The Linux Kernel Driver Model

Patrick Mochel
Open Source Development Lab
mochel@osdl.org

Abstract

A new device driver model has been designed and developed for the 2.5 version
of the Linux Kernel. The original intent of this model was to provide a means
to generically represent and operate on every device in a computer. This would
allow modern power management routines to perform properly ordered suspend
and resume operations on the entire device space during system power state
transitions.

During the integration of the initial model, it became apparent that many
more concepts related to devices besides power management information could
be generalized and shared. The new driver model has evolved to provide generic
representations of several objects, including:

e Devices
e Device drivers
e Bus drivers

e Device Classes

e Device Interfaces

The model also provides a set of functions to operate on each of those objects.
This has provided the opportunity to consolidate and simplify a large quantity
of kernel code and data structures.

The new driver model has been included in the mainstream kernel, since
version 2.5.1, and continues to mature and evolve as more drivers are converted
to exploit its infrastructure.

This document describes the design and implementation of the new driver
model. It covers the description of the objects and their programming interfaces,
as well as their conceptual and programmatic interactions with one another. It
also includes appendices on the kobject infrastructure and the sysfs filesystem.
These are two important features that were developed as a result of the driver
model, yet were divorced from the model because of their more general purpose.
They are covered in this document in the context of how they are used in the
driver model.

1 Introduction

Theory

The driver model was created by analyzing the behavior of the PCI and USB
bus drivers. These buses are ubiquitous in contemporary computer systems, and
represent the majority of the devices that the kernel supports. They contain the
most mature support for dynamic addition, removal, and power management of
devices and drivers. These features had already been permeating other kernel
bus drivers, with inspiration from the PCI and USB subsystems. They were
considered appropriate bases of assumptions, and are described below.

These assumptions hold true for the majority of instances of objects repre-
sented by the driver model. The minority of objects are considered exceptions,
and must work around the driver model assumptions.

A bus driver is a set of code that communicates with a peripheral bus of a
certain type. Some examples of bus drivers in the kernel include:

e PCI
e USB
e SCSI

e IDE

¢ PCMCIA

Bus drivers maintain a list of devices that are present on all instances of
that bus type, and a list of registered drivers. A bus driver is compile-time
option, and may usually be compiled as a module. There will never be multiple
instances of a driver for the same bus type at the same time. Most, if not all,
of its internal data structures are statically allocated.

A bus instance represents the presence of a bus of a particular type, such as
PCI Bus 0. They are dynamically allocated when the bus instance is discovered.
They contain a list of devices, as well as data describing the connection to
the device. Bus instances are not currently represented in the driver model.
However, they are mentioned here to note the distinction between them and
bus driver objects.

During startup, a bus driver discovers instances of its bus type. It scans the
bus for present devices and allocates data structures to describe each device.
Most of this information is bus-specific, such as the bus address of the device and
device identification information. The bus driver need not know of the function
the device performs. This object is inserted into the bus’s list of devices, and
the bus driver attempts to bind it to a device driver.

A device class describes a function that a device performs, regardless of the
bus on which a particular device resides. Examples of device classes are:

e Audio output devices

e Network devices

e Disks
e Input devices

A device class driver maintains lists of device and drivers that belong to that
class. They are optional bodies of code that may be compiled as a module. Its
data structures are statically allocated. A device class defines object types to
describe the devices registered wit h it.These objects define the devices in the
context of the class only, since classes are independent of a device’s bus type.

A device class is characterized by a set of interfaces that allow user processes
to communicate with devices of their type. An interface defines a protocol for
communicating with those devices, which is characterized in a user space device
node. A class may contain multiple interfaces for communicating with devices,
though the devices and drivers of that class may not support all the interfaces
of the class.

A device driver is a body of code that implements one or more interfaces
of a device class for a set of devices on a specific bus type. They contain some
statically allocated structures to describe the driver to its bus and class, and to
maintain a list of bound devices.

During startup, a driver registers with its bus, and the bus inserts the driver
into its internal list of drivers. The bus then attempts to bind the driver to the
bus’s list of devices. A bus compares a list of bus-specific device ID numbers
that it supports with the ID numbers of the devices on the bus. If a match is
made, the device is ’attached’ to the driver. The driver allocates a driver-specific
object to describe the device. This usually includes a class-specific object as well,
which the driver uses to register the device with it’s class.

Infrastructure

The driver model provides a set of objects to represent the entities described
above. Previously, the kernel representations of these objects, especially devices,
have varied greatly based on the functionality that they provide and the bus
type forwhich they are designed. Much of this information is specific to the type
of object, though some can be generically encoded, which are what compose the
driver model objects.

Most of the members of driver model objects contian meta data describing
the object, and linkage information to represent membership in groups and lists
of subordinate objects. The driver model object definitions can be found in the
header file include/linux/device.h.

The driver model also provides a set of functions to operate on each object.
These functions are referred to the ’driver model core’ through this document.
They are implemented in drivers/base/ in the kernel source tree. Each set of
operations is object-specific and described in detail with the objects in their
respective sections. However, there are some commonalities between objects
that are reflected in the functions of the core. These are described here to
provide perspective on the model, and to avoid repeating the purposes in each
section.

Every driver model object supports dynamic addition and removal. Each
object has register() and unregister() functions specific to that object. Regis-
tration initializes the object, inserts it into a list of similar objects, and creates
a directory for the object in the sysfs filesystem. Registration occurs when a
device is discovered or a module containing a device, bus, or class driver is in-
serted. Unregistration occurs when a driver’s module is unloaded or a device
is physically removed. Unregistration removes the object’s sysfs directory and
deletes it from the list of similar objects.

To support dynamic removal, each object contains a reference count that
can be adjusted by object-specific get() and put() functions. The get() routine
should be called for an object before it is used in a function. get() returns a
reference to the object. The put() routine should be called after a function is
done using an object. It has no return value.

If, and only if, an object’s reference count reaches 0 may the object be freed,
or its module be unloaded. Another process may still hold a reference to the ob-
ject when the object’s unregister() function returns. Blindly freeing an object’s
memory could cause the other process to access invalid or reallocated memory.
The method that the driver model uses to prevent these bugs is described in
the individual objects’ sections.

The similarities of driver model objects, and the amount of replicated code to
perform similar operations on the objects prompted the effort to create a generic
object type to be shared across not only driver model objects, butalso across
all complex kernel objects that supported dynamic registration and reference
counting.

A kobject generically describes an object. It may be embedded in larger
data types to provide generic object meta data and a reference counting mech-
anism. A subsystem represents a set of kobjects. A kobject can be dynamically
registered and unregistered with their subsystem. When a kobject is registered,
it is initialized and inserted into its subsystem’s list of objects. A directory in
sysfs, described below, is also created. Unregistration removes the sysfs direc-
tory for the kobject and deletes it from its subsystem’s list. Kobjects also have
a reference count and get() and put() operations to adjust it. A kobject may
belong to only one subsystem, and a subsystem must contain only identically
embedded kobjects.

The kobject functionality is very similar to the driver model core. The driver
model functions have been adapted to use the kobject infrastructure, and some
provide no more functionality than calling the associated kobject function.

The kobject and subsystem infrastructure is described in Appendix A.

The sysfs filesystem was originally created as a means to export driver model
objects and their attributes to user space. It has since been integrated with the
kobject infrastructure, so it can communicate directly with the generic object,
allowing it to do reference counting on represented objects.

All registered kobjects receive a directory in sysfs in a specific location based
on the kobject’s ancestry. This provides user space with a meaningful object hi-
erarchy in the filesystem which can be navigated through using basic file system
tools, like 1s(1), find(1), and grep(1).

Attributes of an object may be exported via sysfs, and are represented as
text files in the filesystem. Sysfs provides a means for user processes to read and
write attributes. The kernel exporters of attributes may define methods called
by sysfs when a read or write operation is performed on an attribute file.

The sysfs filesystem and its programming interface is discussed in Appendix
B.

Summary

The new driver model implements a large amount of infrastructure for describing
and operating on device-related objects. This infrastructure has been able to
eliminate redundant kernel code and data structures, especially in the areas
of object reference counting and list membership management. This reduces
the complexity of device, bus and class drivers, making them easier to write
and easier to read. The consolidation of data structures also makes it easier
to implement common functions to operate on objects of traditionally different
objects.

While this document describes the base objects and operations of the driver
model, there are many things it omits. It does not describe how it is exploited
for the purpose of power management or implementing a dynamic and scalable
device naming scheme. These topics are beyond the scope of this document and
reserved for other discussions.

Similarly, this document only superficially describes the kobject infrastruc-
ture and the sysfs filesystem. These are included only to provide enough context
to complete the discussion of the driver model, and are best covered in other
documents.

2 kobjects and subsystems

The kobject infrastructure was developed to consolidate common aspects of
driver model objects. The result is a simple object type designed to provide
a foundation for more complex object types. Struct subsystem was created to
describe and manage sets of kobjects. It was also created to consolidate and
unify driver model objects and functions.

kobjects

Struct kobject provides basic object attributes in a structure that is designed to
be embedded in larger structures. Subsystems that embed kobject may useits
members, and the helpers for them, rather than defining their own.

When a kobject is registered, it should initialize the following fields:

® name

e parent

[Name [Type [Description l

name char [KOBJ_.NAME_LEN] Name of object.

refcount atomic_t Reference count of kobject.

entry struct list_head List entry in subsystem’s
list of objects.

parent struct kobject * Parent object.

subsys struct subsystem * kobject’s subsystem.

dentry struct dentry * Dentry of object’s sysfs di-
rectory.

Table 1: struct kobject data fields

e subsys

‘name’ gives the object identity, and provides a name for its sysfs directory
that is created. 'parent’ provides ancestral context for the object. The kobject
infrastructure inserts the kobject into an ordered list that resides in its subsys-
tem. The ordering is dependent on the kobject’s parent - the object is inserted
directly before its parent. This ordering guarantees a depth-first ordering when
iterating over the list forwards, and a breadth first ordering when iterating over
it backwards.

The ’subsys’ informs the kobject core of the kobject’s controlling subsystem.
A kobject may belong to only one subsystem at a time. Note that a kobject’s
parent is set to point to its subsystem, if its parent pointer is not set by the
kobject core.

kobject Programming Interface

Kobjects may be dynamically added and removed from their subsystem. The
kobject programming interface provides two parallelprogramming models, much
like devices do. kobject_register() initializes the kobject, and adds to the kobject
hierarchy. The same action may also be performed by calling kobject_init() and
kobject_add() manually.

kobject_unregister() removes the kobject from the system and decrements
its reference count. When the reference count of the kobject reaches 0, kob-
ject_cleanup() will be called to tear down the kobject. Alternatively, one may
call kobject_del() and kobject_put() to obtain the same results. kobject_cleanup()
is called only by kobject_put(), and should never be called manually.

The parallel interface is provided to afford users of the kobject model more
flexibility. kobject_add() inserts the kobject into its subsystem and creates a
sysfs directory for it. A user may not desire that to happen immediately, or at
all. kobject_init() may be called to initialize the kobject to a state in which the
reference count is usable. At a later time, the user may call kobject_add() add
the device to the subsystem and create its sysfs directory.

Users of the low-level initialize and add calls should also use the low-level
kobject_del() and kobject_put() calls, even if they happen consecutively, like
kobject_unregister(). Even though kobject_register() and kobject_unregister()

[Name [Return Type [Description l

kobject_init(struct kobject | void Initialize kobject only.

*

kobject_cleanup(struct | void Tear down kobject, by call-

kobject *) ing its subsystem’s release()
method. Used internally
only.

kobject_add(struct kobject | int Add kobject to object hier-

* archy.

kobject_del(struct kobject | void Remove kobject from object

*) hierarchy.

kobject_register(struct | int Initialize kobject AND add

kobject *) to object hierarchy.

kobject_unregister(struct | void Remove kobject from ob-

kobject *) ject hierarchy and decre-
ment reference count.

kobject_get(struct kobject | struct kobject * Increment reference count

*) of kobject.

kobject_put(struct kobject | void Decrement reference count

*) of kobject, and tear it down
if the count reaches 0.

Table 2: kobject Programming Interface

currently do no extra work, they are not excluded from ever doing so. Adhering
to the symmetry also makes the code easier to follow and understand.

A kobject contains a reference count that should be incremented — using
kobject_get() — before accessing it, and decremented - using kobject_put() —
after it’s not being used any more. Keeping a positive reference count on an
object guarantees that the structure will not be removed and freed while it’s
being used.

Subsystems

struct subsystem was defined to describe a collection of kobjects. ’subsystem’ is
an ambiguous name for such a generic object; 'container’ is more accurate, and
will likely change at a later date. The object contains members to manage its set
of subordinate kobjects. Users of subsystem objects may embed the structure
in more complex objects and use the fields contained in it, rather than defining
their own.

Struct subsystem contains an embedded kobject to contain generic objects
meta data about the subsystem itself. This is also to represent the subsystem’s
membership in another subsystem.

The subsystem object contains a list that registered objects are inserted on.
‘rwsem’ is a semaphore that protects access to the list. It should always b e
taken before iterating over the list, or adding or removing members.

Subsystems are believed to be hierarchical, as some subsystems contain sub-
ordinate subsystems or containers of objects. The ’parent’ field may be used to
denote a subsystem’s ancestral parent.

[Name Type [Description l
kobj struct kobject Generic object metadata.
list struct list_head List of registered objects.
rwsem struct rw_semaphore Read/write semaphore for
subsystem.
parent struct subsystem * Parent subsystem.
sysfs_ops struct sysfs_ops * Operations for reading and

writing subordinate kobject
attributes via sysfs.
default_attrs struct attribute ** NULL-terminated array
of attributes exported via
sysfs for every kobject
registered with subsystem.

Table 3: struct subsystem data fields

Name [Return Type [Description]

release(struct device *) void Method called when a reg-
istered kobject’s reference
count reaches 0. Used by
the subsystem to free mem-
ory allocated for kobject.

Table 4: struct subsystem methods.

‘sysfs_ops’ is a pointer to a set of operations that a subsystem must define
to read and write attributes that are exported for subordinate kobjects via the
sysfs filesystem. ’default_attrs’ is a NULL-terminated array of attributes that
are unconditionally exported for every kobject registered with the subsystem.
sysfs is discussed, and these fields will be covered, in the next section.

The ’release’ method is defined as a means for the subsystem to tear down a
kobject registered with it. A subsystem should implement this method. When a
kobject’s reference count reaches 0, kobject_cleanup() is called to tear down the
device. That reference’s the kobject’s subsystem and its ‘release’ method, which
it calls to allow the subsystem to tear down the device (Since the subsystem
likely embedded the kobject in something larger, and it must convert to it.).

Programming Interface

Subsystems provide a similar programming model to kobjects. However, they
allow only simple register() and unregister() semantics, and do not export the
intermediate calls for the rest of the kernel to use. Also , a subsystem’s ref-
erence count may be incremented using subsys_get() and decremented using
subsys_put().

[Name [Return Type [Description
subsystem _register(struct int Initialize subsystem and
subsystem *) register embedded kobject.
subsystem_unregister(struct | void Unregister embedded kob-

subsystem *)

ject.

subsys_get(struct ~ subsys- | struct subsystem * Increment subsystem’s ref-
tem *) erence count.
subsys_put(struct subsys- | void Decrement subsystem’s ref-
tem *) erence count.

Table 5: struct subsystem Programming Interface.

3 The sysfs filesystem

sysfs is an in-memory filesystem with a kernel programming interface for export-
ing object and their attributes. The purpose of sysfs is to export kernel objects
and their attributes. Sysfs is directly related to the kobject infrastructure; every
kobject that is added to the system has a directory created for it in sysfs. Every
directory that is created in sysfs must have a kobject associated with it.

Sysfs uses the kobject hierarchy information to determine where to create an
object’s directory. This enables sysfs to expose object hierarchies, like the device
hierarchy, with no additional overhead. This also preventsa chaotic directory
structure, which is characteristic of the procfs filesystem. The following output
is from the tree(1) command, and expresses the device hierarchy, as represented

in sysfs.

tree -d /sys/devices/
/sys/devices/

|-- ideO

| |-- 0.0

| ‘-- 0.1

|-- idel

| |-- 1.0

| ‘-- 1.1

|-- legacy

|-- pcio

| |-- 00:00.0

| I--00:01.0

| | ‘-- 01:05.0
| |-- 00:07.
| |-- 00:07.
| |-- 00:07.
| |-- 00:07.
| |-- 00:09.
| |-- 00:09.
| |-- 00:09.
| |-- 00:0b.
| ‘== 00:0c.
<

OO NRFE O WRO

|-- cpu0

[Name [Return Type [Description l

sysfs_create_dir(struct kob- | int Create sysfs directory for
ject *) kobject.
sysfs_remove_dir(struct | void Remove sysfs directory of
kobject *) kobject.

Table 6: sysfs Programming Interface.

|-- cpul
|-- picO
‘== rtco

Sysfs provides an extensibleinterface for exporting attributes of objects. At-
tributes are represented by regular files in a kobject’s directory, with a preference
for the files to be in ASCII text format with one value per file. These preferences
are not encoded programmatically, butobjects exporting attributes are strongly
encouraged to follow this model. The following is output. The following shows
thecontents of a PCI device’s directory, which contains four attribute files:

tree /sys/devices/pci0/00:07.0/
/sys/devices/pci0/00:07.0/

|-- irq

| -- name

|-~ power

‘-- resource

0 directories, 4 files

sysfs has been a standard part of the Linux kernel as of version 2.5.45. It
has existed under a different name (driverfs or ddfs) since kernel version 2.5.2.
The de-facto standard mount point for sysfs is a new directory named ’/sys’. Tt
may be mounted from user pace by doing:

mount -t sysfs sysfs /sys

Basic Operation

The sysfs header file is include/linux/sysfs.h. It contains the definition of struct
attribute and the prototypes for managing object directories and attributes.
Sysfs directories are created for kobjects when the kobjects are added to the
kobject hierarchy. The directories are removed when the kobjects are deleted
from the hierarchy.

10

[Name [Type [Description l

name char * Name of attribute.
mode mode_t Filesystem permissions for
attribute file.

Table 7: struct attribute Data Fields.

[Name [Return Type [Description]
sysfs_create_file(struct kob- | int Create attribute file for kob-
ject *, struct attribute *) ject.
sysfs_remove_file(struct | void Remove attribute file of
kobject *, struct attribute kobject.

)

Table 8: struct attribute Programming Interface.

Attributes

In their simplest form, sysfs attributes consist of only a name and the permis-
sions for accessing the attribute. They provide no details about the type of data
presented by the attribute, or the object exporting the attribute. The means for
reading and writing attributes are subsystem-dependent, and are discussed next.

An attribute may be added to the kobject’s directory by calling sysfs_create_file().
The function references the attribute structure, and creates a file named 'name’
with a mode of 'mode’ in the kobject’s directory. The attribute can be removed
by calling sysfs_remove._file(), passing pointers to the kobject and the attribute
descriptor.

It is important to note that attributes do not have to be specific to one in-
stance of an object. A single attribute descriptor may be reused for any number
of object instances. For instance, a single attribute descriptor exports a device’s
name. An attribute file is created for each device that is registered with the
system, though the same attribute descriptor is passed to sysfs_create_file() for
each one.

Reading and Writing Attributes

Reading and writing kobject attributes involves passing data between the user
space process that is accessing an attribute file and the entity that has exported
the attribute. The base definition of attributes does not provide this type of
functionality. The definition is ignorant of the type of the attribute and the
specific data it represents. In order to get this data, sysfs must call one of the
methods defined by the subsystem the kobject belongs to in its struct sysfs_ops
object.

11

[Name [Return Type [Description l
show(struct kobject *, | ssize_t Called by sysfs when a user
struct attribute *, char *, space process is reading an
size_t, loff_t) attribute file. Data may be

returned in the PAGE_SIZE
buffer.
store(struct kobject *, | ssize_t Called by sysfs when a user
struct attribute *, const space process writes to an
char *| size_t, loff_t) attribute file. Data is stored
in the PAGE_SIZE buffer
passed in.

Table 9: struct attribute I/O methods.

Sysfs calls a subsystem’s show method when a user mode process performs
a read(2) operation on an attribute. It calls a subsystem’s show method when
a write(2) is performed on the file. In both cases, the size of the buffer passed
to the methods is the size of one page.

The current model places all responsibility of handling the data on the down-
stream functions. They must format the data, handle partial reads, and cor-
rectly handle seeks or consecutive reads. In this case, sysfs is much likethe de-
fault procfs operation, without using the seq_file interface. Though sysfs allows
file creation and the downstream functions to be much simpler, the interface is
still considered prohibitivelycomplex. A new interface is being developed that
will ease the burden of the downstream formatting and parsing functions.

Extending Attributes

Attributes may be added for an object at any time, by any type of kernel entity,
whether they are a core part of the subsystem, a dynamically loaded driver for
the kobject, or even some proprietary module. There is only one set of sysfs_ops
for a subsystem, though, so struct attribute may be extended to describe the
secondary methods necessary to read or write an attribute.

Extending an attribute can be done for a type of object by defining a new
type of attribute, that contain an embedded struct attribute and methods to
read and write the data of the attribute. For example, the following definitions
exist in include/linux/device.h.

struct device_attribute {
struct attribute attr;
ssize_t (*show) (struct device *, char *, size_t, loff_t);
ssize_t (*store) (struct device *, const char *, size_t, loff_t);

};

int device_create_file(struct device *, struct device_attribute *);

12

void device_remove_file(struct device *, struct device_attribute *);

Kernel components must define an object of this type to export an attribute
of a device. The device_attribute object is known by the device subsystem.
When it receives a call from sysfs to read or write an attribute, it converts the
attribute to a device_attribute object, as well as converting the kobject to a
struct device.

Components that export attributes for devices may define 'show’ and ’store’
methods to read and write that attribute. An explicit device object is passed to
these methods, so the definer of the method does not have to manually convert
the object. The methods are also not passed a pointer to the attribute, as it
should be implicit in the method being called.

Reference Counting

Composite in-kernel filesystems suffer from potential race conditions when user
space is accessing objects exported by them. The object could be removed,
either by removing a physical device or by unloading a module, while a user
space process is still expecting a valid object. Sysfs attempts to avoid this by
integrating the kobject semantics into the core of the filesystem. Note that this
is only an attempt. No current race conditions exist, though their existence is
not precluded entirely.

When a directory is created for a kobject,a pointer to the kobject is stored
in the d_fsdata field of the dentry of the directory. When an attribute file is
created, a pointer to the attribute is stored in the d_fsdata field of the file. When
an attribute file is opened, the reference count on the kobject is incremented.
When the file is closed, the reference count of the kobject is decremented. This
prevents the kobject, and the structure its embedded in, from being removed
while the file is open.

Note that this does not prevent a device from being physically removed, or a
module being unloaded. Downstream calls should always verify that the object
a kobject refers to is still valid, and not rely on the presence of the structure to
determine that.

Expressing Object Relationships

Objects throughout the kernel are referenced by multiple subsystems. In many
cases, each subsystem has a different object to describe an entity, relevant to its
own local context. Displaying only the objects in relation to the subsystem is
an incredibly handy feature of sysfs. But, being able to symbolically and graph-
ically represent the relationship between objects of two different subsystems can

13

[Name

[Return Type

Description

sysfs_create_link(struct
kobject * kobj, struct kob-
ject * target, char * name

)

int

Create symbolic link in
kobj’s sysfs directory that
points to target’s directory,
with a name of 'name’.

Remove symbolic link from
kobject’s directory with
specified name.

sysfs_remove_link(struct | void
kobject *, char * name)

Table 10: sysfs Symbolic Link Interface.

be invaluable. Sysfs provides a very simple means to do so, via symbolic links
in the filesystem.

An example use of symbolic links is in the block subsystem . When a block
device is registered, a symbolic link is created to the device’s directory in the
physical hierarchy. A symbolic link is also created in the device’s directory that
points to the corresponding directory under the block directory.

tree -d /sys/block/hda/
/sys/block/hda/

|-- device -> ../../devices/ide0/0.0
|-- hdai

|-- hda2

|-- hda3

|-- hda4d

|-- hdab

‘-- hda6

7 directories

tree -d /sys/devices/ide0/0.0/
/sys/devices/ide0/0.0/

‘-- block -> ../../../block/hda

1 directory

4 Hotplug

The driver model supports dynamic addition and removal of all object types
through their register() and unregister() functions. This includes support for the
dynamic addition and removal of devices on bus types that electrically support
it. This commonly referred to as the ’hotplug’ capability or feature.

When a device’s physical or logical status changes, the driver model executes
the user mode program in /proc/sys/kernel /hotplug. This isset to ’/sbin/hotplug
by default. This user mode agent may invoke user-defined policy for each action
or each device, including:

)

e Loading or unloading a driver module.

14

[Name [Return Type [Description l
dev_hotplug(struct device | int Called by driver model core
*dev, const char *action) when device is registered or

unregistered with core.
class_hotplug(struct device | int Called by driver model core
*dev, const char *action) when device is registered or

unregistered with class.

Table 11: struct subsystem Programming Interface.

e Configuring a device.

e Fxecuting a script or application.

The driver model calls one of two internal functions, selected by the source
of the event.

The action for both functions is one of ”ADD” or "REMOVE.” These actions
are set in environment variables for the the hotplug program. The driver model
sets the following parameters:

e HOME, set to '/’
e PATH, set to ’/sbin:/bin:/usr/sbin:/usr/bin’
e ACTION, set to ’ADD’ or '/REMOVE’.

e DEVPATH, set to the sysfs path to the device’s directory.

Additionally, the driver model defines a "hotplug’ methodforstruct bus_type
and struct device_class.

int (¥hotplug) (struct device *dev, char **envp,
int num_envp, char xbuffer, int buffer_size);

This method is called immediately before the user mode program is exe-
cuted. If this method is defined, the bus or class driver may supply additional
environment variables that bus or class specific policy may use in user space.

5 Devices

A device is a physical component of a computer that performs a discrete function
that the kernel can exert some control over. A device contains the electrical
components to perform its specified function, also known as its device class. A
device resides on abus of a certain type. A bus defines a standard architectures
for devices that reside on it, so devices of any function exist on it.

The driver model defines struct device to describe a device independent of the
bus it resides on, or the function it performs. This generic description contains
few members related directly to physical attributes of the device. Itinstead is a

15

Name

Return Type

Description

bus_list

struct list_head

List entry in bus’s list of de-
vices.

driver_list

struct list_head

List entry in driver’s list of
devices.

intf_list struct list_head List of interface descriptors
for the device.

parent struct device Pointer to parent device.

kobj struct kobject Generic kernel object meta-
data.

name char[DEVICE_NAME_SIZE] | ASCII description of device.

bus_id char[BUS_ID_SIZE] ASCII representation of de-
vice’s bus-specific address.

bus struct bus_type * Pointer to bus type device
belongs to.

driver struct device_driver * Pointer to device’s control-

ling driver.

driver_data void * Device-specific data private
to driver.

class_.num u32 Enumerated number of de-
vice within its class.

class_data void * Device-specific data private
to class.

platform_data void * Device-specific data private
to the platform.

power_state u32 Current power state of the
device.

saved_state void * Pointer to saved state for
device.

dma_mask dma_mask_t * DMA address mask the de-
vice can support.

Table 12: struct device Data Fields.
[Name [Return Type [Description

release(struct device *)

void

Garbage collection method
for tearing down devices.

16

Table 13: struct device Method.

means to consolidate the similar aspects of the disparate device representations
into a common place.

Struct device members fall into three basic categories - meta data, linkage
information, and physical attributes. A device’s meta data consists of fields to
describe the device andits reference count.

A device’s embedded kobject contains the reference count of the device and a
short 'name’ field. Kobjects are described in detail in Appendix A. Additionally,
struct device contains a 'name’ field of its own and a 'bus_id’ field. The latter
serves the same purpose as the kobject’s name field - to provide an ASCII
identifier unique only in a local context, i.e. among siblings of a common parent.
This redundancy is known, and will be resolved in the future.

A device’s 'name’ field provides a longer string which can be used to provide
a user-friendly description of a device, such as ” ATI Technologies Inc Radeon
QD” This description is provided by the bus driver when a device is discovered
by looking the device’s ID up in a table of names.

Struct device also contains several pointers to describe the objects that the
device is associated with. Many of these fields are used by the core when regis-
tering and unregistering a device to determine the objects to notify. The "bus’
field should be set by the bus driver before registering a device. The core uses
this to determine which bus to add it to. The ’driver’ and field is set by the
core when a device is bound to a driver. The ’class_.num’ field is set once the
device is registered with and enumerated by the class its driver belongs to.

The data fields are used so subsystems can share data about an object with-
out having to setup auxillary means of associating a device structure with a
subsystem-specific object. ’driver_data’ may be used by the driver to store a
driver-specific object for the device. ’class_.data’ may be used by the class to
store a class-specific object for the device. This should be set during the class’s
add_device() callback, as that is when the object is usually allocated. This ob-
ject may also be used by a class’s interfaces, since they are conscience of the
class’s internal representations.

‘platform_data’ is a pointer that the platform driver can use to store platform-
specific data about the device. For example, in ACPI-based system, the firmware
enumerates and stores data about many devices in the system. The ACPI driver
can store a pointer to this data in 'platform_data’ for later use.

This feature was an early requirement by ACPI. It has not been used since
its addition, nor has it proven useful to other platforms besides ACPI-enabled
ones. Therefore, it may be removed in the near future.

A device’s linkage information is represented in the several list entry struc-
tures in the object. Itbecomes a member of several groups when it is registered
with various drivers. The embedded kobject also contains a list entry repre-
senting membership in the global device subsystem. A device also has a pointer
to its parent device, which is used by the core to determine some a device’s
ancestry.

There are few physical attribute s contained in struct device, since the num-
ber of physical attributes common to a majority of devices are very few in
number. 'power_state’ is the current power state of the device. Many bus types

17

define multiple device power states. PCI defines four power states, D0-D3 for
PCI devices, and ACPI modeled their generic device power state definition af-
ter this. The DO state is defined as being on and running, and the D3 state is
defined as being off. All devices support these states by default. D1 and D2
are intermediate power states are usually optional for devices to support, even
if the underlying bus can support these states. In these states, the device is
unusable, but not all of the components of the device have been powered down.
This reduces the latency of restoring the device to the usable DO state.

When a device is suspended, physical components in the device are turned off
to save power. When these components are turned back on, they are supposed
to be restored to the identical state they were in before they were suspended.
‘saved_state’ is a field that the device driver can use to store device context
when the device is placed in a low power state.

Both 'power_state’ and ’saved_state’ are fields that were added to struct
device when the sole motivation was implementing sane power management
infrastructure. Not all devices support power management beyond being ’On’
or Off’. Many systems also do not support global power management, and
many configurations do not support any type of power management mechanism.
Because of this, these fields are being considered for removal. In order to do,
though, some other mechanism for attaching power state information to the
device must be derived. Note that such a mechanism could be used to attach
platform-specific data to a device only when the system and the device support
it.

’”dma_mask’ describes the DMA address mask that the device can support.
This is obviously only relevant if the device supports DMA-able 1/0. Several
bus structures contain a dma_mask, which motivated the transition of it to
the generic struct device. It is to be set by the bus driver when the device is
discovered. Currently, dma_mask is only a pointer, which should point to the
field in the bus-specific structure. This should be set by the bus driver before
the device is registered. In the future, the field will be moved entirely to the
generic device.

The 'release’ method acts as a desctructor for the device object. It is called
when a device’s reference count reaches 0 to inform the object that allocated it
that it is safe to free the device. Since struct device is usually embedded in a
larger object, the larger object should be freed.

This method should be initialized by the object that discovers and allocates
the device. This is typically the device’s bus driver. Since there should be only
one type ofdevice object that a bus controls, this method may bemoved to the
struct bus_type object in the future.

Programming Interface

The struct device programming interface consists of two parallel models. One
model is the basic registration and reference counting model common through-
out the driver model. However, the interface exposes the intermediate calls that

18

[Name [Return Type [Description l
device_register(struct de- | int Initialize device and add it
vice * dev) to hierarchy.
device_unregister(struct | void Remove device from hier-
device * dev) archy and decrement refer-

ence count.
device_initialize(struct de- | void Initialize device structure.
vice * dev)
device_add(struct device * | int Add device to device hierar-
dev) chy.
device_del(struct device * | void Remove device from hierar-
dev) chy.
get_device(struct device * | struct device * Increment reference count
dev) of device.
put_device(struct device * | void Decrement device reference
dev) count.

Table 14: struct device Programming Interface.

device_register() and device_unregister() use to express a finer level of control
over the lifetime of a device. The functions are described in the table below.

device_register() calls device_initialize() and device_add() to initialize a de-
vice and insert it into the device hierarchy respectively. Calling device_register()
is the preferred means of registering a device, though the intermediate calls may
be used instead to achieve the same result.

Analogously, device_unregister() calls device_del() and put_device() to re-
move the device from the device hierarchy and decrement its reference count.
These intermediate calls may also be used to achieve the same result.

The intermediate interface is exposed to let bus drivers reference and use
device objects before advertising their presence via the hierarchy and sysfs.
This is necessary for USB devices and hot-pluggable bus types. To initialize
a device after it is discovered, a series of I/O transfers must take place. The
device may be removed during this process, so the subsystem must be aware of
its reference count and potential garbage collection. However, the device is not
fully functional yet, and must not be registered in the hierarchy.

6 Buses

A bus driver is a set of code that communicates with a peripheral bus of a
certain type. Some examples of bus drivers in the kernel include:

e PCI
e USB
e SCSI

e IDE

e PCMCIA

19

[Name [Type [Description l

name char * The name of the bus.

subsys struct subsystem Bus’s collection of subordi-
nate objects.

drvsubsys struct subsystem Bus’s collection of subordi-
nate drivers.

devsubsys struct subsystem Bus’ collection of subordi-
nate devices.

devices struct list_head Bus’s list of devices regis-
tered with it.

Table 15: struct bus_type Data Fields.

[Name [Type [Description]
match(struct device * dev, | int Called during driver bind-
struct device_driver * drv) ing process for bus to com-

pare a device’s ID, with the

list of Ids that the driver

supports.
add(struct device * parent, | struct device * Called to add a device to a
char * bus_id) bus at a certain location.
hotplug(struct device *dev, | int Called before /sbin/hotplgu
char **envp, int num_envp, is called on device insertion
char *buffer, int buffer_size or removal, so bus can for-
) mat parameters correctly.

Table 16: struct bus_type Methods.

Bus drivers maintain a list of devices that are present on the bus and a list of
drivers that have registered with it. A bus driver is an optional compile option,
and usually may be compiled as a module to be loaded at runtime. It’s existence
is singular. There will never be multiple instances of a driver for the same bus
type at the same time. Therefore most, if not all, of its internal data structures
are statically allocated.

A bus instance represents the presence of a bus of a particular type, such as
PCI Bus 0. They are dynamically allocated when the bus instance is discovered.
They contain a list of subordinate devices, as well as data describing the physical
device the bus is connected to (the bridge) and membership information about
which bus type it belongs to. Bus instances are not currently represented in the
driver model. However, they are mentioned here to note the distinction between
them and bus driver objects.

The driver model defines struct bus_type to represent instances of bus drivers,
and is described below. The driver model does not define an object to describe
a bus instance yet. Thisfeature may be added in the future.

The members of struct bus_type center around the lists of objects that buses
maintain. bus_type contains three subordinate subsystems and a struct list_head
to manage subordinate objects, though not all are fully used.

‘subsys’ is reserved for managing the set of bus instances ofa type, and is not
currently used for that purpose. It is registered with the kobject core, though,

20

as a child of the global bus subsystem. This gives the bus a node in the kobject
hierarchy , and a directory in the sysfs filesystem.

‘drvsubsys’ manages the set of drivers registered with the bus type. It is
currently used, and the drivers registered with the bus are inserted into the
subsystem’s list.

"devsubsys’ is intended to manage the list of devices present on all bus in-
stances of the bus type. However, the bus must use another list tocontain the
device objects. Kobjects may only belong to one subsystem, and the embedded
kobject in struct device is a member of the global device hierarchy. Therefore,
struct device contains a list entry ’bus_list’ for insertion into the bus’s list of
devices.

Note that the list of devices that the bus maintains is the list of all devices
on all buses of that type in the system. For example, a system may have several
PCI buses, including multiple Host PCI buses. Though devices may be not be
on the same physical bus, they all belong to the same bus type. This aides in
routines that must access all devices of a bus type, like when binding a driver
to devices.

The 'name’ field of the bus is the name of the bus. This field is redundant
with the name field of the embedded subsystem’s kobject. This field may be
removed in the future.

The methods of struct bus_type are helpers that the core can call to perform
bus-specific actions too specific for the core to efficiently handle.

The 'match’ method is used during the process of attaching devices to
drivers. Devices drivers typically maintain a table of device IDs that they sup-
ports, and devices each contain an ID. These IDs are bus-specific, as are the
semantics for comparing them. The driver model core can perform most of the
actions of driver binding, such as walking the list of drivers when a device is
inserted, or walking the list of devices when a driver module is loaded. But, it
does not know what format the device ID table is in, or how it should compare
them (i.e. if it should take into account any masks in the device IDs). The core
instead calls the bus’s match method to check if a driver supports a particular
device.

The ’add’ callback is available for other kernel objects to tell the bus driver
to look for a particular device at a particular location. Other objects may know
the format of a device’s ID, but only the bus driver knows how to communicate
with the deviceover the bus.

This is useful for firmware drivers that can obtain a list of devices from the
firmware, and wish to tell the kernel about them, instead of having the kernel
probe for them. So far, this method is not implemented by any bus drivers,
or used by any code in the kernel. This method is not being considered for
removal, though, since its neglect is due to a lack of time rather than a lack of
usefulness.

The "hotplug’ method is called by the driver model core before executing the
user mode hotplug agent. The bus is allowed to specify additional environment
variables when the agent is executed.

21

[Name [Return Type [Description l
bus_register(struct | int Register bus driver with
bus_type * bus) driver model core.
bus_unregister(struct | void Unregister bus driver from
bus_type * bus) driver model core.
get_bus(struct bus_type * | struct bus_type * Increment reference count
bus) of bus driver.
put_bus(struct bus_type * | void Decrement reference count
bus) of bus driver.

Table 17: struct subsystem Programming Interface.

Programming Interface

The programming interface for bus drivers consists of registration and reference
counting functions. Bus drivers should be registered in their startup routines,
whether compiled statically or as a module. They should be unregistered in their
module exit routines. Reference counts for bus drivers should be incremented
before a bus driver is used and decremented once use of the driver is done.

There are two caveats of using bus drivers as they are currently implemented
in the driver model . First, the de facto means of referencing a bus driver is
via a pointer to its struct bus_type. This implies that the bus drivers must
not declare the object as ’static’ and must beexplicitly exported for modules
to use. An alternative is to provide a helper that searches for and returns a
bus with a specified name. Thisis a more desirable solution from an abstraction
perspective, and will likely be added to the model.

Secondly, bus drivers contain no internal means of preventing their module
to unload while their reference count is positive. This causes the referring object
to access invalid memory if the module is unloaded. The proposed solution is to
use a semaphore, like device drivers contain, that bus_unregister() waits on, and
is only unlocked when the reference count reaches 0. This will be fixed inthe
near future.

Driver Binding

Device drivers are discussed in a later section, but that does hinder the discus-
sion of describing the process of binding devices to drivers. Binding happens
whenever either a device or a driver is added to a bus. The end result is the
same, though the means are slightly different. During attaching or detaching
devices or drivers, the bus’s rwsem is taken to serialize these operations.

When a device is added to the core, the internal function bus_add_device()
is called. This inserts the device into the bus’s list of devices, and calls de-
vice_attach(). This function iterates over the bus’s list of drivers and tries to
bind it to each one, until it succeeds. When the device is removed, bus_remove_device()
is called, which detaches it from the driver by calling the driver’s ’remove’
method.

When a driver is added to the core, the internal function bus_add_driver() is

22

[Name [Return Type [Description l
bus_for_each_dev(struct | int Iterator for accessing each
bus_type * bus, void * device on a bus sequentially.
data, int (*callback)(struct It holds a read lock on the
device * dev, void * data) bus,while calling ’callback’
); for each device.
bus_for_each_drv(struct | int Identical to
bus_type * bus, void * bus_for_each_dev(), but
data, int (*callback)(struct operates on a bus’s regis-
device_driver * drv, void * tered drivers.
data));

Table 18: struct bus_type Helper Functions.

called. This inserts the driver into the bus’s list of drivers, and calls driver_attach().
This function iterates over the bus’s list of devices, trying to attach to each that
does not already have a driver. It does not stop at the first successful attach-
ment, as there may be multiple devices that the driver may control. When
a driver module is unloaded, bus_remove_driver() is called, which iterates over
the list of devices that the driver is controlling. The driver’s 'remove’ method
is called for each one.

During the attachment of either a device or a driver, the function bus_match()
is called at each iteration. This calls the bus’s 'match’ method is called to com-
pare the device ID of the device with the table of IDs that the driver supports.
'match’ should return TRUE (1) if one of the driver’s IDs matched the device’s,
or FALSE (0) if none of them did.

If 'match’ returns TRUE, the device’s ’driver’ pointer is set to point to the
driver, and the driver’s 'probe’ method is called. If 'probe’ returns success (0),
the device is inserted into the driver’s list of devices that it supports.

Bus Helper Functions

Occasionally, it is useful to perform an operation on the entire space of devices
or drivers that a bus supports. To aid in this, the driver model core exports a
helper to do each.

bus_for_each_dev() iterates over each device that a bus object knows about.
For each device, it calls the callback passed in, passing the current device pointer,
and the data that was passed as a parameter to the function. bus_for_each_drv()
behaves identically, though it operates on the bus’s driver-space.

Each function checks the return value of the callback after calling it, and
returns immediately if it is non-zero.

Each function increments the reference count of the object it’s iterating on
before it calls the callback, and releases it when it returns.

Each functions takes a read lock for the bus. This allows multiple iterations
to be taking place at the same time, but prevents against a removal or addition
happening while any iterations are in progress. These functions always incre-
ment the reference count of the object before calling the callback, and decrement

23

it after it returns. The function does not return whichobject caused the callback
to return a non-zero result.

The callback must store this information if it needs to retain it. It must also
increment the reference count of the object to guarantee the pointer remains
valid until it can access it. The example below illustrates this point.

struct callback_data {
struct device * dev;

char * id;
};
static int callback(struct device * dev, void * data)
{
struct callback_data * cd = (struct callback_data *)data;
if (!strcmp(dev->bus_id,cd->id)) {
cd->dev = get_device(dev);
return 1;
}
return 0;
}
static int caller(void)
{
struct callback_data data = {
.id = "00:00.0",
};
/* find PCI device with ID 00:00.0 */
if (bus_for_each_dev(&pci_bus_type,&data,callback)) {
struct device * dev = data.dev;
/* fiddle with device */
put_device(dev) ;
}
}

7 Device Drivers

A device driver is a body of code that implements one or more interfaces of
a device class for a set of devices on a specific bus type. Drivers are specific
to both their class and bus. Only in rare cases may drivers work on devices
on two different bus types, and in those cases, it is because of a abstraction
layer internal to the driver. Device drivers also contain a set of methods to
perform bus-specific operations for their target. The driver model defines struct
device_driver to describe device drivers.

Device drivers are optional and may be loaded as modules. They contain
some statically allocated structures to describe the driver to its bus and class,
and to maintain a list of devices bound to it. During startup, a driver registers
an object with its bus. This object contains basic description information, the
bus-specific methods it implements, and a table of device IDs supported by the
driver. The bus driver inserts the driver into a list, and attempts to bind the

24

[Name [Return Type [Description l
name char * The name of the driver.
bus struct bus_type The bus the driver belongs
to.
devclass struct device_class The class the driver belongs
to.
unload_sem struct semaphore Semaphore to protect

against a driver module
being unloaded while the
driver is still referenced.

kobj struct kobject Generic object information.

class_list struct list_head List entry in class’s list of
drivers.

devices struct list_head List of devices bound to
driver.

Table 19: struct device_driver Data Fields.

driver to devices present on the bus. When a driver is bound to a device, it
allocates a private structure, and usually allocates the class-specific object for
the device. Traditionally, the device has registered the device with the class
manually, though the driver model is working to move that functionality out of
the drivers.

A driver is detached from a device if the driver module is unloaded. This
involves unregistering the device from the class and freeing the private structure
ithad allocated for the device.

Structural Overview

struct device_driver is designed to describe a device driver at a simple level. It
consists of data elements that are independent of bus or class types, linkage
information that is common to all buses and classes, and a set of methods
designed to be called from driver model core code.

Currently, the generic driver structure is intended to be embedded in the
bus-specific driverstructures that already exist today. The bus driver is then
modified to forward the registration call to the driver model core when the
driver registerswith its bus. This allows a gradual transition phase while the
individual driversaremodified to use the generic fields.

To smooth this transition, the bus drivers also supply parameters for the
generic structure on behalf of the bus-specific structures. This is true for the
methods of struct device_driver. Many bus-specific driver objects have methods
similar to those in the generic driver structure. A bus driver may implement
methods for the generic structure that simply forward method calls to methods
in the bus-specific structure. Drivers can become part of the driver model
without having to modify every driver structure.

The bus drivers may also set the bus type for the driver, since it receives the
intermediate call. However, the driver should specify its device class, since the
class has no way of determining that.

25

[Name [Return Type [Description l
probe (struct device * dev | int Called to verify driver can
) be bound to device, and at-

tach to device.
remove(struct device * dev | int Called to detach driver from
) device.
shutdown(struct device * | void Called during system shut-
dev) down sequence to quiesce
devices.
suspend(struct device * | int Called during system sus-
dev, u32 state, u32 level) pend transition to put de-
vice to sleep.
resume(struct device * dev, | int Called during system re-
u32 level) sume transition to wake de-
vice back up.

Table 20: struct device_driver Methods.

The "kobj’ member contains genericobject meta data. This object belongs to
the driver subsystem of the driver’s bus type. It is registered with the subsystem
when the driver registers with the driver model core. The ’class list’ field is a
list entry that allows the drive to be inserted in its class’s list of drivers. The
"devices’ list is a list of devices that have been attached to the driver.

The ’unload_sem’ member is used by the core to prevent a driver module
from being unloaded while its reference count it still positive. This semaphore is
initialized to a locked state, and only unlocked when a driver’s reference count
reaches 0. A driver may be unregistered at any time, even if the reference count
is positive. Unfortunately, after a driver is unloaded, its module is removed
unconditionally. If unregistering the driver did not remove the last reference,
the process blocks waiting for the reference count to reach 0, and the semaphore
to be released.

The methods of struct device_driver are operations that the driver model core
calls when it needs to perform device-specific actions during an otherwise generic
operation. As before, the bus may implement these methods for all registered
drivers, and simply forward the calls to the bus-specific driver methods.

‘probe’ is called to determine whether a device can support a specific device.
This is called during the driver binding operation, after the bus has verified
that the device’s ID matches a supported ID. This method is for the driver to
verify that the hardware is in good, working condition and it can be successfully
initialized.

This method is traditionally used to initialize the device and register it with
the driver’s class. Discussion has surfaced several times about separating the
'probe’ method into ’probe’ and ’start’ (or similar). ’probe’ would only verify
that the hardware was operational, while ’add” would handle initialization and
registration of the device. Some common registration functionality could also
be moved out of the drivers and into the core, since it typically happens after
operational verification and before hardware initialization. For now, 'probe’
remains dual-purposed and monolithic.

26

[Name [Return Type [Description
driver_register(struct de- | int Register driver with core.
vice_driver *)
driver_unregister(struct de- | void Unregister driver from core.
vice_driver *)
get_driver(struct de- | struct device * Increment driver’s reference
vice_driver *) count.
put_driver(struct de- | void Decrement driver’s refer-
vice_driver *) ence count.

Table 21: struct device_driver Programming Interface.

‘remove’ is used to disengage the device from the driver. The driver should
shut down the device. 'remove’ is called during the driver unbinding operation,
when either a device or a driver has been removed from the system.

’shutdown’ is called during a reboot or shutdown cycle. It is intended to
quiesce the device during a shut down or reboot transition. It is called only
from device_shutdown(), during a system reboot or shutdown sequence.

‘'suspend’ and ’resume’ are called during system-wide and device-specific
power state transitions, though only it is currently only used in the former.
Power management is discussed in its own section, and should be consulted for
the details of the parameters of these functions.

Programming Interface

Device drivers have a programming interface similar to the other driver model
objects. They have register and unregister functions, as well as routines to
adjust the reference count. The only behavioral difference is usage of the driver’s
‘unload_sem’ field, as described above.

8 Device Classes

A device class describes a function that a device performs, regardless of the bus
on which a particular device resides. Examples of device classes are:

e Audio output devices.
e Network devices.

e Disks.

e Input devices.

A device class is characterized by a set of interfaces that allow user processes
to communicate with devices of their type. An interface defines a protocol for
communicating with those devices, which is usually characterized in a user space
device node. A class may contain multiple interfaces for communicating with

27

[Name [Return Type [Description l
name char * Name of device class.
devnum u32 Value for enumerating de-
vices registered with class.

subsys struct subsystem Collection of subordinate
interfaces.

devsubsys struct subsystem Collection of devices regis-
tered with class.

drvsubsys struct subsystem Collection of drivers regis-
tered with class.

devices struct list_head List of devices registered
with class.

drivers struct list_head List of drivers registered
with class.

Table 22: struct device_class Data Fields.

[Name [Return Type [Description]
add_device(struct device * | int Method called to register
) device with class. Called af-

ter device has been bound
to driver belonging to class.
remove_device(struct de- | void Called to unregister device
vice *) from class. Called while de-
taching device from driver
that belongs to class.

hotplug(struct device *dev, | int Called before /sbin/hotplug
char **envp, int num_envp, is called when device is reg-
char *buffer, int buffer_size istered with class. This is
) opportunity for class to fill
in and format parameters to
/sbin/hotplug.

Table 23: struct device_class Methods.

devices, though the devices and drivers of that class may not support all the
interfaces of the class. Device interfaces are described in the next section.

A driver for a device class maintains lists of device and drivers that belong to
that class. They are optional bodies of code that may be compiled as a module.
Its data structures are statically allocated. A device class defines object types
to describe registered devices.These objects define the devices in the context of
the class only, since classes are independent of the registered devices’ bus type.

The driver model defines struct device_class to represent a device class driver.
The driver model does not explicitly represent the per-device objects that device
class drivers operate on, though they are expected to use the class_data member
of struct device to store that object.

28

Structural Definition

Struct device_class most closely resembles struct bus_type. Indeed, many of
the fields of struct device_class server a similar purpose as those in struct
bus_type.The subordinate subsystem ’devsubsys’ and the ’devices’ list manage
the list of devices registered with the class. Like with buses, these structures
must exist in parallel, since a kobject may not belong to more than one subsys-
tem at a time. The same is true of the ’drvsubsys’ and ’drivers’ list with regard
to drivers registered with the classes.

The ’subsys’ member manages the list of interfaces registered with the class.
As interfaces are registered, they are inserted into the subsystem’s list. This
member is also used to register the class with the kobject hierarchy, as a member
of the global class subsystem.

The ’devnum’ field is an enumerator for devices that are attached to the class.
A device’s ’class_num’ field is set to this value when a device is registered with a
class. The 'devnum’ field is incrementedafter each time a device is enumerated.

Device classes contain three methods that are called by the driver model core
during the process of adding and removing devices from a class. add_device() is
called when a device is registered with the device class. A device is registered
with a device class immediately after the device is bound to a driver. It is added
to the class that the driver belongs to. remove_device() is called when a device is
unregistered from a device class. This happens when a device is being detached
from its driver.

The ’hotplug’ method is called immediately after a device is added or re-
moved from a device class. This allows the class to define additional environment
variables to set for the hotplug agent when the driver model core executes it.

Programming Interface

Device classes have a similar interface to other driver model objects. It offers
calls to register and unregister device classes, as well asfunction to adjust the ref-
erence count. Device class drivers should statically allocate struct device_class
objects. They should initialize the 'name’ field, and the pointers of the meth-
ods they support. The object should be registered in the class’s initialization
function, and unregistered in the class’s tear down function, if it is compiled as
a module.

9 Device Interfaces

A device class represents the functional type of a device, but it is characterized
by the interfaces to communicate with that type of device. A device class
interface defines a set of semantics to communicate with a device of acertain
type. These are most often in the form of device nodes visible to user space,
though they could also beregular files in a filesystem exported by the kernel.
There may be multiple interfaces per device type, and not all devices or
drivers of a class may support all the interfaces of that class. For example, the

29

[Name [Return Type [Description
devclass_register(struct de- | int Register class with core.
vice_class *)
devclass_unregister(struct | void Unregister class with core.
device_class *)
get_devclass(struct de- | struct device_class * Increment class’s reference
vice_class *) count.
put_devclass(struct de- | void Decrement class’s reference
vice_class *) count.

Table 24: struct device_class Programming Interface.

[Name [Return Type [Description]

name char * Name of interface (must be
unique only for class).

devclass struct device_class * Class interface belongs to.

subsys struct subsystem Collection of subordinate
objects.

devnum u32 Enumerator for registered
devices.

Table 25: struct device_interface Data Fields.

input device class describes devices that are capable of generating input for the
kernel. A device and driver may support multiple ways of communicating with
it. For example, a touch screen may be accessed as a mouse device, as well as a
touch screen device. However, a mouse device may be accessed using only the
mouse interface, and not the touchscreen interface.

The driver model defines struct device_interface to describe device interfaces.
They are simple structuresthat may be dynamically registered and unregistered
with device classes. A class’s interfaces are referenced when a device is added to
or removed from the class. When a device is added, the driver model attempts
to add the device to every interface registered with the class.

A device may not support all of the interfaces registered with the device, so
the driver model defines a separate object type to express a device’s membership
with an interface. An instance of this object is added to a device’s list. When
a device is removed from a class, it is removed from the interfaces to which it
had been added by iterating over this list, rather than the list of the class’s
interfaces.

Driver Model Representation

struct device_interface is similar to struct device_class, though simpler. Its mem-
ber fields and methods are described below.

An interface’s 'subsys’ member contains generic object meta data and isreg-
istered as subordinate of thesubsystem of the interface’s device class. It is also
used to contain the device-specific objects allocated by the interface.

The ’devnum’ member is used to enumerate devices when they are registered

30

[Name [Return Type [Description l
add_device(struct device * | int Called to register device
) with interface, after device

has been registered with
class.
remove_device(struct | int Called to unregister device
intf_data *) from interface, before de-
vice has been unregistered
from class.

Table 26: struct device_interface Methods.

[Name [Return Type [Description]
interface_register(struct de- | int Register interface with
vice_interface *) class.
interface_unregister(struct | void Unregister interface from
device_interface *) class.

Table 27: struct device_interface Programming Interface.

with the interface. When an interface attaches the device-specific data to the
interface,it is assigned the value of ’"devnum’, which is then incremented.

Programming Interface

Interface objects should be statically allocated and registered on startup. They
should initialize the 'name’ and ’devclass’ field, as well as the methods they
support. Interfaces support only a registration interface. There is no explicit
mechanism to perform reference counting on them, though one could do so
directly on the embedded struct subsystem.

Interface Data

The driver model defines an object, struct intf_data, to describe a device-specific
object for aninterface. This objectcan beregistered as an object of the interface’s
embedded subsystem and added to the ’intf_list’ member of struct device. This
allows interfaces to maintain an accurate list of registered devices, and for de-
vices to maintain an accurate list of interface membership.

This is necessary since devices may not belong to all of the interfaces of a
device class, and an interface may not be valid for all devices registered with a
device class. When a device isremoved from a device class, the driver model core
can iterate over the device’s list of intf_data objects to reference its containing
interfaces. And, when an interface is removed from a class, the driver model core
can iterate over the interface’s subordinate kobjects - since they are embedded
in struct intf_data - to reference the attached devices.

struct intf_data may be embedded in a more complex device-specific data
structure for the interface, or may be allocated separately. It should be allocated

31

[Name [Return Type [Description l
intf struct device_interface Interface data belongs to.
dev struct device * Device being registered

with interface.
intf_num u32 Interface-enumerated value
of this object.
dev_entry struct list_head List entry in device’s list of
interface objects.
kobj struct kobject Generic object data.
Table 28: struct intf_data Data Members.

[Name [Return Type [Description]
interface_add_data(struct | int Attach data object to
intf_data *) interface and device. This

should wusually be called
during the interface’s
add_device() method once
it’s determined the device
can support it.

Table 29: struct intf.data Programming Interface.

during the core’s call to the interface’s add_device method. This method should
then call interface_add_data() to attach the data to the deivce and the interface.
The interface should initialize the ’intf’ and 'dev’ members of the intf data
object before calling interface_add_dataf().

When a device is removed from an interface, the internal function inter-
face_remove_data() is called immediately before the interface’s remove_device()
method. Thisdetaches it from the deviceand the interface, so that the interface
may free the structure in their remove_device() method.

10 Platform and System Devices

The discussion of the driver model thus far has focused on peripheral expansion
buses that tend to share many characteristics in their handling of devices and
drivers, despite having radically different physical attributes. The model works
well for them because it consolidates often-replicated object management code
present in each of those bus drivers. This covers a vast majority of devices that
the kernel supports.

However, the driver model must make exceptions for two classes of devices:
system-level devices, legacy I/O devices, and host bridges. Legacy devices and
host bridges are grouped into a common category - 'platform devices’, since
they are an integral part of the platform and the physical makeup of the system
board.

32

System Devices

System-level devices are devices that are integral to the routine operation of the
system. This includes devices such as processors, interrupt controllers, and sys-
tem timers. System devices do not follow normal read/write semantics. Because
of this, they are not typically regarded as I/O devices, and are not represented
in any standard way.

They do have an internal representation, since the kernel does communicate
with them, and does expose a means to exert control over some attributes of
some system devices to users. They are also relevant in topological represen-
tations. System power management routines must suspend and resume system
devices, as well as normal I/O devices. And, it is useful to define affinities to
instances of system devices in systems where there are multiple instances of the
same type of system device.

These features can happen in architecture-specific code. But, the driver
model’s generic representation of devices provides an opportunity to consolidate,
at least partially, the representations into architecture-independent ones.

Problems

This representation raises a few exceptions in the driver model. For one, there
is no common controlling bus that system devices reside on. Computers always
have at least one system-level bus on which the CPU and memory usually reside.
This device is always present, and not probed for like buses of other types.
To accommodate for this, a struct bus_type object is allocated for the system
bus and registered on startup. This 'pseudo-bus’ is intended to represent the
controlling bus of all system devices.

Secondly, system devices are dynamically discovered by bus probe routines,
like devices on other bus types are. There is no common way to communicate
with more than one type of system device, so this is quite impossible. Devices
are discovered via very specific operations in driver-like code.

The term ’driver-like’ is used because system devices typically do not have
device drivers like most peripheral devices do. The purpose of most device
drivers is to implement device-specific support for a programming interface de-
signed for a certain class of devices. Most system-level devices are in a class
of their own, so there is no need to register their existence, or abstract their
specifics. But, there are drivers that do initialization of system-level devices,
and export them to other parts of the kernel.

This makes the discovery of system devices dependent on the presence of the
device’s driver. In other peripheral buses, device discovery and driver registra-
tion are two mutually exclusive operations. This does not completely break the
model, but it causes system device infrastructure to make obtuse calls to the
driver model core during registration.

System devices are expected to register a device class object first, then a
device driver for the device type, setting its bus to be the system pseudo-bus
object, and its class to be the device class that was just registered. Then,

33

[Name [Return Type [Description l
id u32 Instance number of this sys-
tem root.
dev struct device Generic device information
for system root.
sysdev struct device Statically-allocated virtual
system bridge for this sys-
tem root.
Table 30: struct subsystem Programming Interface.
[Name [Return Type [Description]
name char * Canonical name of system
device.
id u32 Enumerated instance of sys-
tem device.
root struct sys_root * System root device exists
on.
dev struct device Generic device information.

Table 31: struct subsystem Programming Interface.

the devices should actually be registered, with their bus set to the system bus
object, and their driver set to the driver just registered. This is not the most
elegant solution, but it allows system devices to have complete coverage within
the driver model.

Representation

System devices are described in the following way:

struct sys_root is designed to accommodate systems that are composed of
multiple system boards, though are regarded as having a contiguous topology.
NUMAQ systems are an example of a platform with this feature that are com-
posed of four system boards bridged together with a custom controller to main-
tain cache coherency.

To accurately represent the topology of the system, each system board is
represented by a struct sys_root. On all systems, there is an implicit sys_root
present. On NUMAQ systems, additional system roots may be registered to
represent the different system boards. Each of these subordinate roots contain
a struct device to represent a logical bridge to the system bus on that board.

When system devices are discovered, their sys_root pointer may be set to be
the root under which they physically reside. They will be added as children of
the system ’bridge’ of the root under which they reside. If their root is not set,
they will be added under the default root. System devices are always added as
members of the system bus type.

Both struct sys_root and sys_device contain ’id’ fields, and struct sys_device
contains a ‘'name’ field. Device discovery routines can use these fields to name

34

[Name [Return Type [Description l
name char * Canonical name of platform
device.
id u32 Enumerated instance of
platform device.
dev struct device Generic device information.

Table 32: struct subsystem Programming Interface.

enumerate the devices that are being registered for easy identification purposes
later, without having to reference the embedded struct device.

Platform Devices

Platform devices are the set of legacy I/O devices and host bridges to peripheral
buses. These sets of devices share the characteristic that they are devices on the
system board itself; they are not expansion devices. They also share the char-
acteristic with system devices that they are not necessarily part of a common
controlling bus. Like system devices, their discovery is dependent on the pres-
ence of a driver for them. Although, many modern firmwares are attempting to
change this, as will be described later.

To cope with platform devices, the driver model created a pseudo bus to pose
as the bus driver for platform devices. However, there is no common parent for
all platform devices. Legacy devices on modern systems reside on an ISA bus, a
subordinate of the PCI-ISA bridge on the PCI bus. It is important to accurately
describe the system topology, so the platform device model allows for registrants
to encode this in the device’s parent.

The driver model has also created a structure very similar to struct sys_device
to describe platform devices.

The 'name’ and ’id’ are intended to be set by the discoverer of the devices
to allow for easy identification and comparison, without having to reference or
parse the embedded device’s fields.

Discovery

Platform device discovery has traditionally occurred when a driver loaded and
probed hard-coded I/O ports to test for existence. This can cause problems,
though, when a driver is running on a platform where the ports to probe for
existence are different. It doesn’t even have to be different architectures, only
different revisions of the same platform. Probing undefined I/O ports is danger-
ous and cause very unpredictable behavior. It can also be a very slow process,
and significantly delay the boot process.

To cope with these problems, the drivers can be modified to use different
I/0 ports on different platforms, but it often convolutes the code.

35

Firmware

Many modern firmware implementations have made attempts to solve this prob-
lem by defining tables to describe the devices that are attached to the system
board, since they are known when the firmware is built. The kernel can read
these tables to know what type of devices are attached where, independent of
any driver being loaded.

This creates a need to do dynamic driver binding for these devices. The
platform bus is designed to handle this. Theoretically, a firmware driver could
parse the firmware tables, and add platform devices for the devices that they
describe. The drivers for these devices can be registered with the platform bus,
and bound to the devices registered with it.

However, in order to use this infrastructure, drivers for platform devices must
be modified to handle this. They must first register with the platform bus, and
not probe for devices when they are loaded. Legacy probing mechanisms may
still exist as a fall back, but they must be separated from the core initialization
routines of these drivers. It may also be beneficial to make these parts of the
drivers optional.

This feature also depends on the firmware drivers and device drivers using
the same name to represent a type of device. Each firmware encodes a different
way to describe each type of device, like a different Plug N’ Play ID for each.
Instead of modifying the common platform layer to know about every firmware
driver’s method of encoding each device type, firmware drivers are expected to
map their local device descriptors into a common format.

For example, instead of naming a Host-PCI bridge after its PnP ID, ”PNP0a03”,
it would name the device ”pci”, which is equally meaningful to all code, as well
as someone reading the code. The PCI bus driver could then load and register
a driver with name "pci”. The platform bus would use these two names in its
‘match’ method to match the device with the driver, and call the PCI driver’s
probe method.

Work in this area is largely experimental. Not much quantifiable progress
has been made, besides previous proof-of-concept implementations. More work
is expected to take place in this area in the near future.

36

