as before, but with this new Dockerfile, you don’t have to compile the application manually before creating the image. The multistage build does everything for you in a repeatable and consistent way.

Go builds applications into single binaries; you can build them statically linked and can also create images that have no other files or dependencies. These tiny images are optimized for data transfer and are more secure since they contain only your application binary.

To create such an image, you’ll use a multistage Dockerfile. So copy the file containers/Dockerfile.builder into a new file containers/Dockerfile.scratch, and edit this new file, replacing the second stage image on the FROM command with scratch. This image has no directories or users, so replace the remaining commands with a command to copy the binary to the root directory. When you’re done, your Dockerfile will look like this:
distributing/containers/Dockerfile.scratch
	​ 	​FROM​​ golang:1.15 AS builder​
	​ 	​RUN ​mkdir /distributing
	​ 	​WORKDIR​​ /distributing​
	​ 	​COPY​​ notify/ notify/​
	​ 	​COPY​​ pomo/ pomo/​
	​ 	​WORKDIR​​ /distributing/pomo​
	​ 	​RUN ​CGO_ENABLED=0 GOOS=linux go build -ldflags=​"-s -w"​ -tags=containers
	​ 	
	​ 	​FROM​​ scratch​
	​ 	​WORKDIR​​ /​
	​ 	​COPY​​ --from=builder /distributing/pomo/pomo .​
	​ 	​CMD​​ ["/pomo"]​

Build your image using this Dockerfile as you did before:
	​ 	​$ ​​docker​​ ​​build​​ ​​-t​​ ​​pomo/pomo:latest​​ ​​-f​​ ​​containers/Dockerfile.scratch​​ ​​.​
	​ 	STEP 1: FROM golang:1.15 AS builder
	​ 	STEP 2: RUN mkdir /distributing
	​ 	​-->​​ ​​9021735fd16​
	​ 	​...​​ ​​TRUNCATED​​ ​​OUTPUT​​ ​​...​
	​ 	STEP 8: FROM scratch
	​ 	STEP 9: WORKDIR /
	​ 	​-->​​ ​​00b6e665a3f​
	​ 	STEP 10: COPY --from=builder /distributing/pomo/pomo .
	​ 	​-->​​ ​​c6bbaccb87b​
	​ 	STEP 11: CMD ["/pomo"]
	​ 	STEP 12: COMMIT pomo/pomo:latest
	​ 	​-->​​ ​​4068859c281​

Check your new image and notice that its size is close to the binary size because it’s the only file in the image:
	​ 	​$ ​​docker​​ ​​images​
	​ 	REPOSITORY TAG IMAGE ID CREATED SIZE
	​ 	localhost/pomo/pomo latest 4068859c281e 5 seconds ago 8.34 MB

Not all applications are good candidates to run in a container, but for the ones that are, this is another option to distribute your application for your users.

Next, let’s explore go get to distribute your application with source code.
	
	
	
	
	
	

Distributing Your Application as Source Code

	
	
	
	
	So far, you’ve explored some options for distributing your application as binary files that users can run directly on their system. Using this approach, users don’t have to worry about building the application, and they can start using it right away.

But in some cases, you may want to distribute your application’s source code and allow users to build it, selecting the options that meet their requirements. For example, for the Pomodoro application, users could build it using any of the available repositories, enabling or disabling notifications.

This provides users with additional flexibility but requires an extra step of building the application. Another benefit is that by having access to the source code, other developers can expand or add more features to the application, for example, by introducing an additional data store to meet their needs.

	
	
	To distribute your application as source code, you need to host it in a publicly available location. Typical places include a hosted version control system, such as GitLab or GitHub. Another requirement is to have your application dependencies available for the end users. In general, you host any dependencies on a public platform as well.

	
	When your source code is available, users can download it by using the go get tool. The general usage is go get REPOID where REPOID is the URL of your repository stripped of the http[s]:// prefix. For example, imagine that you’re hosting your Pomodoro application in GitHub under your user ID and the repository name is pomo. Users could download this application with a command similar to go get github.com/USERID/pomo.

At the time of writing this book, the go get command automatically builds the application for you using standard options. If the root directory of your repository contains a file main.go, go get automatically builds the binary package and places it under the directory $GOPATH/bin. It also downloads any dependencies required to build the application. But this feature is deprecated and will be removed in a future Go release.

	
	
	Users can download the source code without building the application by providing the flag -d to go get. After downloading the source code, they can build the application using go build or install it with go install, providing any additional options or flags to customize the application according to their requirements.

Distributing your application as source code is a flexible way to allow your users to build it according to their requirements. It can also foster collaboration and innovation by allowing them to extend the application if needed.
	
	
	
	
	

Exercises

Apply the skills you developed in this chapter by working on these exercises:
	
Display an error to the user if they’re trying to run the application on an operating system that’s not in your list of supported platforms.

	
Use the cross-compilation techniques to cross-build other applications you developed throughout the book. Some applications may require tuning or OS-specific data or files to work properly on multiple platforms.

	
Use the Dockerfile examples provided in this chapter to build container images for other applications you developed in this book. For example, the REST API server you developed in ​Developing a REST API Server​, is a good candidate to run as a Linux container.

Wrapping Up

When it comes to distributing your application, Go supports many alternatives. Because Go applications don’t require an interpreter or a runtime, you can distribute your application in binary form, and users can run it without installing or maintaining extra dependencies. You can also distribute it as source code so users can build it themselves according to their requirements.

In this chapter, you created a new package that enables your applications to send system notifications and supports different operating systems. You designed this package to use different implementations according to the target operating system by using Go build constraints. Then, you included the notification package in the Pomodoro application and used build tags to conditionally build it for different requirements. Finally, you explored several options for building and distributing your application in binary form and as source code. You used the power and flexibility of cross-compilation to build binaries for different platforms using a single-source system. You also created container images so users can run your application as Linux containers.

The Go toolchain provides a complete set of tools that allows you to develop automated ways to build your application in a consistent and repeatable way. With Go test tools, you can develop automated pipelines to test and build your applications.

You’ve used Go to build several command-line applications in this book. You started with a basic word counter, added new skills, and worked up to building a fully featured terminal user interface application persisting data into a database. You developed applications that deal with files and the file system, applications that read data from CSV files, and tools that launch and control external programs. You built a REST API server and a client tool to communicate with it, you used the Cobra framework to improve your tools and handle command-line arguments, and you connected to databases and built an entire terminal user experience. And you did it all while applying techniques to improve their performance, using interfaces and other Go features to develop flexible and maintainable code, and ensuring your tools are well-tested and functional.

You can now use the skills you acquired in this book to build other command-line applications. In addition, these skills provide a foundation for developing many other applications in Go, such as API servers and web applications. Go is an open source project backed by a growing and vibrant community. As you continue your journey in learning Go, you can ask for help in one of the many channels available on the official Get Help page.[85]

Footnotes

	[75]
	
 https://developer.gnome.org/notification-spec/.

	[76]
	
 https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows?view=powershell-7.1

	[77]
	
 https://github.com/julienXX/terminal-notifier

	[78]
	
 https://golang.org/pkg/go/build/#hdr-Build_Constraints

	[79]
	
 https://github.com/proxb/PowerShell_Scripts/blob/master/Invoke-BalloonTip.ps1

	[80]
	
 http://mingw-w64.org/doku.php/start

	[81]
	
 https://opensource.com/resources/what-are-linux-containers

	[82]
	
 https://podman.io/

	[83]
	
 https://www.docker.com/get-started

	[84]
	
 https://docs.docker.com/engine/reference/builder/

	[85]
	
 https://golang.org/help

Copyright © 2021, The Pragmatic Bookshelf.

Thank you!

 We hope you enjoyed this book and that you’re already thinking about what you want to learn next. To help make that decision easier, we’re offering you this gift.

 Head over to https://pragprog.com and use coupon code BUYANOTHER2021 to save 30% on your next ebook. Void where prohibited or restricted. This offer does not apply to any edition of the The Pragmatic Programmer ebook.

 And if you’d like to share your own expertise with the world, why not propose a writing idea to us? After all, many of our best authors started off as our readers, just like you. With a 50% royalty, world-class editorial services, and a name you trust, there’s nothing to lose. Visit https://pragprog.com/become-an-author/ today to learn more and to get started.

 We thank you for your continued support, and we hope to hear from you again soon!

 The Pragmatic Bookshelf

[image: images/Coupon.png]

You May Be Interested In…
Select a cover for more information
Distributed Services with Go
[image:]

 This is the book for Gophers who want to learn how to build distributed systems. You know the basics of Go and are eager to put your knowledge to work. Build distributed services that are highly available, resilient, and scalable. This book is just what you need to apply Go to real-world situations. Level up your engineering skills today.

Travis Jeffery
(258 pages) ISBN: 9781680507607 $45.95

Build Websites with Hugo
[image:]

 Rediscover how fun web development can be with Hugo, the static site generator and web framework that lets you build content sites quickly, using the skills you already have. Design layouts with HTML and share common components across pages. Create Markdown templates that let you create new content quickly. Consume and generate JSON, enhance layouts with logic, and generate a site that works on any platform with no runtime dependencies or database. Hugo gives you everything you need to build your next content site and have fun doing it.

Brian P. Hogan
(154 pages) ISBN: 9781680507263 $26.95

Small, Sharp Software Tools
[image:]

 The command-line interface is making a comeback. That’s because developers know that all the best features of your operating system are hidden behind a user interface designed to help average people use the computer. But you’re not the average user, and the CLI is the most efficient way to get work done fast. Turn tedious chores into quick tasks: read and write files, manage complex directory hierarchies, perform network diagnostics, download files, work with APIs, and combine individual programs to create your own workflows. Put down that mouse, open the CLI, and take control of your software development environment.

Brian P. Hogan
(326 pages) ISBN: 9781680502961 $38.95

Exercises for Programmers
[image:]

 When you write software, you need to be at the top of your game. Great programmers practice to keep their skills sharp. Get sharp and stay sharp with more than fifty practice exercises rooted in real-world scenarios. If you’re a new programmer, these challenges will help you learn what you need to break into the field, and if you’re a seasoned pro, you can use these exercises to learn that hot new language for your next gig.

Brian P. Hogan
(118 pages) ISBN: 9781680501223 $24

Concurrent Data Processing in Elixir
[image:]

 Learn different ways of writing concurrent code in Elixir and increase your application’s performance, without sacrificing scalability or fault-tolerance. Most projects benefit from running background tasks and processing data concurrently, but the world of OTP and various libraries can be challenging. Which Supervisor and what strategy to use? What about GenServer? Maybe you need back-pressure, but is GenStage, Flow, or Broadway a better choice? You will learn everything you need to know to answer these questions, start building highly concurrent applications in no time, and write code that’s not only fast, but also resilient to errors and easy to scale.

Svilen Gospodinov
(174 pages) ISBN: 9781680508192 $39.95

Testing Elixir
[image:]

 Elixir offers new paradigms, and challenges you to test in unconventional ways. Start with ExUnit: almost everything you need to write tests covering all levels of detail, from unit to integration, but only if you know how to use it to the fullest—we’ll show you how. Explore testing Elixir-specific challenges such as OTP-based modules, asynchronous code, Ecto-based applications, and Phoenix applications. Explore new tools like Mox for mocks and StreamData for property-based testing. Armed with this knowledge, you can create test suites that add value to your production cycle and guard you from regressions.

Andrea Leopardi and Jeffrey Matthias
(262 pages) ISBN: 9781680507829 $45.95

Hands-on Rust
[image:]

 Rust is an exciting new programming language combining the power of C with memory safety, fearless concurrency, and productivity boosters—and what better way to learn than by making games. Each chapter in this book presents hands-on, practical projects ranging from “Hello, World” to building a full dungeon crawler game. With this book, you’ll learn game development skills applicable to other engines, including Unity and Unreal.

Herbert Wolverson
(342 pages) ISBN: 9781680508161 $47.95

Learn to Program, Third Edition
[image:]

 It’s easier to learn how to program a computer than it has ever been before. Now everyone can learn to write programs for themselves—no previous experience is necessary. Chris Pine takes a thorough, but lighthearted approach that teaches you the fundamentals of computer programming, with a minimum of fuss or bother. Whether you are interested in a new hobby or a new career, this book is your doorway into the world of programming.

Chris Pine
(230 pages) ISBN: 9781680508178 $45.95

Programming Kotlin
[image:]

 Programmers don’t just use Kotlin, they love it. Even Google has adopted it as a first-class language for Android development. With Kotlin, you can intermix imperative, functional, and object-oriented styles of programming and benefit from the approach that’s most suitable for the problem at hand. Learn to use the many features of this highly concise, fluent, elegant, and expressive statically typed language with easy-to-understand examples. Learn to write maintainable, high-performing JVM and Android applications, create DSLs, program asynchronously, and much more.

Venkat Subramaniam
(460 pages) ISBN: 9781680506358 $51.95

Kotlin and Android Development featuring Jetpack
[image:]

 Start building native Android apps the modern way in Kotlin with Jetpack’s expansive set of tools, libraries, and best practices. Learn how to create efficient, resilient views with Fragments and share data between the views with ViewModels. Use Room to persist valuable data quickly, and avoid NullPointerExceptions and Java’s verbose expressions with Kotlin. You can even handle asynchronous web service calls elegantly with Kotlin coroutines. Achieve all of this and much more while building two full-featured apps, following detailed, step-by-step instructions.

Michael Fazio
(444 pages) ISBN: 9781680508154 $49.95

images/_covers/bhwb.jpg

images/_covers/sgdpelixir.jpg

images/_covers/bhcldev.jpg

UBUNTU FONT LICENCE Version 1.0

PREAMBLE
This licence allows the licensed fonts to be used, studied, modified and
redistributed freely. The fonts, including any derivative works, can be
bundled, embedded, and redistributed provided the terms of this licence
are met. The fonts and derivatives, however, cannot be released under
any other licence. The requirement for fonts to remain under this
licence does not require any document created using the fonts or their
derivatives to be published under this licence, as long as the primary
purpose of the document is not to be a vehicle for the distribution of
the fonts.

DEFINITIONS
"Font Software" refers to the set of files released by the Copyright
Holder(s) under this licence and clearly marked as such. This may
include source files, build scripts and documentation.

"Original Version" refers to the collection of Font Software components
as received under this licence.

"Modified Version" refers to any derivative made by adding to, deleting,
or substituting -- in part or in whole -- any of the components of the
Original Version, by changing formats or by porting the Font Software to
a new environment.

"Copyright Holder(s)" refers to all individuals and companies who have a
copyright ownership of the Font Software.

"Substantially Changed" refers to Modified Versions which can be easily
identified as dissimilar to the Font Software by users of the Font
Software comparing the Original Version with the Modified Version.

To "Propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification and with or without charging
a redistribution fee), making available to the public, and in some
countries other activities as well.

PERMISSION & CONDITIONS
This licence does not grant any rights under trademark law and all such
rights are reserved.

Permission is hereby granted, free of charge, to any person obtaining a
copy of the Font Software, to propagate the Font Software, subject to
the below conditions:

1) Each copy of the Font Software must contain the above copyright
notice and this licence. These can be included either as stand-alone
text files, human-readable headers or in the appropriate machine-
readable metadata fields within text or binary files as long as those
fields can be easily viewed by the user.

2) The font name complies with the following:
(a) The Original Version must retain its name, unmodified.
(b) Modified Versions which are Substantially Changed must be renamed to
avoid use of the name of the Original Version or similar names entirely.
(c) Modified Versions which are not Substantially Changed must be
renamed to both (i) retain the name of the Original Version and (ii) add
additional naming elements to distinguish the Modified Version from the
Original Version. The name of such Modified Versions must be the name of
the Original Version, with "derivative X" where X represents the name of
the new work, appended to that name.

3) The name(s) of the Copyright Holder(s) and any contributor to the
Font Software shall not be used to promote, endorse or advertise any
Modified Version, except (i) as required by this licence, (ii) to
acknowledge the contribution(s) of the Copyright Holder(s) or (iii) with
their explicit written permission.

4) The Font Software, modified or unmodified, in part or in whole, must
be distributed entirely under this licence, and must not be distributed
under any other licence. The requirement for fonts to remain under this
licence does not affect any document created using the Font Software,
except any version of the Font Software extracted from a document
created using the Font Software may only be distributed under this
licence.

TERMINATION
This licence becomes null and void if any of the above conditions are
not met.

DISCLAIMER
THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL THE
COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER
DEALINGS IN THE FONT SOFTWARE.

images/_covers/lmelixir.jpg

images/cover.jpg
Powerful Command-Line
Applications in Go

Build Fast and Maintainable Tools

Ricardo Gerardi
edited by Brian P. Hogan

images/WigglyRoad.jpg

images/_covers/ltp3.jpg

images/_covers/bhhugo.jpg

Copyright 2010,2011 Canonical Ltd.

This Font Software is licensed under the Ubuntu Font Licence, Version
1.0. https://launchpad.net/ubuntu-font-licence

images/h1-underline.gif

images/apple-logo-black.jpg

images/_covers/mfjetpack.jpg
Kotlin and Androld
Development

images/Coupon.png
SAVE 30%!
épra mitlﬁelf Use coupon code
BUYANOTHER2021

images/distributing/notification_linux.png
test title
test msg

images/distributing/notification_pomodo_start.png
Pomodoro
Focus on your task

images/aside-icons/warning.png

images/interactiveTools/pomo_screen_final.png
Press Q to Quit:

Tindss

Focus on your task

images/interactiveTools/pomo_messages.png
Focus on your task

images/interactiveTools/pomo_buttons.png

images/joe.jpg
Y

images/persistentDataSQL/pomo_weekly.png

images/persistentDataSQL/pomo_screen_db.png

images/persistentDataSQL/pomo_daily.png
30

images/interactiveTools/pomo_category.png

images/interactiveTools/pomo_screen_basic.png

images/interactiveTools/pomo_timer.png
ress Q to Quit-

images/interactiveTools/pomo_screen_db.png

images/aside-icons/info.png

images/performance/trace02_goroutines.png
Goroutines:
github.com/rgerardi/rggo/performance/colStats%2ev2.run.funcl N=11005
runtime.gcBgMarkWorker N=18

testing,(*B).launch N=1

runtime.bgsweep N=1

testing.(*B).runl.funcl N=1

runtime/trace.Start.funcl N=1

testing.tRunner N=16

runtime.main N=1
github.com/rgerardi/rggo/performance/colStats%2ev2.run.func2 N=14
testing.runTests.funcl.1 N=1

N=2

images/performance/trace02_goroutine_func1.png
Goroutine Name: ~ github.com/rgerardi/rggo/performance/colStats%2ev2.run.funcl
Number of Goroutines: 11005

Execution Time: 89.179% of otal program execution time

Network Wait Time: graph(download)

Sync Block Time: graph(download)

Blocking Syscall Time: graph(download)

‘Scheduler Wait Time: - graph(download)

C sw

Ons (0.0%)]_67ms (19.6%)

S 1738y o] 22ms) Ons| 312ms|_34ps 0.0%)_59ms (17.5%)
33 1091y Ons|2ams| Ons 312ms|Ons (0.0%)_59ms (17.5%)
30— 19281 Ons]24ms] ons 312ms] ons (0.0%)]_59ms (174%)

796/ 33 1466y oo 23ms O 312ms]_Ons (0.0%)_59ms (17.6%)
a 1086y [1875ns] 312ms| Ons (0.0%)_67ms (19.6%)

2860 337 —— 9950 Ons|24ms O 312ms] 325 (0.0%)]_59ms (17.5%)
£ JRECH o5 29ms| [3tims|0ns (0.0%)]_67ms (19.6%)
8543) 34: 1107ps| Ons| 30ms| Ons| 311ms|__ Ons (0.0%)| 67ms (19.6%)|

images/performance/trace02_conc.png
+ STATS (pid 1)

Goroutines:
Heap:
Threads:

+ PROCS (940)

i

GC
v Syscalls
v Proco
v Proc1

v Proc2

v Proc3

Il i [T I [I NI

TR o T S T
TR T A
T R e W
WWWMWHWWJWWWJW

images/performance/trace02_detail.png
3 items selected.

Counter Samples (3)

Counter Series Time Value
Goroutines GCWaiting 1309.885514 0
Goroutines Runnable 1309.885514 882
Goroutines Running 1309.885514 4

images/performance/profile001.png
i cosa ot
o oo

i Ape 0, 2010 ot 1121 (EDT)
Duraions 131, Total arptos = 12,04 (106.425)

Showing noos accouning for 10,8, 50.37% of 1208 toal
Dropped 152 nodo (cum 2= 0,069

330 T ™ ‘\m..
o e

AN —-z/ B [ol LR =

=

L

i
I i

images/performance/trace01_index.png
View trace

Goroutine analysis

Network blocking profile (1)
Synchronization blocking profile (3)
Syscall blocking profile (1)
Scheduler latency, profile (1)
User-defined tasks

User-defined regions

Minimum mutator utilization

images/_covers/vskotlin.jpg

images/performance/trace01_details.png
3items selected. | Counter Samples (3) |

Counter Series Time Value
Goroutines GCWaiting 1217.1232360000001 0O
Goroutines Runnable 1217.1232360000001 0O
Goroutines Running 1217.1232360000001 1

images/performance/trace01_trace.png
+ STHTS (1)
Goroutines:

Heap:
Threads:

+ PROCS (40
GC
Syscalls

e 0 TN A RN 10 Y
e I!“III\ !IIWIll!I:III\II|I|III1|lI 1 IANII (W HIIHINIIIIIIIIIIIIIIIIll M
|

a LT i

v Proc3 l 1 H

images/performance/trace01_zoom.png

images/_covers/tjgo.jpg
Distributed
Services with Go

images/files/mdp4.png
Example Markdown File
This is an example Markdown file to test the preview tool

Features:

» Support for links PragProg
« Support for other features

How to install:

go get github.com/user/program

images/files/mdp1.png
Example Markdown File
This is an example Markdown file to test the preview tool

Features:

« Support for links PragProg
« Support for other features

How to install:

go get github.com/user/program

images/aside-icons/tip.png
(<l

images/_covers/hwrust.jpg
Hand

images/aside-icons/important.png

