Python Tutorial
Release 2.7

March Liu<march.liu@gmail.com>

October 26, 2010

CONTENTS

Whetting Your Appetite 7§ & 3
Using the Python Interpreter {#H Python @& % 7
2.1 Invoking the Interpreter 8 JH i % . 7
2.2 The Interpreter and Its Environment ﬁﬂ}'—ﬁr &;E';I/Tifb 9
An Informal Introduction to Python Python #EE4)~ 13
3.1 Using Python as a Calculator J§ Python ir#)'(‘b‘f‘ H% 13
3.2 First Steps Towards Programming R#267 % — % 24
More Control Flow Tools RN FRAZIEH] 27
4.1 if Statements if &4 27
4.2 for Statements for & 4] .. 27
4.3 The range() Function range() &%k . e e e e e e e e e e e 28
4.4 break and continue Statements, and else Clauses on Loops break #= continue & 4],

VIR JEIRP) else T4 29
4.5 pass Statements pass % 4] 30
4.6 Defining Functions 7 3L%%k 30
4.7 More on Defining Functions E A KT SL 32
4.8 Intermezzo: Coding Style #&wh : % aL W45 . 38
Data Structures Z{iE%H 41
5.1 More on Lists EAZ] & 41
5.2 The del statement M|FaiE 4] 47
5.3 Tuples and Sequences 7T 484w)5 7] 47
5.4 Sets &4 . 48
5.5 Dictionaries %Jﬁ .. 49
5.6 Looping Techniques 4}55{#5&’5 51
5.7 More on Conditions R & #F4=#] e 52
5.8 Comparing Sequences and Other Types tb«&/—??']ﬁﬁ %’}'_J 53
Modules #%3% 55
6.1 More on Modules FAAER 56
6.2 Standard Modules #x fEAE3R 60
6.3 The dir() Function dir() &k . 60
6.4 Packages &, . 62
Input and Output ¥ AF=#y i 67
7.1 Fancier Output Formatting Huis#r 4% X, 67
7.2 Reading and Writing Files 1% 5 U#F 71

8

10

11

12

13

14

Errors and Exceptions 441%#= 7%

8.1 Syntax Errors 5545 1%

Exceptions e

Handling Exceptlons é]—Fr"f%"

Raising Exceptions «VLH’—"—%—%

User-defined Exceptions J P B /{Xﬁr-%
Defining Clean-up Actions & SUiFIEATH
Predefined Clean-up Actions & LiFHATH

© 00 00 00 O o
N O U1 W N

Classes %

.1 A Word About Names and Objects % T ZfextZ oA E
Python Scopes and Namespaces Python 4’?)%&%‘74[1\2 8]
A First Look at Classes #7115

Random Remarks — %&1%,8H

Inheritance 47K ..

Private Variables K T &

0dds and Ends #} 7 .

Exceptions Are Classes Too %ﬁ?&%%’%

Iterators #% X% e e e

.10 Generators A% . . .

.11 Generator Expressions iﬁ&.uui ’\‘

O © © © © © © O © © O
© 0 N O U W

Brief Tour of the Standard Library #% /& JE#E %
10.1 Operating System Interface A % iE 0

10.2 File Wildcards sC#ifl fie /¥ e e

10.3 Command Line Arguments 44744 e e e e e
10.4 Error Output Redirection and Program Term1r1at1on é Hﬂé’vj‘ﬁ ﬁ/’i@ﬁ"ﬁi}?
10.5 String Pattern Matching 5fF & £ W] IT &z

10.6 Mathematics # %

10.7 Internet Access Eﬂkﬂﬁl‘ﬂ

10.8 Dates and Times B #AF=Bf A

10.9 Data Compression #k#B % %43

10.10Performance Measurement /82 &
10.11Quality Control Ji &3&%|
10.12Batteries Included w32 &

Brief Tour of the Standard Library -- Part II AR/BEEMEN 11
11.1 Output Formatting #y 4% X,

11.2 Templating AR . . e
11.3 Working with Binary Data Record Layouts ﬁifﬂ %]i?ﬁ?{/%
11.4 Multi- thread1ng % %A

11.5 Logging A &

11.6 Weak References 53 61)¥J

11.7 Tools for Working with Lists 5’]5{1 .o
11.8 Decimal Floating Point Arithmetic -+t %% & 45 %

What Now? 4Tk ?

Interactive Input Editing and History Substitution

13.1 Line Editing 47% %% .

13.2 History Substitution B ¥ ©li#j

13.3 Key Bindings WiE4E4r 2 .. e e e e
13.4 Alternatives to the Interactive Interpreter Hexz X@BHER

Floating Point Arithmetic: Issues and Limitations ¥ % e R |

%k

77
77
T
78
81
82
83
84

87
87
88
90
94
96
98
99
100
101
102
103

105
105
106
106
106
106
107
107
108
108
109
109
110

111
111
112
113
114
115
115
116
117

119

121
121
122
122
124

125

ii

14.1 Representation Error &ZK4E1E & v v v v e e e e e e e e e e e oL 128

iii

iv

Python Tutorial, Release 2.7

Release 2.7
Date October 09, 2010

Python is an easy to learn, powerful programming language. It has efficient high-level data
structures and a simple but effective approach to object-oriented programming. Python's elegant
syntax and dynamic typing, together with its interpreted nature, make it an ideal language for
scripting and rapid application development in many areas on most platforms.

Python £ —J1H £ S FHBARBLES - CAHARAXNARFIELEMFH LAY Ot REST
X ° Python #9{EHEiEkfah S XA » URCEBEEZT MR » 2L AER S T & LA R A A B Ko bk
BRAFRIEE o

The Python interpreter and the extensive standard library are freely available in source or
binary form for all major platforms from the Python Web site, http://www.python.org/, and may
be freely distributed. The same site also contains distributions of and pointers to many free
third party Python modules, programs and tools, and additional documentation.

Python fA# R R LY EA: A E 6 R Fo 5P AT VAM Python & Web 3k 6 http://www.python.org/ %
PR ARLTUAAGRS K - B EERBETRSE R FH =% Python B3k~ BEFLTHL » RELHAIL
P

The Python interpreter is easily extended with new functions and data types implemented in C or
C++ (or other languages callable from C). Python is also suitable as an extension language for
customizable applications.

Python BEXRTUAREHMAT C XH C++ (REeTRBER Cc AANE T) FERIHOREAIEX
A o Python LT AMEA T H Ay iEF -

This tutorial introduces the reader informally to the basic concepts and features of the Python
language and system. It helps to have a Python interpreter handy for hands-on experience, but
all examples are self-contained, so the tutorial can be read off-line as well.

AFHeriE A48 Python FF AL AL AR IRGMA o Bb Python B EZJ) ARAHY > R
FTA 89 6] FA G2 B3 E LT > FTARKFHMALTIAE &HAH -

For a description of standard objects and modules, see library-index. reference-index gives a
more formal definition of the language. To write extensions in C or C++, read extending-index
and c-api-index. There are also several books covering Python in depth.

M R Ao F m B854 N library-index ° reference-index T F 2T 57 @YW o ot
B C & C++ 8 ¥ B > 15 1L extending-index #= c-api-index o X ETHIE A8 T4 X4 Python
Fr1R o

This tutorial does not attempt to be comprehensive and cover every single feature, or even every
commonly used feature. Instead, it introduces many of Python's most noteworthy features, and
will give you a good idea of the language's flavor and style. After reading it, you will be
able to read and write Python modules and programs, and you will be ready to learn more about
the various Python library modules described in library-index.

AFMA L& E Python A e » W RAMBEMAB A M *EsIZ ot R ENETH % Python
PRIAZBOARE s RextiE 2 ERRXNBEBTORN BRAAH - 22 TE » REZTURHEIEF%E Python
W Ae A2 R » T R WA library-index P —F % JPython§ 4 % T oy E otk o

The glossary is also worth going through.

glossary ALAAfF—1% o

CONTENTS 1

http://www.python.org/
http://www.python.org/

Python Tutorial, Release 2.7

2 CONTENTS

CHAPTER

ONE

Mt

WHETTING YOUR APPETITE &

If you do much work on computers, eventually you find that there's some task you'd like to
automate. For example, you may wish to perform a search-and-replace over a large number of text
files, or rename and rearrange a bunch of photo files in a complicated way. Perhaps you'd like
to write a small custom database, or a specialized GUI application, or a simple game.

o RREAETENEBREG I » FELECNRES B HIL—2 o flde > RBAKR THLRIHPHITER
AP REFAIZ LGN FTAS—BBEIHETTEL 5 ART - TRAEBE AN IAYTHHIBEE » XE
BE ey GUI AR » XA — A E R o

If you're a professional software developer, you may have to work with several C/C++/Java
libraries but find the usual write/compile/test/re-compile cycle is too slow. Perhaps you're
writing a test suite for such a library and find writing the testing code a tedious task. Or
maybe you've written a program that could use an extension language, and you don't want to
design and implement a whole new language for your application.

e RARZELGREFLF > THRAEAE R —2 C/C++/Java E > 22 RMNAF R 5/ hiF/MR/EHF
Flﬁ}]iif T oo FRBEAFANAT —AMK o TREEBR KRR - REREZE - ANFATRIBTHESF > T
by p AR P& e ER—AHEES o

Python is just the language for you.
Python kAR EFZIEES

You could write a Unix shell script or Windows batch files for some of these tasks, but
shell scripts are best at moving around files and changing text data, not well-suited for GUI
applications or games. You could write a C/C++/Java program, but it can take a lot of development
time to get even a first-draft program. Python is simpler to use, available on Windows, Mac 0S
X, and Unix operating systems, and will help you get the job done more quickly.

RALT VA E — A Unix shell By AR E Windows AL I R mAES » ik shell W ARIg {3 L4
SR AREYE FERAHERAM @G ARG R HR o ARTAEA C/C++/Java)5 » 12 ZHFE A -4
RAENER > LB HRKSGF LT o Python £ 4 M » A& Windows » Mac 0S X #= Unix 3 1k
ARLHTH » 8B R ERGTRIES o

Python is simple to use, but it is a real programming language, offering much more structure
and support for large programs than shell scripts or batch files can offer. On the other hand,
Python also offers much more error checking than C, and, being a very-high-level language, it
has high-level data types built in, such as flexible arrays and dictionaries. Because of its
more general data types Python is applicable to a much larger problem domain than Awk or even
Perl, yet many things are at least as easy in Python as in those languages.

Python # % 5 M » 12 €L B E&)mAZiEZ > thAt shell MARBAEIH R BT F 2098t KA
RE Yo 5—7 @ > Python HAC 2L F 694 2L mAKEA ¥ rﬂ?&éﬁ%ﬁv}’; s ERE

Python Tutorial, Release 2.7

TEMT RFBAFTRIHE G FHH%IEZEH oPython 12T EAHBANEKIBELA > Tl E Avk £ ZE
Perl & F 7 K FAAR > ML EH9R % F > Python 2V LT LA HRBEZELL o

Python allows you to split your program into modules that can be reused in other Python programs.
It comes with a large collection of standard modules that you can use as the basis of your
programs --- or as examples to start learning to program in Python. Some of these modules
provide things 1like file I/0, system calls, sockets, and even interfaces to graphical user
interface toolkits like Tk.

Python T ¥AikfRie B THIALF 5 Fa s T Bl 894835k » A £ L€ 8 Python #/5 ‘1’?#’] FHEMRZET AL
THRFET—AMRERGIREERE &Tumumﬁﬁ %3 Python RAZGGFH] o LK i 1/
0> 2% J »sockets» £ %1% Tk XHEHEM T EiEO o

Python is an interpreted language, which can save you considerable time during program development
because no compilation and linking is necessary. The interpreter can be used interactively,
which makes it easy to experiment with features of the language, to write throw-away programs,
or to test functions during bottom-up program development. It is also a handy desk calculator.

Python& —[] B A& Z I%T\ﬁ;%%i%ﬁv’f‘u‘%éﬁﬂﬂ%ﬂ s CTAHRE T —2 LR - BEETUL
R » BERTURFIEGMNREST POERFD 8 UMETHRE—RBGENER REF#ITATH
WAL o ZTUSCRE—A FTHNTES -

Python enables programs to be written compactly and readably. Programs written in Python are
typically much shorter than equivalent C, C++, or Java programs, for several reasons:

Python T VAH iR %k » TR EALF o Al Python BEAFRFILEM 89 C~ Cr+ RJavatd 5248
% LEAAATILARRA :

e the high-level data types allow you to express complex operations in a single statement;
= R AR G AL AR T AL — AN R 6915 6] Rk AR B 2 694 4F

e statement grouping is done by indentation instead of beginning and ending brackets;
18 6] 09 LB AR T 45 % 7 5T begin/end AR1R 3

e no variable or argument declarations are necessary.
TRERERGHFEN -

Python is extensible: if you know how to program in C it is easy to add a new built-in function
or module to the interpreter, either to perform critical operations at maximum speed, or to link
Python programs to libraries that may only be available in binary form (such as a vendor-specific
graphics library). Once you are really hooked, you can link the Python interpreter into an
application written in C and use it as an extension or command language for that application.

Python & TTH Bty : wRREA C BT BRGF > Sk TUREHOARBER R t) N BERFARE » X
FZAEACHE > 12 H :téllnikz\}"‘ » HR,#1$ Python RE9%4EEH| Lk 7 V/(r-k% HRREE (ke X AER
BELBHME) « EHREERE Z—1 T » 3T Python £ &% B 69425 > 42 Python HH
B R R R A S -

By the way, the language is named after the BBC show ®*Monty Python's Flying Circus'' and has
nothing to do with reptiles. Making references to Monty Python skits in documentation is not
only allowed, it is encouraged!

WAE R —TF » EAEZT 4 F kBT BBC 8 “Monty Python's Flying Circus” ¥ B » feif@tgfe 2 % H
T % A o f£ XA F 5]] Monty Python & KTV » f iRk E S |
Now that you are all excited about Python, you'll want to examine it in some more detail. Since

the best way to learn a language is to use it, the tutorial invites you to play with the Python
interpreter as you read.

4 Chapter 1. Whetting Your Appetite FF'& 3

Python Tutorial, Release 2.7

AR G620 4F Python wesbiish A » BAT @B RXKET o I —T1E T RGO A EFRALAE
RPTI% BN 6 » AL &5 AARER Python MRAES o

In the next chapter, the mechanics of using the interpreter are explained. This is rather
mundane information, but essential for trying out the examples shown later.

—F P RNELWLAREEG AR c IRAT 2GR AE » RIAB TR 11456 @ETHH T -

The rest of the tutorial introduces various features of the Python language and system through
examples, beginning with simple expressions, statements and data types, through functions and
modules, and finally touching upon advanced concepts like exceptions and user-defined classes.

AL edsrddoFAra7 Python & TAAG LI FHREIRER KX~ BEPIBRARY
BT RZ R ﬂi)‘miﬁﬁvﬁ- FARLREIN MZBAR -

Python Tutorial, Release 2.7

6 Chapter 1. Whetting Your Appetite JTH3g

CHAPTER

TWO

USING THE PYTHON INTERPRETER /i FH
PYTHON fi#kEgs

2.1 Invoking the Interpreter iHER s

The Python interpreter is usually installed as /usr/local/bin/python on those machines where
it is available; putting /usr/local/bin in your Unix shell's search path makes it possible to
start it by typing the command

% Python 89 RMRE L BARMEE /usr/local/bin/python B % T 5 & /usr/local/bin H %
AR A Unix Shell M3 5RAZZ » AR T LAT H A

python

to the shell. Since the choice of the directory where the interpreter lives is an installation
option, other places are possible; check with your local Python guru or system administrator.
(E.g., /usr/local/python is a popular alternative location.)

kB MAREEBZEATRE > AL TREEALCILE » RTA5 KK Python 89H P RALEE
REBA o (#l4= > /usr/local/python #hEZ—MRFHE R 89ikiF)

On Windows machines, the Python installation is usually placed in C:\Python27, though you can
change this when you're running the installer. To add this directory to your path, you can type
the following command into the command prompt in a DOS box

Windows#u2 £ » Python % %K £ C:\Python27 HAR > HKMAEBITZEARFH HETAKXEE - F
2R AR FhAE|KA1E) Path P93 » TR T @M £ DOS F P AA 44T

set path=Ypath%;C:\\python27

Typing an end-of-file character (Control-D on Unix, Control-Z on Windows) at the primary prompt
causes the interpreter to exit with a zero exit status. If that doesn't work, you can exit the
interpreter by typing the following command: quit().

BMA— AT R (UnixE2Z Ctrl+D ° Windows E% Ctrl+z) MR LA 0 {ABE c R LA &
YR > ARTAMAAT oA E 0 quit() °

The interpreter's line-editing features usually aren't very sophisticated. On Unix, whoever
installed the interpreter may have enabled support for the GNU readline library, which adds more
elaborate interactive editing and history features. Perhaps the quickest check to see whether
command line editing is supported is typing Control-P to the first Python prompt you get. If
it beeps, you have command line editing; see Appendix Interactive Input Editing and History
Substitution for an introduction to the keys. If nothing appears to happen, or if “P is echoed,

Python Tutorial, Release 2.7

command line editing isn't available; you'll only be able to use backspace to remove characters
from the current line.

RS AT RB DR TR E £ - £ Unix ERBRTHRAHA GNU readline B X I » ZH LT A 5h
BRI I REF G SRR TREEFSIT BEEIBFRT R FT RO FTIATEIRTHTH
X Control-Pe e RAHdrE (HF MApES) » WARTUIERAGLITRBDEE > KK FE Interactive
Input Editing and History Substitution [VAZF| 44t N o wRMHLRXETHLEH » X E LT “p
s WA AT RBARTTR » RAKFABRBERZHAGFELST -

The interpreter operates somewhat like the Unix shell: when called with standard input connected
to a tty device, it reads and executes commands interactively; when called with a file name
argument or with a file as standard input, it reads and executes a script from that file.

FRAE B A RAEA AR Unix Shell : 4 &R &M AR EMAKIARN I » 8 # X 58 AR%Fo AT
40 B L BRI AL A R EImAREN » € N AR AT R o

A second way of starting the interpreter is python -c command [arg] ..., which executes the
statement(s) in command, analogous to the shell's -¢ option. Since Python statements often
contain spaces or other characters that are special to the shell, it is usually advised to quote
command in its entirety with single quotes.

B R B 69 % =7 k% python -c command [arg] ... °* XA FETUAE o147 FEEMTIES
% Fl-TShellty -c &7 o B APythonik &% & GL46 EHRILGBHRFH » AARITRREAN ¢4 %3]
T Ak o

Some Python modules are also useful as scripts. These can be invoked using python -m module
[arg]l ..., which executes the source file for module as if you had spelled out its full name
on the command line.

A ¥ Python AEIRALZT VAL VEMp A4E A o BA1T AR python -m module [arg]... TAMA » ZAFLAFAR
b P B AR R LT MBS B RUM-

Note that there is a difference between python file and python <file. In the latter case, input
requests from the program, such as calls to input() and raw_input(), are satisfied from file.
Since this file has already been read until the end by the parser before the program starts
executing, the program will encounter end-of-file immediately. In the former case (which is
usually what you want) they are satisfied from whatever file or device is connected to standard
input of the Python interpreter.

2% python file ## python <file ZARF & o FTFTE—fHL > £FFX MTAA input() #
raw_input () XHEGMAFER kA THLT 69 X - RALEBHEFLIITIAN » IHTEZ LT
BRI G LR o ZAT—AH L (A F AR ERY) BASRRIKES Python MR iz EmA
TRk EMNALHELLECRE

When a script file is used, it is sometimes useful to be able to run the script and enter
interactive mode afterwards. This can be done by passing -i before the script. (This does not
work if the script is read from standard input, for the same reason as explained in the previous
paragraph.)

R AL » Z2HRETMARERALERX o RUTABIAR AT b -5 FfkEd -
(o RBp AR A AR RN > ERREHET > G — BRI GRE 4)

2.1.1 Argument Passing 7/‘3%’{&{{?@

When known to the interpreter, the script name and additional arguments thereafter are passed
to the script in the variable sys.argv, which is a list of strings. Its length is at least one;
when no script and no arguments are given, sys.argv[0] is an empty string. When the script name
is given as '-' (meaning standard input), sys.argv[0] is set to '-'. When -c¢ command is used,
sys.argv[O] is set to '-c'. When -m module is used, sys.argV[O] is set to the full name of

8 Chapter 2. Using the Python Interpreter {8/ Python f#FE#§

Python Tutorial, Release 2.7

the located module. Options found after -¢ command or -m module are not consumed by the Python
interpreter's option processing but left in sys.argv for the command or module to handle.

R BESE s WAL M REAN—ANLEA sys.argy GFHE R BRA SR AfH5HE

CEFUAE—ANLE: sys.argv[0] EAEFHE WA LH/TH - (RFkrEHA) B
sys.argv[0] X EA '-' A -c A sys.argv[0] HEXEA '-c' ° A -m module H I

B 0 sys.agv[0] AT AIGEHERGALL o toptioni-c command HFH -m module X &8 H T 2K
Python ALFE % 8 AL SEALHI AT BLIR » M 2G4 sys.argy P BB A ARIF o

2.1.2 Interactive Mode Tfﬁﬁiﬁ

When commands are read from a tty, the interpreter is said to be in interactive mode. In this
mode it prompts for the next command with the primary prompt, usually three greater-than signs
(>>>); for continuation lines it prompts with the secondary prompt, by default three dots
(...). The interpreter prints a welcome message stating its version number and a copyright
notice before printing the first prompt:

I tty BmEG AR > RNAMES DT LZHEX - IFREXTERE IRFTHF k4T ERTHA
FRBAZAKRTS ((>>>) s EHRSWAA NBRTH > wEZAEER (...) - £F—TZ
B R RATE R L~ AT T

python

Python 2.7 (#1, Feb 28 2010, 00:02:06)

Type "help", "copyright", "credits" or "license" for more information.
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look
at this if statement:

MASATEM N FZABRTHT > blde > TEEA if &8

>>> the_world_is_flat = 1
>>> if the_world_is_flat:
print "Be careful not to fall off!"

Be careful not to fall off!

2.2 The Interpreter and Its Environment fEFEgs N HIfEE

2.2.1 Error Handling fE1R40FH

When an error occurs, the interpreter prints an error message and a stack trace. In interactive
mode, it then returns to the primary prompt; when input came from a file, it exits with a nonzero
exit status after printing the stack trace. (Exceptions handled by an except clause in a try
statement are not errors in this context.) Some errors are unconditionally fatal and cause an
exit with a nonzero exit; this applies to internal inconsistencies and some cases of running
out of memory. All error messages are written to the standard error stream; normal output from
executed commands is written to standard output.

HABELAEN s BERITH—AHEERZEFERRESR c REABEAT » €RHER T/ 2o RN THH A
o CETFRBREREAERREEE o (FFTL & try B9 FH except T4 KkIEH » ZIHHER
SHI EXPOBEREE) A—REFRFOBZLSHERRATERE Bhillwd NETEFNLEE
R o FTA 0451215 BAR B AR RA L 4 FPHATHE Ak E AR o

2.2. The Interpreter and Its Environment f#FEZS N HIfEE 9

Python Tutorial, Release 2.7

Typing the interrupt character (usually Control-C or DEL) to the primary or secondary prompt

1

cancels the input and returns to the primary prompt. Typing an interrupt while a command is

executing raises the KeyboardInterrupt exception, which may be handled by a try statement.

AIRFTHIAMBRTAHAFTHF (AF £Control-C H# DEL) SLAIE S WM » B3 4447 0
2.2 MATH A AP BTAF AME — A KeyboardInterrupt +F 0 €T AK try AR o

2.2.2 Executable Python Scripts #ifT Python I

On BSD'ish Unix systems, Python scripts can be made directly executable, like shell scripts, by
putting the line:

BSDE &) Unix &4 F » Python My AT VA% Shell By RAANME BiEdhAT o REAMW KAXHAKE 1744
R A1 K

#! /usr/bin/env python

(assuming that the interpreter is on the user's PATH) at the beginning of the script and giving
the file an executable mode. The #! must be the first two characters of the file. On some
platforms, this first line must end with a Unix-style line ending ('\n'), not a Windows ('\r\n')
line ending. Note that the hash, or pound, character, '#', is used to start a comment in Python.

(2490 Python AR K/ P89 PATH) #1 LMALBGI AARH s LEBFS E o H—4FLAN
Unix RAGE9FTL R ("\n') &R+ THM Windows ('\r\n') ¥R E& > '# APython
b EAT R AR o

The script can be given an executable mode, or permission, using the chmod command:
B AT VA it chmod 4448 & MATAE X An A R
$ chmod +x myscript.py

On Windows systems, there is no notion of an ®‘executable mode''. The Python installer
automatically associates .py files with python.exe so that a double-click on a Python file will
run it as a script. The extension can also be .pyw, in that case, the console window that
normally appears is suppressed.

Windows A% ERA “$ATHEX” o Python ZERF AW .py XM X 2| python.exe * FTrAAE
Python X#FEis L& » CRAAEA B AIAT o FIAE pyw AT ZH G XHK > AFENTH R 2 L7
#eFa -

2.2.3 Source Code Encoding JFFEF Y

It is possible to use encodings different than ASCII in Python source files. The best way to
do it is to put one more special comment line right after the #! line to define the source file
encoding:

Python #9/R SCH T VA %A 4% Al ASCIT MASME F 45 o RIGHMIEZE # T @A — Mok s
TRELFHE
-x- coding: encoding -*-

With that declaration, all characters in the source file will be treated as having the encoding
encoding, and it will be possible to directly write Unicode string literals in the selected

L A problem with the GNU Readline package may prevent
2 AN —ARETRSERCEFER T -

10 Chapter 2. Using the Python Interpreter {8/ Python f#FE#§

Python Tutorial, Release 2.7

encoding. The 1list of possible encodings can be found in the Python Library Reference, in the
section on codecs.

ARIE AP B > Python &2 R L PO FHRMEN encoding HAL - FHH € RTEGKEE T
B3 B R Unicode LA o & Python B 4% FM F codecs 4 T ARE T A %I & (518 M
utf-8 /P L ——FFiE) o

For example, to write Unicode literals including the Euro currency symbol, the I1S0-8859-15
encoding can be used, with the Euro symbol having the ordinal value 164. This script will print
the value 8364 (the Unicode codepoint corresponding to the Euro symbol) and then exit:

)4 s VAR 1S0-8859-15 %A T UAA X% B B4 AH 54 Unicode XA » HBHAIEA 164 o AWy
Aol 8364 (EBLAK B Unicode st BA) KREEE

—*- coding: 1s50-8859-15 —x-

currency = u"€"
print ord(currency)

If your editor supports saving files as UTF-8 with a UTF-8 byte order mark (aka BOM), you can
use that instead of an encoding declaration. IDLE supports this capability if Options/General/
Default Source Encoding/UTF-8 is set. Notice that this signature is not understood in older
Python releases (2.2 and earlier), and also not understood by the operating system for script
files with #! lines (only used on Unix systems).

Jo RAR G A5 41 B 7T M SUHAR A) UTF-8 #8 X > B TXURAG UTF-8 % F4rit (BP BOM - Byte
Order Mark) » AR-T VAR XAk XA % 5 9 o IDLET ¥Ai# T % € Options/General/Default Source
Encoding/UTF-8 %iﬁfb o HFEIEFZM LW R Python F X HFX AMArie (Python 2.2 T F89ra k) >
AR EEBOR FALRARBRALASG ¢ 47 (RIRT UnixAR4L) o

By using UTF-8 (either through the signature or an encoding declaration), characters of most
languages in the world can be used simultaneously in string literals and comments. Using non-
ASCII characters in identifiers is not supported. To display all these characters properly,
yvour editor must recognize that the file is UTF-8, and it must use a font that supports all the
characters in the file.

18 UTF-8 WAL (R ARIRICEARLEN) » RN TREFH EFzfd A EF LRI H)ES o
ARIRAE P R JE ASCIT FHE - ATEHI T MIANFH h—R 2 h%H ""W%ﬂ%f%@%a UTF 8
#R o BB L CHPATAFAGFR

2.2.4 The Interactive Startup File & B FCIAEEAYE B4R

When you use Python interactively, it is frequently handy to have some standard commands executed
every time the interpreter is started. You can do this by setting an environment variable named
PYTHONSTARTUP to the name of a file containing your start-up commands. This is similar to the
.profile feature of the Unix shells.

1% Fl Python MBBERWHIE » KN TREZAFRBEREFHHPAT—RGE,: o RTUAE—ATHFF E4L
RBEWATH G S > B —/4% A PYTHONSTARTUP # IE T R XA o AT Unix shelldy

.profile X # o

This file is only read in interactive sessions, not when Python reads commands from a script,
and not when /dev/tty is given as the explicit source of commands (which otherwise behaves like
an interactive session). It is executed in the same namespace where interactive commands are
executed, so that objects that it defines or imports can be used without qualification in the
interactive session. You can also change the prompts sys.psl and sys.ps2 in this file.

2.2. The Interpreter and Its Environment f#FEZS N HIfEE 11

Python Tutorial, Release 2.7

AL AE R L LENARRE > 5 Python MM A AR A SOAL5 /dev/tty B o3 &R BT] R
Sdott (RECMNGTARBERLAELERE o) CHRBEEPATHFARER AL 2R > Fidd
CEAEF Mg —b TUAEBRBEEF RZRAGEA o RETUAEZANSIAFFAE sys.pst 7 sys.ps2

e A
a4>°

If you want to read an additional start-up file from the current directory, you can pro-
gram this in the global start-up file using code like if os.path.isfile('.pythonrc.py'):
execfile ("' .pythonrc.py'). If you want to use the startup file in a script, you must do this
explicitly in the script

W RFEEESATA ZFPHAAR WO B AL TURELRHRH LT hOANRM ATHKRG: if
os.path.isfile('.pythonrc.py'): execfile('.pythonrc.py') ° % RMRBELEZLMNE AT BT
GNPV RN =N e)

import os

filename = os.environ.get ('PYTHONSTARTUP')

if filename and os.path.isfile(filename):
execfile(filename)

12 Chapter 2. Using the Python Interpreter {8/ Python f#FE#§

CHAPTER

THREE

AN INFORMAL INTRODUCTION TO PYTHON
PYTHON #iZEA 42

In the following examples, input and output are distinguished by the presence or absence of
prompts (>>> and ...): to repeat the example, you must type everything after the prompt, when
the prompt appears; lines that do not begin with a prompt are output from the interpreter. Note
that a secondary prompt on a line by itself in an example means you must type a blank line; this
is used to end a multi-line command.

T@EHFF o mAFmE %J\bk’f‘ﬂv‘ﬁﬁﬁﬂy‘&fﬁ (>>> 0 >0) liZ o wwRAFTHRXEL T
REABBRIORTHE N (BT He@mey) RETELR %f?éﬁﬂ’iﬁ%ﬁ FEEFEGRELESL] PR
N BRTHET REELARSE S %u)\—‘/n\”f’ s RN R BRE—NSITHEGE LR -

Many of the examples in this manual, even those entered at the interactive prompt, include
comments. Comments in Python start with the hash character, #, and extend to the end of the
physical line. A comment may appear at the start of a line or following whitespace or code, but
not within a string literal. A hash character within a string literal is Jjust a hash character.
Since comments are to clarify code and are not interpreted by Python, they may be omitted when
typing in examples.
AFME GRS TH —— B EFH L LR TFEG — A2 A 24 o Python T) EHA # FiFAkd
EEIMTRE (FE2—— X ZRAMEZMT physical line AR T EFGRATRIFRB B A sMAT)
EBTUAMAT G4 WTAEETORREZE ERETEALEFHET - IRAFHE T # FHIE
7~ # oo ARAL P A IEBE AR SAL Python & » ZFATFH GIETILE BEA] o
Some examples: 4= F =45

this is the first comment

SPAM = 1 # and this is the second comment
... and now a third!

STRING = "# This is not a comment."

3.1 Using Python as a Calculator J4 Python HfiiTHE 28

Let's try some simple Python commands. Start the interpreter and wait for the primary prompt,
>>>. (It shouldn't take long.)

HEMNFZX—LF L4 Python ¢4« BHBEHREREFHFIRTH >>> B (RFHRRL) -

13

Python Tutorial, Release 2.7

3.1.1 Numbers #H

The interpreter acts as a simple calculator: you can type an expression at it and it will write
the value. Expression syntax is straightforward: the operators +, -, % and / work Jjust like
in most other languages (for example, Pascal or C); parentheses can be used for grouping. For
example:

BERSHEATHRE—ANRENTES TUAGEFA—REXIX > €28 HES - RFKXEBEARAELEG :
ZEMF + 0 - 0 o x e) GHEEE T4 (Hlde: Pascal K C) EFTHATHH o Hlde

>>> 242

4

>>> # This t©s a comment

L. 242

4

>>> 2+2 # and a comment on the same line as code
4

>>> (50-5%6)/4

5

>>> # Integer division returns the floor:

... 7/3

2
>>> 7/-3
-3

The equal sign ('=') is used to assign a value to a variable. Afterwards, no result is displayed
before the next interactive prompt:

% (=) AFHEERU

>>> width = 20
>>> height = 5%9
>>> width * height
900

A value can be assigned to several variables simultaneously:
— AT AR R LT 2

>>>x=y=2=0 # Zeroz, y and 2z
>>> X

0

>>>y

0

>>> z

0

Variables must be “‘defined'' (assigned a value) before they can be used, or an error will
occur:

TEAMGAMLM “ZL” (RE) » EML s

>>> # try to access an undefined variable
. n
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'n' is not defined

There is full support for floating point; operators with mixed type operands convert the integer
operand to floating point:

ERAEZENIF GEARSTTAR 2 a8 AT 2%

14 Chapter 3. An Informal Introduction to Python Python HFZEEA4E

Python Tutorial, Release 2.7

>>> 3 % 3.75 / 1.5
7.5

>>> 7.0 /2

3.5

Complex numbers are also supported; imaginary numbers are written with a suffix of j or J.
Complex numbers with a nonzero real component are written as (real+imagj), or can be created
with the complex(real, imag) function.

BREUAFRLH s RABR j R J RBAAELE - FHAFEXEHROE KEA (real+imagj) * RATWA
M complex(real, imag) K& e|HE

>>> 15 * 13

(-1+03)

>>> 1j * complex(0,1)
(-1+03)

>>> 3+1j*3

(3+37)

>>> (3+13)*3

(9+33)

>>> (1+23)/(1+15)
(1.5+0.53)

Complex numbers are always represented as two floating point numbers, the real and imaginary
part. To extract these parts from a complex number z, use z.real and z.imag.

BRAGFEIHRFPEIRERRCAHAAMNF LK o BRINERK 2z PRIVEFRAEN > £ F z.real # z.imag °

>>> a=1.5+0.5j
>>> a.real
1.5

>>> a.imag
0.5

The conversion functions to floating point and integer (float(), int() and long()) don't work
for complex numbers --- there is no one correct way to convert a complex number to a real number.
Use abs(z) to get its magnitude (as a float) or z.real to get its real part.

FEB AR A G5 HE (float() F int() AR long()) FAEMATEEK - RAAT A EHT HT
Ude— B AR —NE e R abs(z) ATHRBABE (FE%) K z.real FBIL LI

>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):
File "<stdin>", line 1, in 7
TypeError: can't convert complex to float; use abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sqrt(a.real**2 + a.imag**2)
5.0

In interactive mode, the last printed expression is assigned to the variable _. This means that

when you are using Python as a desk calculator, it is somewhat easier to continue calculations,
for example:

REMXT » RA—AMREKHERELTE _ c IHRNAKTALC I AR @HFE » REROGAT
LTI Bl

3.1. Using Python as a Calculator ¥ Python X4fifit & %8 15

Python Tutorial, Release 2.7

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625

>>> price +
113.0625
>>> round(_, 2)
113.06

This variable should be treated as read-only by the user. Don't explicitly assign a value to
it --- you would create an independent local variable with the same name masking the built-in
variable with its magic behavior.

3 Q%ﬁ'ﬂ")ﬂ)ﬁ%ﬂﬁé@ o FRZRLEWME —— BRAXCNE-—MRILYGFELE FLTT ERRT AR
NELTEHRARER o

3.1.2 Strings FfFER

Besides numbers, Python can also manipulate strings, which can be expressed in several ways.
They can be enclosed in single quotes or double quotes:

A8 L EAE 0 Python L3R4 T TABI LAY R 7 XA Z B FH $ o €NTAA #3515 E 5] 54717

>>> 'spam eggs'

'spam eggs'

>>> 'doesn\'t'
"doesn't"

>>> "doesn't"

"doesn't"

>>> '"Yes," he said.'
'"Yes," he said.'

>>> "\"Yes,\" he said."
'"Yes," he said.'

>>> '""Isn\'t," she said.'
'""Isn\'t," she said.'

String literals can span multiple lines in several ways. Continuation lines can be used, with
a backslash as the last character on the line indicating that the next line is a logical
continuation of the line:

FHFE AU AT o TR A A (TR ROESETH$ » BART —TEZHELATH G
hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\

Note that whitespace at the beginning of the line is\
significant."

print hello

Note that newlines still need to be embedded in the string using \n -- the newline following
the trailing backslash is discarded. This example would print the following:

FREZNE ARFEATHETEA \n —— ZRGRAMAIL LW ZE o 7] HI AT AL TH KX ¢

This is a rather long string containing
several lines of text just as you would do in C.
Note that whitespace at the beginning of the line is significant.

16 Chapter 3. An Informal Introduction to Python Python HFZEEA4E

Python Tutorial, Release 2.7

Or, strings can be surrounded in a pair of matching triple-quotes: """ or ''', End of lines do
not need to be escaped when using triple-quotes, but they will be included in the string.

Hobo FHETURRAE—FILZFN FF 0 v F 0 o Z3 B RERFAEBL ENCEELA
FAE T
print nmnn
Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

produces the following output:
FEAT
. code-block:: text

Usage: thingy [OPTIONS]
-h Display this usage message

-H hostname Hostname to connect to

[NEN

If we make the string literal a raw'' string, \n sequences are not converted to newlines, but
the backslash at the end of the line, and the newline character in the source, are both included
in the string as data. Thus, the example:

Lo REMNER—A “RE” FHE > \n FIRLWE L M BATRGRAE Ax > R T HRATH > AR A
FHE T —RyEAE > HILTH

hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."

print hello

would print:
2ATH

This is a rather long string containing\n\
several lines of text much as you would do in C.

The interpreter prints the result of string operations in the same way as they are typed for
input: inside quotes, and with quotes and other funny characters escaped by backslashes, to show
the precise value. The string is enclosed in double quotes if the string contains a single quote
and no double quotes, else it's enclosed in single quotes. (The print statement, described
later, can be used to write strings without quotes or escapes.)

BRI FHEREERGENMARG T X—2 : UEFTHRB > L2RA B LA/ FHF > A
A LT - W RFFEALEIN T FEERF] 5 CRARF] FA7R c FRMEALF] 470 o (B
®A~2B 89 print 158) > TRIM B R AR RS LG THE o)

Strings can be concatenated (glued together) with the + operator, and repeated with *:
FRETAE + BEFEE (BB —A) > Tdd « £F

>>> word = 'Help' + 'A'

>>> word

'HelpA'

>>> '<' + word#5 + '>'!

' <HelpAHelpAHelpAHelpAHelpA>'

3.1. Using Python as a Calculator ¥ Python X4fifit & %8 17

Python Tutorial, Release 2.7

Two string literals next to each other are automatically concatenated; the first line above
could also have been written word = 'Help' 'A'; this only works with two literals, not with
arbitrary string expressions:

AAARAANF R E LR HERLE—AR > NERTRBLTILE Y word ='Help' 'A' * ERATAANF
FEXA TRATFHEEREX -

>>> 'str' 'ing' # <- This is ok
'string'

>>> 'str'.strip() + 'ing' # <- This is ok
'string'

>>> 'str'.strip() 'ing' # <- This is invalid

File "<stdin>", line 1, in 7
'str'.strip() 'ing'

SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a string has subscript
(index) 0. There is no separate character type; a character is simply a string of size one.
Like in Icon, substrings can be specified with the slice notation: two indices separated by a
colon.

FHELTURMR (BF) o K0T C - FHEOF—AFHEINN 0 o & ARIHFHRY » 54
HAKAA 1 GFH o 2B Leon » T whteiz FRRFHE @@ 93 8 LA -

>>> word[4]
|A|

>>> word[0:2]
lHel

>>> word[2:4]
llpl

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second
index defaults to the size of the string being sliced.

FKANMATAARKINE » R > B F—ANE5189E » RIAA0» BRFA kil KIAAFHEHK
Bo (ALRHEHEZA5% RTwA T, RIS 10 T8O K BER vord[2:4:1] ——2 %)

>>> wordl[:2] # The first two characters

lHel

>>> word[2:] # Everything except the first two characters
llpAl

Unlike a C string, Python strings cannot be changed. Assigning to an indexed position in the
string results in an error:

TRT C F4% > Python FHELTE o OFHF$XAGX-AFIMMERT] REX

>>> word[0] = 'x'
Traceback (most recent call last):
File "<stdin>", line 1, in 7
TypeError: object does not support item assignment
>>> word[:1] = 'Splat'
Traceback (most recent call last):
File "<stdin>", line 1, in 7
TypeError: object does not support slice assignment

However, creating a new string with the combined content is easy and efficient:

Tt > A AR A R— AT AR @

18 Chapter 3. An Informal Introduction to Python Python HFZEEA4E

Python Tutorial, Release 2.7

>>> 'x' + word[1:]
'xelpA'

>>> 'Splat' + word[4]
'SplatA'’

Here's a useful invariant of slice operations: g[:i] + s[i:] equals s.
WMARBREANEFRAGTI TR s[:i] + s[i:] F s o

>>> word[:2] + word[2:]
'HelpA'
>>> word[:3] + word[3:]
'HelpA'

Degenerate slice indices are handled gracefully: an index that is too large is replaced by the
string size, an upper bound smaller than the lower bound returns an empty string.

BRI B e R LRI KR 2B B|ALAKE > LR TTRUNERGE FHE -

>>> word[1:100]
'elpA’
>>> word[10:]

>>> word[2:1]

Indices may be negative numbers, to start counting from the right. For example:

R TTAZE R > LN 3 A THE o Blde

>>> word[-1] # The last character

|Al

>>> word[-2] # The last-but-ome character

lpl

>>> word[-2:] # The last two characters

lpAl

>>> word[:-2] # Everything except the last two characters
'Hel'

But note that -0 is really the same as 0, so it does not count from the right!
FTRFELEENHE -0 £ ERZ 00 FIABTRRMAE L AR T !

>>> word[-0] # (since -0 equals 0)
lHl

Out-of-range negative slice indices are truncated, but don't try this for single-element (non-
slice) indices:

B3 A AR AR REERETATRAE (I A) R F

>>> word[-100:]

'HelpA'

>>> word[-10] # error

Traceback (most recent call last):
File "<stdin>", line 1, in 7

IndexError: string index out of range

One way to remember how slices work is to think of the indices as pointing between characters,
with the left edge of the first character numbered 0. Then the right edge of the last character
of a string of n characters has index n, for example:

3.1. Using Python as a Calculator ¥ Python X4fifit & %8 19

Python Tutorial, Release 2.7

HANBETAREHORAAMF O IAEFT X AR ZEANFH LR - AR F-NFHOEINHN
0> mKkEA n OFHFBERE—NF FOERRIA n o b

R e e Bttty Attt &

|H|le|1|p]|A

ot ——————+

o 1 2 3 4 b5

-5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string; the second row
gives the corresponding negative indices. The slice from i to j consists of all characters
between the edges labeled i and j, respectively.

IARPHE TR EAEFHEPH R E 0...5 « FoiTBMMm k3 o WEZN i 3 § AAK
fh A7 R 6 3 R 2R B BT FAF o

For non-negative indices, the length of a slice is the difference of the indices, if both are
within bounds. For example, the length of word[1:3] is 2.

sTIERES] » WwR ETHAELZRA R KERZERIAGE o Hlde > word[1:3] £ 2 o
The built-in function len() returns the length of a string:

MNE XK len() BEFHEKE

>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)

34

See Also:

typesseq Strings, and the Unicode strings described in the next section, are examples of sequence
types, and support the common operations supported by such types.

string-methods Both strings and Unicode strings support a large number of methods for basic
transformations and searching.

new-string-formatting Information about string formatting with str.format() is described here.

string-formatting The old formatting operations invoked when strings and Unicode strings are
the left operand of the §, operator are described in more detail here.

3.1.3 Unicode Strings Unicode A

Starting with Python 2.0 a new data type for storing text data is available to the programmer: the
Unicode object. It can be used to store and manipulate Unicode data (see http://www.unicode.org/)
and integrates well with the existing string objects, providing auto-conversions where necessary.

M Python 2.0 A2 BF RNA T —A#65» AEBMEIRZKIEMRA ¢ Unicode #F o €T U T A4
Fo 24P Unicode %42 (£ W http://www.unicode.org/) » FEAGIEFHFHFBETEH BIFHER > &
Z nREAHER -

Unicode has the advantage of providing one ordinal for every character in every script used
in modern and ancient texts. Previously, there were only 256 possible ordinals for script
characters. Texts were typically bound to a code page which mapped the ordinals to script
characters. This lead to very much confusion especially with respect to internationalization
(usually written as i18n --- 'i' + 18 characters + 'n') of software. Unicode solves these
problems by defining one code page for all scripts.

Unicode 8 # XA TAE-HARIERMEAGLF AL T HAGHE—NFHAE R/ TR0 577
F oo XA XFALFHFTHAGRA 256 A TANT o BEK BT FTRS o LAPZINBRHFLF AL

20 Chapter 3. An Informal Introduction to Python Python HFZEEA4E

http://www.unicode.org/
http://www.unicode.org/

Python Tutorial, Release 2.7

AR o XARGFERLYGHELL R (AF B4 i18n —— 'i' + 18 AFHF + 'n') o Unicode
BETAPTAN LT ZAGEE— /MR RAG R4 o

Creating Unicode strings in Python is Jjust as simple as creating normal strings:
Python F4|& Unicode F/f $Anb| LA FIF & —H %

>>> u'Hello World !’
u'Hello World !'

The small 'u' in front of the quote indicates that a Unicode string is supposed to be created.
If you want to include special characters in the string, you can do so by using the Python
Unicode-Escape encoding. The following example shows how:

F15ATE) 't R TS E—A Unicode F/H B o wRBEZLEFHFETE 2% FH > TR Python
#) Unicode-Escape (Unicode 3 L——&%) o A T @894 F

>>> u'Hello\u0020World !'
u'Hello World !'

For experts, there is also a raw mode just like the one for normal strings. You have to prefix
the opening quote with “ur' to have unevenPython use the Raw-Unicode-Escape encoding. It will
only apply the above \uXXXX conversion if there is an uneven number of backslashes in front of

the small “u'.

ey B @ FHE—H > Unicode FHEFLARBBEX o TAESF] A “ur” > Python &R
Raw-Unicode-Escape %A% (/R4 Unicode 3 L——iF) o B A4 AN RAHLATE » Bde v’ > 8%k
> CLRSEFRA \uXXXX °

>>> ur'Hello\u0020World !
u'Hello World !'

>>> ur'Hello\\u0020World !'
u'Hello\\\\u0020World !'

The raw mode is most useful when you have to enter lots of backslashes, as can be necessary in
regular expressions.

W RRFRZREMARSL » REEKXFFTAA > BEEVNREKFILFRLA 6 o

Apart from these standard encodings, Python provides a whole set of other ways of creating
Unicode strings on the basis of a known encoding.

B A 3% S Y5 # A7 A 69 — 3% 4 > Python /T AT Ca %R k4l Unicode FH FEEF* -
The built-in function unicode() provides access to all registered Unicode codecs (COders and
DECoders). Some of the more well known encodings which these codecs can convert are Latin-1,
ASCII, UTF-8, and UTF-16. The latter two are variable-length encodings that store each Unicode
character in one or more bytes. The default encoding is normally set to ASCII, which passes
through characters in the range 0 to 127 and rejects any other characters with an error. When a
Unicode string is printed, written to a file, or converted with str(), conversion takes place
using this default encoding.

A B #4% unicode() T vA4E F i A iZME) Unicode %%y (COders ## DECoders) o &FiJ %= » Latin-1
> ASCII » UTF-8 #» UTF-16 X R#GHRATALAAI#H (Latin-1 RF—MRIWETEEZRTE 5
ASCIT K A—5t+ L% FRARATAAN A FBEFHE——B4) « BAIRT RS B % G— 4
Uniocde FAFHMEA—B 5 AFH o WINABFHAA ASCII > 3k %BEZ 0 3] 127 IALBGHSE - &
M AR 44 o & —A Unicode F/F BT REAB XM T » HAEA str() A > HHRIBAEULA KINA
o

>>> u"abc"

u'abc'

>>> str(u"abc")

3.1. Using Python as a Calculator ¥ Python X4fifit & %8 21

Python Tutorial, Release 2.7

'abc’
>>> u""
u'\xed\xf6\xfc'
>>> str(u"")
Traceback (most recent call last):
File "<stdin>", line 1, in 7
UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-2: ordinal not in range(128)

To convert a Unicode string into an 8-bit string using a specific encoding, Unicode objects
provide an encode() method that takes one argument, the name of the encoding. Lowercase names
for encodings are preferred.

AT —A Unicode FHEBEH—NERBF TR 8 LF/H % > Unicode 3t LR — encode() #
ko CHERRB LS c RABL N BT o

>>> u"". encode('utf-8')
"\xc3\xa4\xc3\xb6\xc3\xbc'

If you have data in a specific encoding and want to produce a corresponding Unicode string from
it, you can use the unicode() function with the encoding name as the second argument.

do RAT — Ak G R B R o AL T OUNP £ K — Unicode FH# > FTAEA unicode) Hi > Tk
SR A =KAo

>>> unicode('\xc3\xa4\xc3\xb6\xc3\xbc', 'utf-8')
u'\xed\xf6\xfc'

3.1.4 Lists |3

Python knows a number of compound data types, used to group together other values. The most
versatile is the list, which can be written as a list of comma-separated values (items) between
square brackets. List items need not all have the same type.

Python A LA B4 #IEXA > AToA&L el - @AM E list (7] &) » ETAREHE T T IR
0 —F|iL 5 SRR 4E o PR LETLZER — XA o

>>> a = ['spam', 'eggs', 100, 1234]
>>> a
['spam', 'eggs', 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:
WAEFH B LT 0 PRI 0 b F o 2| XTI h foik i

>>> al0]

lspalnl

>>> al3]

1234

>>> a[-2]

100

>>> al1:-1]

['eggs', 100]

>>> al[:2] + ['bacon', 2x%2]
['spam', 'eggs', 'bacon', 4]
>>> 3*a[:3] + ['Boo!']
['spam', 'eggs', 100, 'spam', 'eggs', 100, 'spam', 'eggs', 100, 'Boo!']

All slice operations return a new list containing the requested elements. This means that the
following slice returns a shallow copy of the list a:

22 Chapter 3. An Informal Introduction to Python Python HFZEEA4E

Python Tutorial, Release 2.7

A 800 4 RN 2B S AR 0 B4 RIFHAE o BEREATOWE Bl BEFR a 09— % LH
8 A&

>>> al:]
['spam', 'eggs', 100, 1234]

Unlike strings, which are immutable, it is possible to change individual elements of a list:
T TR FHE IRAFEERLE

>>> a

['spam', 'eggs', 100, 1234]
>>> al2] = a[2] + 23
>>> a

['spam', 'eggs', 123, 1234]

Assignment to slices is also possible, and this can even change the size of the list or clear
it entirely:

BTty B R4 » BT AR TR AR » RiF%E

>>> # Replace some items:
. al0:2] = [1, 12]
>>> a
[1, 12, 123, 1234]
>>> # Remove some:
. af0:2] =[]
>>> a
[123, 1234]
>>> # Insert some:
. a[1:1] = ['bletch', 'xyzzy'l]
>>> a
[123, 'bletch', 'xyzzy', 1234]
>>> # Insert (a copy of) itself at the beginning
>>> al:0] = a
>>> a
[123, 'bletch', 'xyzzy', 1234, 123, 'bletch', 'xyzzy', 1234]
>>> # Clear the list: replace all items with an empty list
>>> al:] =[]
>>> a
1

[

The built-in function len() also applies to lists:
ME &K len() LTARATI A

>>> a = [lal, lbl’ ICI’ ldl]
>>> len(a)
4

It is possible to nest lists (create lists containing other lists), for example:
AFHEINE (RE-ANESEEIERNTE) o Bl

>>> q = [2, 3]
>>>p = [1, q, 4]
>>> len(p)

3

>>> pl[1]

[2, 3]

>>> pl[1][0]

3.1. Using Python as a Calculator ¥ Python X4fifit & %8 23

Python Tutorial, Release 2.7

2

>>> p[1].append('xtra') # See section 5.1
>>> p

[1, [2, 3, 'xtra']l, 4]

>>> g

[2, 3, 'xtra']

Note that in the last example, p[1] and q really refer to the same object! We'll come back to
object semantics later.

EERE—ABITF 0 plt] A2 q FFEEEAR AL | K& AE B @ object semantics T4k %:
it -

3.2 First Steps Towards Programming Z}%%%E’J%—%/F

Of course, we can use Python for more complicated tasks than adding two and two together. For
instance, we can write an initial sub-sequence of the Fibonacci series as follows:

LK AT AME A Python T L—Im=F 8 L81E% o Blde » EMNTRE— AEKR FEANZ F57)]
KA o o T BT 7

>>> # Fibonacci series:
. # the sum of two elements defines the next

.a, b=0, 1
>>> while b < 10:
print b

a, b = b, atb

W U1 W N~ =

This example introduces several new features.
I FANBT IUAFHIRE o

e The first line contains a multiple assignment: the variables a and b simultaneously get the
new values 0 and 1. On the last line this is used again, demonstrating that the expressions
on the right-hand side are all evaluated first before any of the assignments take place.
The right-hand side expressions are evaluated from the left to the right.

FATOET N SERME (X F af b AINKFTHOE 0 F 1 - RE—AFTUERAT—K -
BERAEART EERAA » FRERTA I o BB RE KA T -

e The while loop executes as long as the condition (here: b < 10) remains true. In Python,
like in C, any non-zero integer value is true; zero is false. The condition may also be a
string or list value, in fact any sequence; anything with a non-zero length is true, empty
sequences are false. The test used in the example is a simple comparison. The standard
comparison operators are written the same as in C: < (less than), > (greater than), ==

(equal to), <= (less than or equal to), >= (greater than or equal to) and != (not equal
to).

A (ZEAZ b < 10) A true B » while #G3$4T » £ Python F » EMTFT C » (EfTIEREHK
HAE true s 0 & false o H£HLTIL ZTFEFERINE » TR ETUAREATFD| 3 TE K ERAKRY

24 Chapter 3. An Informal Introduction to Python Python HFZEEA4E

Python Tutorial, Release 2.7

& true » EF F|E false o 7hl P oM XL AN LG Lix o AR EERBERS C MR < (Wb
F) s > (AT) » == (5F) » <= (MT% F) s 5= (ATHT) & 1= (FET) -

o The body of the loop is indented: indentation is Python's way of grouping statements.
Python does not (yet!) provide an intelligent input line editing facility, so you have
to type a tab or space(s) for each indented line. In practice you will prepare more
complicated input for Python with a text editor; most text editors have an auto-indent
facility. When a compound statement is entered interactively, it must be followed by a
blank line to indicate completion (since the parser cannot guess when you have typed the
last line). Note that each line within a basic block must be indented by the same amount.

4}3% R & Y5 B9 1 4% & Python & Python 2B4%3E4J49 7% ik o Python (3F) TIRBEE R

TRBHE TAREAF NG HITHAN TAB REHK - TEFREURBEALALBERZALELH
PYthon BE > REZFLR HEESREAFIER REXNFALSBON » LRAERBEMA—NELT
ki RER (BABBREIFFEMNREANGB—ITAERE —1T) » ELEZNZE Bl—4EagnT
BB MGG R EIE KT EEG -

e The print statement writes the value of the expression(s) it is given. It differs from Jjust
writing the expression you want to write (as we did earlier in the calculator examples) in
the way it handles multiple expressions and strings. Strings are printed without quotes,
and a space is inserted between items, so you can format things nicely, like this:

KT print WBOMBL T RAXNGE - CEMNSMERXXIF FEMBEARELZFHE (RER
MEM@ﬁ”“%%%?%#)°$ﬁ$ﬁ’@ﬁ$mﬂv B HARANTRENER > PTART
et A FAFIRIE 5o B

>>> i = 256%256
>>> print 'The value of i is', i
The value of i is 65536

A trailing comma avoids the newline after the output:
Jl — A2 5 45 Bk T v Bk 4y b AT

>>> a, b=0, 1
>>> while b < 1000:
print b,
a, b = b, atb

112358 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if the last
line was not completed.

AR ARE WRFEATRAMBE R A MESACITHA T —METHN 23— NRAT o

3.2. First Steps Towards Programming JRfEpE —4# 25

Python Tutorial, Release 2.7

26 Chapter 3. An Informal Introduction to Python Python HFZEEA4E

CHAPTER

FOUR

\

MORE CONTROL FLOW TOOLS VR AJmAR sS4

Besides the while statement just introduced, Python knows the usual control flow statements
known from other languages, with some twists.

T AI@AN%E8) while % ¢] » Python BNE BB ETHET — LA RER AR HAMKET -

4.1 if Statements if EFEH]

Perhaps the most well-known statement type is the if statement. For example:
LR LA if ES o Bl

>>> x = int(raw_input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
x=0
print 'Negative changed to zero'
. elif x ==
print 'Zero'
. elif x ==
print 'Single'
. else:
print 'More'

More
There can be zero or more elif parts, and the else part is optional. The keyword ‘elif’ is

short for ‘else if', and is useful to avoid excessive indentation. An if ... elif ... elif
sequence is a substitute for the switch or case statements found in other languages.

THRAARE S A elif 34 s else ZTkE) o X4EF “elif’ & “ else if 7 8% F » AT LA K
BRI IEGER o if ... elif ... elif ... FH A THERECIEZT P switch & case 1E4] o

4.2 for Statements for EH]

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather
than always iterating over an arithmetic progression of numbers (like in Pascal), or giving the
user the ability to define both the iteration step and halting condition (as C), Python's for
statement iterates over the items of any sequence (a list or a string), in the order that they
appear in the sequence. For example (no pun intended):

27

Python Tutorial, Release 2.7

Python ¥ & for & & F= C X Pascal FHIRA FE c BEMBEILRTRAKRE —NFEHEFTAIE (b
Pascal) » X WA P R EZXLEXRTFHEAPILEH (4o C) > Python # for B HRELEZFI] (HEAXF
HE) FOFR o el ER FF I RETER © bl (RAE)

>>> # Measure some strings:
. a= ['cat', 'window', 'defenestrate']
>>> for x in a:
print x, len(x)
cat 3
window 6
defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can only happen for
mutable sequence types, such as lists). If you need to modify the list you are iterating over
(for example, to duplicate selected items) you must iterate over a copy. The slice notation
makes this particularly convenient:

LEREBPERERFI T L (RAARAERZIHGTRFINL 2R E HHEL) - wRIGABE
5 BARERGFZ] (Blde > EHRBER) > RTAER € EK o R A B AR R T LR 7 AR 89 B —
&

SN

>>> for x in al:]: # make a slice copy of the entire list
if len(x) > 6: a.insert(0, x)

>>> a

['defenestrate', 'cat', 'window', 'defenestrate']

4.3 The range() Function range() EX%L

If you do need to iterate over a sequence of numbers, the built-in function range() comes in
handy. It generates lists containing arithmetic progressions:

W RRERZ—ABIEF T 0 AE Rfrange O 2R AL » CAR—INF AR FoER

>>> range(10)
o, 1, 2, 3, 4,5,6, 7,8, 9]

The given end point is never part of the generated list; range(lO) generates a list of 10
values, the legal indices for items of a sequence of length 10. It is possible to let the range
start at another number, or to specify a different increment (even negative; sometimes this is
called the ‘step'):

range(10) AR T —NEL10MEMHER » CRERGFIERATRIANAREN 10695 K » ATE R A
PR EIETEE P LR o LT VAikrange R F — MUEAW 0 RATAB L - FRAGFoE (2
AR AN RALBAERA FRT)

>>> range(5, 10)

[6, 6, 7, 8, 9]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, you can combine range() and len() as follows:

FEHEREREINIE > W TH 444 FArange() # len()

28 Chapter 4. More Control Flow Tools JRAFETESH]

Python Tutorial, Release 2.7

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
print i, alil
0 Mary
1 had
2 a

3 little
4 lamb

In most such cases, however, it is convenient to use the enumerate() function, see Looping
Techniques IR >7.

it B HETAGAEE1E R enumerate() ° % WL Looping Techniques {AIFALFT o

4.4 break and continue Statements, and else Clauses on Loops break

M continue &), LLK JEEAHHY else T-A]

The break statement, like in C, breaks out of the smallest enclosing for or while loop.
break & &A= C Py EM > AT B RLG—R for &K while I o

The continue statement, also borrowed from C, continues with the next iteration of the loop.
continue HF &AM C PHERY > CRTHIFEEPATT —RENK -

Loop statements may have an else clause; it is executed when the loop terminates through
exhaustion of the list (with for) or when the condition becomes false (with while), but not
when the loop is terminated by a break statement. This is exemplified by the following loop,
which searches for prime numbers:

PEIRTAH —A else Ta; CEBTBERZEANTE (T for) AIATEMH A false (T while
) B AT o BB break PAEMHE AT ARAEAPAT » U THREZEZRNFHRSFETTEIATH

>>> for n in range(2, 10):
for x in range(2, n):
if n) x ==
print n, 'equals', x, '*', n/x
break
else:
loop fell through without finding a factor
print n, 'is a prime number'

is a prime number
is a prime number
equals 2 x 2
is a prime number
equals 2 * 3
is a prime number
equals 2 * 4
equals 3 * 3

© 00N O O WN

4.4. 9break and continue Statements, and else Clauses on Loops break Fll continue i&H], LLK29

TEEAH else FA)

Python Tutorial, Release 2.7

4.5 pass Statements pass 1Ea)

The pass statement does nothing. It can be used when a statement is required syntactically but
the program requires no action. For example:

pass & &H 2R o © R TARKIE L LR A LB » 2RFH 20T HEHE o Bl

>>> while True:
pass # Busy-wait for keyboard interrupt (Ctrl+C)

This is commonly used for creating minimal classes:
RAFR T ERNDEMGE

>>> class MyEmptyClass:
pass

Another place pass can be used is as a place-holder for a function or conditional body when you
are working on new code, allowing you to keep thinking at a more abstract level. The pass is
silently ignored:

B —7 @ 2 pass VARG IR SRR FCHAZRIIRE BAL A o TR B R L5 LEF o
pass T ARG B

>>> def initlog(*args):
pass # Remember to implement this!

4.6 Defining Functions %X@i&

We can create a function that writes the Fibonacci series to an arbitrary boundary:
AT VA L — AR FOA A RAE & B89 35 AR 22 457

>>> def fib(n): # write Fibonacci series up to n
"""print a Fibonacci series up to n."""
a, b=20, 1
while a < n:
print a,
a, b = b, atb

>>> # Now call the function we just defined:
. £ib(2000)
0112358 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by the function name and
the parenthesized list of formal parameters. The statements that form the body of the function
start at the next line, and must be indented.

KT def HIANT—AMRF TL - ELBLARA [T LI HEHXERGEET o HEIREFGNT—
ITH4s > LTS AY ©

The first statement of the function body can optionally be a string literal; this string literal
is the function's documentation string, or docstring. (More about docstrings can be found
in the section Documentation Strings jiﬁ%¢?#ﬁ¢$.) There are tools which use docstrings to
automatically produce online or printed documentation, or to let the user interactively browse

30 Chapter 4. More Control Flow Tools JRAJRFETEH]

Python Tutorial, Release 2.7

through code; it's good practice to include docstrings in code that you write, so make a habit
of it.

SHARE B — T T — R B4 AT SRS EHO TS EEE o Mk docstring o (B #—F
X BFFENBTUALERZ—F P Documentation Strings XA F/F & o) AT AFERAL #HFHF
PAEEGERBATH A > KAAFR P ARG T ZEXGR K 5 %5 R B AU FH$ 2T R
0 BB o

The execution of a function introduces a new symbol table used for the local variables of the
function. More precisely, all variable assignments in a function store the value in the local
symbol table; whereas variable references first look in the local symbol table, then in the
local symbol tables of enclosing functions, then in the global symbol table, and finally in the
table of built-in names. Thus, global variables cannot be directly assigned a value within a
function (unless named in a global statement), although they may be referenced.

PAT JBE AR EZINA—NFOF TR - AR EZANEGHERZL MNARFT AT - 5IALK
Mo 2AMARFTEFER REALAFT A R BAAETL L - Ak 2B5 B ART K
IR > A2 EN R AR R AT BiE WA (FR3E B global #Eé 4%) o

The actual parameters (arguments) to a function call are introduced in the local symbol table
of the called function when it is called; thus, arguments are passed using call by value (where

1

the value is always an object reference, not the value of the object). When a function calls

another function, a new local symbol table is created for that call.

RG] EIRARAERFERNNIABRFT L Ak THLEL FEAR (X2 A L2 i
3IA o mARBEME) o 2 —ARIEF AN AR —ANHE BT R AR LR P A
% o

A function definition introduces the function name in the current symbol table. The value of
the function name has a type that is recognized by the interpreter as a user-defined function.

This value can be assigned to another name which can then also be used as a function. This
serves as a general renaming mechanism:

BEE L ST FRPIARRL AR P R LA > BRLH A B BATHLAE o XML
TURA L C s » RIS A — A RHRAR o L hIE— A0 HUH

>>> fib

<function fib at 10042ed0>
>>> f = fib

>>> £(100)

0112358 13 21 34 55 89

Coming from other languages, you might object that fib is not a function but a procedure since
it doesn't return a value. In fact, even functions without a return statement do return a
value, albeit a rather boring one. This value is called None (it's a built-in name). Writing
the value None is normally suppressed by the interpreter if it would be the only value written.
You can see it if you really want to using print:

RTEINA fib BAHREME » EFRZE— A K% (function) » MAE—/ &4 (procedure) o FE[F
oo BpdE REEH return E4) 0 T FREME BARALZ—ATITAERE o IAMEMMARA None (3&XZ
—ANEBEG L) cwR—NMERZ None #1& > BFMRBERETLEE Rk wRFEBELE €915 > T
AR

>>> £ib(0)

>>> print £ib(0)
None

L Actually, call by object reference would be a better description, since if a mutable object is passed, the caller
will see any changes the callee makes to it (items inserted into a list).

2 ik FIR WA ML BAER wREAN—ANTEE > AR HoFBARBREFROGEM TR (B FRBEAZNF L
)

4.6. Defining Functions & X EK%{ 31

Python Tutorial, Release 2.7

It is simple to write a function that returns a list of the numbers of the Fibonacci series,
instead of printing it:

AT mHlE R T dof TR P B E — A @& 30 A0 RET| 0 fase & » A RAT e

>>> def fib2(n): # return Fibonacci series up to n
"""Return a list containing the Fibonacct series up to n."""
result = []
a, b=0, 1
while a < n:
result.append(a) # see below
a, b = b, atb
return result

>>> f100 = fib2(100) # call 7t
>>> £100 # write the result
o, ¢+, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:
Fo AR — M 0 A FIE R T — 2 F769 Python H#k :

e The return statement returns with a value from a function. return without an expression
argument returns None. Falling off the end of a function also returns None.

return BN HE PRI —ME > T AKX return RS None o FTREL REH 4K E None

o

e The statement result.append(a) calls a method of the list object result. A method is a
function that “belongs' to an object and is named obj.methodname, where obj is some obgject
(this may be an expression), and methodname is the name of a method that is defined by the
object's type. Different types define different methods. Methods of different types may
have the same name without causing ambiguity. (It is possible to define your own object
types and methods, using classes, see Classes %) The method append() shown in the example
is defined for list objects; it adds a new element at the end of the list. In this example
it is equivalent to result = result + [a], but more efficient.

% 4] result.append(b) FRA%E AL result 89— A%k (method) o & FA—A “BT” X
Aﬁ%%%ﬁ’*"Z%owm%mwmm @Mﬁﬁwjiﬁﬁﬁ%(RAE—ANMERERXN)
mmwmmeimﬁﬁﬁﬁﬁiﬂ X F iR L o TRMEBE LRE ik e RRIXAT

BRARBELFE Fik 12X 0RF . (3R LATHEFEAF RN THRARAZFE A
class 858 L ik Classes £) o "W PE T append() 7k wskkst £2 L o bﬁ%\i&%“}’
MN—AHFHAE - ETBIFEFRT

result = result + [b] > FTHXEEZ o

4.7 More on Defining Functions /5[%]\ ﬁKEX

It is also possible to define functions with a variable number of arguments. There are three
forms, which can be combined.

AR EZZXSENETRORE - A /YK > KATTALEESEA EA] -

4.7.1 Default Argument Values / ﬁj{l}dﬁ

The most useful form is to specify a default value for one or more arguments. This creates a
function that can be called with fewer arguments than it is defined to allow. For example:

32 Chapter 4. More Control Flow Tools JRAFETESH]

Python Tutorial, Release 2.7

AR XAS— RS ANHRIE R KINE o ZBHEQZGJITARKR T4 FRIAM o Flde

def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):
while True:

ok = raw_input (prompt)

if ok in ('y', 'yes'):
return True

if ok in ('n', 'no', 'nop', 'nope'):
return False

retries = retries - 1

if retries < O:
raise IOError('refusenik user')

print complaint

ye

This function can be called in several ways:
IANAZETABL LA TR G5 AR ¢
e giving only the mandatory argument: R Z694%% © ask ok('Do you really want to
quit?')
e giving one of the optional arguments: #%#H—ANT#E9%5 4 askok('0OK to overwrite the
file?', 2)
e or even giving all arguments: RHE %A HATH %54 © askok('0K to overwrite the file?',
2, 'Come on, only yes or no!')

This example also introduces the in keyword. This tests whether or not a sequence contains a
certain value.

BABITFENEBT in XEF - EMEFIFREEL2ENHAL 14 -

The default values are evaluated at the point of function definition in the defining scope, so
that :

BRI B FC T L AR A BT > 4o T HT R
i=5
def f(arg=i):
print arg
i=6
£0O
will print 5.

Important warning: The default value is evaluated only once. This makes a difference when the
default is a mutable object such as a list, dictionary, or instances of most classes. For
example, the following function accumulates the arguments passed to it on subsequent calls :

THEL BPMABT—RK c RERFE - | RAXKRF>ELZOEFT T LOITALGNFORR—H o
) da s T 5] 89 B F A R R B HR 2 R A B8 R e

def f(a, L=[1):
L.append(a)
return L

print £(1)
print £(2)
print £(3)

4.7. More on Defining Functions JRABKNZEIE N 33

Python Tutorial, Release 2.7

This will print :
AT

[1]
[1, 2]
1, 2, 3]

If you don't want the default to be shared between subsequent calls, you can write the function
like this instead:
W RETBAEE SRR TR ZRIAE > TRAERE T H

def f(a, L=None):
if L is None:
L=1[]
L.append(a)
return L

4.7.2 Keyword Arguments FHEFSEL

Functions can also be called using keyword arguments of the form keyword = value. For instance,
the following function:

RETAE T X4 F 535G X kB > B keyword = value © Bl > AT 8 K%K

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):

print "-- This parrot wouldn't", action,

print "if you put", voltage, "volts through it."
print "-- Lovely plumage, the", type

print "-- It's", state, "!"

could be called in any of the following ways:

TV VAT 894 — 7 %A R

parrot (1000)

parrot(action = 'VO0OOOOM', voltage = 1000000)
parrot('a thousand', state = 'pushing up the daisies')
parrot('a million', 'bereft of life', 'jump')

but the following calls would all be invalid:
T AT ILAR AR A& Kk

parrot () # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument following keyword
parrot(110, voltage=220) # duplicate value for argument

parrot(actor='John Cleese') # unknown keyword

In general, an argument list must have any positional arguments followed by any keyword arguments,
where the keywords must be chosen from the formal parameter names. It's not important whether
a formal parameter has a default value or not. No argument may receive a value more than once
--- formal parameter names corresponding to positional arguments cannot be used as keywords in
the same calls. Here's an example that fails due to this restriction:

W > BHINRF O HFE—ANRRFALARE THALL ENLEMA LY XRT o B AL RA
RAEF R ER - SRARFE—KRRE MEL——H X5 RREER—RAM T R R AL B f X259
RAE o REA —AMIFEF T A A4 RT AT I R

34 Chapter 4. More Control Flow Tools JRAJRFETEH]

Python Tutorial, Release 2.7

>>> def function(a):
pass

>>> function(0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in 7
TypeError: function() got multiple values for keyword argument 'a'

When a final formal parameter of the form **name is present, it receives a dictionary (see
typesmapping) containing all keyword arguments except for those corresponding to a formal
parameter. This may be combined with a formal parameter of the form *name (described in the
next subsection) which receives a tuple containing the positional arguments beyond the formal
parameter list. (sname must occur before xxname.) For example, if we define a function like
this:

SIAN—AT 4o s+name 895 A > CHEM—ANFE (AN typesmapping) o HFREESTHARBEAL
ﬁﬁ’\f‘iﬁ?‘/ﬁ?%ﬁ%% o J\ETnbk/x\iﬂé\ﬁ)ﬂ"/\ﬁ/ﬁﬂ *xname (T — /¥ FHaNa) HH X
B CHK—AALA (T—FFP2F@NB) » OTHAZRARAEL X 2RI AP 5LME - (
*name S E **name ZATHIL) Hlde » éiﬂ] IHE L—A %

def cheeseshop(kind, *arguments, **keywords):

print "-- Do you have any", kind, "7"

print "-- I'm sorry, we're all out of", kind
for arg in arguments: print arg

print "-" x 40

keys = keywords.keys()
keys.sort ()
for kw in keys: print kw, ":", keywords[kw]

It could be called like this:
BT AR X AR A

cheeseshop("Limburger", "It's very runny, sir."
"It's really very, VERY runny, sir.",
shopkeeper='Michael Palin',
client="John Cleese",
sketch="Cheese Shop Sketch")

and of course it would print:
LRE BT REITH

-- Do you have any Limburger 7

-- I'm sorry, we're all out of Limburger
It's very runny, sir.

It's really very, VERY runny, sir.

client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that the sort() method of the list of keyword argument names is called before printing the
contents of the keywords dictionary; if this is not done, the order in which the arguments are
printed is undefined.

EBAEATE SHEFEGAZANLAR sort() Fik o TREE > 3760 S Z 6072 R LH o

4.7. More on Defining Functions JRABKNZEIE N 35

Python Tutorial, Release 2.7

4.7.3 Arbitrary Argument Lists A]ZFZ#{%1|3FE

Finally, the least frequently used option is to specify that a function can be called with an
arbitrary number of arguments. These arguments will be wrapped up in a tuple (see Tuples and
Sequences sLZLF7/77]). Before the variable number of arguments, zero or more normal arguments
may occur.

e —ARIFRAOBELTUIERZARNT TG AR - FELAFHELE #—Anl (KN Tuples
and Sequences SLAF)F7]) o IR T EAREG A ZA » TUE XD § L@ 5%

def write_multiple_items(file, separator, *args):
file.write(separator.join(args))

4.7.4 Unpacking Argument Lists Z#(F|FEHI O

The reverse situation occurs when the arguments are already in a list or tuple but need to
be unpacked for a function call requiring separate positional arguments. For instance, the
built-in range() function expects separate start and stop arguments. If they are not available
separately, write the function call with the *x-operator to unpack the arguments out of a list
or tuple:

AH—FAAREER: BRBERZOLFCEEZ-ATIR 2R ERAGREIET 2D,
BEAR R R A P R k. Bl AR range() FEEM T start, stop HH. RTULRE
AR E e — A« RAEFR A H 5T RN

>>> range(3, 6) # normal call with separate arguments

(3, 4, 5]

>>> args = [3, 6]

>>> range(*args) # call with arguments unpacked from a list
(3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the *x-operator:
MR8 X 0 TR wox BAEE A5 R AT 530 5 2

>>> def parrot(voltage, state='a stiff', action='voom'):
print "-- This parrot wouldn't", action,
print "if you put", voltage, "volts through it.",
print "E's", state, "!"

>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot (**d)
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !

4.7.5 Lambda Forms Lambda E=

By popular demand, a few features commonly found in functional programming languages like Lisp
have been added to Python. With the lambda keyword, small anonymous functions can be created.
Here's a function that returns the sum of its two arguments: lambda a, b: a+b. Lambda forms can
be used wherever function objects are required. They are syntactically restricted to a single
expression. Semantically, they are just syntactic sugar for a normal function definition. Like
nested function definitions, lambda forms can reference variables from the containing scope:

B TFERER AR ETLE KRN BARIEZTH 4 Lisp PHAGS 4w AR T Python ° @i lambda
AT TURERIEL JE - BEA AN RFE G AAMA45EMNF © lambda a, b: a+b ©

36 Chapter 4. More Control Flow Tools JRAJRFETEH]

Python Tutorial, Release 2.7

Lambda 7% X T A M FAEATE L8 KT R o B TRERS > ENARA —DEROGEFEX - BLEH > ®
MIRZE EBRHFE LT —AMBHHTT o AT HERJIE L > lambda B X T UK RAEA BRG] A T2

>>> def make_incrementor(n):
return lambda x: x + n

>>> f = make_incrementor (42)
>>> £(0)

42

>>> £(1)

43

4.7.6 Documentation Strings X IYFFFE

There are emerging conventions about the content and formatting of documentation strings.
RIS T B S o

The first line should always be a short, concise summary of the object's purpose. For brevity,
it should not explicitly state the object's name or type, since these are available by other
means (except if the name happens to be a verb describing a function's operation). This line
should begin with a capital letter and end with a period.

BATRGAXTHEAEGRN o HEALL FARAAGIKESZERER > RAEN TR 098z
TR (FRIFIANL FHRIE MBI REREGS 7)) c B—ITRBAREFEA L RgFTLER -

If there are more lines in the documentation string, the second line should be blank, visually
separating the summary from the rest of the description. The following lines should be one or
more paragraphs describing the obgject's calling conventions, its side effects, etc.

WRIBFHER ST FATRREL Kk SHET RO FmBANAHY R TROIBLEA—XE
Berbilixt 09 R MY ~ R F o

The Python parser does not strip indentation from multi-line string literals in Python, so
tools that process documentation have to strip indentation if desired. This is done using the
following convention. The first non-blank line after the first line of the string determines
the amount of indentation for the entire documentation string. (We can't use the first line
since it is generally adjacent to the string's opening quotes so its indentation is not apparent
in the string literal.) Whitespace ‘‘equivalent'' to this indentation is then stripped from
the start of all lines of the string. Lines that are indented less should not occur, but if
they occur all their leading whitespace should be stripped. Equivalence of whitespace should
be tested after expansion of tabs (to 8 spaces, normally).

Python B ETAMSITH I FR BT LRG> IALENNER Y AT FHhEs - IFSGAFH
T e B—ATXBEHNE—NFEEITATTEAIHNE AN (BNTAZ—TLZRATAT EEE4
WH5 5 HBRERXETOF FH) B8 BT ZFFENLLER - HF—THTLGZA LS o
RA HHE TANGOARL TSR FONKERSFTY RAAFOTE (GAFASNERK) o
Here is an example of a multi-line docstring:

AT A=A 54T LA F4F % b F 4]

>>> def my_function():
"""Do mothing, but document %t.

No, really, it doesn't do anything.

mwmn

pass

4.7. More on Defining Functions JRABKNZEIE N 37

Python Tutorial, Release 2.7

>>> print my_function.__doc_
Do nothing, but document it.

No, really, it doesn't do anything.

4.8 Intermezzo: Coding Style F@HM: ZWS X A&

Now that you are about to write longer, more complex pieces of Python, it is a good time to talk
about coding style. Most languages can be written (or more concise, formatted) in different
styles; some are more readable than others. Making it easy for others to read your code is
always a good idea, and adopting a nice coding style helps tremendously for that.

IR EZTAE —3b 8k &5 49 Python #)5 » AREF B —T HERALE T KEZFLBEBZTTUE (X
F et AR) LR R o AL e e 84505 o 1e4R KD 3t A E F i3 & AT A
o R 6 AL R AG at sLAR A B o

For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes
a very readable and eye-pleasing coding style. Every Python developer should read it at some
point; here are the most important points extracted for you:

*F Pythons PEP 8 SIAT KZHZONEA RBEYRIEHE T - €A BT —AF AT LT RD R
o &/~ Python AR HEHMELIE—T > KSR Z R Mot RAH B

e Use 4-space indentation, and no tabs.
12 4 ZH%H* > MmIE TAB -

4 spaces are a good compromise between small indentation (allows greater nesting depth)
and large indentation (easier to read). Tabs introduce confusion, and are best left out.

AEgE# (TURERE) o REH (EH18) 20 > 4AFKE—NRGFGH P oTAB 51 £ T — %8
o mBEM o

e Wrap lines so that they don't exceed 79 characters.
FATUHREF 2AE 79 NFHF o

This helps users with small displays and makes it possible to have several code files
side-by-side on larger displays.

BHBTFIEFERPINE s WTUIEKR B 7 B8543 2 T IUAKA T -

e Use blank lines to separate functions and classes, and larger blocks of code inside
functions.

1R ZAT R fhe £ > AR R P 09 RIRAKA o

e When possible, put comments on a line of their own.
TAEGE 0 AR E —4T

e Use docstrings.
GRS LT T

e Use spaces around operators and after commas, but not directly inside bracketing constructs:
a=1(1, 2) + g3, 4.

e E R BERMYL > AREFTE® 2255 EM A REK a =11, 2) + g3, 4) °

38 Chapter 4. More Control Flow Tools JRAFETESH]

http://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-0008

Python Tutorial, Release 2.7

e Name your classes and functions consistently; the convention is to use CamelCase for
classes and lower_case_with_underscores for functions and methods. Always use self as the
name for the first method argument (see A First Look at Classes #1112 % for more on classes
and methods).

Go— R R L o HH XL - oLl o B self AFENE—NEHE (X T
XA FiE89%i81E 0, A First Look at Classes #IRE) o

e Don't use fancy encodings if your code is meant to be used in international environments.
Plain ASCII works best in any case.

EEREFLITRE YRS RN A CERGBA > 4 ASCIT X AL LI RT - (EHEFTA £EH
TR 8 AR » AARH AR utf-8——iF4)

4.8. Intermezzo: Coding Style THH: ZWiE X 39

Python Tutorial, Release 2.7

40 Chapter 4. More Control Flow Tools JRAJRFEIEH

CHAPTER

FIVE

This
new t

DATA STRUCTURES Z{EsEHe

chapter describes some things you've learned about already in more detail, and adds some
hings as well.

AFRRANT G — LML EZLN > MALZHAR o

o.1

The 1

More on Lists JEAZF|FE

ist data type has some more methods. Here are all of the methods of list objects:

HEARUVARS 7k RERMERVGIA F ik

list.

list.

list.

append (x)
Add an item to the end of the list; equivalent to a[len(a):] = [x].

AN ERMBEENER > ST allen(a):] = [x] °
extend (L)

Extend the 1list by appending all the items in the given list; equivalent to a[len(a):] =
L.

KA R PO AERBMWE B =5 ERF ST allen(a):] =L °

insert (i, x)

Insert an item at a given position. The first argument is the index of the element before
which to insert, so a.insert(0, x) inserts at the front of the list, and a.insert(len(a),
x) is equivalent to a.append(x).

ERIZEBB AN AT E F—ANE5HEESGHEABN LT @O TLEG K] > 4 a.insert(0,
x) SiEAB| EANEERZA 0 M a.insert(len(a), x) # % T a.append(x)

list.remove(x)

Remove the first item from the list whose value is x. It is an error if there is no such

item.

MIREER PAEA x F—AAE - wREAZHNAE » HEBRE—MER o

list.pop([i])

Remove the item at the given position in the list, and return it. If no index is specified,
a.pop() removes and returns the last item in the list. (The square brackets around the i
in the method signature denote that the parameter is optional, not that you should type
square brackets at that position. You will see this notation frequently in the Python
Library Reference.)

41

Python Tutorial, Release 2.7

Mokt R4 A B A A REE W BAANE R a.pop) B SEE—ATE e LE
MEP MR R FAEMIE e (FFF i AR FTHEFTAT INSHELETRY > MR LERBMA—tF
¥%5 » Ra% ¥ EPython E4 £ F M PB I ZXH 412 o)

list.index(x)
Return the index in the list of the first item whose value is x. It is an error if there
is no such item.

BEERFH—AMEA x BAEN RG] o WwREH LAY TEKRSEET —NEE o

list.count (x)
Return the number of times x appears in the list. RE x 4 &P HIG KL -

list.sort()
Sort the items of the list, in place.

stk R P LEFH (R in place » P ZBEE B ZAR ot ——i%) #4THF -

list.reverse()
Reverse the elements of the list, in place.

MBI B R T TE o
An example that uses most of the list methods:
T @& A FHE T T H R KRS ik

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.25), a.count('x')
210

>>> a.insert(2, -1)

>>> a.append(333)

>>> a

[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)

1

>>> a.remove(333)

>>> a

[66.25, -1, 333, 1, 1234.5, 333]

>>> a.reverse()

>>> a

[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()

>>> a

[-1, 1, 66.25, 333, 333, 1234.5]

5.1.1 Using Lists as Stacks FEEEFEY/EHERRF H

The 1list methods make it very easy to use a list as a stack, where the last element added is the
first element retrieved (“‘last-in, first-out''). To add an item to the top of the stack, use
append() . To retrieve an item from the top of the stack, use pop() without an explicit index.
For example:

bk R Ty KA ATEE R T AR ARG — ASEABRAE A o BN R T ORIELE o RAERANLERE —
AR (B#*EE) A append) F AT hfe— MAERMWEEARTR o AR X518 pop) 7k
TR AFNERAAEL Hk o Fldo

>>> stack = [3, 4, 5]

>>> stack.append(6)
>>> stack.append(7)

42 Chapter 5. Data Structures Z{IELLEH

Python Tutorial, Release 2.7

>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()

7

>>> stack

(3, 4, 5, 6]
>>> stack.pop()
6

>>> stack.pop()
5

>>> stack

[3, 4]

5.1.2 Using Lists as Queues IC8EFE Y AEFAF{F H

It is also possible to use a list as a queue, where the first element added is the first element
retrieved (*“first-in, first-out''); however, lists are not efficient for this purpose. While
appends and pops from the end of list are fast, doing inserts or pops from the beginning of a
list is slow (because all of the other elements have to be shifted by one).

RAT A e bk R SR TMET » RIEA B RIELH > AR AN TERLE B (k#kd) - 7
o P RBHERNZRELRG - AR HENF| R RERpFest BARKE ELFREAFRBRE (BH > AT —
MFE o BHRNENTNRFHT ALE) -

To implement a queue, use collections.deque which was designed to have fast appends and pops
from both ends. For example:

ZEINRT] > 42 A collections.deque °* EA LB R MR ERIEANF MR mATT o 44

>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])

>>> queue.append("Terry") # Terry arrives

>>> queue.append("Graham") # Graham arrives

>>> queue.popleft() # The first to arrive now leaves
'Eric'

>>> queue.popleft() # The second to arrive now leaves
'John'

>>> queue # Remaining queue in order of arrival

deque(['Michael', 'Terry', 'Graham'])

5.1.3 Functional Programming Tools ENZE{FZmiE T E

There are three built-in functions that are very useful when used with lists: filter(), map(),
and reduce().

M FaER KM AZANERZFEFTAM © filter() ° map” :func: “‘reduce() °

filter(function, sequence) returns a sequence consisting of those items from the sequence for
which function(item) is true. If sequence is a string or tuple, the result will be of the same
type; otherwise, it is always a list. For example, to compute some primes:

filter(function, sequence) & & —4sequence (5%|) » & THEHF 7| ¥ A ARM function(item)
BREE A truet) L& o (W RTHRGE 2BEAARAGER) o wRiZ F7| (sequence) =&—A
string (F/4 %) R# tuple (A4A) > BEELEAR—EH > Tl > € && list o Bl ATHE
J7 7T VAT BRSR 9 F 3

5.1. More on Lists JEASFE 43

Python Tutorial, Release 2.7

>>> def f(x): return x % 2 != 0 and x % 3 !=0

>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

map(function, sequence) calls function(item) for each of the sequence's items and returns a
list of the return values. For example, to compute some cubes:

map (function, sequence) H&H—AMLEMWRAKAM function(item) FFAFEEIE 28K — Nk KRB o 1]
do s AT R 25

>>> def cube(x): return x*x*x

>>> map(cube, range(1l, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there
are sequences and is called with the corresponding item from each sequence (or None if some
sequence is shorter than another). For example:

TRAEANEANFD > BFRELLAEAS R B T4 PR ARRAEF L st nE kAR REK
(e R ERF7ILEEE4 > 3 None RARE) o dofie NonefH — A REfE A » N AR E L FMHA
HA o 4

>>> seq = range(8)
>>> def add(x, y): return x+y

>>> map(add, seq, seq)
[o, 2, 4, 6, 8, 10, 12, 14]

reduce(function, sequence) returns a single value constructed by calling the binary function
function on the first two items of the sequence, then on the result and the next item, and so
on. For example, to compute the sum of the numbers 1 through 10:

reduce (func, sequence) B —/NEAE » EARXHEMELY 1 HBRUAFF G ATARANTEEA KHEK function
s AR EEA B SRR RAPAT T H o Blde o A TRESITE 1 2] 10 9 EHZ A

>>> def add(x,y): return x+y

>>> reduce(add, range(1l, 11))
55

If there's only one item in the sequence, its value is returned; if the sequence is empty, an
exception is raised.

YR FH R AF—ANAE s REE T wRFH| LY I —ANFF o

A third argument can be passed to indicate the starting value. In this case the starting value
is returned for an empty sequence, and the function is first applied to the starting value and
the first sequence item, then to the result and the next item, and so on. For example,

TUENF AL A AL o R F D)L » SRR E WA » TN RS Il s iif s 5 6%
—AAE o REARBREERT —ANTE o RbEH o f] 4o

>>> def sum(seq):
def add(x,y): return x+y
return reduce(add, seq, 0)

>>> sum(range(1, 11))
55

44 Chapter 5. Data Structures Z{IELLEH

Python Tutorial, Release 2.7

>>> sum([])
0

Don't use this example's definition of sum(): since summing numbers is such a common need, a
built-in function sum(sequence) is already provided, and works exactly like this.

FEGTHFREELTL sun() BASHHMEZ—MBRGEFER ¥ AR EH sun(sequence) H¥k »
JEFIFR o New in version 2.3.

5.1.4 List Comprehensions %S

List comprehensions provide a concise way to create lists without resorting to use of map(),
filter() and/or lambda. The resulting list definition tends often to be clearer than lists
built using those constructs. Each list comprehension consists of an expression followed by
a for clause, then zero or more for or if clauses. The result will be a list resulting from
evaluating the expression in the context of the for and if clauses which follow it. If the
expression would evaluate to a tuple, it must be parenthesized.

Pl RAE G RIAET — A Gl RBRMY R LEE > RFMEA map() » filter() ¥AR lambda ° AR LH XfF
5| 5] R H B oA A0 2 2B AL Z LI R R AW o B AR F XA A for BHLBHREL
Ko BREA for K if #E8 - BEMEAH for K if FHXBHERRXMFINNALFTARGT L o R
BRI — AL LA T LT o

>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
0]
>>> [[x,x**2] for x in vec]
[[2, 41, [4, 16], [6, 36]]
>>> [x, xx*2 for x in vec] # error - parens required for tuples
File "<stdin>", line 1, in 7
[x, x*¥*2 for x in vec]
SyntaxError: invalid syntax
>>> [(x, x**2) for x in vec]
[(2, 4, (4, 16), (6, 36)]
>>> vecl = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [xxy for x in vecl for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vecl for y in vec2]
(6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vecl[i]*vec2[i] for i in range(len(vecl))]
[8, 12, -54]

List comprehensions are much more flexible than map() and can be applied to complex expressions
and nested functions:

Pl & F K map() £ 2 &0 THEA B &89 Kk Kot £ & 4

5.1. More on Lists JEASFE 45

Python Tutorial, Release 2.7

>>> [str(round(355/113.0, i)) for i in range(1,6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

5.1.5 Nested List Comprehensions ﬁ?{%ﬁ’\jﬁﬂi’%fﬁ%fﬁ

If you've got the stomach for it, list comprehensions can be nested. They are a powerful tool
but -- like all powerful tools -- they need to be used carefully, if at all.

W RBRREEFNE AR SXTAEE - ENTAREFBRAG T AL ——3h1E MHANBRH TEL—H#
— bﬂ]ﬁ]iﬂi& RAEIN S o

Consider the following example of a 3x3 matrix held as a list containing three lists, one list
per row:

FIRATH) 3x3 JEME 96| F » —AFRF LT =ZA0L » HA—1T

>>> mat = [

1, 2, 31,
4, 5, 61,
(7, 8, 91,

]

Now, if you wanted to swap rows and columns, you could use a list comprehension:
A W RARB L #HATF 5] > TR 5] R F X

>>> print [[row[i] for row in mat] for i in [0, 1, 2]]
(1, 4, 71, [2, 5, 8], [3, 6, 9]]

Special care has to be taken for the nested list comprehension:

#E PR S XA RAR RS
To avoid apprehension when nesting list comprehensions, read from right to left.
AT ARBEEOF RES /R NEELES -

A more verbose version of this snippet shows the flow explicitly:

BT RA—NEE 5%k

for i in [0, 1, 2]:
for row in mat:
print row([i],
print

In real world, you should prefer built-in functions to complex flow statements. The zip()
function would do a great job for this use case:

FRF o RTAF A ERFZ AR R AARLIES o B zip() AZN BT PTAR/E KT I

>>> zip(*mat)
(1, 4, 7, (2, 5, 8, (3, 6, 9]

See Unpacking Argument Lists %§%i§'€iéﬁ \%ﬁ for details on the asterisk in this line.
AT XAFTRA P HHEZT45H > 545 N Unpacking Argument Lists 5487 & 6999 o

46 Chapter 5. Data Structures Z{IELLEH

Python Tutorial, Release 2.7

5.2 The del statement fHIERIESR]

There is a way to remove an item from a list given its index instead of its value: the del
statement. This differs from the pop() method which returns a value. The del statement can
also be used to remove slices from a list or clear the entire list (which we did earlier by
assignment of an empty list to the slice). For example:

HAFETOUNI) R P 5t %8 %3] M T ABERME— TR : del %4 ° ©RRAFHEEMY pop()
FikoiB8] del X UANDIE PRI RAZENINE (RINUAMHNBE— NFELH E D RZBRIEL 7
EHWB) o flde

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del al0]

>>> a

[1, 66.25, 333, 333, 1234.5]

>>> del al[2:4]

>>> a

[1, 66.25, 1234.5]

>>> del al:]

>>> a

(]

del can also be used to delete entire variables:
del AL VAM PN &
>>> del a

Referencing the name a hereafter is an error (at least until another value is assigned to it).
We'll find other uses for del later.

WEREINMGL a 251K 4% (BB S —MEMSLEAHIE) « RNNAEEE RNEFTUEE del B9
A% e

5.3 Tuples and Sequences JTZHFIFH

We saw that lists and strings have many common properties, such as indexing and slicing
operations. They are two examples of sequence data types (see typesseq). Since Python is an
evolving language, other sequence data types may be added. There is also another standard
sequence data type: the tuple.

N B R T A EHRSZARG BN Bl ki fatr 2l B%E - ¢1Z F 7] £A (KW typesseq)
FE)HEF o B A Python Z—ANETIZHICKIET » LT AL FIERN » ZENBH—Fi kS

ZIRA . A o
A tuple consists of a number of values separated by commas, for instance:
—ATLAHEANE T 5 RGIEAR » Blde

>>> t = 12345, 54321, 'hello!’
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
.u=t, (1, 2, 3, 4, 5)
>>>u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))

5.2. The del statement WHFRIEH] 47

Python Tutorial, Release 2.7

As you see, on output tuples are always enclosed in parentheses, so that nested tuples are
interpreted correctly; they may be input with or without surrounding parentheses, although
often parentheses are necessary anyway (if the tuple is part of a larger expression).

LR RMAEMBN ERAETH AT EARERELEN - AMANT AFEREAHEST FE4
WG ALAE (WRAAZE-NERGRE XNG—FH) ©

Tuples have many uses. For example: (x, y) coordinate pairs, employee records from a database,
etc. Tuples, like strings, are immutable: it is not possible to assign to the individual items
of a tuple (you can simulate much of the same effect with slicing and concatenation, though).
It is also possible to create tuples which contain mutable objects, such as lists.

TUAHRGRAE o Blde (x, v) LAt HEEAFORICEFFE - TARBEFH B> TTRT : TS
LA — AR Z G AERE (REGRTLELFHEER S RBI) c BTUAZEST T L TH > 4
Yo bk & o

A special problem is the construction of tuples containing O or 1 items: the syntax has some
extra quirks to accommodate these. Empty tuples are constructed by an empty pair of parentheses;
a tuple with one item is constructed by following a value with a comma (it is not sufficient to
enclose a single value in parentheses). Ugly, but effective. For example:

— AR PR AR EOSEANR—AAETOAN ATESEXMHERL Bk L A—RHIIHKT o —xf
FWIETTUAEEAL ; BUNE-NEAFTAATIA AEEBOR—NEST (BT FHA—/BE T
) o A LA o B 4o

>>> empty = ()

>>> singleton = 'hello’, # <-- note tratling comma
>>> len(empty)

0

>>> len(singleton)

1

>>> singleton

('hello',)

The statement t = 12345, 54321, 'hello!' 1is an example of tuple packing: the values 12345,
54321 and 'hello!' are packed together in a tuple. The reverse operation is also possible:

% 4] t = 12345, 54321, 'hello!' & LA E (tuple packing) £ —AMFIF : 44 12345 » 54321
o 'hello!' I EHTH o Fif BAFTRZIM

>>> X, 5y, z2=1%

This is called, appropriately enough, sequence unpacking and works for any sequence on the
right-hand side. Sequence unpacking requires the list of variables on the left to have the same
number of elements as the length of the sequence. Note that multiple assignment is really Jjust
a combination of tuple packing and sequence unpacking.

BARAE T EDTAREATERFF] » AR A B EFHY - $73F HEREMGTEHBDSF
I LEANEARE o 2 EN LT L 45% (multiple assignment) 5 R ZAAH Ko7 F| it b — A4
{—j\ o

5.4 Sets &4

Python also includes a data type for sets. A set is an unordered collection with no duplicate
elements. Basic uses include membership testing and eliminating duplicate entries. Set ob-
Jjects also support mathematical operations like union, intersection, difference, and symmetric
difference.

48 Chapter 5. Data Structures Z{IELLEH

Python Tutorial, Release 2.7

Python £ && 7T — M HBFEEH —— set (£&) - REX-AEFFREEALEYN K- AAHiEE
%%Mﬁ%ﬁ%ﬁgi?O%éﬁ%Ei%uMm(%mQ)’mwm%mm(x)’mﬁﬂmw(ﬁ)#
sysmmetric difference (3t fREE) FHFiEH

Here is a brief demonstration:

UT MR EGET

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']

>>> fruit = set(basket) # create a set without duplicates
>>> fruit

set(['orange', 'pear', 'apple', 'banana'l])

>>> 'orange' in fruit # fast membership testing

True

>>> 'crabgrass' in fruit
False

>>> # Demonstrate set operations on unique letters from two words

>>> a

= set('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
set(['a', 'r', 'b', 'c', 'd'D)
>>>a-b # letters in a but not in b
set(['r', 'd', 'b'])
>>>a|b # letters in etther a or b
set(['a', 'c¢', 'r', 'd', 'b', 'm', 'z', '1'])
>>>a&b # letters in both a and b
set(['a', 'c'])
>>>a b # letters in a or b but not both

Set(['r', 'd', 'b', lml, IZI, Ill])

5.5 Dictionaries Fdf

Another useful data type built into Python is the dictionary (see typesmapping). Dictionaries

[NEN 1

associative memories'' or "‘associative arrays

are sometimes found in other languages as
Unlike sequences, which are indexed by a range of numbers, dictionaries are indexed by keys,
which can be any immutable type; strings and numbers can always be keys. Tuples can be used as
keys if they contain only strings, numbers, or tuples; if a tuple contains any mutable obgject
either directly or indirectly, it cannot be used as a key. You can't use lists as keys, since
lists can be modified in place using index assignments, slice assignments, or methods like
append() and extend().

A—/EFAHRME Python RREFELER F# (L L typesmapping) o F L L HAE T P T RARA
(associative memories) = (associative arrays) ° FF|AUEZGERA KT T

FlEg% » 3 #0 X4EF ARG XREFTUREERTEREA » BF AT 4 o ﬁﬂ%iﬁéﬂ‘?’ﬂﬁ
EF FEPLT 0 CTABARRET > wREABIFAEH QST TR R - 3G FROAT - The
EAMEXAET AAMEATARRI] ~ 3 X% append() ## extend() FHEKE o

It is best to think of a dictionary as an unordered set of key: value pairs, with the requirement
that the keys are unique (within one dictionary). A pair of braces creates an empty dictionary:
{}. Placing a comma-separated list of key:value pairs within the braces adds initial key:value
pairs to the dictionary; this is also the way dictionaries are written on output.

WRFMGFAEFXLTRCEMEFG4 £ 5 (key:value pairs) & & LML T FAREH (E
—AFRLA) o —RHREFTUR-AEN FR [} o mkfLEERN PR N
B R RFEEERGT K o

&=

PO

5.5. Dictionaries Fill 49

Python Tutorial, Release 2.7

The main operations on a dictionary are storing a value with some key and extracting the value
given the key. It is also possible to delete a key:value pair with del. If you store using a
key that is already in use, the old value associated with that key is forgotten. It is an error
to extract a value using a non-existent key.

FHETERERRBERGEATIAE o AT AR del M4 : i (key:value) o WwRAFH—A~
CRGENXBETHEMBEE > AMAZIEF FEROERSETS o« KREN—DMRHFLEGEFIE LS
% o

The keys() method of a dictionary object returns a list of all the keys used in the dictionary,
in arbitrary order (if you want it sorted, Jjust apply the sort() method to the list of keys).
To check whether a single key is in the dictionary, use the in keyword.

FH keys() HFEEGHITH XEFARGEE > GREAGTFIE (R FEECAF > RARANX
b FEE AN sort() k) o TWAM in XEFREFRFRETHEAL —XET -

Here is a small example using a dictionary:
XEA AT KT

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tell'guido'] = 4127

>>> tel

{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']

4098

>>> del tell['sape']

>>> tell['irv'] = 4127

>>> tel

{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()

['guido', 'irv', 'jack']

>>> 'guido' in tel

True

The dict() constructor builds dictionaries directly from lists of key-value pairs stored as
tuples. When the pairs form a pattern, list comprehensions can compactly specify the key-value
list.

HE R T A0k XA T LAY TE o funcidict TRUAT BHEM TR o -1 stk A EABTEN > T
AR AR R AR5 K S A R KA TR R o

>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)1)

{'sape': 4139, 'jack': 4098, 'guido': 4127}

>>> dict([(x, x**2) for x in (2, 4, 6)]) # use a list comprehension
{2: 4, 4: 16, 6: 36}

Later in the tutorial, we will learn about Generator Expressions which are even better suited
for the task of supplying key-values pairs to the dict() constructor.

EANHEmE@YAET » BMNE2FIELETH dict) WERZERIEETGERERE KX

When the keys are simple strings, it is sometimes easier to specify pairs using keyword arguments:
G 3 5 B AR AT B35+ A RATF AR %

>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'jack': 4098, 'guido': 4127}

50 Chapter 5. Data Structures Z{IELLEH

Python Tutorial, Release 2.7

5.6 Looping Techniques {EIAFETH

When looping through dictionaries, the key and corresponding value can be retrieved at the same
time using the iteritems() method.

TP PRI XAET A S T MR iteritems() ik Rl AR ok

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.iteritems():
print k, v

gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding value can be retrieved at
the same time using the enumerate() function.

LRI F AR > &AL B Foxt fAA T VAME A enumerate() R BB 3| o

>>> for i, v in enumerate(['tic', 'tac', 'toe'l):
print i, v

0 tic

1 tac

2 toe

To loop over two or more sequences at the same time, the entries can be paired with the zip()
function.

FIB AR A AR 5 69 57] » TR zip() #ERITE o

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):

print 'What is your {0}? It is {1}.'.format(q, a)

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward direction and then
call the reversed() function.

TR G IEINT D 1E 0 ARG EALF D 0 RBE A reversed() Hik

>>> for i in reversed(xrange(1,10,2)):
print i

= W o\ ©O -

To loop over a sequence in sorted order, use the sorted() function which returns a new sorted
list while leaving the source unaltered.

BB P8 BT PRI 51 8908 0 1A sorted() RE EXRKFHRFT] 0 mA AR I CHFH T
5]] o

5.6. Looping Techniques {EIAHITH 51

Python Tutorial, Release 2.7

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
print £
apple
banana

orange
pear

5.7 More on Conditions JRASH-435H

The conditions used in while and if statements can contain any operators, not Jjust comparisons.
while 7 if 1% &) V4% 69 &4 AT vA4E F pbdg » dy BL7T 0L 8L 242 69 324 -

The comparison operators in and not in check whether a value occurs (does not occur) in a
sequence. The operators is and is not compare whether two objects are really the same object;
this only matters for mutable objects like lists. All comparison operators have the same
priority, which is lower than that of all numerical operators.

kbﬁiﬁﬁzﬁ’ in # not in FHMBETE—ARRAZA - B#UEHF is 2 is not EAANZZTHME ;
RAeifdobt RZHEYTES FH X - TANLEBESEAREGE L KT S AEARE -

Comparisons can be chained. For example, a < b == ¢ tests whether a is less than b and moreover
b equals c.

WEBETUESE o flde a < b==c FHBAFT a T b AL b FTFT c °

Comparisons may be combined using the Boolean operators and and or, and the outcome of a
comparison (or of any other Boolean expression) may be negated with not. These have lower
priorities than comparison operators; between them, not has the highest priority and or the
lowest, so that A and not B or C is equivalent to (A and (not B)) or C. As always, parentheses
can be used to express the desired composition.

PR RAE T A i B AR 1E A and A2 or A4 0 ML R TUA not RRR L o WEBEFOKL LR
SAET a4 » Z2EMNZF > not™ BEARGHKEE % or HAELRIL BFTvA A and not B or
C %T (A and (notB)) or C ° ¥R HEFTLTUATHIEZELRKR -

The Boolean operators and and or are so-called short-circuit operators: their arguments are
evaluated from left to right, and evaluation stops as soon as the outcome is determined. For
example, if A and C are true but B is false, A and B and C does not evaluate the expression C.
When used as a general value and not as a Boolean, the return value of a short-circuit operator
is the last evaluated argument.

BRI and 7 or WHRIE ERBEF BN ATINLEGER M —EE R T U T HIZIE o)
dor R AFeC AHEM B A B> A and B and C RN CoMERT—A LBy EF AN » 425%4%
% RS EREARE—ANTEE o

It is possible to assign the result of a comparison or other Boolean expression to a variable.
For example,

Tl AL e A X NG BREAERELE ML E > Hld

>>> stringl, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = stringl or string2 or string3

>>> non_null

'Trondheim'

52 Chapter 5. Data Structures Z{IELLEH

Python Tutorial, Release 2.7

Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may
grumble about this, but it avoids a common class of problems encountered in C programs: typing
= in an expression when == was intended.

FEREENAPYthon5CRF » AAKXKXARTRERME - C BFEREF LR X LEBLT—RE C
RFPIERRGE R BEAEBKA P == HERT = BHEF-

5.8 Comparing Sequences and Other Types HWHFHIAIEH T RAY

Sequence objects may be compared to other objects with the same sequence type. The comparison
uses lexicographical ordering: first the first two items are compared, and if they differ this
determines the outcome of the comparison; if they are equal, the next two items are compared,
and so on, until either sequence is exhausted. If two items to be compared are themselves
sequences of the same type, the lexicographical comparison is carried out recursively. If all
items of two sequences compare equal, the sequences are considered equal. If one sequence
is an initial sub-sequence of the other, the shorter sequence is the smaller (lesser) one.
Lexicographical ordering for strings uses the ASCII ordering for individual characters. Some
examples of comparisons between sequences of the same type:

Fost g TR 2B 6ot i o teindptbde F8AF #AT B AN TE S 2 RTAR
HEXTTHRERGLER wRAF > B BER ML E > RIEME > AR FINHR AR c R AT
FARAERERMRAGFET] > R EFRFIIER o wRANFIGHTH FRAAE » RIAA B FIME o 4o
R— AFANEF—ANFIGETFRI > REG—AFINH N THI = FHENFT RFEBLEFTHEYG
ASCIT M5 » T @2 R &R 57| Z 4] ik b — 2 dp) -7

(1, 2, 3) < (1, 2, 4
[1, 2, 3] < [1, 2, 4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1, 2, 3, 4) < (1, 2, 4
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)

(1, 2, (taa', 'ab")) < (1, 2, ('abc', 'a'), 4)

Note that comparing objects of different types is legal. The outcome is deterministic but
arbitrary: the types are ordered by their name. Thus, a list is always smaller than a string,
a string is always smaller than a tuple, etc. ! Mixed numeric types are compared according to
their numeric value, so 0 equals 0.0, etc.

FEAEZUATREAN N ZRBERESGHZN - HBERIATRIFELETN XH BENOWLFHR -
B —Akk (list) &N TFT—AFH$ (string) » —AFH$ (string) EL I FT—414a
(tuple) %% o °? A RA BN 2% —CIOFIEER > FIR0FT0.0> 5 -

1 The rules for comparing objects of different types should not be relied upon; they may change in a future version
of the language.
2 Python /R R KA Z A AT bR 69 A4 M) > BATY 7 NE AR AT THRLKT

5.8. Comparing Sequences and Other Types VBT H|FIE 2K A 53

Python Tutorial, Release 2.7

54 Chapter 5. Data Structures Z{IELLEH

CHAPTER

SIX

MODULES #fER

If you quit from the Python interpreter and enter it again, the definitions you have made
(functions and variables) are lost. Therefore, if you want to write a somewhat longer program,
you are better off using a text editor to prepare the input for the interpreter and running
it with that file as input instead. This is known as creating a script. As your program gets
longer, you may want to split it into several files for easier maintenance. You may also want
to use a handy function that you've written in several programs without copying its definition
into each program.

4o RARB Y Python MABER EH#A > AW QRN — AL (TEFRK) k4 FERT o Ak o RARE
BE—LR ARG QT ﬁﬁﬂi)ﬂ'*/n\i$% 4 ""7T< hBAF o RGBT ARESR o RITAERZ
ARE A BA o RAR FERAEKT RTRAT AREP L Er HRIUSUF o RELTRERE
JU AL P AR A — A% R 89 RS (2R R A ifauéﬁkx&%liﬂv&—‘/\%ﬂ?’jﬁ °

To support this, Python has a way to put definitions in a file and use them in a script or in
an interactive instance of the interpreter. Such a file is called a module; definitions from a
module can be imported into other modules or into the main module (the collection of variables
that you have access to in a script executed at the top level and in calculator mode).

AT R E Z 5 Pythond it T—-/\ﬁé“ru}kﬂ%“l’zxﬂl&x EMARHE BEREH AN EXEH
PAEH o XA IHRAA B s BRPHELT A G B G —AMERRIERE (R RKPATHT
AERGTEEETRSIS #rﬂk TFHAEEKX) -

A module is a file containing Python definitions and statements. The file name is the module
name with the suffix .py appended. Within a module, the module's name (as a string) is available
as the value of the global variable __name__. For instance, use your favorite text editor to
create a file called fibo.py in the current directory with the following contents:

Bk Z B4 Python A B AU o IHER AR LI E py BR o ROEHRL (BAH—-IF
HE) TABMAEHTE _name 43 o Bl » RTA MACTHAYG I HAERZESWE ZFTAE A
fibo.py BIXH » TALT A%

Fibonacci numbers module

def fib(n): # write Fibonacct series up to n
a, b=20, 1
while b < n:
print b,
a, b = b, atb

def fib2(n): # return Fibonacci series up to n
result = []
a, b=20, 1
while b < n:
result.append(b)

Python Tutorial, Release 2.7

a, b = b, atb
return result

Now enter the Python interpreter and import this module with the following command:
/2 % APythonfBE R » Ao T4 S AKX MR

>>> import fibo

This does not enter the names of the functions defined in fibo directly in the current symbol
table; it only enters the module name fibo there. Using the module name you can access the
functions:

THEMALSEER fibo PHJIKFAL AN BELER CREFATHERL fibo o T XA IR LI
Jo T F X5 P A FH#K

>>> fibo.fib(1000)

112358 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo.__name__

"fibo'

If you intend to use a function often you can assign it to a local name:
do BARAE T B A R 0 R F T AL B IR — AN RS AR

>>> fib = fibo.fib
>>> £ib(500)
112358 13 21 34 55 89 144 233 377

6.1 More on Modules JRASLIR

A module can contain executable statements as well as function definitions. These statements
are intended to initialize the module. They are executed only the first time the module is
imported somewhere. !

BERT MG R R L —HF B EIATIE S o BRBGRE ATk o MR AR F—K FAIRK

F—K o 2

Each module has its own private symbol table, which is used as the global symbol table by all
functions defined in the module. Thus, the author of a module can use global variables in the
module without worrying about accidental clashes with a user's global variables. On the other
hand, if you know what you are doing you can touch a module's global variables with the same
notation used to refer to its functions, modname.itemname.

sMETEXRERPHAE RO LERBELER B—AERAFACTHARBELER - B b TS
FRA—LEAEETE) FTARAASAPNARATEFR M Ak F—7 @ wRFHTHREZZ)
TR AR PO R — R BER T A B TE > B4 | modname.itemname °

Modules can import other modules. It is customary but not required to place all import statements
at the beginning of a module (or script, for that matter). The imported module names are placed
in the importing module's global symbol table.

1 For efficiency reasons, each module is only imported once per interpreter session. Therefore, if you change your
modules, you must restart the interpreter -- or, if it's Jjust one module you want to test interactively, use reload(),
e.g. reload(modulename).

2 B FHAEEE &4\#ﬁi}<4§ﬂc4\ﬁ¥$§ungﬁ“}’,\«‘%—)\—:\ Bt s o RARSE BT AROGBES FREBMBER —— 4 R
RABZLLZRNGMKEZ 2 — MEHR > TUA reload() EHw# » #l4 reload(modulename) °

56 Chapter 6. Modules F&EiR

Python Tutorial, Release 2.7

R AZN (import) HEA3k o I WM LA A import & JAMARIR (K Bk > FF) 8974k
{23% FF R A LI o MG NIGIEIRE N ARG 2 B8 LR T ©

There is a variant of the import statement that imports names from a module directly into the
importing module's symbol table. For example:

import & 4] — AN BAR A BN FAGBIR T F AP L B ARG IBLERT o Bl

>>> from fibo import fib, fib2
>>> £ib(500)
112358 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol
table (so in the example, fibo is not defined).

BHRRNEBAE LR T FABRSL (W EFTF > fibo RALL) °
There is even a variant to import all names that a module defines:
EEA A N T UG AR T8 PT A E L

>>> from fibo import *
>>> £ib(500)
112358 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_).
BHETAEFATARTUATRIAC .)FKegas -

Note that in general the practice of importing * from a module or package is frowned upon,
since it often causes poorly readable code. However, it is okay to use it to save typing in
interactive sessions.

TBiE HA R R TR — AR R BT R « SASA 0 B AR SRS TR o T
i R ERAEP A EAEE S o

6.1.1 Executing modules as scripts {ERHIASEHITRE LR

When you run a Python module with :
1% A 4= T 77 KMAT—4 Python £33k

python fibo.py <arguments>

the code in the module will be executed, Jjust as if you imported it, but with the __name__ set
to "_main__". That means that by adding this code at the end of your module:

ek b 8 R 2AEMAT » MR FAE—H > FEUH _name . WREA "_main " o ML T > wRMRE
1R 3R JG Ha N e T ARG

if __name ==

_impor;_sys
fib(int(sys.argv[1]))

__main__

yvou can make the file usable as a script as well as an importable module, because the code that

ANEN

parses the command line only runs if the module is executed as the main'' file:

BT VATE Sb SR AR 4 B 3R 5 A B — AR AE A B R AT o SLRES RA A BIRAEA “main” SUARSATE A 449R
A

$ python fibo.py 50
1123581321 34

6.1. More on Modules JFEAMELR 57

Python Tutorial, Release 2.7

If the module is imported, the code is not run:
o RGN 0 RAPIATR R

>>> import fibo
>>>

This is often used either to provide a convenient user interface to a module, or for testing
purposes (running the module as a script executes a test suite).

WA RARRRE —AMET ARG R P o (FERAE AP APITRRER) -

6.1.2 The Module Search Path IR R

When a module named spam is imported, the interpreter searches for a file named spam.py in the
current directory, and then in the list of directories specified by the environment variable
PYTHONPATH. This has the same syntax as the shell variable PATH, that is, a list of directory
names. When PYTHONPATH is not set, or when the file is not found there, the search continues
in an installation-dependent default path; on Unix, this is usually .:/usr/local/lib/python.

FA—A" spam WgHEBRE > BESLAELZAE ‘?{‘1’3&’?‘/@%7 spam.py X RBEFRRLT
PYTHONPATH R =# B % Z| A ¥ & RABAFRLETE PATH ‘?éﬁﬁzéﬂﬁ 42 & PYTHONPATH & A
BRE o AFEXMHAAKRE HETREEALEA X £ Unix Fo A& .:/usr/local/lib/python °

Actually, modules are searched in the list of directories given by the variable sys.path which
is initialized from the directory containing the input script (or the current directory),
PYTHONPATH and the installation- dependent default. This allows Python programs that know what
they 're doing to modify or replace the module search path. Note that because the directory
containing the script being run is on the search path, it is important that the script not have
the same name as a standard module, or Python will attempt to load the script as a module when
that module is imported. This will generally be an error. See section Standard Modules #4742
3 for more information.

IRk BHEZEd sys.path R &4 7{953545 BRERRR > T8I HRINEETHARA (X4
LATH %) > PYTHONPATH A= %% B &% o ZM3LAYF Python)77 ﬁ?izﬂﬁfﬁ‘fﬁi&*éﬂ”iﬂii Bk-&
ZiEFHART ILAFFEL ﬁ#ﬁi’?%uﬂl’kﬁéﬁﬂﬂ’i\ ﬁﬁvxkﬁbﬂi{’ixf\ R iGAAR AR E & T
BB Python &% RXie Xy KRS EAE S h#l o XBE L5 K454% o 4 W Standard Modules
RER ATRESHIZE -

6.1.3 ““Compiled'' Python files “ZgiFHy” Python {4

As an important speed-up of the start-up time for short programs that use a lot of standard
modules, if a file called spam.pyc exists in the directory where spam.py is found, this is
assumed to contain an already-“byte-compiled'' version of the module spam. The modification
time of the version of spam.py used to create spam.pyc is recorded in spam.pyc, and the .pyc
file is ignored if these don't match.

AFIRTRERERERGERET A—ARZBHREGEL T, > WwhiE span.py FTENE X TH
f£—/N2% A spam.pyc BILAF > BR WA spam R “%F" (byte-compiled'' - —#H %
iF) Ak o A TAIE spam.pyc 891X —hR spam.py #9157KBf H1E F A spam.pyc XHF 0 R AHFRIT
B o :file:.pyc LAFsERE % o

Normally, you don't need to do anything to create the spam.pyc file. Whenever spam.py is
successfully compiled, an attempt is made to write the compiled version to spam.pyc. It is
not an error if this attempt fails; if for any reason the file is not written completely, the
resulting spam.pyc file will be recognized as invalid and thus ignored later. The contents

58 Chapter 6. Modules F&EiR

Python Tutorial, Release 2.7

of the spam.pyc file are platform independent, so a Python module directory can be shared by
machines of different architectures.

N

AFHRAFERACE spam.pyc XHMAENT TAE o — 2 spam.py MR %HF . 22X AR ZRAN

Spam.
spam.

Some

pyc ° WwRAEMTERFHE AT RS > £ RH spam.pyc XHHLMA LK > G BIHK B % o
pyc XA EZFER 28 > BT APython3k B F T AL R R RMGME LB £ X o

tips for experts: {9 HEIET .

When the Python interpreter is invoked with the -0 flag, optimized code is generated and
stored in .pyo files. The optimizer currently doesn't help much; it only removes assert
statements. When -0 is used, all bytecode is optimized; .pyc files are ignored and .py
files are compiled to optimized bytecode.

VA -0 %4 RAPythonfd i E0F » &4 mALLRBHRELE pyo LT - EHRILEZAKRS
HB s CREMMKRTEE (assert) B8 1R -0 % 5% FiA 89F ¥4 (bytecode) #p
AHARAC : pyc L ML+ .py AR AR -

Passing two -0 flags to the Python interpreter (-g0) will cause the bytecode compiler
to perform optimizations that could in some rare cases result in malfunctioning programs.
Currently only __doc__ strings are removed from the bytecode, resulting in more compact
.pyo files. Since some programs may rely on having these available, you should only use
this option if you know what you're doing.

@Python A BHBHA -0 58 (-00) 2MTEE HALs) i #EILRE > TIBR A4 R R
WAL « MEKRILE > RENFE FEPMET _doc H$ > AREAEAN pyo XH-HAA
AL AR T T BT A o AR B R AR 60 5 A R — T o

A program doesn't run any faster when it is read from a .pyc or .pyo file than when it is
read from a .py file; the only thing that's faster about .pyc or .pyo files is the speed
with which they are loaded.

kB .pyc XHHX .pyo XHFTHRFRELKE py XMHHETER: .pyc X .pyo XHARZ
£ EA Ao A BT AR B P — 2k o

When a script is run by giving its name on the command line, the bytecode for the script
is never written to a .pyc or .pyo file. Thus, the startup time of a script may be reduced
by moving most of its code to a module and having a small bootstrap script that imports
that module. It is also possible to name a .pyc or .pyo file directly on the command line.

B ARG S AATBATHORRS » R A %R Ao =R H KRB 5 A .pyc & .pyo XA %
Ko e Aty TRERAHL S —AME RE > RBH— AN D88 sh A S AZXAMESR > 30T AR 5 By A 69
BANRE o WIATUERLEFIITTHEL—A .pyc R .pyo LH o

It is possible to have a file called spam.pyc (or spam.pyo when -0 is used) without a file
spam.py for the same module. This can be used to distribute a library of Python code in a
form that is moderately hard to reverse engineer.

TR — ARk (X EZHEHIR spam.py ——##) » TUR A spam.pyc X (KA spam.pyc °
AR -0 H8E) MAH spam.py L o ZAETUAITE LA b sk T & L4469 Python KAG
JE o

The module compileall can create .pyc files (or .pyo files when -0 is used) for all modules
in a directory.

compileall A3k TAARE B FTF M AEREE pyc L #H (RFEEA .pyo 5%HAHE .pyo
XAF) o

6.

1.

More on Modules JRAFELR 59

Python Tutorial, Release 2.7

6.2 Standard Modules FrifEREER

Python comes with a library of standard modules, described in a separate document, the Python
Library Reference (*‘Library Reference'' hereafter). Some modules are built into the interpreter;
these provide access to operations that are not part of the core of the language but are
nevertheless built in, either for efficiency or to provide access to operating system primitives
such as system calls. The set of such modules is a configuration option which also depends on
the underlying platform For example, the winreg module is only provided on Windows systems. One
particular module deserves some attention: sys, which is built into every Python interpreter.
The variables sys.psl and sys.ps2 define the strings used as primary and secondary prompts:

Python# & — Mz AR E » H XM AR XA » £ Python EA5FFH (A "EL%EF
M) o A—RERAETMHEREIT > RERMEGF FEDFLIEST ARG — 11357\749 CER %’T‘ﬁ%
BET - BRAATREKX B> LERATHALRARNFREALRAGFREHED c IXBRESZ

&k MTREFEHERELR © 4o > imod:winreg HR AP L Windows A% LA A o H—4 K ﬁ'\ﬁﬁﬁé
BRABIFERE © sys 0 BAMERAETH A Python BEZR o £ F sys.psl # sys. ps2/£>LTlfiT4Tﬁ"
B 98 7 7 5§

>>> import sys

>>> sys.psl

>>> !

>>> sys.ps2

>>> sys.psl = 'C> '

C> print 'Yuck!'

Yuck!

c>

These two variables are only defined if the interpreter is in interactive mode.
BANTZREMBROZL IR TAHEL °

The variable sys.path is a list of strings that determines the interpreter's search path for
modules. It is initialized to a default path taken from the environment variable PYTHONPATH,
or from a built-in default if PYTHONPATH is not set. You can modify it using standard list
operations:

R ¥ sys.path KFHEERLRLEREOFTHEI L o CHILE F:envvar:PYTHONPATH #7461 » 4o R
Z A& E PYTHONPATH ° shér R B 6 BINE 4610 o ART AR AR 60 245 B Itk ke

>>> import sys
>>> sys.path.append('/ufs/guido/1ib/python')

6.3 The dir() Function dir() BHZK

The built-in function dir() is used to find out which names a module defines. It returns a
sorted list of strings:

AERE dir() ATHEBEREZEEFRRT L > CREO—ANFHERLUGEMET] &

>>> import fibo, sys

>>> dir(fibo)

['__name__', 'fib', 'fib2']

>>> dir(sys)

['__displayhook__', '__doc__', '__excepthook__', '__name__', '__stderr__',
'__stdin__', '__stdout__', '_getframe', 'api_version', 'argv',

60 Chapter 6. Modules F&EiR

Python Tutorial, Release 2.7

'builtin_module_names', 'byteorder', 'callstats', 'copyright',
'displayhook', 'exc_clear', 'exc_info', 'exc_type', 'excepthook',
'exec_prefix', 'executable', 'exit', 'getdefaultencoding', 'getdlopenflags',
'getrecursionlimit', 'getrefcount', 'hexversion', 'maxint', 'maxunicode’,
'meta_path', 'modules', 'path', 'path_hooks', 'path_importer_cache',
'platform', 'prefix', 'psl', 'ps2', 'setcheckinterval', 'setdlopenflags',
'setprofile', 'setrecursionlimit', 'settrace', 'stderr', 'stdin', 'stdout',
'version', 'version_info', 'warnoptions']

Without arguments, dir() lists the names you have defined currently:
EHBOARE > dir() RFEEE LA LGS

>>>a = [1, 2, 3, 4, 5]

>>> import fibo

>>> fib = fibo.fib

>>> dir()

['__builtins__', '__doc__', '__file__', '__name__', 'a', 'fib', 'fibo', 'sys'l]

Note that it lists all types of names: variables, modules, functions, etc.

EEGUINEANE THALMYG LA TF > B3 Z% > FF o dir() does not list the names of
built-in functions and variables. If you want a list of those, they are defined in the standard
module __builtin__:

dir() F&7|HEAEREATEL c wRGFAF BRI EAE » € R AR builtin . PRI

>>> import __builtin__

>>> dir(__builtin__)

['ArithmeticError', 'AssertionError', 'AttributeError', 'DeprecationWarning',
'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
'FloatingPointError', 'FutureWarning', 'IOError', 'ImportError',
'IndentationError', 'IndexError', 'KeyError', 'KeyboardInterrupt',
'LookupError', 'MemoryError', 'NameError', 'None', 'NotImplemented',
'NotImplementedError', 'OSError', 'OverflowError',
'PendingDeprecationWarning', 'ReferenceError', 'RuntimeError',
'RuntimeWarning', 'StandardError', 'StopIlteration', 'SyntaxError',
'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'True',
'TypeError', 'UnboundLocalError', 'UnicodeDecodeError',
'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
'UserWarning', 'ValueError', 'Warning', 'WindowsError',
'ZeroDivisionError', '_', '__debug__', '__doc__', '__import__',

__name__', 'abs', 'apply', 'basestring', 'bool', 'buffer',

'callable', 'chr', 'classmethod', 'cmp', 'coerce', 'compile',

'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir', 'divmod',

'enumerate', 'eval', 'execfile', 'exit', 'file', 'filter', 'float',

'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex',

'id', 'input', 'int', 'intern', 'isinstance', 'issubclass', 'iter',

'len', 'license', 'list', 'locals', 'long', 'map', 'max', 'memoryview',

'min', 'object', 'oct', 'open', 'ord', 'pow', 'property', 'quit', 'range',

'raw_input', 'reduce', 'reload', 'repr', 'reversed', 'round',6 'set',

'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super',

'tuple', 'type', 'unichr', 'unicode', 'vars', 'xrange', 'zip']

6.3. The dir() Function dir() BN%#{ 61

Python Tutorial, Release 2.7

6.4 Packages fl

Packages are a way of structuring Python's module namespace by using *‘“dotted module names'
For example, the module name A.B designates a submodule named B in a package named A. Just
like the use of modules saves the authors of different modules from having to worry about each
other's global variable names, the use of dotted module names saves the authors of multi-module
packages like NumPy or the Python Imaging Library from having to worry about each other's module
names.

BAE AR R AERL” EMIER G L TR o e 24 AB MBERETT LA B AT ELEN
A BT o iﬁﬂm?ﬁ&%ﬁ@*ﬂ%ﬁ%mWTMk%AEifzﬂﬁﬂiﬁx’ﬁml, XS S
%1% NumPy 3 Python Imaging Library X X&) F £ & RH T ASE R XA 6Ga % iF K o

N

Suppose vou want to design a collection of modules (a “‘package'') for the uniform handling of
sound files and sound data. There are many different sound file formats (usually recognized
by their extension, for example: .wav, .aiff, .au), so you may need to create and maintain a
growing collection of modules for the conversion between the various file formats. There are
also many different operations you might want to perform on sound data (such as mixing, adding
echo, applying an equalizer function, creating an artificial stereo effect), so in addition you
will be writing a never-ending stream of modules to perform these operations. Here's a possible

structure for your package (expressed in terms of a hierarchical filesystem):

BREALEBZ R —AERE (=4 87) RA—REF FIHFEFTHIE - HEILIF TR F 51
N CGAFHENOY EL kAR Blde @ wav uﬁ ’au) s TR AT AETE RA 6 T
LR Fedeo RFRAEY —ATBRF R ERE o TRKEARAF FLHEMRS L HRAE (HldoRF
FEFE o AL b 33—‘/\/\3‘\;‘5(;,‘%) ,)anu 3 f]n)\—‘/\ﬁf‘f’cu|u7f%ik2t\’ﬂb X MR AE o ~é’7’7
ThEAZMT (ALH RO HRAREITHA)

sound/ Top-level package
_-init__.py Initialize the sound package
formats/ Subpackage for file format conversions
_init__.py

wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py

effects/ Subpackage for sound effects
_init__.py
echo.py
surround.py
reverse.py

filters/ Subpackage for filters
_init__.py
equalizer.py
vocoder.py
karaoke.py

When importing the package, Python searches through the directories on sys.path looking for the
package subdirectory.

FAMEIRE o Pythoni ¥ sys.path P9 H IR KL EHEAEHTH XK o

The __init__.py files are required to make Python treat the directories as containing packages;

62 Chapter 6. Modules F&EiR

Python Tutorial, Release 2.7

this is done to prevent directories with a common name, such as string, from unintentionally
hiding valid modules that occur later on the module search path. In the simplest case, __init__.py
can just be an empty file, but it can also execute initialization code for the package or set
the __all__ variable, described later.

LR BH —A _init_.py XHHELE > 44 Python MAE FH — G RAATHELER Z4
AT string BHGANLMEEFAM BHEREEREFTRE T EHOHER - R LOFELT >
_init__.py TARE-AEIM » FTHLELTREET AW WBILRD » XA RXET 211 ¥ 5@
RRARRKAE o

Users of the package can import individual modules from the package, for example:
LR P TV F FASEKGIESR > b

import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with its full name.
THEKGFAT Sound.Effects.echo FAEdk o ©lbFiML TEM LKA -

sound.effects.echo.echofilter (input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:
SANGBRAH — AT R F 7 X

from sound.effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it
can be used as follows:

BAHERWET echo TR HEARFECARA CAWHGFERLTELTIA AL > ATAET hde T 5 XAR
echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:
EAA—FTRATAESFIARBERTE

from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter() directly
available:

BHERX—RWET echo THk » XML TIUXELZREAEH echofilter() HL

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or subpackage)
of the package, or some other name defined in the package, like a function, class or variable.
The import statement first tests whether the item is defined in the package; if not, it assumes
it is a module and attempts to load it. If it fails to find it, an ImportError exception is
raised.

FREZZNAMEA from package import item & NFAGLE » EAFA (item) BRTAZE & F o —AF
B (R—ANF8) » ETUZEFE XL EFE > R~ XRTF o import BH BB IZ GO
HENTFR wREAH > CBREZ R AR FZ2EBE - wREAKIE » 251 X —A ImportError
FH o

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the
last must be a package; the last item can be a module or a package but can't be a class or
function or variable defined in the previous item.

6.4. Packages fi 63

Python Tutorial, Release 2.7

A8 R > 4% M EL import item.subitem.subsubitem XAF89iE KA 0 WEFRL MAEL > KEHFRT
AR GEARR > EFRRANETRHPELGE S FRRE F o

6.4.1 Importing * From a Package

Now what happens when the user writes from sound.effects import *? Ideally, one would hope
that this somehow goes out to the filesystem, finds which submodules are present in the package,
and imports them all. This could take a long time and importing sub-modules might have unwanted
side-effects that should only happen when the sub-module is explicitly imported.

ML LMPET from sound.Effects import * W AR AMFZF?2HMAF » & AAELEIMH AL FTHRE
BFHTAE TR RBEFAEN o BT EA KR > ARG R > FEHT A
ZRAEEXNFANE -

The only solution is for the package author to provide an explicit index of the package. The
import statement uses the following convention: if a package's __init__.py code defines a list
named __all__, it is taken to be the list of module names that should be imported when from
package import * is encountered. It is up to the package author to keep this list up-to-date
when a new version of the package is released. Package authors may also decide not to support
it, if they don't see a use for importing * from their package. For example, the file sounds/
effects/__init__.py could contain the following code:

st T agELE R R E— 0BT ERZLRE—AAMG S X5 o import & &4 T A HH 744 ¢
#MAT from package import * B > R, ¥4y _init__.py REIT LT —MNEA _all__ 897 % 3k
SlBIAFLEOERLAITIN FHMAGORANEZTUE FEHEAANI L - wREEHTA
import * B9EfE FAMMVGG B F AT AR > BRALTRARTF XFE (import *) o fl4= > Sounds/
Effects/__init__.py AT A 464 T KA

_all__ = ["echo", "surround", "reverse']

This would mean that from sound.effects import * would import the three named submodules of
the sound package.

X F%A from Sound.Effects import * % 8] &M sound EF FAUEZANT4 Lo Tk o

If _all_ is not defined, the statement from sound.effects import * does not import all
submodules from the package sound.effects into the current namespace; it only ensures that the
package sound.effects has been imported (possibly running any initialization code in ,,init,,.py)
and then imports whatever names are defined in the package. This includes any names defined (and
submodules explicitly loaded) by _init__.py. It also includes any submodules of the package
that were explicitly loaded by previous import statements. Consider this code:

o RAAE L __all__ » from Sound.Effects import * 15 4] &I\ sound.effects ELF FAATA T
B o RRBFELE VL Rt AEHEFAT sound.effects € (TAELEFT _init_.py T4
W AR) AR BT E LT ATL LM G o BHERM _init_.py FEATHE—AGE (UAEH
BGNTAESR) o R ERE T AT import 8 & &L F BAHE 5 A6 T AR o B R AT KA

import sound.effects.echo
import sound.effects.surround
from sound.effects import *

In this example, the echo and surround modules are imported in the current namespace because
they are defined in the sound.effects package when the from...import statement is executed.
(This also works when __all__ is defined.)

£ XA FF 2 echo #7 surround HRIRFAT BATH WL E H > LEEAMAT from. . .import & 4K
EM L2 T LA sound.effects &F T (EXT _all. HELLFRHEINE) o

64 Chapter 6. Modules F&EiR

Python Tutorial, Release 2.7

Although certain modules are designed to export only names that follow certain patterns when
you use import *, it is still considered bad practise in production code.

REFEBRZETAEA import x HERFHFEEMRXGFL > AR T L XD P42 A A
Bik o

Remember, there is nothing wrong with using from Package import specific_submodule! In fact,
this is the recommended notation unless the importing module needs to use submodules with the
same name from different packages.

124f » from Package import specific_submodule KA 4% | FE L FFANBERFTEEALE
BFaRL TAR TR AEMFENT X -

6.4.2 Intra-package References f,N5|H

The submodules often need to refer to each other. For example, the surround module might use
the echo module. In fact, such references are so common that the import statement first looks
in the containing package before looking in the standard module search path. Thus, the surround
module can simply use import echo or from echo import echofilter. If the imported module is
not found in the current package (the package of which the current module is a submodule), the
import statement looks for a top-level module with the given name.

FHRZ B EFEEEEAMI A o Hl4e > tmod:surround LT LI A echo Bk FL b IR
Yo b8 0 BT import EHLLEMKEAR » RE A LTAr BRI K542 o FL surround 4 37T 1A
@ #8998 F import echo & # from echo import echofilter ° %wREAA A ZATHEFRXANEFANE
3k o :keyword:import & &) 2MRIEFE L FER —NTREARIR o

When packages are structured into subpackages (as with the sound package in the example), you
can use absolute imports to refer to submodules of siblings packages. For example, if the module
sound.filters.vocoder needs to use the echo module in the sound.effects package, it can use
from sound.effects import echo.

WwROFHERNT FTEEH (RETB T sound &) > TRELNLE MM EFI A THER-
42 > 4o R sound.filters.vocoder & F % 1# M sound.effects & F# echo #¥k > ©T WA from
Sound.Effects import echo °

Starting with Python 2.5, in addition to the implicit relative imports described above, you can
write explicit relative imports with the from module import name form of import statement.
These explicit relative imports use leading dots to indicate the current and parent packages
involved in the relative import. From the surround module for example, you might use:

M Python 2.5 FF45 » ATl 93X AP ARG B RAa x4 B S AAF 3] ikt » RT UM XA 8 X from module
import name kB R XML E FAc AL TN FFARAEFTHEAXKEFAS AT LR E - XA
surround A3 A E] o ART A XAR

from . import echo
from .. import formats
from ..filters import equalizer

Note that both explicit and implicit relative imports are based on the name of the current
module. Since the name of the main module is always "__main__", modules intended for use as the
main module of a Python application should always use absolute imports.

FTERENEIRAREAMNEEEARAEAT S RGO GL RAZERGL 4L " _pain "
» Python jz RAZ5 09 T4k 2 % & A 38 F A o

6.4. Packages fi 65

Python Tutorial, Release 2.7

6.4.3 Packages in Multiple Directories ZEH H3HHIH

Packages support one more special attribute, __path__. This is initialized to be a list containing
the name of the directory holding the package's _init__.py before the code in that file is
executed. This variable can be modified; doing so affects future searches for modules and
subpackages contained in the package.

EEFE—NEARARGFME > _path. © £ _init_.py XHREBIATIAN » 2R EWHEIL—NE F
Lok GREFTUGEHK eERT BF8F etk tha -

While this feature is not often needed, it can be used to extend the set of modules found in a
package.

BAHRTARNTY RO Pyt » TLERFER o

66 Chapter 6. Modules F&EiR

CHAPTER

SEVEN

INPUT AND OUTPUT % A F0% H

There are several ways to present the output of a program; data can be printed in a human-readable
form, or written to a file for future use. This chapter will discuss some of the possibilities.

AIAFETARERFMBEER ZETRITHPAAELT OB KX > LT AE AXHEABRA o AF
At JURR T 89 77 % o

7.1 Fancier Output Formatting £ﬁ$§ﬁﬁtﬂ$§fﬁ

So far we've encountered two ways of writing values: expression statements and the print
statement. (A third way is using the write() method of file objects; the standard output file
can be referenced as sys.stdout. See the Library Reference for more information on this.)

RAVA AAR RAB R EGM BT % REXNES F print B8 (H=Mi R LEA L
write() 7 & > ARBELHMEBE T AL E sys.stdout ° F@AELLESE FH) Often you'll want
more control over the formatting of your output than simply printing space-separated values.
There are two ways to format your output; the first way is to do all the string handling
yvourself; using string slicing and concatenation operations you can create any layout you can
imagine. The standard module string contains some useful operations for padding strings to a
given column width; these will be discussed shortly. The second way is to use the str.format()
method.

THREAZFEBENHER X — R ENITNERTRAEN BN IEH o F Afr 7 T A LH
o Z—MThRREFHENAFHSE - N FH B0 ERER TR ZREMEREZOHEN K - 47
MM string BT — 24 > BFFEEAANLTI| N » ZLBERAM - ME RN ST RZHRSA
Bo HoMAEZER str.format() Fik o

One question remains, of course: how do you convert values to strings? Luckily, Python has
ways to convert any value to a string: pass it to the repr() or str() functions.

BR o LA AR T AESEAC A T $ 2 IR FE > Python A A RKIEE MHEATHE FEhA
repr() &K str() &R -

The str() function is meant to return representations of values which are fairly human-readable,
while repr() is meant to generate representations which can be read by the interpreter (or
will force a SyntaxError if there is not equivalent syntax). For objects which don't have a
particular representation for human consumption, str() will return the same value as repr(). Many
values, such as numbers or structures like lists and dictionaries, have the same representation
using either function. Strings and floating point numbers, in particular, have two distinct
representations.

HE strO) MTHBEHMAZTARZYH X » @ repr) HILAEBAER T OB X (REAFNY
&% 0 MK A SyntaxError #%) XM ERALE TAMRGEENY XGE > str() 2895 repr()

67

Python Tutorial, Release 2.7

KR RS R 2 AR E S PHRBEOLH A ERBRAEG— IR R o BB
A A AR R K o

Some examples:
T @ A)T

>>> s = 'Hello, world.'

>>> str(s)

'Hello, world.'

>>> repr(s)

"'Hello, world.'"

>>> str(1.0/7.0)

'0.142857142857"

>>> repr(1.0/7.0)

'0.14285714285714285"

>>> x = 10 * 3.25

>>> y = 200 * 200

>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'

>>> print s

The value of x is 32.5, and y is 40000...

>>> # The repr() of a string adds string quotes and backslashes:
. hello = 'hello, world\n'

>>> hellos = repr(hello)

>>> print hellos

'hello, world\n'

>>> # The argument to repr() may be any Python object:
. repr((x, y, ('spam', 'eggs')))

"(32.5, 40000, ('spam', 'eggs'))"

Here are two ways to write a table of squares and cubes:
A K TG F oA 25 &

>>> for x in range(l, 11):
print repr(x).rjust(2), repr(x*x).rjust(3),
Note trailing comma on previous line
print repr(x*x#*x).rjust(4)

1
8
27
16 64
25 125
36 216
49 343
64 512
9 81 729
10 100 1000

© & e

0 ~N OO W N e

>>> for x in range(1,11):
print '{0:2d} {1:3d} {2:4d}'.format(x, x*x, X*X*X)

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343

68 Chapter 7. Input and Output Hij AFI%mH

Python Tutorial, Release 2.7

8 64 512
9 81 729
10 100 1000

(Note that in the first example, one space between each column was added by the way print works:
it always adds spaces between its arguments.)

(R EH—AHT > print ERIIZAMT A 2H CERES HAMAES)

This example demonstrates the rjust() method of string objects, which right-justifies a string
in a field of a given width by padding it with spaces on the left. There are similar methods
ljust() and center(). These methods do not write anything, they Jjust return a new string. If
the input string is too long, they don't truncate it, but return it unchanged; this will mess up
your column lay-out but that's usually better than the alternative, which would be lying about
a value. (If you really want truncation you can always add a slice operation, as in x.1ljust(n)

[:nl.)

AEZ—A rjust() ZFEMER coFHAEmBE -7 FAd e L MBEAEEREELESF - £
PAEg 77 %A 1just() #7 center() o REJBAZMBFNFHE > AKX TH L - RImBoyF
FERK BNEFEBE B mARSERE Z2EROGHMEEXTHRIL FIERIF —MHBH
(B WIEHE) > BATMHLS ABROMBME o (o RIEAEFEERWTE > ToME Ml 4k o filde :
x.1ljust(n) [:n] °)

There is another method, zfill(), which pads a numeric string on the left with zeros. It
understands about plus and minus signs:

EA A=Ak zfill() CRATEHEMAGFHBRKEZMIEAL 00 % HITAEMERE R 5

>>> '12'.zfil11(5)

'00012"
>>> '=-3.14" .2z£il11(7)
'-003.14"'

>>> '3.14159265359"'.2z£fi11(5)
'3.14159265359"

Basic usage of the str.format() method looks like this:
7% str.format() #AKRAEZWT

>>> print 'We are the {} who say "{}!"'.format('knights', 'Ni')
We are the knights who say "Ni!"

The brackets and characters within them (called format fields) are replaced with the objects
passed into the format() method. A number in the brackets refers to the position of the object
passed into the format() method.

RIESFLPYHFHFLESLIAREN format() 5 - KIEFTF MR ASEAE N format () &8
2t Z 8GR — A~

>>> print '{0} and {1}'.format('spam', 'eggs')
spam and eggs
>>> print '{1} and {0}'.format('spam', 'eggs')
eggs and spam

If keyword arguments are used in the format() method, their values are referred to by using the
name of the argument.

o R format() WERAER X4EF A% TARIT AL RIA &

7.1. Fancier Output Formatting ¥ty H A& 69

Python Tutorial, Release 2.7

>>> print 'This {food} is {adjective}.'.format(
food='spam', adjective='absolutely horrible')
ThlS spam is absolutely horrible.

Positional and keyword arguments can be arbitrarily combined:
TALFa KA F AR T A o1E R

>>> print 'The story of {0}, {1}, and {other}.'.format('Bill', 'Manfred',
S other="'Georg')
The story of Bill, Manfred, and Georg.

"1s' (apply str()) and '!r' (apply repr()) can be used to convert the value before it is
formatted.

st (2R str()) Ao ovirt (2R repr()) T A KL ATEE A o

>>> import math

>>> print 'The value of PI is approximately {}.'.format(math.pi)
The value of PI is approximately 3.14159265359.

>>> print 'The value of PI is approximately {!r}.'.format(math.pi)
The value of PI is approximately 3.141592653589793.

An optional ':' and format specifier can follow the field name. This allows greater control
over how the value is formatted. The following example truncates Pi to three places after the
decimal.

FRLBAFTHNY o0 FERIEL o ZAFEGHE XA A ZRAM FEHR o THH Pi A Aok
& o
>>> import math

>>> print 'The value of PI is approximately {0:.3f}.'.format(math.pi)
The value of PI is approximately 3.142.

Passing an integer after the ':' will cause that field to be a minimum number of characters
wide. This is useful for making tables pretty.

EFREN ' B MEREREZTEORDLE » X ECEREE RAEA -

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():
print '{0:10} ==> {1:10d}'.format(name, phone)

Jack == 4098

Dcab => 7678
Sjoerd => 4127

If you have a really long format string that you don't want to split up, it would be nice if
you could reference the variables to be formatted by name instead of by position. This can be
done by simply passing the dict and using square brackets '[]' to access the keys

Yo RBANELEARKGERACTHE > FRSIE o wRARTARGL KGR s XA R & dm T2l
BFT c ANRENFTE > TAEA—AFTE AF £57 B4t

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}

>>> print ('Jack: {0[Jack]:d}; Sjoerd: {0[Sjoerd]:d}; '
'Dcab: {0[Dcab] :d}'.format (table))

Jack 4098; Sjoerd: 4127; Dcab: 8637678

Nkt

This could also be done by passing the table as keyword arguments with the notation.

70 Chapter 7. Input and Output Hij AFI%mH

Python Tutorial, Release 2.7

TR g EFEAFRALET SR 5 XEA

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print 'Jack: {Jack:d}; Sjoerd: {Sjoerd:d}; Dcab: {Dcab:d}'.format (**table)
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the new built-in vars() function, which returns
a dictionary containing all local variables.

BT AGHONE R varsO) AERAFEFTAN - R FEDEEA R T EHFHR o
For a complete overview of string formatting with str.format(), see formatstrings.

2 —F TRFFEHIAIFT % str.format() * 50 formatstrings o

7.1.1 01d string formatting [HFCHFEFEMETAL

The 9% operator can also be used for string formatting. It interprets the left argument much like
a sprintf()-style format string to be applied to the right argument, and returns the string
resulting from this formatting operation. For example:

BAEHE % TR TFEH S HAA o CAEM sprintf() M X BATAESH > 55508 ATk 35
1 XA A R TR S > bl 4o

>>> import math
>>> print 'The value of PI is approximately ." 7% math.pi
The value of PI is approximately 3.142.

Since str.format() is quite new, a lot of Python code still uses the % operator. However,
because this old style of formatting will eventually be removed from the language, str.format()
should generally be used.

R A str.format() &4R# » K ¥ Python AL AAE R 9 BAVEF - Admo BAw X9k ILFERL
¥INES FHAE o R B REEA :meth:str.format o

More information can be found in the string-formatting section.

#—F 5 & TAA N, :ref:string-formatting — ¥ o

7.2 Reading and Writing Files 5 W /F

open() returns a file object, and is most commonly used with two arguments: open(filename,
mode) .

K open() BBt g » MFMEFLANSE © open(filename, mode) °©

>>> f = open('/tmp/workfile', 'w')
>>> print f
<open file '/tmp/workfile', mode 'w' at 80a0960>

The first argument is a string containing the filename. The second argument is another string
containing a few characters describing the way in which the file will be used. mode can be 'r'
when the file will only be read, 'w' for only writing (an existing file with the same name will
be erased), and 'a' opens the file for appending; any data written to the file is automatically
added to the end. 'r+' opens the file for both reading and writing. The mode argument is
optional; 'r' will be assumed if it's omitted.

7.2. Reading and Writing Files BB {F 71

Python Tutorial, Release 2.7

BB RE—AMRBRIMFLNTHE FASIEGARGFHEARGTH $ > MET UK 2L
AR o Tapty X A 0 'r' o LBAE RS w o BRI RE (T RG> %R
BRALAHES) 5 a0 HWHFREF RATHA L5 v+t 0 RBFARE F RATA L5 X
HEATHE o W REAIRE > KIKA v BX o

On Windows, 'b' appended to the mode opens the file in binary mode, so there are also modes like
'rb', 'wb', and 'r+b'. Python on Windows makes a distinction between text and binary files;
the end-of-line characters in text files are automatically altered slightly when data is read
or written. This behind-the-scenes modification to file data is fine for ASCII text files, but
it'1ll corrupt binary data like that in JPEG or EXE files. Be very careful to use binary mode
when reading and writing such files. On Unix, it doesn't hurt to append a 'b' to the mode, so
you can use it platform-independently for all binary files.

AWindows F& Lo o XA B 7 KATFIH » FIATRES AEMT 'rb' > 'wb' ° 'r+b' F
FHEKX A o Windows FE& EXARLHE = #BLHZTAHRANEG » 525 LA » TR A FHRWITE
RAF o G G EH Xt ASCIT XA Z AT L FA » 12 2384F JPEG &, .EXERAF 89 =3t 4] SCARat
AT B o EBREREIHN —F B e R_#FBERITHF o £ Unix £ m—A b BEXL—HFZ
FEE s FIARTA—n =t 4 THL BFFELEXGERAE -

7.2.1 Methods of File Objects H¥}%J51E

The rest of the examples in this section will assume that a file object called f has already
been created.

AV PO TOAT AR £ LR -

To read a file's contents, call f.read(size), which reads some quantity of data and returns
it as a string. size is an optional numeric argument. When size is omitted or negative, the
entire contents of the file will be read and returned; it's your problem if the file is twice
as large as your machine's memory. Otherwise, at most size bytes are read and returned. If the
end of the file has been reached, f.read() will return an empty string ("").

ZRIHRNE s FZRMA f.read(size) * B H FHERETHEOHEFUFT FEHBARILAZRE
size ATHOEME > WX FHBERE c WREAHR sizeRFBETA R > KA EFHFBR@DEANAIHF o %
IHRDASHMEAGA 20 3R AR o RZ » 2R THIELIE K size ERPEGHIE o 4o
RETIHRE f.read DRRBRE—AEFHSE (1) o

>>> f.read()
'This is the entire file.\n'
>>> f.read()

f.readline() reads a single line from the file; a newline character (\n) is left at the end
of the string, and is only omitted on the last line of the file if the file doesn't end in a
newline. This makes the return value unambiguous; if f.readline() returns an empty string, the
end of the file has been reached, while a blank line is represented by '\n', a string containing
only a single newline.

f.readline() MXH P EMER AT FHELR2AFH W E—ARTH (\n) » RAIIHRE—
ITEREAPATHERN » B—RAEF 2R L% o IHEEEHLRAHRA > wRWR £.readline() R W
—ANEFHE PR TERTIHRE wRE-AET > heWEA \n » —PRESRITHOTH
$ o

>>> f.readline()

'This is the first line of the file.\n'
>>> f.readline()

'Second line of the file\n'

72 Chapter 7. Input and Output Hij AFI%mH

Python Tutorial, Release 2.7

>>> f.readline()

f.readlines() returns a list containing all the lines of data in the file. If given an optional
parameter sizehint, it reads that many bytes from the file and enough more to complete a line,
and returns the lines from that. This is often used to allow efficient reading of a large file
by lines, but without having to load the entire file in memory. Only complete lines will be
returned.

f.readlines)RS — A5l & » b &4 T AP A BRI - o RBXT sizehint A% REEAS
FATH AR P TR o RA AL WA AT RAGRRK AT 8 T AR
5o A BERRE T BKIT o

>>> f.readlines()
['This is the first line of the file.\n', 'Second line of the file\n']

An alternative approach to reading lines is to loop over the file object. This is memory
efficient, fast, and leads to simpler code

BN BATE I BT I 7k R LA R LHEIR o ZHE el > mikdm LR E & $#

>>> for line in f:
print line,

This is the first line of the file.
Second line of the file

The alternative approach is simpler but does not provide as fine-grained control. Since the two
approaches manage line buffering differently, they should not be mixed.

BApFRBE 2R R EGERIBE AAANFTEAATRG 5 XNEEITE PR CINRRERA -
f.write(string) writes the contents of string to the file, returning None.
f.write(string) F string 89N E 5 AL » EE None °

>>> f.wyrite('This is a test\n')

To write something other than a string, it needs to be converted to a string first:
WREREBEAFHEUNGEIE B hle IR FEERAFHS o

>>> value = ('the answer', 42)
>>> s = str(value)
>>> f.write(s)

f.tell() returns an integer giving the file object's current position in the file, measured in
bytes from the beginning of the file. To change the file object's position, use f.seek(offset,
from_what). The position is computed from adding offset to a reference point; the reference
point is selected by the from_what argument. A from_what value of 0 measures from the beginning
of the file, 1 uses the current file position, and 2 uses the end of the file as the reference
point. from_what can be omitted and defaults to 0, using the beginning of the file as the
reference point.

f.tell() BE— Mg > KA ZAEIHTHRMIEE » BRMETET O T AL 354469 k45
oo FEAMT UM ZAGHEE > £ f.seek(offset,fromwhat) ° 4 EBZBRE T L] AILE
offset tb4F » 51 A4L E & fromwhat 5348 F o fromwhat {74 0 &7 H U RELFHE 1 &
TH BRI LHIEAALE AL 2 AT XHREFLS o fromwhat UL Bwk » LB AEN K > it I STHF
K4 o

7.2. Reading and Writing Files BB {F 73

Python Tutorial, Release 2.7

>>> f = open('/tmp/workfile', 'r+')

>>> f.write('0123456789%abcdef')

>>> f.seek(5) # Go to the 6th byte in the file
>>> f.read(1)

l5|

>>> f.seek(-3, 2) # Go to the 3rd byte before the end
>>> f.read(1)
ldl

When you're done with a file, call f.close() to close it and free up any system resources taken
up by the open file. After calling f.close(), attempts to use the file object will automatically
fail.

IR FE » AR f.close() TUXHAXLH » BRITAIMHEEAGAZAL TR o AR f£f.close() X
B BIAR SR 485 K%

>>> f.close()
>>> f.read()
Traceback (most recent call last):
File "<stdin>", line 1, in 7
ValueError: I/0 operation on closed file

It is good practice to use the with keyword when dealing with file objects. This has the
advantage that the file is properly closed after its suite finishes, even if an exception is
raised on the way. It is also much shorter than writing equivalent try-finally blocks

B %4EF with QAN EZEMNFIR - AR ILETIH AR5 XA RAREFFLE
X % o A& try-finally R#9f 5 ©

>>> with open('/tmp/workfile', 'r') as f:
.. read_data = f.read()

>>> f.closed

True

File objects have some additional methods, such as isatty() and truncate() which are less
frequently used; consult the Library Reference for a complete guide to file obgjects.

X R EA —ERRFRG M7 ik > de isatty() #° truncate() AEH FFMFAIMHNEHZ
i o

7.2.2 The pickle Module pickle FZIR

Strings can easily be written to and read from a file. Numbers take a bit more effort, since
the read() method only returns strings, which will have to be passed to a function like int(),
which takes a string like '123' and returns its numeric value 123. However, when you want to
save more complex data types like lists, dictionaries, or class instances, things get a lot
more complicated.

BNTARE HHEE XA FOFHE c ZERES F ELAN > BA read) 7 ZR2REFHE > &
G EAAEN int () EHEQGZEF T IAE 11230 AHGFFEA SR KA 123 - Tt 0 SR FERK
BEAR L BIEER > pled|k ~ T8 R FHRLTHEELT -

Rather than have users be constantly writing and debugging code to save complicated data types,
Python provides a standard module called pickle. This is an amazing module that can take almost
any Python object (even some forms of Python code!), and convert it to a string representation;
this process is called pickling. Reconstructing the object from the string representation is
called unpickling. Between pickling and unpickling, the string representing the object may have
been stored in a file or data, or sent over a network connection to some distant machine.

74 Chapter 7. Input and Output Hij AFI%mH

Python Tutorial, Release 2.7

WERP RLZIFE THERRRRE R LHIBEAV YR o Pythond®ET —ME A pickle i AL
Ho XAE—NSARRGRIR > JUFT AR T Python % (£ E 22— Python RABHE |) R&x A A
FAFE i;r*i\%:ﬂz A3tE (pickling) o NFHBRKX B EHMESZARZ A3 (unpickling
) o3 ERAFE S ELTULRMAE RS T » LT VGARF K ZRGIE 4 o

If you have an object x, and a file object f that's been opened for writing, the simplest way
to pickle the object takes only one line of code

L RBHE—AME x > —IMABEXIT AN A AR £ HESRORF LY FERFRATRED

pickle.dump(x, f)

To unpickle the object again, if f is a file object which has been opened for reading
R f R—AMURBERIT AL ST A ERIFH I AL L

= pickle.load(f)

(There are other variants of this, used when pickling many objects or when you don't want to
write the pickled data to a file; consult the complete documentation for pickle in the Python
Library Reference.)

(R T BRTFEGRIEEAIM » REXA — R L CHRLTH o Z¥8 pickle XA415 LPython &%
E3H) -

pickle is the standard way to make Python objects which can be stored and reused by other
programs or by a future invocation of the same program; the technical term for this is a
persistent object. Because pickle is so widely used, many authors who write Python extensions
take care to ensure that new data types such as matrices can be properly pickled and unpickled.

pickle &#Af# Python xt F AL CRF KL K G UG AR 945 A7 % o 324t i;—‘?ﬂ«fiﬁié‘}%"/\ %7\
ft. 2t % (persistent object) o l731 pickle # /M &R/ 2> k% Python ¥ RefEAMIFEFEEE
PASE T AR 6 AT R R ARG ZSH KAV -

7.2. Reading and Writing Files BB {F 75

Python Tutorial, Release 2.7

76 Chapter 7. Input and Output i AFl%yH

CHAPTER

EIGHT

ERRORS AND EXCEPTIONS FEi5RFN= &

Until now error messages haven't been more than mentioned, but if you have tried out the examples
you have probably seen some. There are (at least) two distinguishable kinds of errors: syntax
errors and exceptions.

ELALTRAA R —FTH R IR RELE FLARCEREINN LB T THRLEEH L —
o Python ¥ (E9) A AmAF4iE : EX4EMFF (syntax errors and exceptions) o

8.1 Syntax Errors iB}EE R

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you
get while you are still learning Python:

BRAR 0 AR BEAE R 0 TR %3] Python MR PRE HILH

>>> while True print 'Hello world'
File "<stdin>", line 1, in 7
while True print 'Hello world'

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow' pointing at the earliest
point in the line where the error was detected. The error is caused by (or at least detected
at) the token preceding the arrow: in the example, the error is detected at the keyword print,
since a colon (':') is missing before it. File name and line number are printed so you know
where to look in case the input came from a script.

BT ELEZREOT FATPRTFRAAGHERZREZELE T - “FK7 cHBx (EFABEADE
) SRRAEZF K B6 LE o TH PHBRARLEXET print Lo BALABIWN I T—HEF (

it) o FIRALA LTI LAAITE 0 BERRT R BB E R AR M ZLE -

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an
attempt is made to execute it. Errors detected during execution are called exceptions and are
not unconditionally fatal: you will soon learn how to handle them in Python programs. Most
exceptions are not handled by programs, however, and result in error messages as shown here:

Pt R 2Bk LR A EHEIES) > ZRPATEHHAR » WA TREZ AR o £ BFETFHRMNEGHK
RXAFTF » CRELRFHEGH A » RREKS 2B oA Python 5 FIEHEN o REEAF
FTruEFLE fALT— MEREE

7

Python Tutorial, Release 2.7

>>> 10 * (1/0)
Traceback (most recent call last):
File "<stdin>", line 1, in 7
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):
File "<stdin>", line 1, in 7
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):
File "<stdin>", line 1, in 7
TypeError: cannot concatenate 'str' and 'int' objects

The last line of the error message indicates what happened. Exceptions come in different types,
and the type is printed as part of the message: the types in the example are ZeroDivisionError.
NameError and TypeError. The string printed as the exception type is the name of the built-in
exception that occurred. This is true for all built-in exceptions, but need not be true for
user-defined exceptions (although it is a useful convention). Standard exception names are
built-in identifiers (not reserved keywords).

HBIEFEREORE—FTRERATHZEZ - AFLATEAGEA » FFEBMA HEEFEY -5 L
TR TOPHFEOANA Bk (ZeroDivisionError) 44 44i% (NameError®

texc: TypeError) ° ATHP45i%15 &8> FHFORABEAFFTHAEL i?°ﬁf%ﬁﬁmgﬁﬁﬁ%
ot FHEAPATXAFTHAL—TT (REZX Z—ARARNHAT) - WmEFFTLETRNENIRIR (KA
G x4EF) o

The rest of the line provides detail based on the type of exception and what caused it.
B—ATE—H9 X THAFRAGE@ELY > AEAFCOARRM T FH LA o

The preceding part of the error message shows the context where the exception happened, in
the form of a stack traceback. In general it contains a stack traceback listing source lines;
however, it will not display lines read from standard input.

IR B FR P VOERH Y XI|HAF R AN E o BFEFRFINETRARDBIT » Af o kAR
WA R 2L REK -

bltin-exceptions lists the built-in exceptions and their meanings.

bltin-exceptions Z| T A EFFF 1894 3L ©

8.3 Handling Exceptions Tﬁﬁ%ﬂ;ﬁ"—ﬁ'

It is possible to write programs that handle selected exceptions. Look at the following example,
which asks the user for input until a valid integer has been entered, but allows the user to
interrupt the program (using Control-C or whatever the operating system supports); note that a
user-generated interruption is signalled by raising the KeyboardInterrupt exception.

TARBARFRIEH Co) FF o FLTH > T ZRA P AL —BHE FE MR ELA
ik @ BAWA P PEIAES (A Control-C & L eft AR4MF AL LFHHRINE) ﬁ:%ﬂi AR DA
A P BT A KeyboardInterrupt FE o

>>> while True:
try:
x = int(raw_input("Please enter a number: "))
break
except ValueError:

78 Chapter 8. Errors and Exceptions #E1RHIRH

Python Tutorial, Release 2.7

print "Oops! That was no valid number. Try again..."

The try statement works as follows.
try 15834 T 7 X TAE o
e First, the try clause (the statement(s) between the try and except keywords) is executed.
F k0 MIT try T4 (£ try B except RATZAMEY) o

e If no exception occurs, the except clause is skipped and execution of the try statement is
finished.

W REAAFHFRLLE > except Fé £ try BOMITZRERBEL%GT -

e If an exception occurs during execution of the try clause, the rest of the clause is
skipped. Then if its type matches the exception named after the except keyword, the except
clause is executed, and then execution continues after the try statement.

WwRE try TORTIRFERET AT MLAGTOLRGHRIREKLE% o wRAFFEERT
except X4EF B MAF T FF LR » HIMATH A BexceptF 6] o RBRLEMAT try #5616 89K
i o

e If an exception occurs which does not match the exception named in the except clause, it
is passed on to outer try statements; if no handler is found, it is an unhandled exception
and execution stops with a message as shown above.

WREAET —ANRF > £ except FHFTRAGILENGY) X » EhAit#S] L—% try BT o
o R AN ERT B 2 gL IEIEE » ChAR A—N RQRERF > ALERFET ETRTEEL

A try statement may have more than one except clause, to specify handlers for different
exceptions. At most one handler will be executed. Handlers only handle exceptions that occur
in the corresponding try clause, not in other handlers of the same try statement. An except
clause may name multiple exceptions as a parenthesized tuple, for example:

—A try B TRES S A except T4 0 HBERAERF YR F o 2S5 REH —Ag LEPAT - #F
RERFRLREALE try TOFR ANFF > AR —A try BT FeT PR AGHFMNFHE
2 o —Aexcept T A TALEIET FH R EAARFHLT > Hldo

. except (RuntimeError, TypeError, NameError):
pass

The last except clause may omit the exception name(s), to serve as a wildcard. Use this with
extreme caution, since it is easy to mask a real programming error in this way! It can also be
used to print an error message and then re-raise the exception (allowing a caller to handle the
exception as well):

"G —A except FaTUAERAFL LB EM—NARAER o —ETRER B F % BAHCRKTR
SR EERFEIR BALRZFRN | BLTUA T —HTHEEE RETHPEFF (TR
PR E BIFHLEFT)

import sys

try:

f = open('myfile.txt')

s = f.readline()

i = int(s.strip())
except IOError as (errno, strerror):

print "I/0 error({0}): {1}".format(errno, strerror)
except ValueError:

print "Could not convert data to an integer."

8.3. Handling Exceptions ¥ &5 79

Python Tutorial, Release 2.7

except:
print "Unexpected error:", sys.exc_info() [0]
raise
The try ... except statement has an optional else clause, which, when present, must follow all

except clauses. It is useful for code that must be executed if the try clause does not raise
an exception. For example:

try ... except # & TULHA —A else T4 - 17%0 RAEHIALEFA except THXE o F try &
GRAYEFFE > FRPAT LKL 5 TR ZAFE o 5’
for arg in sys.argv([1:]:

try:

f = open(arg, 'r')
except IOError:
print 'cannot open', arg
else:
print arg, 'has', len(f.readlines()), 'lines’
f.close()

The use of the else clause is better than adding additional code to the try clause because it
avoids accidentally catching an exception that wasn't raised by the code being protected by the
try ... except statement.

1R else Ta WA try Fo P MpRBELF » RA ZIHETUBESL try ... except BIMIBRART
BT eATRA 69 A8 L R AL P ik 69 7 F o

When an exception occurs, it may have an associated value, also known as the exception's
argument. The presence and type of the argument depend on the exception type.

RARFE > TREA-AMEME EARFTH 58 G BMNSREGHE - A2 KBTH

X ES R

The except clause may specify a variable after the exception name (or tuple). The variable is
bound to an exception instance with the arguments stored in instance.args. For convenience,
the exception instance defines __str__() so the arguments can be printed directly without having
to reference .args.

EAFL (FlR) XG> LT except FaHIH/E—NEE o L/\“:E!I"}IS/K‘? —RE R ChM% A
instance.args M5 F o AT AEARL » AFEH ZXT _stro () - XHRTAEED FILITF SR
f Rob5l A Largs ©

One may also instantiate an exception first before raising it and add any attributes to it as
desired.

BABETR L3 - AR > IFHMER “ﬁ-%%ﬁ—‘/\f‘#((’ﬁ“ﬁ‘l\%ﬂ%ﬁ%/l\ Hf TIAE#R -

) o REHTE message BlE o —EFF C BRI ATOR R AR 48 A BTk o
>>> try:
raise Exception('spam', 'eggs')

. except Exception as inst:
print type(inst) # the exception instance
print inst.args # arguments stored in .args
print inst #
X, y = inst #
print 'x =', x
print 'y =', y

__str__ allows args to printed directly
__getitem_ _ allows args to be unpacked directly

<type 'exceptions.Exception'>
('spam', 'eggs')
('spam', 'eggs')

80 Chapter 8. Errors and Exceptions #E1RHIRH

Python Tutorial, Release 2.7

X
y

spam
eggs

If an exception has an argument, it is printed as the last part (‘detail') of the message for
unhandled exceptions.

HTREEGFF > wREH -5 TEGELEARRE BN RE—Fy ("AW”) T dxk -

Exception handlers don't Jjust handle exceptions if they occur immediately in the try clause,
but also if they occur inside functions that are called (even indirectly) in the try clause.
For example:

FRAEGHALETAL T AZEL AL try FOHOFHFF - B 2E P (2 £HHE) ARAGOIE X4
THE > W—HTUALIE o fldo

>>> def this_fails():
x = 1/0

>>> try:
this_fails()
. except ZeroDivisionError as detail:
print 'Handling run-time error:', detail

Handling run-time error: integer division or modulo by zero

8.4 Raising Exceptions Tﬁﬂﬁ;‘:ﬁ%’

The raise statement allows the programmer to force a specified exception to occur. For example:
BB RTAM raise BORMBTHFFLRE o flde

>>> raise NameError('HiThere')
Traceback (most recent call last):

File "<stdin>", line 1, in 7
NameError: HiThere

The sole argument to raise indicates the exception to be raised. This must be either an exception
instance or an exception class (a class that derives from Exception).

ZJ B FF W raise WE—FHAF R c ELFLA—AFFTEF R AF R (HKRE Exception 89E) o

If you need to determine whether an exception was raised but don't intend to handle it, a simpler
form of the raise statement allows you to re-raise the exception:

o R EEHH—ANFFLELTHE > ERBLAEE > raise BT RBR M LG EH W EZFT -

>>> try:
raise NameError('HiThere')
. except NameError:
print 'An exception flew by!'
raise

An exception flew by!

Traceback (most recent call last):
File "<stdin>", line 2, in 7

NameError: HiThere

8.4. Raising Exceptions i &% 81

Python Tutorial, Release 2.7

8.5 User-defined Exceptions FI/7 HE N FH

Programs may name their own exceptions by creating a new exception class (see Classes % for

more about Python classes). Exceptions should typically be derived from the Exception class,
either directly or indirectly. For example:

LA P TAAL AR A F LR L A THAF (Python RAFHES I Classes £) o FHE
W 5% L KR 9 N Exception EIRA o flde

>>> class MyError(Exception):
def __init__(self, value):
self.value = value
def __str__(self):

return repr(self.value)

>>> try:
raise MyError(2*2)
. except MyError as e:
print 'My exception occurred, value:', e.value

My exception occurred, value: 4
>>> raise MyError('oops!')
Traceback (most recent call last):
File "<stdin>", line 1, in 7
__main__.MyError: 'oops!'

In this example, the default __init__() of Exception has been overridden. The new behavior
simply creates the value attribute. This replaces the default behavior of creating the args
attribute.

2 XA FF > iclass:Exception BKIN8) _init__() B E o #8957 XN £ 961 E value Btk o A
B TR EA|E args B FT X o

Exception classes can be defined which do anything any other class can do, but are usually kept
simple, often only offering a number of attributes that allow information about the error to be
extracted by handlers for the exception. When creating a module that can raise several distinct
errors, a common practice is to create a base class for exceptions defined by that module, and
subclass that to create specific exception classes for different error conditions:

AFRFTAZIMEMECETTRAELGEAT » ZEZAFATRFMEL > RE LA TUANBHEEZ L
AR H AL I AR o o R— AR T FE Yo LA R R 8 8RE » — AT a4 k2 A %A
REL—AAFAFEE RE4 S RRAGHRERRE RS ZGFF T Lo

class Error(Exception):

"""Base class for exceptions in this module."""
pass

class InputError(Error):
"""Exception raised for errors in the input.

Attributes:
expr —-- input expression in which the error occurred
msg -- exzplanation of the error

mmn

def __init__(self, expr, msg):
self.expr = expr
self .msg = msg

82 Chapter 8. Errors and Exceptions #E1RHIRH

Python Tutorial, Release 2.7

class TransitionError(Error):
"""Raised when an operation attempts a state transition that's mnot

allowed.
Attridbutes:
prev —— state at beginning of transition
next -- attempted new state
msg -- exzplanation of why the specific transition is not allowed

mmn

def __init__(self, prev, next, msg):
self.prev = prev
self .next = next
self.msg = msg

Most exceptions are defined with names that end in *‘Error,'' similar to the naming of the
standard exceptions.

SR EAAM > KSRFFGF LA “Error” &R o

Many standard modules define their own exceptions to report errors that may occur in functions

they define. More information on classes is presented in chapter Classes Z%.

RLirBBERPATLT A THFF > AARE AN LG HER P TRAE X XTEOGR—F

1E 8% AR Classes £ —F o

8.6 Defining Clean-up Actions & X JGHITH

The try statement has another optional clause which is intended to define clean-up actions that
must be executed under all circumstances. For example:

try BEEA AT RE T8 0 BOETELEEMIFLTHR-LEZWRATHY F - bl

>>> try:
raise KeyboardInterrupt
. finally:
print 'Goodbye, world!'

Goodbye, world!
KeyboardInterrupt

A finally clause is always executed before leaving the try statement, whether an exception has
occurred or not. When an exception has occurred in the try clause and has not been handled by
an except clause (or it has occurred in a except or else clause), it is re-raised after the
finally clause has been executed. The finally clause is also executed “‘on the way out'' when
any other clause of the try statement is left via a break, continue or return statement. A
more complicated example (having except and finally clauses in the same try statement works as
of Python 2.5):

FERRKHRAAT » finally T4 ERFETF try BA—T SHMAT - % try B FRET RHK
except MRH A% (RFELRELE except R else T4 F) » £ finally THHITEZEERXMEH N
o try 4% W break > :keyword:continue & return % ¢Ji& HAEL—H 2T finally T4 o XA
T%”@ﬁg%%%m%(ﬁﬂ*%‘uy%@?%emwtﬁﬂﬁmﬂy%@%lﬁﬁﬂﬁPﬂmn25
—#)

8.6. Defining Clean-up Actions & NJEHEFTH 83

Python Tutorial, Release 2.7

>>> def divide(x, y):
try:
result = x / y
except ZeroDivisionError:
print "division by zero!"
else:
print "result is", result
finally:
print "executing finally clause"

>>> divide(2, 1)

result is 2

executing finally clause

>>> divide(2, 0)

division by zero!

executing finally clause

>>> divide("2", "1")

executing finally clause

Traceback (most recent call last):
File "<stdin>", line 1, in 7
File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: 'str' and 'str'

As you can see, the finally clause is executed in any event. The TypeError raised by dividing
two strings is not handled by the except clause and therefore re-raised after the finally clause
has been executed.

Yo fRPT L > finally T & AMETHLTA &M 1T o TypeError £ AANFIF MK EMR L - KK
except T éJ#R > HILE finally THRITZEE EHHI L -

In real world applications, the finally clause is useful for releasing external resources (such
as files or network connections), regardless of whether the use of the resource was successful.

EEERHFORRMARFF > finally TR THEBINF TR (LH AMBEHEZLY) > T EigR
AT ZE B4 -

8.7 Predefined Clean-up Actions THRE M JEHITH

Some objects define standard clean-up actions to be undertaken when the object is no longer
needed, regardless of whether or not the operation using the object succeeded or failed. Look
at the following example, which tries to open a file and print its contents to the screen.

HRat R R LT B BRARID > B BRI R TR RAK LG ROH RH LA o AT 7H
FARAT A A A BAT R B R L o

for line in open("myfile.txt"):
print line

The problem with this code is that it leaves the file open for an indeterminate amount of time
after the code has finished executing. This is not an issue in simple scripts, but can be a
problem for larger applications. The with statement allows objects like files to be used in a
way that ensures they are always cleaned up promptly and correctly.

BERA G PIA T ENRDIAT TG RA L XMATA G c REREHOWA ZRA 2 2ZXREE A
RSB FIA o with BB A LG LT HARERAN EHAITHE o

84 Chapter 8. Errors and Exceptions #E1RHIRH

Python Tutorial, Release 2.7

with open('"myfile.txt") as f:
for line in f:
print line

After the statement is executed, the file f is always closed, even if a problem was encountered
while processing the lines. Other obgjects which provide predefined clean-up actions will
indicate this in their documentation.

BOWMATE » X f BAWER > B e AL EIHPOFIE B bL—H o HEex 22 ERBTAIL
MFERITHEEFCNG A -

8.7. Predefined Clean-up Actions Fi5E M JEHEITH 85

Python Tutorial, Release 2.7

86 Chapter 8. Errors and Exceptions #E1RHIRH

CHAPTER

NINE

CLASSES 2=

Python's class mechanism adds classes to the language with a minimum of new syntax and semantics.
It is a mixture of the class mechanisms found in C++ and Modula-3. As is true for modules,
classes in Python do not put an absolute barrier between definition and user, but rather rely on
the politeness of the user not to *‘break into the definition.'' The most important features of
classes are retained with full power, however: the class inheritance mechanism allows multiple
base classes, a derived class can override any methods of its base class or classes, and a
method can call the method of a base class with the same name. Objects can contain an arbitrary
amount of data.

Python £ R 7T R8T 3% #7695 kAo 1B LG LT e AT R ALH o XAFMAHL C++ o Modula-3 #9R 4 ©
R AERARAE » Python PHIXAAAERAP AT AL AEL—Mextey B> ARBTAL ALHT
x BT o Rmo EMBIRERGARA TEORE T Rk RERWAAFSRK RELTUE
2% (override) AX T WIETHE » kP TURAARPOR L 7k o st LTRSS TG HIE o

In C++ terminology, all class members (including the data members) are public, and all member
functions are virtual. As in Modula-3, there are no shorthands for referencing the object's
members from its methods: the method function is declared with an explicit first argument
representing the object, which is provided implicitly by the call. As in Smalltalk, classes
themselves are objects. This provides semantics for importing and renaming. Unlike C++ and
Modula-3, built-in types can be used as base classes for extension by the user. Also, like in
C++, most built-in operators with special syntax (arithmetic operators, subscripting etc.) can
be redefined for class instances.

B C++ KRBV TAERR (BFEERR) AT 2H (public) 89> PTART REAL B (
virtual) #) o F| Modula-389 KiE%# » AR A EPEAMEGFT RG] A0 R A 1 FEREET L
B H B A G B —AHd o AR 21X A% o %E Smalltalk F—# » R&LZF L o
R T FAFE G LIEL o R1E C++ Fo Modula-3 F ARAE » KRB HBHRERGNBERES (F
EFEFE S TAT) AT 4L EREH L o

(Lacking universally accepted terminology to talk about classes, I will make occasional use of

Smalltalk and C++ terms. I would use Modula-3 terms, since its object-oriented semantics are
closer to those of Python than C++, but I expect that few readers have heard of it.)

(it k0> BA R B HR09 RiE > RLMB RN Smalltalk Fo Cr+ FH— % o LR ERA
Modula-3 #)/i& » B 4 tuAeC++» Python #jd Wt LEXERE » A KRBR VA EEFLEA)

9.1 A Word About Names and Objects JoT 544 FIXT Z AN

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same
object. This is known as aliasing in other languages. This is usually not appreciated on a first
glance at Python, and can be safely ignored when dealing with immutable basic types (numbers,

87

Python Tutorial, Release 2.7

strings, tuples). However, aliasing has a possibly surprising effect on the semantics of Python
code involving mutable objects such as 1lists, dictionaries, and most other types. This is
usually used to the benefit of the program, since aliases behave like pointers in some respects.
For example, passing an object is cheap since only a pointer is passed by the implementation;
and if a function modifies an object passed as an argument, the caller will see the change ---
this eliminates the need for two different argument passing mechanisms as in Pascal.

2t FRBAFE EALF (ESAERBT) TUAHEZR —Axg o XA T AEiEsPass

2t Python 89 % —FP L P AR —5 s F MARLTT THRREA (8- F/HS -~ 14a) HT)&,TVME&
S BALE o Rfw > f£ Python KA EM FHo -~ R XT L F » UWRAKSRFREFIIRER (L
P BRESE) XA > B—B LAY o RBAAHTHRACES > BN o6t EErdRE
AT A4t o Bldo » REHGHFEF —AFZE > RALEFTAL REIFEHET M4 - wRJIPGEERT 4B A
FAFg gt £ o WA ET A KB Tib—— 4 Pascal VX FEZHANFE 85 $AEH A o

9.2 Python Scopes and Namespaces Python 1E/38H15 44 25 [H]

Before introducing classes, I first have to tell you something about Python's scope rules.
Class definitions play some neat tricks with namespaces, and you need to know how scopes and
namespaces work to fully understand what's going on. Incidentally, knowledge about this subject
is useful for any advanced Python programmer.

E BRZAT REENL— %A X Python AN « ROZTULFFHLY HERTHEER » &
zgﬁwﬂm%m, 5% IR R0 5 T LRI o 391 2 b B o R A A 2
Python RERAEFTAHA -

Let's begin with some definitions.
HATK— L F LI 46 o

A namespace is a mapping from names to objects. Most namespaces are currently implemented as
Python dictionaries, but that's normally not noticeable in any way (except for performance), and
it may change in the future. Examples of namespaces are: the set of built-in names (functions
such as abs(), and built-in exception names); the global names in a module; and the local names
in a function invocation. In a sense the set of attributes of an object also form a namespace.
The important thing to know about namespaces is that there is absolutely no relation between
names in different namespaces; for instance, two different modules may both define a function
maximize without confusion --- users of the modules must prefix it with the module name.

BN NG LB A GRSt o BAT L F A £ %A Python FREA & FEAE R XS RLEKEY
%%ﬁﬂ(%#&%i EFIE) ABEEATHRAK TEERATX c ATAH—REGLTROGH T AEG
% (% abs() EHEMRE A RA %%"'%'“Z) B BhbabHat RFARAPHEHITGTL o EHHE
L b A FHBRELR—AGLER c XTHLEFRFLTHBY—HREEZHERL TRFGLERFH
L BAAETHE R 0) ‘ﬁﬂl&')/*ﬂé’ﬁ}‘iik'fﬁgﬁﬁé\&X’“/\Z # maximize 7% #(rfnf/\ii/mz%——)ﬂ
P b AR 2 Ay ATk 51 R e Al e

By the way, I use the word attribute for any name following a dot --- for example, in the
expression z.real, real is an attribute of the object z. Strictly speaking, references to names
in modules are attribute references: in the expression modname.funcname, modname is a module
object and funcname is an attribute of it. In this case there happens to be a straightforward
mapping between the module's attributes and the global names defined in the module: they share

the same namespace! !

1 Except for one thing. Module objects have a secret read-only attribute called __dict__ which returns the dictionary
used to implement the module's namespace; the name __dict__ is an attribute but not a global name. Obviously, using this
violates the abstraction of namespace implementation, and should be restricted to things like post-mortem debuggers.

88 Chapter 9. Classes 2%

Python Tutorial, Release 2.7

WA 3R — 6] » &R Python PAEfT—A “.7 X5 e A B ——fldo» KX X z.real ¥4 real £

H oz — AR o PR MR AGLE 5 A BEM 2% X modname.funcname P * modname

;%"/\#i‘iikﬁ% > funcname & EH—/ANBME o Btk s R BMEF B PG LHG LA BB XA ¢
€ MNEZER—GL%ER | 2

Attributes may be read-only or writable. In the latter case, assignment to attributes is
possible. Module attributes are writable: you can write modname.the_answer = 42. Writable
attributes may also be deleted with the del statement. For example, del modname.the_answer
will remove the attribute the_answer from the object named by modname.

BHTUAERZLAREY o B—MMEFRLT > TUBHIRME o IRTLXAH 4 modname.the_answer =
42 ° BB AL VAR del E MK o] 4= : del modname.the_answer &M modname *T % P MFk
the_answer &Mk o

Namespaces are created at different moments and have different lifetimes. The namespace con-
taining the built-in names is created when the Python interpreter starts up, and is never
deleted. The global namespace for a module is created when the module definition is read in;
normally, module namespaces also last until the interpreter quits. The statements executed by
the top-level invocation of the interpreter, either read from a script file or interactively,
are considered part of a module called _main__, so they have their own global namespace. (The
built-in names actually also live in a module; this is called __builtin__.)

NGRS E IE?J/EZ:I;J@’JHT?'J@ AR AN - b SN B LGS EN £ Python MHEER K
B2 > /\"54 s TAEM MR o A G L ERE F ik&ii}’iﬁ)\ﬂfﬁ]%’ WE o R L ER LS
"ﬁﬁiﬁ§‘m¥ﬁ§§fﬁh‘i o fig ﬁ%ﬁﬁ%%ﬂ%fﬂﬁ 176938 6] » T”"EJXE}}\H*PZFI#“F&)\LE%Q TE
Mo A _main. BHREO—FRG o FTAECNELMAATHFLER o (NEF LLRABEKEESE—N
Bid o CHMARME _builtin._ ©)

The local namespace for a function is created when the function is called, and deleted when the
function returns or raises an exception that is not handled within the function. (Actually,
forgetting would be a better way to describe what actually happens.) Of course, recursive
invocations each have their own local namespace.

ﬁmwﬁﬁmm B—ANBHRGLER > [IFPRERE LI —ANRERZFLAL ZGFFEME o (EF
o RREEEAMNY) c SR F—AREANE ACTHGTLER -

A scope is a textual region of a Python program where a namespace is directly accessible.
**Directly accessible'' here means that an unqualified reference to a name attempts to find the
name in the namespace.

YR ZPythonfE /TP — NG L ZRTUABEFFGLERR . “"BEGRF LAXEZHEER
L E AL as o

Although scopes are determined statically, they are used dynamically. At any time during

e

R4 6t

execution, there are at least three nested scopes whose namespaces are directly accessible:

REFRBRARSZ L » AR AR ZFH S o HFRIATH » ZFH = A4 & 2R TR EH 691
R Er—A: QERFTLORABRERLD > & LWERE & /kéfv‘i’%?éﬁmﬂl’ééﬁ’f?)ﬂi& R aE
TRgHRE RERERIS OHERS - c8EAEFTL

e the innermost scope, which is searched first, contains the local names
LhaERANEGERNR s CabBEes

e the scopes of any enclosing functions, which are searched starting with the nearest enclosing
scope, contains non-local, but also non-global names

EEIBOSOERE s TARG ARSI ke s » AEDR L2 0E ABKESL

A=Ak o %%ikii‘%-%’—‘/\f‘gﬂﬁ‘bwii‘f%- &H _dict.. > € RERTEABERGLEANTE > ¢4 _dict. £—4
BWmE ARwt o AR AEACERT L EREIRNGERM > &G R T 1)‘]13\“{’

9.2. Python Scopes and Namespaces Python /Ay 4% 23 4] 89

Python Tutorial, Release 2.7

e the next-to-last scope contains the current module's global names
BT ROERREES SR 2 BF L

e the outermost scope (searched last) is the namespace containing built-in names
RIPEEER B (RERE) REEA BT LT L EH -

If a name is declared global, then all references and assignments go directly to the middle scope
containing the module's global names. Otherwise, all variables found outside of the innermost
scope are read-only (an attempt to write to such a variable will simply create a new local
variable in the innermost scope, leaving the identically named outer variable unchanged).

do R— A5 B A A8 AL PR S A A 5 A AR B AR AR T RAEAS e 500
S5 FLEL 0 T A B AE MR R B R R o (K BERENEER 2EAIERKLIL—A 3 5
HEE SRR LOT AT EREAL) -

Usually, the local scope references the local names of the (textually) current function. Outside
functions, the local scope references the same namespace as the global scope: the module's
namespace. Class definitions place yet another namespace in the local scope.

WHE o REAE ARG R G AT REA G L o £ BRI RFMEABRE &R ABRF AR —G L R Bk
THER o RRIWARFERBRT G H— Mtz o

It is important to realize that scopes are determined textually: the global scope of a function
defined in a module is that module's namespace, no matter from where or by what alias the
function is called. On the other hand, the actual search for names is done dynamically, at
run time --- however, the language definition is evolving towards static name resolution, at

compile'' time, so don't rely on dynamic name resolution! (In fact, local variables are
already determined statically.)

FEHRERB AL TRAZFOEL — AR LT RBRT R L BERNR RURROFLER > @
FRGHKGHLRE LI AAGEE » THRE—EF FEL-F—F @ GLHEHRRELEEHE
B > fe BATHRAE M —— K @ > Python #SLETBAR » AEATHERAHEW “RiE" WA - A
UREEHASEN | (FEE > HRTFCEABAART ©)

A special quirk of Python is that -- if no global statement is in effect -- assignments to names
always go into the innermost scope. Assignments do not copy data --- they just bind names to
objects. The same is true for deletions: the statement del x removes the binding of x from the
namespace referenced by the local scope. In fact, all operations that introduce new names use
the local scope: in particular, import statements and function definitions bind the module or
function name in the local scope. (The global statement can be used to indicate that particular
variables live in the global scope.)

Python 8 — MR XA ET——wREAIEM global #F—— L MME BELALERILEGER K - K
RSB HEE R AR LHTR L o Mk LZdesk © del x A ZINEIRAE R BG4 4% % 18 F M %
WL ox o FE Lo A AL GREAER T EHIBERBK o 5L import & &) F0 H BT KA IR G R
BB E T R RA R o (T global #E&E T ZFIAB2HERB)

9.3 A First Look at Classes #JIRZE

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

KRIANT —A#EEE » MG ZER » AR —LA76915 L o

90 Chapter 9. Classes 2%

Python Tutorial, Release 2.7

9.3.1 Class Definition Syntax ZE5E Y IiEE

The simplest form of class definition looks like this:
AR AT K T

class ClassName:
<statement-1>

<statement-N>

Class definitions, like function definitions (def statements) must be executed before they have
any effect. (You could conceivably place a class definition in a branch of an if statement, or
inside a function.)

KRG8 LR RE T L (def E4)) » BAMATA AR - (BREATUIe® A# if EHHE—5 X
A - R AR o)
In practice, the statements inside a class definition will usually be function definitions,

but other statements are allowed, and sometimes useful --- we'll come back to this later. The
function definitions inside a class normally have a peculiar form of argument list, dictated by

the calling conventions for methods --- again, this is explained later.
IME REXBHYAZAFTZTHETL FRECEGLTU > A 2RAE A—FaBiFHIiE

Rt o K6 RIR LA BI6T —AMAT KRG RE R AT AERAGE —— FH AN LS BH
B o

When a class definition is entered, a new namespace is created, and used as the local scope ---
thus, all assignments to local variables go into this new namespace. In particular, function
definitions bind the name of the new function here.

NS Py ’A€%&~4%%QZEM’ﬁﬁﬁﬁﬁm&——ﬂm,%ﬁ‘%%ﬁ&ﬁﬁ%%ﬁz
ERGRIFLTE o %% R T LA T T H eG4 4

When a class definition is left normally (via the end), a class object is created. This is
basically a wrapper around the contents of the namespace created by the class definition; we'll
learn more about class obJjects in the next section. The original local scope (the one in effect
Jjust before the class definition was entered) is reinstated, and the class object is bound here
to the class name given in the class definition header (ClassName in the example).

%ix%ﬁﬁ(ﬁ%ﬁm)’%m%T A KR RARAEERAXE LR 4L ERARITT 48
Ko BMNET VR —FZI Xm0 R R ERAR (X LA EKGA) 172K
3 A FAEREHREINELZ LK HFGEL (FF 7% ClassName) °

9.3.2 Class Objects EKIf£

Class objects support two kinds of operations: attribute references and instantiation.
Kt G X AR B A A0 LML o

Attribute references use the standard syntax used for all attribute references in Python:
obj.name. Valid attribute names are all the names that were in the class's namespace when the
class object was created. So, if the class definition looked like this:

BPE 3] R A8 Al A= Python P ATH 89 & W3]l —H 694r fE187% © obj.name o X3t % 4B » X4 g =R F A
B L RA KB EL o FTde R E T LA

9.3. A First Look at Classes #JiRZE 91

Python Tutorial, Release 2.7

class MyClass:
"""y simple example class
i = 12345
def f(self):
return 'hello world'

nwmn

then MyClass.i and MyClass.f are valid attribute references, returning an integer and a function
object, respectively. Class attributes can also be assigned to, so you can change the value of
MyClass.i by assignment. _.doc__ is also a valid attribute, returning the docstring belonging
to the class: "A simple example class".

AR 2 MyClass.i #7 MyClass.f ZA KBS A > 5 REA—NERF—NF FxdE o LT At R EH
WAL > RTTAB L% MyClass.i MRS K E o _doc.” WA—NHRNEMN > BREYIHFTHS @
"A simple example class" °

Class instantiation uses function notation. Just pretend that the class object is a parameterless
function that returns a new instance of the class. For example (assuming the above class):

KbHy FHML AER BT c ARBEAZEMEA AN BEDHYGLEH GRS BB T o Fldo (BRE
RN ESY

x = MyClass()

creates a new instance of the class and assigns this object to the local variable x.
AEQIET AL 26 AR ZRAERERHIFLEE x ©

The instantiation operation (‘‘calling'' a class object) creates an empty object. Many classes
like to create objects with instances customized to a specific initial state. Therefore a class
may define a special method named __init__(), like this:

BAZHMCHRE (“AA” —AEHE) RQIE—AEHTE - REERAST B ZARAFMBRE
By o ABLETRAET L —MNEA _init () 4%k 7 & BT @OXHF

def __init__(self):
self.data = []

When a class defines an __init__() method, class instantiation automatically invokes __init__()
for the newly-created class instance. So in this example, a new, initialized instance can be
obtained by:

RZLT _init_ () F&E - R EILBEL A AFHOENREGREA _init_ () Fik e FIALE
TP o T A AE A 2 — AN 69 524

x = MyClass()

Of course, the __init__() method may have arguments for greater flexibility. In that case,
arguments given to the class instantiation operator are passed on to __init__(). For example,

BAR B TRMYGFLRE > _init__ O FETURASK - FE L HHARE _init () FH B KRG EHL
BEL o flde

>>> class Complex:
def __init__(self, realpart, imagpart):
self.r = realpart
self.i = imagpart

>>> x = Complex(3.0, -4.5)
>>> x.r, x.1i
(3.0, -4.5)

92 Chapter 9. Classes 2%

Python Tutorial, Release 2.7

9.3.3 Instance Objects SEfiJ%%

Now what can we do with instance objects? The only operations understood by instance objects
are attribute references. There are two kinds of valid attribute names, data attributes and
methods.

I A BAVT VAR 4] 24 ZARA A 7 4] 3t Rof — T H 6 4RAF L BIEFI A o A A AKX BILE o

[NEN '

data attributes correspond to instance variables'' in Smalltalk, and to ®‘“data members'' in
C++. Data attributes need not be declared; like local variables, they spring into existence
when they are first assigned to. For example, if x is the instance of MyClass created above,

the following piece of code will print the value 16, without leaving a trace:

FIERBE A S T Smalltalk P8 “ZHTE” R C++ P8 “RERR B T+ —H» LIEEMER
FREP HoRAEAH BN E LR o B iza v e R x AR @A MyClass Mﬁ] » Tl B AR A AT
P 16 MmN BRPETEZROAER

x.counter = 1

while x.counter < 10:
x.counter = x.counter * 2

print x.counter

del x.counter

The other kind of instance attribute reference is a method. A method is a function that ®“belongs
to'' an object. (In Python, the term method is not unique to class instances: other object types
can have methods as well. For example, list objects have methods called append, insert, remove,
sort, and so on. However, in the following discussion, we'll use the term method exclusively
to mean methods of class instance objects, unless explicitly stated otherwise.)

B — b 5ol 5t P AE %ﬂméixszoﬁ%%“&f”~4ﬁ%%%ﬁo(EPwmn?’ﬁ%
FAERXEBFTRA : ’i‘lﬁﬁﬁ BT H F ko 4o 42kt E A append > insert ’ remove » sort
EE 5k R £ @% > BeaEA R > RATIRE K 5 EMAS X7 %) Valid method names
of an instance object depend on its class. By definition, all attributes of a class that are
function objects define corresponding methods of its instances. So in our example, x.f is a
valid method reference, since MyClass.f is a function, but x.i is not, since MyClass.i is not.
But x.f is not the same thing as MyClass.f --- it is a method object, not a function object.

EH G REAREHRT O R RBEL £FPHA (AP EL) 4R ey 2ol Fayr
F oo AL RMNGHFF > o x.£ B—MAZXYFEI A BAA MyClass.f £A— M RH%K 12 x.i F
& AA MyClass.i FEHF o T x.f A MyClass.f FR——EA—N ZEHE » FAEA-NRE
2% o

9.3.4 Method Objects JiEN£

Usually, a method is called right after it is bound:
BE o7 kA IR
x.£Q)

In the MyClass example, this will return the string 'hello world'. However, it is not necessary
to call a method right away: x.f is a method object, and can be stored away and called at a
later time. For example:

£ MyClass 7FlF » XABEFHE 'hello world' ° Rf LFRA—EEHE HEAFT X x.f £—
Nk G BT AR ARG R o flde

9.3. A First Look at Classes #JiRZE 93

Python Tutorial, Release 2.7

xf = x.f
while True:
print xf()

will continue to print hello world until the end of time.
AW AT hello world'' o

What exactly happens when a method is called? You may have noticed that x.f() was called without
an argument above, even though the function definition for f() specified an argument. What
happened to the argument? Surely Python raises an exception when a function that requires an

argument is called without any --- even if the argument isn't actually used...
WHFERRAAETH2? nw_ FEOAA x. £ NAANAMEREGTE R BA £0 89 R4 sL
FRAT A5 35/\?‘# 27 ?FFL LR HERAA F4Y %% > Python é\ifuﬁfr— ——#FEzEIA
BHFETR L RA L e

Actually, you may have guessed the answer: the special thing about methods is that the object
is passed as the first argument of the function. In our example, the call x.f() is exactly
equivalent to MyClass.f(x). In general, calling a method with a list of n arguments is equivalent
to calling the corresponding function with an argument list that is created by inserting the
method's object before the first argument.

FHRE > RTROSBERN TER FEOBNZILE TSN ZHEA RGO E— MNEEELT R - A K
18961 FF > AR x.£0O 48 5T MyClass. £(x) ° WA 0 ASENIERERR A kA s T
FiE BN LRI A QRERATEIE » AERAND| & AR R o

If you still don't understand how methods work, a look at the implementation can perhaps clarify
matters. When an instance attribute is referenced that isn't a data attribute, its class is
searched. If the name denotes a valid class attribute that is a function object, a method
object is created by packing (pointers to) the instance object and the function object Jjust
found together in an abstract object: this is the method object. When the method object is
called with an argument list, a new argument list is constructed from the instance object and
the argument list, and the function object is called with this new argument list.

Jo RAIRE AR AT HRGIAERTE s TR—TEH L GR35 AIEHIE B TH BN » &3
REHER WwREANGLHINA NGRS ER B KT E AR EHESR R
MEBREAFTENE o h— MR fu)‘]fﬂ kst G B EHIH 0 A LHI A E ARG ST £
M —AHFHNEEI R RE R FERIANFHO LI L -

9.4 Random Remarks —IEi5iAH

Data attributes override method attributes with the same name; to avoid accidental name conflicts,
which may cause hard-to-find bugs in large programs, it is wise to use some kind of convention
that minimizes the chance of conflicts. Possible conventions include capitalizing method names,
prefixing data attribute names with a small unique string (perhaps Jjust an underscore), or using
verbs for methods and nouns for data attributes.

Rl BBEREEBR AT ERBME s ATHETROGLFR——REXBRFT TREFHEEARILY
bug ——RFAEMFLEYRZRBRFR - THOHZ QEFFNEFTERE > HEBMLLATRIE (T
RRRZ—ATRIZ) > RFEH R 31 M BIE B MEAL R & 17 o

Data attributes may be referenced by methods as well as by ordinary users (" ‘clients'') of an
object. In other words, classes are not usable to implement pure abstract data types. In fact,
nothing in Python makes it possible to enforce data hiding --- it is all based upon convention.
(On the other hand, the Python implementation, written in C, can completely hide implementation

94 Chapter 9. Classes 2%

Python Tutorial, Release 2.7

details and control access to an object if necessary; this can be used by extensions to Python
written in C.)

BHBBETAGFZ XN RA s T AR LREAL (BZp) AR #EEH > R T ERIELAY - F
£ F Python “F/ii]‘ﬁ'éj]/i’rj‘ugﬁ%l MR — ——d1 ARG TP o (B —F % > Python #
FEIER C Bty R Hb £ TR C k%5 Python ¥ B> RARRKREZIA G aY > Ih s L6545
| o)

Clients should use data attributes with care --- clients may mess up invariants maintained by
the methods by stamping on their data attributes. Note that clients may add data attributes of
their own to an instance object without affecting the validity of the methods, as long as name
conflicts are avoided --- again, a naming convention can save a lot of headaches here.

BB SR A HE B — — P T A2 A MR S AR B MR T AR W R A 0 408 — B
o FREFNA S BRPREBEZZBRGPLIR KT MEGEH P RWFBEEER T LI AF E0AR
&r——ﬁmﬁﬁ’wZ%&j"ué%&yﬁmo

There is no shorthand for referencing data attributes (or other methods!) from within methods.
I find that this actually increases the readability of methods: there is no chance of confusing
local variables and instance variables when glancing through a method.

AT ERRG AR (AERECHE) BAFZRBEO TR - KRUAAREF T EX T 75089 T3
Mo BRI R — Ak WA A RAHHTER EH T EHNEL -

Often, the first argument of a method is called self. This is nothing more than a convention:
the name self has absolutely no special meaning to Python. Note, however, that by not following
the convention your code may be less readable to other Python programmers, and it is also
conceivable that a class browser program might be written that relies upon such a convention.

WEFHEGE— A B A LA self o BRERA—ANAR : *t Python ME » self %3t RAAEMEHAL
Lo (AmEEEML WwRFEFRIANRT > 5|4 Python L5 R MLk KA A4 RE » f LA %L
B R AR AR IR R TR o)

Any function object that is a class attribute defines a method for instances of that class. It
is not necessary that the function definition is textually enclosed in the class definition:
assigning a function object to a local variable in the class is also ok. For example:

SR LT BT R R TP LAk o AL BN BEE UKD B ER L > AT UK
— B RRBEF O~ AT F o blde

Function defined outside the class
def fi(self, x, y):
return min(x, x+y)

class C:
f = f1
def g(self):
return 'hello world'
h=g¢g

Now f, g and h are all attributes of class C that refer to function objects, and consequently
they are all methods of instances of C --- h being exactly equivalent to g. Note that this
practice usually only serves to confuse the reader of a program.

WE £, ghon HAEL C BN JIRNOHEHEY £ ARENALZ ¢ £HOFE—— b PBRFT
g cREZTNHAR HIBMAFTRLERXBFGRE o

Methods may call other methods by using method attributes of the self argument:
it self R FERN s FETUARLCHF*

9.4. Random Remarks —UEEiiiHH 95

Python Tutorial, Release 2.7

class Bag:

def __init__(self):
self.data = []

def add(self, x):
self .data.append(x)

def addtwice(self, x):
self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary functions. The global scope
associated with a method is the module containing the class definition. (The class itself is
never used as a global scope.) While one rarely encounters a good reason for using global data
in a method, there are many legitimate uses of the global scope: for one thing, functions and
modules imported into the global scope can be used by methods, as well as functions and classes
defined in it. Usually, the class containing the method is itself defined in this global scope,
and in the next section we'll find some good reasons why a method would want to reference its
own class.

FETAGIN AL RGRBEANENRANLEEGL SEFEXBFNLAERNRLEOLELS AT LGBk (XRY
KB MALBERBAER o) RERVAFHRES EF 5 PERERHEIE - 2HERABABAHRS &%
AR =R FETARA FALAERABRG J A7k WTARARAZLEL PO Ef R BT -
08 T ENELAT L EBZNERAERAB ET—Y&NESTBAT—AxkE5] MATHE-

Each value is an object, and therefore has a class (also called its type). It is stored as
object._class__.

FANEAE AR B EMEAH —A K(class) (LARAEEH XA (type)) » EHMBEA

object.__class__ °

9.5 Inheritance 2k

Of course, a language feature would not be worthy of the name "‘class'' without supporting
inheritance. The syntax for a derived class definition looks like this:

LR R BT REFRARK R REAMFTLEL c RAEXN T LT AT

class DerivedClassName (BaseClassName) :
<statement-1>

<statement-N>

The name BaseClassName must be defined in a scope containing the derived class definition. In
place of a base class name, other arbitrary expressions are also allowed. This can be useful,
for example, when the base class is defined in another module:

4r % BaseClassName (7Bl PHEARL) LAGRARTLE—ANMERARA B TE> BTUAAAZK
R RERTUASF—AERPHI-REFTAHA

class DerivedClassName (modname.BaseClassName) :

Execution of a derived class definition proceeds the same as for a base class. When the class
object is constructed, the base class is remembered. This is used for resolving attribute
references: if a requested attribute is not found in the class, the search proceeds to look in
the base class. This rule is applied recursively if the base class itself is derived from some
other class.

96 Chapter 9. Classes 2%

Python Tutorial, Release 2.7

RA KR LN PAT R R LR — 8 o kiR £ R0 o BRAAE T ARK o A ARAT B3] R R BHE A
EAM deRAXFRTIFRAMG BN I ER £ R AR LHHOLRAE AL > LA 2
8 k% o

There's nothing special about instantiation of derived classes: DerivedClassName() creates a
new instance of the class. Method references are resolved as follows: the corresponding class
attribute is searched, descending down the chain of base classes if necessary, and the method
reference is valid if this yields a function object.

W R LR H A A %%zﬁ'Dammﬂuﬂmd)(ﬁﬂ*%%ii)@%”A%%*im
FE R TN BTt X LERE ARMBERN L wREI T BE TR /\77/%’3]
}ﬂff}tiﬂa liélj

Derived classes may override methods of their base classes. Because methods have no special
privileges when calling other methods of the same object, a method of a base class that calls
another method defined in the same base class may end up calling a method of a derived class
that overrides it. (For C++ programmers: all methods in Python are effectively virtual.)

RERTHRABALALGTH c AAFZFAARN -t P er i &g i AXGHHRAMNA
— ARG TR > TRERERARMTRELFY BErk - (T C++ A58 KL > Python ™ 8947
B EAR LA Fike)

An overriding method in a derived class may in fact want to extend rather than simply replace
the base class method of the same name. There is a simple way to call the base class method
directly: Jjust call BaseClassName.methodname(self, arguments). This is occasionally useful
to clients as well. (Note that this only works if the base class is accessible as BaseClassName
in the global scope.)

RAERFOREFTETRELBEY AT EREONEREARLFOELTE - A— MRHEHFTETAAKEN
M%7k » AZAM : BaseClassName.methodname (self, arguments) c AN TEPLALMRAM -
(2% RA BaseClassName £ F|—&AERBT L XFANFRREHEM o)

Python has two built-in functions that work with inheritance:
Python # @A~ T 48K 89 % #

e Use isinstance() to check an instance's type: isinstance(obj, int) will be True only if
obj...class__ is int or some class derived from int.

% isinstance() M FTHAEFEH £XA : isinstance(obj, int) RAE obj._class__ £ int K
L EIN int 4R B9 RA
e Use issubclass() to check class inheritance: issubclass(bool, int) is True since bool

is a subclass of int. However, issubclass(unicode, str) is False since unicode is not a
subclass of str (they only share a common ancestor, basestring).

%40 issubclass() A THE L4 K : issubclass(bool, int) # True °* B4 bool & int
%9& o {2 > issubclass(unicode, str) & False * B4 unicode &~ & str #-FX (€A
AEF—NAMAALE basestring) ©

9.5.1 Multiple Inheritance Z#4k&

Python supports a limited form of multiple inheritance as well. A class definition with multiple
base classes looks like this:

PythonFl # A IR 89 X 3% % Y ARF X o % 4k K6 K T U 4= T

class DerivedClassName(Basel, Base2, Base3):
<statement-1>

9.5. Inheritance %7 97

Python Tutorial, Release 2.7

<statement-N>

For old-style classes, the only rule is depth-first, left-to-right. Thus, if an attribute is
not found in DerivedClassName, it is searched in Basel, then (recursively) in the base classes
of Basel, and only if it is not found there, it is searched in Base2, and so on.

TR R > B HMIRGFEREL L WEB AL - Atk » o R & DerivedClassName (4] 8k
AX) PEARINENEN k2 K Basel RSB (B)e)) BEELAL WwRILLAKRE » kL
% Base2 - WAbEdf o

(To some people breadth first --- searching Base2 and Base3 before the base classes of Basel
--- looks more natural. However, this would require you to know whether a particular attribute
of Basel is actually defined in Basel or in one of its base classes before you can figure out
the consequences of a name conflict with an attribute of Base2. The depth-first rule makes no
differences between direct and inherited attributes of Basel.)

(HRARAT B o—— £ % Basel B9AXZATH %t*' class:Base2 #» Base3 ——FAALREH A XK o
AR > do R Basel #7 Base2 LR EAATHLFR REZLTHRENBME ZZ LT :Basel & A& Basel
ALY @mEERATRS BHSAKALLTRZEETL)

For new-style classes, the method resolution order changes dynamically to support cooperative
calls to super(). This approach is known in some other multiple-inheritance languages as call-
next-method and is more powerful than the super call found in single-inheritance languages.

#t-F :term:new-style class % * super() TV/(”/] B BCRMRATIR 5o RAFXTR TR e — %50
ARiEF » £PL call-next-method » PL¥E 4 KiEZ FE) super FR/K :

With new-style classes, dynamic ordering is necessary because all cases of multiple inheritance
exhibit one or more diamond relationships (where one at least one of the parent classes can be
accessed through multiple paths from the bottommost class). For example, all new-style classes
inherit from object, so any case of multiple inheritance provides more than one path to reach
object. To keep the base classes from being accessed more than once, the dynamic algorithm
linearizes the search order in a way that preserves the left-to-right ordering specified in
each class, that calls each parent only once, and that is monotonic (meaning that a class can
be subclassed without affecting the precedence order of its parents). Taken together, these
properties make it possible to design reliable and extensible classes with multiple inheritance.
For more detail, see http://www.python.org/download/releases/2.3/mro/ .

f£ new-style ¥ » LRANSAENGF » BAMANSBAREA—F S % BEA (BAEF—NAE
RTVINT RG0S MBEREAZENE) o flde o FTA 8 new-style 3%41_7?&9 ObJeCt » BT VME R % 28K
ERASH S T— FUAREZIE object ° A THIEF R 7 FIAE il sh &6 &0t iﬂﬁ Hik o AR
BNEREGRFHNRT TG » BAEERREA—K > X £2EY (F%RE—DEBYARETTEH
UK T) o BRETAMT RN FRAEAERT—ATEFELTT RO SBRERA TR - #—F
A &1EH R http://www.python.org/download/releases/2.3/mro/

9.6 Private Variables FAHZ &

**Private'' instance variables that cannot be accessed except from inside an object don't exist
in Python. However, there is a convention that is followed by most Python code: a name prefixed
with an underscore (e.g. ,spam) should be treated as a non-public part of the API (whether it
is a function, a method or a data member). It should be considered an implementation detail and
subject to change without notice.

AR AR5 B8y Ak EA T ;s: » f£ Python PARAG/E - K » A — ATl HFATRE &K
Python KA : A—ANTRIGIF KL (Blde _spam) 2HMATEA AP HFEAFIS (RBEL—AR

98 Chapter 9. Classes 2%

http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/

Python Tutorial, Release 2.7

B~ FHEREIE) c ERBAA—ANFR@F > BEAH -

Since there is a valid use-case for class-private members (namely to avoid name clashes of
names with names defined by subclasses), there is limited support for such a mechanism, called
name mangling. Any identifier of the form __spam (at least two leading underscores, at most
one trailing underscore) is textually replaced with _classname__spam, where classname is the
current class name with leading underscore(s) stripped. This mangling is done without regard
to the syntactic position of the identifier, as long as it occurs within the definition of a
class.

AAR—ANESRERBARRAE (WELTFREZ UGG L5 FR) > Python 4T &M LEHGH
R Z 4% > A8 A name mangling (&%) o T4 _spam #9458 (MB@ESAANTRNL) EE0E S
—A) o WHARA _classname__spam KIFATF TXI&) classname BP ZATAGR G o 3k B EX R X iEARIR
Bl E > REREEZT LA o

Note that the mangling rules are designed mostly to avoid accidents; it still is possible to
access or modify a variable that is considered private. This can even be useful in special
circumstances, such as in the debugger.

FREZZGARGANZTEARTRGE F PR WV ARFN T ZHRAT AT FRIFK - AT
B3 & e A R o edetBliX 8 IR o

Notice that code passed to exec, eval() or execfile() does not consider the classname of the
invoking class to be the current class; this is similar to the effect of the global statement,
the effect of which is likewise restricted to code that is byte-compiled together. The same
restriction applies to getattr(), setattr() and delattr(), as well as when referencing _dict__
directly.

FEFHZERBEN exec * eval() R execfile() B RFZEAIA MGRGEL » AEA SR> &
EMTF global &8 8L » CLEBETFRIFQRPLA R GRF o LLFRHIMERT getattr() °
setattr() # delattr > HAHEFI A _dict_. —# -

9.7 0dds and Ends %M%F

N

Sometimes it is useful to have a data type similar to the Pascal *‘record'' or C *‘“struct'',

bundling together a few named data items. An empty class definition will do nicely:

A B X4 FPascal P “i25k (record) ” RCHF “4H# (struct) 7 9B ERA RARM » eh—ATHF L6
BIEFIPE e —Ae o —ANEHRELTUURIFEIN ZE

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class
that emulates the methods of that data type instead. For instance, if you have a function that
formats some data from a file object, you can define a class with methods read() and readline()
that get the data from a string buffer instead, and pass it as an argument.

¥ —#& Python RABFZ-—AHAGMZRELEWNGE AFTAEAN-AX FEXEIBGTHR

7y ik o Bldo > de RARE — AR T % P46 KACEIE 09 R8> RT AR L —AFH read) #
readline() 7 k#92% » VASLINF I $ &P R A - RB KR K6 3T FAF A S ffe AT 69 R4k o

9.7. 0dds and Ends FpF 99

Python Tutorial, Release 2.7

Instance method objects have attributes, too: m.im_self is the instance object with the method
m(), and m.im _func is the function object corresponding to the method.

EH| FiEFEEEBE D m.imself £—ANEH|FIEF AT E > @ m.im_func & XNF kst G FK kst
%O

9.8 Exceptions Are Classes Too FH R

User-defined exceptions are identified by classes as well. Using this mechanism it is possible
to create extensible hierarchies of exceptions.

APAZTLFFLTUER - F|AZAMBTARETY R FAFIRA o
There are two new valid (semantic) forms for the raise statement:
AT ARAFEHE > Ay (BL L) AFEREH KX > R raise 4

raise Class, instance
raise instance

In the first form, instance must be an instance of Class or of a class derived from it. The
second form is a shorthand for:

% —FM AP > instance LM Z Class RERERG—AFH o F_RBAERATHIANHE

raise instance.__class__, instance

A class in an except clause is compatible with an exception if it is the same class or a base
class thereof (but not the other way around --- an except clause listing a derived class is
not compatible with a base class). For example, the following code will print B, C, D in that
order:

RAERFFLEUNWRE except TFH L AFAALRE £ ARRAEMNKARFHY (R RHE—
—RAEHFFEEALREFFTTOFI] HgRGAE > CNETAM) o Bldo o AT RE &30 FAT 57
B>C»D

class B:
pass
class C(B):
pass
class D(C):
pass

for ¢ in [B, C, D]:

try:
raise c()
except D:
print "D"
except C:
print "C"
except B:
print "B"

Note that if the except clauses were reversed (with except B first), it would have printed B,
B, B -—-- the first matching except clause is triggered.

REENRRFF T H0NFME TR (execpt B £RAT) ° EILAATH BB B——FH—MNIEEHY
FH W ARK o

100 Chapter 9. Classes 2%

Python Tutorial, Release 2.7

When an error message is printed for an unhandled exception, the exception's class name is
printed, then a colon and a space, and finally the instance converted to a string using the
built-in function str().

A=A FEROBRE AN AT RS RBR—AEH —AFF > AB EAAESK strO K
RIERATII LTI S o

9.9 Iterators 15’51”2%%

By now you have probably noticed that most container objects can be looped over using a for
statement:

RERTREZHRSREEZATAR for B

for element in [1, 2, 3]:
print element

for element in (1, 2, 3):
print element

for key in {'one':1, 'two':2}:
print key

for char in "123":
print char

for line in open("myfile.txt"):
print line

This style of access is clear, concise, and convenient. The use of iterators pervades and
unifies Python. Behind the scenes, the for statement calls iter() on the container object. The
function returns an iterator object that defines the method next() which accesses elements in
the container one at a time. When there are no more elements, next() raises a StopIlteration
exception which tells the for loop to terminate. This example shows how it all works:

AP X8G5 B FW ~ JE ~ 71 o SRBEGMA AL Python PEBAMAL— o £BE° for BHEER
HEFEM iter() °© HRHRWE B—PELT next() Z#EHENERENZ CAERFE—GHFAE o
B ABENTLEN > next() s —A Stoplteration +%ifi4e for EAMILE R - U T AL T/FRE
8y 1)

>>> s = 'abc'
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> it.next()
lal

>>> it.next()
lbl

>>> it.next()
et

>>> it.next()

Traceback (most recent call last):
File "<stdin>", line 1, in 7
it.next ()
StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to
your classes. Define a __iter__() method which returns an object with a next() method. If the
class defines next(), then __iter__() can Jjust return self:

9.9. Iterators Ef2% 101

Python Tutorial, Release 2.7

TRTHEREW LGS ENH > ATAREHHLACTH ERIRERETH - & L—4 _iter () Fik>
18 LB —ANHAH next() ZiEstf o wWRIAAE SR E LT next() * P2Z _iter. () RELRT
self

class Reverse:

"Iterator for looping over a sequence backwards"

def __init__(self, data):
self.data = data
self.index = len(data)

def __iter__(self):
return self

def next(self):
if self.index ==

raise StopIlteration

self.index = self.index - 1
return self.data[self.index]

>>> for char in Reverse('spam'):
print char

n'o 8 -

9.10 Generators 4 Rizs

Generators are a simple and powerful tool for creating iterators. They are written like regular
functions but use the yield statement whenever they want to return data. Each time next() is
called, the generator resumes where it left-off (it remembers all the data values and which
statement was last executed). An example shows that generators can be trivially easy to create:

ARE AQUBHERBENHERBROLL - B ERXRGEZTERG R & F AT KIEGHIEE A
yield #&4) o K next() W HAN » ARFETEECHHENILE (BalLiE o RE — RIATOILEF A
B3 BAE) c AT TFBIETTARE TR F L0 R X

def reverse(data):

for index in range(len(data)-1, -1, -1):
yield datal[index]

>>> for char in reverse('golf'):
print char

R O K Fh -

Anything that can be done with generators can also be done with class based iterators as described
in the previous section. What makes generators so compact is that the __iter__() and next()
methods are created automatically.

M—FPRAETAEATEOERS CRENE -G FARILERER - RAAH GET _iter ()
next() Fik » ARE L4k o

Another key feature is that the local variables and execution state are automatically saved
between calls. This made the function easier to write and much more clear than an approach

102 Chapter 9. Classes 2%

Python Tutorial, Release 2.7

using instance variables like self.index and self.data.

B—AREGARETRARMAITZRE » AFTEFRPRITREIFLAAHORE TR ZEJIFREHE > ME
A# Bl self.index #° self.data X £ 75 R EFH o

In addition to automatic method creation and saving program state, when generators terminate,
they automatically raise StopIteration. In combination, these features make it easy to create
iterators with no more effort than writing a regular function.

TR EFRAERFREG AT H > BRAEBALEN » T2 AL Stoplteration # % o 4K EATH »
BEHREIFHRE —MERRFRA QIREREGRF LS X -

9.11 Generator Expressions éEEE%%%EiEEﬁ

Some simple generators can be coded succinctly as expressions using a syntax similar to list
comprehensions but with parentheses instead of brackets. These expressions are designed for
situations where the generator is used right away by an enclosing function. Generator expressions
are more compact but less versatile than full generator definitions and tend to be more memory
friendly than equivalent list comprehensions.

AEREGAERSTURMZG T XNAR > T FF1ET o0 AHE S K o 28 FXXAA RFOR £ R
Bt c ARBRARAWTENAEARSELENR Z ERAANRL2S5T > mBAAERENG LIRS
RREi -

Examples:

1] 4

>>> sum(i*i for i in range(10)) # sum of squares
285

>>> xvec = [10, 20, 30]

>>> yvec = [7, 5, 3]

>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin
>>> sine_table = dict((x, sin(x*pi/180)) for x in range(0, 91))

>>> unique_words = set(word for line in page for word in line.split())
>>> valedictorian = max((student.gpa, student.name) for student in graduates)
>>> data = 'golf'

>>> list(datal[i] for i in range(len(data)-1,-1,-1))
[Ifl’ 'l', 'O', |g|]

9.11. Generator Expressions “Epigs AT 103

Python Tutorial, Release 2.7

104 Chapter 9. Classes 2%

CHAPTER

TEN

BRIEF TOUR OF THE STANDARD LIBRARY #r

HE A

10.1 Operating System Interface FfE&RZGHED

The os module provides dozens of functions for interacting with the operating system:
os BMRRHET R H5RAM A2 %40 KKK

>>> import os

>>> os.system('time 0:02"')

0

>>> os.getcwd() # Return the current working directory
'C:\\Python26'

>>> os.chdir('/server/accesslogs"')

Be sure to use the import os style instead of from os import *. This will keep os.open() from
shadowing the built-in open() function which operates much differently.

%R import os AA&M3E from os import * © XAFTARIEMARE A% TR MA AT E1LH os.open()
K%%ﬁﬂﬁ&;& open() o The built-in dir() and help() functions are useful as interactive
aids for working with large modules like os:

FAR A — 2148 os AR KABIRK A EH dir() 7 help() REFFAHA

>>> import os

>>> dir(os)

<returns a list of all module functions>

>>> help(os)

<returns an extensive manual page created from the module's docstrings>

For daily file and directory management tasks, the shutil module provides a higher level
interface that is easier to use:

H B EHIHFE FHEES 0 tmod:shutil EBRBHET AL TEAYHEED

>>> import shutil
>>> shutil.copyfile('data.db', 'archive.db')
>>> shutil .move('/build/executables', 'installdir')

105

Python Tutorial, Release 2.7

10.2 File Wildcards X f4EPCEF

The glob module provides a function for making file lists from directory wildcard searches:
glob MIRRET —MREA TINE FABRAFIE R F ERLMHF A

>>> import glob
>>> glob.glob('*.py')
['primes.py', 'random.py', 'quote.py']

10.3 Command Line Arguments fg3fT54%K

Common utility scripts often need to process command line arguments. These arguments are stored
in the sys module's argv attribute as a list. For instance the following output results from
running python demo.py one two three at the command line:

WA A AZFT ARG ETHIE o IEGEIITHALONEERY XEHT sys # k8 argy B F o Hldofd
247 ¥ #A4T python demo.py one two three /&7 MAFER| AT Hr k4R

>>> import sys
>>> print sys.argv
['demo.py', 'one', 'two', 'three']

The getopt module processes sys.argv using the conventions of the Unix getopt() function. More
powerful and flexible command line processing is provided by the argparse module.

getopt HEIRALA Unix getopt() R sys.argv o L5465 § LG AITLATEd optparse HEIRIH o

10.4 Error Output Redirection and Program Termination %51%#yH &

SE M AIFR P24 1 E

The sys module also has attributes for stdin, stdout, and stderr. The latter is useful for
emitting warnings and error messages to make them visible even when stdout has been redirected:

sys ¥ A stdin ° stdout = stderr B > B £ stdout WER G » B LTUAAT L RELfo4s
S ES N

>>> sys.stderr.write('Warning, log file not found starting a new one\n')
Warning, log file not found starting a new one

The most direct way to terminate a script is to use sys.exit().

X % by Ry 8 @ b A7 4E Al sys.exit() o

10.5 String Pattern Matching 47 & (F I JCHED

The re module provides regular expression tools for advanced string processing. For complex
matching and manipulation, regular expressions offer succinct, optimized solutions:

re EBRAZBFHPLERBETEMNEAIKXLTEL o st T H Loy A » B MAKRKRBET B - #1L
MRk R

106 Chapter 10. Brief Tour of the Standard Library FRvEZEMET

Python Tutorial, Release 2.7

>>> import re

>>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')
['foot', 'fell', 'fastest']

>>> re.sub(r' (\b[a-z]+) \1', r'\1', 'cat in the the hat')

'cat in the hat'

When only simple capabilities are needed, string methods are preferred because they are easier
to read and debug:

RE LR > FHEHERFAN > BACN 3 LEHAR

>>> 'tea for too'.replace('too', 'two')
'tea for two'

10.6 Mathematics %ﬁﬁé

The math module gives access to the underlying C library functions for floating point math:
math B34 F 515 R T 2R B CHEE 8915 9]

>>> import math

>>> math.cos(math.pi / 4.0)
0.70710678118654757

>>> math.log(1024, 2)

10.0

The random module provides tools for making random selections:
random #4ET A R LEL G T A

>>> import random

>>> random.choice(['apple', 'pear', 'banana'])

'apple’

>>> random.sample (xrange(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]

>>> random.random() # random float

0.17970987693706186

>>> random.randrange(6) # random integer chosen from range(6)
4

10.7 Internet Access G EERi[A]

There are a number of modules for accessing the internet and processing internet protocols. Two
of the simplest are urllib2 for retrieving data from urls and smtplib for sending mail:

A IUABESR A T 17 1B B A B AL 32 P 3845 i o P s) £ 69 A A E A T4 BN urls A9 $IE 6
urllib2 YARA TR & & F 446 smtplib

>>> import urllib2
>>> for line in urllib2.urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl'):
if 'EST' in line or 'EDT' in line: # look for Eastern Time
print line

Nov. 25, 09:43:32 PM EST

>>> import smtplib

10.6. Mathematics (% 107

Python Tutorial, Release 2.7

>>> server = smtplib.SMTP('localhost')
>>> server.sendmail ('soothsayer@example.org', 'jcaesar@example.org',
"""To: jcaesar@example.org
. From: soothsayer@exzample.org

. Beware the Ides of March.
unu)
>>> server.quit()

(Note that the second example needs a mailserver running on localhost.)

(EEFH=ABITFEEE localhost BAT—ANAMBFREE o)

10.8 Dates and Times H HAANAT[H]

The datetime module supplies classes for manipulating dates and times in both simple and
complex ways. While date and time arithmetic is supported, the focus of the implementation is
on efficient member extraction for output formatting and manipulation. The module also supports
objects that are timezone aware.

datetime AZ3RA BMA R MAERHRBET HEF G XG5k LF AN REEGRN » AN T
B BA AL AR XA o ZARIRE A HFH R A

>>> # dates are easily constructed and formatted

>>> from datetime import date

>>> now = date.today()

>>> now

datetime.date (2003, 12, 2)

>>> now.strftime("Ym-/d-%y. /d %b %Y is a %A on the /d day of %B.")
'12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'

>>> # dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)

>>> age = now - birthday

>>> age.days

14368

10.9 Data Compression ﬁfEE?ﬁ

Common data archiving and compression formats are directly supported by modules including: zlib,
gzip, bz2, zipfile and tarfile.

AT A B3 X R M e R BAT B4 X ¢ z1ib » gzip ° bz2 ° zipfile * WA tarfile

>>> import zlib

>>> s = 'witch which has which witches wrist watch'
>>> len(s)

41

>>> t = zlib.compress(s)

>>> len(t)

37

>>> zlib.decompress(t)

'witch which has which witches wrist watch'
>>> zlib.crc32(s)

226805979

108 Chapter 10. Brief Tour of the Standard Library FRvEZEMET

Python Tutorial, Release 2.7

10.10 Performance Measurement ‘ﬁﬁ%ﬁ%

Some Python users develop a deep interest in knowing the relative performance of different
approaches to the same problem. Python provides a measurement tool that answers those questions
immediately.

AR P T AR R F — P AL R ik X A P AE £ A AR EGKAR o Python R BT —AMEELE AKX
FIAARARET AEER o

b3

For example, it may be tempting to use the tuple packing and unpacking feature instead of the
traditional approach to swapping arguments. The timeit module quickly demonstrates a modest
performance advantage:

Blde > A ABH LRI R TRAEFARBBABENY S EEHANS o tineit EW T B X B R
—

>>> from timeit import Timer

>>> Timer('t=a; a=b; b=t', 'a=1; b=2').timeit()
0.57535828626024577

>>> Timer('a,b = b,a', 'a=1; b=2').timeit()
0.54962537085770791

In contrast to timeit's fine level of granularity, the profile and pstats modules provide tools
for identifying time critical sections in larger blocks of code.

482 F timeit 89%mALJL > imod:profile 4= pstats AR B T4 & KRB G AL ETLTE o

10.11 Quality Control JFiE=#sH|

One approach for developing high quality software is to write tests for each function as it is
developed and to run those tests frequently during the development process.

TR &R ERM G 7 R — A~ A RET RN KRS » FEAFRIRT ZFHATMK o

The doctest module provides a tool for scanning a module and validating tests embedded in a
program's docstrings. Test construction is as simple as cutting-and-pasting a typical call
along with its results into the docstring. This improves the documentation by providing the
user with an example and it allows the doctest module to make sure the code remains true to the
documentation:

doctest MIRFHET — AT HE » AR HAREALF F R4 09T FFBPATH X o MKW &4 B H £ 8
BeHMBEERT ALV THEF c ALA P REHHIT > CLET A > AF doctest B3R
URBYERZEHIH— K

def average(values):
"""Computes the arithmetic mean of a list of numbers.

>>> print average([20, 30, 70])
40.0

mmn

return sum(values, 0.0) / len(values)

import doctest
doctest.testmod () # automatically validate the embedded tests

The unittest module is not as effortless as the doctest module, but it allows a more comprehensive
set of tests to be maintained in a separate file:

10.10. Performance Measurement [£EEE & 109

Python Tutorial, Release 2.7

unittest B3k 1% doctest BEHRMARHEH » R ECTAE— MR IO ERE—ANF L@ NK
&

import unittest
class TestStatisticalFunctions(unittest.TestCase):

def test_average(self):
self .assertEqual(average([20, 30, 70]), 40.0)
self .assertEqual (round(average([1, 5, 71), 1), 4.3)
self .assertRaises(ZeroDivisionError, average, [])
self.assertRaises(TypeError, average, 20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12 Batteries Included H D &

Python has a "‘batteries included'' philosophy. This is best seen through the sophisticated and
robust capabilities of its larger packages. For example:

Python I T “batteries included” # % ! o Python T VAidid & K&y 6,69 %43 B mAT & # B 2154
BRG] P NI — B EMNTRE R GEBGRF o flde :

e The xmlrpclib and SimpleXMLRPCServer modules make implementing remote procedure calls
into an almost trivial task. Despite the modules names, no direct knowledge or handling
of XML is needed.

xmlrpclib #7 SimpleXMLRPCServer MRS T AM AL F A MTRIZ . REARFENL
CEEMPAFREHLE XML > BRFREF @ iR o

e The email package is a library for managing email messages, including MIME and other
RFC 2822-based message documents. Unlike smtplib and poplib which actually send and
receive messages, the email package has a complete toolset for building or decoding complex
message structures (including attachments) and for implementing internet encoding and
header protocols.

email GE—AURdEH B IEE » A4 T MIME LA T RFC 2822 934 A X o RRT LKL
Ao MUK B89 smtplib A7 poplib Bk s email & A —ANATHERMBTELHLEH (iR
) AR ERNEHFEM BTkt L RELLE

e The xml.dom and xml.sax packages provide robust support for parsing this popular data
interchange format. Likewise, the csv module supports direct reads and writes in a common
database format. Together, these modules and packages greatly simplify data interchange
between Python applications and other tools.

xml.dom # xml.sax @A RITHEEXBERANRETRBRGIE - AMH > csv 3k L4548 A HIE
BEHAPTHEBEEE o otk XL OKRKME 10T Python m A FA L ¥ T A A 6 $IEL
P oo

e Internationalization is supported by a number of modules including gettext, locale, and
the codecs package.

EIFLd gettext ° locale #7 codecs &L I 4F o

1 batteries included Z— A L5 FARAZ LN AR L AT 2B PRA L s FATH o —iFi2

110 Chapter 10. Brief Tour of the Standard Library FRvEZEMET

CHAPTER

ELEVEN

BRIEF TOUR OF THE STANDARD LIBRARY --
PART 11 FRiEEJZEMENT 11

This second tour covers more advanced modules that support professional programming needs. These
modules rarely occur in small scripts.

FoRr 0T AR T LRBIANTY L[ROER » ZRBRR S HALLEDHAF -

11.1 Output Formatting ’ﬁﬁﬁ?l‘%ﬁ

The repr module provides a version of repr() customized for abbreviated displays of large or
deeply nested containers:

repr T = repr() YT HMA » UL FRABRREHBZNES

>>> import repr
>>> repr.repr(set('supercalifragilisticexpialidocious'))
Ilset([lal ! 4! te! T lgl _._])u

The pprint module offers more sophisticated control over printing both built-in and user defined
objects in a way that is readable by the interpreter. When the result is longer than one line,

the *‘pretty printer'' adds line breaks and indentation to more clearly reveal data structure:

pprint BHRALEFRET MBS T RO FZXNRAEZHAERFAPL AE L LT - SadBd—
ATHgeE o “EALITER (pretty printer) 7 v Wi THAAR R 0 BAFEIE LM B T 09 B AW

>>> import pprint
>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']l], [['magenta’,
'yellow']l, 'blue'l]]

>>> pprint.pprint(t, width=30)
[[[['black', 'cyan'l],
'white',
['green', 'red'l],
[['magenta', 'yellow'],
'blue']]]

The textwrap module formats paragraphs of text to fit a given screen width:
textwrap B3k XAL AR K AE 2R T 895 T

>>> import textwrap
>>> doc = """The wrap() method is just like fill() except that it returns

111

Python Tutorial, Release 2.7

. a list of strings instead of one big string with newlines to separate
. the wrapped lines."""

>>> print textwrap.fill(doc, width=40)
The wrap() method is just like £fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

The locale module accesses a database of culture specific data formats. The grouping attribute
of locale's format function provides a direct way of formatting numbers with group separators:

locale #E3k¥%i7 F T €45 69 B K15 B 4B E © locale 895 RALRFA R ERE T - EHH X h5 Az
A& AL F
>>> import locale

>>> locale.setlocale(locale.LC_ALL, 'English _United States.1252')
'English_United States.1252'

>>> conv = locale.localeconv() # get a mapping of conventions
>>> x = 1234567.8

>>> locale.format("/d", x, grouping=True)

'1,234,567"

>>> locale.format_string(" ", (conv['currency_symbol'],

. conv['frac_digits'], x), grouping=True)
'$1,234,567.80"

11.2 Templating Tt

The string module includes a versatile Template class with a simplified syntax suitable for
editing by end-users. This allows users to customize their applications without having to alter
the application.

string BT — M RE S THBERE template A CR LM P TAR B LGBATHRE o XA P T
VALE RBAT R 09 LT Z A8 2 AL o

The format uses placeholder names formed by ¢ with valid Python identifiers (alphanumeric
characters and underscores). Surrounding the placeholder with braces allows it to be followed
by more alphanumeric letters with no intervening spaces. Writing $$ creates a single escaped $:

XL H § AFKE Python &kiriR (KT~ FHEATRUE) A &L F o LA OHRESRET
A R FH T B RA—A o $¢ 6] E—DERE §

>>> from string import Template

>>> t = Template('${village}folk send $$10 to $cause.')

>>> t.substitute(village='Nottingham', cause='the ditch fund')
'Nottinghamfolk send $10 to the ditch fund.'

The substitute() method raises a KeyError when a placeholder is not supplied in a dictionary or
a keyword argument. For mail-merge style applications, user supplied data may be incomplete and
the safe_substitute() method may be more appropriate --- it will leave placeholders unchanged
if data is missing:

FHRIAXEF LT BT EANS B OHIZ substitute() HE#d KeyError # % o £ dRih-4& 7 WA
MR RAREF s A PREGIBIETRARTTE > WiF A safe-substitute() FEEAE ——WwRIELRZ
o R RAHG SAH

112 Chapter 11. Brief Tour of the Standard Library -- Part IT BRiBEEREY 11

Python Tutorial, Release 2.7

>>> t = Template('Return the $item to $owner.')
>>> d = dict(item='unladen swallow')

>>> t.substitute(d)

Traceback (most recent call last):

KeyError: 'owner'
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.'

Template subclasses can specify a custom delimiter. For example, a batch renaming utility for
a photo browser may elect to use percent signs for placeholders such as the current date, image
sequence number, or file format:

B TFETUE R A RHDTEH o Bl BRA L EORBELTETHRERN BLSEAEATSHA
B~ BT D)5 R R &AL A

>>> import time, os.path
>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
>>> class BatchRename(Template):
delimiter = 'J'
>>> fmt = raw_input('Enter rename style (/d-date n-seqnum /f-format): ')
Enter rename style (/d-date %n-seqnum %f-format): Ashley_Yn’%f

>>> t = BatchRename (fmt)

>>> date = time.strftime('/d/bly"')

>>> for i, filename in enumerate(photofiles):
base, ext = os.path.splitext(filename)
newname = t.substitute(d=date, n=i, f=ext)
print '{0} --> {1}'.format(filename, newname)

img_1074. jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

Another application for templating is separating program logic from the details of multiple
output formats. This makes it possible to substitute custom templates for XML files, plain text
reports, and HIML web reports.

B—ARREK SR AR T WA FZH T &R o ZARIFA XML UH > 2 STAAR & > HIML
web 4k R W PALRR AR A 7T RE ©

11.3 Working with Binary Data Record Layouts {#H —HEEFZE

The struct module provides pack() and unpack() functions for working with variable length binary
record formats. The following example shows how to loop through header information in a ZIP file
without using the zipfile module. Pack codes "H" and "I" represent two and four byte unsigned
numbers respectively. The "<" indicates that they are standard size and in little-endian byte
order:

struct BRI pack() # unpack() BEA T LR —#BHRFHEX c ATFT HEFT Tt ZIP
ey kiE 8 (BEHEARE TG g fo Ly S5 E—Ff OFFEATER) > "< FRTBENAFER
A KB BLAK T 51

import struct

data = open('myfile.zip', 'rb').read()
start = 0

11.3. Working with Binary Data Record Layouts {#H —i##Ei0FEE 113

Python Tutorial, Release 2.7

for i in range(3): # show the first 3 file headers
start += 14
fields = struct.unpack('<IITHH', data[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

start += 16

filename = data[start:start+filenamesize]

start += filenamesize

extra = data[start:start+extra_size]

print filename, hex(crc32), comp_size, uncomp_size

start += extra_size + comp_size # skip to the next header

11.4 Multi-threading 4%

Threading is a technique for decoupling tasks which are not sequentially dependent. Threads
can be used to improve the responsiveness of applications that accept user input while other
tasks run in the background. A related use case is running I/0 in parallel with computations
in another thread.

BRE-ANDELMF R X RAEFORR c £ERBEFETTEEHNELN 25 2RFRE » ZRET
PRI LR E o —ANA X RAEEE 1/0 QRN E R BTUHATHE -

The following code shows how the high level threading module can run tasks in background while
the main program continues to run:

TaEeg R LR T H%ME threading & T4 5E4769 B i 2471 %

import threading, zipfile

class AsyncZip(threading.Thread):

def __init__(self, infile, outfile):
threading.Thread.__init__(self)
self.infile = infile
self.outfile = outfile

def run(self):
f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
f.write(self.infile)
f.close()
print 'Finished background zip of: ', self.infile

background = AsyncZip('mydata.txt', 'myarchive.zip')
background.start ()
print 'The main program continues to run in foreground.'

background. join() # Wait for the background task to finish
print 'Main program waited until background was done.'

The principal challenge of multi-threaded applications is coordinating threads that share data
or other resources. To that end, the threading module provides a number of synchronization
primitives including locks, events, condition variables, and semaphores.

§ AR LB B0 A DI AR AT ORI LT R - 50> AR BRIET LA R AN
Y Xt ~ T4 AHTERETE o

While those tools are powerful, minor design errors can result in problems that are difficult
to reproduce. So, the preferred approach to task coordination is to concentrate all access to

114 Chapter 11. Brief Tour of the Standard Library -- Part IT BRiBEEREY 11

Python Tutorial, Release 2.7

a resource in a single thread and then use the Queue module to feed that thread with requests
from other threads. Applications using Queue.Queue objects for inter-thread communication and
coordination are easier to design, more readable, and more reliable.

RELBEMBR MG ZTHHERELTRERFEAB DO HE - Ak EFHOF FEEHAEG KRG
FlEPRH — MR EEP» REMEH Queve BB BAEZ ABHARELCEBNFHR R ARFIER
Queue.Queue X Z T AL AR A It MERHEIT ETiE s FT5 -

11.5 Logging EIF,E

The logging module offers a full featured and flexible logging system. At its simplest, log
messages are sent to a file or to sys.stderr:

logging MRV T A ¥R R EN A ERL o CREFYMAHLLRE LEHFRE B —MUH K sys.stderr

import logging
logging.debug('Debugging information')
logging.info('Informational message')

logging.warning('Warning:config file not found', 'server.conf')
logging.error('Error occurred')
logging.critical('Critical error -- shutting down')

This produces the following output:
WleT

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are suppressed and the output is sent to standard
error. Other output options include routing messages through email, datagrams, sockets, or to
an HTTP Server. New filters can select different routing based on message priority: DEBUG,
INFO, WARNING, ERROR, and CRITICAL.

ZUAFATHREERARYEFA KR BEE LB FEEER R THNRERE A5 XNiB denail » #
1 L » socket K, FAHITP Server o AT /H & BN » #Hegid RBRETUAXFRFHH S © DEBUG, INFO
WARNING °* ERROR #= CRITICAL °

The logging system can be configured directly from Python or can be loaded from a user editable
configuration file for customized logging without altering the application.

BEALTAEREA Python RABFEH » LT AREI R AT BIfL— NP T RF G EE A F
o

11.6 Weak References 555]| H

Python does automatic memory management (reference counting for most objects and garbage col-
lection to eliminate cycles). The memory is freed shortly after the last reference to it has
been eliminated.

Python B ##ITARAGEE (2 K% 69t £ #4735 A1 R ©@IL—— garbage collection —— VA$§
FAR) Ame—A5IREERE» REG4L RBEEBH -

This approach works fine for most applications but occasionally there is a need to track objects
only as long as they are being used by something else. Unfortunately, just tracking them creates

11.5. Logging HE 115

Python Tutorial, Release 2.7

a reference that makes them permanent. The weakref module provides tools for tracking objects
without creating a reference. When the object is no longer needed, it is automatically removed
from a weakref table and a callback is triggered for weakref objects. Typical applications
include caching objects that are expensive to create:

BATHEZ XK G Som AR IR > 2 2B REFRBRIFAERM—EF o FEHRL RARARK
CMEZI AL LKA E o weakref Rk RET FTAGMREINAYREAZIE — I E T AE
£ CAFHMNHFI A AL MiktARREE o B LA atEMREAMEG T F

>>> import weakref, gc
>>> class A:
def __init__(self, value):
self.value = value
def __repr__(self):
return str(self.value)

>>> a = A(10) # create a reference

>>> d = weakref.WeakValueDictionary()

>>> d['primary'] = a # does not create a reference

>>> d['primary'] # fetch the object if it is still alive
10

>>> del a # remove the one reference

>>> gc.collect() # run garbage collection right away

0

>>> d['primary"'] # entry was automatically removed

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
d['primary'] # entry was automatically removed
File "C:/python26/lib/weakref.py", line 46, in __getitem__
o = self.datalkey]l)
KeyError: 'primary'

11.7 Tools for Working with Lists @J%IE*

Many data structure needs can be met with the built-in list type. However, sometimes there is
a need for alternative implementations with different performance trade-offs.

REBEEMTREMEANAEIN AL o Ky » AR TARE TR ERNKMN G EA o

The array module provides an array() obgject that is like a list that stores only homogeneous
data and stores it more compactly. The following example shows an array of numbers stored as
two byte unsigned binary numbers (typecode "H") rather than the usual 16 bytes per entry for
regular lists of Python int obgjects:

array MIRBHT —MRMI| KRG array HE > ERRAFHEIEE > LAR R ATHTHERT —4
BT RAT S A S (X% H) mIEAME 16 FF Python ¥ ¥ 2 89-L@ EMF| &

>>> from array import array

>>> a = array('H', [4000, 10, 700, 22222])
>>> sum(a)

26932

>>> al1:3]

array('H', [10, 700])

The collections module provides a deque() object that is like a list with faster appends and
pops from the left side but slower lookups in the middle. These objects are well suited for
implementing queues and breadth first tree searches:

116 Chapter 11. Brief Tour of the Standard Library -- Part IT BRiBEEREY 11

Python Tutorial, Release 2.7

collections HIRFEHET EMF| %8 deque() % ° ©IN LWL (append) Fe il (pop) &bk 2%
ENIPEWENR o XEFFEERNTRI|ENAT B LA IE R

>>> from collections import deque

>>> d = deque(["taskl", "task2", "task3"])
>>> d.append("task4")

>>> print "Handling", d.popleft()
Handling taskl

unsearched = deque([starting_node])
def breadth_first_search(unsearched):
node = unsearched.popleft()
for m in gen_moves(node) :
if is_goal(m):
return m
unsearched. append (m)

In addition to alternative list implementations, the library also offers other tools such as
the bisect module with functions for manipulating sorted lists:

FRTHERBENRERN > ZETZRET bisect EH MBI ARIEA M &

>>> import bisect

>>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
>>> bisect.insort(scores, (300, 'ruby'))

>>> scores

[(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

The heapq module provides functions for implementing heaps based on regular lists. The lowest
valued entry is always kept at position zero. This is useful for applications which repeatedly
access the smallest element but do not want to run a full list sort:

heapq BT AT EMAEROE LN o R GEEARIFEOR o BAEA LI B &AL ELL R BIR
ITREEPE T RAZIEF AR

>>> from heapq import heapify, heappop, heappush
>>> data = [1, 3, 5, 7,9, 2, 4,6, 8, o]

>>> heapify(data) # rearrange the list into heap order
>>> heappush(data, -5) # add a new entry

>>> [heappop(data) for i in range(3)] # fetch the three smallest entries
[_5) 0, 1]

11.8 Decimal Floating Point Arithmetic 3 H|VF S EEE

The decimal module offers a Decimal datatype for decimal floating point arithmetic. Compared
to the built-in float implementation of binary floating point, the class is especially helpful
for

decimal #EPEH T —A Decimal HKIEXAAMRA THEAFTE - AMLAE 4 F AR LI float » &
MNRAA BT

e financial applications and other uses which require exact decimal representation,
e AfLedRHA TR ARG
e control over precision,

A -

11.8. Decimal Floating Point Arithmetic —Fi#HIV% S A B 117

Python Tutorial, Release 2.7

e control over rounding to meet legal or regulatory requirements,
FEHAEANNE R FEREATER

e tracking of significant decimal places, or
ARt R RATHEE 0 A

e applications where the user expects the results to match calculations done by hand.
RPpAZTREREFHAMGHNE -

For example, calculating a 5% tax on a 70 cent phone charge gives different results in decimal
floating point and binary floating point. The difference becomes significant if the results are
rounded to the nearest cent:

Bldo o THE 70 5 wiERE 5% HUE TRAMF AL BN FALTELER HEH LT cwRESHE
o IANAERRRERT

>>> from decimal import *

>>> x = Decimal('0.70') * Decimal('1.05"')

>>> X

Decimal('0.7350")

>>> x.quantize(Decimal('0.01')) # round to nearest cent
Decimal('0.74"')

>>> round(.70 * 1.05, 2) # same calculation with floats
0.73

The Decimal result keeps a trailing zero, automatically inferring four place significance from
multiplicands with two place significance. Decimal reproduces mathematics as done by hand
and avoids issues that can arise when binary floating point cannot exactly represent decimal
quantities.

Decimal %R ELRA LA 00 A AR E L F|44% o Decimal FIMT F LG FEH » L3k
AR T AR AR R AR ARA GIE W -

Exact representation enables the Decimal class to perform modulo calculations and equality tests
that are unsuitable for binary floating point:

A EAL Decimal T VAIMAT =45 R A ik #AT 6 B 12 S Ao S 41X o

>>> Decimal('1.00') % Decimal('.10")
Decimal('0.00")

>>> 1.00 % 0.10

0.09999999999999995

>>> sum([Decimal('0.1')]#10) == Decimal('1.0')
True

>>> sum([0.1]%10) == 1.0

False

The decimal module provides arithmetic with as much precision as needed:
decimal R4 T LM 89 HAFE FH &

>>> getcontext().prec = 36
>>> Decimal(1l) / Decimal(7)
Decimal('0.142857142857142857142857142857142857 ")

118 Chapter 11. Brief Tour of the Standard Library -- Part IT BRiBEEREY 11

CHAPTER

TWELVE

WHAT NOW? #2p3g?

Reading this tutorial has probably reinforced your interest in using Python --- you should be

eager to apply Python to solving your real-world problems. Where should you go to learn more?

i AAE BB AL RA AR Python —— THRARECEMAEM Python BAKKEIRFAAT o T
DA B AT —F 5 7 9

This

tutorial is part of Python's documentation set. Some other documents in the set are:

ATT4E @A Python Ao —3F4 o L ey 55— 048

More

library-index:

You should browse through this manual, which gives complete (though terse) reference
material about types, functions, and the modules in the standard library. The standard
Python distribution includes a lot of additional code. There are modules to read Unix
mailboxes, retrieve documents via HITP, generate random numbers, parse command-1line options,
write CGI programs, compress data, and many other tasks. Skimming through the Library
Reference will give you an idea of what's available.

FRZHE— TR XA CHAREE PR REERRETZE (RER B%) 8955 %4 -
A4 69 Python KA EIET KE WAtk o L F A48 Unix 45 ~ 30 HITP U ~ 4
RIS BT AT -5 CGI B~ EHBIBUARR S L CIELZ R - gz —TEAE 2L
AR % AR R F] ARG EF o

install-index explains how to install external modules written by other Python users.

install-index B T 4ofT2¥ E 4 Python F F % 5 &M itk o

reference-index: A detailed explanation of Python's syntax and semantics. It's heavy
reading, but is useful as a complete guide to the language itself.

reference-index ###4@148] 7 Python EEFiEL o B REE » R dxTiEs Ay » AR
FMARAR o

Python resources 3% Python #i&:

http://www.python.org: The major Python Web site. It contains code, documentation, and
pointers to Python-related pages around the Web. This Web site is mirrored in various
places around the world, such as Europe, Japan, and Australia; a mirror may be faster than
the main site, depending on your geographical location.

http://wwww.python.org: Python B H M3k o &€ &4 R ~ L& F Web 5 Python A XU mik
o GMMEEGET AT LA LEFA » £MEBM > BARFRBRKAIE o BT ILELEHR » XE
RTAREGIIEALE o

http://docs.python.org: Fast access to Python's documentation.

119

http://www.python.org
http://wwww.python.org
http://docs.python.org

Python Tutorial, Release 2.7

http://docs.python.org: Hri&i7 18] Python #LA% o

e http://pypi.python.org: The Python Package Index, previously also nicknamed the Cheese
Shop, is an index of user-created Python modules that are available for download. Once you
begin releasing code, you can register it here so that others can find it.

http://pypi.python.org: Python & %3] » AATRARAWE)E » &3] T4 THM» APLEY
Python #3k o ke RAREAH TR » TVLEMB| XL » X HHATRKIE o

e http://aspn.activestate.com/ASPN/Python/Cookbook/: The Python Cookbook is a sizable col-
lection of code examples, larger modules, and useful scripts. Particularly notable contri-
butions are collected in a book also titled Python Cookbook (0'Reilly & Associates, ISBN
0-596-00797-3.)

http://aspn.activestate.com/ASPN/python/Cookbook/: Python R & K& =#H XK ~ KA
B Fa g AOM A o EIFFEHEZIRFROLEE ERFP > &4 (Python £i£) (0'Reilly &
Associates, ISBN 0-596-00797-3 ¢)

For Python-related questions and problem reports, you can post to the newsgroup comp.lang.python,
or send them to the mailing list at python-list@python.org. The newsgroup and mailing list are
gatewayed, so messages posted to one will automatically be forwarded to the other. There are
around 120 postings a day (with peaks up to several hundred), asking (and answering) questions,
suggesting new features, and announcing new modules. Before posting, be sure to check the list
of Frequently Asked Questions <http://www.python.org/doc/faq/> ' (also called the FAQ), or
look for it in the Misc/ directory of the Python source distribution. Mailing list archives
are available at http://mail.python.org/pipermail/. The FAQ answers many of the questions that
come up again and again, and may already contain the solution for your problem.

5 Python A X9 R & » LA AL > TARBFTEA comp. lang. python > A REB|ER4F4 python-
list@python.org o #FFHAFr R0 £ FF 2489 » FRAREW BT ILE R F N2)5 o HFRAEMT
120 /42 (M ARE) 185 (UAE &) B AHPEIREN > RHAFEE o AREZH » 5 d
B “FILEAME " <http://www.python.org/doc/faq/>" 2 (7 FAQ) » F /£ Python BAE X # 6,8
Misc/ B F PR EH o R84 T AAE http://mail.python.org/pipermail/ 518 c FAQ A TR 2% R B
BB R TROULME TR A -

1 Postings figure based on average of last six months activity as reported by www.egroups.com; Jan. 2000 - June
2000: 21272 msgs / 182 days = 116.9 msgs / day and steadily increasing. (XXX up to date figures?)

2 ISR R L HA wew.egroups.com HEE 3 200055 A 121272 H /182 X = 116.9 ¥ /K A L&A FHEGEH o
(REZXEV?)

120 Chapter 12. What Now? ¥ETF3E?

http://docs.python.org
http://pypi.python.org
http://pypi.python.org
http://aspn.activestate.com/ASPN/Python/Cookbook/
http://aspn.activestate.com/ASPN/python/Cookbook/
mailto:python-list@python.org
http://mail.python.org/pipermail/
mailto:python-list@python.org
mailto:python-list@python.org
http://www.python.org/doc/faq/
http://mail.python.org/pipermail/

CHAPTER

THIRTEEN

INTERACTIVE INPUT EDITING AND HISTORY
SUBSTITUTION

Some versions of the Python interpreter support editing of the current input line and history
substitution, similar to facilities found in the Korn shell and the GNU Bash shell. This is
implemented using the GNU Readline library, which supports Emacs-style and vi-style editing.
This library has its own documentation which I won't duplicate here; however, the basics are
easily explained. The interactive editing and history described here are optionally available
in the Unix and Cygwin versions of the interpreter.

A AR Ay Python MBS XBMAATHREF B L @H > £4L Korn shell F» GNU bash shell #9360 X
AL GNU Readline & I o & X4 Emacs RAEA vi RAG R - INEACEH TH LA » AL
FRET o AR KABAREHET - REXBHEA ML EME Unix fo Cygwin JRF AT A o

This chapter does not document the editing facilities of Mark Hammond's PythonWin package or
the Tk-based environment, IDLE, distributed with Python. The command line history recall which
operates within DOS boxes on NT and some other DOS and Windows flavors is yet another beast.

AE FE Gk ABARME PythonWin €28 Python XA 69A-F TK 4 IDLE IREH LA o NT A %A
£ DOS ~ Windows A% L8 DOS BRI S4T HEEiE» BT H—AE4

13.1 Line Editing {74m%HE

If supported, input line editing is active whenever the interpreter prints a primary or secondary
prompt. The current line can be edited using the conventional Emacs control characters. The
most important of these are: C-A (Control-A) moves the cursor to the beginning of the line,
C-E to the end, C-B moves it one position to the left, C-F to the right. Backspace erases
the character to the left of the cursor, C-D the character to its right. C-XK kills (erases)
the rest of the line to the right of the cursor, C-Y yanks back the last killed string. C-
underscore undoes the last change you made; it can be repeated for cumulative effect.

WwREIF RBESITAIRTHEINBR TR FTHBA2HE o AT WU Emacs K6 izt
Wi o AP R ERA . C-A (Control-A) K kAz# #2478 > :kbd:C-E B#HF4TE C-B @LH
—AF M C-F @B —iz c BEGLEMMB—AFE » C-D EMR —AFF o C-K Mtk ELE
BATROPTAEFTH > C-Y ¥k B—RMMBFHBIMND HAFILE o C-underscore (underscores Bp
TR #E) RS —RIEK s CTARAREMERNETE -

121

http://tiswww.case.edu/php/chet/readline/rltop.html
http://tiswww.case.edu/php/chet/readline/rltop.html

Python Tutorial, Release 2.7

13.2 History Substitution [jj 52 [=]

History substitution works as follows. All non-empty input lines issued are saved in a history
buffer, and when a new prompt is given you are positioned on a new line at the bottom of this
buffer. C-P moves one line up (back) in the history buffer, C-N moves one down. Any line in
the history buffer can be edited; an asterisk appears in front of the prompt to mark a line as
modified. Pressing the Return key passes the current line to the interpreter. C-R starts an
incremental reverse search; C-S starts a forward search.

P FRATIULAE o BTHEZEMAATHRREGED L EHT » RIF—DHOR THONE > L TRA
BHEYREGEIT o C-P EHLELEFTLEN— 1T C-N @ TH—4T mELEH P EOIE—ITH T AR ;
T :kbd:Return 2B BT AMBER o C-R A E— AN EHIWH & :kbd:C-S F—NHEH
'%’ o

13.3 Key Bindings REEGSNE

The key bindings and some other parameters of the Readline library can be customized by placing
commands in an initialization file called ~/.inputrc. Key bindings have the form :

Readline B >k L€ —HARKTUELELA /. inputrc WML B el R TH o &
AR T 4o TH K

key-name: function-name

or :
A

"string": function-name

and options can be set with :
BN T A4 T E

set option-name value

For example:
18] %

I prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:

Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding for Tab in Python is to insert a Tab character instead of Readline's

default filename completion function. If you insist, you can override this by putting :

FHEZEMNA Python PHIN Tab T AEA—A Tab FH ™A Z Readline M 8RN 4L TR H
o A RRARNEAS > TURATAE HA

122 Chapter 13. Interactive Input Editing and History Substitution

Python Tutorial, Release 2.7

Tab: complete

in your ~/.inputrc. (0f course, this makes it harder to type indented continuation lines if
you're accustomed to using Tab for that purpose.)

3R89 ~/.inputrc FREZE - (Z A wRFENI Tab % EREMH > RIRELEBRITFIHEALE
oo) Automatic completion of variable and module names is optionally available. To enable

it in the interpreter's interactive mode, add the following to your startup file: !

A ZREEREREETARTER c ZIEIEBBERZIEIRXNFTH » £ R HAFF AT @A

L

import rlcompleter, readline
readline.parse_and_bind('tab: complete')

This binds the Tab key to the completion function, so hitting the Tab key twice suggests
completions; it looks at Python statement names, the current local variables, and the available
module names. For dotted expressions such as string.a, it will evaluate the expression up to
the final '.' and then suggest completions from the attributes of the resulting object. Note
that this may execute application-defined code if an object with a __getattr__() method is part
of the expression.

EARAEHE Tab HEENTRBK > #i% Tab HARELHAN HTRAZ : ©EK Python .8 ~ F4]
%5% L E ﬁ&ﬁ&%20ﬁf%f%snmgakﬁﬁiﬁg’ M L AXERZX KA
#y ¢ %XT%“!’MU% P ARBZ RN - FREZNZ > R LN ,,getattr,,() 7 ik A b &k X8
—3y 0 RTREPATE AT E LR o

A more capable startup file might look like this example. Note that this deletes the names it
creates once they are no longer needed; this is done since the startup file is executed in the
same namespace as the interactive commands, and removing the names avoids creating side effects
in the interactive environment. You may find it convenient to keep some of the imported modules,
such as os, which turn out to be needed in most sessions with the interpreter.

FHRGMBICIHTRE T EBXANP TR o 22E—2REOLTEN T eomBEEl s RAM
WAL A BBEG S GZ AR — /N8 ZRMAT 0 A XZIRE ML "P/g'%’*TLFT\?‘i/} o I fe R & I,
TERMEGHRE T RGN B3R M os P EMBRENOREZIIERNHESFHRLAT N -

Add auto-completion and a stored history file of commands to your Python
interactive interpreter. Requires Python 2.0+, readline. Autocomplete is
bound to the Esc key by default (you can change it - see readline docs).

Store the file in ~/.pystartup, and set an environment wvariable to point
to 4t: "export PYTHONSTARTUP=/home/user/.pystartup” in bash.

Note that PYTHONSTARTUP does *not* expand "~", so you have to put in the
full path to your home directory.

oW R OR R R BB R

import atexit
import os

import readline
import rlcompleter

historyPath = os.path.expanduser("~/.pyhistory")

def save_history(historyPath=historyPath):

! Python will execute the contents of a file identified by the PYTHONSTARTUP environment variable when you start an
interactive interpreter.
2 BEH X EMMAESZN > Python [A#MAT PYTHONSTARTUP R E AT THIXLHAR -

13.3. Key Bindings RiERYLE 123

Python Tutorial, Release 2.7

import readline
readline.write_history_file(historyPath)

if os.path.exists(historyPath):
readline.read_history_file(historyPath)

atexit.register(save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath

13.4 Alternatives to the Interactive Interpreter H'EXR O R fEF#

This facility is an enormous step forward compared to earlier versions of the interpreter;
however, some wishes are left: It would be nice if the proper indentation were suggested on
continuation lines (the parser knows if an indent token is required next). The completion
mechanism might use the interpreter's symbol table. A command to check (or even suggest)
matching parentheses, quotes, etc., would also be useful.

BRIFRAGEBERSL s WECEGETRRGAY - A TRALNELZAT A CERGAEBHITFR
EORGEER (RBEERETTATEEE &) Bl ZANMNTAEAMBEEOHES R - 2%
(R#t—FR) TR #5351 55F%F o

One alternative enhanced interactive interpreter that has been around for quite some time is
IPython, which features tab completion, object exploration and advanced history management.
It can also be thoroughly customized and embedded into other applications. Another similar
enhanced interactive environment is bpython.

AH—ABICRLAMRBROEBLE—BNEAT » B2 “IPython' » B X tab TR F LA R H%
MLER c CLTARLAEZHEBARLE RARFP o F—AMEMEYBILKLIRFEZL “bpython® o

124 Chapter 13. Interactive Input Editing and History Substitution

http://ipython.scipy.org/
http://www.bpython-interpreter.org/

CHAPTER

FOURTEEN

FLOATING POINT ARITHMETIC: ISSUES AND
LIMITATIONS {# S8 EE: FUCH PR

Floating-point numbers are represented in computer hardware as base 2 (binary) fractions. For
example, the decimal fraction :

AR TTREAIF RX A = #H] (binary) E o Blde R

0.125

has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction :
& 1/10 + 2/100 + 5/1000 #4944 » Fl A =34 %] 1 4L

0.001

has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only real difference
being that the first is written in base 10 fractional notation, and the second in base 2.

& 0/2 + 0/4 + 1/8° RANEAMEANR o —8)ZRREAHZFZ —AB AT @A Fogik Fo AR
%l] o

Unfortunately, most decimal fractions cannot be represented exactly as binary fractions. A con-
sequence is that, in general, the decimal floating-point numbers you enter are only approximated
by the binary floating-point numbers actually stored in the machine.

WA & > K5 Rt 2B BOR A 09 R 8 = RN o

The problem is easier to understand at first in base 10. Consider the fraction 1/3. You can
approximate that as a base 10 fraction:

TAE AL EFeEa e E AT R o R ADEW KX 1/3 > BT UK A T B 69T 04E
0.3
or, better,
FAE R — P
0.33
or, better,
Sk Ra—F

0.333

125

Python Tutorial, Release 2.7

and so on. No matter how many digits you're willing to write down, the result will never be
exactly 1/3, but will be an increasingly better approximation of 1/3.

WA K o WwRRE S ML 0 BAZRAKZTAMFHN 1/3 » BETARRE & 1/3 -

In the same way, no matter how many base 2 digits you're willing to use, the decimal value 0.1
cannot be represented exactly as a base 2 fraction. In base 2, 1/10 is the infinitely repeating
fraction :

At s BibE BT 55 0> +blH 0.1 ARAHAREIA B I o —HHRAK 1/10 &—
TR A 31 3

0.0001100110011001100110011001100110011001100110011. ..

Stop at any finite number of bits, and you get an approximation. This is why you see things
like:

FALZERIRALEAELF P ok > ARFT AFF Bl — AL 0 XRAA A 24

>>> 0.1
0.10000000000000001

>
W

A RLEA

N

On most machines today, that is what you'll see if you enter 0.1 at a Python prompt. You may
not, though, because the number of bits used by the hardware to store floating-point values can
vary across machines, and Python only prints a decimal approximation to the true decimal value
of the binary approximation stored by the machine. On most machines, if Python were to print
the true decimal value of the binary approximation stored for 0.1, it would have to display :

EARRSHEIE L > o RIRAE Python REFEHMA 0.1 e FH L@y AE - B4R LFREAE
BT — > B4 TR AR Gk F 2R E A R $] > Python RATEP-Ha#t 4l N EOA =2 4 4 £
MBEFRHAEG T HBAMET o ERSZEHEL > 2o Python TP 0.1 &= %] 5% 69 5 E 1 33 %)
fh > % BRI

>>> 0.1

0.1000000000000000055511151231257827021181583404541015625

instead! The Python prompt uses the built-in repr() function to obtain a string version of
everything it displays. For floats, repr(float) rounds the true decimal value to 17 significant
digits, giving :

Python 42 A B8 repr() JBMRMELETHNHE— I EGFHER & o TF R repr(float)
¥ EEM TR ELEA TR F F]

0.10000000000000001

repr(float) produces 17 significant digits because it turns out that's enough (on most machines)
so that eval(repr(x)) == x exactly for all finite floats x, but rounding to 16 digits is not
enough to make that true.

repr(float) A 17 1245 » RARACLERST (ERXSEMEL) o Rk eval(repr(x)) == x
TG L BT 0 B TRE A% x > 12 & 16 126953 % » F—E1F5] true o

Note that this is in the very nature of binary floating-point: this is not a bug in Python, and
it is not a bug in your code either. You'll see the same kind of thing in all languages that
support your hardware's floating-point arithmetic (although some languages may not display the
difference by default, or in all output modes).

BB ENRRAE A HEASOEET AR SR Python Mbug s WL MHHRBEY bug o 452 5]
RBAGIE LHF AT A AANBEHEAE AR (REALETTRRUAZLR B4 &4
EF) o

126 Chapter 14. Floating Point Arithmetic: Issues and Limitations V%S AREE. SN FIRRE

Python Tutorial, Release 2.7

Python's built-in str() function produces only 12 significant digits, and you may wish to use
that instead. It's unusual for eval(str(x)) to reproduce x, but the output may be more pleasant
to look at:

Python # M & &3 str() RAR 12/ E - RTREFZAE o #@F CHAB4 eval(str(x)) KT
x s mARRELSE

>>> print str(0.1)
0.1

It's important to realize that this is, in a real sense, an illusion: the value in the machine
is not exactly 1/10, you're simply rounding the display of the true machine value.

WIRB| XA ey BEARER - B TRMAHRE 1/10 0 RTAF LR B7 EEGIHEME -
Other surprises follow from this one. For example, after seeing :
FEHH—ARAZL o Bl Td

>>> 0.1
0.10000000000000001

you may be tempted to use the round() function to chop it back to the single digit you expect.
But that makes no difference:

RT RS # A (%X :func:iround HEEBB X A% > L DRI FH £ EEER AR EFEH

>>> round(0.1, 1)
0.10000000000000001

The problem is that the binary floating-point value stored for “*0.1'' was already the best
possible binary approximation to 1/10, so trying to round it again can't make it better: it was
already as good as it gets.

BAFBETAM “0.17 895 RECERIN/10ZERET » AAZ KRB TEFERKE : CLERT
AEAGEFT o

Another consequence is that since 0.1 is not exactly 1/10, summing ten values of 0.1 may not
yvield exactly 1.0, either:

FA—ARRARN 0.1 TEEHFAGERK 1/10 5 37104 0.1 69 Ko T EEH#H 6945 %] 1.0 B

>>> sum = 0.0

>>> for i in range(10):
sum += 0.1

>>> sum

0.9999999999999999

Binary floating-point arithmetic holds many surprises like this. The problem with “*0.1'"' is

explained in precise detail below, in the "‘Representation Error'' section. See The Perils of

Floating Point for a more complete account of other common surprises.

é&é%ﬁ%ﬁ-i‘z’%;ﬁinE’cy%&vﬁtﬁéé’J Iwe o £ “RIBRT —FF o &ZA 017 FAF@EAR T AL IR

Ao FRBEMGECTE NIRRT IELANL “F A8 YEE <http://www.lahey.com/float.html> 7 o
As that says near the end, °‘there are no easy answers.'' Still, don't be unduly wary of

floating-point! The errors in Python float operations are inherited from the floating-point
hardware, and on most machines are on the order of no more than 1 part in 2**53 per operation.
That's more than adequate for most tasks, but you do need to keep in mind that it's not decimal
arithmetic, and that every float operation can suffer a new rounding error.

127

http://www.lahey.com/float.htm
http://www.lahey.com/float.htm
http://www.lahey.com/float.html

Python Tutorial, Release 2.7

RKERER > “RARENEER” - TATZIFOEAF A% | Python 45 FRMEOHERRE THEAK
B> KEHEME LR RGFAERTHRETHET 2953 X — o AT RS RESFRCLERYIEAHRZF
T o faRAEECTRAZRTETST BRIEE BENFRBOTE TR RO o

While pathological cases do exist, for most casual use of floating-point arithmetic you'll see
the result you expect in the end if you simply round the display of your final results to the
number of decimal digits you expect. str() usually suffices, and for finer control see the
str.format() method's format specifiers in formatstrings.

PIAELZELET » A TREMBEGFEFHE R RE R RIEFORLITER ARG -
str() WEHBAT » Lo 4EH AN formatstrings F str.format() 7 &6 XILr X o

14.1 Representation Error FEIAFE 1R

This section explains the ““0.1'' example in detail, and shows how you can perform an exact
analysis of cases like this yourself. Basic familiarity with binary floating-point representation
is assumed.

E—F i@t “0.17 7] HIREH A CEREANIMERS] o BXXE REOEFAKEATHLEL
8T R o

Representation error refers to the fact that some (most, actually) decimal fractions cannot be
represented exactly as binary (base 2) fractions. This is the chief reason why Python (or Perl,
C, C++, Java, Fortran, and many others) often won't display the exact decimal number you expect:

Representation error A FFE LA (LhEAKRSH) T34 HF RHAGETH =2 o TR
Python (& Perl s C» C++ s Java > Fortran AR EEK %) B HARKBGRPEFOE T I =34 A
EOE Y L

>>> 0.1
0.10000000000000001

Why is that? 1/10 is not exactly representable as a binary fraction. Almost all machines today
(November 2000) use IEEE-754 floating point arithmetic, and almost all platforms map Python
floats to IEEE-754 ®“double precision''. 754 doubles contain 53 bits of precision, so on input
the computer strives to convert 0.1 to the closest fraction it can of the form J/2**N where J
is an integer containing exactly 53 bits. Rewriting :

TAAFZ? 1/10 TEMFAGETA =B o KREHASRGME (20005 +—A) 4 A IEEE-754
B EFHEE K% % F4 L Python 3% 5484t 4 IEEE-754 “SUAEE % 8% o754 s E 64 53 1%
KB BTATHEME A ey 0.1 225 J/2%*N REF = F o *J* £—/ 53 1209% # - &XF

1/ 10 "= J / (2%xN)

as
A
J "= 2%xN / 10

and recalling that J has exactly 53 bits (is >= 2%%52 but < 2%%53), the best value for N is
56:

J ERRER 53 412 (& >= 2%x52 M3IE < 2%x53) °» N 8% EE 56

>>> 2%%52
4503599627370496L
>>> 2%%53
9007199254740992L

128 Chapter 14. Floating Point Arithmetic: Issues and Limitations V%S AREE. SN FIRRE

Python Tutorial, Release 2.7

>>> 2%x56/10
7205759403792793L

That is, 56 is the only value for N that leaves J with exactly 53 bits. The best possible value
for J is then that quotient rounded:

Flob > 56 ZfR¥E T MHEGE— N Mo J RGO MMEZTETRGH

>>> q, r = divmod(2**56, 10)
>>> T
6L

Since the remainder is more than half of 10, the best approximation is obtained by rounding up:
HAAAZHKRT 10 8§—%» ZIFH LT ER

>>> g+l
7205759403792794L

Therefore the best possible approximation to 1/10 in 754 double precision is that over 2**56,
or :

FHSE 754 SHEE P 1/10 JAFHEUE & Z 2%%56 2 2,

7205759403792794 / 72057594037927936

Note that since we rounded up, this is actually a little bit larger than 1/10; if we had not
rounded up, the quotient would have been a little bit smaller than 1/10. But in no case can it
be exactly 1/10!

ZRERAARMNG LA CHLZR 1/10 R—A R - wRENEAGLEES A €4 1/10 # 1 —
B oo ABZRpKIEE BAF & 1/10]

So the computer never ‘‘sees'' 1/10: what it sees is the exact fraction given above, the best
754 double approximation it can get:

B ATERAL R ZALR “Foi8” 1/10 0 B3| @A Sl eATARAT R 8 sRAEAY 754 SUHE R4

>>> .1 % 2%%56
7205759403792794 .0

If we multiply that fraction by 10%**30, we can see the (truncated) value of its 30 most
significant decimal digits:

Jo EEATA 10%%30 MR AP > 2B R CR A0 (RETE8) &+ 444E

>>> 7205759403792794 * 10%*x30 / 2**56
100000000000000005551115123125L

meaning that the exact number stored in the computer is approximately equal to the deci-
mal value 0.100000000000000005551115123125. Rounding that to 17 significant digits gives the
0.10000000000000001 that Python displays (well, will display on any 754-conforming platform that
does best-possible input and output conversions in its C library --- yours may not!).

R TG T EA P 6 FRAAEALE T3 A 44 0.100000000000000005551115123125 « Python & 7 B
17 AZ¥5E A 0.10000000000000001 (&8 > EAEFTHFEST5409F 6 L Ao RCERI AR ANREH
PA—— AR TR —H) o

14.1. Representation Error FEixiEiR 129

	Whetting Your Appetite 开胃菜
	Using the Python Interpreter 使用　Python 解释器
	Invoking the Interpreter 调用解释器
	The Interpreter and Its Environment 解释器及其环境

	An Informal Introduction to Python Python 概要介绍
	Using Python as a Calculator 将 Python 当做计算器
	First Steps Towards Programming 编程的第一步

	More Control Flow Tools 深入流程控制
	if Statements if 語句
	for Statements for 语句
	The range() Function range() 函数
	break and continue Statements, and else Clauses on Loops break 和 continue 语句, 以及 循环中的 else 子句
	pass Statements pass 语句
	Defining Functions 定义函数
	More on Defining Functions 深入函数定义
	Intermezzo: Coding Style 插曲：编码风格

	Data Structures 数据结构
	More on Lists 深入列表
	The del statement 删除语句
	Tuples and Sequences 元组和序列
	Sets 集合
	Dictionaries 字典
	Looping Techniques 循环技巧
	More on Conditions 深入条件控制
	Comparing Sequences and Other Types 比较序列和其它类型

	Modules 模块
	More on Modules 深入模块
	Standard Modules 标准模块
	The dir() Function dir() 函数
	Packages 包

	Input and Output 输入和输出
	Fancier Output Formatting 玩转输出格式
	Reading and Writing Files 读写文件

	Errors and Exceptions 错误和异常
	Syntax Errors 语法错误
	Exceptions
	Handling Exceptions 控制异常
	Raising Exceptions 抛出异常
	User-defined Exceptions 用户自定义异常
	Defining Clean-up Actions 定义清理行为
	Predefined Clean-up Actions 预定义清理行为

	Classes 类
	A Word About Names and Objects 关于命名和对象的内容
	Python Scopes and Namespaces Python 作用域和命名空间
	A First Look at Classes 初识类
	Random Remarks 一些说明
	Inheritance 继承
	Private Variables 私有变量
	Odds and Ends 补充
	Exceptions Are Classes Too 异常也是类
	Iterators 迭代器
	Generators 生成器
	Generator Expressions 生成器表达式

	Brief Tour of the Standard Library 标准库概览
	Operating System Interface 操作系统接口
	File Wildcards 文件通配符
	Command Line Arguments 命令行参数
	Error Output Redirection and Program Termination 错误输出重定向和程序终止
	String Pattern Matching 字符串正则匹配
	Mathematics 数学
	Internet Access 互联网访问
	Dates and Times 日期和时间
	Data Compression 数据压缩
	Performance Measurement 性能度量
	Quality Control 质量控制
	Batteries Included 电池已备

	Brief Tour of the Standard Library – Part II 标准库概览 II
	Output Formatting 输出格式
	Templating 模板
	Working with Binary Data Record Layouts 使用二进制记录层
	Multi-threading 多线程
	Logging 日志
	Weak References 弱引用
	Tools for Working with Lists 列表工具
	Decimal Floating Point Arithmetic 十进制浮点数算法

	What Now? 接下来？
	Interactive Input Editing and History Substitution
	Line Editing 行编辑
	History Substitution 历史回溯
	Key Bindings 快捷键绑定
	Alternatives to the Interactive Interpreter 其它交互式解释器

	Floating Point Arithmetic: Issues and Limitations 浮点数算法：争议和限制
	Representation Error 表达错误

