GOLAN™
FOR RUST
BEGINNE FOR
BEGINNERS

RUST AND GOLANG
FOR
BEGINNERS

LEARN TO CODE FAST
BY
TAM SEL

Rust Programming Language
Rust Installation
First Rust program

'If' statement

"1f-else"

Using "if in a let" statement

Loops
While loop
For loop

Rust Ownership

Rust References and Borrowing
Slice In Rust

Update Syntax

Method Syntax

Rust Fnum

Match Operator

Concise control flow with if let
Rust Modules
Module Definition

Making a functioning public
Referring to names in different modules
Vector

String

Slicing Strings
Rust Error handling
Rust Unrecoverable Errors

Rust Recoverable Errors

Rust Generics

Rust Trait

Rust Lifetime

Lifetime Annotations in Function Signatures
Rust Smart Pointers
Box<T>

Deref<T>

Drop trait

Re<T>

RefCell<T>

GO FOR BEGINNERS

Go Programming Language
Data Types

Constants

Loops

Arrays

Functions

Packages

Structures

Goroutines

Channels

Select
Error handling
Reading files

GO Interview Questions

RUST
FOR
BEGINNERS

LEARN TO CODE FAST
BY
TAM SEL

Rust Programming Language

Our Rust programming language is illustrated for the beginners and
professionals. Rust programming language is designed to provide better
memory safety, but it is still under the maintenance process.

What 1s Rust?

Rust 1s a system programming language developed by a Mozilla
employee ""Graydon Hoare' in 2006. He described this language as
a ""safe, concurrent and practical language'' that supports the
functional and imperative paradigm.

The syntax of rust is similar to the C++ language.
Rust is free and open source software, i.c., anyone can use the

software freely, and the source code is openly shared so that the
people can also improve the design of the software.

Rust is declared as one of the ""most loved programming
language' in the stack overflow developer survey in 2016, 2017 and
2018.

There 1s no direct memory management like calloc or malloc. It
means, the memory 1s managed internally by Rust.

Rust 1s for

Rust language is ideal for many people for many reasons.
Let's look:

Team of developers: Rust proves to be quite useful for the "team of
developers". Low- level programming code contains bugs which need
extensive testing by the testers. However, in case of Rust, compiler
refuses to compile the code if the program contains bugs. By working
parallel to the compiler, the developer can focus on the program's
logic rather than focusing on the bugs.

Students: Using Rust, many people can learn how to develop the
operating system. The Rust team is trying to make the system
concepts more accessible to the ordinary people, especially for those
who are new to the programming.

Companies: Large or small companies use Rust to accomplish
various tasks. These tasks include command line tools, web services,
DevOps tooling, embedded devices, audio, and video analysis and
transcoding, cryptocurrencies, bioinformatics, search engines, Internet
of Things applications, machine learning, and even significant parts of
the Firefox web browser.

Open source developers: Rust is an open source language means that
the source code is available to the people. Therefore, they can use the
source code to improve the design of Rust.

Features of Rust

Rust is a system programming language. Rust provides the following
features:

[E—

. Zero cost abstraction

Error messages

Move semantics

Threads without data races
Pattern matching

Guaranteed memory safety
Efficient C bindings

Safe memory space allocation

A A ol

Minimal time

1. Zero cost abstraction

In Rust, we can add abstractions without affecting the runtime performance
of the code. It improves the code quality and readability of the code without
any runtime performance cost.

2. Error messages

In C++ programming, there is an excellent improvement in error messages
as compared to GCC. Rust goes one step further in case of clarity. Error
messages are displayed with (formatting, colors) and also suggest
misspellings in our program.

3. Type inference

Rust provides the feature of a Type inference which means that it
determines the type of an expression automatically.

4. Move semantics

Rust provides this feature that allows a copy operation to be replaced by the
move operation when a source object is a temporary object.

5. Threads without data races

A data race is a condition when two or more threads are accessing the same
memory location. Rust provides the feature of threads without data races
because of the ownership system. Ownership system transmits only the
owners of different objects to different threads, and two threads can never
own the same variable with write access.

6. Pattern matching

Rust provides the feature of pattern matching. In pattern matching, patterns
in Rust are used in conjunction with the 'match' expressions to give more
control over the program's control flow. Following are the combinations of
some patterns:

. Literals

- Arrays, enums, structs, or tuples
. Variables

. Wildcards

. Placeholders

7. Guaranteed memory safety

Rust guaranteed the memory safety by using the concept of ownership.
Ownership is a middle ground between the memory control of C and the
garbage collection of java. In Rust programs, memory space is owned by
the variables and temporarily borrowed by the other variables. This allows
Rust to provide the memory safety at the compile time without relying on
the garbage collector.

8. Efficient C bindings

Rust provides the feature of 'Efficient C bindings' means that the Rust
language can be able to interoperate with the C language as it talks to itself.
Rust provides a 'foreign function interface' to communicate with C API's
and leverage its ownership system to guarantee the memory safety at the
same time.

9. Safe memory space allocation

In Rust, memory management is manual, i.e., the programmer has explicit
control over where and when memory is allocated and deallocated. In C
language, we allocate the memory using malloc function and then initialize
it but Rust refuses these two operations by a single '~' operator. This
operator returns the smart pointer to int. A smart pointer is a special kind of
value that controls when the object is freed. Smart pointers

are "smart" because they not only track where the object is but also know
how to clean it up.

Rust Installation

The first step is to install Rust. First of all, download Rust
through rustup which is a command line tool for managing all the Rust
versions and its associated tools.

Rust Installation in Windows

- On Windows, open the link https://www.rust-lang.org/install.html and
follow the instructions for installing Rust. After following all the
instructions, Rust will get installed and the screen appears:

i CAUsers\admin\Downloads\rustup-init.exe = = “

You can uninstall at any time with rustup self uninstall and these changes will
he reverted.

Current installation options:
default host triple: xBo_b4d-pec-—windows—-msve
default toolchain: stable
modify PATH variable: yes
ith installation {default}

stallation
lation

: updating existing rustup installation

Rust is dinstalled now. Great?

To get started you need Cargo’s hin dire in) in
your PATH environment vari e. Future a 1il t ly have the
correct environment, hut y may need to

Press the Enter key to continue.

. After installation, PATH variable of Rust automatically adds in your
system PATH.

- Open command prompt then runs the following command:
1. $ rustc --version

After running this command, you should see the version number, commit
hash, and commit date.

If you do, it means Rust has been installed successfully. Congratulations!!!

https://www.rust-lang.org/install.html

v CAWindows\system32\cmd.exe

soft Wind [Version 6.3.968081]
P13 Microsoft Corporation. All rights reserved.

- sadmin
’ - n reco d internal or external command.
operahle program or

SEPs dmin >ru —

pa tc
ruste 1.28.8 <(9634841r8

Cisllsers: im >

Cislserssadmind

Rust Installation in Linux or macOS

If you are using Linux or macOS, open a terminal then use the following
command:

1. $ curl https://sh.rustup.rs -sSf'| sh

The above command downloads a script and starts the installation of
rustup tool. This installs the latest version of Rust. If the installation is
done successfully, then the following message will appear:

1. Rust is installed now. Great!
. This installation adds automatically Rust to your system path after
your next login. If you want to run Rust just right away without

restarting the terminal, then run the following command to your shell
to add the path to your system PATH manually:

1. $ source SHOME/.cargo/env

After installation, you need a linker. When you try to run your Rust
program, you will get the error that a linker could not execute. It means that
the linker is not installed in your system. C compilers always come up with
the correct compiler. Install a C compiler. Also, some of the Rust packages
depends upon the C code and will need a C compiler.

Updating & Uninstalling

Update: After you have installed your Rust through "rustup", updating to
the latest version. Run the following command to update to the latest
version:

1. $ rustup update

Uninstall: If you want to uninstall your Rust then runs the following
command from the shell:

1. $ rustup self uninstall

First Rust program

Let's write the simple program in Rust language. Now, open the notepad file
and write the following code:

1. fn main()

2.
3. println!("Hello, world!");
Output:

Hello, world!

main(): The main() function is always the first code in every Rust
executable code. The main() function is enclosed in curly braces{}. The
main() function does not contain any parameter as well as it does not return
any value.

println!: It is a Rust macro. If it calls the function, then it does not contain

",
"Hello World": It is a string passed as a parameter to the println!, and the
string 1s printed to the console.

Procedure to create, compile and run the program

1. Open the notepad file and write the code in a notepad file.
2. Save the file with .rs extension.

Séve As ﬂ

T ca v ThisPC » All Workshop (D) » v : | o
Organize « MNew folder = - L7l
L AppleiPhone *
Deskto
= F haseena files
Decuments
hello.rs.txt
& Downloads . .
o) B ' main.exe
. tp=-pc)
= ;P Utp-pel & main.pdb
= Mr. Darad (jocker) .
main.rs
§ Music
main.rs.bd
=| Pictures
Mew Text Document. tet
g Videos

aa Local Disk (C:)
ca All Workshop (Dx)
@ Developer Hub (E:)

L I 4 >
File name: | helle.rs "
Save as type: | All Files (*.%) -

3. Open the command prompt
4. Set the path of the directory. Suppose the project is located in D drive.

o C:AWindows\system32\cmd.exe - o IEN

| icrozoft Windows [UVersion 6.3.9600)
» 2013 Hicrosoft Corporation. All rights reserved.

slgerssadnin>D:

5. Compile the above program using the rustc command.

icrosoft Windows [Uersion 6.3.96881]
3 Hicrosoft Corporation. All rights reserved.

6. Finally, run the program by using the command filename.exe.

=N CAWindows\system32\cmd.exe - O n

icrosoft Windows [Wersion 6.3.96881
(c?» 2013 Microsoft Corporation. All rights reserved.

C:sUserssadmin>D:
sseruste hello.rs

»rhello.exe
ello, world?

A

'If' statement

The 'if' statement determines whether the condition is true or not. If
condition is true then the 'if block is executed otherwise, control skips the
"1f' block.

Different ways to represent 'if' block:
. 1if block
. if-else block
. if else-if ladder
nested if

Syntax of "if';

1. if condition

2. {

3. //block statements;

4. }

In the above syntax, if the condition is true then the block statements are
executed otherwise it skips the block.

Flow Chart of "if statement"

l

Test true
Expression

statement
false

)

Rest of code

For Example:

Let's see a simple example of 'if' statement.
. fn main()

1

2.

3. leta=l;

4. ifa==

5.

6 println!("a is equal to 1");
7.}

Output:

ais equal to 1

In this example, value of a is equal to 1. Therefore, condition given in "if' is
true and the string passed as a parameter to the println! is displayed on the
console.

"1f-else"

If the condition is true then 'if' block is executed and the statements inside
the 'else' block are skipped. If the condition is false then 'else' block is
executed and the statements inside the 'if' block are skipped.

Syntax of "if-else"

1. if condition

2.4

3. //block statements
4. }

5. else

6. {

7. //block statements
8. }

Flow Chart of "if-else"

|

Test
Expression
‘|' true false
Body of if Body of else

Let's see a simple example of 'if-else' statement.

1. fn main()

2.4

3. let a=3;

4. let b=4;

5. ifa>b

6. {

7. println!("a is greater than b");
8. }

9. else
10. {
11. println!("a is smaller than b");
12. }
13.}

Output:

a is smaller than b

In this example, value of a is equal to 3 and value of a is less than the value
of b. Therefore, else block is executed and prints "a is smaller than b" on
the screen.

else-1f

When you want to check the multiple conditions, then 'else-if' statement is
used.

Syntax of else-1f

if condition 1

{

//block statements

j

else if condition 2

{

//block statements
h

9. .
10. .
11. else{
12. //block statements
13.}

In the above syntax, Rust executes the block for the first true condition and

once it finds the first true condition then it will not execute the rest of the
blocks.

Flow Chart of "else if"

XA B DD =

true false

condition 1 ﬁv

statement 1 true

N

false

l condition 2 41

true false

17 condition 3 —l

statement 3 Default

statement

4—— statement 2

F

v l
Rest of the code

Let's see a simple example of else-if statement
. fn main()

1
2.
3. let num=-5;
4. if num>0
5. ¢
6. println!("number is greater than 0");
7.}
8. else if num<0
9. {
10. println!("number is less than 0 ");
11. }
12. else
13. {
14. println!("number is not equal to 0");
15. }

Output:
number is less than 0

In this example, value of num is equal to -5 and num is less than 0.
Therefore, else if block is executed.

Nested if-else

When an if-else statement is present inside the body of another if or else
block then it is known as nested if-else.

Syntax of Nested if-else

if condition 1

{
// block statements
if condition 2

{
}

else

9.4

10. //block statements
11.}

12.}

13. else

14. {

15. //block statements
16. }

Let's see a simple example of nested if-else

1. fn main()
2.

//block statements

PN B =

let a=5;
let b=6;
ifal=b
{
if a>b
{

9. println!("a is greater than b");
10. }

11. else
12, {

13. println!("a is less than b");

PN B W

14. }

15. }

16.

17. else

18. {

19. println!("a is equal to b");
20. }

Output:
ais less than b

In this example, value of a is not equal to b. So, control goes inside the 'if
block and the value of a 1s less than b. Therefore, 'else' block is executed
which is present inside the 'if' block.

Using "if 1n a let" statement

An 'if' expression is used on the right hand side of the let statement and the
value of 'if' expression is assigned to the 'let'statement.

Syntax of 'if in a let'

1. Let variable name= if condition{
2. //code blocks
3.}

4. else{
5. //code block

6. }

In the above syntax, if the condition is true then the value of 'if' expression
is assigned to the variable and if the condition is false then the value of
'else’ is assigned to the variable.

:j:'tunditiﬂﬁ':j: .
J false
true
Y
let
let T N
) variable name=
variable name= -
. — else statement
if statement

Example 1

Let's see a simple example.
1. fn main()

2.

3. let a=if true
4. {

5. 1

6. }

7. else

8. {

9. 2

10. };

11.

12. println!("value of a is: {}", a);
Output:

value of ais: 1

In this example, condition is true. Therefore, 'a' variable bounds to the value
of 'if' expression. Now, a consist 1 value.

Let's see a another simple example.

1. fn main()

2.

3. let b=if false

4. {

5. 9

6. }

7. else

8. {

9. "Rustlang"
10. ¥

11.
12. println!("value of ais: {}", a);
Output:

Some errors occurred:E0308

In this example, 'if' block evaluates to an integer value while 'else' block
evaluates to a string value. Therefore, this program throws an error as both
the blocks contains the value of different type.

Loops

If we want to execute the block of statements more than once, then loops
concept comes under the role. A loop executes the code present inside the
loop body till the end and starts again immediately from the starting.

Rust consists of three kinds of loops:
. loops
for loop
- while loop

loop

The loop 1s not a conditional loop. It is a keyword that tells the Rust to
execute the block of code over again and again until and unless you
explicitly stop the loop manually.

Syntax of loop

1. loop{
2. //block statements
3.}

In the above syntax, block statements are executed infinite times.
Flow diagram of loop:

loop

l

f » Statements
inside the loop

true _ false
. » < Condition - \

l Outside the
loop

Let's see a simple example of infinite loop

. fn main()

loop

{
println!("Hello Rustlang");

}
Output:

Hello Rustlang
Hello Rustlang
Hello Rustlang
Hello Rustlang

AN e

infinite times

In this example, "Hello Rustlang" is printed over and over again until and
unless we stop the loop manually. Generally, "ctrl+c" command is used to
terminate from the loop.

Termination from loops

The 'Break' keyword is used to terminate from the loop. If 'break' keyword
is not used then the loop will be executed infinite times.

Let's see a simple example

fn main()

let mut i=1;
loop
{
println!("Hello Rustlang");
if 1I==7
{
break;

i A e

NS

10. }
11. i+=1;
12. }}

Output:

Hello Rustlang
Hello Rustlang
Hello Rustlang
Hello Rustlang
Hello Rustlang
Hello Rustlang
Hello Rustlang

In the above example, 1 is a counter variable, and it is a mutable variable
which conveys that the counter variable can be changed for the future use.

While loop

The 'while-loop' is a conditional loop. When a program needs to evaluate a
condition then the conditional loop is used. When the condition is true then
it executes the loop otherwise it terminates the loop.

Syntax of 'while loop'

1. while condition

2.

3. //block statements;
In the above syntax, while loop evaluates the condition. If the
condition is true, block statements are executed otherwise it
terminates the loop. Rust provides this inbuilt construct which can be
used in combinations with 'loop', 'if', 'else’ or 'break' statement.

Flow diagram of while loop

5 ::--"'ﬁ'hile luuﬁ"'--._

-~ condition

l true

Statements
inside the
while loop

| |

false

| Stop |

Let's see a simple example

1. fn main()
2.4

3. let muti=1;
4. while i<=10

5.4

6. print!("{}",1);
7. print!("");
8. 1=itl;
9.}
10. }
Output:

12345678910

In the above example, '1' is a mutable variable means that the value of '1' can
be modified. The while loop executes till the value of '1' is less than 10 or
equal to 10.

Let's see a simple example

1. fn main()
2.4

3. let array=[10,20,30,40,50,60];
4. let mut 1=0;
5. while i<6
6. {

7. print!("{}",array[i]);
8. print!("");

9. 1=1tl;

10. }

11.}

Output:

10 20 30 40 50 60

In the above example, the elements of an array has been iterated using
while loop.

Disadvantages of while loop:

While loop can cause the problem if the index length is incorrect.

. It is also slow as the compiler adds the runtime code to perform the
conditional check on every iteration through this loop.

For loop

The for loop is a conditional loop, i.e., the loop runs for the particular
number of times. The behavior of for loop in rust language is slightly
different from the other languages. The for loop is executed till the
condition is true.

Syntax of for loop

1. for var in expression
2. {
3. //block statements
4. }

In the above syntax, an expression can be converted into an iterator which
iterates through the elements of a data structure. In every iteration, value is
fetched from an iterator. When there are no values left to be fetched, loop is
over.

Let?s see a simple example.

1. fn main()

2. 4

3.

4. foriin1..11
5. {

6. print!("{} ",1);
7.}

8.}

Output:

12345678910

In the above example, 1..11 is an expression and the iterator will iterate
over these values. The upper bound is exclusive, so loop will print from 1 to
10 values.

Let?s see a simple example.

1. fn main()

2.4

3. let mut result;

4. foriinl..11

5.4

6. result=2%*;

. println!("2*{}={}",1,result);
8. }

9.}

Output:

J

2*1=2
2*2=4
2*3=6
2*4=8
2*5=10
2*6=12
2*7=14
2*8=16
2*9=18
2*10=20
In the above example, for loop prints the table of 2.

Let?s see another simple example.
. fn main()

nn nn

1

2

3.

4. let fruits=["mango","apple","banana","litchi","watermelon"];
5. for ain fruits.iter()
6. {

7. print!("{} ",a);
8. }

Output:

mango apple banana litchi watermelon

In the above example, iter() method is used to access the each element of
fruits variable. Once, it reaches the last element of an array, then the loop is
over.

Difference between the while loop and for loop:

If the index length of an array is increased at runtime, then the while loop
shows the bug but this would not be happened in the case of for loop.
Therefore, we can say that for loop increases the safety of the code and
removes the chances of the bugs.

Rust Ownership
Understanding Ownership

Ownership is the unique feature that Rust programming language offers and
provides the guarantee of memory safety without using garbage collector or
pointers.

What 1s Ownership?

When a block of code owns a resource, it is known as ownership. The
block of code creates an object that contains the resource. When the control
reaches the end of the block, the object is destroyed, and the resource gets
released.

Important points of Ownership:
- The "owner" can change the owning value of a variable according to
mutability.
Ownership can be transferred to another variable.
Ownership is just moved semantics in Rust.
- Ownership model also guarantees the safeness in parallel.

Rules of Ownership
- In Rust, every value has a variable associated with it and that is called
its owner.
There can only be one owner at a time.

When the owner goes out of scope, the value associated with it is
destroyed.

Example of Ownership

Multiple variables can interact with each other in Rust. Let's look at an
example:

Assigning the value of x to the variable y:
1. let x=10;

2. et y=x;

In the above example, x binds to the value 10. Then, the value of x is
assigned to the variable y. In this case, the copy of x is not created rather
than the value of x is moved to the variable y. Therefore, ownership of x is
transferred to the variable y, and the variable x is destroyed. If we try to
reuse the variable x, then Rust throws an error. Let's understand this through
an example.

1. fn main()

2.

3. let x=10;

4. let y=x;

5. println!("value of x : {}",x);

Following is the output of the above example:

-1 CA\Windows\system32\cmd.exe

nrruste ownership.rs
il : . A a
g: unused variable: "y
ywnership.rs:4:6

let y=x;
: * help: consider using “_y° instead
i

= note: Hlwarnfunused_wvariables>] on hy default

Memory and Allocation

In Rust, data can be stored either in stack or heap memory.

Memory Tvpes

Stack memory heap memory

Stack memory: In stack memory, data is always placed in order and
removed in the opposite order. It follows the principle "last in first out", i.e.,
the data which is inserted last is always removed first. Stack memory is an
organized memory. It is faster than the heap memory because of the way it
accesses the memory. If the size of the data is unknown at compile time,
then heap memory is used for storing the content.

Heap memory: Heap memory is an organized memory. The operating
system finds an empty space in the heap memory and returns a pointer. This
process is known as "allocating on the heap".

th main() hEElp
{ L J

let vV=vecl![1,2,3]:
} T stack

This diagram shows that stack contains the pointer while heap contains the
content.

Let's see a simple example of memory allocation.

1. fn main()

2. 4

3. letvl=vec![1,2,3];

4. letv2=vl;
5.}

Step 1:

In the first statement of the program, vector v1 binds with the values 1,2
and 3. A vector is made up of three parts, i.e., a pointer to the memory
pointing to the data stored in memory, length, and capacity of the vector.
These parts are stored in the stack while data is stored in the heap memory
as shown given below:

vl

data ® -

length —

capacity

heap memory

Stack memory

Step 2:

In the second statement of program, v1 vector is assigned to the vector v2.
The pointer, length, and capacity are copied on the stack, but we do not
copy the data in the heap memory. Let's look at the memory representation:

vl

data

length

capacity

v2

data

length

capacity

However, this type of representation can create a problem. When both v1
and v2 goes out of the scope, then both will try to free the memory. This
causes the double free memory, and this leads to the memory corruption.

Step 3:

Rust avoids the step 2 condition to ensure memory safety. Instead of
copying the allocated memory, Rust considers that vl vector is no longer
valid. Therefore, it does not need to free the memory of vl as v1 goes out of
the scope.

vl

data

length

capacity

v2

data

length

capacity

Use of Copy trait

Copy trait is a special annotation which is placed on the types like integers
that are stored on the stack. If copy trait is used on the types, then the older
variable can be further used even after the assignment operation.

Here are some of the types that are copy:
. All the integer types such as u32.
The Boolean type, bool with the value true or false.
. All the floating types such as f64.
The character type, char.

Ownership and functions

When a variable is passed to the function, then the ownership moves to the
variable of a called function. The semantics of passing value is equal to the
assigning a value to a variable.

Let's understand this through an example:
fn main()

{
let s=String::from("Rustlang");
take ownership(s);
let ch="a';
moves_copy(ch);
println!("{}",ch);

)

. fn take ownership(str:String)
10. {

11. println!("{}",str);

12.}

13. fn moves_copy(c:char)

14. {

15. println!("{}",c);

16. }

Output:

Rustlang

i BN e

Ne

a

a

In the above example, string 's' binds with the value "Rustlang" and the
ownership of 's' variable is passed to the variable 'str' through a

take ownership() function. The 'ch' variable binds with a value 'a,' and the
ownership of 'ch' variable is passed to the variable 'c' through a
moves_copy() function. The 'ch' variable can also be used afterwards as the
type of this variable is a "copy" trait.

Returning value and scope

Returning values from the function also transfer the ownership. Let's look
at this:

1. fn main()

2. {

3. let x= gives_ownership();
4. println!("value of x 1s {}",Xx);
5.}

6. fn gives ownership()->u32
7. {

8 let y=100;

9. 'y

10. }

Output:

value of x is 100

In the above example, gives ownership() function returns the value of'y,
i.e., 100 and the ownership of y variable is transferred to the x variable.

Rust References and Borrowing

Reference is an address which is passed to a function as an

argument. Borrowing is just like when we borrow something, and we are
done with it, we give it back. References and Borrowing are mutual to each
other, i.e. when a reference is released then the borrowing also ends.

Why Borrowing?

Borrowing concept is used because of the following reasons:

Borrowing allows to have multiple references to a single resource but
still obeys to have a "single owner".

References are just like pointers in C.

A reference is an object. References are of two types, 1.e., mutable
references and immutable references. Mutable references are moved
while immutable references are copied.

Let's understand this through an example.
fn main()

{

let str=String::from("Rustlang");

let len=calculate length(&str);
println!("length of the string {}",len);
b

. fn calculate length(s:&String)->usize

{
9. s.len()

10.}
Output:
length of the string 10

i AN e

In the above example, calculate length() function has a reference to string
str as a parameter without taking its ownership.

1. let str=String::from("Rustlang");
2. et len=calculate length(&str);

In the above scenario, &str is a reference to variable str, but it does not own
it. Therefore, the value pointed by the reference will not be dropped even

when the reference goes out of scope.

1. fn calculate length(s:&String)->usize
2.
3. s.len()

In the above case, variable 's' is valid until the control does not go back to
the main() function. When the variables are passed as a reference to the
function instead of actual values, then we don't need to return the values to
give back the ownership.

Let's try to modify the borrowed value.

1. fn main()

2. {

3. let x=1;

4. value changed(&x)

5.4

6. fn value changed(y:&i32)
7. {

8. *y=9;

9.}

Following is the output of the above program:

i CAWindows\system32\cmd.exe

ustc borrow.rs N
: cannot assign to immutable bhorrowed content “xy
orrow.rs 82

Ll
» i Fn value_changed<y:&i32> .)
i ———— use Bmut i32 here to make mutable
P L
uy.'j;

: aborting due to previous error

For more information about this error. try "ruste ——explain EB594° .

In the above example, it throws an error as &x is an immutable reference.
Therefore, we cannot change the value of'y.

Mutable Reference

We can fix the above error by using a mutable reference. Mutable
references are those references which are changeable. Let's understand this
through an example.

1. fn main()

2.4

3. let mut x=1;

4. value changed(&mut x);

5. println!("After modifying, the value of x 1s {}",x);
6. }

7. fn value changed(y:&mut 132)
8. {

9. *y=9;

10. }

Output:

After modifying, the value of x is 9

In the above example, we create a mutable reference, i.e., &mut x and the
reference 1s pointed by the variable y which is of &i32 type. Now, we can
change the value which is referenced by 'y' variable. We assign 9 value
1.e*y=9. Therefore, the value x also becomes 9 as the same memory
location referenced by both the variables.

Restrictions of Mutable references

- We can have only one mutable reference to a piece of data in a
particular scope.

For example:
1. let mut str=String::from("Rustlang");

2. let a= &mut str;
3. let b= &mut str;

In the above scenario, the compiler throws an error as it consists of two
mutable references which are not possible in Rust language.
If the immutable reference exists in our program, then we cannot have
a mutable reference in our program.
For example:
1. let mut str=String::from("Rustlang");
2. let a= &str;

3. let b=&str;
4. let c=&mut str;

In the above scenario, the compiler throws an error because we cannot have
a mutable reference while we have an immutable reference.

Slice In Rust

Slice is a data type that does not have ownership. Slice references a
contiguous memory allocation rather than the whole collection. It allows
safe, efficient access to an array without copying. Slice is not created
directly but from an existing variable. A slice consists of the length, and it
can be mutable or not. Slices behave like arrays only.

String slice

A string slice refers to a part of the string. Slice looks like:

1. let str=String::from("Rustlang tutorial");
2. let Rustlang=&estr[0..10];
3. let tutorial=&str[11,18];

Rather than taking an entire string, we want to take a part of the string. The
[start..end] syntax is a range that begins at the start but does not include
end. Therefore, we can create a slice by specifying the range within
brackets such as [start..end] where 'start' specifies the starting position of an
element and 'end' is one more than the last position in the slice. If we want
to include the end of the string, then we have to use '..=' instead of '..".

1. let str= String::from("Rustlang tutorial");
2. let Rustlang = &str[0..=9];
3. let tutorial= &str[11..=18] ;

Diagrammatically representation:

name value index | value
ptr B 0 i
length 17 1 a
capacity 17 2 v
3 a
4 T
3 p
6 o
7 i
3 n
name value
9 t
pir 10
length 10 13 .
12 u
13 t
14 o
15 r
16 i
17 a
18 1
name value
ptr
length 8

If you want to start the index from 0, then we can drop the starting
index also. It looks like:

—

let str= String::from("hello world");
. let hello = &str[0..5];
. let hello=&str][..5];

If slice includes the last byte of the string, then we can drop the
starting index. It looks like:

W N

1. let str= String::from("hello world") ;
2. let hello=&str[6..len];
3. let world = &str[6..];

Let's see a simple example of string slice:

1. fn main()
2.
3. let str=String::from("Rustlang tutorial");

4. let Rustlang=&str[..=9];
5. println!("first word of the given string is {}",Rustlang);

Output:

first word of the given string is Rustlang

String slices are literals

String literals are stored in binary and string literals are considered as string
slices only. Let's look:
1. let str = "Hello Rustlang" ;

The type of 'str' is '&str'. It is a slice pointing to a specific point of the
binary. String literals are immutable, and '&str' is an immutable reference.

String slices as parameters

If we have a string slice, then we can pass it directly. Instead of passing the
reference, we pass the string slice as a parameter to the function to make an
API more general and useful without losing its functionality.

1. fn main()

{

let str= String:: from("Computer Science");

let first word= first word(&str[..]); //first word function finds the first

word of the string.

let s="Computer Science" ; //string literal

let first word=first word(&sJ..]); // first word function finds the first wo

rd of the string.

7. let first word=first word(s) ; //string slice is same as string literal. There
fore, it can also be

8. written in this way also.

nal i

AN

9.1
Other slices

An array can also be treated as slices. They behave similarly as a string
slice. The slice has the type [&132]. They work similarly as a string slice by
storing a reference as a first element and length as a second element.

Consider a array:

1. let arr = [100,200,300,400,500]; // array initialization
2. et a= &arr[1..=3]; // retrieving second,third and fourth element

Let's see a simple example.
. fn main()

1

2.

3. let arr =[100,200,300,400,500,600];
4. let mut 1=0;

5. let a=&arr[1..=3];
6. let len=a.len();

7. println!("Elements of 'a' array:");
8. while i<len

9.4

10. println!("{}",a[i]);
11. 1=1+1;

12. }

13.}

Output:

Elements of 'a' array:
200

300

400

What is a structure?

A structure is a user-defined data type that consists of variables of different
data types. A structure is defined by using the struct keyword before the
structure name. Structure members are enclosed within the curly brackets.
Inside the curly brackets, structure members are defined with their name
and type and structure members are also known as fields.

The Syntax of structure:

1. struct Student
2.4

3. member-variablel;
4. member-variable2;
5
6
7

-
In the above syntax, structure is defined by using the keyword struct. A
structure contains the variables of dissimilar types.

How to declare the instance of a structure

1. let user = Student{
2. // key:value pairs;
3.}

In the above declaration, a user is an instance of Student structure. It is
defined by using the structure name and then curly brackets. The curly
brackets contain key:value pairs where keys are the name of the fields and
value 1s the data which we want to store in the key field.

Let's create a structure of employee:

1. struct Employee{

2. employee name : String,
3. employee id: u64,

4. employee profile: String,
5. active: bool,

6

-}

An Instance of employee structure:

1. let employee = Employee{

2. employee name : String::from("Akshay Gupta"),

3. employee id: 12,

4. employee profile : String::from("Computer Engineer"),
5. active : true,

6

F
How to access a specific member variable of

Structure?

We can access the specific member variable of a structure by using dot
notation. Suppose we want to access the employee name variable of an
Employee structure, then it looks like:

employee.employee name;

let mut employee = Employee{

employee name : String::from("William"),

employee id: 12,

employee profile : String::from("Computer Engineer"),

active : true,

s

employee.employee name = String :: from("John");

Creating an instance within the function body:

. fn create_employee(name:String, profile: String)

{

Employee{

employee name:name,
employee id:12,
employee_profile:profile,
active:true,

h
h

In the above example, an instance of Employee structure is created
implicitly within the function body. The create employee() function returns
the instance of Employee structure with the given name and profile.

DN AU A LN

Using the Field Init Shorthand when parameters passed to the function and
fields have the same name.

Rust provides the flexibility of using field init shorthand when both the
variables and fields have the same name. There is no need of repetition of
fields and variables.

1. fn create employee(employee name:String, employee profile:String)
2.4

3. Employee{

4. employee name,

5.
6
7
8
9

employee id:12,

. employee profile,
. active:true,

.

-

In the above example, the name of parameters and fields are the same.
Therefore, there is no need of writing employee name:employee name, it
can be directly written as employee name.

Update Syntax

Creating a new instance from other instances using Struct update syntax.

When a new instance uses most of the values of an old instance, then we
can use the struct update syntax. Consider two employees employeel and
employee?2.

. First, create the instance employeel of Employee structure:

1. let employeel = Employee{

2. employee name : String::from("William"),

3. employee id: 12,

4. employee profile : String::from("Computer Engineer"),
5. active : true,

6. };

Second, create the instance the employee2. Some values of the
employee?2 instance are the same as employeel. There are two ways
of declaring the employee2 instance.

The first way is declaring the employee?2 instance without syntax update.

1. let employee2 = Employee{

2. employee name : String::from("John"),

3. employee id: 11,

4. employee profile : employeel.employee profile,

5. active : employeel.active,

6.

The second way is declaring the employee2 instance by using syntax

update.

1. let employee2 = Employee{

2. employee name : String::from("John"),

3. employee id: 11,

4. ..employeel

5.1

The syntax '.." specifies that the rest of the fields are not explicitly set and

they have the same value as the fields in the given instance.

Let's see a simple example of Structure:
1. struct Triangle

{
base:f64,

height:f64,
b

fn main()
{
9. let triangle= Triangle {base:20.0,height:30.0};
10. print!("Area of a right angled triangle is {}", area(&triangle));
11.}
12.
13. fn area(t:&Triangle)->164
14. {
15. 0.5 * t.base * t.height
16. }

Output:
Area of a right angled triangle is 300

XA B WD

In the above example, the structure of a triangle is created, and it contains
two variables, i.e., base and height of a right-angled triangle. The instance
of a Triangle is created inside the main() method.

Method Syntax

Methods are similar to functions as they contain the fn keyword at the
starting and then function name. Methods also contain the parameters and
return value. However, when the method 1s declared within the struct
context, then the method syntax varies from the normal function. The first
parameter of such methods is always self, which represents the instance on
which the function is called upon.

Defining methods

Let's define the method when the method is declared in the struct context.
struct Square

{
a:ul32,

h

impl Square

{

. fn area(&self)->u32

{

. self.a * self.a

10. }

11.}

12.

13. fn main()

14. {

15. let square = Square{a:10};

16. print!("Area of square 1s {}", square.area());
17.}

Output:

Area of square is 100

000NN W

When the method is declared within the struct context, then we defin the
method inside the implementation block, i.e., impl block.

1. impl Square

2.4

3. fn area(&self)->u32

4. {

5. self.a * self.a

6. }

7.}

The first parameter is to be self in the signature and everywhere within the
body.

Here, we use the method syntax to call the area() function. The method
syntax is an instance followed by the dot operator, method name, parameter,

and any arguments.

1. square.area();

Where the square is an instance and area() is the function name.
An Advantage of method syntax:

The main advantage of using method syntax over functions is that all the
data related to the instance is placed inside the impl block rather than
putting in different places that we provide.

Rust Enum

Enum is a custom data type which contains some definite values. It is
defined with an enum keyword before the name of the enumeration. It also
consists of methods.

The syntax of enum:

cenum ¢num name

{

variantl,
variant2,

Nk =

b
In the above syntax, enum_name is the name of the enum and
variantl,variant2,.. are the enum values related to the enum name.

For example:

1. enum Computer language
2

3. C,

4. C++,

5. Java,

6

In the above example, computer language is the enum name and C, C++,
Java are the values of computer language.

Enum values

Let's create the instance of each of the variants. It looks like:

1. let c = Computer language :: C;

2. let cplus = Computer language :: C++;

3. let java = Computer language :: Java;

In the above scenario, we create the three instances, i.e., ¢, cplus, java
containing the values C, C++, Java respectively. Each variant of enum has
been namespaced under its identifier, and double colon is used. This is
useful because Computer language::C, Computer language::C++,
Computer language::Java belongs to the same type, 1.e.,

Computer language.

We can also define a function on a particular instance. Let's define the

function that takes the instance of type Computer language; then it
looks like:

1. fn language type(language name::Computer language);
This function can be called by either of any variant:

1. language type(Computer language :: C++);

Let's understand through an example.

1. #[derive(Debug)]
2. enum Employee {
3. Name(String),
4. 1d(i32),

5. Profile(String),
6. }

7

8

. fn main() {

9. let n =Employee::Name("Hema".to_string());

10. let 1= Employee::Id(2);

11. let p = Employee::Profile("Computer Engineer".to_string());
12. println!(" {:?} s {:?} b {:?7}", n,1,p);

13.}

Output:

Name("Hema") s Id(2) b Profile("Computer Engineer")

In the above example, Employee is a custom data type which contains three
variants such as Name(String), 1d(i132), Profile(String). The ":?" is used to
print the instance of each variant.

Match Operator

The match operator allows us to compare a value against a series of
patterns, and executes the code whenever the match is found. The patterns
can be literal values, variable names, wildcards and many other things.

Let's understand the match operator through a simple example:
. enum Computerlanguage

1

2.4

3. C,

4. Cplus,

5. Java,

6. Csharp,

7.}

8. fn language(language:Computerlanguage)

9. {

10. match language

11. {

12. Computerlanguage::C=> println!("C language"),

13. Computerlanguage::Cplus=> println!("C++ language"),
14. Computerlanguage::Java=> println!("Java language"),
15. Computerlanguage::Csharp=> println!("C# language"),
16. }

17.}

18. fn main()

19. {

20. language(Computerlanguage::C);

21. language(Computerlanguage::Cplus);

22. language(Computerlanguage::Java);

23. language(Computerlanguage::Csharp);

24.}

Output:

C language
C++ language
Java language

C# language

In the above example, Computerlanguage is a custom data type which
consists of four variants are C, Cplus, Java, Csharp. The match operator
matches the value of the language with the expressions given in the match
operator block.

Matching with Option<T>

Option<T> is used when we want to get the inner value of T out
of some case.

The Option<T> consists of two variants:
None: It indicates the failure or lack of value.
- Some(value): It is a tuple struct that wraps the value with T.
Let's understand through an example:
. fn main()

1
2.4
3. even_number(2);
4. even number(3);
5.}
6. fn even number(n:132)
7.4
8. let num=n;
9. match checked even(n)
10. {
11. None=>println!("None"),
12.
13. Some(n)=>
14. |
15. ifn=0
16. |
17. println!("{} 1s a even number",num);
18. }
19. else
20. |
21. println!("{} 1s a odd number",num);
22. 1,
23. }
24, }

25. fn checked even(number:i132)->Option<i32>
26. {

217.

28. Some(number%?2)

29.

30. }

Output:

2 is a even number

3 is a odd number

Matches are exhaustive

In Rust, matches are exhaustive, 1.e., we should exhaust every possible case
for the code to be valid. Suppose we forget to write the None case then the
Rust compiler will show the bug that "pattern 'None' not covered".

Let's understand this case through an example:

fn main()

{
Some(5);
-
. fn Value(n:Option<i32>)
{

match n

{

Some(n)=>println!("{}is a Number",n),

00N U A W~

NS

10. }
1.}

Output:

N CAWindows\system32\cmd.exe

D:~>rustc option.rs
: non—exhaustive patterns: “Hone' not covered
——>» option.rs:Y:?

match n

: aborting due to previous error

more information about this error. try ‘rustc —explain EBBA4°

Concise control flow with if let

The if let syntax is used to combine if and let which handles the values that
matches one of the patterns while ignoring the rest of the code. The
working of "match" operator and "if let" expression is similar.

Example of match operator

1. fn main()

2.4

3. let a= Some(5);

4. match a {

5 Some(5) => println!("five"),
6. _=>0,

7. }}
Output:

five

In the above example, the match operator executes the code when the value
is equal to Some(5). The " =>()" expression satisfies the match expression
after executing the first variant. If we use if let instead of match, then it
reduces the length of the code.

Example of if let

. fn main()

1

2.4

3. let a=Some(3);
4. if let Some(3)=a{
5. println!("three");
6. }

7.3

Output:

three

Rust Modules

A module 1s a namespace which contains the definitions of the functions or
its types. A module is a collection of items such as functions, structs, traits,
impl blocks. By default, the modifier of the module is private, but it can be
overridden with the public modifier by using pub keyword.

Following are the keywords used in the modules:
- mod keyword: The "mod" keyword declares the new module.

pub keyword: By default, all the functions, types, modules and
constants have a private visibility modifier. The pub keyword makes
the visibility modifier as public, and therefore, they are accessible
outside the namespace.

use keyword: The use keyword is used to import the module into
local scope.

Module Definition

The module 1s defined by the mod keyword.
The syntax of Module:

1. mod module name

2.

3. // body inside the module.
4.

A Module can be categorized in three ways:

1. Single module: When the module appeared in a single file is known as a
single module.

Let's understand this through an example:
. mod a

1
2. {

3. pub fn single module()

4. {

5. println!("Single module");
6. }

7.}

8. fn main()

9. {

10. a:single module();

1.}

Output:

Single module

In the above example, module 'a' is defined, and every code defined in the
block is inside the namespace 'a'. The function of module 'a' can be called
by using the module name followed by namespace and then function name.

- We can also do the above example by using a separate file:

mod module;
. fn main()

{

module::single module();

b

DA —

1. pub fn single module()

2. {

3. println!("Single module");
4. }

Output:
Single module

In the above two examples, we examine that mod X is defined either in
curly braces or in a separate file named as X.rs or X/mod.rs.

2. Sub-modules: In a single file, we can have multiple modules. Suppose
the library name is "language" and it consists of two modules, i.e., C and
Cplus.

Hierarchy of a ""language' library is given below:

language

f—> C

> Sub modules
—» cplus

Let's understand through an example:
. mod ¢

A
pub fn c()
{

1
2
3
4.
5. println!("C is a structured programming language");
6
7
8

-
-
. mod cplus
9. {
10. pub fn cplus()
11. {
12. println!("C++ is an object-oriented programming language");

13. }

14. }

15. fn main()

16. {

17. c::c();

18. cplus::cplus();
19.}

Output:

C is a structured programming language

C++ is an object-oriented programming language

In the above example, the program consists of two modules, i.e., ¢ and
cplus and their respective functions are called by using c::c() and
cplus::cplus().

3. Nested modules: Nested modules are those modules which consist of a

module inside of modules, and they can be useful when the related modules
are grouped together.

Let's understand this through an example:
mod a

{
pub fn a()

{

println!("a module");

b
pub mod b

1
pub fn a()

{

11. println!("b module");
12. }

13. }

14. }

15. fn main()

16. {

17. a:a();

18. a::b::b();

19. }

SO XTI UL AW

Output:

a module

b module

In the above example, the program consists of two modules, i.e., 'a’ and 'b'
where 'b' is the inner module of 'a'. Both the modules consist the function
with the same name but with different functionality. Both the functions are
called by using a::a() and a::b::b() respectively. They both will not conflict
with each other as they belong to different namespaces.

Filesystem

A module forms a hierarchical structure so that the project becomes more
understandable. Rust module system is used to split the multiple files in
such a way that not everything lies in the src/lib.rs or src/main.rs file.

Filename: src/lib.rs

1. mod A
2.4
3. fna()
4. {
5. // block of statements.
6. }
7.}
8. mod B
9. {
10. fnb()
11. {
12. // block of statements.
13. }
14. mod C
15. |
16. fn c()
17. {
18. // block of statements.
19. }
20. }
21.}

In the above example, a program consists of three modules, i.e., A,B and C.
C is an inner module of a B module.

Module hierarchy of a given file is:

C

If the module contains many functions and the functions are very lengthy,
then it becomes difficult to find the code of a particular function. Rust
provides the flexibility by providing the module system. We can have a
separate file of each module rather than placing in the same file, i.e.,
src/lib.rs.

Steps to be followed:

Firstly, replace the block of a module 'A' with a semicolon.

1. modA;

2. mod B

3. ¢

4. fn b()

5. {

6. // block of statements.
7. }

8. modC

9. {
10. fn c()

11. {
12. // block of statements.
13. }
14. }

15.}
The semicolon ; tells the Rust to find the definition of a module 'A' into
another location where the scope of module 'A' is defined.

mod A; looks like:
I. modA
2.4
3. fn a()
4. |
5. // block of statements.
6. }
Now create the external file which contains the definition of module A. The
name of the external file would be named as src/A.rs. After creating the file,

write the definition of module A in this file which has been removed
previously.

Filename: src/A.rs.

1. fn a()
2.

3. // block of statements.

In this case, we do not need to write the mod declaration as we mentioned
in the src/lib.rs file. And, if we write the mod declaration here, then it
becomes a submodule of module A.

Rust bydefault looks into the src/lib.rs file then this file determines which
file is to be looked further.

Now, we will extract the module B from the file src/lib.rs and replace the
body of module B with the semicolon.

Filename: src/lib.rs

I. mod A;
2. od B;
. mod B; looks like:

1. mod B

2.

3. fnb()

4. |

5. // block of statements.
6. |}

7. modC

8. {

0. fn c()
10. {

11. // block of statements.
12. }
13. }

14.

Now create the external file which contains the definition of module B. The
name of the external file would be named as src/B.rs. After creating the file,
write the definition of module B 1n this file which have been removed
previously.

Filename: src/B.rs

1. fn b()
2.
3. // block of statements.

4. }

5. modC

6. {

7 fn c()

8. {

9. // block of statements.
10. }

11. }

Now we will extract the module C from the file src/B.rs and replace the
body of the module C with the semicolon.

1. fnb()
2.
3. // block of statements.
4, }
5. mod C;
mod C; looks like:
1. modC
2.4
3. fn c()
4.
5. // block of statements.
6. }
7.}

Now create the external file which contains the definition of module C. The
name of the external file would be named as src/C.rs. After creating the file,
write the definition of module C 1n this file which has been removed
previously.

File name: src/C.rs

1. fn c()

2. {

3. // block of statements.
4, }

Rules of Module filesystem:

. If the module named "server" and has no submodules, then all the
declarations of the module can be placed in the file server.rs.

If the module named "server" contains the submodules, then all the
declarations of the module are to be placed in the file server/mod.rs.

Making a functioning public

The "pub" keyword is used at the starting of the declaration so that the
function becomes accessible to the outside functions.

Following are the privacy rules:

If any function or module is public, then it can be accessed by any of
the parent modules.

If any function or module is private, then it can be accessed either by
its immediate parent module or by the parent's child module.

Let's understand this through a simple example:

1. mod outer
2.4
3. pub fna()
4. |
5. println!("function a");
6. }
7. fnb()
8. |
9. println!("function b");
10. }
11.
12. mod inner
13. {
14. pub fn c()
15. {
16. println!("function ¢");
17. %
18. fnd()
19. {
20. println!("function d");
21. }
22.}
23.}
24. fn main()
25.4

26. outer::a();

27. outer::b();

28. outer::inner::c();
29. outer::inner::d();
30. }

Output:

= CAWindows\system32\cmd.exe

Dzs>rustec public.ps
: function ‘b’ iz private
——2» public.prs:27:3
outer::h{>;
: module ‘dinner’ iz private

——2» public.rs:28:3

outer::inner::c(l;

: module ‘dinner’ is private
——2» public.rs:279:3

outer::iinnep::d{>;

: aborting due to 3 previous errors
For more information about this error. try "rustc —explain EBGBA3 .

Dz

In the above example, the main() function is the root module while an outer
module is the current root module of our project. Therefore, the main()
function can access the outer module.

The call to outer::a() will not cause any error as the function a() is public,
but when the main() function tries to access the outer.:b() function, then it
causes the compilation error because it is a private function.

The main() function cannot access the inner module as it is private. An
inner module has no child module, so it can be accessed only by its parent
module, i.e., outer module.

Referring to names 1n different
modules

When we call the function of a module, then we need to specify the full
path.

Let's understand this concept through an example:

I. pubmoda

{
pub mod b

{
pub mod ¢

{

pub fn nested modules()
{

9. println!("Nested Modules");
10. }

1. }

12. }

13. }

14.

15. fn main()

16. {

17. a::b::c:inested modules();
18. }

Output:
Nested Modules

XA B WD

In the above example, nested modules() function is called by specifying the
full path, i.e., a::b::c::nested_modules().

use keyword

In the above scenario, we saw that the function calling is quite lengthy.
Rust "use keyword" shortens the length of the function calling to bring the
modules of a function in the scope. The use keyword brings only those
modules which we have specified in the scope. Let's understand this
through an example:

I. pubmoda

2.4

3. pubmodb

4. |

5. pubmodc

6. {

7. pub fn nested modules()
8. {

9. println!("Nested Modules");
10. }

1. }
12. }
13. }
14.

15. use a::b::c::nested modules;
16. fn main()

17. {

18. nested modules();

19. }

Output:
Nested Modules

In the above example, the use keyword includes all the modules into the
scope. Therefore, we can call the function directly without including the
modules in the calling function.

An enum is also a form of a namespace like modules. Therefore, we can use
the use keyword to bring the enum variants into the scope. In use statement,
we can list the enum variants in the curly brackets and the commas in the
last position.

Let's understand through an example:

1. #[derive(Debug)]
2. enum Flagcolor
3. {

4. Orange,
5. White,
6. Green,

7.}

8. use Flagcolor::{Orange,White,Green};
9. fn main()

10. {

11. let o= Orange;

12. let w= White;

13. let g= Green;

14. println!("{:?}", o);

15. println!("{:7}", w);

16. println!("{:?}", g);

17.}

Output:

orange
white

green

In the above example, Flagcolor is the namespace whose variants are
specified in the use statement. Therefore, we can directly use the enum
variants without using enum name and namespace specifier.

Use of "*' operator

The * operator is used to bring all the items into the scope, and this is also
known as glob operator. If we use the glob operator, then we do not need to
specify the enum variants individually.

Let's understand this through an example:

1. #[derive(Debug)]
2. enum Color
3. {

4. Red,

5. Yellow,
6. Green,
7. Orange,
8. }
9.
10. use Color::*;

11. fn main()

12. {

13. let red=Red;

14. let yellow=Yellow;

15. let green=Green;

16. let orange=Orange;
17. println!("{:?}", red);
18. println!("{:?}", yellow);
19. println!("{:?}", green);
20. println!("{:?}", orange);
21.}

Output:

Red
Yellow
Green
Orange

In the above example, the '*' operator has been used to include all the enum
variants without specifying the list in the use statement.

Use of super keyword

The super keyword is used to access the grandparent module from the
current module. It enables us to access the private functions of the parent
module.

mod a{
. fnx() >u8 {
5

j

pub mod example {
use super::x;

XA B DD =

ey

pub fn foo() {

10. println!("{}",x());
1. }

12. }}

13.

14. fn main()

15. {

16. a::example::foo();
17.}

Output:
5

In the above example, the module example has used the super which refers
its parent module. Due to this reason, foo() function of module example can
access the private function of module a.

Vector

A vector 1s a single data structure which enables you to store more than one
value next to each other in the memory. A vector is useful when we have a
list of items such as items in a shopping cart.

Important points:
- A vector is used to store the value of the same type.
.« Vector is denoted by Vee<T>.

- The Vee<T> is provided by the standard library which can hold the
data of any type, where T determines the type of the vector.

. The data of the vector is allocated on the heap.

- A vector is a growable array means that the new elements can be
added at the runtime.

Vec<T>: When a vector holds the specific type then it is represented in the
angular brackets.

How to create a vector?

A vector can be created by using Vec::new() function. Let's look at this:
1. Let v : Vec<i32> = Vec::new();

In the above declaration, v is a vector of 132 type and it is created by using
Vec::new() function.

. There is another way to create the vector:

Rust provides vec! macro to create the vector and hold the values that we
provide.

For example:
1. let v=vec![10,20,30,40,50];
In the above declaration, vector v is created using a vector macro, i.e., vec!.

In the case of vec!, Rust automatically infer the type of the vector v is
Vec<i32> as the vector macro contains the integer values.

1. let v=vec![2;1];
In the above declaration, vector 'v' is created using vector macro which
contains the value 2 '1' times.

Accessing elements

The particular element of a vector can be accessed by using the subscript
operator [].

Let's understand through an example:
fn main()

{

let v =vec![20,30,40,50];

println!("first element of a vector is : {}",v[0]);
println!("Second element of a vector is : {}",v[1]);
println!("Third element of a vector is : {}",v[2]);
println!("Fourth element of a vector is : {}",v[3]);

b
Output:

first element of a vector is :20

PN BB =

Second element of a vector is :30
Third element of a vector is :40

Fourth element of a vector is :50

- The second way of accessing the vector elements is to use the
get(index) method with the index of a vector is passed as an argument
and it returns the value of type Option<&t>.

Let's understand through an example:

1 fn value(n:Option<&i32>)

2 {

3 match n

4 {

5. Some(n)=>println!("Fourth element of a vector is {}",n),
6. None=>println!("None"),

7. }

8. }

9. fn main()

10. {

11. let v =vec![20,30,40,50];

12. let a: Option<&i132>=v.get(3);
13. value(a);

14.}
Output:
Fourth element of a vector is 50

In the above example, get() method is used to access the fourth element of
the vector.

Difference between [] &get() method:

When we access the nonexistent element using [] operator, then it causes
the program to panic. Therefore, the program is crashed when we try to
access the nonexistent element. If we try to access the element by using
get() method, then it returns None without panicking.
Let's understand this through an example:
get(index)
1. fn value(n:Option<&i32>)
2.4
3. matchn
4. {
5. Some(n)=>println!("Fourth element of a vector is {}",n),
6. None=>println!("None"),
7.}
8

-
9. fn main()
10. {
11. let v =vec![20,30,40,50];
12. let a: Option<&i132>=v.get(7);
13. value(a);
14. }

Output:
None
[] operator

1. fn main()

2.4

3. let v =vec![20,30,40,50];
4. println!("{}",v[8]);

5.4

Output:

D stec vector.ps

D:suector.exe
i panicked at 'i out of 11 the len is 4 but the index is 8
rusthsrcnliboco licesmod.wr
*RUST_BAC

Iterating over the values in a vector

If we want to access each element of a vector, then we can iterate over the
elements of a vector rather than using the indexes to access a particular
element of a vector.

We can use the 'for' loop to iterate over the mutable or immutable
references.

Let's see a simple example of immutable references:
. fn main()

1

2.4

3. let v =vec![20,30,40,50];
4. print!("Elements of vector are :");
5. foriinv
6. {

7. print!("{} ",1);
8. }

9. }
Output:
Elements of vector are :20 30 40 50

Let's see a simple example of mutable references:

. fn main()
A
. let mut v =vec![20,30,40,50];
. print!("Elements of vector are :");
. foriin &mut v
{
*1+=20;
print!("{} ",1);

9.1
10. }

Output:
Elements of vector are :20 30 40 50

In the above example, we are changing the value of the vector. Therefore,
the vector is a mutable reference. The dereference(*) operator is used

before the 'i' variable to get the value of vector v.

Updating a vector

When we create the vector, then we insert the elements into the vector by

using push() method. The push() inserts the new element at the end of the
vector.

Let's see a simple example:

1. fn main()

2.4

3. let mut v=Vec::new();
4. wv.push()");

5. v.push('a");

6. v.push('v');

7. v.push('a");

8. foriinv

9. {
10. print!("{}",1);
11. }
12.}

Output:

java

In the above example, push() function is used to insert the elements into the
vector at the runtime. The vector 'v' is made mutable so that we can also
change the value of a vector.

Dropping a vector

When a vector goes out of the scope, then it gets autonatically dropped or
freed from the memory.

Let's understand this through a simple scenario:

1. fn main()

2. {

3. letv=lvec[30,40,50];

4. } =>vis freed here as it goes out of the scope.

In the above scenario, a vector is freed when it goes out of the scope means
that all the elements present in the vector will be removed.

Using Enum to store multiple types

Vectors can store the elements of the same type, and this is a big
disadvantage of a vector. Enum is a custom data type which contains the
variants of the various type under the same enum name. When we want to
store the elements in a vector of a different type , then we use the enum

type.

Let's understand this through an example:
1. #[derive(Debug)]

2. enum Values {

3. A(@32),

4. B(f64),

5. C(String),

6. }

7.

8. fn main()

9.4

10. let v=vec![Values::A(5),

11. Values::B(10.7),Values::C(String::from("Rustlang"))];
12. foriinv

13. {

14. println!(" {:?}",1);
15. }

16. }

Output:

A(5)

B(10.7)

C(Rustlang)

Advantages of using enum in a vector:

Rust knows the type of the elements of a vector at the compile time as
to determine how much memory on the heap is required for each
element.

When a vector consists of elements of one or more type then the
operations performed on the elements will cause the error but using

an enum with the match will ensure that every possible case can be
handled at the runtime.

String

Rust contains the two types of strings: &str and String.

String:
- A string is encoded as a UTF-8 sequence.
A string is allocated on the heap memory.

- A string is growable 1n size.
It is not a null-terminated sequence.

&str

. '&str' is also known as a string slice.

. It is represented by &[u8] to point the UTP-8 sequence.
. '&str' 1s used to view the data present in the string.

. It s fixed in size, i.e., it cannot be resized.

Difference b/w 'String' and '&str'.

A String is a mutable reference while &str is an immutable reference
to the string, 1.e., we can change the data of String, but the data of
&str cannot be manipulated.

A String contains the ownership on its data while &str does not have
ownership, it borrows it from another variable.

Creating a new String

A String is created similarly as we create the vector. Let's look at this:
Creating an empty String:
1. Let mut s = String::new();

In the above declaration, String s is created by using new() function. Now,
if we want to initialize the String at the time of declaration, we can achieve
this by using the to_string() method.

- Implementing the to_string() method on the data:
1. let a="Rustlang";
2. let s =a.to_string();

We can also implement the to_string method directly on the string
literal:

1. let s ="Rustlang".to_string();
Let's understand this through an example:
. fn main()

1

2.

3. let data="Rustlang";
4. let s=data.to_string();
5
6
7

. print!("{} ",s);
. let str="tutorial".to_string();

. print!("{}",str);
Output:
Rustlang tutorial
- The second way to create the String is to use String::from function,
and this is equivalent to the String::new() function.

Let's understand this through a simple example:

1. fn main()

2. {

3. let str = String::from("Rustlang tutorial");
4. print!("{}",str);

5. }

Output:

Rustlang tutorial

Updating a String

We can change the size of the String and content of the String as well by
pushing more data into the String. We can also use the '+' operator of the
format macro! To concatenate the string values.

Updating a String

N

push_str{) '+ operator |

- Appending to a string with push_str and push
push_str() : We can grow the size of the String by using the push_str()

function. It appends the content at the end of the string. Suppose s1 and s2
are two strings and we want to append the string s2 to the string s1.

1. sl.push_str(s2);
Let's understand this through a simple example:
. fn main()

1

2.4

3. let mut s=String::from("java is a");

4. s.push_str(" programming language");
5. print!("{}",s);

6. }

Output:

java is a programming language

The push_str() function does not take the ownership of the parameter. Let's
understand this scenario through a simple example.

1. fn main()
2.4

3. let mut sl = String::from("Hello");
4. lets2="World";

5. sl.push_str(s2);

6. print!("{}",s2);

7.}

Output:
World

If push_str() function takes the ownership of the parameter, then the last
line of the program would not work, and the value of the s2 will not be
printed.

push() : The push() function is used to add a single character at the end of
the string. Suppose the string is s1 and character ch which is to be added at
the end of the string s1.
1. sl.push(ch);
Let's see a simple example:

. fn main()

1
2.4
3. let mut s = String::from("java");
4. s.push('c');
5. print!("{}",s);
6. }
Output:
javac
- Concatenation with the '+' operator or format macro
'+' operator: The '+' operator is used to concatenate two strings. Let' look:
1. let s1 = String::from("Rustlang ");
2. let s2 = String::from("tutorial!!");
3. let s3 =sl+&s2;
Let's see a simple example:
1. fn main()
2.4
3. let sl = String::from("Rustlang");
4. let s2 = String::from(" tutorial!!");
5. let s3 =sl+&s2;
6. print!("{}",s3);
7.}
Output:

Rustlang tutorial!!

In the above example, s3 contains the result of the concatenation of two
strings, i.e., Rustlang tutorial. The 's1' is no longer valid, and we use the
reference of the s2, i.e., &s2 according to the signature of the method which
is called when we use the '+' operator. The '+' operator calls the add()
method whose declaration is given below:

1. fn add(self,s:&str)->String
2. 4
3.}

Firstly, s2 has '&' operator means that we are adding a reference to the s1.
According to the signature of the add() function, we can add &str to a
String, and we cannot add two string values together. But the type of s2 is
&String not &str according to the second parameter specified in the add()
method. But still, we able to use the s2 in the add method because the
compiler coerces the &string into &str. Therefore, we can say that when we
call the add() method, then Rust uses deref coercion.

Secondly, the first parameter of the add() function is self and add() takes the

ownership of self. This means that s1 is no longer valid after the statement
let s3=s1+&s2;

format! Macro

o When we want to concatenate multiple strings, then the use of
'+' operator becomes very clumsy in this case. To concatenate
the multiple strings, use of format macro is preferred.

o The format macro works similarly as println! macro. The
difference between format macro and println! macro is that
format macro does not print on the screen, it returns the content
of the string.

Let's understand this through a simple example:
fn main()

{

let s1 = String::from("C");

let s2 = String::from("is");

let s3 = String::from("a");

let s4 = String::from("programming");

let s5 = String::from("language.");

let s = format!("{} {} {} {} {}",s1,52,53,54,55);
print!("{}",s);

XAk W=

10. }
Output:

C is a programming language.

Indexing into Strings

A String is encoded in a UTF-8 sequence. Therefore, the string cannot be
indexed. Let's understand this concept through an example:

1. fn main()
2. {
3. let s = String::from("Rustlang");
4. print!("{}",s[1]);
5.1
Output:
error[E0277]: the trait bound std::string::String: std::ops::Index<{integer}>" is not satisfied
--> jdoodle.rs:4:17
|
4| print!("{}",s[1]);
| MM the type “std::string::String” cannot be indexed by " {integer}"
|

help: the trait "std::ops::Index<{integer}>" is not implemented for 'std::string::String"

error: aborting due to previous error

Accessing through an index is very fast. But, the string is encoded in a
UTF-8 sequence which can have multiple bytes and to find the nth
character in a string will prove expensive operation.

Slicing Strings

Indexing is not provided in the string as it is not known about the return
type of the indexing operation should have byte value, character or a string
slice. Rust provides a more specific way to index the string by providing a
range within [] rather than a single number.

Let's look:

1. let s ="Hello World";
2. leta=&s[1.4];

In the above scenario, s contains the string literal, i.e., Hello World. We
specify [1..4] indices means that we are fetching the substring from a string
s indexing from 1 to 3.

1. fn main() {

2.

3. lets="Hello World";

4. leta=&s[l.4];

5. print!("{}",a);

6. }

Output:

ell

Methods for iterating over strings

We can access the string in other ways also. We can use the chars() method
to iterate over each element of the string.

Let's see a simple example:

1. fn main()

2.4

3. lets="Cis a programming language";
4. foriin s.chars()

5.

6 print!("{}",1);

7.}

8. }

Output:

C is a programming language

Rust Error handling

Error handling is a mechanism in which Rust determines the
possibility of an error and acknowledge you to take some action
before the code goes for compilation.

This mechanism makes the program more robust as it enables you to
discover and handles the errors before you deploy the code for
production.

Rust programming language does not contain the exceptions.

There are two types of errors in Rust:

Unrecoverable error:
Recoverable error

Recoverable Error: Recoverable errors are the errors which are
reported to the user and user can retry the operation. Recoverable
errors are not very serious to stop the process entirely. It is
represented by Result<T,E>. Example of recoverable error is "file
not found".

Where T & E are the generic parameters.

T-> It is a type of value which is returned in a success case with an
'OK' variant.

E-> It is a type of the error which is returned in a failure case with an
'Err' variant.

Unrecoverable Error: When the Rust reports an unrecoverable error,
then the panic! macro stops the execution of a program. For
example: "Divide by zero" is an example of unrecoverable error.

Recoverable Error vs Unrecoverable Error

Recoverable Error is an error that can be recovered in some way
while Unrecoverable Error is an error that cannot be recovered in any
way.

Let's see a scenario of expected behavior:

1. "100".parse();

In the above case, "100" is a string, so we are not confirmed whether the
above case will work or not. This is the expected behavior. Therefore, it is a
recoverable Error.

- Unexpected behavior
Unexpected behavior can be shown in two ways:

) assert!

L
) unreachable!

assert!: An assert! is used when we want to declare something that it is
true. If it 1s not correct and wrong enough, then the program stops the
execution. It invokes the panic! , if the expression is not evaluated as true at
the runtime.

Let's see a simple example:

1. fn main()

2. {

3. let x : bool = false;
4. assert!(x==true);
5.}

Output:

= Ch\Windows\system32\cmd.exe

Microsoft Windows [Version 6.3.76H01]
(c>» 213 Microsoft Corporation. All rights reserved.

C:sUzerssadminid:
D:s2>rustc error.prs
D= >error.exe

thread 'main’ panicked at 'assertion failed: x == true’, error.rs:4:4
: Run with “RUST_BACKTRACE=1' for a bhacktrace.

In the above example, the value of x is false and the condition within the
assert! Macro 1s false. Therefore, an assert! Invoke the panic! at the
runtime.

unreachable!: An unreachable! Macro is used for the unreachable code.
This macro 1s useful as the compiler can not determine the unreachable

code. Unreachable code is determined by the unreachable! at the runtime.

Let's see a simple example:

1. enum Value

2.4

3. Val,

4. }

5.

6. fn get number(_:Value)->132
7.4

8. 5

9.}
10. fn find number(val:Value)-> &'static str
11. {
12. match get number(val)
13. {
14. 7=>"seven",
15. 8=>"eight",
16. =>unreachable!()
17. }

18. }
19.
20. fn main()

21. {
22. println!("{}", find number(Value::Val));

23.}
Output:
e} CA\Windows\system32\cmd.exe

D:sJrustc error.ps

INFEPPOP . EXE
d ‘main’ panicked at *internal error: entered unreachahle code’, error.rs:i

: Bun with ‘RUST_BACKTRACE=1" for a backtrace.

In the above example, the value returned by the get number() function is 5,
and it is matched with each pattern, but it is not matched with any of the
patterns. Therefore, the unreachable! macro calls the panic! macro.

Rust Unrecoverable Errors

Unrecoverable Error is an error which is detected, and the programmer
can not handle it. When such kind of error occurs, then panic! macro is
executed. The panic! prints the failure message. The panic! macro unwinds
cleans up the stack and then quit.

Either of the two cases can be occurred in response to panic!:

Unwinding

e
L J

Aborting

- Unwinding: Unwinding is a process of cleaning up the data from the
stack memory of each function that it encounters. However, the
process of unwinding requires a lot of work. The alternative of
Unwinding is an Aborting.

- Aborting: Aborting is a process of ending the program without
cleaning the data from the stack memory. The operating system will
remove the data. If we switch from unwinding to aborting, then we
need to add the following statement:

1. panic = 'abort';
Let's see a simple example of panic! macro:

1. fn main()

2.

3. panic!(?No such file exist?);
4.

Output:

] CAWindows\system32\cmd.exe

D:=“2>rustc error.rs

D:v\>error.exe
thread ‘main’ panicked at ‘no such file exist’, error.prs:3:h

note: Run with ‘RUST_BACKTRACE=1' for a hacktrace.

D:\>_

In the above output, the first line shows the error message which conveys
two information, i.e., the panic message and the location of the error. The
panic message 1s "no such file exist" and error.rs:3:5 indicates that it is a

third line and fifth character of our file error.rs:3:5 file.

The Advantage of panic! macro

Rust language does not have a buffer overread issue. Buffer overread is a
situation, when reading the data from the buffer and the program overruns
the buffer, i.e., it reads the adjacent memory. This leads to the violation of
the memory safety.

Let's see a simple example:

1. fn main()

2.4

3. let v=vec![20,30,40];

4. print!("element of a vector is :",v[5]);
5.}

Output:

E C\Windows\system32\cmd.exe

MUSTC error.rs

D:serror.exe
read ‘main’ panicked at ‘index out of the lem is 3 but the index is 5°
. Cisprojectassrustisreslibeoress lice mod 18

= Run with "RUST_BACKTRACE=1" for a ce.

In the above example, we are trying to access the sixth element which is at
the index 5. In such a situation, Rust will panic as we are accessing the
invalid index. Therefore, Rust will not return anything.

But, in the case of other languages such as C and C++, they would return
something, eventhough the vector does not belong to that memory. This is
known as Buffer overread, and it leads to the security issues.

Rust Backtrace

Rust Backtrace is the list of all the functions that have been called to know
"what happened to cause the errror." We need to set the
RUST BACKTRACE environment variable to get the backtrace.

Rust Recoverable Errors

Recoverable errors are those errors which are not very serious to stop
the program entirely. The errors which can be handled are known as
recoverable errors.

It is represented by Result<T, E>. The Result<T, E> is an enum
consists of two variants, i.e., OK<T> and Err<E>. It describes the
possible error.

OK<T>: The 'T' is a type of value which returns the OK variant in the
success case. It is an expected outcome.

Err<E>: The 'E' is a type of error which returns the ERR variant in the
failure. It is an unexpected outcome.

1. Enum Result<T,E>
2.4

3. OK<T>,

4. Err<E>,

5.}
- In the above case, Result is the enum type, and OK<T> &
Err<E> are the variants of enum type where 'T' and 'E' are the
generic type parameters.

"T' is a type of value which will be returned in the success case while
'E' is a type of error which will be returned in the failure case.

- The Result contains the generic type parameters, so we can use the
Result type and functions defined in the standard library in many
different situations where the success and failure values may vary.

Let's see a simple example that returns the Result value:

1. wuse std::fs::File;

2. fn main()

3.4

4. let fiu32 = File::open("vector.txt");
5.}

Output:

CAWindows\system32\cmd.exe

Divdruste error.rs
: mismatched types
> error.prs:d:17

let fF:u3d2 = File::open{'vector.txt")>;

= note: expected type “ui2’) o
found type “std::presult::Result{std::fz::File, std::io::Errowr>

: aborting due to previous error

For more information about this error, try “puste ——explain EB368° .

Dz

In the above example, Rust compiler shows that type does not match. The 'f'
is a u32 type while File:: open returns the Result<T, E>type. The above
output shows that the type of the success value is std::fs:: File and the type
of the error value is std::10:: Error.

Note:

1. The return type of the File:: open is either a success value or failure
value. If the file:: open succeeds, then it returns a file handle, and if
file:: open fails, then it returns an error value. The Result enum
provides this information.

2. If File:: open succeed, then f will have an OK variant that contains
the file handle, and if File:: open fails, then f will have Err variant
that contains the information related to the error.

Match Expression to handle the Result variants.

Let's see a simple example of match expression:

1. use std::fs::File;
2. n main()

3.4
4. let f= File::open("vector.txt");
5. match f

6. {

7 Ok(file) => file,

8. Err(error) => {

9. panic!("There was a problem opening the file: {:?}", error)
10. 3},

1. };

Output:

= C\Windows\system32\cmd.exe

Error.rs

panicked at *There was a problem opening the file: 0Os { code: 2,

d. message: “The system cannot find the file specified.” >’. error.y

ez Run with *RUST_BACKTRACE=1" for a bhacktrace.

Program Explanation

- In the above example, we can access the enum variants directly
without using the Result:: before OK and Err variant.

. Ifthe result is OK, then it returns the file and stores it in the 'f’
variable. After the match, we can perform the operations in the file
either reading or writing.

« The second arm of the match works on the Err value. If Result returns
the Error value, then panic! runs and stops the execution of a
program.

Panic on Error: unwrap()

.« The Result<T, E> has many methods to provide various tasks. One of
the methods 1s unwrap() method. The unwrap() method is a shortcut
method of a match expression. The working of unwrap() method and
match expression is the same.

. Ifthe Result value is an OK variant, then the unwrap() method returns
the value of the OK variant.

. If the Result value is an Err variant, then the unwrap() method calls
the panic! macro.

Let's see a simple example:

1. use std::fs::File;
2.
3. fn main()
4. {
5. File::open("hello.txt").unwrap();
6. }
Output:
o] C\Windows\system32\cmd.exe

i f?icru'.:ul:"l‘ Windows [Version 6.3.96HH1]

(c)> 2813 Microsoft Corporation. All rights reserved.

sepssadnin>D:

icked at ‘called ‘Result::unwrap(}’ on an "Err’ wvalue: 0s { co
d, message: "“"The system cannot find the file specified." 2>'.
ult .»s G
RBun with "RUST_BACKTRACE=1" for a hacktrace.

Panic on Error: expect()

- The expect() method behaves in the same way as the unwrap()
method, i.e., both methods call the panic! to display the error
information.

. The difference between the expect() and unwrap() method is that the
error message 1s passed as a parameter to the expect() method while
unwrap() method does not contain any parameter. Therefore, we can
say that the expect() method makes tracking of the panic! source
easier.

Let's see a simple example of expect()

1. use std::fs::File;

2. fn main()

3. {

4. File::open("hello.txt").expect("Not able to find the file hello.txt");
5.}

Output:

CA\Windows\system32\cmd.exe

D:sJrustc error.ps

D:\Jerror.exe

thread ‘main’ panicked at Mot able to find the file hello.txt: 0Os { code: 2, k
nd: MotFound, message: "The system cannot find the file specified." »'. libcore®
result . ps:945:5

note: Run with “RUST_BACKIRACE=1" for a hacktrace.

)

In the above output, the error message is displayed on the output screen
which we specify in our program, i.e., "Not able to find the file hello.txt"
and this makes easier for us to find the code from where the error is coming
from. If we contain multiple unwrap() method, then it becomes difficult to

find where the unwrap() method is causing panic! as as panic! shows the
same error messages for all the errors.

Propagating Errors

Propagating error is a mechanism in which errors are forwarded from one
function to other function. Errors are propagated to the calling function
where more information is available so that the error can be
handled. Suppose we have a file named as 'a.txt' and it contains the text
"Rustlang." We want to create a program that performs the reading
operation on this file. Let's work on this example.
Let's see a simple example:

use std::10;
use std::10::Read;
use std::fs::File;
fn main()
{

let a =read username from_file();

print!("{:?}",a);
b

fn read username from_file() -> Result<String, i0::Error>

A

PN B =

— p—
o — o O

let f = File::open("a.txt");
let mut f = match f {
Ok(file) => file,

Err(e) => return Err(e),
s

let mut s = String::new();
match f.read to string(&mut s) {
18. Ok(_) => Ok(s),

19. Err(e) => Err(e),

20. }

21.}

Program Explanation

—
NN kW

« The read username from file() function returns a value of the type
Result<T, E> where 'T" is a type of String and 'E' is a type of io:Error.

If the function succeeds, then it returns an OK value that holds a
String, and if the function fails, then it returns an Err value.

This function starts by calling the File:: open function. If the File::
open function fails, then the second arm of the match will return the
Err value, and if the File:: open function succeeds, then it stores the
value of the file handle in variable f.

If the File:: open function succeeds, then we create the variable of a
String. If read to_string() method succeeds, then it returns the text of
the file otherwise it returns the error information.

Suppose we have an external file with a name 'a.text' and contains the
text "Rustlang." Therefore, this program reads the file 'a.text' and
displays the content of the file.

Shortcut for propagating the errors: the '?'

operator

The use of '?" operator reduces the length of the code. The '?' operator is the
replacement of the match expressions means that the '?' operator works in
the same way as the match expressions do. Suppose we have a file named
as 'a.txt' and it contains the text "Rustlang." We want to create a
program that performs the reading operation on this file. Let's work on
this example.
Let's see a simple example.
use std::10;
. use std::i0::Read;
use std::fs::File;
fn main()
{

let a =read username from file();

print!("{:?}",a);
b

fn read username from file() -> Result<String, i0::Error>
10. {

11. let mut f = File::open("a.txt")?;

12. let mut s = String::new();

13. frread to string(&mut s)?;

14. Ok(s)

15.}

In the above example, '?' operator is used before the Result value type. If
Result is OK, then it returns the value of OK variant, and if Result is an Err,
then it returns the error information.

0N L AW~

NS

Difference b/w '?' operator & match

expression

The errors which are used with the '?' operator moves through the
'from' function and the 'from' function is defined in the from trait in
the standard library.

When the '?" operator calls the 'from' function, then this function
converts the error type into the error type defined in the return type of
the current function.

If no error occurs, then the '?' operator at the end of any function
returns the value of OK, and if the error occurs, then the value of Err
1s returned.

It makes the implementation of the function simpler.

Chaining method calls after the '?' operator

We can even shorten the code of a program more by using the chaining
method calls after the '?' operator.
Let's see a simple example:
use std::10;
. use std::10::Read;
use std::fs::File;
. fn main()
{
let a =read username from file();
print!("{:7}",a);
h

fn read username_ from_file() -> Result<String, i0::Error>
10. {

11. let mut s = String::new();

12. File::open("a.txt")?.read to string(&mut s)?;

13. Ok(s)

14. }

Program Explanation

N U AW~

NS

In the above example, we have chained the call of read to_string() to the
result of the call of File::open("a.txt")?. We place the '?' operator at the end
of the call of read to_string(). It returns OK value if both the functions, i.e.,
read to string() and File::open("a.txt") succeeds otherwise it returns the
error value.

Limitation of '?' operator

The '?" operator can only be used in the functions that return the Result type
value. As the '?" operator works similarly as the match expression. The
match expression works only on the Result return type.

Let's understand this through a simple example.

1. use std::fs::File;
2. fn main()

3.4

4.
5.}
Output:

e C:\Windows\system32\cmd.exe

nIrustc error.es
: the "7 operator can only be used in a function that returns °
" or ‘Option’ <or another type that implements “std:zops:z:Tey’)
> error.rs:d4:13

let f = File::open("a.txt")?;

let £ = File::open{"a_.txt">?;

= help: the trait “std::ops::Try’ is not implemented for "(3°
note: required by “std:: t:Tey: :from_error’

: aborting due to previous error

» more information about this errvor,. try ‘vuste -—explain EB277°.

Rust Generics

When we want to create the function of multiple forms, i.e., the parameters
of the function can accept the multiple types of data. This can be achieved
through generics. Generics are also known as 'parametric polymorphism'
where poly is multiple, and morph is form.
There are two ways to provide the generic code:

- Option<T>

Result<T, E>

1. Option<T>: Rust standard library provides Option where 'T' is the
generic data type. It provides the generic over one type.
1. enum Option<T>
2.4
3. Some(T),
4. None,
5.4
In the above case, enum is the custom type where <T> is the generic data
type. We can substitute the "T' with any data type. Let's look at this:
1. let x : Option<i32>= Some(10); //"T" is of type 132.
2. let x : Option<bool> = Some(true); // "T"is of type bool.
3. let x : Option<t64> = Some(10.5); // '"T" is of type f64.
4. let x : Option<char> = Some('b'); / "T" is of type char.
In the above case, we observe that "T' can be of any type, i.¢., 132, bool, 64
or char. But, if the type on the left-hand side and the value on the right hand
side didn't match, then the error occurs. Let's look at this:

1. let x : Option<i32> = Some(10.8);

In the above case, type on the left-hand side is 132, and the value on the
right-hand side is of type f64. Therefore, the error occurs "type
mismatched".

2. Result<T,E>: Rust standard library provides another data
type Result<T,E> which is generic over two type, i.e., T &E:

1. enum Result<T,E>

Al

OK(T),
Err(E),

Generic functions

Generics can be used in the functions, and we place the generics in the
signature of the function, where the data type of the parameters and the
return value is specified.

- When the function contains a single argument of type 'T".

Syntax:

1. fn function name<T>(x:T)
2.

3. // body of the function.

The above syntax has two parts:
. <T>:The given function is a generic over one type.

(x:T):x1sof type T.

When the function contains multiple arguments of the same type.

1. fn function name<T>(x:T, y:T)

2.

3. // body of the function.

When the function contains arguments of multiple types.

1. fn function name<T,U>(x:T, y:U)

2.

3. // Body of the function.

fn main()
{
let a=vec![1,2,3,4,5];
let b=vec![2.3,3.3,4.3,5.3];
let result = add(&a);
let result]l = add(&b);
println!("The value of result is {}",result);
println!("The value of resultl is {}",resultl);

j

11. fn add<T>(list:&[T])->T
12. {

13. let mut ¢ =0;

14. for &item in list.iter()

PN BB =

o O

15. |
16. c=ctitem;
17. }

18. ¢}

Struct Definitions

Structs can also use the generic type parameter in one or more fields using
<> operator.
Syntax:

1. struct structure name<T>
2.
3. // Body of the structure.

In the above syntax, we declare the generic type parameter within the
angular brackets just after the structure name, and then we can use the
generic type inside the struct definition.

Let's see a simple example:

1. struct Value<T>

2. 4

3. aT,

4. b:T,

5.}

6. fn main()

7. 4

8. let integer = Value{a:2,b:3};

9. let float = Value{a:7.8,b:12.3};

10. println!("integer values : {},{}",integer.a,integer.b);
11. println!("Float values :{},{}",float.a,float.b);
12.}

Output:

integer values : 2,3
Float values : 7.8,12.3

In the above example, Value<T> struct is generic over one type and a and b
are of the same type. We create two instances integer and float. Integer
contains the values of type 132 and float contains the values of type f64.

Let's see another simple example.

1. struct Value<T>
2. 4
3. alT,

4. b:T,
5.}

6. fn main()
7. {

8. let c=Value{a:2,b:3.6};

9. println!("c values : {},{}",c.a,c.b);
10. }

Output:

Dz dpusbe geney BE

C : tched types
¥ generics .y &3
L]

let © Ualuelaz2. b3 .6);

note: expected type Lintegers y
Found type {Float?

: aborting due to previous error

For more information about thiz error, try “rustc ——explain EB38E" .

In the above example, Value<T> struct is generic over one type, and a and b
are of the same type. We create an instance of 'c'. The 'c' contains the value
of different types, i.e., 132 and {64. Therefore, the Rust compiler throws the
"mismatched error".

Enum Definitions

An enum can also use the generic data types.Rust standard library provides
the Option<T> enum which holds the generic data type. The Option<T> is
an enum where 'T' is a generic data type.

Option<T>
It consists of two variants, i.e., Some(T) and None.

Where Some(T) holds the value of type T and None does not contain any
value.

Let's look:

1. enum Option<T>
2.4

3. Some(T),
4. None,
5.}

In the above case, Option is an enum which is generic over one type "T'. It
consists of two variants Some(T) and None.

Result<T, E>: We can create the generic of multiple types. This can
be achieved through Result<T, E>.

enum Result<T,E>
{

OK(T),

Err(E),
b

Nk

In the above case, Result<T, E> is an enum which is generic over two types,
and it consists of two variants, 1.e., OK(T) and Err(E).

OK(T) holds the value of type '"T' while Err(E) holds the value of type 'E'".

Method Definitions

We can implement the methods on structs and enums.
Let's see a simple example:

1. struct Program<T> {

2 a: T,

3. b:T,

4. }

5. impl<T> Program<T>
6. {

7.

8. {

9. &self.a

10. }

1.}

12. fn main() {

13. let p = Program{ a: 5, b: 10 };
14.

15. println!("p.a() is {}", p.a());
16. }

Output:
p.a()is 5

In the above example, we have implemented the method named as 'a' on the
Program<T> that returns a reference to the data present in the variable a.

We have declared the 'T" after impl to specify that we are implementing the
method on Program<T>.

fn a(&self) > &T

Resolving Ambiquities

Rust compiler automatically infers the generic parameters. Let's understand
this through a simple scenario:

1. Let mut v = Vec::new(); // creating a vector.
2. v.push(10); // inserts integer value into the vector. Therefore, v 1s of 132 t

ype.
3. println!("{:?}", v); // prints the value of v.

In the above case, we insert the integer value into the vector. Therefore, the
Rust compiler got to know that the vector v has the type 132.

If we delete the second last line, then it looks like;

1. Let mut v = Vec::new(); // creating a vector.
2. println!("{:?}", v); // prints the value of v.

The above case will throw an error that "it cannot infer the type for T".
We can solve the above case in two ways:

1. We can use the following annotation:

1. let v : Vec<bool> = Vec::new();

2. println!("{:?}",v) ;

2. We can bind the generic parameter "T' by using the 'turbofish' ::<>

operator:

1. let v=Vec :: <bool> :: new();
2. println!("{:?}",v) ;

Rust Trait

Rust trait is a feature of a Rust language that describes the
functionality of each type that it can provide.

. A trait is similar to the feature of an interface defined in other
languages.

. A trait is a way to group the method signatures to define a set of
behaviors.

- A Trait is defined by using the trait keyword.
The Syntax of the trait:

1. trait trait name

2.

3. //body of the trait.
4.

In the above case, we declare the trait followed by the trait name. Inside the
curly brackets, method signature is declared to describe the behavior of a
type that implements the trait.

Let's see a simple example:
1. struct Triangle

{
base : 64,
height : 164,
§

trait HasArea

{
fn area(&self)->164;

j

XA B LD

NS

11. impl HasArea for Triangle
12. {

13. fn area(&self)->164

14. {

15. 0.5*(self.base*self.height)
16. }

17.}

18. fn main()

19. {

20. let a = Triangle{base:10.5,height:17.4};

21. let triangle area = a.area();

22. println!("Area of a triangle is {}",triangle area);
23.}

Output:
Area of a triangle is 91.35

In the above example, trait named as HasArea is declared which contains
the declaration of area() function. HasArea is implemented on the type
Triangle. An area() function is simply called by using the instance of the
structure, 1.e., a.area().

Trait as Arguments

Traits can also be used as arguments of many different types.

The above example implements the HasArea trait, and it contains the
definition of the area() function. We can define the calculate area() function
that calls the area() function, and the area() function is called using the
instance of the type that implements the HasArea trait.

Let's look at the syntax:

1. fn calculate area(item : impl HasArea)

2.

3. println!("Area of the triangle is : {}",item.area());
4. }

Trait bounds on Generic functions

Traits are useful because they describe the behavior of different methods.
But, Generic functions does not follow this constraint. Let's understand
this through a simple scenario:

1. fn calculate area<T>(item : T)
2.

3. println!(?Area of a triangle is {}?, item.area());

In the above case, Rust compiler throws an "error that no method named
found of type T". If we bound the trait to the generic T, then the following
error can be overcome:

1. fn calculate area<T : HasArea> (item : T)

2. {

3. println!("Area of a triangle 1s {} ",item.area());

4.

5.

6. }

In the above case, <T: HasArea> means "T can be of any type that
implements HasArea trait". Rust compiler got to know that any type that
implements the HasArea trait will have an area() function.

Let's see a simple example:
. trait HasArea

1

2.4

3. fn arca(&self)->164;
4. }

5. struct Triangle
6. {

7. base : 64,
8. height : f64,
9.}

10.
11. impl HasArea for Triangle
12.

13. fn area(&self)->164

14. {

15. 0.5*(self.base*self.height)

16. }

17.}

18. struct Square

19. {

20. side : 164,

21.}

22.

23. impl HasArea for Square

24. 4

25. fn area(&self)->f64

26. {

27. self.side*self.side

28. }

29.}

30. fn calculate area<T : HasArea>(item : T)
31. ¢

32. println!("Areais : {}",item.area());
33.}

34.

35. fn main()

36. {

37. let a=Triangle{base:10.5,height:17.4};
38. let b =Square{side : 4.5};

39. calculate area(a);

40. calculate area(b);

41.}

Output:

Areais:91.35
Area is : 20.25

In the above example, calculate area() function is generic over "T".

Rules for implementing traits

There are two limitations to implementing the trait:

. If'the trait is not defined in your scope, then it cannot be implemented
on any data type.

Let's see a simple example:
. use::std::fs::File;

1

2. fn main()

3.4

4. let mut f = File::create("hello.txt");
5. let str = "Rustlang";

6. let result = f.write(str);

7.}

Output:

error : no method named 'write' found.

let result = f.write(str);

In the above case, Rust compiler throws an error, i.e., ''no method
named 'write' found" as use::std::fs::File; namespace does not contain the
write() method. Therefore, we need to use the Write trait to remove the
compilation error.

The trait which we are implementing must be defined by us. For
example: If we define the HasArea trait, then we can implement this
trait for the type 132. However, we could not implement

the toString trait defined by the Rust for the type 132 as both the type
and trait are not defined in our crate.

Multiple trait bounds

- Using '+' operator.
If we want to bound the multiple traits, we use the + operator.
Let's see a simple example:
. use std::fmt:: {Debug, Display};

1
2. fn compare prints<T: Debug + Display>(t: &T)
3. {

4. println!("Debug: '{:?7}", t);

5. println!("Display: '{}'", t);

6. }

7

8

9.

10.

11.

12. fn main() {

13. let string = "Rustlang";

14. compare prints(&string);
15. }

Output:

Debug: ' "Rustlang"'
Display: ' Rustlang'

In the above example, Display and Debug traits are bounded to the type "T'
by using the '+' operator.
Using 'where' clause.

o A bound can be written using a 'where' clause which appears
just before the opening bracket '{'.

o A 'where' clause can also be applied to the arbitrary types.

o When 'where' clause is used, then it makes the syntax more
expressive than the normal syntax.

Let's look:

fn fun<T: Display+Debug, V: Clone+Debug>(t:T,v:V)->132

1.
2.
3. //block of code;
4

When 'where' is used in the above case:
1. fn fun<T, V>(t:T, v:V)->132

2. where T : Display+ Debug,

3. V : Clone+ Debug

4.
5 //block of code;

In the above cases, the second case where we have used the 'where' clause
makes the program more expressive and readable.

Let's see a simple example:
trait Perimeter

{
fn a(&self)->164;

}

struct Square

{
side : 164,

h

. impl Perimeter for Square
A

11. fn a(&self)->f64
12. {

13. 4.0*self.side
14. }

15.}

16. struct Rectangle
17. {

18. length : 164,

19. breadth : {64,

PN B LD =

o O

20. }
21. impl Perimeter for Rectangle
22.
23. {
24. fn a(&self)->164
25. {
26. 2.0*(self.length+self.breadth)
27. }
28.}
29. fn print_perimeter<Square,Rectangle>(s:Square,r:Rectangle)
30. where Square : Perimeter,
31. Rectangle : Perimeter
32. {
33. let rl = s.a();
34. let 12 = r.a();
35. println!("Perimeter of a square is {}",r1);
36. println!("Perimeter of a rectangle is {}",r2);
37. }
38. fn main()
39. {
40. let sq = Square{side : 6.2};
41. let rect = Rectangle {length : 3.2,breadth:5.6};
42. print_perimeter(sq,rect);
43. }
Output:

Perimeter of a square is 24.8

Perimeter of a rectangle is 17.6

Default methods

A default method can be added to the trait definition if the definition of a
method is already known.

Let's look:

1. trait Sample

2

3. fn a(&self);

4. fn b(&self)

5. 4

6 println!("Print b");
7.3

8

In the above case, the default behavior is added to the trait definition. We
can also override the default behavior. Let' look at this scenario through
an example:

trait Sample

{

. fn a(&self);

fn b(&self)

{

println!("Print b");

}

§

I e

9.

10. struct Example
11. {

12. a:132,

13. b:i32,

14. }

15.

16.

17.

18. impl Sample for Example
19. {

20. fn a(&self)

21. {
22. println!("Value of a is {}",self.a);
23. }
24,
25. fn b(&self)
26. {
27. println!("Value of b is {}",self.b);
28. }
29.}
30. fn main()
31. ¢
32. letr=Example{a:5,b:7};
33. r.a();
34. 1.b();
35.}
Output:

Value ofais: 5
Value of bis: 7

In the above example, the behavior of b() function is defined in the trait is
overridden. Therefore, we can conclude that we can override the method
which is defined in the trait.

Inheritance

The trait which is derived from another trait is known as inheritance.
Sometimes, it becomes necessary to implement the trait that requires
implementing another trait. If we want to derive 'B' trait from 'A’ trait, then
it looks like:

I. trait B : A;
Let's see a simple example:
trait A

{
fn f(&self);

§
trait B: A

{
fn t(&self);

j

struct Example

A
11. first: String,
12. second : String,

XA B =

o O

13.}

14. impl A for Example
15. 4

16. fn f(&self)

17. {

18.

19. print!("{} ",self first);
20. }

21.

22. %}

23. impl B for Example
24. {

25. fn t(&self)

26. {

27. print!("{}",self.second);
28. }

29.}

30. fn main()

31. {

32. let s = Example{first:String::from("Rustlang"),second:String:: from("tut
orial")};

33. s.f();

34. s.t();

35.}

Output:
Rustlang tutorial

In the above example, our program is implementing the 'B' trait. Therefore,
it also requires to implement the 'A' trait. If our program does not
implement the 'A' trait, then the Rust compiler throws an error.

Rust Lifetime

Lifetime defines the scope for which reference is valid.
. Lifetimes are implicit and inferred.

Rust uses the generic lifetime parameters to ensure that actual
references are used which are valid.

Preventing Dangling references with

Lifetimes

When a program tries to access the invalid reference is known as
a Dangling reference. The pointer which is pointing to the invalid resource
1s known as a Dangling pointer.

Let's see a simple example:

. fn main()

A
let a;

1

2

3

4. {

5. letb=10;
6 a = &b;

7.}

8. println!("a: {}",a);
9.}
Output:

oo CAWindows\system32\cmd.exe - cmd

D:Z>rustec lifetime.rs
: 'b" does not live long enough
——>» lifetime.rs:b:11

a = &b;

i ¥
H — 'h* dropped here while =till bhorrowed

printlntCa : {F".al;
- borrowed value needs to live until here
: aborting due to previous error
For more information about this error,. try “rustc —explain EBS97°.

D=

In the above example, the outer scope contains the variable whose named as
'a' and it does not contain any value. An inner scope contains the variable b’
and it stores the value 10. The reference of 'b' variable is stored in the

variable 'a'. When the inner scope ends, and we try to access the value of 'a'.
The Rust compiler will throw a compilation error as 'a' variable is referring
to the location of the variable which is gone out of the scope. Rust will
determine that the code is invalid by using the borrow checker.

Borrow checker

The borrow checker is used to resolve the problem of dangling references.
The borrow checker is used to compare the scopes to determine whether
they are valid or not.

{ Ca
let a; —_—
{ b
let b = 35;
a=&b;]
j
print!(""{}".a):]
}

In the above example, we have annotated the lifetime of 'a' variable with the
'a and the lifetime of 'b' variable with the 'b. At the compile time, Rust will
reject this program as the lifetime of 'a' variable is greater than the lifetime
of 'b' variable. The above code can be fixed so that no compiler error
occurs.

d b’
let b =35; a'

let a = &b;
print!("{}",a); j
j

In the above example, the lifetime of 'a' variable is shorter than the lifetime
of 'b' variable. Therefore, the above code runs without any compilation
erTor.

Lifetime annotation syntax

. Lifetime annotation does not change how long any of the references
live.

Functions can also accept the references of any lifetime by using the
generic lifetime parameter.

Lifetime annotation describes the relationship among the lifetimes of
multiple parameters.

Steps to be followed for the lifetime annotation syntax:
The names of the lifetime parameters should start with (') apostrophe.
- They are mainly lowercase and short. For example: 'a.

Lifetime parameter annotation is placed after the '&' of a reference
and then space to separate the annotation from the reference type.

Some examples of lifetime annotation syntax are given below:
&i32 // reference
& 'ai32 // reference with a given lifetime.
- &'amuti3d2 // mutable reference with a given lifetime.

Lifetime Annotations in Function
Signatures

The 'a represents the lifetime of a reference. Every reference has a lifetime
associated with it. We can use the lifetime annotations in function
signatures as well. The generic lifetime parameters are used between
angular brackets <>, and the angular brackets are placed between the
function name and the parameter list. Let's look:

1. fn fun<'a>(...);

In the above case, fun is the function name which has one lifetime, 1.e., 'a.
If a function contains two reference parameters with two different
lifetimes, then it can be represented as:

1. fn fun<'a,'b>(...);

If a function contains a single variable named as 'y'.

If'y' 1s an immutable reference, then the parameter list would be:
. fn fun<'a>(y : & 'a132);

If'y' is a mutable reference, then the parameter list would be:

1. fn fun<'a>(y : & 'a mut 132);

Both & 'a 132 and & 'a mut 132 are similar. The only difference is that 'a is
placed between the & and mut.

& mut 132 means "mutable reference to an 132" .
& 'a mut 132 means "mutable reference to an 132 with a lifetime 'a".

Lifetime Annotations in struct

We can also use the explicit lifetimes in the struct as we have used in
functions.
Let's look:

1. struct Example
2.

3. x:&'ai132, // xis a variable of type 132 that has the lifetime 'a.
4.

Let's see a simple example:

1. struct Example<'a> {
. x:&'a132,
=

2

3

4. fn main() {
5. lety=&9;

6. letb=Example{ x:y };
7. println!("{}", b.x);

8. }

Output:

9

impl blocks

We can implement the struct type having a lifetime 'a using impl block.
Let's see a simple example:
struct Example<'a> {
x: &'a132,
h

impl<'a> Example<'a>

{
fn display(&self)

{
print!("Value of x is : {}",self.x);

PN BB =

9.}

10. }

11. fn main() {

12. lety=&90;

13. letb=Example{ x:y };
14. b.display();

15.}

Output:
Value of x is : 90

Multiple Lifetimes

There are two possibilities that we can have:
Multiple references have the same lifetime.

- Multiple references have different lifetimes.

When references have the same lifetime.

1. fn fun <a>(x: & 'a132,y: & 'a132) -> & 'a 132

2.

3. //block of code.

In the above case, both the references x and y have the same lifetime, i.e.,

'a.

When references have the different lifetimes.

1. fn fun<'a, 'b>(x: & 'a 132 ,y: & 'b132)

2.

3. // block of code.

4.

In the above case, both the references x and y have different lifetimes, 1.e.,
'a and 'b respectively.

'static

The lifetime named as 'static is a special lifetime. It signifies that something
has the lifetime 'static will have the lifetime over the entire program. Mainly
'static lifetime is used with the strings. The references which have the 'static
lifetime are valid for the entire program.

Let's look:
1. let s : & 'static str = "Rustlang tutorial" ;

Lifetime Ellision

Lifetime Ellision is an inference algorithm which makes the common
patterns more ergonomic. Lifetime Ellision makes a program to be ellided.

Lifetime Ellision can be used anywhere:

. &'aT
&'lamutT
. T<'a>

Lifetime Ellision can appear in two ways:

. Input lifetime: An input lifetime is a lifetime associated with the
parameter of a function.

« Output lifetime: An output lifetime is a lifetime associated with the
return type of the function.

Let's look:

1. fn fun<'a>(x : & 'a132); // input lifetime

2. fn fun<'a>() -> & 'a 132; // output lifetime

3. fn fun<'a>(x: & 'a132)-> & 'a132; // Both input and output lifetime.

Rules of Lifetime Ellision:

Each parameter passed by the reference has got a distinct lifetime
annotation.

fn fun(x : &i32,y : &i32)
{
H

—
fn fun<a, 'b>(x:& 'ai32,y: & 'bi32)
{
}
If the single parameter is passed by reference, then the lifetime of that
parameter is assigned to all the elided output lifetimes.

fn fun(x : 132, y : &i32) -> &i32
{
H

fn fun<a>(x : 132,y : & 'ai32) -> & 'a i3
{
}
. If multiple parameters passed by reference and one of them is &self
or &mut self, then the lifetime of self is assigned to all the elided
output lifetimes.

fn fun(&self, x : &str)

{
}
N
fn fun<'a,'b>(& 'a self, x : & 'b str) -> & 'a str
{
H
For Example:
fn fun(x : &str); // Elided form.

fn fun<'a>(x : & 'a str) -> & 'a str; // Expanded form.

Rust Smart Pointers

- A Smart Pointer is a data structure that behaves like a pointer while
providing additional features such as memory management or bound
checking.

- Smart Pointers keep track of the memory that it points to, and is also
used to manage other resources such as Fils handles and network
connections.

- Smart pointers were first used in the C++ language.

- Reference is also a kind of pointer, but it does not have additional
capabilities other than referring to the data. Reference is represented
by '&' operator.

- A Smart Pointer provides the additional functionalities beyond that
provided by the reference. The most common feature that smart
pointer provides "reference counting smart pointer type". This feature
enables us to have multiple owners of data by keeping track of the
owners, and if no owner remains, then it cleans up the data.

- References are the pointers that only borrow the data while smart
pointers are the pointers that own the data they point to.

Types of Smart pointers:

Box<T>

Deref<T= ‘_‘ Smart pointer ’_) RefCell<T=>

/N

Drop<T> _ Re<T>

Box<T>: The Box<T> is a smart pointer which points to the data
allocated on the heap of type T where "T' is the type of the data. It is
used to store the data on the heap rather than on the stack.

Deref<T>: The Deref<T> is a smart pointer which is used to
customize the behavior of the dereference operator(*).

Drop<T>: The Drop<T> is a smart pointer used to free the space
from the heap memory when the variable goes out of the scope.
Re<T>: The Re<T> stands for reference counted pointer. It is a smart
pointer which keeps a record of the number of references to a value
stored on the heap.

RefCell<T>: The RefCell<T> is a smart pointer which allows you to
borrow the mutable data even if the data is immutable. This process is
known as interior mutability.

Box<T>

Box<T> is a smart pointer that points to the data which is allocated on
the heap of type T. Box<T> allow you to store the data on the heap
rather than the stack.

Box<T> is an owned pointer.

- Boxes do not have a performance overhead, other than storing the
data on the heap.

When the Box goes out of the scope, then the destructor is called to
destroy all the inner objects and release the memory.

Using Box<T> to store the data on the heap.

Mainly, Box<T> is used to store the data on the heap. Let's understand
this through a simple example:

1. fn main()

2.4

3. leta=Box: new(l);

4. print!("value ofais: {}",a);
5.}

Output:

value ofais: 1

In the above example, a contains the value of Box that points to the data 1.
If we access the value of Box, then the program prints '1'. When the
program ends, then the Box is deallocated. The box is stored on the stack,
and the data that it points to is stored on the heap.

Cons List

« Cons stand for "Construct function".

Cons list 1s a data structure which is used to construct a new pair from
the two arguments, and this pair is known as a List.

Suppose we have two elements x and y, then the cons function cons
the "x onto y" means that we construct the new container by putting
the element x first , and then followed by the element vy.

. Cons list contains two elements, i.e., the current item and the last
item. The last item of the cons list 1s Nil as Nil does not contain the
next item.

Now, we create the enum that contains the cons list.

1. enum List
2.4

3. cons(i32, List),
4. Nil,

5.}

In the above code, we create the enum of List type which contains the cons
list data structure of 132 values.

Now, we use the above List type in the following example:

1. enum List {

2. Cons(i32, List),

3. Nil,

4. }
5. use List:: {Cons, Nil};
6. fn main()

7. 4

8. let list = List::Cons(1,Cons(2,Cons(3,Nil)));
9. for1in list.iter()

10. {
11. print!("{}",1);
12. }
13.}
Output:
a C\Windows\system32\cmd.exe

D:ssrustec box.rs
: recursive type ‘List’ has infinite size
» box.rs:l:1
H
i enum List {
H
2 1
cursive without indirection

.= help: insert indirection Ce.g.. a "Box’, "Re’,. or "&"> at some point to nake
List »epresentable

: aborting due to previous error

For more information about this error,. try ‘rustc ——explain EBB72°.

In the above example, the Rust compiler throws an error "has infinite size"
as List type contains the variant which is recursive. As a result, Rust is not
able to find out how much space is required to store the List value. The
problem of an infinite size can be overcome by using the Box<T>.

Using Box<T> to get the size of a recursive

type

Rust cannot figure out how much space is required to store the recursive

data types. The Rust compiler shows the error in the previous case:

1. = help: insert indirection (e.g., a 'Box', 'Rc', or '&') at some point to make
'List' representable

In the above case, we can use the Box<T> pointer as the compiler knows

how much space Box<T> pointer requires. The size of Box<T> pointer will

not change during the execution of a program. The Box<T> pointer points

to the List value that will be stored on the heap rather than in the cons

variant. The Box<T> pointer can be placed directly in the cons variant.

Let's see a simple example:

. #[derive(Debug)]

. enum List {

Cons(i32, Box<List>),
Nil,

. use List::{Cons, Nil};

. fn main()

A

let list = Cons(1,Box::new(Cons(2,Box::new(Cons(3,Box::new(Nil)))))
);
10.
11. print!("{:?7}" list);
12.

13.}

Output:
Cons(1, Cons(2, Cons(3, Nil)))

1
2

3

4.
5.1
6

7

8

9

Deret<T>

. Deref<T> trait is used to customize the behavior of dereference
operator (*).

. If we implement the Deref<T> trait, then the smart pointer can be
treated as a reference. Therefore, the code that works on the
references can also be used on the smart pointers too.

Regular References

Regular reference is a kind of pointer that points to some value which is
stored somewhere else. Let's see a simple example to create the reference of
132 type value and then we use the dereference operator with this reference.

1. fn main()

2.4

3. leta=20;

4. letb = &a;

5. ifa==*b

6. {

7. println!("a and *b are equal");
8. }

9.
10. else

11. |
12. println!("they are not equal");
13. }
14. }

Output:

a and *b are equal

In the above example, a holds the 132 type value, 20 while b contains the
reference of 'a' variable. If we use *b, then it represents the value, 20.
Therefore, we can compare the variable a and *b, and it will return the true
value. If we use &b instead of *b, then the compiler throws an

error ""cannot compare {integer} with {&integer}".

Box<T> as a Reference

The Box<T> pointer can be used as a reference.
Let's see a simple example:
. fn main()

1
2.4

3. leta=11;

4. let b= Box::new(a);

5. print!("Value of *b is {}",*b);
6. }

Output:
Value of *b is 11

In the above example, Box<T> behaves similarly as the regular references.
The only difference between them is that b contains the box pointing to the
data rather than referring to the value by using the '&' operator.

Smart Pointer as References

Now, we create the smart pointer similar to the Box<T> type, and we will
see how they behave differently from the regular references.

The Box<T> can be defined as the tuple struct with one element for
example, MyBox<T>.

. After creating the tuple struct, we define the function on type
MyBox<T>.

Let's see a simple example:

. struct MyBox<T>(T);
. impl<T> MyBox<T>

1

2
3.4

4. fn example(y : T)->MyBox<T>
5. {

6. MyBox(y)

7.}

8. }
9. fn main()

10. {

11. leta=2g;

12. let b =MyBox::example(a);
13. print!("Value of *b is {}",*b);
14. }

Output:

B CA\Windows\system32\cmd.exe

D:~>rustec deref.rs
: type "MyBox<{integer}>’' cannot be dereferenced

——2» deref _r=s:15:30
1 print?* {"Jalue of =h is {}",.=xh);

: aborting due to previous error

For more information about this error,. try "rustc —explain EBG14°

Dz~

In the above example, we create the smart pointer, b, but it cannot be
dereferenced. Therefore, we conclude that the customized pointers which
are similar to the Box<T> type cannot be dereferenced.

Implementing a Deref Trait

« The Deref trait is defined in the standard library which is used to
implement the method named deref.

The deref method borrows the self and returns a reference to the inner
data.

Let's see a simple example:
. struct MyBox<T>

1

2. {

3. a:T,

4. }

5. use :: std::ops::Deref;
6. impl<T> Deref for MyBox<T>
7. {

8. type Target =T,

9. fn deref(&self) ->&T

10. {

11. &self.a

12. }

13.}

14. fn main()

15. {

16. letb=MyBox{a: 10};

17. print!("{}",*(b.deref()));

18. }

Output:

10

Program Explanation

The Deref trait is implemented on the MyBox type.

« The Deref trait implements the deref() method, and the deref() method
returns the reference of 'a' variable.

The type Target = T; is an associated type for a Deref trait. Associated
type is used to declare the generic type parameter.

- We create the instance of MyBox type, b.

The deref() method is called by using the instance of MyBox type,
b.deref() and then the reference which is returned from the deref()
method is dereferenced.

Deref Coercion

« Deref Coercion is a process of converting the reference that
implements the Deref trait into the reference that Deref can convert
the original type into.

« Deref Coercion is performed on the arguments of the functions and
methods.

Deref Coercion happens automatically when we pass the reference of
a particular type to a function that does not match with the type of an
argument in the function definition.

Let's see a simple example:
1. struct MyBox<T>(T);
2. use :: std::ops::Deref;
3. impl<T> MyBox<T>
4. {
5. fn hello(x:T)->MyBox<T>
6. {
7. MyBox(x)
8. }
9.}
10. impl<T> Deref for MyBox<T>
11. {
12. type Target=T;
13. fn deref(&self) ->&T
14. {
15, &self.0
16. }
17.}
18. fn print(m : &132)
19. {
20. print!("{}",m);
21.}
22. fn main()
23.4
24. let b= MyBox::hello(5);
25.

26. print(&b);
27.}
Output:
5
In the above example, we are calling the print(&b) function with an
argument &b, which is the reference of &Box<i32>. In this case, we

implement the Deref trait that converts the &Box<i132> into &132 through
the process of Deref Coercion.

Interaction of Derif Coercion with mutability

Till now, we use the Deref Trait to override the * operator on immutable
references, and we can use the DerefMut trait to override the * operator on
mutable references.
Rust performs Deref coercion in the following three cases:
- When T: Deref<Target = U> where T and U are the immutable
references , then &T is converted into &U type.

When T: DerefMut<Target = U> where T and U are the mutable
references, then &mut T is converted into &mut U.

When T: Deref<Target = U> where T is a mutable reference and U is
an immutable reference, then &mut T is converted into &U.

Drop trait

Drop trait is used to release the resources like files or network
connections when the value goes out of the scope.

Drop trait is used to deallocate the space on the heap that the Box<T>
points to.

« The drop trait is used to implement the drop() method that takes a
mutable reference to the self.

Let's see a simple example:
struct Example

{
a:i32,
}
impl Drop for Example
{

fn drop(&mut self)
{

println!("Dropping the instance of Example with data : {}", self.a);

i AN e

NS

10. }

1.}

12. fn main()

13. {

14. letal = Example{a: 10};
15. let bl = Example{a: 20};

16. println!("Instances of Example type are created");
17.}

Output:

Instances of Example type are created
Dropping the instance of Example with data : 20
Dropping the instance of Example with data : 10

Program Explanation

We have implemented the Drop trait on the type Example, and we
define the drop() method inside the implementation of the Drop trait.

Inside the main() function, we create the instances of the type
Example and at the end of the main() function, instances go out of the
scope.

When the instances move out of the scope, then Rust calls the drop()
method implicitly to drop the instances of type Example. First, it will
drop the bl instance and then al instance.

Dropping a value early with std::mem::drop

Sometimes, it becomes necessary to drop the value before the end of the
scope. If we want to drop the value early, then we use the std::mem::drop
function to drop the value.

Let's see a simple example to drop the value manually:

struct Example

{

a : String,

h
impl Drop for Example

{
fn drop(&mut self)

{

println!("Dropping the instance of Example with data : {}", self.a);

i BN e

NS

10. }

1.}

12. fn main()

13. {

14. let al = Example{a : String::from("Hello")};

15. al.drop();

16. let bl = Example{a: String::from("World")};

17. println!("Instances of Example type are created");
18. }

In the above example, we call the drop() method manually. The Rust
compiler throws an error that we are not allowed to call the drop() method
explicitly. Instead of calling the drop() method explicitly, we call the
std::mem::drop function to drop the value before it goes out of the scope.

The syntax of std::mem::drop function is different from the drop()
function defined in the Drop trait. The std::mem::drop function
contains the value passed as an argument which is to be dropped
before it goes out of the scope.

Let's see a simple example:

1. struct Example
2. {

a : String,

j

impl Drop for Example
{
fn drop(&mut self)
9. {
10. println!("Dropping the instance of Example with data : {}", self.a);
11. }
12.}
13.
14. fn main()
15. {
16. let al = Example{a : String::from("Hello")};
17. drop(al);
18. let bl = Example{a: String::from("World")};
19. println!("Instances of Example type are created");
20. }

Output:

Dropping the instance of Example with data : Hello

XN AW

Instances of Example type are created

Dropping the instance of Example with data : World

In the above example, the al instance is destroyed by passing the al
instance as an argument in the drop(al) function.

Rc<T>

« The Rc<T> stands for Reference Counted Smart Pointer.

- The Rc<T> smart pointer keeps track of the number of references to a
value to determine whether the value is still in use or not and if there
are zero references to a value, then the value can be cleaned up.

. The Rc<T> smart pointer is a single threaded reference-counting
pointer.

Using Rc<T> to share data

Let's create the two lists that share the ownership of a third list.

b — 10

https://www.javatpoint.com/rust-refcell-t
https://www.javatpoint.com/rust-drop-trait

Rc<T>

The Rc<T> stands for Reference Counted Smart Pointer.

The Rc<T> smart pointer keeps track of the number of references
to a value to determine whether the value is still in use or not and if
there are zero references to a value, then the value can be cleaned
up.

The Rc<T> smart pointer is a single threaded reference-counting
pointer.

Using Rc<T> to share data

Let's create the two lists that share the ownership of a third list.

\\
a 7\$2L
4

In the above figure, b and ¢ are the two lists that share the ownership to
the third list,a.

Let's implement the above scenario using Box<T> type.
enum List

{

Cons(i132, Box<List>),

Nil,
h
use List:: {Cons,Nil};
. fn main()
{

9. leta=Cons(10, Box::new(Cons(15,Box::new(Nil))));
10. let b= Cons(2, Box::new(a));
11. let ¢ = Cons(1, Box::new(a));
12.}

Output:

b — 10

v
[a—
#
—
—

¢ — 15

XA B =

. C:A\Windows\system32\cmd.exe

: use of moved value: “a’
> voc.vrs:11:28
(]

let b = Cons<2, Box::newlald);
- value moved here
let ¢ Cons<l, Box::newlal?;

'
= note: move occurs because ‘a’ has type ‘List’, which does not implement the
Copy trait

! aborting due to previous error

In the above example, cons variant consists of a data of type 132 and
Box<T> pointing to a list. We create the list 'b' and the ownership of 'a' is
moved to the 'b' list. Then, we try to move the' a' list to the 'c' list, but a list
cannot be moved as 'a' list is already moved to the 'b' list.

How to overcome this problem

We can overcome this problem by changing the definition of the cons
variant. Now, cons variant consists of a data that they hold and Re<T>
pointing to the List.

Let's see a simple example:
enum List

{
Cons(132, Rc<List>),
Nil,
b
use List:: {Cons,Nil};
use std::rc::Rc;
fn main()
9.4
10. let a= Rc::new(Cons(10, Rc::new(Cons(15,Rc::new(Nil)))));
11. let b= Cons(2, Rc::clone(&a));
12. let c = Cons(1, Rc::clone(&a));
13.}

PN BB =

In the above example, we need to add the use statement to bring the Re<T>
into the scope. Instead of taking the ownership of a, we will clone the
Rc<T> list that a is holding and, therefore increasing the number of
references from one to two as now, a and b are sharing the ownership of the
data in that Rc<List>. We will again clone the Rc<List> when creating the ¢
List, therefore increasing the references from two to three.

Cloning an Rc<T> Increases the Reference Count

Now, we will see how Rc<T> increases or drops the reference count when
the list goes out of the scope.

Let's see a simple example:
. enum List

A
Cons(132, Rc<List>),
Nil,

. use List::{Cons,Nil};
. use std::rc::Rc;
. fn main()
A
0. let a=Rc:mew(Cons(10, Rc::new(Cons(15,Rc::new(Nil)))));
1. println!
("Reference count after creating a List : {}", Rc::strong count(&a));
12. let b= Cons(2, Rc::clone(&a));
13. println!
("Reference count after creating b List : {}", Rc::strong count(&a));
14. {
15. let c = Cons(1, Rc::clone(&a));
16. println!
("Reference count after creating ¢ List : {}",Rc::strong count(&a));
17. }
18. println!
("Reference count when ¢ goes out of the scope : {}",Rc::strong count(
&a));
19.}
Output:

1
2

3

4.
5.1
6

7

8

9

1
1

Reference count after creating a List : 1
Reference count after creating b List : 2
Reference count after creating ¢ List : 3

Reference count when ¢ goes out of the scope : 2

In the above example, we print the reference count by calling

the Re::strong_count function. An initial reference count of a in Re<List>
is 1 and when we call clone, then the reference count increases by 1. If
variable goes out of the scope, then the reference count decreases by 1.
Therefore, we can say that the Drop trait automatically decreases the
reference count when an Re<T>/value goes out of the scope.

RetCell<T>

Interior mutability pattern is a pattern is used to mutate the reference if we
have an immutable reference. RefCell<T> can be used to achieve the
interior mutability.

Important Points to remember:

- RefCell<T> represents the single ownership over the data that it
holds.

If we use RefCell<T>, then the invariants are enforced at the runtime.
- RefCell<T> is mainly used in the single-threaded scenario and will
give an error if we use in a multithreaded case.

RefCell<T> checks the mutable borrows at the runtime. Therefore,
we can say that we can mutate the value even when the RefCell<T>
value is immutable.

Interior Mutability

According to the borrowing rules, if we have an immutable value, then we
cannot borrow mutably.

Let's see a simple example:
1. fn main()

2. 4

3. leta=15;

4. letb=&mut a;
5.}

In the above example, we have seen that the immutable value cannot be
borrowed mutably. But, RefCell is the one way to achieve the interior
mutability.

Keeping Track of Borrows at Runtime with
RefCell<T>

RefCell<T> consists of two methods that keep track of borrows at runtime:
- borrow(): The borrow() method returns the smart pointer of type
Ref<T>.
- borrow_mut(): The borrow mut() method returns the smart pointer
of type RefMut<<T>.
Some Important Points:

- The RefCell<T> keeps a record of how many Ref<T> and
Refmut<T> smart pointers are currently active.
Whenever the borrow() method is called, then the RefCell<T>
increases the count of how many immutable borrows are active. When
the Rc<T> goes out of the scope, then RefCell<T> decreases the
count by one.
The RefCell<T> lets us have many immutable borrows but one
mutable borrow at a time, just as compile-time borrowing rules. If we
violate this rule, then the RefCell<T> will panic at runtime.

borrow() method

The borrow() method borrows the immutable value. Multiple immutable
borrows can be taken at the same time.

Syntax:
1. pub fn borrow(&self) -> Ref<T>
Let's see a simple example when multiple immutable borrow occurs:

1. wse std::cell::RefCell;

2. fn main()

3. {

4. let a=RefCell::new(15);

5. letb=a.borrow();

6. let c = a.borrow();

7. println!("Value of bis: {}",b);
8. println!("Value of cis: {}",c);

9.}
Let's see a simple example of panic condition:

1. wse std::cell::RefCell;
2. fn main()

3. {

4. let a=RefCell::new(10);

5. let b =a.borrow();

6. let c =a.borrow _mut(); // cause panic.
7. println!("Value of bis: {}",b);

8. println!("Value of cis: {}",c);

9.}
In the above example, program panics at runtime as immutable borrows and
mutable borrows cannot occur at the same time.

borrow mut() method

The borrow_mut() method borrows the mutable value. Mutable borrows
can occur once.

Syntax:
1. pub fn borrow mut(&self) -> RefMut<T>;
Let's see a simple example:

1. wse std::cell::RefCell;

2. fn main()

3. {

4. let a=RefCell::new(15);

5. letb=a.borrow_mut();

6. println!("Now, value of b is {}",b);
7

=

Multiple owners of Mutable Data By
combining Rc<T> and RefCell<T>

We can combine Rc<T> and RefCell<T> so that we can have multiple
owners of mutable data. The Rc<T> lets you have multiple owners of a
data, but it provides only immutable access to the data. The RefCell<T> lets
you to mutate the data. Therefore, we can say that the combination of
Rc<T> and RefCell<T> provides the flexibility of having multiple owners
with mutable data.

Let's see a simple example:

1. #[derive(Debug)]
2. enum List
3.4

4. Cons(Rc<RefCell<String>> Rc<List>),

5. Nil,

6. }

7. use List:: {Cons,Nil};

8. use std::rc::Rc;

9. use std::cell::RefCell;

10. fn main()

1. {

12. let val = Rc::new(RefCell::new(String::from("java")));

13. let a= Rc::new(Cons(Rc::clone(&val),Rc::new(Nil)));

14. let b = Cons(Rc::new(RefCell::new(String::from("C"))),Rc::clone(&a))

15. let c = Cons(Rc::new(RefCell::new(String::from("C++"))),Rc::clone(&
a));

16. *val.borrow mut() = String::from("C# language");

17. println!("value of ais: {:?7}",a);

18. println!("value of bis: {:?}",b);

19. println!("value of cis: {:7}",c);

20. }

In the above example, we create a variable 'val' and store the value "java" to
the variable 'val'. Then, we create the list 'a' and we clone the 'val' variable

so that both the variable 'a' and 'val' have the ownership of 'java' value
rather than transferring the ownership from 'val' to 'a' variable. After
creating 'a’' list, we create 'b' and 'c' list and clones the 'a' list. After creating
the lists, we replace the value of 'val' variable with "C#" language" by using
the borrow_mut() method.

GOLANG
FOR
BEGINNERS

LEARN TO CODE FAST
BY
TAM SEL

GO FOR BEGINNERS
Go Programming Language

What 1s Go?

Go (also known as Golang) is an open source programming language
developed by Google. It is a statically-typed compiled language. Go
supports concurrent programming, i.e. it allows running multiple processes
simultaneously. This is achieved using channels, goroutines, etc. Go has
garbage collection which itself does the memory management and allows
the deferred execution of functions.

How to Download and 1nstall GO
Step 1) Go to https://golang.org/dl/. Download the binary for your OS.

Downloads
After downloading a binary release suitable for your system, please follow the installation instructions
If you are building from source, follow the source installation instructions

See the release history for more information about Go releases

Featured downloads

Linux
Linux 2.6.23 or lafer, Inte! 64-bit processor
go1.11.56.linux-amd64. tar.gz (134MB)

Microsoft Windows Apple macO3
Windows 7 or later, Infel 64-64 processor macQOS 10010 or later, Inde! 64-bit processor
go1.11.5.windows-amd64.msi (111MB) go1.11.5.darwin-amd64 pkg (114MB)

Step 2) Double click on the installer and click Run.

o =]
Cpen File - Security Warning M

Do you want to run this file?

Mame: ..arina\Downloads\gol.11.5.windows-amd&4, msi

Publisher: Google LLC
Type: Windows Installer Package

From: C\Users\sarina\Downloads\gol.11.5.windows-a...

T (=

Always ask before opening this file

potentially ham your computer. Only run software from publishers

léj While files from the Intemet can be useful, this file type can
L
. you trust. What 's the risk?

Step 3) Click Next

_[:;‘-JJ Go Programming Language amdéd gol. 11,5 Setup | = —ahl

Welcome to the Go Programming
Language amd64 gol.11.5 Setup Wizard

The Setup Wizard will install Go Programming Language
amd&4 gol. 11.5 on your computer. Click Mext to continue or
Cancel to exit the Setup Wizard.

Mext] | Cancel

Step 4) Select the installation folder and click Next.

-
*_[5-] Go Programming Language amdf4 gol.11.5 Setup | = -

Destination Folder d(_'l?‘
Click Mext to install to the default folder or didk Change to choose another. \'I

Install Go Programming Language amd&4 gol. 11,5 to:

| Back |I Mext Cancel

Step 5) Click Finish once the installation is complete.
ﬁ Go Programming Language amd6é4 gol.11.5 Setup =" X

Completed the Go Programming
Language amd64 gol.11.5 Setup Wizard

Click the Finish button to exit the Setup Wizard.

ack Cance

Step 6) Once the installation is complete you can verify it by opening the
terminal and typing
go version

This will display the version of go installed

B Ch\Windowshsystem32iomd.exe

Microsoft Windows [Uersion 6.1.766811
Copyright <c» 2007 Microzoft Corporation.

C:wUsers oo version

go version gol.11.5 windowssamd6d

Your First Go program

Create a folder called studyGo. You will create our go programs inside this
folder. Go files are created with the extension .go. You can run Go
programs using the syntax
go run <filename>
Create a file called first.go and add the below code into it and save
package main
import ("fmt")
func main() {

fmt.Println("Hello World! This is my first Go program\n")

[Documents
) Downloads
) Timepass

eatons studyGo
€ iCloud Drive S
() Grammarty
() Remote Disc

Timepass
Tags

New Falder cancel [

Navigate to this folder in your terminal. Run the program using the
command
go run first.go

You can see the output printing

Hello World! This 1s my first Go program

Now let's discuss the above program.

package main - Every go program should start with a package name. Go
allows us to use packages in another go programs and hence supports code
reusability. Execution of a go program begins with the code inside the
package named main.

import fmt - imports the package fmt. This package implements the I/O
functions.

func main() - This is the function from which program execution begins.
The main function should always be placed in the main package. Under the
main(), You can write the code inside { }.

fmt.Println - This will print the text on the screen by the Println function of
fmt.

Note: In the below sections when You mention execute/run the code, it
means to save the code in a file with .go extension and run it using the
syntax

go run <filename>

Data Types

Types(data types) represent the type of the value stored in a variable, type
of the value a function returns, etc.

There are three basic types in Go.

Numeric types - Represent numeric values which includes integer, floating
point, and complex values. Various numeric types are:

int8 - 8 bit signed integers.

int16 - 16 bit signed integers.

int32 - 32 bit signed integers.

int64 - 64 bit signed integers.

uint8 - 8 bit unsigned integers.

uintl6 - 16 bit unsigned integers.

uint32 - 32 bit unsigned integers.

uint64 - 64 bit unsigned integers.

float32 - 32 bit floating point numbers.

float64 - 64 bit floating point numbers.

complex64 — has float32 real and imaginary parts.

complex128 - has float32 real and imaginary parts.

String types - Represents a sequence of bytes(characters). You can do
various operations on strings like string concatenation, extracting substring,
etc

Boolean types - Represents 2 values, either true or false.

Variables

Variables point to a memory location which stores some kind of value. The
type parameter(in the below syntax) represents the type of value that can be
stored in the memory location.
Variable can be declared using the syntax

var <variable name> <type>
Once You declare a variable of a type You can assign the variable to any
value of that type.
You can also give an 1nitial value to a variable during the declaration itself
using

var <variable name> <type> = <value>

If You declare the variable with an initial value, Go an infer the type of the
variable from the type of value assigned. So You can omit the type during
the declaration using the syntax

var <variable name> = <value>
Also, You can declare multiple variables with the syntax
var <variable namel>, <variable name2> = <valuel>, <value2>
The program below has some examples of variable declarations
package main
import "fmt"
func main() {
//declaring a integer variable x
var X int
x=3 //assigning x the value 3
fmt.Println("x:", x) //prints 3

//declaring a integer variable y with value 20 in a single
statement and prints it

var y int=20

fmt.Println("y:", y)

//declaring a variable z with value 50 and prints it

//Here type int is not explicitly mentioned
var z=50
fmt.Println("z:", z)

//Multiple variables are assigned in single line- 1 with an integer
and j with a string

var 1,] = 100,"hello"

fmt.Println("1 and j:", 1,))

b

The output will be

x: 3

y: 20

z: 50

1and j: 100 hello

Go also provides an easy way of declaring the variables with value by
omitting the var keyword using

<variable name> := <value>

Note that You used := instead of =. You cannot use := just to assign a value
to a variable which is already declared. := is used to declare and assign
value.

Create a file called assign.go with the following code

package main

import ("fmt")

func main() {
a:=20
fmt.Println(a)

//gives error since a is already declared

a:=30
fmt.Println(a)

b

Execute go run assign.go to see the result as
Jassign.go:7:4: no new variables on left side of :=

Variables declared without an initial value will have of 0 for numeric types,
false for Boolean and empty string for strings

Constants

Constant variables are those variables whose value cannot be changed once
assigned. A constant in Go is declared by using the keyword "const"
Create a file called constant.go and with the following code

package main
import ("fmt")
func main() {
const b=10
fmt.Println(b)
b =30
fmt.Println(b)
b

Execute go run constant.go to see the result as
.constant.go:7:4: cannot assign to b

Loops

Loops are used to execute a block of statements repeatedly based on a
condition. Most of the programming languages provide 3 types of loops -
for, while, do while. But Go supports only for loop.

The syntax of a for loop is

for initialisation expression; evaluation expression;
iteration_expression {

// one or more statement

The initialisation_expression is executed first(and only once).

Then the evaluation_expression is evaluated and if it's true the code inside
the block is executed.

The iteration_expression id is executed, and the evaluation expression is
evaluated again. If it's true the statement block gets executed again. This
will continue until the evaluation expression becomes false.

Copy the below program into a file and execute it to see the for loop
printing numbers from 1 to 5

package main
import "fmt"
func main() {
var 1 int
fori=1;1<=5;1++ {
fmt.Println(1)

b

Output is
1

AN Nt N

If else

If else is a conditional statement. The syntax is
if condition {

// statements_ 1

relse{

// statements 2

b

Here the condition is evaluated and if it's true statements 1 will be executed
else statements 2 will be executed.

You can use if statement without else also. You also can have chained if
else statements. The below programs will explain more about if else.
Execute the below program. It checks if a number, X, is less than 10. If so, it
will print "x 1s less than 10"

package main
import "fmt"
func main() {
var x = 50
if x <10 {
//Executes 1f x < 10

fmt.Println("x is less than 10")

b

Here since the value of x is greater than 10, the statement inside if block
condition will not executed.

Now see the below program. We have an else block which will get executed
on the failure of if evaluation.

package main
import "fmt"
func main() {
var x = 50
ifx <10 {
//Executes if x is less than 10
fmt.PrintIn("x is less than 10")
} else {
//Executes if x >= 10

fmt.Println("x is greater than or equals 10")

b

This program will give you output
X is greater than or equals 10

Now we will see a program with multiple if else blocks(chained if
else).Execute the below example. It checks whether a number is less than
10 or is between 10-90 or greater than 90.

package main
import "fmt"
func main() {
var x = 100
ifx <10 {
//Executes if x is less than 10
fmt.PrintIn("x is less than 10")
}elseif x>=10 && x <=90 {

//Executes if x >= 10 and x<=90
fmt.Println("x is between 10 and 90")

} else {
//Executes if both above cases fail 1.e x>90

fmt.Println("x is greater than 90")

b

Here first the if condition checks whether x is less than 10 and it's not. So it
checks the next condition(else if) whether it's between 10 and 90 which is
also false. So it then executes the block under the else section which gives

the output
X 1s greater than 90

Switch

Switch is another conditional statement. Switch statements evaluate an
expression and the result is compared against a set of available
values(cases). Once a match is found the statements associated with that
match(case) is executed. If no match is found nothing will be executed. You
can also add a default case to switch which will be executed if no other
matches are found. The syntax of the switch is

switch expression {
case value 1:
statements 1
case value 2:
statements 2
case value n:
statements n
default:

statements_default

Here the value of the expression is compared against the values in each
case. Once a match is found the statements associated with that case is
executed. If no match is found the statements under the default section is
executed.

Execute the below program

package main

import "fmt"

func main() {
a,b:=2,1
switch a+b {

case 1:
fmt.Println("Sum 1s 1")
case 2:
fmt.Println("Sum is 2")
case 3:
fmt.Println("Sum is 3")
default:
fmt.Println("Printing default")

b

You will get the output as
Sum is 3

Change the value of a and b to 3 and the result will be
Printing default

You can also have multiple values in a case by separating them with a
comma.

Arrays

Array represents a fixed size, named sequence of elements of the same type.
You cannot have an array which contains both integer and characters in it.
You cannot change the size of an array once You define the size.

The syntax for declaring an array is

var arrayname [size] type
Each array element can be assigned value using the syntax
arrayname [index] = value
Array index starts from 0 to size-1.
You can assign values to array elements during declaration using the syntax
arrayname := [size] type {value O,value 1,...,value size-1}
You can also ignore the size parameter while declaring the array with values
by replacing size with ... and the compiler will find the length from the
number of values. Syntax is
arrayname := [...] type {value O,value 1,...,value size-1}
You can find the length of the array by using the syntax
len(arrayname)
Execute the below example to understand the array
package main
import "fmt"
func main() {
var numbers [3] string //Declaring a string array of size 3 and
adding elements
numbers[0] = "One"
numbers[1] = "Two"
numbers[2] = "Three"
fmt.Println(numbers[1]) //prints Two
fmt.Println(len(numbers)) //prints 3
fmt.Println(numbers) // prints [One Two Three]

directions := [...] int {1,2,3,4,5} // creating an integer array and
the size of the array is defined by the number of elements

fmt.Println(directions) //prints [1 2 3 4 5]

fmt.Println(len(directions)) //prints 5

//Executing the below commented statement prints invalid array
index 5 (out of bounds for 5-element array)

//fmt.Println(directions[5])

b

Output

Two

— W9

One Two Three]
12345]

U]l_|

Slice

A slice is a portion or segment of an array. Or it is a view or partial view of
an underlying array to which it points. You can access the elements of a
slice using the slice name and index number just as you do in an array. You
cannot change the length of an array, but you can change the size of a slice.
Contents of a slice are actually the pointers to the elements of an array. It
means if you change any element in a slice, the underlying array contents
also will be affected.

The syntax for creating a slice is

var slice name [] type = array name|[start:end]

This will create a slice named slice name from an array named array name
with the elements at the index start to end-1.

Execute the below program. The program will create a slice from the array
and print it. Also, you can see that modifying the contents in the slice will
modify the actual array.

package main

import "fmt"

func main() {
// declaring array
a = [5] string {"one", "two", "three", "four", "five"}
fmt.Println(" Array after creation:",a)
var b [] string = a[1:4] //created a slice named b
fmt.Println("Slice after creation:",b)
b[0]="changed" // changed the slice data
fmt.Println("Slice after modifying:",b)

fmt.Println(" Array after slice modification:",a)

b

This will print result as

Array after creation: [one two three four five]
Slice after creation: [two three four]
Slice after modifying: [changed three four]

Array after slice modification: [one changed three four five]

There are certain functions which you can apply on slices
len(slice_name) - returns the length of the slice

append(slice name, value 1, value 2) - It is used to append value 1 and
value 2 to an existing slice.

append(slice nalel,slice name2...) — appends slice_name?2 to

slice namel

Execute the following program.

package main
import "fmt"
func main() {
a = [5] string {"1","2","3","4" "5"}
slice a :=a[l:3]
b :=[5] string {"one","two","three","four","five"}
slice b :=b[1:3]
fmt.Println("Slice a:", slice a)
fmt.Println("Slice _b:", slice b)
fmt.Println("Length of slice_a:", len(slice a))
fmt.Println("Length of slice b:", len(slice b))
slice a = append(slice a,slice b...) // appending slice

fmt.Println("New Slice_a after appending slice b :", slice a)

slice_a = append(slice a,"textl") // appending value

fmt.Println("New Slice a after appending textl :", slice a)

b

The output will be

Slice a: [2 3]

Slice b: [two three]

Length of slice a: 2

Length of slice b: 2

New Slice a after appending slice b : [2 3 two three]

New Slice a after appending textl : [2 3 two three text]]

The program first creates 2 slices and printed its length. Then it appended
one slice to other and then appended a string to the resulting slice.

Functions

A function represents a block of statements which performs a specific task.
A function declaration tells us function name, return type and input
parameters. Function definition represents the code contained in the
function. The syntax for declaring the function is

func function name(parameter 1 type, parameter n type)
return_type {
//statements

b

The parameters and return types are optional. Also, you can return multiple
values from a function.

Let's run the following example. Here function named calc will accept 2
numbers and performs the addition and subtraction and returns both values.

package main
import "fmt"
//calc 1s the function name which accepts two integers num1 and
num?2
//(int, int) says that the function returns two values, both of integer
type.
func calc(numl int, num?2 int)(int, int) {
sum := numl + num?2
diff := numl - num?2
return sum, diff
b
func main() {
x,y .= 15,10
//calls the function calc with x and y an d gets sum, diff as output
sum, diff := calc(x,y)
fmt.Println("Sum",sum)
fmt.Println("Diff",diff)

b

The output will be
Sum 25

Diff 5

Packages

Packages are used to organize the code. In a big project, it is not feasible to
write code in a single file. Go allow us to organize the code under different
packages. This increases code readability and reusability. An executable Go
program should contain a package named main and the program execution
starts from the function named main. You can import other packages in our
program using the syntax

import package name

We will see and discuss how to create and use packages in the following
example.
Step 1) Create a file called package example.go and add the below code

package main
import "fmt"
//the package to be created
import "calculation"
func main() {
x,y := 15,10
//the package will have function Do_add()
sum := calculation.Do_add(x.,y)

fmt.Println("Sum",sum)

b

In the above program fmt is a package which Go provides us mainly for I/O
purposes. Also, you can see a package named calculation. Inside the main()
you can see a step sum := calculation.Do_add(x,y). It means you are
invoking the function Do_add from package calculation.

Step 2) First, you should create the package calculation inside a folder with
the same name under src folder of the go. The installed path of go can be
found from the PATH variable.

For mac, find the path by executing echo $PATH

Step 3) Navigate to to the src folder(/usr/local/go/src for mac and C:\Go\src
for windows). Now from the code, the package name is calculation. Go
requires the package should be placed in a directory of the same name
under src directory. Create a directory named calculation in src folder.

Step 4) Create a file called calc.go (You can give any name, but the package
name in the code matters. Here it should be calculation) inside calculation
directory and add the below code

package calculation

func Do _add(numl int, num2 int)(int) {
sum ;= numl + num?2
return sum

b

Step 5) Run the command go install from the calculation directory which
will compile the calc.go.

Step 6) Now go back to package example.go and run go run

package example.go. The output will be Sum 25.

Note that the name of the function Do_add starts with a capital letter. This
is because in Go if the function name starts with a capital letter it means
other programs can see(access) it else other programs cannot access it. If
the function name was do_add , then You would have got the error

cannot refer to unexported name calculation.calc..

Defer and stacking defers

Defer statements are used to defer the execution of a function call until the
function that contains the defer statement completes execution.
Lets learn this with an example:

package main
import "fmt"
func sample() {
fmt.Println("Inside the sample()")
h
func main() {
//sample() will be invoked only after executing the statements of
main()
defer sample()
fmt.PrintIn("Inside the main()")

b

The output will be
Inside the main()
Inside the sample()

Here execution of sample() is deferred until the execution of the enclosing
function(main()) completes.
Stacking defer is using multiple defer statements. Suppose you have
multiple defer statements inside a function. Go places all the deferred
function calls in a stack, and once the enclosing function returns, the
stacked functions are executed in the Last In First Out(LIFO) order. You
can see this in the below example.
Execute the below code
package main
import "fmt"
func display(a int) {

fmt.Println(a)

;

func main() {
defer display(1)
defer display(2)
defer display(3)
fmt.Println(4)

b

The output will be

— N W A

Here the code inside the main() executes first, and then the deferred
function calls are executed in the reverse order, i.e. 4, 3,2,1.

Pointers

Before explaining pointers let's will first discuss '&' operator. The '&'
operator is used to get the address of a variable. It means '&a' will print the
memory address of variable a.

Execute the below program to display the value of a variable and the
address of that variable

package main

import "fmt"

func main() {
a:=20
fmt.Println("Address:",&a)
fmt.Println("Value:",a)

The result will be

Address: 0xc000078008
Value: 20

A pointer variable stores the memory address of another variable. You can
define a pointer using the syntax
var variable name *type

The asterisk(*) represents the variable is a pointer. You will understand
more by executing the below program
package main
import "fmt"
func main() {
//Create an integer variable a with value 20
a:=20

//Create a pointer variable b and assigned the address of a

var b *int = &a

//print address of a(&a) and value of a

fmt.Println(" Address of a:",&a)

fmt.Println("Value of a:",a)

//print b which contains the memory address of a 1.e. &a

fmt.Println(" Address of pointer b:",b)

//*b prints the value in memory address which b contains i.e.
the value of a

fmt.Println("Value of pointer b",*b)

//increment the value of variable a using the variable b

*b = *b+1

//prints the new value using a and *b

fmt.Println("Value of pointer b",*b)

fmt.Println("Value of a:",a)}

The output will be
Address of a: 0x416020

Value of a: 20

Address of pointer b: 0x416020
Value of pointer b 20

Value of pointer b 21

Value of a; 21

Structures

A Structure is a user defined datatype which itself contains one more
element of the same or different type.

Using a structure is a 2 step process.

First, create(declare) a structure type

Second, create variables of that type to store values.

Structures are mainly used when you want to store related data together.
Consider a piece of employee information which has name, age, and
address. You can handle this in 2 ways

Create 3 arrays - one array stores the names of employees, one stores age
and the third one stores age.

Declare a structure type with 3 fields- name, address, and age. Create an
array of that structure type where each element is a structure object having
name, address, and age.

The first approach is not efficient. In these kinds of scenarios, structures are
more convenient.

The syntax for declaring a structure is

type structname struct {
variable 1 variable 1 type
variable 2 variable 2 type

variable n variable n_type

b

An example of a structure declaration is
type emp struct {

name string
address string

age int

Here a new user defined type named emp is created. Now, you can create
variables of the type emp using the syntax

var variable name struct name

An example is
var empdatal emp

You can set values for the empdatal as
empdatal.name = "John"

empdatal.address = "Street-1, Sydney"
empdatal.age = 30

You can also create a structure variable and assign values by
empdata2 := emp{"Sam", "Building-1, Zurich", 25}
Here, you need to maintain the order of elements. Sam will be mapped to

name, next element to address and the last one to age.
Execute the code below

package main
import "fmt"
//declared the structure named emp
type emp struct {
name string
address string
age int
h
//function which accepts variable of emp type and prints name
property
func display(e emp) {

fmt.Println(e.name)
h
func main() {
// declares a variable, empdatal, of the type emp
var empdatal emp
//assign values to members of empdatal
empdatal.name = "John"
empdatal.address = "Street-1, London"
empdatal.age = 30
//declares and assign values to variable empdata2 of type emp
empdata2 := emp{"Sam", "Building-1, Paris", 25}
//prints the member name of empdatal and empdata2 using display
function
display(empdatal)
display(empdata?2)
h

Output

John

Sam

Methods(not functions)

A method is a function with a receiver argument. Architecturally, it's
between the func keyword and method name. The syntax of a method is

func (variable variabletype) methodName(parameterl

parametherltype) {
b

Let's convert the above example program to use methods instead of
function.

package main
import "fmt"
//declared the structure named emp
type emp struct {
name string
address string
age int
h
//Declaring a function with receiver of the type emp
func(e emp) display() {
fmt.Println(e.name)
)
func main() {
//declaring a variable of type emp

var empdatal emp

//Assign values to members

empdatal.name = "John"

empdatal.address = "Street-1, London"

empdatal.age = 30

//declaring a variable of type emp and assign values to members
empdata2 ;= emp {

"Sam", "Building-1, Paris", 25}

//Invoking the method using the receiver of the type emp
// syntax 1s variable.methodname()

empdatal.display()

empdata2.display()

b

Go is not an object oriented language and it doesn't have the concept of
class. Methods give a feel of what you do in object oriented programs
where the functions of a class are invoked using the syntax
objectname.functionname()

Concurrency

Go supports concurrent execution of tasks. It means Go can execute
multiple tasks simultaneously. It is different from the concept of
parallelism. In parallelism, a task is split into small subtasks and are
executed in parallel. But in concurrency, multiple tasks are being executed
simultaneously. Concurrency is achieved in Go using Goroutines and
Channels.

Goroutines

A goroutine is a function which can run concurrently with other functions.
Usually when a function is invoked the control gets transferred into the
called function, and once its completed execution control returns to the
calling function. The calling function then continues its execution. The
calling function waits for the invoked function to complete the execution
before it proceeds with the rest of the statements.

But in the case of goroutine, the calling function will not wait for the
execution of the invoked function to complete. It will continue to execute
with the next statements. You can have multiple goroutines in a program.
Also, the main program will exit once it completes executing its statements
and it will not wait for completion of the goroutines invoked.

Goroutine is invoked using keyword go followed by a function call.
Example

go add(x,y)

You will understand goroutines with the below examples. Execute the
below program

package main

import "fmt"

func display() {
for 1:=0; 1<5; 1++ {
fmt.PrintIn("In display")
h

b

func main() {
//invoking the goroutine display()
go display()
//The main() continues without waiting for display()
for 1:=0; 1<5; 1++ {
fmt.Println("In main")

b

The output will be

In main
In main
In main
In main
In main

Here the main program completed execution even before the goroutine
started. The display() is a goroutine which is invoked using the syntax
go function name(parameter list)

In the above code, the main() doesn't wait for the display() to complete, and
the main() completed its execution before the display() executed its code.
So the print statement inside display() didn't get printed.

Now we modify the program to print the statements from display() as well.
We add a time delay of 2 sec in the for loop of main() and a 1 sec delay in
the for loop of the display().

package main
import "fmt"
import "time"

func display() {
for 1:=0; 1<5; 1++ {
time.Sleep(1 * time.Second)
fmt.PrintIn("In display")

j
)

func main() {
//invoking the goroutine display()

go display/()

for 1:=0; 1<5; i++ {
time.Sleep(2 * time.Second)
fmt.PrintIn("In main")

b
b

The output will be somewhat similar to
In display
In main
In display
In display
In main
In display
In display
In main
In main
In main

Here You can see both loops are being executed in an overlapping fashion
because of the concurrent execution.

Channels

Channels are a way for functions to communicate with each other. It can be
thought as a medium to where one routine places data and is accessed by
another routine.

A channel can be declared with the syntax

channel variable := make(chan datatype)

Example:
ch := make(chan int)

You can send data to a channel using the syntax
channel variable <- variable name

Example
ch <-x

You can receive data from a channel using the syntax
variable name := <- channel variable

Example
y :=<-ch

In the above examples of goroutine, you have seen the main program
doesn't wait for the goroutine. But that is not the case when channels are
involved. Suppose if a goroutine pushes data to channel, the main() will
wait on the statement receiving channel data until it gets the data.

You will see this in below example. First, write a normal goroutine and see
the behaviour. Then modify the program to use channels and see the
behaviour.

Execute the below program

package main

import "fmt"

import "time"

func display() {

time.Sleep(5 * time.Second)
fmt.Println("Inside display()")

h
func main() {
go display/()
fmt.Println("Inside main()")
J

The output will be
Inside main()

The main() finished the execution and did exit before the goroutine
executes. So the print inside the display() didn't get executed.
Now modify the above program to use channels and see the behaviour.

package main
import "fmt"
import "time"

func display(ch chan int) {
time.Sleep(5 * time.Second)
fmt.Println("Inside display()")
ch <- 1234
h
func main() {
ch := make(chan int)
go display(ch)
X :=<-ch
fmt.Println("Inside main()")
fmt.PrintIn("Printing x in main() after taking from
channel:",x)

b

The output will be

Inside display()

Inside main()

Printing x in main() after taking from channel: 1234

Here what happens is the main() on reaching x := <-ch will wait for data on
channel ch. The display() has a wait of 5 seconds and then push data to the
channel ch. The main() on receiving the data from the channel gets
unblocked and continues its execution.

The sender who pushes data to channel can inform the receivers that no
more data will be added to the channel by closing the channel. This is
mainly used when you use a loop to push data to a channel. A channel can
be closed using

close(channel name)

And at the receiver end, it is possible to check whether the channel is closed
using an additional variable while fetching data from channel using
variable name, status := <- channel variable

If the status is True it means you received data from the channel. If false, it
means you are trying to read from a closed channel

You can also use channels for communication between goroutines. Need to
use 2 goroutines — one pushes data to the channel and other receives the
data from the channel. See the below program

package main
import "fmt"
import "time"
//This subroutine pushes numbers 0 to 9 to the channel and closes
the channel
func add to channel(ch chan int) {
fmt.Println("Send data")
for 1:=0; 1<10; 1++ {
ch <- 1 //pushing data to channel

}

close(ch) //closing the channel

b

//This subroutine fetches data from the channel and prints it.
func fetch from_ channel(ch chan int) {
fmt.Println("Read data")
for {
//fetch data from channel
X, flag := <- ch
//flag is true if data is received from the channel
//flag 1s false when the channel is closed
if flag == true {
fmt.Println(x)
relse{
fmt.PrintIn("Empty channel")
break

j
b
j

func main() {

//creating a channel variable to transport integer values

ch := make(chan int)

//invoking the subroutines to add and fetch from the channel

//These routines execute simultaneously

go add_to channel(ch)

go fetch from_channel(ch)

//delay is to prevent the exiting of main() before goroutines
finish

time.Sleep(5 * time.Second)

fmt.Println("Inside main()")

b

Here there are 2 subroutines one pushes data to the channel and other prints
data to the channel. The function add to channel adds the numbers from 0

to 9 and closes the channel. Simultaneously the function

fetch from_channel waits at

X, flag := <- ch and once the data become available, it prints the data. It
exits once the flag is false which means the channel is closed.

The wait in the main() is given to prevent the exiting of main() until the
goroutines finish the execution.

Execute the code and see the output as

Read data
Send data

O 00 1N Dt & W~ O

Empty channel
Inside main()

Select

Select can be viewed as a switch statement which works on channels. Here
the case statements will be a channel operation. Usually, each case
statements will be read attempt from the channel. When any of the cases is
ready(the channel is read), then the statement associated with that case is
executed. If multiple cases are ready, it will choose a random one. You can
have a default case which is executed if none of the cases is ready.

Let's see the below code

package main
import "fmt"
import "time"
//push data to channel with a 4 second delay
func datal(ch chan string) {
time.Sleep(4 * time.Second)
ch <- "from datal()"
h
//push data to channel with a 2 second delay
func data2(ch chan string) {
time.Sleep(2 * time.Second)
ch <- "from data2()"
h
func main() {
//creating channel variables for transporting string values
chanl := make(chan string)
chan2 := make(chan string)

//invoking the subroutines with channel variables

go datal(chanl)
go data2(chan2)

//Both case statements wait for data in the chanl or chan2.
//chan2 gets data first since the delay is only 2 sec in data2().
//So the second case will execute and exits the select block
select {
case X := <-chanl:

fmt.Println(x)
case y := <-chan2:

fmt.Println(y)

Executing the above program will give the output:
from data2()

Here the select statement waits for data to be available in any of the
channels. The data2() adds data to the channel after a sleep of 2 seconds
which will cause the second case to execute.

Add a default case to the select in the same program and see the output.
Here, on reaching select block, if no case is having data ready on the
channel, it will execute the default block without waiting for data to be
available on any channel.

package main

import "fmt"

import "time"

//push data to channel with a 4 second delay
func datal(ch chan string) {

time.Sleep(4 * time.Second)
ch <- "from datal()"
h
//push data to channel with a 2 second delay
func data2(ch chan string) {
time.Sleep(2 * time.Second)
ch <- "from data2()"
h
func main() {
//creating channel variables for transporting string values
chanl := make(chan string)

chan2 := make(chan string)

//invoking the subroutines with channel variables

go datal(chanl)

go data2(chan2)

//Both case statements check for data in chanl or chan2.

//But data is not available (both routines have a delay of 2 and 4
sec)

//So the default block will be executed without waiting for data
in channels.

select {

case X := <-chanl:

fmt.Println(x)

case y := <-chan2:

fmt.Println(y)
default:
fmt.Println("Default case executed")

b

This program will give the output:

Default case executed

This 1s because when the select block reached, no channel had data for
reading. So, the default case is executed.

Mutex

Mutex is the short form for mutual exclusion. Mutex is used when you don't
want to allow a resource to be accessed by multiple subroutines at the same
time. Mutex has 2 methods - Lock and Unlock. Mutex is contained in sync
package. So, you have to import the sync package. The statements which
have to be mutually exclusively executed can be placed inside
mutex.Lock() and mutex.Unlock().

Let's learn mutex with an example which is counting the number of times a
loop is executed. In this program we expect routine to run loop 10 times and
the count is stored in sum. You call this routine 3 times so the total count
should be 30. The count is stored in a global variable count.

First, You run the program without mutex

package main
import "fmt"
import "time"
import "strconv"
import "math/rand"
//declare count variable, which is accessed by all the routine
instances
var count = 0
//copies count to temp, do some processing(increment) and store
back to count
//random delay is added between reading and writing of count
variable
func process(n int) {
//loop incrementing the count by 10
fori1:=0;1<10; 1++ {

time.Sleep(time.Duration(rand.Int31n(2)) * time.Second)
temp := count
temp++
time.Sleep(time.Duration(rand.Int31n(2)) * time.Second)
count = temp
)
fmt.Println("Count after i="+strconv.Itoa(n)+" Count:",
strconv.Itoa(count))
h
func main() {
//loop calling the process() 3 times
fori:=1;1<4;1++{
go process(i)
h
//delay to wait for the routines to complete
time.Sleep(25 * time.Second)

fmt.Println("Final Count:", count)

See the result

Count after i=1 Count: 11
Count after i=3 Count: 12
Count after i=2 Count: 13
Final Count: 13

The result could be different when you execute it but the final result won't
be 30.

Here what happens is 3 goroutines are trying to increase the loop count
stored in the variable count. Suppose at a moment count is 5 and goroutinel
is going to increment the count to 6. The main steps include

Copy count to temp

Increment temp

Store temp back to count

Suppose soon after performing step 3 by goroutinel; another goroutine
might have an old value say 3 does the above steps and store 4 back, which
is wrong. This can be prevented by using mutex which causes other routines
to wait when one routine is already using the variable.

Now You will run the program with mutex. Here the above mentioned 3
steps are executed in a mutex.

package main

import "fmt"

import "time"

import "sync"

import "strconv"

import "math/rand"

//declare a mutex instance

var mu sync.Mutex

//declare count variable, which is accessed by all the routine
instances

var count = 0

//copies count to temp, do some processing(increment) and store
back to count

//random delay is added between reading and writing of count

variable

func process(n int) {
//loop incrementing the count by 10
fori1:=0;1<10; 1++ {
time.Sleep(time.Duration(rand.Int31n(2)) * time.Second)
//lock starts here
mu.Lock()
temp := count
temp++
time.Sleep(time.Duration(rand.Int31n(2)) * time.Second)

count = temp

//lock ends here

mu.Unlock()

h

fmt.Println("Count after i="+strconv.Itoa(n)+" Count:",
strconv.Itoa(count))
h

func main() {
//loop calling the process() 3 times
fori:=1;1<4;1++ {
go process(1)
h
//delay to wait for the routines to complete
time.Sleep(25 * time.Second)

fmt.PrintIn("Final Count:", count)

Now the output will be
Count after 1=3 Count: 21

Count after 1=2 Count: 28
Count after 1=1 Count: 30
Final Count: 30

Here we get the expected result as final output. Because the statements
reading, incrementing and writing back of count is executed in a mutex.

Error handling

Errors are abnormal conditions like closing a file which is not opened, open
a file which doesn't exist, etc. Functions usually return errors as the last
return value.

The below example explains more about the error.

package main
import "fmt"
import "os"
//function accepts a filename and tries to open it.
func fileopen(name string) {
f, er ;= 0s.Open(name)
//er will be nil if the file exists else it returns an error object
ifer !=nil {
fmt.Println(er)
return
telse{
fmt.Println("file opened", f.Name())

b

func main() {

fileopen("invalid.txt")

The output will be:
open /invalid.txt: no such file or directory

Here we tried to open a non-existing file, and it returned the error to er
variable. If the file is valid, then the error will be null

Custom errors

Using this feature, you can create custom errors. This is done by using
New() of error package. We will rewrite the above program to make use of
custom errors.

Run the below program

package main
import "fmt"
import "os"
import "errors"
//function accepts a filename and tries to open it.
func fileopen(name string) (string, error) {
f, er := 0s.Open(name)
/ler will be nil if the file exists else it returns an error object
if er I=nil {
//created a new error object and returns it

nn

return "", errors.New("Custom error message: File name is

wrong")
telse{

return f.Name(),nil

b

func main() {
//receives custom error or nil after trying to open the file
filename, error := fileopen("invalid.txt")

if error !=nil {

fmt.Println(error)
telse{
fmt.Println("file opened", filename)

The output will be:
Custom error message:File name is wrong

Here the area() returns the area of a square. If the input is less than 1 then
area() returns an error message.

Reading files

Files are used to store data. Go allows us to read data from the files
First create a file, data.txt, in your present directory with the below content.

Line one
Line two
Line three

Now run the below program to see it prints the contents of the entire file as
output
package main
import "fmt"
import "10/ioutil"
func main() {
data, err := ioutil.ReadFile("data.txt")
if err !=nil {
fmt.PrintIn("File reading error", err)
return

;

fmt.Println("Contents of file:", string(data))

b

Here the data, err := ioutil.ReadFile("data.txt") reads the data and returns a
byte sequence. While printing it is converted to string format.

Writing files

You will see this with a program
package main
import "fmt"
import "os"
func main() {
f, err := 0s.Create("filel.txt")
if err !=nil {
fmt.Println(err)
return
b
1, err ;= f.WriteString("Write Line one")
if err !=nil {
fmt.Println(err)
f.Close()
return
b
fmt.Println(l, "bytes written")
err = f.Close()
if err !=nil {
fmt.Println(err)
return

Here a file is created, test.txt. If the file already exists then the contents of
the file are truncated. Writeline() is used to write the contents to the file.
After that, You closed the file using Close().

GO Interview Questions

1. What is Go?

Go is a general-purpose language designed with systems programming in
mind.It was initially developed at Google in year 2007 by Robert
Griesemer, Rob Pike, and Ken Thompson. It is strongly and statically
typed, provides inbuilt support for garbage collection and supports
concurrent programming. Programs are constructed using packages, for
efficient management of dependencies. Go programming implementations
use a traditional compile and link model to generate executable binaries.
2. What are the benefits of using Go programming?

Following are the benefits of using Go programming —

e Support for environment adopting patterns similar to dynamic
languages. For example type inference (x := 0 is valid declaration of a
variable x of type int).

e Compilation time is fast.

e InBuilt concurrency support: light-weight processes (via goroutines),
channels, select statement.

e Conciseness, Simplicity, and Safety.

e Support for Interfaces and Type embedding.

e Production of statically linked native binaries without external
dependencies.

3. What is static type declaration of a variable in Go?

Static type variable declaration provides assurance to the compiler that
there is one variable existing with the given type and name so that compiler
proceed for further compilation without needing complete detail about the
variable. A variable declaration has its meaning at the time of compilation
only, compiler needs actual variable declaration at the time of linking of the
program.

4. What is dynamic type declaration of a variable in Go?

A dynamic type variable declaration requires compiler to interpret the type
of variable based on value passed to it. Compiler don't need a variable to
have type statically as a necessary requirement.

5. How to print type of a variable in Go?

Following code prints the type of a variable —

vara, b, ¢ = 3, 4, "foo"

fmt.Printf("a is of type %T\n", a)

6. What is a pointer?

It's a pointer variable which can hold the address of a variable.
For example —

var X =5

var p *int

p = &x

fmt. Printf("x = %d", *p)

Here x can be accessed by *p.

7. What is the purpose of break statement?

break terminates the for loop or switch statement and transfers execution to
the statement immediately following the for loop or switch.

8. Explain the syntax to create a function in Go.

The general form of a function definition in Go programming language is

as follows —

func function name([parameter list]) [return_types] {
body of the function

}

A function definition in Go programming language consists of a function
header and a function body. Here are all the parts of a function —

e func func starts the declaration of a function.

e Function Name — This is the actual name of the function. The function
name and the parameter list together constitute the function signature.

e Parameters — A parameter is like a placeholder. When a function is
invoked, you pass a value to the parameter. This value is referred to as
actual parameter or argument. The parameter list refers to the type,
order, and number of the parameters of a function. Parameters are
optional; that is, a function may contain no parameters.

e Return Type — A function may return a list of values. The return_types
is the list of data types of the values the function returns. Some
functions perform the desired operations without returning a value. In
this case, the return_type is the not required.

e Function Body — The function body contains a collection of

statements that define what the function does.
9. In how many ways you can pass parameters to a method?
While calling a function, there are two ways that arguments can be passed
to a function —

e C(all by value — This method copies the actual value of an argument
into the formal parameter of the function. In this case, changes made
to the parameter inside the function have no effect on the argument.

e C(all by reference — This method copies the address of an argument
into the formal parameter. Inside the function, the address is used to
access the actual argument used in the call. This means that changes
made to the parameter affect the argument.

10. What is the default way of passing parameters to a function?

By default, Go uses call by value to pass arguments. In general, this means
that code within a function cannot alter the arguments used to call the
function and above mentioned example while calling max() function used
the same method.

11. What do you mean by function as value in Go?

Go programming language provides flexibility to create functions on the fly
and use them as values. We can set a variable with a function definition and
use it as parameter to a function.

12. What are the function closures?

Functions closure are anonymous functions and can be used in dynamic
programming.

13. What are methods in Go?

Go programming language supports special types of functions called
methods. In method declaration syntax, a "receiver" is present to represent
the container of the function. This receiver can be used to call function
using "." operator.

14. What is the difference between actual and formal parameters?

The parameters sent to the function at calling end are called as actual
parameters while at the receiving of the function definition called as formal
parameters.

15. What is the difference between variable declaration and variable
definition?

Declaration associates type to the variable whereas definition gives the
value to the variable.

16. Explain modular programming.

Dividing the program in to sub programs (modules/function) to achieve the
given task is modular approach. More generic functions definition gives the
ability to re-use the functions, such as built-in library functions.

17. What is a token?

A Go program consists of various tokens and a token is either a keyword,
an identifier, a constant, a string literal, or a symbol.

18. What is a nil Pointers in Go?

Go compiler assign a Nil value to a pointer variable in case you do not have
exact address to be assigned. This is done at the time of variable
declaration. A pointer that is assigned nil is called a nil pointer. The nil
pointer is a constant with a value of zero defined in several standard
libraries.

19. What is a pointer on pointer?

It's a pointer variable which can hold the address of another pointer
variable. It de-refers twice to point to the data held by the designated
pointer variable.

var a int

var ptr *int

var pptr **int

a=3000

ptr = &a

pptr = &ptr

fmt.Printf("Value available at **pptr = %d\n", **pptr)

Therefore 'a' can be accessed by **pptr.

20. What is structure in Go?

Structure is another user defined data type available in Go programming,
which allows you to combine data items of different kinds.

21. How to define a structure in Go?

To define a structure, you must use type and struct statements. The struct
statement defines a new data type, with more than one member for your

program. type statement binds a name with the type which is struct in our
case.
The format of the struct statement is this —

type struct variable type struct {
member definition;
member definition;

member definition;

}

22. What is slice in Go?

Go Slice 1s an abstraction over Go Array. As Go Array allows you to define
type of variables that can hold several data items of the same kind but it do
not provide any inbuilt method to increase size of it dynamically or get a
sub-array of its own. Slices covers this limitation. It provides many utility
functions required on Array and is widely used in Go programming.

23. How to get a sub-slice of a slice?

Slice allows lower-bound and upper bound to be specified to get the
subslice of it using[lower-bound:upper-bound].

24. What is range in Go?

The range keyword is used in for loop to iterate over items of an array,
slice, channel or map. With array and slices, it returns the index of the item
as integer. With maps, it returns the key of the next key-value pair.

25. What are maps in Go?

Go provides another important data type map which maps unique keys to
values. A key is an object that you use to retrieve a value at a later date.
Given a key and a value, you can store the value in a Map object. After
value is stored, you can retrieve it by using its key.

And finally, if you liked the book, I would like to ask you to do
me a favor and leave a review for the book on Amazon. Just go
to your account on Amazon and write a review for this book.

Thank you and good luck!

	Rust Programming Language
	Rust Installation
	First Rust program
	'If' statement
	"if-else"
	Using "if in a let" statement
	Loops
	While loop
	For loop
	Rust Ownership
	Rust References and Borrowing
	Slice In Rust
	Update Syntax
	Method Syntax
	Rust Enum
	Match Operator
	Concise control flow with if let
	Rust Modules
	Module Definition
	Filesystem
	Making a functioning public
	Referring to names in different modules
	Vector
	String
	Slicing Strings
	Rust Error handling
	Rust Unrecoverable Errors
	Rust Recoverable Errors
	Rust Generics
	Rust Trait
	Rust Lifetime
	Lifetime Annotations in Function Signatures
	Rust Smart Pointers
	Box<T>
	Deref<T>
	Drop trait
	Rc<T>
	RefCell<T>
	GO FOR BEGINNERS
	Go Programming Language
	Data Types
	Constants
	Loops
	Arrays
	Functions
	Packages
	Structures
	Goroutines
	Channels
	Select
	Error handling
	Reading files
	GO Interview Questions

